WO2023209990A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023209990A1
WO2023209990A1 PCT/JP2022/019404 JP2022019404W WO2023209990A1 WO 2023209990 A1 WO2023209990 A1 WO 2023209990A1 JP 2022019404 W JP2022019404 W JP 2022019404W WO 2023209990 A1 WO2023209990 A1 WO 2023209990A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
transmission
frequency
panel
resource
Prior art date
Application number
PCT/JP2022/019404
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/019404 priority Critical patent/WO2023209990A1/ja
Publication of WO2023209990A1 publication Critical patent/WO2023209990A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the UE will perform UL transmission using multiple beams (or panels).
  • the UL transmission may be controlled by allocating UL transmission (or UL transmission resources) corresponding to each beam/panel so as not to overlap in the frequency direction (for example, frequency division multiplexing (FDM)). is assumed.
  • FDM frequency division multiplexing
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform simultaneous UL transmission using multiple beams/panels.
  • a terminal includes a first frequency resource corresponding to a first beam or panel, and a second frequency domain resource corresponding to a second beam or panel that is frequency division multiplexed with the first frequency domain resource.
  • a receiving unit that receives one piece of downlink control information used for scheduling transmission of one or more uplink shared channels using the second frequency resource; and a control unit that determines the second frequency resource.
  • simultaneous UL transmission using multiple beams/panels can be appropriately performed.
  • FIG. 1 is a diagram illustrating an example of the association between precoder types and TPMI indexes.
  • 2A and 2B are diagrams illustrating an example of single panel UL transmission.
  • 3A to 3C are diagrams showing examples of methods 1 to 3 of simultaneous UL transmission using multi-panels.
  • FIG. 4 is a diagram illustrating an example of PUSCH repetitive transmission using SDM.
  • FIG. 5A is a diagram illustrating a first example of PUSCH repetitive transmission using FDM.
  • FIG. 5B is a diagram illustrating a second example of PUSCH repetitive transmission using FDM.
  • 6A and 6B are diagrams illustrating an example of an FDM scheme.
  • FIG. 7 is a diagram illustrating an example of an RV table applied to PUSCH repetition (TDM).
  • FIG. 8A to 8C are diagrams showing examples of FDM schemes #1 to #3.
  • FIG. 9 is a diagram illustrating an example of PUSCH frequency domain resource allocation according to the first embodiment.
  • 10A and 10B are diagrams illustrating other examples of frequency domain resource allocation for PUSCH according to the first embodiment.
  • FIG. 11 is a diagram illustrating another example of PUSCH frequency domain resource allocation according to the first embodiment.
  • 12A and 12B are diagrams illustrating an example of TB size determination according to the second embodiment.
  • 13A and 13B are diagrams showing other examples of TB size determination according to the second embodiment.
  • 14A and 14B are diagrams showing an example of frequency density of PTRS according to the third embodiment.
  • 15A and 15B are diagrams showing other examples of frequency density of PTRS according to the third embodiment.
  • FIG. 9 is a diagram illustrating an example of PUSCH frequency domain resource allocation according to the first embodiment.
  • 10A and 10B are diagrams illustrating other examples of frequency domain resource allocation for PUSCH
  • FIG. 16 is a diagram showing another example of the frequency density of PTRS according to the third embodiment.
  • FIG. 17 is a diagram illustrating an example of a table used for determining RV in the FDM scheme according to the fourth embodiment.
  • FIG. 18 is a diagram illustrating an example of PUSCH repetition using TDM.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 21 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 22 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 23 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the base station may repeatedly transmit DL data (eg, downlink shared channel (PDSCH)) a predetermined number of times.
  • DL data eg, downlink shared channel (PDSCH)
  • UL data eg, uplink shared channel (PUSCH)
  • the UE may be scheduled for a predetermined number of repeated PUSCH transmissions by a single DCI.
  • the number of repetitions is also called repetition factor K or aggregation factor K.
  • the n-th repetition is also called the n-th transmission occasion, and may be identified by a repetition index k (0 ⁇ k ⁇ K-1).
  • Repeated transmission may be applied to a PUSCH that is dynamically scheduled on the DCI (eg, a dynamic grant-based PUSCH) or a configured grant-based PUSCH.
  • the UE semi-statically receives information indicating the repetition factor K (for example, aggregationFactorUL or aggregationFactorDL) through upper layer signaling.
  • the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), MAC PDU (Protocol Data Unit), or the like.
  • the broadcast information may be, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), or the like.
  • the UE performs PDSCH reception processing (for example, at least reception, demapping, demodulation, and decoding) in K consecutive slots based on at least one field value (or information indicated by the field value) below in the DCI. one) or control the PUSCH transmission processing (e.g., at least one of transmission, mapping, modulation, and coding): - allocation of time-domain resources (e.g.
  • - Allocation of frequency domain resources for example, a predetermined number of resource blocks (RB), a predetermined number of resource block groups (RBG)), ⁇ Modulation and Coding Scheme (MCS) index, ⁇ Configuration of PUSCH demodulation reference signal (DMRS), - Spatial relation info of PUSCH or state of transmission configuration indication (TCI: Transmission Configuration Indicator) (TCI state).
  • RB resource blocks
  • RBG resource block groups
  • MCS Modulation and Coding Scheme
  • DMRS ⁇ Configuration of PUSCH demodulation reference signal
  • TCI state Transmission Configuration Indicator
  • the same symbol allocation may be applied between K consecutive slots.
  • the UE determines the start symbol S and the number of symbols L (e.g., Start and Length Indicator (SLIV)), which are determined based on the value m of a predetermined field (e.g., Time Domain Resource Allocation (TDRA) field) in the DCI.
  • L Start and Length Indicator
  • TDRA Time Domain Resource Allocation
  • the symbol allocation in each slot may be determined.
  • the UE may determine the first slot based on the K2 information determined based on the value m of a predetermined field (for example, TDRA field) of the DCI.
  • RVs redundancy versions
  • the RV applied to the TB in the nth slot may be determined based on the value of a predetermined field (eg, RV field) in the DCI.
  • PUSCH can be repeatedly transmitted over multiple slots (in slot units).
  • the UE may determine the predetermined slot based on Ks information determined based on the value m of a predetermined field (for example, TDRA field) of the DCI.
  • the UE may dynamically receive information indicating the repetition coefficient K (for example, numberofrepetitions) using the downlink control information.
  • the repetition factor may be determined based on the value m of a predetermined field (eg, TDRA field) in the DCI.
  • a predetermined field eg, TDRA field
  • a table may be supported in which the correspondence between the bit value notified by the DCI, the repetition coefficient K, the start symbol S, and the number L of symbols is defined.
  • repetitive transmission type A e.g., PUSCH repetition Type A
  • repetitive transmission type B e.g., PUSCH repetition Type B
  • the UE may be configured to apply at least one of repeated transmission type A and repeated transmission type B.
  • the base station may notify the UE of the repetition transmission type that the UE applies through upper layer signaling (eg, PUSCHRepTypeIndicator).
  • upper layer signaling eg, PUSCHRepTypeIndicator
  • repeat transmission type A For each DCI format that schedules PUSCH, either repeat transmission type A or repeat transmission type B may be set in the UE.
  • a first DCI format e.g., DCI format 0_1
  • the upper layer signaling e.g., PUSCHRepTypeIndicator-AorDCIFormat0_1
  • repeat transmission type B e.g., PUSCH-RepTypeB
  • the UE Repeat transmission type B is applied for the PUSCH repeat transmission scheduled in the format. Otherwise (e.g., if PUSCH-RepTypeB is not configured or if PUSCH-RepTypA is configured), the UE applies repetition transmission type A for PUSCH repetition transmissions scheduled in the first DCI format. do.
  • PUSCH precoder In NR, it is being considered that the UE supports at least one of codebook (CB)-based transmission and non-codebook (NCB)-based transmission.
  • CB codebook
  • NCB non-codebook
  • the UE uses at least a measurement reference signal (SRS) resource indicator (SRS Resource Indicator (SRI)) to perform physical uplink shared channels (PUSCH) on at least one of CB-based and NCB-based uplink shared channels (PUSCH). )) Determining a precoder (precoding matrix) for transmission is being considered.
  • SRS measurement reference signal
  • SRI SRS Resource Indicator
  • the UE determines the precoder for PUSCH transmission based on the SRI, Transmitted Rank Indicator (TRI), Transmitted Precoding Matrix Indicator (TPMI), etc. You may.
  • the UE may determine the precoder for PUSCH transmission based on the SRI for NCB-based transmission.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or by the parameter "srs-ResourceIndicator” included in the RRC information element "ConfiguredGrantConfig" of the configured grant PUSCH (configured grant PUSCH). It's okay.
  • TRI and TPMI may be specified by the "Precoding information and number of layers" field of DCI.
  • the UE may report UE capability information regarding the precoder type, and the base station may set the precoder type based on the UE capability information through upper layer signaling.
  • the UE capability information may be precoder type information (which may be represented by the RRC parameter "pusch-TransCoherence") used by the UE in PUSCH transmission.
  • the UE A precoder to be used for PUSCH transmission may be determined.
  • the UE may be configured with a subset of PMI specified by the TPMI by codebookSubset.
  • the precoder type can be any one of fully coherent, fully coherent, partially coherent, non-coherent, or a combination of at least two of these (for example, fully coherent, partially coherent, non-coherent), or a combination of at least two of these and "fullyAndPartialAndNonCoherent” or "partialAndNonCoherent”).
  • Completely coherent means that all antenna ports used for transmission are synchronized (the phases can be matched, the phase can be controlled for each coherent antenna port, a precoder can be applied appropriately to each coherent antenna port, etc.) (may also be expressed as ).
  • Partially coherent may mean that some of the antenna ports used for transmission are synchronized, but some of the antenna ports used for transmission are not synchronized with other ports.
  • Non-coherent may mean that each antenna port used for transmission is not synchronized.
  • a UE that supports fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports partially coherent precoder type may be assumed to support non-coherent precoder type.
  • the precoder type may be read as coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, etc.
  • the UE uses a TPMI index obtained from multiple precoders (which may also be called precoding matrices, codebooks, etc.) for CB-based transmissions and from a DCI (e.g., DCI format 0_1, etc.) for scheduling UL transmissions.
  • precoders which may also be called precoding matrices, codebooks, etc.
  • DCI e.g., DCI format 0_1, etc.
  • a precoding matrix corresponding to the precoding matrix may be determined.
  • FIG. 1 is a diagram showing an example of the association between precoder types and TPMI indexes.
  • Figure 1 shows a table of precoding matrix W for single layer (rank 1) transmission using 4 antenna ports in DFT-s-OFDM (Discrete Fourier Transform spread OFDM, transform precoding is effective). Applies to.
  • the UE is notified of any TPMI from 0 to 27 for single layer transmission. Also, if the precoder type is partialAndNonCoherent, the UE is configured with any TPMI from 0 to 11 for single layer transmission. If the precoder type is nonCoherent, the UE is configured with any TPMI from 0 to 3 for single layer transmission.
  • a precoding matrix in which only one component in each column is not 0 may be called a non-coherent codebook.
  • a precoding matrix in which a predetermined number (but not all) of the components in each column are non-zero may be referred to as a partially coherent codebook.
  • a precoding matrix in which the components of each column are all non-zero may be called a fully coherent codebook.
  • the non-coherent codebook and the partially coherent codebook may be called antenna selection precoders.
  • a fully coherent codebook may be called a non-antenna selection precoder.
  • RRC parameter "codebookSubset” "partialAndNonCoherent”
  • RRC parameter "codebookSubset” “fullyAndPartialAndNonCoherent”
  • the UE receives information (SRS configuration information, e.g., parameters in "SRS-Config" of the RRC control element) used to transmit a measurement reference signal (e.g., Sounding Reference Signal (SRS)).
  • SRS configuration information e.g., parameters in "SRS-Config" of the RRC control element
  • SRS Sounding Reference Signal
  • the UE transmits information regarding one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet” of an RRC control element) and information regarding one or more SRS resources (SRS resource At least one of the RRC control element "SRS-Resource”) may be received.
  • SRS resource set information e.g., "SRS-ResourceSet” of an RRC control element
  • SRS resource At least one of the RRC control element "SRS-Resource” may be received.
  • One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped).
  • Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • the SRS resource types are Periodic SRS (P-SRS), Semi-Persistent SRS (SP-SRS), Aperiodic SRS (A-SRS, AP -SRS)) may be indicated.
  • the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation), and may transmit the A-SRS based on the SRS request of the DCI.
  • the usage is, for example, beam management (beamManagement), codebook-based transmission (codebook: CB), non-codebook-based transmission (nonCodebook: NCB), antenna switching (antennaSwitching), etc.
  • the SRS for codebook-based or non-codebook-based transmission applications may be used to determine the precoder for codebook-based or non-codebook-based PUSCH transmissions based on SRI.
  • the UE determines the precoder for PUSCH transmission based on the SRI, Transmitted Rank Indicator (TRI), and Transmitted Precoding Matrix Indicator (TPMI). You may.
  • the UE may determine the precoder for PUSCH transmission based on the SRI for non-codebook-based transmission.
  • SRS resource information includes SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmission Comb, SRS resource mapping (e.g., time and/or frequency resource location, resource offset, resource period, repetition number, SRS (number of symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, SRS spatial relationship information, etc.
  • the spatial relationship information of the SRS may indicate spatial relationship information between the predetermined reference signal and the SRS.
  • the predetermined reference signal includes a synchronization signal/broadcast channel (Synchronization Signal/Physical Broadcast Channel: SS/PBCH) block, a channel state information reference signal (CSI-RS), and an SRS (for example, another SRS). It may be at least one of the following.
  • the SS/PBCH block may be called a synchronization signal block (SSB).
  • the SRS spatial relationship information may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the predetermined reference signal.
  • the SSB index, SSB resource ID, and SSBRI may be read interchangeably.
  • the CSI-RS index, CSI-RS resource ID, and CRI may be read interchangeably.
  • the SRS index, SRS resource ID, and SRI may be read interchangeably.
  • the SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), etc. corresponding to the above-mentioned predetermined reference signal.
  • BC is, for example, a node (e.g., base station or UE) that determines the beam (transmission beam, Tx beam) to be used for signal transmission based on the beam (reception beam, Rx beam) used for signal reception. It may be the ability to
  • BC is transmission/reception beam correspondence (Tx/Rx beam correspondence), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated/non-calibrated (Calibrated/Non-calibrated), reciprocity calibration It may also be referred to as reciprocity, calibrated/non-calibrated, degree of correspondence, degree of coincidence, etc.
  • the UE uses the same beam (spatial domain transmission filter) as the SRS (or SRS resources) instructed by the base station based on the measurement results of one or more SRSs (or SRS resources).
  • uplink signals for example, PUSCH, PUCCH, SRS, etc. may be transmitted.
  • the UE uses a beam (spatial domain transmit filter) that is the same as or corresponds to the beam (spatial domain receive filter) used for receiving a predetermined SSB or CSI-RS (or CSI-RS resource). Then, uplink signals (for example, PUSCH, PUCCH, SRS, etc.) may be transmitted.
  • a beam spatial domain transmit filter
  • CSI-RS CSI-RS resource
  • the UE determines the spatial domain for reception of the SSB or CSI-RS.
  • the SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as the filter (spatial domain receive filter).
  • the UE may assume that the UE receive beam for SSB or CSI-RS and the UE transmit beam for SRS are the same.
  • target SRS For a certain SRS (target SRS) resource, when the UE is configured with spatial relationship information regarding another SRS (reference SRS) and the relevant SRS (target SRS) (for example, in the case of no BC), the UE The target SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as for the transmission of the target SRS resource. That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
  • spatial domain filter spatial domain transmit filter
  • the UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of a predetermined field (e.g., SRS resource identifier (SRI) field) in the DCI (e.g., DCI format 0_1). Specifically, the UE may use the spatial relationship information (for example, "spatialRelationInfo" of the RRC information element) of the SRS resource determined based on the value of the predetermined field (for example, SRI) for PUSCH transmission.
