WO2024095472A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024095472A1
WO2024095472A1 PCT/JP2022/041226 JP2022041226W WO2024095472A1 WO 2024095472 A1 WO2024095472 A1 WO 2024095472A1 JP 2022041226 W JP2022041226 W JP 2022041226W WO 2024095472 A1 WO2024095472 A1 WO 2024095472A1
Authority
WO
WIPO (PCT)
Prior art keywords
size
field
transmission
panel
sri
Prior art date
Application number
PCT/JP2022/041226
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/041226 priority Critical patent/WO2024095472A1/ja
Publication of WO2024095472A1 publication Critical patent/WO2024095472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a terminal In future wireless communication systems (e.g., NR), a terminal (user terminal, User Equipment (UE)) will be able to use one of multiple panels (multiple beams) for uplink (UL) transmission.
  • UE User Equipment
  • UL uplink
  • SRS Sounding Reference Signal
  • SRI Sounding Reference Signal
  • TPMI Transmit Precoding Matrix Index
  • one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately applies at least one of the SRI field and the TPMI field.
  • a terminal applies dynamic switching between a first scheme using multi-panel simultaneous transmission spatial division multiplexing (SDM) for a non-codebook-based physical downlink shared channel (PUSCH) and a second scheme in which the transmission of the PUSCH is associated with one panel, and has a receiving unit that receives an indication of the second scheme, and a control unit that applies a first sounding reference signal (SRS) resource indicator (SRI) field in downlink control information (DCI).
  • SDM simultaneous transmission spatial division multiplexing
  • PUSCH non-codebook-based physical downlink shared channel
  • DCI downlink control information
  • At least one of the SRI field and the TPMI field can be appropriately applied.
  • FIG. 1 is a diagram illustrating an example of an association between a precoder type and a TPMI index.
  • 2A-2C are diagrams illustrating an example of multiple panel transmission.
  • 3A-3C show another example of multiple panel transmission.
  • 4 is a diagram illustrating the application of the SRS resource set indication field of Rel.
  • FIG. 5 illustrates an example of an SRS resource set indication field applied to dynamic switching between single panel transmission (STRP) and single panel transmission and STxMP SDM methods.
  • 6A and 6B are diagrams showing examples of the size of the first SRI field and the size of the second SRI field in option 1 of the first embodiment.
  • 7A to 7C are diagrams showing examples of the size of the first TPMI field and the size of the second TPMI field in option 1 of the second embodiment.
  • FIG. 8A to 8C are diagrams showing examples of the size of the first TPMI field and the size of the second TPMI field in option 2 of the second embodiment.
  • 9A to 9C are diagrams showing examples of the size of the first SRI field and the size of the second SRI field in option 1 of the third embodiment.
  • 10A to 10C are diagrams showing examples of the size of the first SRI field and the size of the second SRI field in option 2 of the third embodiment.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of a vehicle according to an embodiment.
  • PUSCH precoder In NR, it is considered that a UE will support at least one of Codebook (CB)-based transmission and Non-Codebook (NCB)-based transmission.
  • CB Codebook
  • NCB Non-Codebook
  • the UE will use at least a sounding reference signal (SRS) resource indicator (SRI) for measurement to determine a precoder (precoding matrix) for CB-based and/or NCB-based Physical Uplink Shared Channel (PUSCH) transmissions.
  • SRS sounding reference signal
  • SRI resource indicator
  • precoder precoding matrix
  • the UE may determine a precoder for PUSCH transmission based on the SRI, a transmitted rank indicator (Transmitted Rank Indicator (TRI)), a transmitted precoding matrix indicator (Transmitted Precoding Matrix Indicator (TPMI)), etc.
  • a transmitted rank indicator Transmitted Rank Indicator (TRI)
  • a transmitted precoding matrix indicator Transmitted Precoding Matrix Indicator (TPMI)
  • NCB-based transmission the UE may determine a precoder for PUSCH transmission based on the SRI.
  • the SRI, TRI, TPMI, etc. may be notified to the UE using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or by the parameter "srs-ResourceIndicator” included in the RRC information element "ConfiguredGrantConfig" of the configured grant PUSCH.
  • the TRI and TPMI may be specified by the "Precoding information and number of layers" field of the DCI.
  • the UE may report UE capability information regarding the precoder type, and the base station may set the precoder type based on the UE capability information by higher layer signaling.
  • the UE capability information may be information on the precoder type used by the UE in PUSCH transmission (which may be represented by the RRC parameter "pusch-TransCoherence").
  • the UE may determine the precoder to be used for PUSCH transmission based on precoder type information (which may be represented by the RRC parameter "codebookSubset") included in the PUSCH configuration information (the "PUSCH-Config" information element of the RRC signaling) notified by higher layer signaling.
  • the UE may set a subset of the PMI specified by the TPMI by the codebookSubset.
  • the precoder type may be specified by any one of full coherent, partial coherent, and non-coherent, or a combination of at least two of these (e.g., may be expressed by parameters such as "fullyAndPartialAndNonCoherent” and "partialAndNonCoherent”).
  • Fully coherent may mean that all antenna ports used for transmission are synchronized (may be expressed as being able to align the phase, using the same precoder, etc.). Partially coherent may mean that some of the antenna ports used for transmission are synchronized, but those some ports cannot be synchronized with other ports. Non-coherent may mean that the antenna ports used for transmission cannot be synchronized.
  • a UE that supports a fully coherent precoder type may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports a partially coherent precoder type may be assumed to support a non-coherent precoder type.
  • the precoder type may be interpreted as coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, etc.
  • the UE may determine, from multiple precoders (which may also be called precoding matrices, codebooks, etc.) for CB-based transmission, a precoding matrix corresponding to a TPMI index obtained from a DCI (e.g., DCI format 0_1; same below) that schedules an UL transmission.
  • precoders which may also be called precoding matrices, codebooks, etc.
  • Figure 1 shows an example of the association between precoder types and TPMI indexes.
  • Figure 1 corresponds to a table of precoding matrix W for single-layer (rank 1) transmission using four antenna ports in DFT-s-OFDM (Discrete Fourier Transform spread OFDM, where transform precoding is enabled).
  • W Discrete Fourier Transform spread OFDM
  • the UE is notified of a TPMI of 0 to 27 for single layer transmission. Also, if the precoder type is partial and noncoherent (partialAndNonCoherent), the UE is set with a TPMI of 0 to 11 for single layer transmission. If the precoder type is noncoherent (nonCoherent), the UE is set with a TPMI of 0 to 3 for single layer transmission.
  • a precoding matrix in which only one component in each column is not zero may be called a noncoherent codebook.
  • a precoding matrix in which a predetermined number (not all) of components in each column are not zero may be called a partially coherent codebook.
  • a precoding matrix in which all components in each column are not zero may be called a fully coherent codebook.
  • Noncoherent and partially coherent codebooks may be referred to as antenna selection precoders.
  • Fully coherent codebooks may be referred to as non-antenna selection precoders.
  • a codebook precoding matrix
  • RRC parameter "codebookSubset” “fullyAndPartialAndNonCoherent”
  • the UE may receive information (SRS configuration information, for example, parameters in the RRC control element "SRS-Config") used to transmit a measurement reference signal (for example, a Sounding Reference Signal (SRS)).
  • SRS configuration information for example, parameters in the RRC control element "SRS-Config"
  • SRS-Config parameters in the RRC control element "SRS-Config”
  • SRS-Config Sounding Reference Signal
  • the UE may receive at least one of information regarding one or more SRS resource sets (SRS resource set information, e.g., the RRC control element "SRS-ResourceSet”) and information regarding one or more SRS resources (SRS resource information, e.g., the RRC control element "SRS-Resource”).
  • SRS resource set information e.g., the RRC control element "SRS-ResourceSet
  • SRS resource information e.g., the RRC control element "SRS-Resource”
  • An SRS resource set may relate to (group together) a number of SRS resources.
  • Each SRS resource may be identified by an SRS Resource Indicator (SRI) or SRS Resource Identifier (ID).
  • SRI SRS Resource Indicator
  • ID SRS Resource Identifier
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • the SRS resource type may indicate any of periodic SRS (P-SRS), semi-persistent SRS (SP-SRS), and aperiodic SRS (A-SRS, AP-SRS).
  • P-SRS periodic SRS
  • SP-SRS semi-persistent SRS
  • A-SRS aperiodic SRS
  • AP-SRS aperiodic SRS
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation) and transmit A-SRS based on an SRS request in the DCI.
  • RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse" may be, for example, beam management, codebook-based transmission (codebook: CB), non-codebook-based transmission (nonCodebook: NCB), antenna switching, etc.
  • the SRS for codebook-based transmission or non-codebook-based transmission may be used to determine a precoder for codebook-based or non-codebook-based PUSCH transmission based on the SRI.
  • the UE may determine a precoder for PUSCH transmission based on the SRI, a Transmitted Rank Indicator (TRI), and a Transmitted Precoding Matrix Indicator (TPMI).
  • the UE may determine a precoder for PUSCH transmission based on the SRI.
  • the SRS resource information may include an SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmit comb, SRS resource mapping (e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, spatial relationship information of SRS, etc.
  • SRS resource ID SRS-ResourceId
  • SRS port number SRS port number
  • SRS port number SRS port number
  • transmit comb e.g., transmit comb
  • SRS resource mapping e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.
  • SRS resource mapping e.g., time and/or frequency resource position, resource offset, resource period, number of repetitions, number of SRS symbols, SRS bandwidth, etc.
  • the spatial relationship information of the SRS may indicate spatial relationship information between a specific reference signal and the SRS.
  • the specific reference signal may be at least one of a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Channel State Information Reference Signal (CSI-RS), and an SRS (e.g., another SRS).
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • CSI-RS Channel State Information Reference Signal
  • SRS e.g., another SRS.
  • the SS/PBCH block may be referred to as a Synchronization Signal Block (SSB).
  • SSB Synchronization Signal Block
  • the spatial relationship information of the SRS may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the above-mentioned specified reference signal.
  • the SSB index, SSB resource ID, and SSBRI may be read as interchangeable.
  • the CSI-RS index, CSI-RS resource ID, and CRI may be read as interchangeable.
  • the SRS index, SRS resource ID, and SRI may be read as interchangeable.
  • the spatial relationship information of the SRS may include a serving cell index, a BWP index (BWP ID), etc., corresponding to the above-mentioned specified reference signal.
  • BC may be, for example, the ability of a node (e.g., a base station or a UE) to determine the beam to be used for transmitting a signal (transmitting beam, Tx beam) based on the beam to be used for receiving the signal (receiving beam, Rx beam).
  • a node e.g., a base station or a UE
  • BC may also be called transmit/receive beam correspondence (Tx/Rx beam correspondence), beam reciprocity, beam calibration, calibrated/non-calibrated, reciprocity calibrated/non-calibrated, degree of correspondence, degree of agreement, etc.
  • the UE may transmit uplink signals (e.g., PUSCH, PUCCH, SRS, etc.) using the same beam (spatial domain transmit filter) as the SRS (or SRS resource) instructed by the base station based on the measurement results of one or more SRSs (or SRS resources).
  • uplink signals e.g., PUSCH, PUCCH, SRS, etc.
  • the same beam spatial domain transmit filter
  • the UE may transmit uplink signals (e.g., PUSCH, PUCCH, SRS, etc.) using a beam (spatial domain transmit filter) that is the same as or corresponds to the beam (spatial domain receive filter) used to receive a specified SSB or CSI-RS (or CSI-RS resource).
  • a beam spatial domain transmit filter
  • CSI-RS CSI-RS resource
  • the UE may transmit the SRS resource using the same spatial domain filter (spatial domain transmit filter) as the spatial domain filter (spatial domain receive filter) for receiving the SSB or CSI-RS.
