WO2023209949A1 - Fuel pump - Google Patents

Fuel pump Download PDF

Info

Publication number
WO2023209949A1
WO2023209949A1 PCT/JP2022/019280 JP2022019280W WO2023209949A1 WO 2023209949 A1 WO2023209949 A1 WO 2023209949A1 JP 2022019280 W JP2022019280 W JP 2022019280W WO 2023209949 A1 WO2023209949 A1 WO 2023209949A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
fuel
cylinder
chamber
fuel pump
Prior art date
Application number
PCT/JP2022/019280
Other languages
French (fr)
Japanese (ja)
Inventor
悠登 石塚
裕之 山田
稔 橋田
悟史 臼井
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/019280 priority Critical patent/WO2023209949A1/en
Publication of WO2023209949A1 publication Critical patent/WO2023209949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to a fuel pump that supplies high-pressure fuel to an engine.
  • the fuel pump is described in Patent Document 1, for example.
  • the high-pressure fuel supply pump described in Patent Document 1 has a cylindrical space that accommodates a cylinder that slidably holds a plunger attached to a pump body and that forms a pressurizing chamber.
  • the plunger moves up and down due to the rotation of a cam attached to the engine's camshaft, sucking in and discharging fuel.
  • a seal member is attached to the plunger to prevent high-pressure fuel from leaking to the low-pressure side, thereby increasing the efficiency of the discharge flow rate.
  • an object of the present invention is to supply fuel to a lower pressure side than a sealing member that is prone to insufficient fuel supply, to achieve high efficiency in discharge flow rate, and to prevent sticking of a plunger.
  • Our goal is to provide fuel pumps that can.
  • the fuel pump of the present invention includes a plunger, a cylinder that guides the reciprocating motion of the plunger, and a cylinder that communicates with a pressurizing chamber and into which the cylinder is inserted.
  • a pump body provided with an insertion hole; a sub-chamber provided on the opposite side of the plunger to the pressurizing chamber and containing low-pressure fuel; and a first annular groove provided in the sliding surface of the plunger.
  • a sealing member disposed in the cylinder and in contact with the sliding surface of the cylinder, the first annular groove and the sealing member being provided between the pressurizing chamber and the auxiliary chamber, and the cylinder , a communication hole connected to the sub-chamber is provided on a cylinder sliding surface closer to the sub-chamber than the seal member in the axial direction of the plunger.
  • the fuel pump of the present invention even when high-pressure fuel is cut off by the seal member, it is possible to form a fuel oil film on the sliding portion, and it is possible to prevent the plunger from sticking.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to an embodiment of the present invention.
  • FIG. 1 is a vertical cross-sectional view (part 1) of a high-pressure fuel supply pump according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view (part 2) of the high-pressure fuel supply pump according to an embodiment of the present invention.
  • 1 is a horizontal cross-sectional view of a high-pressure fuel supply pump according to an embodiment of the present invention, viewed from above.
  • FIG. 3 is a vertical cross-sectional view (part 3) of the high-pressure fuel supply pump according to an embodiment of the present invention.
  • FIG. 1 is a vertical cross-sectional view (part 1) of a high-pressure fuel supply pump according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view (part 2) of the high-pressure fuel supply pump according to an embodiment of the present invention.
  • 1 is a horizontal cross-sectional view of
  • FIG. 2 is an enlarged longitudinal cross-sectional view of a main part of a plunger and a cylinder surrounding area of a high-pressure fuel supply pump according to an embodiment of the present invention.
  • FIG. 7 is an enlarged vertical cross-sectional view of another example of the main parts of the plunger and cylinder peripheral portion of the high-pressure fuel supply pump according to an embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
  • the fuel supply system includes a high-pressure fuel supply pump (fuel pump) 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107. .
  • the parts of the high-pressure fuel supply pump 100 are integrated into the pump body 1.
  • Fuel in the fuel tank 103 is pumped up by a feed pump 102 that is driven based on a signal from the ECU 101.
  • the pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown), and is sent to the low-pressure fuel inlet 51 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104.
  • the high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106.
  • a plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106.
  • the plurality of injectors 107 are installed according to the number of cylinders (combustion chambers), and inject fuel according to the drive current output from the ECU 101.
  • the fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 injects fuel directly into the cylinder of the engine.
  • the fuel pressure sensor 105 outputs detected pressure data to the ECU 101.
  • the ECU 101 determines an appropriate amount of injected fuel (target injection fuel length) and appropriate fuel pressure (target (fuel pressure), etc.