  • a predetermined field e.g., SRS resource identifier (SRI) field
  • SRI spatialRelationInfo
  • the UE When using codebook-based transmission for PUSCH, the UE may be configured with two SRS resources by RRC, and may be instructed to use one of the two SRS resources by DCI (1-bit predetermined field).
  • the UE When using non-codebook-based transmission for PUSCH, the UE may have four SRS resources configured by RRC, and one of the four SRS resources may be indicated by DCI (2-bit predetermined field). .
  • RRC reconfiguration is required.
  • DL-RS can be configured for the spatial relationship of SRS resources used for PUSCH.
  • a UE can be configured with a spatial relationship of multiple (eg, up to 16) SRS resources by RRC, and can be directed to one of the multiple SRS resources by a MAC CE.
  • At least one of the following transmission methods A and B may be applied to the single panel UL transmission method or the single panel UL transmission method candidate.
  • panel/UE panel may be read as a UE capability value set (for example, UE capability value set) reported for each UE capability.
  • Transmission method A Single panel single TRP UL transmission
  • a transmission scheme is used in which the UE transmits UL for one TRP at one time from only one beam and panel (FIG. 2A).
  • Transmission method B Single panel multi-TRP UL transmission
  • Rel it is considered to perform UL transmission from only one beam and panel at one time and repeatedly transmit to multiple TRPs (FIG. 2B).
  • the UE transmits PUSCH from panel #1 to TRP #1 (switching beams and panels), and then transmits PUSCH from panel #2 to TRP #2.
  • the two TRPs are connected via an ideal backhaul.
  • Multi-panel transmission Rel. From 18 onwards, simultaneous UL transmission using multiple panels (e.g., simultaneous multi-panel UL transmission (SiMPUL)) for one or more TRPs may be supported to improve UL throughput/reliability. It is being considered. Furthermore, multi-panel UL transmission systems are being considered for predetermined UL channels (for example, PUSCH/PUCCH).
  • predetermined UL channels for example, PUSCH/PUCCH
  • codebooks of existing systems eg, Rel. 16 and earlier
  • At least one of the following methods 1 to 3 (multi-panel UL transmission methods 1 to 3) is being considered as a multi-panel UL transmission method or a multi-panel UL transmission method candidate. Only one of transmission methods 1 to 3 may be supported. Multiple schemes are supported, including at least one of transmission schemes 1 to 3, and one of the multiple transmission schemes may be configured on the UE.
  • Transmission method 1 Coherent multi-panel UL transmission
  • Multiple panels may be synchronized with each other. All layers are mapped to all panels. Multiple analog beams are directed.
  • the SRS Resource Indicator (SRI) field may be expanded. This scheme may use up to 4 layers for UL.
  • the UE maps one codeword (CW) or one transport block (TB) to L layers (PUSCH(1,2,...,L)) from each of the two panels.
  • Panel #1 and panel #2 are coherent.
  • Transmission method 1 can obtain a gain due to diversity.
  • the total number of layers in the two panels is 2L. If the maximum total number of layers is 4, the maximum number of layers in one panel is 2.
  • Transmission method 2 Non-coherent multi-panel UL transmission of one codeword (CW) or transport block (TB)
  • Multiple panels do not need to be synchronized. Different layers are mapped to different panels and one CW or TB for PUSCH from multiple panels. A layer corresponding to one CW or TB may be mapped to multiple panels.
  • This transmission scheme may use up to 4 layers or up to 8 layers for UL. If supporting up to 8 layers, this transmission scheme may support one CW or TB with up to 8 layers.
  • the UE divides 1 CW or 1 TB into k layers (PUSCH (1, 2, ..., k)) and L - k layers (PUSCH (k+1, k+2, ..., L)).
  • k layers are transmitted from panel #1
  • L ⁇ k layers are transmitted from panel #2.
  • Transmission method 2 can obtain gains due to multiplexing and diversity.
  • the total number of layers in the two panels is L.
  • Transmission method 3 2 CW or TB non-coherent multi-panel UL transmission
  • Multiple panels do not need to be synchronized.
  • Different layers are mapped to different panels and two CWs or TBs for PUSCH from multiple panels.
  • a layer corresponding to one CW or TB may be mapped to one panel.
  • Layers corresponding to multiple CWs or TBs may be mapped to different panels.
  • This transmission scheme may use up to 4 layers or up to 8 layers for UL. If supporting up to 8 layers, this transmission scheme may support up to 4 layers per CW or TB.
  • the UE maps CW #1 or TB #1 to k layers (PUSCH (1, 2, ..., k)) among 2 CWs or 2 TBs, and maps CW #2 or TB #2 to k layers (PUSCH (1, 2, ..., k)). is mapped to L ⁇ k layers (PUSCH (k+1, k+2, . . . , L)), k layers are transmitted from panel #1, and L ⁇ k layers are transmitted from panel #2.
  • Transmission method 3 can obtain gains due to multiplexing and diversity.
  • the total number of layers in the two panels is L.
  • the base station may set or instruct panel-specific transmission for UL transmission using the UL TCI or panel ID.
  • UL TCI (UL TCI status) is Rel. It may be based on signaling similar to the DL beam indication supported in X.15.
  • the panel ID may be implicitly or explicitly applied to the transmission of at least one of the target RS resource or target RS resource set, PUCCH, SRS, and PRACH. If the panel ID is explicitly notified, the panel ID may be configured in at least one of the target RS, target channel, and reference RS (eg, DL RS resource configuration or spatial relationship information).
  • multi-panel UL transmission for example, simultaneous multi-panel UL transmission (SiMPUL)
  • SiMPUL simultaneous multi-panel UL transmission
  • UE ability value set Rel. From 17 NR onwards, reporting a list of UE capability value sets (eg, UE capability value sets) is supported in a UE capability report (eg, UE capability report).
  • the UE capability set may refer to the panels that the UE supports/utilizes.
  • the UE capability value set may be read as UE capability value (for example, UE capability value).
  • UE-initiated panel activation and selection is possible by the UE reporting a list of UE capability value sets.
  • the correspondence between the reported CSI-RS/SSB resource index (CRI/SSBRI) and one of the UE capability value sets in the reported list is determined by the UE and notified to the NW in the beam reporting instance. It's okay.
  • the UE capability value set may be set in common for multiple (or all) BWP/CCs in the same band, or set in common for multiple (or all) BWP/CCs in the same band combination (BC). may be done.
  • Each of the 17 UE capability sets is configured with the maximum number of SRS ports supported. Also, Rel. From 18 onwards, the UE capability set includes, in addition to (or instead of) the maximum number of SRS ports supported, maximum UL rank, maximum number of beams, maximum number of SRS resource sets, maximum number of SRS resources, per set. It may consist of at least one of the maximum number of SRS resources, EIRP, and transmission power related capabilities.
  • multiple (eg, two) UE capability sets are configured differently, it may mean that any two capability sets have different maximum supported SRS port numbers.
  • a plurality of (for example, two) UE capability value sets may have the same capability.
  • two UE capability sets may have the same maximum supported SRS port number.
  • two UE capability sets with the same maximum number of supported SRS ports may have other parameters (eg, EIRP) configured differently.
  • PUSCH transmission using multi-panel For time/frequency resource indication for multi-panel-based PUSCH transmission (or repeated PUSCH transmission), any of the following options may be applied:
  • FIG. 4 is a diagram illustrating an example of PUSCH repetitive transmission using SDM.
  • the time and frequency resources of PUSCH A and PUSCH B, which are repeated, are the same.
  • the UE may assume that PUSCH repeated transmissions applying frequency division multiplexing (FDM) are scheduled on the same time resource and different frequency resources. That is, when a plurality of coherent panels are used, the UE may transmit PUSCH repetition transmission using FDM in the same time resource and different frequency resources.
  • FIG. 5A is a diagram illustrating a first example of PUSCH repetitive transmission using FDM. In FIG. 5A, PUSCH A and PUSCH B, which are repeated, have the same time resource and different frequency resources.
  • the UE may assume that some (one or more symbols) are scheduled on overlapping time resources and different frequency resources for PUSCH repetitive transmission applying FDM.
  • FIG. 5B is a diagram illustrating a second example of PUSCH repetitive transmission using FDM. In FIG. 5B, a part (one or more symbols) of the time resources of PUSCH A and PUSCH B, which are repeated, overlap, and the frequency resources are different.
  • different frequency resources e.g., different RBs
  • different beams e.g., spatial relationship/TCI/SRI
  • FIG. 6A shows a case where one PUSCH (or 1 TB) is transmitted using different beams/panels in different frequency resources.
  • two TBs are scheduled with a single DCI, and the two TBs are scheduled in different frequency resources (e.g., different RBs) and in different beams (e.g., spatial relationship/TCI/SRI)/ It may also be transmitted in a panel (see Figure 6B).
  • FIG. 6B shows a case where TB#1 and TB#2 are transmitted using different beams/panels in different frequency resources.
  • Rel. 18 or later when performing multiple UL transmissions (for example, multiple PUSCH transmissions/PUSCH repeated transmissions) using a multi-panel, it is assumed that frequency division multiplexing (FDM) will be performed.
  • FDM frequency division multiplexing
  • the present inventors studied transmission control when using one or more FDM schemes for multiple PUSCH transmissions using multi-panels, and came up with an aspect of the present embodiment.
  • the UE determines the transport block size (TB size) in PUSCH transmission. In determining the TB size, the total number of resource elements (REs) allocated to the PUSCH is determined. Further, the total number of REs allocated to the PUSCH is determined based on the total number of PRBs allocated to the UE (or PUSCH).
  • TB size transport block size
  • the UE determines the TBS size based on the total number of resource blocks (for example, PRBs) allocated to the PUSCH.
  • the inventors studied the determination/control of TB size when using one or more FDM schemes for multiple PUSCH transmissions using multi-panels, and came up with an aspect of the present embodiment.
  • the base station may transmit a Phase Tracking Reference Signal (PTRS) on the downlink.
  • PTRS Phase Tracking Reference Signal
  • the base station may map and transmit PTRS continuously or discontinuously in the time direction on a predetermined number (for example, one) of subcarriers.
  • the UE may receive the PTRS during at least part of the period (slot, symbol, etc.) during which the Physical Downlink Shared Channel (PDSCH) is scheduled (in other words, the period during which the PDSCH is received). good.
  • the PTRS transmitted by the base station may be referred to as DL PTRS.
  • the UE may transmit PTRS on the uplink.
  • the UE may map and transmit PTRS continuously or discontinuously in the time direction on a predetermined number (for example, one) of subcarriers.
  • the UE may transmit PTRS during at least part of the period (slot, symbol, etc.) during which a Physical Uplink Shared Channel (PUSCH) is scheduled (in other words, the period during which the PUSCH is transmitted). good.
  • the PTRS transmitted by the UE may be referred to as UL PTRS.
  • the base station or UE may determine phase noise based on the received PTRS and correct the phase error of the received signal (for example, PUSCH, PDSCH).
  • the UE may be configured with PTRS configuration information (PTRS-DownlinkConfig for DL, PTRS-UplinkConfig for UL) using upper layer signaling.
  • the PTRS configuration information may be included in configuration information (DMRS-DownlinkConfig, DMRS-UplinkConfig) of demodulation reference signal (DMRS) of PDSCH or PUSCH.
  • the PTRS configuration information may include information used to determine the frequency density of the PTRS (eg, the "frequencyDensity" field of the RRC parameters). This information may be called frequency density information.
  • the frequency density information may indicate, for example, a threshold regarding frequency density (for example, at least one of N RB0 and N RB1 ), which will be described later.
  • the PTRS setting information may be set to different values for DL PTRS and UL PTRS. Furthermore, the PTRS configuration information may be configured in the UE for each Bandwidth Part (BWP) within a cell, or may be configured commonly for BWPs (cell-specific).
  • BWP Bandwidth Part
  • the UE may assume that PTRS does not exist (not included in the signal to be transmitted or received).
  • the UE determines the PTRS pattern (at least one of time density and frequency density) based on detected downlink control information (DCI). ) may be determined.
  • DCI downlink control information
  • the UE is configured with at least one of time density information and frequency density information, and whose Radio Network Temporary Identifier (RNTI) used for DCI Cyclic Redundancy Check (CRC) scrambling is set to a specific RNTI (for example, Cell-RNTI).
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • C-RNTI Configured Scheduling RNTI
  • MCS scheduled MCS
  • the PTRS pattern may be determined based on the bandwidth).
  • the UE determines the MCS index (I MCS ) based on the Modulation and Coding Scheme (MCS) field of the DCI, and determines the time density L PT-RS of the PTRS based on the I MCS and the threshold regarding the time density described above. You may.
  • MCS Modulation and Coding Scheme
  • the correspondence relationship between the MCS index and the time density of PTRS is not limited to this.
  • the number of threshold values may be less than or greater than four. Note that the smaller the value of L PT-RS , the higher the density, and may indicate, for example, the arrangement interval of PTRS symbols.
  • the UE determines the number of scheduled resource blocks (N RB ) based on the frequency domain resource allocation field of the DCI, and determines the frequency density K PT-RS of the PTRS based on the N RB and the frequency density threshold described above. You may decide.
  • the correspondence between the scheduled bandwidth and the frequency density of PTRS is not limited to this.
  • the number of thresholds may be less than or greater than two. Note that the smaller the value of K PT-RS , the higher the density, and may indicate, for example, the arrangement interval of PTRS subcarriers.
  • the UE may assume that the L PT-RS is a predetermined value (eg, 1) if the time density information is not configured.
  • the UE may assume that K PT-RS is a predetermined value (eg, 2) if the frequency density information is not configured.
  • the predetermined values regarding L PT-RS and K PT-RS may be determined in advance, or may be set by upper layer signaling.
  • the UE determines the frequency density of PTRS based on the total number of resource blocks (for example, PRBs) allocated to the PUSCH.
  • the present inventors studied determination/control of PTRS frequency density when using one or more FDM schemes for multiple PUSCH transmissions using multi-panels, and came up with an aspect of the present embodiment.
  • RV Redundant version of PUSCH repetition applying TDM
  • FIG. 7 is a diagram illustrating an example of RV mapping for each transmission opportunity.
  • the leftmost column of the table of FIG. 7 shows the RV index ( rvid ) indicated by the RV field.
  • the UE may determine the RV index applied to the nth repetition (transmission opportunity) according to this value.
  • the UE may start with the RV indicated by the RV field and apply the RV one right to the right for each repetition.
  • the problem is how to determine/control the RV of each repetition.
  • the present inventors studied the repetitive RV determination/control of each PUSCH when using a predetermined FDM scheme for multiple PUSCH transmissions using multi-panels, and came up with an aspect of the present embodiment.
  • the maximum transmission rank of PUSCH can be set by upper layer parameters (for example, maxRank). Rel.
  • the number of layers for PUSCH repetition type A in 16/17 is limited even if the maximum rank of PUSCH is set higher than 1 (for example, 2 or 4) by upper layer parameters, if PUSCH repetition type A is scheduled. (eg, if set to repeat number > 1), the UE does not expect to schedule PUSCH with rank > 1.
  • PUSCH repetition type A is not scheduled (for example, the number of repetitions is set to 1), there is a case where the UE is scheduled for a PUSCH with rank > 1.
  • the problem is how to determine/control the number of layers (or limit the number of layers).
  • the present inventors have studied the determination/control of the number of layers (or the number of ranks) of PUSCH transmission when using a predetermined FDM scheme for multiple PUSCH transmissions using multi-panels, and have developed an example of the present embodiment. I came up with the idea.
  • A/B at least one of A and B
  • a and B may be read interchangeably.
  • A/B/C at least one of A, B, and C
  • A, B, and C may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • FDM schemes #1 to FDM scheme #3 may be applied/supported as a PUSCH transmission scheme (eg, FDM multi-panel PUSCH transmission scheme). Furthermore, in FDM scheme #1 to FDM scheme #3, one or more PUSCHs may be scheduled by a single DCI. Note that PUSCH may be read as PUSCH transmission opportunity, PUSCH repetition, or PUSCH resource.
  • Two PUSCH transmission opportunities (eg, repeats) of the same TB are transmitted in the same time domain resource/overlapping time domain resource and in a non-overlapping frequency domain resource. Also, two PUSCH transmission opportunities (eg, repeats) of the same TB are each transmitted on two beams/panels (eg, different beams/panels) (see FIG. 8A).