  • the UE may assume that the UE receive beam for the SSB or CSI-RS and the UE transmit beam for the SRS are the same.
  • the UE may transmit the target SRS resource using the same spatial domain filter (spatial domain transmission filter) as the spatial domain filter (spatial domain transmission filter) for transmitting the reference SRS.
  • the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
  • the UE may determine the spatial relationship of the PUSCH scheduled by the DCI (e.g., DCI format 0_1) based on the value of a specific field (e.g., an SRS resource identifier (SRI) field) in the DCI. Specifically, the UE may use spatial relationship information of the SRS resource (e.g., the RRC information element "spatialRelationInfo") determined based on the value of the specific field (e.g., SRI) for PUSCH transmission.
  • a specific field e.g., an SRS resource identifier (SRI) field
  • two SRS resources may be configured by the RRC for the UE, and one of the two SRS resources may be indicated by a DCI (a 1-bit specified field).
  • DCI a 1-bit specified field
  • four SRS resources may be configured by the RRC for the UE, and one of the four SRS resources may be indicated by a DCI (a 2-bit specified field).
  • RRC reconfiguration is required.
  • the DL-RS can be configured for the spatial relationship of the SRS resources used for the PUSCH.
  • the UE can have the spatial relationship of multiple (e.g., up to 16) SRS resources configured by the RRC, and one of the multiple SRS resources can be instructed by the MAC CE.
  • reception by one TRP with multiple panels (Fig. 2B) or reception by two TRPs with ideal backhaul (Fig. 2C) is considered.
  • a single PDCCH for scheduling multiple PUSCHs (e.g. simultaneous transmission of PUSCH#1 and PUSCH#2) is considered.
  • Panel-specific transmission is considered to be supported and a panel ID is introduced.
  • the base station may use the UL TCI or panel ID to configure or indicate panel-specific transmissions for UL transmissions.
  • the UL TCI (UL TCI state) may be based on signaling similar to the DL beam indication supported in Rel. 15.
  • the panel ID may be implicitly or explicitly applied to the transmission of at least one of the target RS resource or target RS resource set, PUCCH, SRS, and PRACH. If the panel ID is explicitly signaled, the panel ID may be configured in at least one of the target RS, target channel, and reference RS (e.g., DL RS resource configuration or spatial relationship information).
  • the multi-panel UL transmission scheme or the candidate multi-panel UL transmission scheme may be at least one of the following schemes 1 to 3 (multi-panel UL transmission schemes 1 to 3). Only one of schemes 1 to 3 may be supported. A plurality of schemes including at least one of schemes 1 to 3 may be supported, and one of the plurality of schemes may be configured in the UE.
  • Method 1 Scheme 1 is a coherent multi-panel UL transmission.
  • SRI SRS Resource Indicator
  • the UE maps one codeword (CW) or one transport block (TB) to L layers (PUSCH (1, 2, ..., L)) and transmits L layers from each of the two panels.
  • Panel #1 and panel #2 are coherent.
  • Scheme 1 can obtain diversity gain.
  • the total number of layers in the two panels is 2L. If the maximum total number of layers is 4, the maximum number of layers in one panel is 2.
  • Method 2 Scheme 2 is a non-coherent multi-panel UL transmission of one codeword (CW) or transport block (TB).
  • Multiple panels may not be synchronized. Different layers are mapped to different panels and one CW or TB for PUSCH from multiple panels. A layer corresponding to one CW or TB may be mapped to multiple panels.
  • the method may use up to 4 layers or up to 8 layers for UL. If up to 8 layers are supported, the method may support one CW or TB using up to 8 layers.
  • the UE maps 1 CW or 1 TB to k layers (PUSCH(1, 2, ..., k)) and L-k layers (PUSCH(k+1, k+2, ..., L)), transmits k layers from panel #1, and transmits L-k layers from panel #2.
  • Scheme 2 can obtain gains through multiplexing and diversity. The total number of layers in the two panels is L.
  • Method 3 is a non-coherent multi-panel UL transmission of two CWs or TBs.
  • Multiple panels may not be synchronized. Different layers are mapped to different panels and two CWs or TBs for PUSCH from multiple panels. Layers corresponding to one CW or TB may be mapped to one panel. Layers corresponding to multiple CWs or TBs may be mapped to different panels.
  • the method may use up to 4 layers or up to 8 layers for the UL. When up to 8 layers are supported, the method may support up to 4 layers per CW or TB.
  • the UE maps CW#1 or TB#1 to k layers (PUSCH (1, 2, ..., k)), maps CW#2 or TB#2 to L-k layers (PUSCH (k+1, k+2, ..., L)), transmits k layers from panel #1, and transmits L-k layers from panel #2.
  • Method 3 can obtain gains through multiplexing and diversity. The total number of layers in the two panels is L.
  • SDM Spatial Division Multiplexing
  • the UE precodes different layers/DMRS ports of one PUSCH separately and transmits simultaneously from two different UE panels using one codeword (CW).
  • CW codeword
  • STRP transmission means that PUSCH transmission is associated with one panel/TRP/SRS resource set.
  • TDM MTRP PUSCH of Rel. 17 In Rel. 17, different PUSCH repetitions are associated with different beams/TRP/SRS resource sets.
  • a terminal can use one of multiple panels (multiple beams) for UL transmission.
  • control when simultaneous transmission using multiple panels is supported has not been fully considered.
  • SDM simultaneous transmission spatial division multiplexing
  • a second scheme in which PUSCH transmission is associated with one panel is applied, the application method of at least one of the SRI field and the TPMI field has not been fully considered. If this is not clarified, there is a risk of degradation in system performance, such as a decrease in throughput.
  • the size of the TPMI field depends on the number of antenna ports, the maximum rank, and full power mode. Therefore, it is preferable to consider the size of the SRI field and TPMI field, taking into account that the maximum ranks of the first panel of STxMP SDM, the second panel of STxMP SDM, the first panel of sTRP, and the second panel of sTRP are different, and that the number of SRS resources of the first panel and the second panel are different.
  • the inventors therefore came up with the idea of a terminal that appropriately applies at least one of the SRI field and the TPMI field.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • TRP
  • Multi-panel simultaneous transmission may mean multiple UL transmissions being performed simultaneously from multiple panels.
  • Simultaneous may mean that at least a portion of multiple UL transmissions overlap in time.
  • supporting and setting/instructing may be interchangeable.
  • transmission power and output power may be interchangeable.
  • a decision by a UE and setting/instruction by a network may be interchangeable.
  • panel, panel ID, TRP, UE capability value index, TCI state, SRI, SRS resource set, SRS resource set ID, CORESET pool index, layer group, antenna port group, beam, and TCI state may be interpreted as interchangeable.
  • the overlap of two PUSCHs (PUSCH transmissions) may mean that at least a portion of the two PUSCHs (PUSCH transmissions) overlap in time.
  • the setting of simultaneous multi-panel transmission may mean that multiple DCIs associated with different CoresetPoolIndexes schedule different PUSCHs. Multiple PUSCHs associated with different CoresetPoolIndexes/panels, and multiple PUSCHs scheduled by multiple DCIs associated with different CoresetPoolIndexes/panels may be interpreted as interchangeable. Receiving the setting of simultaneous multi-panel transmission using multiple DCIs and setting simultaneous multi-panel transmission may be interpreted as interchangeable.
  • panel/TRP may refer to SRS resource set, layer group, antenna port group, UE capability value set, beam, TCI state.
  • the first/second SRS resource set may correspond to the SRS resource set with low/high ID.
  • STRP transmission means that a PUSCH transmission is associated with one panel/TRP/SRS resource set.
  • STxMP SDM STxMP SDM method
  • the STxMP SDM associated with the first panel is denoted as STxMP_P1.
  • the STxMP SDM associated with the second panel is denoted as STxMP_P2.
  • the STRP associated with the first panel is denoted as SP_P1.
  • the STRP associated with the second panel is denoted as SP_P2.
  • ⁇ Dynamic switching between STxMP SDM method and STRP transmission In dynamic switching between the STxMP SDM method and STRP transmission, when STxMP SDM is dynamically instructed, at least one of the following (1) and (2) is assumed.
  • a first SRI field is associated with a first panel/TRP/SRS resource set
  • a second SRI field is associated with a second panel/TRP/SRS resource set.
  • the first TPMI field is associated with a first panel/TRP/SRS resource set
  • the second TPMI field is associated with a second panel/TRP/SRS resource set.
  • a specific field in the DCI may be used to indicate dynamic switching between STRP and STxMP. For example, at least one of the following (1) and (2) may be applied.
  • Dynamic switching may be indicated to the UE using an SRS resource set indication field. This may be similar to the SRS resource set indication field in the TDM MTRP PUSCH of Rel. 17 shown in FIG. 4. Also, any of the following examples 1 to 4 may be applied.
  • STxMP(first SRS resource set, second SRS resource set in order) means that the first X layers are associated with the first SRS resource set and the remaining layers are associated with the second SRS resource set.
  • STxMP(second SRS resource set, first SRS resource set in order) means that the first X layers are associated with the second SRS resource set and the remaining layers are associated with the first SRS resource set.
  • Example 1 When the SRS resource set indication field is 0, it indicates STRP (first SRS resource set only). When the SRS resource set indication field is 1, it indicates STRP (second SRS resource set only). When the SRS resource set indication field is 2, it indicates STxMP (first SRS resource set, second SRS resource set in that order). When the SRS resource set indication field is 3, it indicates STxMP (second SRS resource set, first SRS resource set in that order).
  • STRP or STxMP may be indicated depending on the number of joint TCI states/UL TCI states indicated. For example, when two joint TCI states/UL TCI states are indicated, STxMP is indicated, and when one joint TCI state/UL TCI state is indicated, STRP is indicated.
  • Figure 5 is a diagram showing an example of an SRS resource set indication field applied to dynamic switching between the single panel transmission method (STRP) and the STxMP SDM method.
  • the example in Figure 5 corresponds to examples 1 and 2 above.
  • the example in Figure 5 is applied to the SRS resource set indication field, and when the dynamic switching is not configured, the example in Figure 4 (existing method) may be applied.
  • the UE may apply the first SRI field when an STRP transmission associated with the first/second panel/TRP/SRS resource set is indicated.
  • Size of the first SRI field The size of the first SRI field may be dynamically changed between size #P1 and size #P2 depending on the transmission method applied.
  • the size of the first SRI field is size #P1 (FIG. 6A).
  • the size of the first SRI field is size #P1 (FIG. 6A).
  • the size of the first SRI field is size #P2 (FIG. 6B).
  • the size of the first SRI field may be the maximum value of size #P1 and size #P2.
  • Size #P1 and size #P2 may be set by higher layer signaling. Size #P1 and size #P2 may be set based on the number of SRS resources for each SRS resource set.
  • Size of the second SRI field When the size of the first SRI field changes dynamically, the size of the second SRI field changes dynamically between size #P2 and size #X. When simultaneous multi-panel transmission/SP_P1/SP_P2 is indicated, each SRI field size is changed so that the sum of the size of the first SRI field and the size of the second SRI field does not change.
  • the size of the second SRI field will be size #P2 ( Figure 6A).
  • the size of the second SRI field will be size #P2 ( Figure 6A).
  • the size of the first SRI field is the maximum of size #P1 and size #P2, the size of the second SRI field will be size #P2.
  • Size #P1 is the size of the SRI field determined assuming the number of SRS resources associated with the first panel/first TRP/first SRS resource set.
  • Size #P2 is the size of the SRI field determined assuming the number of SRS resources associated with the second panel/second TRP/second SRS resource set.
  • the UE applies the first SRI field. If an STRP transmission associated with a second panel/TRP/SRS resource set is indicated, the UE applies the second SRI field.
  • the size of the first SRI field is determined based on the number of SRS resources associated with the first panel/TRP/SRS resource set.