  • the ECU 101 controls the driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as fuel pressure (target fuel pressure). That is, ECU 101 includes a pump control section that controls high-pressure fuel supply pump 100 and an injector control section that controls injector 107.
  • the high-pressure fuel supply pump 100 includes a pressure pulsation reduction mechanism 9, an electromagnetic suction valve 3 that is a variable capacity mechanism, a relief valve 4 (see FIG. 2), and a discharge valve 8. Fuel flowing in from the low-pressure fuel intake port 51 reaches the intake port 31b of the electromagnetic intake valve 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b.
  • the fuel that has flowed into the electromagnetic suction valve 3 passes through the valve portion 32, flows through the suction passage 1d formed in the pump body 1, and then flows into the pressurizing chamber 11.
  • a plunger 2 is inserted into the pressurizing chamber 11 so as to be able to reciprocate.
  • the plunger 2 reciprocates as power is transmitted by a cam 91 of the engine (see FIG. 2).
  • the pressurizing chamber 11 fuel is sucked in from the electromagnetic intake valve 3 during the downward stroke of the plunger 2, and the fuel is pressurized during the upward stroke.
  • the discharge valve 8 opens and high-pressure fuel is force-fed to the common rail 106 through the discharge passage 12a.
  • the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve 3.
  • the opening and closing of the electromagnetic intake valve 3 is controlled by the ECU 101.
  • FIG. 2 is a vertical cross-sectional view (part 1) of the high-pressure fuel supply pump 100 taken in a cross section perpendicular to the horizontal direction.
  • FIG. 3 is a vertical cross-sectional view (part 2) of the high-pressure fuel supply pump 100 taken in a cross section perpendicular to the horizontal direction.
  • FIG. 4 is a horizontal cross-sectional view of the high-pressure fuel supply pump 100 taken along a cross section perpendicular to the vertical direction.
  • FIG. 5 is a vertical cross-sectional view (No. 3) of the high-pressure fuel supply pump 100 taken in a cross section perpendicular to the horizontal direction.
  • the pump body 1 of the high-pressure fuel supply pump 100 is formed into a substantially cylindrical shape. As shown in FIGS. 2 and 3, the pump body 1 is provided with a first chamber 1a, a second chamber 1b, a third chamber 1c, and a suction passage 1d. Further, the pump body 1 is in close contact with the fuel pump mounting portion 90 and is fixed with a plurality of bolts (screws) not shown.
  • the first chamber 1a is a cylindrical space provided in the pump body 1, and the centerline 1A of the first chamber 1a coincides with the centerline 1A of the pump body 1.
  • One end of the plunger 2 is inserted into the first chamber 1a, and the plunger 2 reciprocates within the first chamber 1a.
  • the first chamber 1a and one end of the plunger 2 form a pressurizing chamber 11.
  • the second chamber 1b is a cylindrical space provided in the pump body 1, and the center line of the second chamber 1b is perpendicular to the center line 1A of the pump body 1 (first chamber 1a).
  • a relief valve 4 is arranged in this second chamber 1b. Note that the diameter of the second chamber 1b is smaller than the diameter of the first chamber 1a.
  • first chamber 1a and the second chamber 1b communicate with each other through a circular communication hole 1e.
  • the diameter of the communication hole 1e is the same as the diameter of the first chamber 1a, and the communication hole 1e extends one end of the first chamber 1a.
  • the diameter of the communication hole 1e is larger than the outer diameter of the plunger 2.
  • the center line of the communication hole 1e is perpendicular to the center line of the second chamber 1b.
  • the diameter of the communication hole 1e is larger than the diameter of the second chamber 1b.
  • the communication hole 1e has a tapered surface 1f whose diameter decreases toward the second chamber 1b in a cross section perpendicular to the center line of the second chamber 1b.
  • the third chamber 1c is a cylindrical space provided in the pump body 1, and is continuous with the other end of the first chamber 1a.
  • the center line 1A of the third chamber 1c coincides with the center line 1A of the first chamber 1a and the center line 1A of the pump body 1, and the diameter of the third chamber 1c is larger than the diameter of the first chamber 1a.
  • a cylinder 6 that guides the reciprocating movement of the plunger 2 is arranged in the third chamber 1c. That is, the third chamber 1c serves as a cylinder insertion hole into which the cylinder 6 is inserted.
  • the cylinder 6 is formed into a cylindrical shape, and has a press-fitting part 6a (see FIGS. 6 and 7) with the largest outer diameter in the middle thereof.
  • the outer peripheral side of the cylinder 6 is press-fitted into the third chamber 1c of the pump body 1 at a press-fitting part 6a, and one end of the cylinder 6 is connected to the top surface of the third chamber 1c (first chamber 1a and third chamber 1c).