  • One PUSCH transmission opportunity (e.g., repetition) of the same TB (or 1 TB) is transmitted on two beams/panels (e.g., different beams/panels), and each beam/panel has a non-overlapping frequency domain in the PUSCH transmission. associated with a resource (see FIG. 8B).
  • Two TB/CWs are transmitted on the same time domain resource/overlapping time domain resource and non-overlapping frequency domain resource. Also, the two TB/CWs are each transmitted on two beams/panels (eg, different beams/panels) (see FIG. 8C).
  • the beam may refer to (or be read as spatial relation/SRI/TCI state) a spatial relation/SRI/TCI state.
  • the panel may refer to (or be read as UE capability set/UE antenna group) UE capabilities, UE capability sets, or UE antenna groups.
  • the first beam/panel may have a first SRI/TCI state, a first SRI field/first TCI state field, a first RSR resource set (e.g., an SRS with a lower ID resource set) or a panel ID with a lower index.
  • the second beam/panel also has a second SRI/TCI state, a second SRI field/second TCI state field, a second RSR resource set (e.g., an SRS resource set with a higher ID), or It may be read as a panel ID with a higher index.
  • the UE may determine the frequency domain resource of the PUSCH based on at least one of the following options 1-1 to 1-3.
  • whether FDM scheme #1/FDM scheme #2/FDM scheme #3 is applied is determined from the base station to the UE using upper layer parameters/MAC CE/DCI. may be set/instructed.
  • FDM scheme #1/FDM scheme #2/FDM scheme #3 may be applied to FDM scheme #1/FDM scheme #2/FDM scheme #3, or application of separate options may be supported.
  • the options applied to each FDM scheme may be defined in the specifications, or may be configured/instructed from the base station to the UE by higher layer parameters/DCI.
  • at least one of information regarding a specific FDM scheme and information regarding options applied to the specific FDM scheme may be set/instructed by RRC/DCI.
  • a set of frequency domain resources may be indicated to the UE.
  • frequency domain resources may be read in predetermined frequency units (for example, RB, PRB, VRB, or subcarrier).
  • the frequency domain resource may be indicated by the PUSCH frequency domain allocation (eg, Rel-17 PUSCH frequency domain allocation) of the existing system (eg, Rel. 17).
  • a set of frequency domain resources may be indicated to the UE by the frequency domain resource allocation (e.g., FDRA) field of the DCI used for PUSCH scheduling/activation.
  • the frequency domain resource allocation e.g., FDRA
  • One set of frequency domain resources (eg, one or more RBs) indicated to the UE may be divided into two subsets (see FIG. 9).
  • FIG. 9 shows a case where the frequency domain resource allocation instructed to the UE is divided into subset #1 and subset #2.
  • the division method into subsets may be defined in advance in the specifications, or may be notified to the UE using upper layer parameters, etc.
  • the first subset may be the first N/2 RBs and the second subset may be the remaining RBs (e.g., the second N/2 RBs).
  • N/2 may be replaced with a value obtained by applying a ceiling function to N/2, or a value obtained by applying a floor function to N/2.
  • one of the first subset and the second subset may be a value calculated by applying a ceiling function or a floor function to N/2, and the other subset may be N- (the calculated value).
  • a first subset of frequency domain resources may be associated with a first beam/panel and a second subset may be associated with a second beam/panel.
  • information regarding the first beam/panel and information regarding the second beam/panel may be set/instructed from the base station to the UE by upper layer parameters/MAC CE/DCI. For example, Rel. It may be indicated by two SRI fields supported in 17 PUSCH repetitions, or by one or two TCI status fields supported in unified TCI.
  • each subset of frequency domain resources may correspond to each PUSCH transmission occasion/repetition (eg, PUSCH transmission occasion/repetition).
  • all frequency domain resources may correspond to one PUSCH transmission of 1 TB.
  • each subset of frequency domain resources may correspond to each TB.
  • a first set of frequency domain resources (RB) for the PUSCH may be indicated to the UE, and a second set of frequency domain resources may be determined based on predetermined rules.
  • the frequency domain resource may be indicated by the PUSCH frequency domain allocation (eg, Rel-17 PUSCH frequency domain allocation) of the existing system (eg, Rel. 17).
  • a first set of frequency domain resources (eg, one or more RBs) may be indicated to the UE by the frequency domain allocation field of the DCI used for PUSCH scheduling/activation.
  • the second set of frequency domain resources may be determined based on a predetermined relationship with the indicated first set of frequency domain resources.
  • the predetermined relationship may be at least one of the number of RBs and a start RB/end RB.
  • the UE may determine the second set (or second frequency domain resource) considering a predetermined relationship to the indicated first set (or first frequency domain resource).
  • the same number of RBs as the first set may be applied/configured/allocated to the second set of frequency domain resources (Rule 1-2-1) (see FIG. 10A).
  • the second set of frequency domain resources may be allocated/configured adjacent to the first set in the frequency domain (Rule 1-2-2) (see FIG. 10A).
  • the first set is assigned to RB#X to RB#Y
  • the second set may be assigned/set to RB#Y+1 to RB#Z or RB#Z to RB#X-1.
  • FIG. 10A shows a case where the number of RBs in the first set and the number of RBs in the second set are the same (a combination of rules 1-2-1 and 1-2-2). However, it is not limited to this. The number of RBs in the first set and the number of RBs in the second set may be different.
  • a gap/offset may be provided between the first set and the second set of frequency domain resources (Rule 1-2-3) (see FIG. 10B).
  • M may be defined by the specifications or may be set/instructed by upper layer parameters/DCI. If the first set is assigned to RB#X to RB#Y, the second set may be assigned/set to RB#Y+M to RB#Z or RB#Z to RB#X-M.
  • FIG. 10B shows a case where the number of RBs in the first set and the number of RBs in the second set are the same (a combination of rules 1-2-1 and 1-2-3). However, it is not limited to this. The number of RBs in the first set and the number of RBs in the second set may be different.
  • the UE must comply with at least one of rules 1-2-1 to 1-2-3 (or a combination of rules 1-2-1 and 1-2-2/rules 1-2-1 and 1-2). -3 combinations)).
  • a first set of frequency domain resources may be associated with a first beam/panel and a second set may be associated with a second beam/panel.
  • Information regarding the first beam/panel and information regarding the second beam/panel may be set/instructed from the base station to the UE by upper layer parameters/MAC CE/DCI.
  • each set of frequency domain resources may correspond to one PUSCH transmission occasion/repetition (eg, PUSCH transmission occasion/repetition).
  • all frequency domain resources may correspond to one PUSCH transmission of 1 TB.
  • each set of frequency domain resources may correspond to each TB (eg, one TB).
  • FDRAs frequency domain resource allocations
  • Two sets of frequency domain resources may be explicitly indicated to the UE.
  • the two sets of frequency domain resources may be each indicated by two fields (eg, a first field and a second field) included in the DCI that schedules the PUSCH (see FIG. 11).
  • a first field indicates a frequency domain allocation corresponding to a first set of frequency domain resources
  • a second field indicates a frequency domain allocation corresponding to a second set of frequency domain resources. It shows the case.
  • the first set of frequency domain resources is Rel.
  • the second set may be indicated by a new field.
  • the new field may be referred to as an additional FDRA field or a second FDRA field.
  • the two sets of frequency domain resources may be each indicated by two parts (e.g., a first bit width and a second bit width) of a frequency domain resource allocation field included in the DCI that schedules the PUSCH. .
  • Each field is, for example, Rel. It may be the same as the frequency domain resource allocation field of the DCI used for scheduling of the No. 17 PUSCH. Alternatively, Rel. It may be the same as the frequency domain allocation field in the configuration grant configuration (for example, the upper layer parameter configuredgrantconfig) of No. 17. Alternatively, Rel. It may be the same as the frequency domain resource allocation field of the DCI used for PUSCH activation based on the configuration grant of No. 17.
  • the first field and the second field may be fields included in a predetermined upper layer parameter.
  • a second list of frequency domain resource allocations is configured for the second set, and two fields of the DCI (e.g., FDRA field) indicate the first FDRA and the second FDRA to the UE. Good too.
  • the RB allocation granularity for the PUSCH may be set large.
  • the RB allocation granularity may be increased in units of X RBs.
  • X may be defined in the specifications, or may be set/instructed from the base station to the UE by upper layer parameters/DCI.
  • the RB allocation granularity of the first FDRA field and the RB allocation granularity of the second FDRA field are They may be set in common or may be set separately (for example, differently).
  • the first FDRA field is set the same as the existing system (for example, Rel. 17), and the second FDRA field is configured to indicate only some of the parameters indicated in the first FDRA field. Good too.
  • the second FDRA field may be configured to indicate only the starting RB.
  • the UE may assume that the number of RBs corresponding to the second FDRA is the same as the number of RBs indicated in the first FDRA field.
  • the second FDRA field may indicate the starting RB as an offset to the starting RB indicated in the first FDRA field.
  • the sizes (bit widths) of the first FDRA field and the second FDRA field may be set to be different.
  • the size of the second FDRA field to be added may be smaller than the size of the first FDRA field. This makes it possible to suppress an increase in DCI overhead.
  • a first set of frequency domain resources may be associated with a first beam/panel and a second set may be associated with a second beam/panel.
  • Information regarding the first beam/panel and information regarding the second beam/panel may be set/instructed from the base station to the UE by upper layer parameters/MAC CE/DCI.
  • each set of frequency domain resources may correspond to one PUSCH transmission occasion/repetition (eg, PUSCH transmission occasion/repetition).
  • all frequency domain resources may correspond to one PUSCH transmission of 1 TB.
  • each set of frequency domain resources may correspond to each TB (eg, one TB).
  • the UE may use separate mechanisms to determine the TB size for each FDM scheme.
  • the UE determines whether the allocated RB number is the RB number corresponding to one of the two beams/panels (or two frequency domain resource subsets/sets). It may be assumed that there is. That is, the UE determines the TBS size assuming that the number of RBs corresponding to one of the two beams/panels (or two subsets/sets of frequency domain resources) is the assigned number of RBs. You may.
  • the UE may determine the TB size based on the number of RBs corresponding to a particular beam/panel (or a particular subset/set of frequency domain resources) (see FIG. 12A).
  • FIG. 12A shows a case where the TB size is determined based on the number of RBs corresponding to the first beam/panel (or the first subset/first set of frequency domain resources).
  • the UE may determine the TB size based on the number of RBs corresponding to the second beam/panel (or second subset/second set of frequency domain resources).
  • the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources) may be configurable. For example, which number of RBs to apply may be set/instructed from the base station to the UE using upper layer parameters/DCI.
  • FIG. 12B shows a case where the TB size is determined based on the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) with fewer RBs.
  • the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources) may be applied.
  • the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources) may be applied.
  • the TB size determined by option 2-1/option 2-2 is the PUSCH related to the first beam/panel (or first subset/first set of frequency domain resources) and the second beam/panel. /PUSCH associated with the panel (or the second subset/second set of frequency domain resources), respectively.
  • the UE In determining the TB size for FDM scheme #2, the UE assumes that the allocated number of RBs is the total number of RBs corresponding to two beams/panels (or two frequency domain resource subsets/sets). (See FIG. 13A). In other words, even if the UE determines the TBS size by assuming that the total number of RBs corresponding to two beams/panels (or two subsets/sets of frequency domain resources) is the allocated number of RBs, good.
  • the UE determines the number of RBs corresponding to the first beam panel #1 (or the corresponding subset/set of frequency domain resources) and the number of RBs corresponding to the first beam panel #2 (or the corresponding subset/set of frequency domain resources).
  • the TBS size may be determined based on the total number of RBs corresponding to the subset/set) and the total number of RBs.
  • FDM scheme #3 In determining the TB size for FDM scheme #3, the UE assumes that the number of RBs allocated for each TB is the number of RBs associated with the beam/panel (or subset/set of frequency domain resources) corresponding to each TB. Based on this assumption, the TB size of each TB is determined (see FIG. 13B).
  • the UE determines the TB size of TB #1 based on the number of RBs corresponding to the first beam panel #1 (or the corresponding subset/set of frequency domain resources), and determines the TB size of TB #1 based on the number of RBs corresponding to the first beam panel
  • the TB size of TB #2 may be determined based on the number of RBs corresponding to #2 (or the corresponding subset/set of frequency domain resources).
  • the TB size is determined by different methods for each FDM scheme, the present invention is not limited to this.
  • the TB size may be determined by the same method for at least two FDM schemes.
  • ⁇ Third embodiment> determination/control of frequency density of PTRS of PUSCH transmitted using an FDM scheme (eg, FDM scheme #1 to FDM scheme #3) will be described.
  • the UE When applying at least one of FDM scheme #1, FDM scheme #2, and FDM scheme #3, the UE applies at least one of the following options 3-1 to 3-3 to control PTRS transmission. You may. The same options may be applied for FDM scheme #1/FDM scheme #2/FDM scheme #3, or application of separate options may be supported.
  • the options applied to each FDM scheme may be defined in the specifications, or may be configured/instructed from the base station to the UE by higher layer parameters/DCI. Alternatively, at least one of information regarding a specific FDM scheme and information regarding options applied to the specific FDM scheme may be set/instructed by RRC/DCI.
  • the UE determines the frequency density of the PTRS for each beam/panel (or subset/set of frequency domain resources) based on the number of RBs corresponding to each beam/panel (or subset/set of frequency domain resources). may be determined (see FIG. 14A).
  • the UE may determine the PTRS of the PUSCH corresponding to the first beam/panel based on the number of RBs corresponding to the first beam/panel (or the first subset/first set of frequency domain resources). The frequency density of may be determined. The UE also determines the PTRS of the PUSCH corresponding to the second beam/panel based on the number of RBs corresponding to the second beam/panel (or the second subset/second set of frequency domain resources). The frequency density of may be determined.
  • the UE may determine the frequency density of the PTRS based on the number of RBs corresponding to one of the two beams/panels (or subsets/sets of frequency domain resources) (see FIG. 14B).
  • the determined PTRS frequency density may be applied to both beams/panels.
  • the UE may determine the frequency density of the PTRS based on the number of RBs corresponding to a particular beam/panel (or a particular subset/set of frequency domain resources) (see FIG. 15A).
  • FIG. 15A shows a case where the frequency density of PTRS is determined based on the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources).
  • the UE may determine the frequency density of the PTRS based on the number of RBs corresponding to the second beam/panel (or second subset/second set of frequency domain resources).
  • the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources) may be configurable. For example, which number of RBs to apply may be set/instructed from the base station to the UE using upper layer parameters/DCI.
  • the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources) may be applied.
  • the number of RBs corresponding to a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources) may be applied.
  • the TB size determined by option 3-2-1/option 3-2-2 is determined by the PUSCH associated with the first beam/panel (or first subset/first set of frequency domain resources); and a PUSCH associated with a second beam/panel (or a second subset/second set of frequency domain resources), respectively.
  • the UE may determine the frequency density of PTRS based on the total number of RBs corresponding to two beams/panels (or a subset/set of frequency domain resources) (see FIG. 16).
  • the determined PTRS frequency density may be applied to both beams/panels.
  • the UE determines the number of RBs corresponding to a first beam/panel (or first subset/first set of frequency domain resources) and a second beam/panel (or first set of frequency domain resources).
  • the frequency density of PTRS is determined based on the total number of RBs corresponding to the second subset/second set).
  • the UE may apply the determined PTRS frequency density to the PUSCH corresponding to the first beam/panel and the second beam/panel.
  • a redundancy version (RV) applied to each transmitted PUSCH (eg, repeated PUSCH) using a predetermined FDM scheme will be described.
  • RV redundancy version
  • FDM scheme #1 will be exemplified as a predetermined FDM scheme, but the applicable FDM scheme is not limited to this.
  • the UE may determine the RV to apply to PUSCH transmission based on at least one of Option 4-1 and Option 4-2 below.
  • the RV applied to PUSCH transmission may be determined based on a predetermined table.