  • the size of the second SRI field is determined based on the number of SRS resources associated with the second panel/TRP/SRS resource set.
  • the size of the first SRI field is determined based on the number of SRS resources associated with the first panel/TRP/SRS resource set.
  • the size of the second SRI field is determined based on the number of SRS resources associated with the second panel/TRP/SRS resource set.
  • the UE may apply the first SRI field.
  • the UE may apply the second SRI field.
  • the UE may apply the first SRI field.
  • the UE may expect (assume) that the size of the first SRI field is larger than the size of the second SRI field.
  • the UE may interpret the first/second SRI fields as one combined field. For example, any of the following examples (1) to (6) may be applied.
  • the first SRI field is the Most Significant Bit (MSB), and the second SRI field is the Least Significant Bit (LSB).
  • the second SRI field is the MSB and the first SRI field is the LSB.
  • the first/last X bits of the first SRI field are the MSBs and the second SRI field are the LSBs.
  • the first/last X bits of the second SRI field are the MSBs and the first SRI field are the LSBs.
  • Let the second SRI field be the MSB and the first/last X bits of the first SRI field be the LSB.
  • the above-mentioned combined field may be used for the first panel. If an STRP transmission associated with a second panel/TRP/SRS resource set is indicated, the above-mentioned combined field may be used for the second panel.
  • the size of the first SRI field is determined based on the number of SRS resources associated with the first panel/TRP/SRS resource set.
  • the size of the second SRI field is determined based on the number of SRS resources associated with the second panel/TRP/SRS resource set.
  • the UE may expect the number of SRS resources associated with the first SRS resource set/panel/TRP to be greater than or equal to the number of SRS resources associated with the second SRS resource set/panel/TRP. Or, the UE may expect the number of SRS resources associated with the first SRS resource set/panel/TRP to be the same as the number of SRS resources associated with the second SRS resource set/panel/TRP.
  • the first/second SRI fields can be appropriately used.
  • Second Embodiment For a codebook (CB)-based PUSH, when dynamic switching between a multi-panel simultaneous transmission SDM scheme (first scheme) and STRP transmission (second scheme in which the PUSH transmission is associated with one panel/TRP/SRS resource set) is applied (when a configuration for such switching is received) and STRP transmission (second scheme) is dynamically indicated (when an indication indicating STRP (second scheme) is received), at least one of the following options may be applied:
  • the UE may apply the first TPMI field when STRP transmission (second scheme) associated with the first/second panel/TRP/SRS resource set is indicated.
  • Size of the first TPMI field The size of the first TPMI field may be dynamically changed among size #STxMP_P1, size #SP_P1, and size #SP_P2 depending on the transmission method applied.
  • the size of the first TPMI field is size #STxMP_P1 (FIG. 7A).
  • the size of the first TPMI field is size #SP_P1 (FIG. 7B).
  • the size of the first TPMI field is size #SP_P2 (FIG. 7C).
  • the size of the first TPMI field may be the maximum value of size #STxMP_P1, size #SP_P1, and size #SP_P2.
  • Size #STxMP_P1, size #SP_P1, and size #SP_P2 may be set by higher layer signaling. Size #STxMP_P1, size #SP_P1, and size #SP_P2 may be set based on the number of SRS resources for each SRS resource set.
  • the size of the second TPMI field changes dynamically between size #STxMP_P2, size #X, and size #Y.
  • each TPMI field size is changed so that the sum of the size of the first TPMI field and the size of the second TPMI field does not change.
  • the size of the second TPMI field is size #STxMP_P2 ( Figure 7A).
  • the size of the second TPMI field is size #X ( Figure 7B).
  • size #STxMP_P1 + size #STxMP_P2 size #SP_P1 + size #X.
  • the size of the second TPMI field will be size #STxMP_P2.
  • Size #STxMP_P1 is the size of the TPMI field determined assuming the number of antenna ports/maximum rank/full power modes associated with STxMP_P1.
  • Size #STxMP_P2 is the size of the TPMI field determined assuming the number of antenna ports/maximum rank/full power modes associated with STxMP_P2.
  • Size #SP_P1 is the size of the TPMI field determined assuming the number of antenna ports/maximum rank/full power modes associated with SP_P1.
  • Size #SP_P2 is the size of the TPMI field determined assuming the number of antenna ports/maximum rank/full power modes associated with SP_P2.
  • the UE applies the first TPMI field. If an STRP transmission related to a second panel/TRP/SRS resource set is instructed, the UE applies the second TPMI field.
  • Size of the first TPMI field The size of the first TPMI field may be dynamically changed among sizes #STxMP_P1, #SP_P1, and #X depending on the transmission method applied.
  • STxMP/SP_P1/SP_P2 When STxMP/SP_P1/SP_P2 is indicated, each TPMI field size is changed so that the sum of the size of the first TPMI field and the size of the second TPMI field does not change.
  • the size of the first TPMI field is size #STxMP_P1 ( Figure 8A).
  • the size of the first TPMI field is size #SP_P1 ( Figure 8B).
  • the size of the first TPMI field may be the maximum value of size #STxMP_P1 and size #SP_P1.
  • the size of the second TPMI field changes dynamically between size #STxMP_P2, size #SP_P2, and size #Y.
  • STxMP/SP_P1/SP_P2 are indicated, each TPMI field size is changed so that the sum of the size of the first TPMI field and the size of the second TPMI field does not change.
  • the size of the second TPMI field is size #STxMP_P2 ( Figure 8A).
  • the size of the second TPMI field is size #Y ( Figure 8B).
  • size #STxMP_P1 + size #STxMP_P2 size #SP_P1 + size #Y.
  • the size of the second TPMI field is size #SP_P2 ( Figure 8C).
  • the size of the first TPMI field is the maximum value of size #STxMP_P1 and size #SP_P1
  • the size of the second TPMI field is the maximum value of size #STxMP_P2 and size #SP_P2.
  • size #STxMP_P1, size #STxMP_P2, size #SP_P1, and size #SP_P2 are the same as in option 1.
  • the UE may interpret the first/second TPMI fields as one combined field. For example, any of the following examples (1) to (6) may be applied.
  • the first TPMI field is the Most Significant Bit (MSB), and the second TPMI field is the Least Significant Bit (LSB).
  • the second TPMI field is the MSB and the first TPMI field is the LSB.
  • the first/last X bits of the first TPMI field are the MSBs and the second TPMI field are the LSBs.
  • the first/last X bits of the second TPMI field are the MSBs and the first TPMI field are the LSBs.
  • the above-mentioned combined field may be used for the first panel. If an STRP transmission associated with a second panel/TRP/SRS resource set is indicated, the above-mentioned combined field may be used for the second panel.
  • the size of the first TPMI field is determined assuming the number of antenna ports/maximum rank/full power modes associated with STxMP_P1.
  • the size of the second TPMI field is determined assuming the number of antenna ports/maximum rank/full power modes associated with STxMP_P2.
  • the UE may expect (assume) at least one of the following (1) to (3).
  • Size #STxMP_P1, size #STxMP_P2, size #SP_P1, and size #SP_P2 are the same as in option 1.
  • the UE expects the number of antenna ports/maximum rank/full power modes associated with STxMP_P1 to be the same as those for SP_P1.
  • the UE expects the number of antenna ports/maximum rank/full power modes associated with STxMP_P2 to be the same as those for SP_P2.
  • the UE expects the number of antenna ports/maximum rank/full power modes associated with SP_P1 to be the same as those for SP_P2.
  • the UE expects the number of antenna ports/maximum rank/full power modes associated with SP_P1 to be greater than or equal to those for SP_P2.
  • size #STxMP_P1, size #STxMP_P2, size #SP_P1, and size #SP_P2 may be the same as in option 1.
  • the first/second TPMI fields can be used appropriately.
  • NTB non-codebook
  • first scheme multi-panel simultaneous transmission SDM scheme
  • STRP transmission second scheme in which PUSH transmission is associated with one panel/TRP/SRS resource set
  • second scheme dynamically indicated (when an indication indicating STRP (second scheme) is received)
  • at least one of the following options may be applied:
  • the UE may apply the first SRI field when STRP transmission (second scheme) associated with the first/second panel/TRP/SRS resource set is indicated.
  • Size of the first SRI field The size of the first SRI field may be dynamically changed among size #STxMP_P1, size #SP_P1, and size #SP_P2 depending on the transmission method applied.
  • the size of the first SRI field is size #STxMP_P1 (FIG. 9A).
  • the size of the first SRI field is size #SP_P1 (FIG. 9B).
  • the size of the first SRI field is size #SP_P2 (FIG. 9C).
  • the size of the first SRI field may be the maximum value of size #STxMP_P1, size #SP_P1, and size #SP_P2.
  • Size #STxMP_P1, size #SP_P1, and size #SP_P2 may be set by higher layer signaling. Size #STxMP_P1, size #SP_P1, and size #SP_P2 may be set based on the number of SRS resources for each SRS resource set.
  • Size of the second SRI field When the size of the first SRI field changes dynamically, the size of the second SRI field changes dynamically between size #STxMP_P2, size #X, and size #Y. When simultaneous multi-panel transmission/SP_P1/SP_P2 is indicated, each SRI field size is changed so that the sum of the size of the first SRI field and the size of the second SRI field does not change.
  • the size of the second SRI field is size #STxMP_P2 ( Figure 9A).
  • the size of the second SRI field is size #X ( Figure 9B).
  • size #STxMP_P1 + size #STxMP_P2 size #SP_P1 + size #X.
  • the size of the first SRI field is the maximum value of size #STxMP_P1, size #SP_P1, and size #SP_P2, the size of the second SRI field will be size #STxMP_P2.
  • Size #STxMP_P1 is the size of the SRI field determined assuming the number of SRS resources/max rank associated with STxMP_P1.
  • Size #STxMP_P2 is the size of the SRI field determined assuming the number of SRS resources/max rank associated with STxMP_P2.
  • Size #SP_P1 is the size of the SRI field determined assuming the number of SRS resources/max rank associated with SP_P1.
  • Size #SP_P2 is the size of the SRI field determined assuming the number of SRS resources/max rank associated with SP_P2.
  • the UE applies the first SRI field. If an STRP transmission associated with a second panel/TRP/SRS resource set is indicated, the UE applies the second SRI field.
  • Size of the first SRI field The size of the first SRI field may be dynamically changed among sizes #STxMP_P1, #SP_P1, and #X depending on the transmission scheme applied. When STxMP/SP_P1/SP_P2 are indicated, each SRI field size is changed so that the sum of the size of the first SRI field and the size of the second SRI field does not change.
  • the size of the first SRI field is size #STxMP_P1 ( Figure 10A).
  • the size of the first SRI field is size #SP_P1 ( Figure 10B).
  • the size of the first SRI field may be the maximum of size #STxMP_P1 and size #SP_P1.
  • Size of the second SRI field When the size of the first SRI field changes dynamically, the size of the second SRI field changes dynamically between size #STxMP_P2, size #SP_P2, and size #Y. When STxMP/SP_P1/SP_P2 are indicated, each SRI field size is changed so that the sum of the size of the first SRI field and the size of the second SRI field does not change.
  • the size of the second SRI field is size #STxMP_P2 ( Figure 10A).
  • the size of the second SRI field is size #Y ( Figure 10B).
  • size #STxMP_P1 + size #STxMP_P2 size #SP_P1 + size #Y.
  • the size of the second SRI field is size #SP_P2 ( Figure 10C).
  • the size of the first SRI field is the maximum value of size #STxMP_P1 and size #SP_P1
  • the size of the second SRI field is the maximum value of size #STxMP_P2 and size #SP_P2.
  • size #STxMP_P1, size #STxMP_P2, size #SP_P1, and size #SP_P2 are the same as in option 1.
  • the UE may interpret the first/second SRI fields as one combined field. For example, any of the following examples (1) to (6) may be applied.