  • the stepped part between the In the cylinder 6, only the press-fitting part 6a has a press-fitting dimension, and the diameter of the press-fitting part 6a on the pressurizing chamber 11 side (one end side) is set smaller than that of the press-fitting part 6a, and the diameter of the press-fitting part 6a on the pressurizing chamber 11 side (one end side) is set smaller than the press-fitting part 6a.
  • the plunger 2 is in slidable contact with the inner peripheral surface of the cylinder 6.
  • An O-ring 93 which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the pump body 1. This O-ring 93 prevents engine oil from leaking to the outside of the engine (internal combustion engine) through between the fuel pump mounting portion 90 and the pump body 1.
  • a tappet 92 is provided at the lower end of the plunger 2 to convert the rotational motion of a cam 91 attached to the camshaft of the engine into vertical motion and transmit it to the plunger 2.
  • the plunger 2 is urged toward the cam 91 by a spring 16 via a retainer 15, and is pressed against a tappet 92.
  • the tappet 92 reciprocates as the cam 91 rotates.
  • the plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurizing chamber 11.
  • a seal holder 17 is arranged between the cylinder 6 and the retainer 15.
  • the seal holder 17 is formed into a cylindrical shape into which the plunger 2 is inserted, and has a subchamber 17a at the upper end on the cylinder 6 side.
  • the auxiliary chamber 17a is continuous with the lower end of the third chamber 1c where the cylinder 6 is arranged. That is, the auxiliary chamber 17a is provided at a position opposite to the pressurizing chamber 11 (first chamber 1a side) of the plunger 2. Further, the seal holder 17 holds a plunger seal 18 at a lower end portion on the retainer 15 side.
  • the plunger seal 18 is in slidable contact with the outer periphery of the plunger 2, and when the plunger 2 moves back and forth, it seals the fuel in the subchamber 17a and prevents the fuel in the subchamber 17a from flowing into the engine. There is. Further, the plunger seal 18 prevents lubricating oil (including engine oil) that lubricates sliding parts within the engine from flowing into the inside of the pump body 1.
  • the plunger 2 reciprocates in the vertical direction.
  • the volume of the pressurizing chamber 11 increases, and when the plunger 2 ascends, the volume of the pressurizing chamber 11 decreases. That is, the plunger 2 is arranged so as to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 11.
  • the plunger 2 is formed into a stepped cylindrical shape extending along the center line 1A (axial direction) of the pump body 1. That is, the center line 1A (axial direction) of the plunger 2 coincides with the center line 1A of the pump body 1, and the plunger 2 reciprocates along the center line 1A (axial direction).
  • the plunger 2 has a large diameter portion 2a and a small diameter portion 2b.
  • the outer peripheral surface of the large diameter portion 2a of the plunger 2 is in slidable contact with the inner peripheral surface of the cylinder 6.
  • the plunger 2 reciprocates, the large diameter portion 2a, the small diameter portion 2b, and the stepped portion 2c between the large diameter portion 2a and the small diameter portion 2b are located in the subchamber 17a. Therefore, the volume of the subchamber 17a is increased or decreased (varied) by the reciprocating motion of the plunger 2.
  • the auxiliary chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 5).
  • the subchamber 17a accommodates low pressure fuel.
  • the fuel passage 10c is provided in the pump body 1 so as to pass through the outer peripheral side of the cylinder 6 (third chamber 1c) in the vertical direction (parallel to the center line 1A of the pump body 1).
  • the fuel passage 10c when the plunger 2 descends, fuel flows from the sub-chamber 17a to the low-pressure fuel chamber 10, and when the plunger 2 ascends, fuel flows from the low-pressure fuel chamber 10 to the sub-chamber 17a. do.
  • the fuel flow rate in and out of the pump during the suction stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced, and pressure pulsations occurring inside the high-pressure fuel supply pump 100 can be reduced.
  • FIG. 6 is an enlarged longitudinal cross-sectional view of the main parts of the vicinity of the plunger 2 and cylinder 6 of the high-pressure fuel supply pump 100.
  • a sealing member 20 that seals high-pressure fuel is placed in the plunger 2 or the cylinder 6 at the sliding portion between the plunger 2 and the cylinder 6 to prevent the discharge flow rate from decreasing.
  • the high-pressure fuel was sealed, there was a risk that the plunger 2 would become stuck to the cylinder 6 due to lack of oil film in the sliding portion closer to the auxiliary chamber 17a than the seal member 20.