  • the predetermined table may be an RV index (eg, rv id ) indicated by the DCI that schedules the PUSCH.
  • the predetermined table may be an association between the RV index indicated by the DCI (eg, rvid ) and the RV index applied to the nth transmission occasion.
  • the UE uses Rel.
  • the RV table (or part of the table) for PUSCH transmission defined in 17 may be applied (see FIG. 17).
  • n may correspond to the order of transmission opportunities of the repeated PUSCH (how many times it is repeated), and N may correspond to the number of slots used for determining the TBS (TB size).
  • the UE transmits a PUSCH associated with a first beam/panel (or a first subset/first set of frequency domain resources) and a second beam/panel (or a second subset/set of frequency domain resources).
  • One RV of the PUSCH related to the set) may be determined based on a predetermined table, and the other RV may be determined based on an offset from one RV.
  • the UE determines the RV for the PUSCH associated with the first beam/panel (or the first subset/first set of frequency domain resources) according to a predetermined table (eg, FIG. 17).
  • the UE then configures the PUSCH RVs associated with the first beam/panel for the PUSCH RVs associated with the second beam/panel (or second subset/second set of frequency domain resources).
  • a predetermined offset may be applied (or additionally) determined.
  • the predetermined offset may be defined in the specifications (for example, a fixed value), or may be set/instructed from the base station to the UE using upper layer parameters/DCI.
  • the maximum transmission rank is set by an upper layer parameter (for example, maxRank), and that the set maximum transmission rank is Y.
  • the UE may select at least one of the following options 5-1 to 5-2. one may be applied.
  • No limit may be added to the maximum transmission rank of PUSCH.
  • the maximum transmission rank may remain Y.
  • the UE may control transmission based on the maximum transmission rank Y for PUSCH to which the FDM scheme is applied.
  • a limit may be added to the maximum transmission rank of PUSCH.
  • the maximum transmission rank of PUSCH may be limited to a predetermined value (eg, X).
  • X may be a smaller value than Y.
  • the UE may not expect PUSCH with a number of layers greater than X to be scheduled.
  • X may be defined in advance in the specifications.
  • X may be set/instructed from the base station to the UE using upper layer parameters/DCI.
  • FDM scheme #1/FDM scheme #2/FDM scheme #3 may be applied to FDM scheme #1/FDM scheme #2/FDM scheme #3, or application of different options may be supported.
  • the options applied to each FDM scheme may be defined in the specifications, or may be configured/instructed from the base station to the UE by higher layer parameters/DCI.
  • at least one of information regarding a specific FDM scheme and information regarding options applied to the specific FDM scheme may be set/instructed by RRC/DCI.
  • the FDM scheme (e.g., FDM scheme #1/FDM scheme #2/FDM scheme #3) to be configured/enabled/applied to the UE may be indicated by the configuration of upper layer parameters/DCI/related parameters.
  • a predetermined FDM scheme may be configured/enabled in the UE by an upper layer parameter that indicates the transmission scheme (or FDM scheme).
  • a predetermined FDM scheme may be instructed/enabled to the UE by the DCI that indicates the transmission scheme (or FDM scheme).
  • a predetermined FDM scheme may be indicated/enabled to the UE by the DCI indicating two beams (eg SRI/TCI state)/panels.
  • a predetermined FDM scheme may be indicated/enabled to the UE by the DCI indicating two SRI fields/TCI status fields.
  • a predetermined FDM scheme may be configured/enabled in the UE by configuring two codebook (CB)/non-codebook (NCB) SRS resource sets.
  • CB codebook
  • NCB non-codebook
  • the above embodiments may be applied to repeated transmission of PUSCH using TDM (see FIG. 18).
  • FIG. 18 shows a case where TDM is applied to PUSCH repetitions #1 to #4.
  • different repeats may be associated with different beams/panels.
  • the mapping between repetitions and beams is described in Rel. It may be the same as the PUSCH repetition of multi-TRP supported by X.17.
  • the same beam/panel e.g., the first beam/panel
  • the same beam/panel e.g., the first beam/panel
  • the same beam/panel is applied to the even PUSCH repetitions. shown, but is not limited to this.
  • Different beams/panels may be associated with different sets/subsets of frequency domain resources as shown in the first embodiment.
  • a first beam/panel may correspond to a first set/subset and a second beam/panel to a second set/subset.
  • the mechanism for FDM scheme #1 shown in the second embodiment may be applied to determine the TB size.
  • the mechanism shown in the third embodiment may be applied to the frequency density of PTRS of each repetition.
  • the following UE capabilities may be set.
  • the following UE capabilities may be read as parameters (eg, upper layer parameters) that are set in the UE from the network (eg, base station).
  • UE capability information regarding whether to support FDM scheme #1 may be defined.
  • UE capability information regarding whether to support FDM scheme #2 may be defined.
  • UE capability information regarding whether to support FDM scheme #3 may be defined.
  • the first to fifth embodiments may be configured to be applied to a UE that supports/reports at least one of the above-mentioned UE capabilities.
  • the first to fifth embodiments may be configured to be applied to a UE configured from a network.
  • Appendix 1-1 A first frequency resource corresponding to a first beam or panel, and a second frequency resource corresponding to a second beam or panel and frequency division multiplexed with the first frequency domain resource.
  • a receiving unit that receives one piece of downlink control information used for the transmission schedule of the uplink shared channel; and a control that determines the first frequency resource and the second frequency resource based on the downlink control information.
  • a terminal having a section and a terminal.
  • the control unit divides a set of frequency domain resources specified by the downlink control information based on a predetermined rule to determine the first frequency resource and the second frequency resource. terminal.
  • control unit determines the second frequency resource based on information regarding the first frequency resource specified by the downlink control information and a predetermined rule.
  • the control unit determines the first frequency resource and the second frequency resource based on a first field and a second field included in the downlink control information. The terminal described in any of 3.
  • a receiving unit that receives one piece of downlink control information used for the transmission schedule of the uplink shared channel; and information regarding the first frequency resource and information regarding the second frequency resource included in the downlink control information.
  • the control unit controls the size of the transport block and the frequency density of the phase tracking reference signal based on the number of resource blocks of a specific frequency resource among the first frequency resource and the second frequency resource.
  • the terminal described in Appendix 2-1 that determines at least one of the following.
  • the control unit determines the size of the transport block and the phase tracking reference based on the number of resource blocks of a frequency resource that has a smaller number of corresponding resource blocks among the first frequency resource and the second frequency resource.
  • control unit determines the frequency density of the phase tracking reference signal based on the total number of resource blocks of the first frequency resource and the number of resource blocks of the second frequency resource.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 20 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures reception power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 includes a first frequency resource corresponding to the first beam or panel, a second frequency resource corresponding to the second beam or panel and frequency division multiplexed with the first frequency domain resource, One piece of downlink control information may be transmitted that is used to schedule transmission of one or more uplink shared channels using.
  • the control unit 110 may use the downlink control information to control the allocation of the first frequency resource and the second frequency resource.
  • the transmitting/receiving unit 120 includes a first frequency resource corresponding to the first beam or panel, a second frequency resource corresponding to the second beam or panel and frequency division multiplexed with the first frequency domain resource,
  • One piece of downlink control information may be transmitted that is used to schedule transmission of one or more uplink shared channels using.
  • the control unit 110 uses the downlink control information to determine at least one of the sizes of transport blocks transmitted on each of the one or more uplink shared channels and the frequency density of the phase tracking reference signal corresponding to the one or more uplink shared channels. At least one of information regarding the first frequency resource and information regarding the second frequency resource used for the determination may be indicated.
  • FIG. 21 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 includes a first frequency resource corresponding to the first beam or panel, a second frequency resource corresponding to the second beam or panel and frequency division multiplexed with the first frequency domain resource, One piece of downlink control information used for scheduling the transmission of one or more uplink shared channels using .
  • the control unit 210 may determine the first frequency resource and the second frequency resource based on the downlink control information.