  • the first SRI field is the Most Significant Bit (MSB), and the second SRI field is the Least Significant Bit (LSB).
  • the second SRI field is the MSB and the first SRI field is the LSB.
  • the first/last X bits of the first SRI field are the MSBs and the second SRI field are the LSBs.
  • the first/last X bits of the second SRI field are the MSBs and the first SRI field are the LSBs.
  • Let the second SRI field be the MSB and the first/last X bits of the first SRI field be the LSB.
  • the size of the first SRI field is determined assuming the number of SRS resources/maximum rank associated with STxMP_P1.
  • the size of the second SRI field is determined assuming the number of SRS resources/maximum rank associated with STxMP_P2.
  • the UE may expect (assume) at least one of the following (1) to (3).
  • Size #STxMP_P1, size #STxMP_P2, size #SP_P1, and size #SP_P2 are the same as in option 1.
  • the UE may expect the number of SRS resources associated with the first SRS resource set/panel/TRP to be greater than or equal to the number of SRS resources associated with the second SRS resource set/panel/TRP. Or, the UE may expect the number of SRS resources associated with the first SRS resource set/panel/TRP to be the same as the number of SRS resources associated with the second SRS resource set/panel/TRP.
  • At least one of the following (1) to (10) may be applied to the maximum rank constraints related to STxMP_P1, STxMP_P2, SP_P1, and SP_P2.
  • the UE expects the number of maximum ranks associated with STxMP_P1 to be the same as those for SP_P1.
  • the UE expects the number of maximum ranks associated with STxMP_P2 to be the same as those for SP_P2.
  • the UE expects the number of maximum ranks associated with SP_P1 to be the same as those associated with SP_P2.
  • the UE expects the numbers of maximum ranks associated with SP_P1 to be greater than or equal to those for SP_P2.
  • the UE expects the number of maximum ranks associated with STxMP_P1 to be the same as those for STxMP_P2.
  • the UE expects the numbers of maximum ranks associated with STxMP_P1 to be greater than or equal to those for STxMP_P2.
  • size #STxMP_P1, size #STxMP_P2, size #SP_P1, and size #SP_P2 may be the same as in option 1.
  • the first/second SRI fields can be appropriately used.
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - Supporting specific processing/operations/control/information for at least one of the above embodiments.
  • Supports the SDM method Supporting SDM method for CB-based PUSCH.
  • CB-based PUSCH different numbers of SRS resources associated with the first or second panel/TRP/SRS resource set are supported.
  • For NCB based PUSCH supporting different numbers of SRS resources associated with the first or second panel/TRP/SRS resource set. Supporting different maximum ranks associated with STxMP_P1, STxMP_P2, SP_P1, and SP_P2 in NCB-based PUSCH. Values of X and Y in each embodiment.
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information regarding dynamic switching between the multi-panel simultaneous transmission SDM method and STRP transmission for CB or NCB-based PUSCH, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • SRS sounding reference signal
  • SRI resource indicator
  • TPMI transmit precoding matrix index
  • control unit 4 when the second method is indicated, combines the first SRI field and the second SRI field into one field and interprets it; When the second method is instructed, the control unit combines the first TPMI field and the second TPMI field into one field and interprets it.
  • a receiver that receives an indication of a first scheme using multi-panel simultaneous transmission spatial division multiplexing (SDM) for a non-codebook-based physical downlink shared channel (PUSCH) and a second scheme in which a transmission of the PUSCH is associated with one panel, the first scheme being dynamically switched between the first scheme and the second scheme;
  • a control unit for applying a first sounding reference signal (SRS) resource indicator (SRI) field in downlink control information (DCI);
  • SRS sounding reference signal
  • SRI resource indicator
  • DCI downlink control information
  • each SRI field size is changed such that a sum of a size of the first SRI field and a size of the second SRI field remains unchanged.
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 12 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140.
  • the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver unit 120 may dynamically switch between a first scheme using multi-panel simultaneous transmission spatial division multiplexing (SDM) for a codebook-based or non-codebook-based physical downlink shared channel (PUSCH) and a second scheme in which the transmission of the PUSCH is associated with one panel, and transmit an indication indicating the second scheme.
  • SDM simultaneous transmission spatial division multiplexing
  • PUSCH codebook-based or non-codebook-based physical downlink shared channel
  • the control unit 110 may apply at least one of a first sounding reference signal (SRS) resource indicator (SRI) field and a first transmit precoding matrix index (TPMI) field in the downlink control information (DCI).
  • SRS sounding reference signal
  • SRI resource indicator
  • TPMI transmit precoding matrix index
  • the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver unit 220 may dynamically switch between a first scheme using multi-panel simultaneous transmission spatial division multiplexing (SDM) for a non-codebook-based or codebook-based physical downlink shared channel (PUSCH) and a second scheme in which the transmission of the PUSCH is associated with one panel, and may receive an indication indicating the second scheme.
  • SDM simultaneous transmission spatial division multiplexing
  • PUSCH non-codebook-based or codebook-based physical downlink shared channel
  • the control unit 210 may apply at least one of a first sounding reference signal (SRS) resource indicator (SRI) field and a first transmit precoding matrix index (TPMI) field in the downlink control information (DCI).
  • SRS sounding reference signal
  • SRI resource indicator
  • TPMI transmit precoding matrix index
  • the size of the first SRI field and the size of the first TPMI field may be dynamically changed depending on the transmission method applied.
  • Each SRI field size may be changed so that the sum of the size of the first SRI field and the size of the second SRI field does not change
  • each TPMI field size may be changed so that the sum of the size of the first TPMI field and the size of the second TPMI field does not change.
  • control unit 210 may combine and interpret the first SRI field and the second SRI field as a single field, and when the second method is instructed, the control unit 210 may combine and interpret the first TPMI field and the second TPMI field as a single field.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 15 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
  • the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases also be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、ノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信する受信部と、下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドを適用する制御部と、を有することを特徴とする。本開示の一態様によれば、SRIフィールドおよびTPMIフィールドの少なくとも一方を適切に適用することができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、端末(ユーザ端末(user terminal)、User Equipment(UE))は、複数パネル(複数ビーム)の1つを上りリンク(UL)送信に用いることができる。しかしながら、複数パネルを用いる同時送信がサポートされる場合の制御については、十分に検討されていない。
 例えば、コードブックベースまたはノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用される場合の、サウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドおよび送信プリコーディング行列指標(TPMI)フィールドの少なくとも一方の適用方法について十分に検討されていない。これが明確にならなければ、スループットの低下など、システム性能が低下するおそれがある。