  • the present embodiment provides fuel supply to the sliding parts of the plunger 2 and cylinder 6 below the seal member 20, which is prone to run out of oil film even when high-pressure fuel is in a sealed state.
  • the structure is designed to allow oil film formation.
  • An annular groove 2r is formed in the outer peripheral part (sliding part) of the large diameter part 2a of the plunger 2, and a ring-shaped seal member (also referred to as a seal ring) 20 is arranged in the annular groove 2r.
  • the seal member 20 is configured to be in contact with the cylinder inner circumferential portion 6b, which is the sliding portion of the cylinder 6, between the pressurizing chamber 11 and the auxiliary chamber 17a.
  • a fuel supply hole 6d is formed in the cylinder 6 on the side closer to the sub-chamber 17a than the seal member 20, which is a communication hole through which the sub-chamber 17a, the plunger 2, and the sliding portion of the cylinder 6 are connected.
  • the fuel supply hole 6d which is a communication hole connected to the sub-chamber 17a, is formed in the inner circumferential portion 6b of the cylinder that is closer to the sub-chamber 17a than the seal member 20 in the vertical direction.
  • the fuel supply hole 6d is preferably formed closer to the auxiliary chamber 17a than the seal member 20 even when the plunger 2 is at the bottom dead center.
  • the diameter of the cylinder 6 on the sub-chamber 17a side is set smaller than that of the press-fitting part 6a, and the diameter of the cylinder 6 is set smaller than the press-fitting part 6a (on the sub-chamber 17a side than the press-fitting part 6a).
  • 6c protrudes into the auxiliary chamber 17.
  • the fuel supply hole 6d is provided in the reduced diameter portion 6c of the cylinder 6 so as to pass horizontally from the cylinder inner circumferential portion 6b (sliding portion side) to the outer circumferential portion (auxiliary chamber 17a side).
  • the center line 6d is orthogonal to the center line 1A of the pump body 1.
  • At least one fuel supply hole 6d may be formed around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction), but as shown in FIG. That's good.
  • the fuel supply hole 6d and the fuel passage 10c are formed at the same position around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction), the fuel flow through the fuel passage 10c allows the fuel supply hole 6d to (See dotted arrow).
  • annular groove 6e may be formed on the inner peripheral side of the fuel supply hole 6d.
  • the annular groove 6e connected to the fuel supply hole 6d may be formed in the cylinder inner circumferential portion 6b, which is the sliding portion of the cylinder 6.
  • the annular groove 6e may be formed to have a vertical width larger or smaller than the vertical width of the fuel supply hole 6d. Thereby, fuel can be supplied to the entire circumferential direction of the plunger 2.
  • the volume of the subchamber 17a is configured to change due to the reciprocating motion of the plunger 2
  • the fuel flow in the subchamber 17a due to the volume change of the subchamber 17a effectively supplies fuel to the fuel supply hole 6d. It becomes possible to supply
  • the step portion 2c of the plunger 2 is (always) located in the subchamber 17a, the step portion 2c promotes volume fluctuations in the subchamber 17a, so that fuel can be more effectively supplied to the fuel supply hole 6d. becomes possible.
  • a fuel scraping groove (scraping groove) 2d may be provided closer to the auxiliary chamber 17a than the annular groove 2r of the outer peripheral part (sliding part) of the large diameter portion 2a of the plunger 2 and the seal member 20.
  • the scraping groove 2d may be formed in at least a part of the circumferential direction of the plunger 2, but may be formed in an annular shape in the entire circumferential direction of the plunger 2. This scraping groove 2d is preferably formed at a position where at least a portion thereof overlaps with the fuel supply hole 6d and the annular groove 6e due to the reciprocating movement of the plunger 2 (in other words, at a position where they coincide in the movable range of the plunger 2).
  • the scraping groove 2d is formed at a position overlapping the fuel supply hole 6d and the annular groove 6e when the plunger 2 is at the bottom dead center.
  • the fuel accumulated in the fuel supply hole 6d or the annular groove 6e can be supplied in the axial direction of the plunger 2, and the range in which an oil film can be formed can be further expanded.
  • the sealing member 20 may be arranged not on the plunger 2 but on the cylinder inner peripheral portion 6b, which is the sliding portion of the cylinder 6. That is, the sealing member 20 may be interposed between the plunger 2 and the cylinder 6 so as to seal the gap between the sliding parts of the plunger 2 and the cylinder 6.
  • FIG. 7 is an enlarged longitudinal cross-sectional view of the main parts of another example of the vicinity of the plunger 2 and cylinder 6 of the high-pressure fuel supply pump 100.