  • the control unit 210 may determine the first frequency resource and the second frequency resource by dividing one set of frequency domain resources indicated by the downlink control information based on a predetermined rule. The control unit 210 may determine the second frequency resource based on information regarding the first frequency resource specified by the downlink control information and a predetermined rule. The control unit 210 may determine the first frequency resource and the second frequency resource based on the first field and the second field included in the downlink control information.
  • the transmitting/receiving unit 220 includes a first frequency resource corresponding to the first beam or panel, a second frequency resource corresponding to the second beam or panel and frequency division multiplexed with the first frequency domain resource, One piece of downlink control information used for scheduling the transmission of one or more uplink shared channels using .
  • the control unit 210 determines the size of the transport block to be transmitted on each of the one or more uplink shared channels based on at least one of information regarding the first frequency resource and information regarding the second frequency resource included in the downlink control information. , and the frequency density of the phase tracking reference signal corresponding to one or more uplink shared channels.
  • the control unit 210 determines at least one of the size of the transport block and the frequency density of the phase tracking reference signal based on the number of resource blocks of a specific frequency resource among the first frequency resource and the second frequency resource. You can judge.
  • the control unit 210 determines the size of the transport block and the frequency of the phase tracking reference signal based on the number of resource blocks of a frequency resource that has a smaller number of corresponding resource blocks among the first frequency resource and the second frequency resource. At least one of the densities may be determined.
  • the control unit 210 may determine the frequency density of the phase tracking reference signal based on the total number of resource blocks of the first frequency resource and the number of resource blocks of the second frequency resource.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 22 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 23 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信する受信部と、前記下り制御情報に基いて、前記第1の周波数リソースと前記第2の周波数リソースを判断する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、Rel.17/18 NR以降)において、UEは、複数のビーム(又は、パネル)を利用してUL送信を行うことが想定される。この場合、各ビーム/パネルに対応するUL送信(又は、UL送信用リソース)を周波数方向にオーバーラップしないように割当てて(例えば、周波数分割多重(FDM))、当該UL送信を制御することも想定される。
 しかしながら、かかる場合のUL送信をどのように制御するかについて、十分に検討されていない。複数のビーム/パネルを用いるUL送信が適切に行われなければ、スループットの低下など、システム性能が低下するおそれがある。
 そこで、本開示は、複数のビーム/パネルを用いる同時UL送信を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信する受信部と、前記下り制御情報に基いて、前記第1の周波数リソースと前記第2の周波数リソースを判断する制御部と、を有する。
 本開示の一態様によれば、複数のビーム/パネルを用いる同時UL送信を適切に行うことができる。
図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。 図2A及び図2Bは、シングルパネルのUL送信の一例を示す図である。 図3A-図3Cは、マルチパネルを用いた同時UL送信の方式1~3の一例を示す図である。 図4は、SDMを適用したPUSCH繰り返し送信の例を示す図である。 図5Aは、FDMを適用したPUSCH繰り返し送信の第1の例を示す図である。図5Bは、FDMを適用したPUSCH繰り返し送信の第2の例を示す図である。 図6A及び図6Bは、FDMスキームの一例を示す図である。 図7は、PUSCH繰り返し(TDM)に適用されるRVのテーブルの一例を示す図である。 図8A-図8Cは、FDMスキーム#1-#3の一例を示す図である。 図9は、第1の実施形態にかかるPUSCHの周波数ドメインリソース割当ての一例を示す図である。 図10A及び図10Bは、第1の実施形態にかかるPUSCHの周波数ドメインリソース割当ての他の例を示す図である。 図11は、第1の実施形態にかかるPUSCHの周波数ドメインリソース割当ての他の例を示す図である。 図12A及び図12Bは、第2の実施形態にかかるTBサイズ決定の一例を示す図である。 図13A及び図13Bは、第2の実施形態にかかるTBサイズ決定の他の例を示す図である。 図14A及び図14Bは、第3の実施形態にかかるPTRSの周波数密度の一例を示す図である。 図15A及び図15Bは、第3の実施形態にかかるPTRSの周波数密度の他の例を示す図である。 図16は、第3の実施形態にかかるPTRSの周波数密度の他の例を示す図である。 図17は、第4の実施形態にかかるFDMスキームにおけるRVの決定に利用するテーブルの一例を示す図である。 図18は、TDMを利用したPUSCHの繰り返しの一例を示す図である。 図19は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図20は、一実施形態に係る基地局の構成の一例を示す図である。 図21は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図22は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図23は、一実施形態に係る車両の一例を示す図である。
(繰り返し送信)
 Rel.15では、データ送信において繰り返し送信がサポートされている。例えば、基地局(ネットワーク(NW)、gNB)は、DLデータ(例えば、下り共有チャネル(PDSCH))の送信を所定回数だけ繰り返して行ってもよい。あるいは、UEは、ULデータ(例えば、上り共有チャネル(PUSCH))を所定回数だけ繰り返して行ってもよい。
 UEは、単一のDCIにより所定数の繰り返しのPUSCH送信をスケジューリングされてもよい。当該繰り返しの回数は、繰り返し係数(repetition factor)K又はアグリゲーション係数(aggregation factor)Kとも呼ばれる。
 また、n回目の繰り返しは、n回目の送信機会(transmission occasion)等とも呼ばれ、繰り返しインデックスk(0≦k≦K-1)によって識別されてもよい。繰り返し送信は、DCIで動的にスケジュールされるPUSCH(例えば、動的グラントベースのPUSCH)に適用されてもよいし、設定グラントベースのPUSCHに適用されてもよい。
 UEは、繰り返し係数Kを示す情報(例えば、aggregationFactorUL又はaggregationFactorDL)を上位レイヤシグナリングにより準静的に受信する。ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
 UEは、DCI内の以下の少なくとも一つのフィールド値(又は当該フィールド値が示す情報)に基づいて、K個の連続するスロットにおけるPDSCHの受信処理(例えば、受信、デマッピング、復調、復号の少なくとも一つ)、又はPUSCHの送信処理(例えば、送信、マッピング、変調、符号の少なくとも一つ)を制御する:
・時間領域リソース(例えば、開始シンボル、各スロット内のシンボル数等)の割り当て、
・周波数領域リソース(例えば、所定数のリソースブロック(RB:Resource Block)、所定数のリソースブロックグループ(RBG:Resource Block Group))の割り当て、
・変調及び符号化方式(MCS:Modulation and Coding Scheme)インデックス、
・PUSCHの復調用参照信号(DMRS:Demodulation Reference Signal)の構成(configuration)、
・PUSCHの空間関係情報(spatial relation info)、又は送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))。
 連続するK個のスロット間では、同一のシンボル割り当てが適用されてもよい。UEは、DCI内の所定フィールド(例えば、時間ドメインリソース割り当て(TDRA)フィールド)の値mに基づいて決定される開始シンボルS及びシンボル数L(例えば、Start and Length Indicator(SLIV))に基づいて各スロットにおけるシンボル割り当てを決定してもよい。なお、UEは、DCIの所定フィールド(例えば、TDRAフィールド)の値mに基づいて決定されるK2情報に基づいて、最初のスロットを決定してもよい。
 一方、当該連続するK個のスロット間では、同一データに基づくTBに適用される冗長バージョン(Redundancy Version(RV))は、同一であってもよいし、少なくとも一部が異なってもよい。例えば、n番目のスロット(送信機会、繰り返し)で当該TBに適用されるRVは、DCI内の所定フィールド(例えば、RVフィールド)の値に基づいて決定されてもよい。
 Rel.15では、複数のスロットにわたって(スロット単位)でPUSCHが繰り返し送信され得る。Rel.16以降では、スロットより短い単位(例えば、サブスロット単位、ミニスロット単位又は所定シンボル数単位)でPUSCHの繰り返し送信を行うことがサポートされる。
 UEは、PUSCHのDCI内の所定フィールド(例えば、TDRAフィールド)の値mに基づいて決定される開始シンボルS及びシンボル数Lに基づいて所定スロットにおけるPUSCH送信(例えば、k=0のPUSCH)のシンボル割り当てを決定してもよい。なお、UEは、DCIの所定フィールド(例えば、TDRAフィールド)の値mに基づいて決定されるKs情報に基づいて、所定スロットを決定してもよい。
 UEは、繰り返し係数Kを示す情報(例えば、numberofrepetitions)を下り制御情報によりダイナミックに受信してもよい。DCI内の所定フィールド(例えば、TDRAフィールド)の値mに基づいて繰り返し係数が決定されてもよい。例えば、DCIで通知されるビット値と、繰り返し係数K、開始シンボルS及びシンボル数Lと、の対応関係が定義されたテーブルがサポートされてもよい。
 スロットベースの繰り返し送信は、繰り返し送信タイプA(例えば、PUSCH repetition Type A)と呼ばれ、サブスロットベースの繰り返し送信は、繰り返し送信タイプB(例えば、PUSCH repetition Type B)と呼ばれてもよい。
 UEは、繰り返し送信タイプAと繰り返し送信タイプBの少なくとも一方の適用が設定されてもよい。例えば、上位レイヤシグナリング(例えば、PUSCHRepTypeIndicator)によりUEが適用する繰り返し送信タイプが基地局からUEに通知されてもよい。
 PUSCHをスケジュールするDCIフォーマット毎に、繰り返し送信タイプAと繰り返し送信タイプBのいずれか一方がUEに設定されてもよい。
 例えば、第1のDCIフォーマット(例えば、DCIフォーマット0_1)について、上位レイヤシグナリング(例えば、PUSCHRepTypeIndicator-AorDCIFormat0_1)が繰り返し送信タイプB(例えば、PUSCH-RepTypeB)に設定される場合、UEは第1のDCIフォーマットでスケジュールされたPUSCH繰り返し送信について繰り返し送信タイプBを適用する。それ以外の場合(例えば、PUSCH-RepTypeBが設定されない場合、又はPUSCH-RepTypAが設定される場合)、UEは、UEは第1のDCIフォーマットでスケジュールされたPUSCH繰り返し送信について繰り返し送信タイプAを適用する。
(PUSCHプリコーダ)
 NRでは、UEがコードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートすることが検討されている。
 例えば、UEは少なくとも測定用参照信号(Sounding Reference Signal(SRS))リソースインジケータ(SRS Resource Indicator(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。
 UEは、CBベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRI、TRI、TPMIなどは、下り制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、コヒーレントなアンテナポート毎に位相制御できる、コヒーレントなアンテナポート毎にプリコーダを適切にかけることができる、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
 プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCI(例えば、DCIフォーマット0_1。以下同様)から得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。
 図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。図1は、DFT-s-OFDM(Discrete Fourier Transform spread OFDM、変換プリコーディング(transform precoding)が有効である)で4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルに該当する。
 図1において、プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。
 なお、図1に示すように、各列の成分がそれぞれ1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。各列の成分がそれぞれ所定の数(全てではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。各列の成分が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。
 ノンコヒーレントコードブック及び部分コヒーレントコードブックは、アンテナ選択プリコーダ(antenna selection precoder)と呼ばれてもよい。完全コヒーレントコードブックは、非アンテナ選択プリコーダ(non-antenna selection precoder)と呼ばれてもよい。
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。
(SRS、PUSCHのための空間関係)
 UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
 具体的には、UEは、一つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも一つを受信してもよい。
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS、AP-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブックベース送信(codebook:CB)、ノンコードブックベース送信(nonCodebook:NCB)、アンテナスイッチング(antennaSwitching)などであってもよい。コードブックベース送信又はノンコードブックベース送信の用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースのPUSCH送信のプリコーダの決定に用いられてもよい。
 例えば、UEは、コードブックベース送信の場合、SRI、送信ランクインジケータ(Transmitted Rank Indicator:TRI)及び送信プリコーディング行列インジケータ(Transmitted Precoding Matrix Indicator:TPMI)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。
 SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、所定の参照信号とSRSとの間の空間関係情報を示してもよい。当該所定の参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。
 SRSの空間関係情報は、上記所定の参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。
 なお、本開示において、SSBインデックス、SSBリソースID及びSSBRI(SSB Resource Indicator)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCRI(CSI-RS Resource Indicator)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。
 SRSの空間関係情報は、上記所定の参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。
 NRでは、上り信号の送信は、ビームコレスポンデンス(Beam Correspondence(BC))の有無に基づいて制御されてもよい。BCとは、例えば、あるノード(例えば、基地局又はUE)が、信号の受信に用いるビーム(受信ビーム、Rxビーム)に基づいて、信号の送信に用いるビーム(送信ビーム、Txビーム)を決定する能力であってもよい。
 なお、BCは、送信/受信ビームコレスポンデンス(Tx/Rx beam correspondence)、ビームレシプロシティ(beam reciprocity)、ビームキャリブレーション(beam calibration)、較正済/未較正(Calibrated/Non-calibrated)、レシプロシティ較正済/未較正(reciprocity calibrated/non-calibrated)、対応度、一致度などと呼ばれてもよい。
 例えば、BC無しの場合、UEは、一以上のSRS(又はSRSリソース)の測定結果に基づいて基地局から指示されるSRS(又はSRSリソース)と同一のビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
 一方、BC有りの場合、UEは、所定のSSB又はCSI-RS(又はCSI-RSリソース)の受信に用いるビーム(空間ドメイン受信フィルタ)と同一の又は対応するビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
 UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合(例えば、BC有りの場合)には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。
 UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合(例えば、BC無しの場合)には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。