 そこで、本開示は、SRIフィールドおよびTPMIフィールドの少なくとも一方を適切に適用する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、ノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信する受信部と、下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドを適用する制御部と、を有する。
 本開示の一態様によれば、SRIフィールドおよびTPMIフィールドの少なくとも一方を適切に適用することができる。
図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。 図2A~図2Cは、複数パネル送信の例を示す図である。 図3A~図3Cは、複数パネル送信の別の例を示す図である。 図4は、Rel.17のSRSリソースセット指示フィールドの適用を示す図である。 図5は、シングルパネル送信(STRP)と シングルパネル送信とSTxMP SDM方式の間の動的な切り替えに適用されるSRSリソースセット指示フィールドの例を示す図である。 図6A、図6Bは、第1の実施形態のオプション1における第1のSRIフィールドのサイズおよび第2のSRIフィールドのサイズの例を示す図である。 図7A~図7Cは、第2の実施形態のオプション1における第1のTPMIフィールドのサイズおよび第2のTPMIフィールドのサイズの例を示す図である。 図8A~図8Cは、第2の実施形態のオプション2における第1のTPMIフィールドのサイズおよび第2のTPMIフィールドのサイズの例を示す図である。 図9A~図9Cは、第3の実施形態のオプション1における第1のSRIフィールドのサイズおよび第2のSRIフィールドのサイズの例を示す図である。 図10A~図10Cは、第3の実施形態のオプション2における第1のSRIフィールドのサイズおよび第2のSRIフィールドのサイズの例を示す図である。 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図12は、一実施形態に係る基地局の構成の一例を示す図である。 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図15は、一実施形態に係る車両の一例を示す図である。
(PUSCHプリコーダ)
 NRでは、UEがコードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートすることが検討されている。
 例えば、UEは少なくとも測定用参照信号(Sounding Reference Signal(SRS))リソースインジケータ(SRS Resource Indicator(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。
 UEは、CBベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRI、TRI、TPMIなどは、下り制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、適用するプリコーダが同じである、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
 プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCI(例えば、DCIフォーマット0_1。以下同様)から得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。
 図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。図1は、DFT-s-OFDM(Discrete Fourier Transform spread OFDM、変換プリコーディング(transform precoding)が有効である)で4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルに該当する。
 図1において、プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。
 なお、図1に示すように、各列の成分がそれぞれ1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。各列の成分がそれぞれ所定の数(全てではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。各列の成分が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。
 ノンコヒーレントコードブック及び部分コヒーレントコードブックは、アンテナ選択プリコーダ(antenna selection precoder)と呼ばれてもよい。完全コヒーレントコードブックは、非アンテナ選択プリコーダ(non-antenna selection precoder)と呼ばれてもよい。
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。
(SRS、PUSCHのための空間関係)
 UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
 具体的には、UEは、一つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも一つを受信してもよい。
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS、AP-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブックベース送信(codebook:CB)、ノンコードブックベース送信(nonCodebook:NCB)、アンテナスイッチング(antennaSwitching)などであってもよい。コードブックベース送信又はノンコードブックベース送信の用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースのPUSCH送信のプリコーダの決定に用いられてもよい。
 例えば、UEは、コードブックベース送信の場合、SRI、送信ランクインジケータ(Transmitted Rank Indicator:TRI)及び送信プリコーディング行列インジケータ(Transmitted Precoding Matrix Indicator:TPMI)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。
 SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、所定の参照信号とSRSとの間の空間関係情報を示してもよい。当該所定の参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。
 SRSの空間関係情報は、上記所定の参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。
 なお、本開示において、SSBインデックス、SSBリソースID及びSSBRI(SSB Resource Indicator)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCRI(CSI-RS Resource Indicator)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。
 SRSの空間関係情報は、上記所定の参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。
 NRでは、上り信号の送信は、ビームコレスポンデンス(Beam Correspondence(BC))の有無に基づいて制御されてもよい。BCとは、例えば、あるノード(例えば、基地局又はUE)が、信号の受信に用いるビーム(受信ビーム、Rxビーム)に基づいて、信号の送信に用いるビーム(送信ビーム、Txビーム)を決定する能力であってもよい。
 なお、BCは、送信/受信ビームコレスポンデンス(Tx/Rx beam correspondence)、ビームレシプロシティ(beam reciprocity)、ビームキャリブレーション(beam calibration)、較正済/未較正(Calibrated/Non-calibrated)、レシプロシティ較正済/未較正(reciprocity calibrated/non-calibrated)、対応度、一致度などと呼ばれてもよい。
 例えば、BC無しの場合、UEは、一以上のSRS(又はSRSリソース)の測定結果に基づいて基地局から指示されるSRS(又はSRSリソース)と同一のビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
 一方、BC有りの場合、UEは、所定のSSB又はCSI-RS(又はCSI-RSリソース)の受信に用いるビーム(空間ドメイン受信フィルタ)と同一の又は対応するビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
 UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合(例えば、BC有りの場合)には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。
 UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合(例えば、BC無しの場合)には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。
 UEは、DCI(例えば、DCIフォーマット0_1)内の所定フィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによりスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該所定フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。
 PUSCHに対し、コードブックベース送信を用いる場合、UEは、2個のSRSリソースをRRCによって設定され、2個のSRSリソースの1つをDCI(1ビットの所定フィールド)によって指示されてもよい。PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、4個のSRSリソースをRRCによって設定され、4個のSRSリソースの1つをDCI(2ビットの所定フィールド)によって指示されてもよい。RRCによって設定された2個又は4個の空間関係以外の空間関係を用いるためには、RRC再設定が必要となる。
 なお、PUSCHに用いられるSRSリソースの空間関係に対し、DL-RSを設定することができる。例えば、SP-SRSに対し、UEは、複数(例えば、16個まで)のSRSリソースの空間関係をRRCによって設定され、複数のSRSリソースの1つをMAC CEによって指示されることができる。
(複数パネル送信)
 Rel.15及びRel.16のUEにおいては、1つのみのビーム及びパネルが、1つの時点においてUL送信に用いられる(図2A)。Rel.17においては、ULのスループット及び信頼性(reliability)の改善のために、1以上のTRPに対して、複数ビーム及び複数パネルの同時UL送信が検討されている。
 複数ビーム及び複数パネルを用いる同時UL送信に対し、複数パネルを有する1つのTRPによる受信(図2B)、又は理想バックホール(ideal backhaul)を有する2つのTRPによる受信(図2C)、が検討されている。複数PUSCH(例えば、PUSCH#1及びPUSCH#2の同時送信)のスケジューリングのための単一のPDCCHが検討されている。パネル固有送信がサポートされ、パネルIDが導入されること、が検討されている。
 基地局は、UL TCI又はパネルIDを用いて、UL送信のためのパネル固有送信を設定又は指示してもよい。UL TCI(UL TCI状態)は、Rel.15においてサポートされるDLビーム指示と類似するシグナリングに基づいてもよい。パネルIDは、ターゲットRSリソース又はターゲットRSリソースセットと、PUCCHと、SRSと、PRACHと、の少なくとも1つの送信に、暗示的に又は明示的に適用されてもよい。パネルIDが明示的に通知される場合、パネルIDは、ターゲットRSと、ターゲットチャネルと、リファレンスRSと、の少なくとも1つ(例えば、DL RSリソース設定又は空間関係情報)において設定されてもよい。
<マルチパネルUL送信方式>
 マルチパネルUL送信方式又はマルチパネルUL送信方式候補は、次の方式1~3(マルチパネルUL送信方式1~3)の少なくとも1つであってもよい。方式1~3の1つのみがサポートされてもよい。方式1~3の少なくとも1つを含む複数の方式がサポートされ、複数の方式の1つがUEに設定されてもよい。
《方式1》
 方式1は、コヒーレントマルチパネルUL送信である。
 複数パネルが互いに同期していてもよい。全てのレイヤは、全てのパネルにマップされる。複数アナログビームが指示される。SRSリソースインジケータ(SRI)フィールドが拡張されてもよい。この方式は、ULに対して最大4レイヤを用いてもよい。
 図3Aの例において、UEは、1コードワード(CW)又は1トランスポートブロック(TB)をL個のレイヤ(PUSCH(1,2,…,L))へマップし、2つのパネルのそれぞれからL個のレイヤを送信する。パネル#1及びパネル#2はコヒーレントである。方式1は、ダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数は2Lである。レイヤの総数の最大値が4である場合、1つのパネルにおけるレイヤ数の最大値は2である。
《方式2》
 方式2は、1つのコードワード(CW)又はトランスポートブロック(TB)のノンコヒーレントマルチパネルUL送信である。
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する1つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、複数パネルにマップされてもよい。この方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この方式は、最大8レイヤを用いる1つのCW又はTBをサポートしてもよい。
 図3Bの例において、UEは、1CW又は1TBを、k個のレイヤ(PUSCH(1,2,…,k))とL-k個のレイヤ(PUSCH(k+1,k+2,…,L))とへマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。方式2は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。
《方式3》
 方式3は、2つのCW又はTBのノンコヒーレントマルチパネルUL送信である。
 複数パネルが同期していなくてもよい。異なるレイヤは、異なるパネルと、複数パネルからのPUSCHに対する2つのCW又はTBにマップされる。1つのCW又はTBに対応するレイヤが、1つのパネルにマップされてもよい。複数のCW又はTBに対応するレイヤが、異なるパネルにマップされてもよい。この方式は、ULに対して最大4レイヤ又は最大8レイヤを用いてもよい。最大8レイヤをサポートする場合、この方式は、CW又はTB当たり最大4レイヤをサポートしてもよい。
 図3Cの例において、UEは、2CW又は2TBのうち、CW#1又はTB#1をk個のレイヤ(PUSCH(1,2,…,k))へマップし、CW#2又はTB#2をL-k個のレイヤ(PUSCH(k+1,k+2,…,L))へマップし、k個のレイヤをパネル#1から送信し、L-k個のレイヤをパネル#2から送信する。方式3は、多重及びダイバーシチによるゲインを得ることができる。2つのパネルにおけるレイヤの総数はLである。
(Rel.18の検討事項)
 Rel.18のMIMOでは、8Txをサポートすること、マルチパネル同時送信(Simultaneous Transmission across Multiple Panels(STxMP))をサポートすることが検討されている。例えば、UE毎に4レイヤ以上をサポートする8Tx UL動作を可能にするUL DMRS、SRS、SRI、TPMI(コードブックを含む)の拡張が検討されている。また、Customer Premises Equipment(CPE)/Fixed Wireless Access(FWA)/車載/産業機器(該当する場合)を対象に、FR2、マルチTRPを中心に、最大2TRP、最大2パネルを想定し、ULスループット/信頼性向上のための多パネル同時送信を容易にするため検討が行われている。
 シングルDCIマルチパネル同時送信PUSCHの空間分割多重(Space Division Multiplexing(SDM)方式が検討されている。SDM方式では、UEは、1つのPUSCHの異なるレイヤ/DMRSポートを別々にプリコーディングし、1つのコードワード(CW)により、2つの異なるUEパネルから同時に送信する。又はSDM方式で2つのCWをサポートし、2つの異なるパネルから同時に送信するかどうかが検討されている。
 CBまたはNCBの2つのSRSリソースセットをサポートすること、2つのSRSリソースセット(2パネル/2TRP)に対して、2つのTPMIフィールドをサポートすること、2つのSRSリソースセット(2パネル/2TRP)に対して、2つのSRIフィールドをサポートすることが検討されている。また、STxMP SDM方式とSTRP送信の動的切り替えをサポートすることが合意された。なお、STRP送信は、PUSCH送信が1つのパネル/TRP/SRSリソースセットに関連付けられることを意味する。