  • the cylinder 6 has a fuel supply hole 6g, which is a communication hole where the pressurizing chamber 11, the plunger 2, and the sliding part of the cylinder 6 are connected on the side closer to the pressurizing chamber 11 than the sealing member 20. may be formed.
  • the fuel supply hole 6g which is a communication hole connected to the pressurizing chamber 11, may be formed in the inner peripheral portion 6b of the cylinder that is closer to the pressurizing chamber 11 than the seal member 20 in the vertical direction.
  • the fuel supply hole 6g extends horizontally through a portion of the cylinder 6 closer to the pressurizing chamber 11 (one end side) than the press-fitting portion 6a (a portion disposed in the third chamber 1c of the pump body 1).
  • the center line of the fuel supply hole 6g is perpendicular to the center line 1A of the pump body 1.
  • At least one fuel supply hole 6g may be formed around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction).
  • a communication groove 6j is formed in the top surface 6i which is in contact with the pump body 1 on the pressurizing chamber 11 side, which communicates the inner and outer circumferences.
  • At least one communication groove 6j may be formed around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction).
  • the fuel supply hole 6g on the pressurizing chamber 11 side has a gap between the cylinder 6 (the part closer to the pressurizing chamber 11 than the press-fitting part 6a) and the third chamber 1c of the pump body 1 (an annular gap on the outer circumferential side, and It is connected to the pressurizing chamber 11 through a communication groove 6j) on the top surface 6i side.
  • the configuration is such that fuel passes through the fuel supply hole 6g on the pressure chamber 11 side and is supplied to the sliding portion of the plunger 2. As a result, even when fuel lubrication is depleted due to fuel vaporization, etc., a stable oil film can be formed in the sliding portion on the pressure chamber 11 side of the seal member 20, leading to prevention of sticking of the plunger 2.
  • annular groove 6h may be provided on the inner peripheral side of the fuel supply hole 6g.
  • annular groove 6h connected to the fuel supply hole 6g may be provided in the cylinder inner peripheral portion 6b, which is the sliding portion of the cylinder 6.
  • the vertical width of the annular groove 6h may be larger or smaller than the vertical width of the fuel supply hole 6g.
  • scraping groove 2g may be provided.
  • the scraping groove 2g may be formed in at least a part of the circumferential direction of the plunger 2, but may be formed in an annular shape in the entire circumferential direction of the plunger 2.
  • This scraping groove 2g is preferably formed at a position where at least a portion thereof overlaps with the fuel supply hole 6g and the annular groove 6h due to the reciprocating movement of the plunger 2 (in other words, at a position where they coincide in the movable range of the plunger 2).
  • the scraping groove 2g is formed at a position overlapping the fuel supply hole 6g and the annular groove 6h when the plunger 2 is near the top dead center.
  • fuel supply holes 6d and 6g may be provided either in the vertical direction with respect to the seal member 20, or may be configured to include both.
  • a low-pressure fuel chamber 10 is provided in the upper part of the pump body 1 of the high-pressure fuel supply pump 100, and a suction joint 5 is attached to the side surface of the pump body 1.
  • the intake joint 5 is connected to a low pressure pipe 104 through which fuel supplied from a fuel tank 103 (see FIG. 1) passes. Fuel in the fuel tank 103 is supplied into the pump body 1 from the suction joint 5.
  • the suction joint 5 has a low-pressure fuel suction port 51 connected to the low-pressure pipe 104 and a suction flow path 52 communicating with the low-pressure fuel suction port 51.
  • the fuel that has passed through the suction passage 52 passes through a suction filter 53 provided inside the pump body 1 and is supplied to the low-pressure fuel chamber 10 .
  • the suction filter 53 removes foreign substances present in the fuel and prevents foreign substances from entering the high-pressure fuel supply pump 100.
  • the low pressure fuel chamber 10 is provided with a low pressure fuel passage 10a and an intake passage 10b (see FIG. 2).
  • a pressure pulsation reduction mechanism 9 is provided in the low pressure fuel flow path 10a.
  • the pressure pulsation reduction mechanism 9 reduces pressure pulsations generated within the high-pressure fuel supply pump 100 from spreading to the low-pressure piping 104.
  • the pressure pulsation reduction mechanism 9 is formed of a metal diaphragm damper made by laminating two corrugated disc-shaped metal plates together at their outer peripheries and injecting an inert gas such as argon into the interior.
  • the metal diaphragm damper of the pressure pulsation reduction mechanism 9 absorbs or reduces pressure pulsations by expanding and contracting.