 UEは、DCI(例えば、DCIフォーマット0_1)内の所定フィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによりスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該所定フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。
 PUSCHに対し、コードブックベース送信を用いる場合、UEは、2個のSRSリソースをRRCによって設定され、2個のSRSリソースの1つをDCI(1ビットの所定フィールド)によって指示されてもよい。PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、4個のSRSリソースをRRCによって設定され、4個のSRSリソースの1つをDCI(2ビットの所定フィールド)によって指示されてもよい。RRCによって設定された2個又は4個の空間関係以外の空間関係を用いるためには、RRC再設定が必要となる。
 なお、PUSCHに用いられるSRSリソースの空間関係に対し、DL-RSを設定することができる。例えば、SP-SRSに対し、UEは、複数(例えば、16個まで)のSRSリソースの空間関係をRRCによって設定され、複数のSRSリソースの1つをMAC CEによって指示されることができる。
(シングルパネル送信)
 シングルパネルUL送信方式又はシングルパネルUL送信方式候補は、以下の送信方式A,B(シングルパネルUL送信方式A,B)の少なくとも1つが適用されてもよい。なお、本開示において、パネル/UEパネルは、UE能力毎に報告されるUE能力値セット(例えば、UE capability value set)と読み替えられてもよい。
[送信方式A:シングルパネル シングルTRP UL送信]
 Rel.15及びRel.16では、UEは、1つのみのビーム及びパネルから、1つの時点において、1つのTRPに対してULを送信する送信方式が使用される(図2A)。
[送信方式B:シングルパネル マルチTRP UL送信]
 Rel.17においては、1つの時点において、1つのみのビーム及びパネルからのUL送信を行い、複数のTRPに対する繰り返し送信を行うことが検討されている(図2B)。図2Bの例では、UEは、パネル#1からTRP#1にPUSCHを送信した後(ビーム及びパネルを切り替え)、パネル#2からTRP#2にPUSCHを送信する。2つのTRPは、理想バックホール(ideal backhaul)を介して接続される。
(マルチパネル送信)
 Rel.18以降において、ULのスループット/信頼性の改善のために、1以上のTRPに向けて、複数パネルを用いる同時UL送信(例えば、simultaneous multi-panel UL transmission(SiMPUL))がサポートされることが検討されている。また、所定のULチャネル(例えば、PUSCH/PUCCH)等について、マルチパネルUL送信方式が検討されている。
 マルチパネルUL送信として、例えば、最大X個(例えば、X=2)と、最大Y個(例えば、Y=2)のパネルがサポートされてもよい。マルチパネルUL送信において、PUSCHに対するULプリコーディング指示がサポートされる場合、マルチパネル同時送信に対して既存システム(例えば、Rel.16以前)のコードブックがサポートされてもよい。シングルDCI及びマルチDCIベースのマルチTRPオペレーションを考慮した場合、レイヤー数は全パネルにおいて最大x個(例えば、x=4)、コードワード(CW)数は全パネルで最大y個(例えば、y=2)であってもよい。
 マルチパネルUL送信方式又はマルチパネルUL送信方式候補は、次の方式1から3(マルチパネルUL送信方式1から3)の少なくとも1つが検討されている。送信方式1から3の1つのみがサポートされてもよい。送信方式1から3の少なくとも1つを含む複数の方式がサポートされ、複数の送信方式の1つがUEに設定されてもよい。
[送信方式1:コヒーレントマルチパネルUL送信]
 複数パネルが互いに同期していてもよい。全てのレイヤは、全てのパネルにマップされる。複数アナログビームが指示される。SRSリソースインジケータ(SRI)フィールドが拡張されてもよい。この方式は、ULに対して最大4レイヤを用いてもよい。
 図3Aの例において、UEは、1コードワード(CW)又は1トランスポートブロック(TB)をL個のレイヤ(PUSCH(1,2,…,L))へマップし、2つのパネルのそれぞれからL個のレイヤを送信する。パネル#1及びパネル#2はコヒーレントである。送信方式1は、ダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数は2Lである。レイヤの総数の最大値が4である場合、1つのパネルにおけるレイヤ数の最大値は2である。
[送信方式2:1つのコードワード(CW)又はトランスポートブロック(TB)のノンコヒーレントマルチパネルUL送信]
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する1つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、複数パネルにマップされてもよい。この送信方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この送信方式は、最大8レイヤを用いる1つのCW又はTBをサポートしてもよい。
 図3Bの例において、UEは、1CW又は1TBを、k個のレイヤ(PUSCH(1,2,…,k))とL-k個のレイヤ(PUSCH(k+1,k+2,…,L))とへマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。送信方式2は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。
[送信方式3:2つのCW又はTBのノンコヒーレントマルチパネルUL送信]
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する2つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、1つのパネルにマップされてもよい。複数のCW又はTBに対応するレイヤが、異なるパネルにマップされてもよい。この送信方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この送信方式は、CW又はTB当たり最大4レイヤをサポートしてもよい。
 図3Cの例において、UEは、2CW又は2TBのうち、CW#1又はTB#1をk個のレイヤ(PUSCH(1,2,…,k))へマップし、CW#2又はTB#2をL-k個のレイヤ(PUSCH(k+1,k+2,…,L))へマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。送信方式3は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。
 上記の各送信方式において、基地局は、UL TCI又はパネルIDを用いて、UL送信のためのパネル固有送信を設定又は指示してもよい。UL TCI(UL TCI状態)は、Rel.15においてサポートされるDLビーム指示と類似するシグナリングに基づいてもよい。パネルIDは、ターゲットRSリソース又はターゲットRSリソースセットと、PUCCHと、SRSと、PRACHと、の少なくとも1つの送信に、暗示的に又は明示的に適用されてもよい。パネルIDが明示的に通知される場合、パネルIDは、ターゲットRSと、ターゲットチャネルと、リファレンスRSと、の少なくとも1つ(例えば、DL RSリソース設定又は空間関係情報)において設定されてもよい。
 上述した1以上の伝送方式/モードにおいて、1つのDCI(シングルDCI)に基づくPUSCHのスケジュール/複数のDCI(マルチDCI)に基づくPUSCHのスケジュールについてのマルチパネルUL送信(例えば、simultaneous multi-panel UL transmission(SiMPUL))が検討されている。
(UE能力値セット)
 Rel.17 NR以降では、UE能力報告(例えば、UE capability report)において、UE能力値セット(例えば、UE capability value sets)のリストを報告することがサポートされる。UE能力値セットは、UEがサポート/利用するパネルを意味してもよい。UE能力値セットは、UE能力値(例えば、UE capability value)と読み替えられてもよい。
 Rel.17における各UE能力値セットは、サポートされる最大SRSポート数に基づいて構成されてもよい。例えば、SRSポート数の最大数がXである場合、UEは、X個(例えば、X=4)のUE能力値セットを報告する。
 UEがUE能力値セットのリストを報告することにより、UE主導のパネルのアクティブ化と選択を行うことができる。報告されたCSI-RS/SSBのリソースインデックス(CRI/SSBRI)と、報告されたリスト内のUE能力値セットの1と、の間の対応がUEにより決定され、ビーム報告インスタンスにおいてNWに通知されてもよい。
 Rel.17 NR以降では、UE主導のパネルのアクティブ化及び選択を促進するためにUEがUE能力値セットのリストを報告することがサポートされる。当該リストに含まれる各UE能力値セットは、サポートされる最大SRSポート数で構成され、任意の2つのUE能力値セットは異なって(又は、別々に)設定されてもよい。UE能力値セットは、同じバンドにおける複数(又は、全て)のBWP/CCで共通に設定されてもよいし、同じバンドコンビネーション(BC)における複数(又は、全て)のBWP/CCで共通に設定されてもよい。
 Rel.17の各UE能力値セットは、サポートされる最大のSRSポート数で構成される。また、Rel.18以降では、UE能力値セットは、サポートされる最大のSRSポート数に加えて(又は、代えて)、最大ULランク、最大ビーム数、最大SRSリソースセット数、最大SRSリソース数、セットあたりの最大SRSリソース数、EIRP、及び送信電力関連能力の少なくとも1つから構成されてもよい。
 複数(例えば、2つ)のUE能力値セットが異なって設定される場合、任意の2つの能力値セットが異なる最大サポートSRSポート数を有することを意味してもよい。なお、複数(例えば、2つ)のUE能力値セットは、同じ能力を有してもよい。例えば、2つのUE能力値セットが同じ最大サポートSRSポート数を有してもよい。この場合、サポートされるSRSポートの最大数が同じ2つのUE能力値セットは、他のパラメータ(例えば、EIRP)が異なって設定されてもよい。
(マルチパネルを利用したPUSCH送信)
 マルチパネルを利用したPUSCH送信(又は、繰り返しPUSCH送信)についての時間/周波数リソース指示については、次のいずれかのオプションが適用されてもよい。
[空間分割多重(SDM)]
 UEは、空間分割多重(Space Division Multiplexing:SDM)を適用したPUSCH繰り返し送信が同じ時間リソース及び同じ周波数リソースにスケジュールされることを想定してもよい。すなわち、UEは、コヒーレントな複数のパネルを用いた場合、SDMを適用したPUSCH繰り返し送信を、同じ時間リソース及び同じ周波数リソースにおいて送信してもよい。図4は、SDMを適用したPUSCH繰り返し送信の例を示す図である。図4では、繰り返しであるPUSCH AとPUSCH Bの時間及び周波数リソースが同じである。
[周波数分割多重(FDM)]
 UEは、周波数分割多重(Frequency Division Multiplexing:FDM)を適用したPUSCH繰り返し送信が同じ時間リソース及び異なる周波数リソースにスケジュールされることを想定してもよい。すなわち、UEは、コヒーレントな複数のパネルを用いた場合、FDMを適用したPUSCH繰り返し送信を同じ時間リソース及び異なる周波数リソースにおいて送信してもよい。図5Aは、FDMを適用したPUSCH繰り返し送信の第1の例を示す図である。図5Aでは、繰り返しであるPUSCH AとPUSCH Bの時間リソースが同じであり周波数リソースが異なっている。
 UEは、FDMを適用したPUSCH繰り返し送信に対して、一部(1又は複数のシンボル)が重複する時間リソース及び異なる周波数リソースにスケジュールされることを想定してもよい。図5Bは、FDMを適用したPUSCH繰り返し送信の第2の例を示す図である。図5Bでは、繰り返しであるPUSCH AとPUSCH Bの時間リソースのうち一部(1又は複数のシンボル)が重複し、周波数リソースが異なっている。
 FDMマルチパネルPUSCH送信の他のスキームとして、1つのPUSCH(又は、1TB)の異なる周波数リソース(例えば、異なるRB)が異なるビーム(例えば、空間関係/TCI/SRI)/パネルで送信されてもよい(図6A参照)。図6Aは、1つのPUSCH(又は、1TB)が異なる周波数リソースにおいて異なるビーム/パネルを利用して送信される場合を示している。
 FDMマルチパネルPUSCH送信の他のスキームとして、2つのTBがシングルDCIによりスケジュールされ、当該2つのTBが異なる周波数リソース(例えば、異なるRB)において、異なるビーム(例えば、空間関係/TCI/SRI)/パネルで送信されてもよい(図6B参照)。図6Bでは、TB#1とTB#2が、異なる周波数リソースにおいて異なるビーム/パネルを利用して送信される場合を示している。
 このように、Rel.18以降(例えば、Rel.18 MIMO)において、マルチパネルを利用して複数のUL送信(例えば、複数のPUSCH送信/PUSCH繰り返し送信)を行う場合、周波数分割多重(FDM)を行うことが想定される。
 かかる場合、PUSCHのFDMをどのように制御するかについて十分に検討されていない。
 本発明者らは、マルチパネルを利用する複数のPUSCH送信について1以上のFDMスキームを利用する場合の送信制御について検討し、本実施の形態の一態様を着想した。
(PUSCH用のTBサイズ)
 UEは、PUSCH送信において、トランスポートブロックのサイズ(TBサイズ)を決定する。TBサイズの決定において、PUSCHに対して割当てられるリソースエレメント(RE)のトータル数が決定される。また、PUSCHに対して割当てられるREのトータル数は、UE(又は、PUSCH)に割当てられるPRBのトータル数に基づいて決定される。
 このように、UEは、PUSCHに割当てられるリソースブロック(例えば、PRB)のトータル数に基づいて、TBSサイズを決定する。
 この場合、複数のUL送信をFDMを利用して行う場合、各周波数ドメインリソース(例えば、FDMされた周波数リソースに適用される2つのビーム/パネル)に対して異なるPRB数の割当てがサポートされる場合、TBサイズをどのように決定/制御するかが問題となる。
 本発明者らは、マルチパネルを利用する複数のPUSCH送信について1以上のFDMスキームを利用する場合のTBサイズの決定/制御について検討し、本実施の形態の一態様を着想した。
(PT-RSの周波数密度)
 Rel.15 NRにおいて、基地局は、下りリンクで位相追従参照信号(Phase Tracking Reference Signal(PTRS))を送信してもよい。基地局は、所定数(例えば、1つ)のサブキャリアにおいて、PTRSを時間方向に連続又は非連続にマッピングして送信してもよい。
 UEは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))がスケジュールされる期間(スロット、シンボルなど)(言い換えると、PDSCHを受信する期間)の少なくとも一部において、PTRSを受信してもよい。基地局が送信するPTRSは、DL PTRSと呼ばれてもよい。
 また、UEは、上りリンクでPTRSを送信してもよい。UEは、所定数(例えば、1つ)のサブキャリアにおいて、PTRSを時間方向に連続又は非連続にマッピングして送信してもよい。
 UEは、例えば、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))がスケジュールされる期間(スロット、シンボルなど)(言い換えると、PUSCHを送信する期間)の少なくとも一部において、PTRSを送信してもよい。UEが送信するPTRSは、UL PTRSと呼ばれてもよい。
 基地局又はUEは、受信したPTRSに基づいて位相ノイズ(phase noise)を決定し、受信信号(例えば、PUSCH、PDSCH)の位相誤差を補正してもよい。
 UEは、PTRS設定情報(DL用はPTRS-DownlinkConfig、UL用はPTRS-UplinkConfig)を、上位レイヤシグナリングを用いて設定されてもよい。例えば、当該PTRS設定情報は、PDSCH又はPUSCHの復調用参照信号(DMRS:Demodulation Reference Signal)の設定情報(DMRS-DownlinkConfig、DMRS-UplinkConfig)に含まれてもよい。
 PTRS設定情報は、PTRSの周波数密度(frequency density)の決定に用いられる情報(例えば、RRCパラメータの「frequencyDensity」フィールド)を含んでもよい。当該情報は、周波数密度情報と呼ばれてもよい。周波数密度情報は、例えば、後述の周波数密度に関する閾値(例えば、NRB0、NRB1の少なくとも1つ)を示してもよい。
 PTRS設定情報は、DL PTRS用とUL PTRS用とで別々の値が設定されてもよい。また、PTRS設定情報は、セル内のBandwidth Part(BWP)ごとにUEに設定されてもよいし、BWP共通に(セル固有)に設定されてもよい。
 UEは、PTRS設定情報が設定(通知)されない場合(例えば、RRC接続前)、PTRSが存在しない(送信又は受信する信号に含まれない)と想定してもよい。UEは、PTRS設定情報が設定(通知)された場合(例えば、RRC接続後)、検出した下り制御情報(Downlink Control Information(DCI))に基づいて、PTRSパターン(時間密度及び周波数密度の少なくとも1つ)を決定してもよい。
 例えば、UEは、時間密度情報及び周波数密度情報の少なくとも一方が設定され、かつ、DCIのCyclic Redundancy Check(CRC)スクランブルに用いられるRadio Network Temporary Identifier(RNTI)が特定のRNTI(例えば、Cell-RNTI(C-RNTI)、Configured Scheduling RNTI(CS-RNTI))である場合には、PTRSのアンテナポートの存在を想定し、当該DCIによってスケジュールされるscheduled MCS(MCS)及びスケジュールされる帯域幅(scheduled bandwidth)に基づいて、PTRSパターンを決定してもよい。
 UEは、DCIのModulation and Coding Scheme(MCS)フィールドに基づいてMCSインデックス(IMCS)を決定し、当該IMCS及び上述の時間密度に関する閾値に基づいて、PTRSの時間密度LPT-RSを決定してもよい。
 例えば、UEは、以下のようにLPT-RSを決定してもよい:
・IMCS<ptrs-MCSであれば、PTRSは存在しないと想定する、
・ptrs-MCS≦IMCS<ptrs-MCSであれば、LPT-RS=4、
・ptrs-MCS≦IMCS<ptrs-MCSであれば、LPT-RS=2、
・ptrs-MCS≦IMCS<ptrs-MCSであれば、LPT-RS=1。
 MCSインデックスとPTRSの時間密度の対応関係は、これに限られない。例えば、閾値の数は4つより少なくても多くてもよい。なお、LPT-RSの値は、小さいほど密度が高いことを意味してもよく、例えばPTRSシンボルの配置間隔を示してもよい。
 UEは、DCIの周波数領域リソース割り当てフィールドに基づいてスケジュールされるリソースブロック数(NRB)を決定し、当該NRB及び上述の周波数密度に関する閾値に基づいて、PTRSの周波数密度KPT-RSを決定してもよい。
 例えば、UEは、以下のようにKPT-RSを決定してもよい:
・NRB<NRB0であれば、PTRSは存在しないと想定する、
・NRB0≦NRB<NRB1であれば、KPT-RS=2、
・NRB1≦NRBであれば、KPT-RS=4。
 スケジュールされる帯域幅とPTRSの周波数密度の対応関係は、これに限られない。例えば、閾値の数は2つより少なくても多くてもよい。なお、KPT-RSの値は、小さいほど密度が高いことを意味してもよく、例えばPTRSのサブキャリアの配置間隔を示してもよい。
 UEは、時間密度情報が設定されない場合、LPT-RSは所定値(例えば、1)であると想定してもよい。UEは、周波数密度情報が設定されない場合、KPT-RSは所定値(例えば、2)であると想定してもよい。なお、LPT-RS及びKPT-RSに関する所定値は、予め定められてもよいし、上位レイヤシグナリングにより設定されてもよい。
 このように、UEは、PUSCHに割当てられるリソースブロック(例えば、PRB)のトータル数に基づいて、PTRSの周波数密度を決定する。
 この場合、複数のUL送信をFDMを利用して行う場合、各周波数ドメインリソース(例えば、FDMされた周波数リソースに適用される2つのビーム/パネル)に対して異なるPRB数の割当てがサポートされる場合、PTRSの周波数密度をどのように決定/制御するかが問題となる。
 本発明者らは、マルチパネルを利用する複数のPUSCH送信について1以上のFDMスキームを利用する場合のPTRSの周波数密度の決定/制御について検討し、本実施の形態の一態様を着想した。
(TDMを適用するPUSCH繰り返しの冗長バージョン(RV))
 Rel.17において、時間分割多重(TDM)が適用されるPUSCH送信(例えば、PUSCH繰り返し)に対して、あらかじめ定義された冗長バージョン(RV)が適用されることがサポートされている(図7参照)。
 図7は、各送信機会に対するRVのマッピングの一例を示す図である。図7の表の一番左の列は、RVフィールドによって示されるRVインデックス(rvid)を示す。UEは、この値に応じて、n番目の繰り返し(送信機会)に適用されるRVインデックスを判断してもよい。
 例えば、UEは、RVフィールドによって示されるrvidが0の場合、((n-(n mod N))/N)mod 4=0、1、2、3が、それぞれrvid=0、2、3、1に対応すると判断してもよい。
 つまり、UEは、RVシーケンス{#0、#2、#3、#1}について、RVフィールドによって示されたRVを開始位置として、繰り返しごとに1つ右のRVを適用してもよい。
 マルチパネルを利用する複数のPUSCH送信について所定のFDMスキームを利用する場合、各繰り返しのRVをどのように決定/制御するかが問題となる。
 本発明者らは、マルチパネルを利用する複数のPUSCH送信について所定のFDMスキームを利用する場合の各PUSCHの繰り返しのRVの決定/制御について検討し、本実施の形態の一態様を着想した。
(PUSCH繰り返しのレイヤ数)