(Rel.17のTDM MTRP PUSCH)
 Rel.17において、異なるPUSCHの繰り返しは、異なるビーム/TRP/SRSリソースセットに関連付けられる。Rel.17のTDM MTRP PUSCHにおいて、SRSリソースセット指示フィールドは、MTRP送信とSTRP送信との間の動的切り替えを指示する(図4)。コードポイント"00"(インデックス=0)、コードポイント"01"(インデックス=1)が指示された場合、STRPであり、第1のSRIフィールド、第1のTPMIフィールドが適用され、第2のSRIフィールド、第2のTPMIフィールドは予約される。コードポイント"10"(インデックス=2)、コードポイント"11"(インデックス=3)が指示された場合、MTRPとなり、第1、第2のSRIフィールド、第1、第2のTPMIフィールドが適用される。
(分析)
 上述のように、将来の無線通信システム(例えば、NR)において、端末は、複数パネル(複数ビーム)の1つをUL送信に用いることができる。しかしながら、複数パネルを用いる同時送信がサポートされる場合の制御については、十分に検討されていない。例えば、コードブックベースまたはノンコードブックベースのPUSCHのために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用される場合の、SRIフィールドおよびTPMIフィールドの少なくとも一方の適用方法について十分に検討されていない。これが明確にならなければ、スループットの低下など、システム性能が低下するおそれがある。
 例えば、STXMP SDM方式とSTRP送信の動的切り替えを考慮し、sTRP送信が指示された場合、コードブック(CB)ベースのPUSCH送信では、どのSRIフィールドが使用されるか、どのTPMIフィールドを使用するかが明らかになっていない。また、ノンコードブック(NCB)ベースのPUSCH送信では、どのSRIフィールドが使用されるかが明らかになっていない。CBのSRIフィールドの場合、SRIフィールドのサイズは、SRSリソースセット内のSRSリソース数に依存する。NCBのSRIフィールドの場合、SRIフィールドのサイズはSRSリソースセット内のSRSリソース数と最大ランクに依存する。CBのTPMIフィールドの場合、TPMIフィールドのサイズはアンテナポートの数と最大ランク、フルパワーモードに依存する。そこで、STxMP SDMの第1パネル、STxMP SDMの第2パネル、sTRPの第1パネル、sTRPの第2パネルの最大ランクが異なること、第1パネルと第2パネルのSRSリソース数が異なることを考慮し、SRIフィールド、TPMIフィールドのサイズを検討することが好ましい。
 そこで、本発明者らは、SRIフィールドおよびTPMIフィールドの少なくとも一方を適切に適用する端末を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、ドロップ、中止、キャンセル、パンクチャ、レートマッチ、延期(postpone)、送信しない、などは、互いに読み替えられてもよい。
 本開示において、STxMP、マルチパネル同時送信、マルチパネル同時UL送信、マルチDCIを用いたマルチパネル同時(UL)送信は、互いに読み替えられてもよい。マルチパネル同時送信は、複数のパネルから同時に複数のUL送信を行うことであってもよい。「同時」とは、複数のUL送信の少なくとも1部が時間的に重複(オーバーラップ)することであってもよい。本開示において、サポートすること、設定/指示されることは互いに読み替えられてもよい。本開示において、送信電力、出力電力は、互いに読み替えられてもよい。本開示において、UEによる決定とネットワーク(基地局/gNB)による設定/指示は、互いに読み替えられてもよい。
 本開示において、パネル、パネルID、TRP、UE能力値インデックス(UE capability value index)、TCI状態、SRI、SRSリソースセット、SRSリソースセットID、CORESETプールインデックス(CORESETPoolIndex)、レイヤグループ、アンテナポートグループ、ビーム、TCI状態は、互いに読み替えられてもよい。本開示において、2つのPUSCH(PUSCH送信)が重複することは、時間的に2つのPUSCH(PUSCH送信)の少なくとも1部が重複することを意味してもよい。
 マルチパネル同時送信が設定されることは、異なるCoresetPoolIndexに関連する複数のDCIが異なるPUSCHをスケジューリングすることを意味してもよい。異なるCoresetPoolIndex/パネルに関連する複数のPUSCH、異なるCoresetPoolIndex/パネルに関連する複数のDCIによりスケジューリングされる複数のPUSCHは、互いに読み替えられてもよい。マルチDCIを用いたマルチパネル同時送信の設定を受信することと、マルチパネル同時送信が設定されることとは、互いに読み替えられてもよい。
(無線通信方法)
 本開示において、パネル/TRPは、SRSリソースセット、レイヤグループ、アンテナポートグループ、UE能力値セット(UE capability value set)、ビーム、TCI状態を参照してもよい。本開示において、第1/第2のSRSリソースセットは、低い/高いIDを有するSRSリソースセットに対応していてもよい。STRP送信は、PUSCH送信が1つのパネル/TRP/SRSリソースセットに関連することを意味する。STxMP SDM(STxMP SDM方式)は、PUSCHの異なるレイヤが、それぞれ異なるパネル/TRP/SRSリソースセットに関連することを意味する。
 第1のパネルに関連するSTxMP SDMは、STxMP_P1と表記される。第2パネルに関連するSTxMP SDMは、STxMP_P2と表記される。第1のパネルに関連するSTRPは、SP_P1と表記される。第2のパネルに関連するSTRPは、SP_P2と表記される。
<STxMP SDM方式とSTRP送信の動的な切り替え>
 STxMP SDM方式とSTRP送信の動的な切り替えにおいて、STxMP SDMが動的に指示された場合、以下の(1)、(2)の少なくとも1つが想定される。
(1)CB/NCB PUSCHのために、第1のSRIフィールドは、第1のパネル/TRP/SRSリソースセットに関連し、第2のSRIフィールドは第2のパネル/TRP/SRSリソースセットと関連する。
(2)CB PUSCHの場合、第1のTPMIフィールドは第1のパネル/TRP/SRSリソースセットに関連し、第2のTPMIフィールドは、第2のパネル/TRP/SRSリソースセットに関連する。
 STRPとSTxMPとの動的切り替えの指示について、DCIの特定のフィールドが用いられてもよい。例えば、以下の(1)、(2)の少なくとも1つが適用されてもよい。
(1)動的切り替えは、SRSリソースセット指示フィールドを用いて、UEに指示されてもよい。これは、図4に示すRel.17のTDM MTRP PUSCHにおけるSRSリソースセット指示フィールドと同様であってもよい。また、次の例1~例4のいずれかが適用されてもよい。
 下記の各例において、STxMP(第1のSRSリソースセット、第2のSRSリソースセットの順序)は、最初のXレイヤを第1のSRSリソースセットと関連付け、残りのレイヤを第2のSRSリソースセットと関連付けることを意味する。STxMP(第2のSRSリソースセット、第1のSRSリソースセットの順序)は、最初のXレイヤは第2のSRSリソースセットと関連付けられ、残りのレイヤは、第1のSRSリソースセットと関連付けられることを意味する。
(例1)SRSリソースセット指示フィールド=0の場合、STRP(第1SRSリソースセットのみ)を示す。SRSリソースセット指示フィールド=1の場合、STRP(第2SRSリソースセットのみ)を示す。SRSリソースセット指示フィールド=2の場合、STxMP(第1のSRSリソースセット、第2のSRSリソースセットの順序)を示す。SRSリソースセット指示フィールド=3の場合、STxMP(第2SRSリソースセット、第1SRSリソースセットの順序)を示す。
(例2)SRSリソースセット指示フィールド=0の場合、STRP(第1SRSリソースセットのみ)を示す。SRSリソースセット指示フィールド=1の場合、STRP(第2SRSリソースセットのみ)を示す。SRSリソースセット指示フィールド=2の場合、STxMP(第1のSRSリソースセット、第2のSRSリソースセットの順序)を示す。SRSリソースセット指示フィールド=3は、予約される(未使用である)。
(例3)SRSリソースセット指示フィールド=0の場合、STRP(第1のSRSリソースセットのみ)を示す。SRSリソースセット指示フィールド=1の場合、STRP(第2SRSリソースセットのみ)を示す。SRSリソースセット指示フィールド=2の場合、STxMP(第2のSRSリソースセット、第1のSRSリソースセットの順序)を示す。SRSリソースセット指示フィールド=3は、予約される(未使用となる)。
(例4)SRSリソースセット指示フィールド=2がSTxMP(第1のSRSリソースセット、第2のSRSリソースセットの順序)を示すか、STxMP(第2のSRSリソースセット、第1のSRSリソースセットの順序)を示すかは、RRC/MAC CEにより設定/指示されてもよい。
(2)ジョイントTCI状態/UL TCI状態が設定されている場合、指示されたジョイントTCI状態/UL TCI状態の数により、STRPまたはSTxMPが指示されてもよい。例えば、2つのジョイントTCI状態/UL TCI状態が指示されている場合、STxMPを示し、1つのジョイントTCI状態/UL TCI状態が指示されている場合、STRPを示す。
 図5は、シングルパネル送信方式(STRP)とSTxMP SDM方式との間の動的な切り替えに適用されるSRSリソースセット指示フィールドの例を示す図である。図5の例は、上記例1,2に対応している。STRPとSTxMP SDM方式の間の動的な切り替えが設定されている場合、SRSリソースセット指示フィールドに図5の例が適用され、当該動的な切り替えが設定されていない場合、図4の例(既存の方法)が適用されてもよい。
<第1の実施形態>
 コードブック(CB)ベースのPUSCHのために、マルチパネル同時送信SDM方式(第1方式)とSTRP送信(PUSCH送信が1つのパネル/TRP/SRSリソースセットに関連する方式(第2方式))との間の動的な切り替えが適用され(当該切り替えの設定を受信し)、STRP送信(第2方式)が動的に指示された場合(STRP(第2方式)を示す指示を受信した場合)、以下の各オプションの少なくとも1つが適用されてもよい。
[オプション1]
 UEは、第1/第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、第1のSRIフィールドを適用してもよい。
《第1のSRIフィールドのサイズ》
 第1のSRIフィールドのサイズは、適用される送信方式に応じて、サイズ#P1、サイズ#P2の間で動的に変更されてもよい。マルチパネル同時送信が指示された場合、第1のSRIフィールドのサイズはサイズ#P1となる(図6A)。SP_P1が指示された場合、第1のSRIフィールドのサイズが、サイズ#P1となる(図6A)。SP_P2が指示された場合、第1のSRIフィールドのサイズが、サイズ#P2となる(図6B)。
 別の例として、第1のSRIフィールドのサイズは、サイズ#P1、サイズ#P2のうちの最大値としてもよい。
 サイズ#P1、サイズ#P2は、上位レイヤシグナリングにより設定されてもよい。サイズ#P1、サイズ#P2は、各SRSリソースセットごとのSRSリソース数に基づいて設定されてもよい。
《第2のSRIフィールドのサイズ》
 第1のSRIフィールドのサイズが動的に変更する場合、第2のSRIフィールドのサイズはサイズ#P2、サイズ#Xの間で動的に変化する。第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、マルチパネル同時送信/SP_P1/SP_P2が指示されたときに、各SRIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第2のSRIフィールドのサイズはサイズ#P2となる(図6A)。SP_P1が指示された場合、第2のSRIフィールドのサイズはサイズ#P2となる(図6A)。SP_P2が指示された場合、第2のSRIフィールドのサイズをサイズ#Xとなる(図6B)。なお、サイズ#P1+サイズ#P2=サイズ#P2+サイズ#Xとする。
 第1のSRIフィールドのサイズはサイズ#P1、サイズ#P2のうちの最大値とした場合、第2のSRIフィールドのサイズはサイズ#P2になる。
 サイズ#P1は、第1のパネル/第1のTRP/第1のSRSリソースセットに関連するSRSリソースの数を想定して決定されるSRIフィールドのサイズである。サイズ#P2は、第2のパネル/第2のTRP/第2のSRSリソースセットに関連するSRSリソースの数を想定して決定されるSRIフィールドのサイズである。
[オプション2]
 第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1のSRIフィールド、第2のSRIフィールドがそれぞれ適用される。
 第1のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第1のSRIフィールドを適用する。第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第2のSRIフィールドを適用する。
 第1のSRIフィールドのサイズは、第1パネル/TRP/SRSリソースセットに関連するSRSリソースの数を想定して決定される。第2のSRIフィールドのサイズは、第2パネル/TRP/SRSリソースセットに関連するSRSリソースの数を想定して決定される。
[オプション3]
 第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、より大きなサイズのSRIフィールドが適用されてもよい。
 第1SRIフィールドのサイズは、第1のパネル/TRP/SRSリソースセットに関連するSRSリソースの数を想定して決定される。第2SRIフィールドのサイズは、第2パネル/TRP/SRSリソースセットに関連するSRSリソースの数を想定して決定される。
 第1のSRIフィールドのサイズが第2SRIフィールドのサイズより大きく、第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第1のSRIフィールドを適用してもよい。
 第2のSRIフィールドのサイズが第1SRIフィールドのサイズより大きく、第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第2のSRIフィールドを適用してもよい。
 第1のSRIフィールドのサイズが第2SRIフィールドのサイズと同じであり、第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第1のSRIフィールドを適用してもよい。
 例えば、UEは、第1のSRIフィールドのサイズが第2SRIフィールドのサイズより大きいことを期待(想定)してもよい。
[オプション4]
 UEは、第1/第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1/第2のSRIフィールドを1つのフィールドとして結合して解釈してもよい。例えば、以下の(1)~(6)のいずれかの例が適用されてもよい。
(1)第1のSRIフィールドを最上位ビット(Most Significant bit(MSB)、第2のSRIフィールドを最下位ビット(Least Significant Bit(LSB)とする。
(2)第2のSRIフィールドをMSB、第1のSRIフィールドをLSBとする。
(3)第1のSRIフィールドの最初/最後のXビットをMSBとし、第2のSRIフィールドをLSBとする。
(4)第1のSRIフィールドをMSBとし、第2のSRIフィールドの最初/最後のXビットをLSBとする。
(5)第2のSRIフィールドの最初/最後のXビットをMSBとし、第1のSRIフィールドをLSBとする。
(6)第2のSRIフィールドをMSBとし、第1のSRIフィールドの最初/最後のXビットをLSBとする。
 第1のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、第1のパネルに上記結合されたフィールドが使用されてもよい。第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、第2のパネルに上記結合されたフィールドが使用されてもよい。
 第1のSRIフィールドのサイズは、第1パネル/TRP/SRSリソースセットに関連するSRSリソースの数を想定して決定される。第2のSRIフィールドのサイズは、第2パネル/TRP/SRSリソースセットに関連するSRSリソースの数を想定して決定される。
[バリエーション]
 第1のSRSリソースセットと第2のSRSリソースセットに関連するSRSリソースの数には制限があってもよい。例えば、UEは、第1のSRSリソースセット/パネル/TRPに関連するSRSリソースの数が第2のSRSリソースセット/パネル/TRPに関連するSRSリソースの数より大きいか同じであることを期待してもよい。または、UEは、第1のSRSリソースセット/パネル/TRPに関連するSRSリソースの数が第2のSRSリソースセット/パネル/TRPに関連するSRSリソースの数と同じであると期待してもよい。
 第1の実施形態によれば、CBベースPUSCHのために、STRP送信が動的に指示された場合、第1/第2のSRIフィールドを適切に使用することができる。