  • the suction passage 10b communicates with the suction port 31b (see FIG. 2) of the electromagnetic suction valve 3, and the fuel that has passed through the low-pressure fuel passage 10a is delivered to the suction port 31b of the electromagnetic suction valve 3 via the suction passage 10b. reach.
  • the electromagnetic suction valve 3 is inserted into a side hole formed in the pump body 1.
  • the electromagnetic suction valve 3 includes a suction valve seat 31 press-fitted into a side hole formed in the pump body 1, a valve portion 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor 36. are doing.
  • the suction valve seat 31 is formed into a cylindrical shape, and a seating portion 31a is provided on the inner circumference. Further, the suction valve seat 31 is formed with a suction port 31b that reaches from the outer circumference to the inner circumference. This suction port 31b communicates with the suction passage 10b in the low pressure fuel chamber 10 described above.
  • a stopper 37 facing the seating portion 31a of the suction valve seat 31 is arranged in the side hole formed in the pump body 1, and the valve portion 32 is arranged between the stopper 37 and the seating portion 31a. Further, a valve biasing spring 38 is interposed between the stopper 37 and the valve portion 32. The valve biasing spring 38 biases the valve portion 32 toward the seating portion 31a.
  • the valve portion 32 By contacting the seating portion 31a, the valve portion 32 closes the communication portion between the suction port 31b and the pressurizing chamber 11, and the electromagnetic suction valve 3 is placed in a closed state. On the other hand, the valve portion 32 opens the communication portion between the suction port 31b and the pressurizing chamber 11 by coming into contact with the stopper 37, and the electromagnetic suction valve 3 becomes open.
  • the rod 33 passes through the cylindrical hole of the suction valve seat 31, and one end (inner end) is in contact with the valve portion 32.
  • the rod biasing spring 34 biases the valve portion 32 via the rod 33 in the valve opening direction, which is the stopper 37 side.
  • One end (inner end) of the rod biasing spring 34 is engaged with the other end (outer end) of the rod 33, and the other end (outer end) of the rod biasing spring 34 surrounds the rod biasing spring 34.
  • the magnetic core 39 is engaged with the magnetic core 39 arranged as shown in FIG.
  • the anchor 36 faces the end surface of the magnetic core 39. Further, the anchor 36 is engaged with a flange provided at the intermediate portion of the rod 33.
  • the electromagnetic coil 35 is arranged so as to go around the magnetic core 39.
  • a terminal member 40 is electrically connected to the electromagnetic coil 35, and a current flows through the terminal member 40.
  • the rod 33 In a non-energized state where no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the valve portion 32 in the valve opening direction. As a result, the valve portion 32 is separated from the seating portion 31a and comes into contact with the stopper 37, and the electromagnetic suction valve 3 is in an open state. That is, the electromagnetic suction valve 3 is of a normally open type, which opens in a non-energized state.
  • the discharge valve 8 is connected to the outlet side (downstream side) of the pressurizing chamber 11.
  • the discharge valve 8 includes a discharge valve seat 81 that communicates with the pressurizing chamber 11, a valve portion 82 that comes into contact with and separates from the discharge valve seat 81, and a discharge valve spring 83 that urges the valve portion 82 toward the discharge valve seat 81. It has a discharge valve stopper 84 that determines the stroke (movement distance) of the valve portion 82.
  • the discharge valve 8 has a plug 85 that blocks leakage of fuel to the outside.
  • the discharge valve stopper 84 is press-fitted into the plug 85.
  • the plug 85 is joined to the pump body 1 by welding at a welding portion 86.
  • the discharge valve 8 communicates with a discharge valve chamber 87 that is opened and closed by a valve portion 82 .
  • the discharge valve chamber 87 is formed in the pump body 1.
  • the pump body 1 is provided with a side hole that communicates with the second chamber 1b (see FIG. 2), and the discharge joint 12 is inserted into the side hole.
  • the discharge joint 12 has the above-mentioned discharge passage 12a that communicates with the side hole of the pump body 1 and the discharge valve chamber 87, and a fuel discharge port 12b that is one end of the discharge passage 12a.
  • the fuel discharge port 12b of the discharge joint 12 communicates with the common rail 106 (see FIG. 1). Note that the discharge joint 12 is fixed to the pump body 1 by welding through a welded portion 12c.
  • the discharge valve 8 When the discharge valve 8 is in the closed state, the (high pressure) fuel in the pressurizing chamber 11 passes through the discharge valve 8 and reaches the discharge valve chamber 87. The fuel that has reached the discharge valve chamber 87 is then discharged to the common rail 106 (see FIG. 1) through the fuel discharge port 12b of the discharge joint 12.