 Rel.16/Rel.17において、TDMが適用されるPUSCHの繰り返し送信において、送信レイヤ数はシングルレイヤに制限される。PUSCHの繰り返し送信は、スロット単位で繰り返される繰り返しタイプA(例えば、PUSCH TDM repetition type A)に相当する。
 PUSCHの最大送信ランクは、上位レイヤパラメータ(例えば、maxRank)により設定可能である。Rel.16/17のPUSCH繰り返しタイプAに対するレイヤ数の制限は、上位レイヤパラメータによりPUSCHの最大ランクが1より大きく(例えば、2又は4)設定されていても、PUSCH繰り返しタイプAがスケジュールされていれば(例えば、繰り返し数>1に設定されていれば)、UEは、ランク>1のPUSCHのスケジュールを期待しない。一方で、PUSCH繰り返しタイプAがスケジュールされていなければ(例えば、繰り返し数=1に設定)、UEはランク>1のPUSCHをスケジュールされるケースがある。
 マルチパネルを利用する複数のPUSCH送信について所定のFDMスキームを利用する場合、レイヤ数(又は、レイヤ数の制限)をどのように決定/制御するかが問題となる。
 本発明者らは、マルチパネルを利用する複数のPUSCH送信について所定のFDMスキームを利用する場合のPUSCH送信のレイヤ数(又は、ランク数)の決定/制御について検討し、本実施の形態の一態様を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」、「A及びBの少なくとも1つ」、「A及びB」は互いに読み替えられてもよい。本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、「A、B及びC」は互いに読み替えられてもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
(無線通信方法)
 以下の各実施形態において、PUSCHの送信スキーム(例えば、FDMマルチパネルPUSCH送信スキーム)として、以下のFDMスキーム#1~FDMスキーム#3の少なくとも一つが適用/サポートされてもよい。また、FDMスキーム#1~FDMスキーム#3では、シングルDCIにより1以上のPUSCHがスケジュールされてもよい。なお、PUSCHは、PUSCH送信機会、PUSCH繰り返し、又はPUSCHリソースと読み替えられてもよい。
[FDMスキーム#1]
 同一TB(又は、1TB)の2つのPUSCH送信機会(例えば、繰り返し)が、同一時間ドメインリソース/オーバーラップする時間ドメインリソースと、オーバーラップしない周波数ドメインリソースと、において送信される。また、同一TBの2つのPUSCH送信機会(例えば、繰り返し)は、2つのビーム/パネル(例えば、異なるビーム/パネル)でそれぞれ送信される(図8A参照)。
[FDMスキーム#2]
 同一TB(又は、1TB)の1つのPUSCH送信機会(例えば、繰り返し)が、2つのビーム/パネル(例えば、異なるビーム/パネル)で送信され、各ビーム/パネルがPUSCH送信におけるオーバーラップしない周波数ドメインリソースに関連づけられる(図8B参照)。
[FDMスキーム#3]
 2つのTB/CWが、同一時間ドメインリソース/オーバーラップする時間ドメインリソースと、オーバーラップしない周波数ドメインリソースと、において送信される。また、2つのTB/CWは、2つのビーム/パネル(例えば、異なるビーム/パネル)でそれぞれ送信される(図8C参照)。
 ビームは、空間関係(例えば、spatial relation)/SRI/TCI状態を参照して(又は、空間関係/SRI/TCI状態に読み替えられて)もよい。パネルは、UE能力値、UE能力値セット、又はUEアンテナグループを参照して(又は、UE能力値セット/UEアンテナグループに読み替えられて)もよい。
 あるいは、以下の説明において、第1のビーム/パネルは、第1のSRI/TCI状態、第1のSRIフィールド/第1のTCI状態フィールド、第1のRSRリソースセット(例えば、低いIDを有するSRSリソースセット)、又はインデックスが低いパネルIDに読み替えられてもよい。また、第2のビーム/パネルは、第2のSRI/TCI状態、第2のSRIフィールド/第2のTCI状態フィールド、第2のRSRリソースセット(例えば、高いIDを有するSRSリソースセット)、又はインデックスが高いパネルIDに読み替えられてもよい。
<第1の実施形態>
 第1の実施形態では、FDMスキーム(例えば、FDMスキーム#1~FDMスキーム#3の少なくとも一つ)を利用して送信されるPUSCHの周波数ドメインリソースの割当て/設定の一例について説明する。
 UEは、PUSCHの周波数ドメインリソースを以下のオプション1-1~オプション1-3の少なくとも一つに基づいて決定してもよい。本開示(例えば、各実施形態)において、FDMスキーム#1/FDMスキーム#2/FDMスキーム#3のいずれが適用されるかについて、上位レイヤパラメータ/MAC CE/DCIを利用して基地局からUEに設定/指示されてもよい。
 FDMスキーム#1/FDMスキーム#2/FDMスキーム#3に対して、同じオプションが適用されてもよいし、別々のオプションの適用がサポートされてもよい。各FDMスキームに適用されるオプションは、仕様で定義されてもよいし、基地局からUEに上位レイヤパラメータ/DCIにより設定/指示されてもよい。あるいは、特定のFDMスキームに関する情報と、当該特定のFDMスキームに適用されるオプションに関する情報と、の少なくとも一つがRRC/DCIにより設定/指示されてもよい。
[オプション1-1]
 UEに対して、1セットの周波数ドメインリソースが指示されてもよい。本開示において、周波数ドメインリソースは、所定の周波数単位(例えば、RB、PRB、VRB、又はサブキャリア)で読み替えられてもよい。
 周波数ドメインリソースの指示は、既存システム(例えば、Rel.17)のPUSCH周波数ドメイン割当て(例えば、Rel-17 PUSCH frequency domain allocation)により指示されてもよい。
 例えば、PUSCHのスケジュール/アクティブ化に利用されるDCIの周波数ドメインリソース割当て(例えば、FDRA)フィールドにより、1セットの周波数ドメインリソース(例えば、複数のRB)がUEに指示されてもよい。
 UEに指示される周波数ドメインリソース(例えば、1以上のRB)の1つのセットは、2つのサブセットに分割されてもよい(図9参照)。図9では、UEに指示された周波数ドメインリソース割当てが、サブセット#1とサブセット#2に分割される場合を示している。
 サブセットへの分割方法は、仕様であらかじめ定義されてもよいし、上位レイヤパラメータ等によりUEに通知されてもよい。
 例えば、N個のRBが割当てられる場合、第1のサブセットは最初のN/2個のRB、第2のサブセットは残りのRB(例えば、2番目のN/2個のRB)であってもよい。なお、N/2は、N/2に天井関数を適用した値、又は、N/2に床関数を適用した値で置き換えられてもよい。例えば、第1のサブセットと第2のサブセットの一方が、N/2に天井関数又は床関数を適用して算出した値となり、他方のサブセットがN-(算出した値)であってもよい。
 周波数ドメインリソースの第1のサブセットは、第1のビーム/パネルに関連づけられ、第2のサブセットは、第2のビーム/パネルに関連づけられてもよい。本開示において、第1のビーム/パネルに関する情報と、第2のビーム/パネルに関する情報とは、上位レイヤパラメータ/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。例えば、Rel.17のPUSCH繰り返しにおいてサポートされる2つのSRIフィールドにより指示されてもよいし、統一TCIにおいてサポートされる1又は2つのTCI状態フィールドにより指示されてもよい。
 FDMスキーム#1において、周波数ドメインリソースの各サブセットは、各PUSCH送信機会/繰り返し(例えば、PUSCH transmission occasion/repetition)に対応してもよい。
 FDMスキーム#2において、全ての周波数ドメインリソースは、1TBの1つのPUSCH送信に対応してもよい。
 FDMスキーム#3において、周波数ドメインリソースの各サブセットは、各TBに対応してもよい。
[オプション1-2]
 UEに対して、PUSCHの周波数ドメインリソース(RB)の第1のセットが指示され、周波数ドメインリソースの第2のセットは、所定ルールに基づいて決定されてもよい。
 周波数ドメインリソースの指示は、既存システム(例えば、Rel.17)のPUSCH周波数ドメイン割当て(例えば、Rel-17 PUSCH frequency domain allocation)により指示されてもよい。
 例えば、PUSCHのスケジュール/アクティブ化に利用されるDCIの周波数ドメイン割当てフィールドにより、周波数ドメインリソースの第1のセット(例えば、1以上のRB)がUEに指示されてもよい。
 周波数ドメインリソースの第2のセットは、指示された周波数ドメインリソースの第1のセットとの所定の関係に基づいて決定されてもよい。所定の関係は、RBの数、及び開始RB/終了RBとの少なくとも一つであってもよい。UEは、指示された第1のセット(又は、第1の周波数ドメインリソース)に対する所定の関係を考慮して、第2のセット(又は、第2の周波数ドメインリソース)を決定してもよい。
 例えば、周波数ドメインリソースの第2のセットは、第1のセットと同じ数のRBが適用/設定/割当てされてもよい(ルール1-2-1)(図10A参照)。
 例えば、周波数ドメインリソースの第2のセットは、第1のセットと周波数ドメインにおいて隣接して割当て/設定されてもよい(ルール1-2-2)(図10A参照)。第1のセットがRB#X~RB#Yに割当てられる場合、第2のセットは、RB#Y+1~RB#Z、又はRB#Z~RB#X-1に割当て/設定されてもよい。
 なお、図10Aでは、第1のセットのRB数と、第2のセットのRB数と、が同じである場合(ルール1-2-1とルール1-2-2の組み合わせ)を示しているが、これに限られない。第1のセットのRB数と第2のセットのRB数は異なっていてもよい。
 例えば、周波数ドメインリソースの第1のセットと第2のセットとの間には、ギャップ/オフセットが設けられてもよい(ルール1-2-3)(図10B参照)。例えば、第1のセットと第2のセット間にM個のRBのギャップ/オフセットが存在してもよい。Mは、仕様で定義されてもよいし、上位レイヤパラメータ/DCIにより設定/指示されてもよい。第1のセットがRB#X~RB#Yに割当てられる場合、第2のセットは、RB#Y+M~RB#Z、又はRB#Z~RB#X-Mに割当て/設定されてもよい。
 なお、図10Bでは、第1のセットのRB数と、第2のセットのRB数と、が同じである場合(ルール1-2-1とルール1-2-3の組み合わせ)を示しているが、これに限られない。第1のセットのRB数と第2のセットのRB数は異なっていてもよい。
 UEは、ルール1-2-1~ルール1-2-3の少なくとも一つ(又は、ルール1-2-1とルール1-2-2の組み合わせ/ルール1-2-1とルール1-2-3の組み合わせ)に基づいて第2のセットを判断してもよい。
 周波数ドメインリソースの第1のセットは、第1のビーム/パネルに関連づけられ、第2のセットは、第2のビーム/パネルに関連づけられてもよい。第1のビーム/パネルに関する情報と、第2のビーム/パネルに関する情報とは、上位レイヤパラメータ/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
 FDMスキーム#1において、周波数ドメインリソースの各セットは、1つのPUSCH送信機会/繰り返し(例えば、PUSCH transmission occasion/repetition)に対応してもよい。
 FDMスキーム#2において、全ての周波数ドメインリソースは、1TBの1つのPUSCH送信に対応してもよい。
 FDMスキーム#3において、周波数ドメインリソースの各セットは、各TB(例えば、1つのTB)に対応してもよい。
《バリエーション》
 第2のセットに対して第2の周波数ドメインリソース割当て(FDRA)のリストが設定され、1つのDCIフィールド(例えば、FDRAフィールド)により第1のFDRAと第2のFDRAがUEに指示されてもよい。
[オプション1-3]
 UEに対して、周波数ドメインリソースの2つのセットが明示的に指示されてもよい。
 周波数ドメインリソースの2つのセットは、PUSCHをスケジューリングするDCIに含まれる2つのフィールド(例えば、第1のフィールドと第2のフィールド)によりそれぞれ指示されてもよい(図11参照)。図11では、第1のフィールドにより周波数ドメインリソースの第1のセットに対応する周波数ドメイン割当てが指示され、第2のフィールドにより周波数ドメインリソースの第2のセットに対応する周波数ドメイン割当てが指示される場合を示している。
 例えば、周波数ドメインリソースの第1のセットは、Rel.17でサポートされるDCIの周波数ドメイン割当て(FDRA)フィールドにより指示され、第2のセットは、新規フィールドにより指示されてもよい。新規フィールドは、追加用FDRAフィールド又は第2のFDRAフィールドと呼ばれてもよい。
 あるいは、周波数ドメインリソースの2つのセットは、PUSCHをスケジューリングするDCIに含まれる周波数ドメインリソース割当てフィールドの2つの部分(例えば、第1のビット幅と第2のビット幅)によりそれぞれ指示されてもよい。
 各フィールド(又は、フィールドに含まれる各部分)は、例えば、Rel.17のPUSCHのスケジューリングに利用されるDCIの周波数ドメインリソース割当てフィールドと同じであってもよい。あるいは、Rel.17の設定グラント設定(例えば、上位レイヤパラメータconfiguredgrantconfig)における周波数ドメイン割当てフィールドと同じであってもよい。あるいは、Rel.17の設定グラントベースのPUSCHのアクティブ化に利用されるDCIの周波数ドメインリソース割当てフィールドと同じであってもよい。
 あるいは、第1のフィールドと第2のフィールドは、所定の上位レイヤパラメータに含まれるフィールドであってもよい。
 第2のセットに対して第2の周波数ドメインリソース割当て(FDRA)のリストが設定され、DCIの2つのフィールド(例えば、FDRAフィールド)により第1のFDRAと第2のFDRAがUEに指示されてもよい。
《バリエーション1-3-1》
 DCIにFDRAフィールドが2つ存在する(又は、設定される)場合、PUSCHに対するRBの割当て粒度が大きく設定されてもよい。例えば、RBの割当て粒度がX個のRB単位に増加されてもよい。Xは、仕様で定義されてもよいし、基地局からUEに上位レイヤパラメータ/DCIにより設定/指示されてもよい。
 既存システム(例えば、Rel.17以前)よりPUSCHに対するRBの割当て粒度を変更(例えば、大きくする)場合、第1のFDRAフィールドのRBの割当て粒度と、第2のFDRAフィールドのRBの割当て粒度は共通に設定されてもよいし、別々に(例えば、異なって)設定されてもよい。
《バリエーション1-3-2》
 第1のFDRAフィールドは、既存システム(例えば、Rel.17)と同じに設定され、第2のFDRAフィールドは、第1のFDRAフィールドで指示されるパラメータのうち一部のパラメータのみ指示する構成としてもよい。
 例えば、第2のFDRAフィールドは、開始RBのみ指示する構成としてもよい。この場合、UEは、第2のFDRAに対応するRB数は、第1のFDRAフィールドで指示されたRB数と同じ数を想定してもよい。第2のFDRAフィールドは、第1のFDRAフィールドで指示された開始RBに対するオフセットとして、開始RBを指示してもよい。
 この場合、第1のFDRAフィールドと、第2のFDRAフィールドのサイズ(ビット幅)は異なって設定されてもよい。例えば、追加する第2のFDRAフィールドのサイズを第1のFDRAフィールドのサイズより小さくしてもよい。これにより、DCIのオーバーヘッドの増加を抑制できる。
 周波数ドメインリソースの第1のセットは、第1のビーム/パネルに関連づけられ、第2のセットは、第2のビーム/パネルに関連づけられてもよい。第1のビーム/パネルに関する情報と、第2のビーム/パネルに関する情報とは、上位レイヤパラメータ/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
 FDMスキーム#1において、周波数ドメインリソースの各セットは、1つのPUSCH送信機会/繰り返し(例えば、PUSCH transmission occasion/repetition)に対応してもよい。
 FDMスキーム#2において、全ての周波数ドメインリソースは、1TBの1つのPUSCH送信に対応してもよい。
 FDMスキーム#3において、周波数ドメインリソースの各セットは、各TB(例えば、1つのTB)に対応してもよい。
<第2の実施形態>
 第2の実施形態では、FDMスキーム(例えば、FDMスキーム#1~FDMスキーム#3)を利用して送信されるPUSCHのTBサイズの決定/制御について説明する。
 UEは、各FDMスキームについて、別々のメカニズムを利用してTBサイズの決定を行ってもよい。
[FDMスキーム#1]
 FDMスキーム#1のTBサイズに決定において、UEは、割当てられたRB数が、2つのビーム/パネル(又は、2つの周波数ドメインリソースのサブセット/セット)のうちの1つに対応するRB数であると想定してもよい。つまり、UEは、2つのビーム/パネル(又は、2つの周波数ドメインリソースのサブセット/セット)のうちの1つに対応するRB数を、割当てられたRB数であると想定してTBSサイズを決定してもよい。
《オプション2-1》
 UEは、特定のビーム/パネル(又は、周波数ドメインリソースの特定のサブセット/のセット)に対応するRB数に基づいてTBサイズを判断してもよい(図12A参照)。図12Aでは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数に基づいてTBサイズが決定される場合を示している。
 あるいは、UEは、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数に基づいてTBサイズを判断してもよい。
 あるいは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、のいずれを適用するか設定可能(configurable)であってもよい。例えば、いずれのRB数を適用するかについて、基地局からUEに上位レイヤパラメータ/DCIにより設定/指示されてもよい。
《オプション2-2》
 また、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、が異なる場合、より数が少ないRB数が適用されてもよい(図12B参照)。図12Bでは、RBが少ない第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数に基づいてTBサイズが決定される場合を示している。
 あるいは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、が異なる場合、より数が多いRB数が適用されてもよい。
 あるいは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、が異なる場合、平均のRB数が適用されてもよい。
 オプション2-1/オプション2-2により決定されたTBサイズは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に関連するPUSCHと、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に関連するPUSCHと、にそれぞれ適用されてもよい。
[FDMスキーム#2]
 FDMスキーム#2のTBサイズに決定において、UEは、割当てられたRB数が、2つのビーム/パネル(又は、2つの周波数ドメインリソースのサブセット/セット)に対応するRBのトータル数であると想定してもよい(図13A参照)。つまり、UEは、2つのビーム/パネル(又は、2つの周波数ドメインリソースのサブセット/セット)に対応するRBのトータル数を、割当てられたRB数であると想定してTBSサイズを決定してもよい。
 図13Aでは、UEは、第1のビームパネル#1(又は、対応する周波数ドメインリソースのサブセット/セット)に対応するRB数と、第2のビームパネル#2(又は、対応する周波数ドメインリソースのサブセット/セット)に対応するRB数と、を合計したRB数に基づいてTBSサイズを決定してもよい。
[FDMスキーム#3]
 FDMスキーム#3のTBサイズに決定において、UEは、各TBの割当てRB数が、各TBに対応するビーム/パネル(又は、周波数ドメインリソースのサブセット/セット)に関連付けられたRB数であると想定して、各TBのTBサイズをそれぞれ決定する(図13B参照)。
 図13Bでは、UEは、第1のビームパネル#1(又は、対応する周波数ドメインリソースのサブセット/セット)に対応するRB数に基づいてTB#1のTBサイズを決定し、第2のビームパネル#2(又は、対応する周波数ドメインリソースのサブセット/セット)に対応するRB数に基づいてTB#2のTBサイズを決定してもよい。
 なお、ここでは、FDMスキーム毎にTBサイズをそれぞれ別々の方法により決定する場合を示したが、これに限られない。少なくとも2つのFDMスキームについて同じ方法によりTBサイズが決定されてもよい。
<第3の実施形態>
 第3の実施形態では、FDMスキーム(例えば、FDMスキーム#1~FDMスキーム#3)を利用して送信されるPUSCHのPTRSの周波数密度の決定/制御について説明する。
 UEは、FDMスキーム#1、FDMスキーム#2、及びFDMスキーム#3の少なくとも一つを適用する場合、以下のオプション3-1~オプション3-3の少なくとも一つを適用してPTRS送信を制御してもよい。FDMスキーム#1/FDMスキーム#2/FDMスキーム#3に対して、同じオプションが適用されてもよいし、別々のオプションの適用がサポートされてもよい。各FDMスキームに適用されるオプションは、仕様で定義されてもよいし、基地局からUEに上位レイヤパラメータ/DCIにより設定/指示されてもよい。あるいは、特定のFDMスキームに関する情報と、当該特定のFDMスキームに適用されるオプションに関する情報と、の少なくとも一つがRRC/DCIにより設定/指示されてもよい。
[オプション3-1]
 UEは、各ビーム/パネル(又は、周波数ドメインリソースのサブセット/セット)に対して、各ビーム/パネル(又は、周波数ドメインリソースのサブセット/セット)に対応するRB数に基づいて、PTRSの周波数密度を決定してもよい(図14A参照)。
 例えば、UEは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数に基づいて、当該第1のビーム/パネルに対応するPUSCHのPTRSの周波数密度を決定してもよい。また、UEは、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数に基づいて、当該第2のビーム/パネルに対応するPUSCHのPTRSの周波数密度を決定してもよい。