<第2の実施形態>
 コードブック(CB)ベースのPUSCHのために、マルチパネル同時送信SDM方式(第1方式)とSTRP送信(PUSCH送信が1つのパネル/TRP/SRSリソースセットに関連する第2方式)との間の動的な切り替えが適用され(当該切り替えの設定を受信し)、STRP送信(第2方式)が動的に指示された場合(STRP(第2方式)を示す指示を受信した場合)、以下の各オプションの少なくとも1つが適用されてもよい。
[オプション1]
 UEは、第1/第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1のTPMIフィールドを適用してもよい。
《第1のTPMIフィールドのサイズ》
 第1のTPMIフィールドのサイズは、適用される送信方式に応じて、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2の中で動的に変更されてもよい。マルチパネル同時送信が指示された場合、第1のTPMIフィールドのサイズはサイズ#STxMP_P1となる(図7A)。SP_P1が指示された場合、第1のTPMIフィールドのサイズは、サイズ#SP_P1となる(図7B)。SP_P2が指示された場合、第1のTPMIフィールドのサイズは、サイズ#SP_P2となる(図7C)。
 別の例として、第1のTPMIフィールドのサイズは、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2のうちの最大値としてもよい。
 サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2は、上位レイヤシグナリングにより設定されてもよい。サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2は、各SRSリソースセットごとのSRSリソース数に基づいて設定されてもよい。
《第2のTPMIフィールドのサイズ》
 第1のTPMIフィールドのサイズが動的に変更する場合、第2のTPMIフィールドのサイズは、サイズ#STxMP_P2、サイズ#X、サイズ#Yの間で動的に変化する。第1のTPMIフィールドのサイズと第2のTPMIフィールドのサイズとの和が変化しないように、マルチパネル同時送信/SP_P1/SP_P2が指示されたときに、各TPMIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第2のTPMIフィールドのサイズはサイズ#STxMP_P2となる(図7A)。SP_P1が指示された場合、第2のTPMIフィールドのサイズはサイズ#Xとなる(図7B)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#SP_P1+サイズ#Xとする。SP_P2が指示された場合、第2のTPMIフィールドのサイズはサイズ#Yとなる(図7C)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#SP_P2+サイズ#Yとする。
 第1のTPMIフィールドのサイズが、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2のうちの最大値である場合、第2のTPMIフィールドのサイズは、サイズ#STxMP_P2になる。
 サイズ#STxMP_P1は、STxMP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数を想定して決定されるTPMIフィールドのサイズである。サイズ#STxMP_P2は、STxMP_P2に関連するアンテナポート/最大ランク/フルパワーモードの数を想定して決定されるTPMIフィールドのサイズである。サイズ#SP_P1は、SP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数を想定して決定されるTPMIフィールドのサイズである。サイズ#SP_P2は、SP_P2に関連するアンテナポート/最大ランク/フルパワーモードの数を想定して決定されるTPMIフィールドのサイズである。
[オプション2]
 第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1のTPMIフィールド、第2のTPMIフィールドがそれぞれ適用される。
 第1のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第1のTPMIフィールドを適用する。第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第2のTPMIフィールドを適用する。
《第1のTPMIフィールドのサイズ》
 第1のTPMIフィールドのサイズは、適用される送信方式に応じて、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#Xの中で動的に変更されてもよい。STxMP/SP_P1/SP_P2が指示された場合、第1のTPMIフィールドのサイズと第2のTPMIフィールドのサイズとの和が変化しないように、各TPMIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第1のTPMIフィールドのサイズはサイズ#STxMP_P1となる(図8A)。SP_P1が指示された場合、第1のTPMIフィールドのサイズは、サイズ#SP_P1となる(図8B)。SP_P2が指示された場合、第1のTPMIフィールドのサイズは、サイズ#Xとなる(図8C)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#X+サイズ#SP_P2とする。
 別の例として、第1のTPMIフィールドのサイズは、サイズ#STxMP_P1、サイズ#SP_P1のうちの最大値としてもよい。
《第2のTPMIフィールドのサイズ》
 第1のTPMIフィールドのサイズが動的に変更する場合、第2のTPMIフィールドのサイズは、サイズ#STxMP_P2、サイズ#SP_P2、サイズ#Yの間で動的に変化する。STxMP/SP_P1/SP_P2が指示された場合、第1のTPMIフィールドのサイズと第2のTPMIフィールドのサイズとの和が変化しないように、各TPMIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第2のTPMIフィールドのサイズはサイズ#STxMP_P2となる(図8A)。SP_P1が指示された場合、第2のTPMIフィールドのサイズはサイズ#Yとなる(図8B)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#SP_P1+サイズ#Yとする。SP_P2が指示された場合、第2のTPMIフィールドのサイズはサイズ#SP_P2となる(図8C)。
 第1のTPMIフィールドのサイズが、サイズ#STxMP_P1、サイズ#SP_P1のうちの最大値である場合、第2のTPMIフィールドのサイズは、サイズ#STxMP_P2、サイズ#SP_P2のうちの最大値である。
 サイズ#STxMP_P1、サイズ#STxMP_P2、サイズ#SP_P1、サイズ#SP_P2の定義は、オプション1と同様である。
[オプション3]
 UEは、第1/第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1/第2のTPMIフィールドを1つのフィールドとして結合して解釈してもよい。例えば、以下の(1)~(6)のいずれかの例が適用されてもよい。
(1)第1のTPMIフィールドを最上位ビット(Most Significant bit(MSB)、第2のTPMIフィールドを最下位ビット(Least Significant Bit(LSB)とする。
(2)第2のTPMIフィールドをMSB、第1のTPMIフィールドをLSBとする。
(3)第1のTPMIフィールドの最初/最後のXビットをMSBとし、第2のTPMIフィールドをLSBとする。
(4)第1のTPMIフィールドをMSBとし、第2のTPMIフィールドの最初/最後のXビットをLSBとする。
(5)第2のTPMIフィールドの最初/最後のXビットをMSBとし、第1のTPMIフィールドをLSBとする。
(6)第2のTPMIフィールドをMSBとし、第1のTPMIフィールドの最初/最後のXビットをLSBとする。
 第1のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、第1のパネルに上記結合されたフィールドが使用されてもよい。第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、第2のパネルに上記結合されたフィールドが使用されてもよい。
 第1のTPMIフィールドのサイズは、STxMP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数を想定して決定される。第2のTPMIフィールドのサイズは、STxMP_P2に関連するアンテナポート/最大ランク/フルパワーモードの数を想定して決定される。
 また、オプション3では、UEは、以下の(1)~(3)の少なくとも1つを期待(想定)してもよい。
(1)サイズ#STxMP_P1+サイズ#STxMP_P2≧サイズ#SP_P1
(2)サイズ#STxMP_P1+サイズ#STxMP_P2≧サイズ#SP_P2
(3)サイズ#STxMP_P1、サイズ#STxMP_P2、サイズ#SP_P1、サイズ#SP_P2の定義は、オプション1と同様である。
[バリエーション]
 STxMP_P1、STxMP_P2、SP_P1、SP_P2に関連するアンテナポート数/最大ランク/フルパワーモードの制約について、以下の(1)~(10)の少なくとも1つが適用されてもよい。
(1)UEは、STxMP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数が、SP_P1に関するそれらの数と同じであることを期待する。
(2)UEは、STxMP_P2に関連するアンテナポート/最大ランク/フルパワーモードの数が、SP_P2に関するそれらの数と同じであると期待する。
(3)UEは、SP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数が、SP_P2に関するそれらの数と同じであることを期待する。
(4)UEは、SP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数が、SP_P2に関するそれらの数より大きいか同じであることを期待する。
(5)UEは、STxMP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数が、STxMP_P2に関するそれらの数と同じであることを期待する。
(6)UEは、STxMP_P1に関連するアンテナポート/最大ランク/フルパワーモードの数が、STxMP_P2に関するそれらの数より大きいか、同じであることを期待する。
(7)UEは、サイズ#SP_P1=サイズ#STxMP_P1と期待する。
(8)UEは、サイズ#SP_P2=サイズ#STxMP_P2と期待する。
(9)UEは、サイズ#SP_P1=サイズ#SP_P2と期待する。
(10)UEは、サイズ#SP_P1≧サイズ#SP_P2と期待する。
 サイズ#STxMP_P1、サイズ#STxMP_P2、サイズ#SP_P1、サイズ#SP_P2の定義は、オプション1と同様であってもよい。
 第2の実施形態によれば、STRP送信が動的に指示された場合、第1/第2のTPMIフィールドを適切に使用することができる。
<第3の実施形態>
 ノンコードブック(NCB)ベースのPUSCHのために、マルチパネル同時送信SDM方式(第1方式)とSTRP送信(PUSCH送信が1つのパネル/TRP/SRSリソースセットに関連する第2方式)との間の動的な切り替えが適用され(当該切り替えの設定を受信し)、STRP送信(第2方式)が動的に指示された場合(STRP(第2方式)を示す指示を受信した場合)、以下の各オプションの少なくとも1つが適用されてもよい。
[オプション1]
 UEは、第1/第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1のSRIフィールドを適用してもよい。
《第1のSRIフィールドのサイズ》
 第1のSRIフィールドのサイズは、適用される送信方式に応じて、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2の中で動的に変更されてもよい。マルチパネル同時送信が指示された場合、第1のSRIフィールドのサイズはサイズ#STxMP_P1となる(図9A)。SP_P1が指示された場合、第1のSRIフィールドのサイズは、サイズ#SP_P1となる(図9B)。SP_P2が指示された場合、第1のSRIフィールドのサイズは、サイズ#SP_P2となる(図9C)。
 別の例として、第1のSRIフィールドのサイズは、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2のうちの最大値としてもよい。
 サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2は、上位レイヤシグナリングにより設定されてもよい。サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2は、各SRSリソースセットごとのSRSリソース数に基づいて設定されてもよい。
《第2のSRIフィールドのサイズ》
 第1のSRIフィールドのサイズが動的に変更する場合、第2のSRIフィールドのサイズは、サイズ#STxMP_P2、サイズ#X、サイズ#Yの間で動的に変化する。第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、マルチパネル同時送信/SP_P1/SP_P2が指示されたときに、各SRIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第2のSRIフィールドのサイズはサイズ#STxMP_P2となる(図9A)。SP_P1が指示された場合、第2のSRIフィールドのサイズはサイズ#Xとなる(図9B)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#SP_P1+サイズ#Xとする。SP_P2が指示された場合、第2のSRIフィールドのサイズはサイズ#Yとなる(図9C)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#SP_P2+サイズ#Yとする。
 第1のSRIフィールドのサイズが、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#SP_P2のうちの最大値である場合、第2のSRIフィールドのサイズは、サイズ#STxMP_P2になる。
 サイズ#STxMP_P1は、STxMP_P1に関連するSRSリソース/最大ランクの数を想定して決定されるSRIフィールドのサイズである。サイズ#STxMP_P2は、STxMP_P2に関連するSRSリソース/最大ランクの数を想定して決定されるSRIフィールドのサイズである。サイズ#SP_P1は、SP_P1に関連するSRSリソース/最大ランクの数を想定して決定されるSRIフィールドのサイズである。サイズ#SP_P2は、SP_P2に関連するSRSリソース/最大ランクの数を想定して決定されるSRIフィールドのサイズである。
[オプション2]
 第1または第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1のSRIフィールド、第2のSRIフィールドがそれぞれ適用される。
 第1のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第1のSRIフィールドを適用する。第2のパネル/TRP/SRSリソースセットに関連するSTRP送信が指示された場合、UEは、第2のSRIフィールドを適用する。
《第1のSRIフィールドのサイズ》
 第1のSRIフィールドのサイズは、適用される送信方式に応じて、サイズ#STxMP_P1、サイズ#SP_P1、サイズ#Xの中で動的に変更されてもよい。STxMP/SP_P1/SP_P2が指示された場合、第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、各SRIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第1のSRIフィールドのサイズはサイズ#STxMP_P1となる(図10A)。SP_P1が指示された場合、第1のSRIフィールドのサイズは、サイズ#SP_P1となる(図10B)。SP_P2が指示された場合、第1のSRIフィールドのサイズは、サイズ#Xとなる(図10C)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#X+サイズ#SP_P2とする。
 別の例として、第1のSRIフィールドのサイズは、サイズ#STxMP_P1、サイズ#SP_P1のうちの最大値としてもよい。
《第2のSRIフィールドのサイズ》
 第1のSRIフィールドのサイズが動的に変更する場合、第2のSRIフィールドのサイズは、サイズ#STxMP_P2、サイズ#SP_P2、サイズ#Yの間で動的に変化する。STxMP/SP_P1/SP_P2が指示された場合、第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、各SRIフィールドサイズが変更される。