  • the discharge valve 8 functions as a check valve that restricts the direction of fuel flow.
  • the relief valve 4 shown in FIG. 2 is activated when some problem occurs in the common rail 106 or a member beyond it and the pressure of the common rail 106 becomes high beyond a predetermined pressure.
  • This valve is configured to return the pressure to the pressurizing chamber 11.
  • This relief valve 4 is arranged at a higher position than the discharge valve 8 (see FIG. 5) in the direction in which the plunger 2 reciprocates (vertical direction).
  • the relief valve 4 includes a relief spring 41, a relief valve holder 42, a valve portion 43, and a seat member 44.
  • This relief valve 4 is inserted through the discharge joint 12 and arranged in the second chamber 1b.
  • the relief spring 41 has one end in contact with the pump body 1 (one end of the second chamber 1b), and the other end in contact with the relief valve holder 42.
  • the relief valve holder 42 is engaged with the valve portion 43 , and the urging force of the relief spring 41 acts on the valve portion 43 via the relief valve holder 42 .
  • the valve portion 43 is pressed by the urging force of the relief spring 41 and closes the fuel passage of the seat member 44.
  • the moving direction of the valve portion 43 (relief valve holder 42) is orthogonal to the direction in which the plunger 2 reciprocates.
  • the center line of the relief valve 4 (the center line of the relief valve holder 42) is perpendicular to the center line of the plunger 2.
  • the seat member 44 has a fuel passage facing the valve part 43, and the side of the fuel passage opposite to the valve part 43 communicates with the discharge passage 12a. Movement of fuel between the pressurizing chamber 11 (upstream side) and the seat member 44 (downstream side) is blocked by the valve portion 43 coming into contact with (adhering to) the seat member 44 to close the fuel passage.
  • the moving direction of the valve part 43 (relief valve holder 42) in the relief valve 4 is different from the moving direction of the valve part 82 in the discharge valve 8 described above. That is, the moving direction of the valve part 82 in the discharge valve 8 is the first radial direction of the pump body 1, and the moving direction of the valve part 43 in the relief valve 4 is in the second radial direction, which is different from the first radial direction of the pump body 1. It is the direction.
  • the discharge valve 8 and the relief valve 4 can be arranged in positions where they do not overlap with each other in the vertical direction, and the space inside the pump body 1 can be effectively utilized, and the size of the pump body 1 can be reduced. .
  • the electromagnetic suction valve 3 As described above, if the electromagnetic suction valve 3 is closed during the ascent stroke, the fuel sucked into the pressurizing chamber 11 during the suction stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic suction valve 3 is open during the ascending process, the fuel in the pressurizing chamber 11 is pushed back to the suction passage 1d side and is not discharged to the common rail 106 side. In this way, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve 3. The opening and closing of the electromagnetic intake valve 3 is controlled by the ECU 101.
  • the volume of the pressurizing chamber 11 increases and the fuel pressure within the pressurizing chamber 11 decreases. This reduces the fluid pressure difference between the suction port 31b and the pressurizing chamber 11 (hereinafter referred to as "the fluid pressure difference before and after the valve portion 32").
  • the biasing force of the rod biasing spring 34 becomes larger than the fluid pressure difference across the valve portion 32, the rod 33 moves in the valve opening direction, and the valve portion 32 separates from the seating portion 31a of the suction valve seat 31. , the electromagnetic intake valve 3 becomes open.
  • the fuel in the intake port 31b passes between the valve part 32 and the seating part 31a, passes through a plurality of fuel passage holes (not shown) in the stopper 37, and enters the pressurizing chamber 11. flows into.
  • the electromagnetic suction valve 3 is in the open state, the valve portion 32 comes into contact with the stopper 37, so that the position of the valve portion 32 in the valve opening direction is regulated.
  • the gap that exists between the valve portion 32 and the seating portion 31a when the electromagnetic suction valve 3 is in the open state is the movable range of the valve portion 32, and this is the valve opening stroke.
  • the valve portion 32 has a biasing force in the valve opening direction corresponding to the difference between the biasing forces between the rod biasing spring 34 and the valve biasing spring 38, and a backflow of fuel from the pressurizing chamber 11 to the low pressure fuel flow path 10a.
  • the force that presses the valve in the closing direction is exerted by the fluid force generated when the valve is closed.
  • the difference between the biasing forces between the rod biasing spring 34 and the valve biasing spring 38 is set to be larger than the fluid force.