[オプション3-2]
 UEは、2つのビーム/パネル(又は、周波数ドメインリソースのサブセット/セット)のうちの1つに対応するRB数に基づいて、PTRSの周波数密度を決定してもよい(図14B参照)。決定されたPTRSの周波数密度は、両方のビーム/パネルに適用されてもよい。
《オプション3-2-1》
 UEは、特定のビーム/パネル(又は、周波数ドメインリソースの特定のサブセット/のセット)に対応するRB数に基づいてPTRSの周波数密度を判断してもよい(図15A参照)。図15Aでは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数に基づいてPTRSの周波数密度が決定される場合を示している。
 あるいは、UEは、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数に基づいてPTRSの周波数密度を判断してもよい。
 あるいは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、のいずれを適用するか設定可能(configurable)であってもよい。例えば、いずれのRB数を適用するかについて、基地局からUEに上位レイヤパラメータ/DCIにより設定/指示されてもよい。
《オプション3-2-2》
 また、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、が異なる場合、より数が少ないRB数が適用されてもよい(図15B参照)。
 あるいは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、が異なる場合、より数が多いRB数が適用されてもよい。
 あるいは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、が異なる場合、平均のRB数が適用されてもよい。
 オプション3-2-1/オプション3-2-2により決定されたTBサイズは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に関連するPUSCHと、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に関連するPUSCHと、にそれぞれ適用されてもよい。
[オプション3-3]
 UEは、2つのビーム/パネル(又は、周波数ドメインリソースのサブセット/セット)に対応するRBのトータル数に基づいて、PTRSの周波数密度を決定してもよい(図16参照)。決定されたPTRSの周波数密度は、両方のビーム/パネルに適用されてもよい。
 図16では、UEは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に対応するRB数と、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に対応するRB数と、のトータル数に基づいてPTRSの周波数密度を決定する。UEは、決定されたPTRSの周波数密度を、第1のビーム/パネルと第2のビーム/パネルに対応するPUSCHに適用してもよい。
<第4の実施形態>
 第4の実施形態では、所定のFDMスキームを利用してそれぞれ送信されるPUSCH(例えば、繰り返しPUSCH)に適用する冗長バージョン(RV)について説明する。なお、以下の説明では、所定のFDMスキームとしてFDMスキーム#1を例に挙げて説明するが、適用可能なFDMスキームはこれに限られない。
 UEは、以下のオプション4-1及びオプション4-2の少なくとも一つに基づいて、PUSCH送信に適用するRVを判断してもよい。
[オプション4-1]
 PUSCH送信に適用するRVは、所定のテーブルに基づいて決定されてもよい。所定のテーブルは、PUSCHをスケジュールするDCIにより指示されるRVインデックス(例えば、rvid)であってもよい。所定のテーブルは、DCIにより指示されるRVインデックス(例えば、rvid)と、n番目の送信オケージョンに適用されるRVインデックスと、関連づけであってもよい。
 例えば、UEは、所定テーブルとして、Rel.17で定義されたPUSCH送信用のRVのテーブル(又は、当該テーブルの一部)を適用してもよい(図17参照)。nは、繰り返しPUSCHの送信機会の順番(何回目の繰り返しか)に相当し、Nは、TBS(TBサイズ)の決定に利用されるスロット数に相当してもよい。
 UEは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に関連するPUSCHと、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に関連するPUSCHと、に対して、n=0、1をそれぞれ適用してもよい。
[オプション4-2]
 第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に関連するPUSCHと、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に関連するPUSCHと、の一方のRVを所定テーブルに基づいて決定し、他方のRVを一方のRVからのオフセットに基づいて決定してもよい。
 例えば、UEは、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に関連するPUSCHについて、所定テーブル(例えば、図17)にしたがってRVを決定する。この場合、n=0と想定して、第1のビーム/パネル(又は、周波数ドメインリソースの第1のサブセット/第1のセット)に関連するPUSCHのRVを決定してもよい。
 次に、UEは、第2のビーム/パネル(又は、周波数ドメインリソースの第2のサブセット/第2のセット)に関連するPUSCHのRVについて、第1のビーム/パネルに関連するPUSCHのRVに所定オフセットを適用(又は、加えて)決定してもよい。所定オフセットは、仕様で定義(例えば、固定値)であってもよいし、上位レイヤパラメータ/DCIを利用して基地局からUEに設定/指示されてもよい。
 例えば、第1のビーム/パネルに関連するPUSCHのRVがRV_1の場合、第2のビーム/パネルに関連するPUSCHのRV_2は、RV_2=(RV_1+所定オフセット)mod4により決定されてもよい。
<第5の実施形態>
 第5の実施形態では、FDMスキーム(例えば、FDMスキーム#1~FDMスキーム#3)を利用して送信されるPUSCHのレイヤ数の決定/制御について説明する。
 以下の説明において、最大送信ランクは、上位レイヤパラメータ(例えば、maxRank)により設定され、設定された最大送信ランクがYであると想定する。この場合、UEは、FDMスキーム#1、FDMスキーム#2、及びFDMスキーム#3の少なくとも一つを適用/有効化/設定された場合、以下のオプション5-1~オプション5-2の少なくとも一つを適用してもよい。
[オプション5-1]
 PUSCHの最大送信ランクに制限が追加されなくてもよい。つまり、最大送信ランクはYのままでよい。UEは、FDMスキームが適用されるPUSCHについて、最大送信ランクYに基づいて送信を制御してもよい。
[オプション5-2]
 PUSCHの最大送信ランクに制限が追加されてもよい。例えば、PUSCHの最大送信ランクが所定値(例えば、X)に制限されてもよい。XはYより小さい値としてもよい。UEは、Xよりも大きいレイヤ数のPUSCHがスケジュールされることを期待しなくてもよい。
 例えば、Xは、あらかじめ仕様で定義されてもよい。一例として、X=1又はX=2の固定値であってもよい。
 Xは、上位レイヤパラメータ/DCIを利用して基地局からUEに設定/指示されてもよい。
 Xは、設定される最大送信ランクYの値に応じて、異なって定義/設定されてもよい。例えば、Y=2の場合にX=1が適用され、Y>2の場合にX=2が適用されてもよい。
 なお、FDMスキーム#1/FDMスキーム#2/FDMスキーム#3に対して、同じオプションが適用されてもよいし、別々のオプションの適用がサポートされてもよい。各FDMスキームに適用されるオプションは、仕様で定義されてもよいし、基地局からUEに上位レイヤパラメータ/DCIにより設定/指示されてもよい。あるいは、特定のFDMスキームに関する情報と、当該特定のFDMスキームに適用されるオプションに関する情報と、の少なくとも一つがRRC/DCIにより設定/指示されてもよい。
 UEに設定/有効化/適用されるFDMスキーム(例えば、FDMスキーム#1/FDMスキーム#2/FDMスキーム#3)は、上位レイヤパラメータ/DCI/関連するパラメータの設定により指示されてもよい。
 例えば、送信スキーム(又は、FDMスキーム)を指示する上位レイヤパラメータにより、所定のFDMスキームがUEに設定/有効化されてもよい。
 あるいは、送信スキーム(又は、FDMスキーム)を指示するDCIにより、所定のFDMスキームがUEに指示/有効化されてもよい。
 あるいは、2つのビーム(例えば、SRI/TCI状態)/パネルを指示するDCIにより、所定のFDMスキームがUEに指示/有効化されてもよい。
 あるいは、2つのSRIフィールド/TCI状態フィールドを指示するDCIにより、所定のFDMスキームがUEに指示/有効化されてもよい。
 あるいは、2つのコードブック(CB)/ノンコードブック(NCB)のSRSリソースセットの設定により、所定のFDMスキームがUEに設定/有効化されてもよい。
<バリエーション>
 上記実施形態(例えば、第1の実施形態~第3の実施形態)は、TDMを利用するPUSCHの繰り返し送信(図18参照)に適用されてもよい。図18では、PUSCH繰り返し#1~#4にTDMが適用される場合を示している。
 例えば、異なる繰り返しが異なるビーム/パネルに関連づけられてもよい。繰り返しとビーム間のマッピングは、Rel.17でサポートされるマルチTRPのPUSCH繰り返しと同じとしてもよい。
 図18では奇数のPUSCH繰り返しに同じビーム/パネル(例えば、第1のビーム/パネル)が適用され、偶数のPUSCH繰り返しに同じビーム/パネル(例えば、第1のビーム/パネル)が適用される場合を示しているが、これに限られない。
 異なるビーム/パネルは、第1の実施形態で示した周波数ドメインリソースの異なるセット/サブセットに関連づけられてもよい。例えば、第1のビーム/パネルが第1のセット/サブセットに対応し、第2のビーム/パネルが第2のセット/サブセットに対応してもよい。
 TBサイズの決定は、第2の実施形態で示したFDMスキーム#1に対するメカニズムが適用されてもよい。
 各繰り返しのPTRSの周波数密度は、第3の実施形態で示したメカニズムが適用されてもよい。
<UE能力情報>
 上記第1の実施形態~第5の実施形態において、以下のUE能力(UE capability)が設定されてもよい。なお、以下のUE能力は、ネットワーク(例えば、基地局)からUEに設定するパラメータ(例えば、上位レイヤパラメータ)と読み替えられてもよい。
 FDMスキーム#1をサポートするか否かに関するUE能力情報が定義されてもよい。
 FDMスキーム#2をサポートするか否かに関するUE能力情報が定義されてもよい。
 FDMスキーム#3をサポートするか否かに関するUE能力情報が定義されてもよい。
 第1の実施形態~第5の実施形態は、上述したUE能力の少なくとも一つをサポート/報告するUEに適用される構成としてもよい。あるいは、第1の実施形態~第5の実施形態は、ネットワークから設定されたUEに適用される構成としてもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1-1]
 第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信する受信部と、前記下り制御情報に基いて、前記第1の周波数リソースと前記第2の周波数リソースを判断する制御部と、を有する端末。
[付記1-2]
 前記制御部は、前記下り制御情報により指示される1セットの周波数ドメインリソースを所定ルールに基づいて分割して前記第1の周波数リソースと前記第2の周波数リソースを判断する付記1-1に記載の端末。
[付記1-3]
 前記制御部は、前記下り制御情報により指示される前記第1の周波数リソースに関する情報と、所定ルールと、に基づいて、前記第2の周波数リソースを判断する付記1-1又は付記1-2に記載の端末。
[付記1-4]
 前記制御部は、前記下り制御情報に含まれる第1のフィールドと第2のフィールドとに基づいて、前記第1の周波数リソースと前記第2の周波数リソースを判断する付記1-1から付記1-3のいずれかに記載の端末。
[付記2-1]
 第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信する受信部と、前記下り制御情報に含まれる前記第1の周波数リソースに関する情報及び前記第2の周波数リソースに関する情報の少なくとも一つに基づいて、前記1以上の上り共有チャネルでそれぞれ送信されるトランスポートブロックのサイズ、及び前記1以上の上り共有チャネルに対応する位相追従参照信号の周波数密度の少なくとも一つを判断する制御部と、を有する端末。
[付記2-2]
 前記制御部は、前記第1の周波数リソースと前記第2の周波数リソースのうち、特定の周波数リソースのリソースブロック数に基づいて、前記トランスポートブロックのサイズ、及び前記位相追従参照信号の周波数密度の少なくとも一つを判断する付記2-1に記載の端末。
[付記2-3]
 前記制御部は、前記第1の周波数リソースと前記第2の周波数リソースのうち、対応するリソースブロック数が少ない周波数リソースのリソースブロック数に基づいて、前記トランスポートブロックのサイズ、及び前記位相追従参照信号の周波数密度の少なくとも一つを判断する付記2-1又は付記2-1に記載の端末。
[付記2-4]
 前記制御部は、前記第1の周波数リソースのリソースブロック数と、前記第2の周波数リソースのリソースブロック数と、の合計数に基づいて、前記位相追従参照信号の周波数密度を判断する付記2-1から付記2-3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図19は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図20は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を送信してもよい。制御部110は、下り制御情報を利用して、第1の周波数リソースと第2の周波数リソースの割当てを指示するように制御してもよい。
 送受信部120は、第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を送信してもよい。制御部110は、下り制御情報を利用して、1以上の上り共有チャネルでそれぞれ送信されるトランスポートブロックのサイズ、及び1以上の上り共有チャネルに対応する位相追従参照信号の周波数密度の少なくとも一つの決定に利用される第1の周波数リソースに関する情報及び第2の周波数リソースに関する情報の少なくとも一つを指示してもよい。
(ユーザ端末)
 図21は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信してもよい。制御部210は、下り制御情報に基いて、第1の周波数リソースと第2の周波数リソースを判断してもよい。
 制御部210は、下り制御情報により指示される1セットの周波数ドメインリソースを所定ルールに基づいて分割して第1の周波数リソースと第2の周波数リソースを判断してもよい。制御部210は、下り制御情報により指示される第1の周波数リソースに関する情報と、所定ルールと、に基づいて、第2の周波数リソースを判断してもよい。制御部210は、下り制御情報に含まれる第1のフィールドと第2のフィールドとに基づいて、第1の周波数リソースと第2の周波数リソースを判断してもよい。
 送受信部220は、第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信してもよい。制御部210は、下り制御情報に含まれる第1の周波数リソースに関する情報及び第2の周波数リソースに関する情報の少なくとも一つに基づいて、1以上の上り共有チャネルでそれぞれ送信されるトランスポートブロックのサイズ、及び1以上の上り共有チャネルに対応する位相追従参照信号の周波数密度の少なくとも一つを判断してもよい。
 制御部210は、第1の周波数リソースと第2の周波数リソースのうち、特定の周波数リソースのリソースブロック数に基づいて、トランスポートブロックのサイズ、及び位相追従参照信号の周波数密度の少なくとも一つを判断してもよい。制御部210は、第1の周波数リソースと第2の周波数リソースのうち、対応するリソースブロック数が少ない周波数リソースのリソースブロック数に基づいて、トランスポートブロックのサイズ、及び前記位相追従参照信号の周波数密度の少なくとも一つを判断してもよい。制御部210は、第1の周波数リソースのリソースブロック数と、第2の周波数リソースのリソースブロック数と、の合計数に基づいて、位相追従参照信号の周波数密度を判断してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図22は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図23は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信する受信部と、
     前記下り制御情報に基いて、前記第1の周波数リソースと前記第2の周波数リソースを判断する制御部と、を有する端末。
  2.  前記制御部は、前記下り制御情報により指示される1セットの周波数ドメインリソースを所定ルールに基づいて分割して前記第1の周波数リソースと前記第2の周波数リソースを判断する請求項1に記載の端末。
  3.  前記制御部は、前記下り制御情報により指示される前記第1の周波数リソースに関する情報と、所定ルールと、に基づいて、前記第2の周波数リソースを判断する請求項1に記載の端末。
  4.  前記制御部は、前記下り制御情報に含まれる第1のフィールドと第2のフィールドとに基づいて、前記第1の周波数リソースと前記第2の周波数リソースを判断する請求項1に記載の端末。
  5.  第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を受信する工程と、
     前記下り制御情報に基いて、前記第1の周波数リソースと前記第2の周波数リソースを判断する工程と、を有する端末の無線通信方法。
  6.  第1のビーム又はパネルに対応する第1の周波数リソースと、第2のビーム又はパネルに対応し、前記第1の周波数ドメインリソースと周波数分割多重される第2の周波数リソースと、を利用した1以上の上り共有チャネルの送信のスケジュールに利用される1つの下り制御情報を送信する送信部と、
     前記下り制御情報を利用して、前記第1の周波数リソースと前記第2の周波数リソースの割当てを指示するように制御する制御部と、を有する基地局。
PCT/JP2022/019404 2022-04-28 2022-04-28 端末、無線通信方法及び基地局 WO2023209990A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019404 WO2023209990A1 (ja) 2022-04-28 2022-04-28 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019404 WO2023209990A1 (ja) 2022-04-28 2022-04-28 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2023209990A1 true WO2023209990A1 (ja) 2023-11-02

Family

ID=88518147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019404 WO2023209990A1 (ja) 2022-04-28 2022-04-28 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2023209990A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM: "eMBB PHY Enhancements for Rel-18", 3GPP TSG RAN REL-18 WORKSHOP, RWS-210003, 7 June 2021 (2021-06-07), XP052025572 *

Similar Documents

Publication Publication Date Title
WO2023170827A1 (ja) 端末、無線通信方法及び基地局
WO2023170826A1 (ja) 端末、無線通信方法及び基地局
WO2023209990A1 (ja) 端末、無線通信方法及び基地局
WO2023209991A1 (ja) 端末、無線通信方法及び基地局
WO2023209992A1 (ja) 端末、無線通信方法及び基地局
WO2024029043A1 (ja) 端末、無線通信方法及び基地局
WO2024029044A1 (ja) 端末、無線通信方法及び基地局
WO2024029030A1 (ja) 端末、無線通信方法及び基地局
WO2024029029A1 (ja) 端末、無線通信方法及び基地局
WO2023152902A1 (ja) 端末、無線通信方法及び基地局
WO2024095473A1 (ja) 端末、無線通信方法及び基地局
WO2023152903A1 (ja) 端末、無線通信方法及び基地局
WO2023152901A1 (ja) 端末、無線通信方法及び基地局
WO2024095472A1 (ja) 端末、無線通信方法及び基地局
WO2024100888A1 (ja) 端末、無線通信方法及び基地局
WO2024004173A1 (ja) 端末、無線通信方法及び基地局
WO2024009476A1 (ja) 端末、無線通信方法及び基地局
WO2024004172A1 (ja) 端末、無線通信方法及び基地局
WO2023218954A1 (ja) 端末、無線通信方法及び基地局
WO2024009492A1 (ja) 端末、無線通信方法及び基地局
WO2023175777A1 (ja) 端末、無線通信方法及び基地局
WO2023175786A1 (ja) 端末、無線通信方法及び基地局
WO2024034070A1 (ja) 端末、無線通信方法及び基地局
WO2023170905A1 (ja) 端末、無線通信方法及び基地局
WO2023170904A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940263

Country of ref document: EP

Kind code of ref document: A1