 マルチパネル同時送信が指示された場合、第2のSRIフィールドのサイズはサイズ#STxMP_P2となる(図10A)。SP_P1が指示された場合、第2のSRIフィールドのサイズはサイズ#Yとなる(図10B)。この場合、サイズ#STxMP_P1+サイズ#STxMP_P2=サイズ#SP_P1+サイズ#Yとする。SP_P2が指示された場合、第2のSRIフィールドのサイズはサイズ#SP_P2となる(図10C)。
 第1のSRIフィールドのサイズが、サイズ#STxMP_P1、サイズ#SP_P1のうちの最大値である場合、第2のSRIフィールドのサイズは、サイズ#STxMP_P2、サイズ#SP_P2のうちの最大値である。
 サイズ#STxMP_P1、サイズ#STxMP_P2、サイズ#SP_P1、サイズ#SP_P2の定義は、オプション1と同様である。
[オプション3]
 UEは、第1/第2のパネル/TRP/SRSリソースセットに関連するSTRP送信(第2方式)が指示された場合、第1/第2のSRIフィールドを1つのフィールドとして結合して解釈してもよい。例えば、以下の(1)~(6)のいずれかの例が適用されてもよい。
(1)第1のSRIフィールドを最上位ビット(Most Significant bit(MSB)、第2のSRIフィールドを最下位ビット(Least Significant Bit(LSB)とする。
(2)第2のSRIフィールドをMSB、第1のSRIフィールドをLSBとする。
(3)第1のSRIフィールドの最初/最後のXビットをMSBとし、第2のSRIフィールドをLSBとする。
(4)第1のSRIフィールドをMSBとし、第2のSRIフィールドの最初/最後のXビットをLSBとする。
(5)第2のSRIフィールドの最初/最後のXビットをMSBとし、第1のSRIフィールドをLSBとする。
(6)第2のSRIフィールドをMSBとし、第1のSRIフィールドの最初/最後のXビットをLSBとする。
 第1のSRIフィールドのサイズは、STxMP_P1に関連するSRSリソース/最大ランクの数を想定して決定される。第2のSRIフィールドのサイズは、STxMP_P2に関連するSRSリソース/最大ランクの数を想定して決定される。
 また、オプション3では、UEは、以下の(1)~(3)の少なくとも1つを期待(想定)してもよい。
(1)サイズ#STxMP_P1+サイズ#STxMP_P2≧サイズ#SP_P1
(2)サイズ#STxMP_P1+サイズ#STxMP_P2≧サイズ#SP_P2
(3)サイズ#STxMP_P1、サイズ#STxMP_P2、サイズ#SP_P1、サイズ#SP_P2の定義は、オプション1と同様である。
[バリエーション]
 第1のSRSリソースセットと第2のSRSリソースセットに関連するSRSリソースの数には制限があってもよい。例えば、UEは、第1のSRSリソースセット/パネル/TRPに関連するSRSリソースの数が第2のSRSリソースセット/パネル/TRPに関連するSRSリソースの数より大きいか同じであることを期待してもよい。または、UEは、第1のSRSリソースセット/パネル/TRPに関連するSRSリソースの数が第2のSRSリソースセット/パネル/TRPに関連するSRSリソースの数と同じであると期待してもよい。
 STxMP_P1、STxMP_P2、SP_P1、SP_P2に関連する最大ランクの制約について、以下の(1)~(10)の少なくとも1つが適用されてもよい。
(1)UEは、STxMP_P1に関連する最大ランクの数が、SP_P1に関するそれらの数と同じであることを期待する。
(2)UEは、STxMP_P2に関連する最大ランクの数が、SP_P2に関するそれらの数と同じであると期待する。
(3)UEは、SP_P1に関連する最大ランクの数が、SP_P2に関するそれらの数と同じであることを期待する。
(4)UEは、SP_P1に関連する最大ランクの数が、SP_P2に関するそれらの数より大きいか同じであることを期待する。
(5)UEは、STxMP_P1に関連する最大ランクの数が、STxMP_P2に関するそれらの数と同じであることを期待する。
(6)UEは、STxMP_P1に関連す最大ランクの数が、STxMP_P2に関するそれらの数より大きいか、同じであることを期待する。
(7)UEは、サイズ#SP_P1=サイズ#STxMP_P1と期待する。
(8)UEは、サイズ#SP_P2=サイズ#STxMP_P2と期待する。
(9)UEは、サイズ#SP_P1=サイズ#SP_P2と期待する。
(10)UEは、サイズ#SP_P1≧サイズ#SP_P2と期待する。
 サイズ#STxMP_P1、サイズ#STxMP_P2、サイズ#SP_P1、サイズ#SP_P2の定義は、オプション1と同様であってもよい。
 第3の実施形態によれば、NCBベースPUSCHのために、STRP送信が動的に指示された場合、第1/第2のSRIフィールドを適切に使用することができる。
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい。
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること。
 ・SDM方式をサポートすること。
 ・CBベースのPUSCHのSDM方式をサポートすること。
 ・NCBベースのPUSCHのSDM方式をサポートすること。
 ・CBベースのPUSCHにおいて、第1または第2のパネル/TRP/SRSリソースセットに関連する、異なる数のSRSリソースがサポートされていること。
 ・CBベースのPUSCHにおいて、STXMP_P1、STxMP_P2、SP_P1、SP_P2に関連する、異なる数のアンテナポート数/最大ランク/フルパワーモードをサポートすること。
 ・NCBベースのPUSCHでは、第1または第2のパネル/TRP/SRSリソースセットに関連する、異なる数のSRSリソースをサポートすること。
 ・NCBベースのPUSCHにおいて、STxMP_P1、STxMP_P2、SP_P1、SP_P2に関連する、異なる最大ランクをサポートすること。
 ・各実施形態における、X、Yの値。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、CBまたはNCBベースPUSCHのための、マルチパネル同時送信SDM方式とSTRP送信との間の動的な切り替えに関する情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 コードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信する受信部と、
 下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドおよび第1の送信プリコーディング行列指標(TPMI)フィールドの少なくとも一方を適用する制御部と、
 を有する端末。
[付記2]
 前記第1のSRIフィールドのサイズおよび前記第1のTPMIフィールドのサイズは、適用される送信方式に応じて、動的に変更される
 付記1に記載の端末。
[付記3]
 第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、各SRIフィールドサイズが変更され、
 第1のTPMIフィールドのサイズと第2のTPMIフィールドのサイズとの和が変化しないように、各TPMIフィールドサイズが変更される、
 付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記第2方式が指示された場合、第1のSRIフィールドおよび第2のSRIフィールドを1つのフィールドとして結合して解釈し、
 前記制御部は、前記第2方式が指示された場合、第1のTPMIフィールドおよび第2のTPMIフィールドを1つのフィールドとして結合して解釈する、
 付記1から付記3のいずれかに記載の端末。
 本開示の一実施形態に関して、さらに、以下の発明を付記する。
[付記1]
 ノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信する受信部と、
 下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドを適用する制御部と、
 を有する端末。
[付記2]
 前記第1のSRIフィールドのサイズは、適用される送信方式に応じて、動的に変更される
 付記1に記載の端末。
[付記3]
 第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、各SRIフィールドサイズが変更される
 付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記第2方式が指示された場合、第1のSRIフィールドおよび第2のSRIフィールドを1つのフィールドとして結合して解釈する
 付記1から付記3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図12は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、コードブックベースまたはノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を送信してもよい。
 制御部110は、下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドおよび第1の送信プリコーディング行列指標(TPMI)フィールドの少なくとも一方を適用してもよい。
(ユーザ端末)
 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、ノンコードブックベースまたはコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信してもよい。
 制御部210は、下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドおよび第1の送信プリコーディング行列指標(TPMI)フィールドの少なくとも一方を適用してもよい。
 前記第1のSRIフィールドのサイズおよび前記第1のTPMIフィールドのサイズは、適用される送信方式に応じて、動的に変更されてもよい。
 第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、各SRIフィールドサイズが変更され、第1のTPMIフィールドのサイズと第2のTPMIフィールドのサイズとの和が変化しないように、各TPMIフィールドサイズが変更されてもよい。
 制御部210は、前記第2方式が指示された場合、第1のSRIフィールドおよび第2のSRIフィールドを1つのフィールドとして結合して解釈し、前記第2方式が指示された場合、第1のTPMIフィールドおよび第2のTPMIフィールドを1つのフィールドとして結合して解釈してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図15は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  ノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信する受信部と、
     下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドを適用する制御部と、
     を有する端末。
  2.  前記第1のSRIフィールドのサイズは、適用される送信方式に応じて、動的に変更される
     請求項1に記載の端末。
  3. [規則26に基づく補充 24.11.2022] 
     第1のSRIフィールドのサイズと第2のSRIフィールドのサイズとの和が変化しないように、各SRIフィールドサイズが変更される
     請求項1に記載の端末。
  4.  前記制御部は、前記第2方式が指示された場合、第1のSRIフィールドおよび第2のSRIフィールドを1つのフィールドとして結合して解釈する、
     請求項1に記載の端末。
  5.  ノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を受信する工程と、
     下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドを適用する工程と、
     を有する端末の無線通信方法。
  6.  ノンコードブックベースの物理下りリンク共有チャネル(PUSCH)のために、マルチパネル同時送信空間分割多重(SDM)を用いた第1方式と、前記PUSCHの送信が1つのパネルに関連する第2方式との間の動的な切り替えが適用され、前記第2方式を示す指示を送信する送信部と、
     下り制御情報(DCI)における第1のサウンディング参照信号(SRS)リソースインディケーター(SRI)フィールドを適用する制御部と、
     を有する基地局。
     
PCT/JP2022/041226 2022-11-04 2022-11-04 端末、無線通信方法及び基地局 WO2024095472A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041226 WO2024095472A1 (ja) 2022-11-04 2022-11-04 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041226 WO2024095472A1 (ja) 2022-11-04 2022-11-04 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2024095472A1 true WO2024095472A1 (ja) 2024-05-10

Family

ID=90930112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041226 WO2024095472A1 (ja) 2022-11-04 2022-11-04 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024095472A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Simultaneous transmission across multiple UE panels", 3GPP TSG RAN WG1 #110B-E R1- 2209496, 30 September 2022 (2022-09-30), XP052258970 *
NTT DOCOMO, INC.: "Discussion on multi-panel transmission", 3GPP TSG RAN WG1 #110B-E R1-2209893, 30 September 2022 (2022-09-30), XP052259366 *
QUALCOMM INCORPORATED: "Simultaneous multi-panel transmission", 3GPP TSG RAN WG1 #110B-E R1-2209972, 30 September 2022 (2022-09-30), XP052259444 *
SAMSUNG: "Views on UL precoding indication for STxMP", 3GPP TSG RAN WG1 #110B-E R1-2209719, 30 September 2022 (2022-09-30), XP052259192 *

Similar Documents

Publication Publication Date Title
WO2024095472A1 (ja) 端末、無線通信方法及び基地局
WO2024095473A1 (ja) 端末、無線通信方法及び基地局
WO2024176455A1 (ja) 端末、無線通信方法及び基地局
WO2024176454A1 (ja) 端末、無線通信方法及び基地局
WO2024100888A1 (ja) 端末、無線通信方法及び基地局
WO2024122035A1 (ja) 端末、無線通信方法及び基地局
WO2024195103A1 (ja) 端末、無線通信方法及び基地局
WO2024195102A1 (ja) 端末、無線通信方法及び基地局
WO2024181349A1 (ja) 端末、無線通信方法及び基地局
WO2024181350A1 (ja) 端末、無線通信方法及び基地局
WO2024029044A1 (ja) 端末、無線通信方法及び基地局
WO2024201856A1 (ja) 端末、無線通信方法及び基地局
WO2024029043A1 (ja) 端末、無線通信方法及び基地局
WO2024069927A1 (ja) 端末、無線通信方法及び基地局
WO2024171283A1 (ja) 端末、無線通信方法及び基地局
WO2023152902A1 (ja) 端末、無線通信方法及び基地局
WO2023152903A1 (ja) 端末、無線通信方法及び基地局
WO2023152901A1 (ja) 端末、無線通信方法及び基地局
WO2024209598A1 (ja) 端末、無線通信方法及び基地局
WO2024080040A1 (ja) 端末、無線通信方法及び基地局
WO2024209595A1 (ja) 端末、無線通信方法及び基地局
WO2024209597A1 (ja) 端末、無線通信方法及び基地局
WO2024085203A1 (ja) 端末、無線通信方法及び基地局
WO2023209990A1 (ja) 端末、無線通信方法及び基地局
WO2024085204A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964488

Country of ref document: EP

Kind code of ref document: A1