  • the volume of the pressurizing chamber 11 decreases as the plunger 2 rises. Therefore, the fuel that has been sucked into the pressurizing chamber 11 passes between the valve section 32 and the seating section 31a again and is returned to the suction port 31b, causing the pressure inside the pressurizing chamber 11 to rise. There is no. This stroke is called a return stroke.
  • valve portion 32 When the anchor 36 (rod 33) moves in the valve-closing direction, the valve portion 32 is released from the biasing force in the valve-opening direction, and is freed from the biasing force by the valve biasing spring 38 and the flow caused by the fuel flowing into the suction passage 10b. Moves in the valve closing direction depending on physical strength. Then, when the valve portion 32 contacts the seating portion 31a of the suction valve seat 31 (the valve portion 32 is seated on the seating portion 31a), the electromagnetic suction valve 3 enters the closed state.
  • the pressure of the fuel in the pressurizing chamber 11 increases as the plunger 2 rises, and when the pressure reaches a predetermined level or higher, it passes through the discharge valve 8 and flows into the common rail 106 (see FIG. 1). is discharged to.
  • This stroke is called a discharge stroke. That is, the upward stroke of the plunger 2 from the lower starting point to the upper starting point consists of a return stroke and a discharge stroke.
  • the timing of energizing the electromagnetic coil 35 is made earlier, the proportion of the return stroke during the upward stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the suction passage 10b, and more fuel is discharged under high pressure.
  • the timing of energizing the electromagnetic coil 35 is delayed, the proportion of the return stroke during the upward stroke increases, and the proportion of the discharge stroke decreases. As a result, more fuel is returned to the suction passage 10b, and less fuel is discharged under high pressure. In this way, by controlling the timing of energization to the electromagnetic coil 35, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
  • the high-pressure fuel supply pump (fuel pump) 100 of this embodiment communicates with the plunger 2, the cylinder 6 that guides the reciprocating movement of the plunger 2, and the pressurizing chamber 11, and the cylinder 6 communicates with the pressurizing chamber 11.
  • a pump body 1 provided with a cylinder insertion hole (third chamber 1c) into which the cylinder is inserted;
  • a sealing member 20 is provided, which is arranged in a first annular groove 2r provided on the sliding surface of the plunger 2 and in contact with the sliding surface of the cylinder 6.
  • the first annular groove 2r and the seal member 20 are provided between the pressurizing chamber 11 and the auxiliary chamber 17a, and the cylinder 6 is located closer to the seal member 20 in the axial direction of the plunger 2.
  • the cylinder sliding surface on the sub-chamber 17a side has a communication hole (fuel supply hole 6d) connected to the sub-chamber 17a.
  • This communication hole (fuel supply hole 6d) makes it possible to supply fuel to the sliding parts of the plunger 2 and cylinder 6 to form a fuel oil film even when high-pressure fuel is cut off by the seal member 20. This makes it possible to prevent the plunger 2 from sticking.
  • the cylinder sliding surface has a second annular groove 6e connected to the communication hole (fuel supply hole 6d). Further, in the axial direction of the plunger 2, the width of the second annular groove 6e is larger than the width of the communication hole (fuel supply hole 6d).
  • This second annular groove 6e allows fuel to be supplied to the entire circumferential gap of the plunger 2.
  • volume of the subchamber 17a is configured to change due to the reciprocating movement of the plunger 2.
  • low-pressure fuel can be effectively supplied to the communication hole (fuel supply hole 6d) by the flow of fuel due to the volume change in the subchamber 17a.
  • the plunger 2 has a stepped portion 2c, and the stepped portion 2c is (always) located in the subchamber 17a.
  • the scraping groove 2d allows the fuel accumulated in the communication hole (fuel supply hole 6d) and the second annular groove 6e to be supplied in the axial direction of the plunger 2, thereby making it possible to more effectively prevent the plunger 2 from sticking.
  • the pump body 1 is provided with a fuel passage 10c that communicates the auxiliary chamber 17a and the low-pressure fuel chamber 10, and the communication hole (fuel supply hole 6d) and the fuel passage 10c are arranged around the axis of the plunger 2 ( provided at the same position in the circumferential direction).
  • the cylinder 6 has a separate communication hole (fuel supply hole 6g ).
  • the separate communication hole (fuel supply hole 6g) is connected to the pressurizing chamber 11 through a gap between the cylinder 6 and the cylinder insertion hole (third chamber 1c) of the pump body 1.
  • This separate communication hole makes it possible to form a stable oil film on the sliding part closer to the pressurizing chamber 11 than the seal member 20, even when fuel lubrication is depleted due to fuel vaporization, etc. It is possible to prevent the plunger 2 from sticking.
  • the cylinder sliding surface has a third annular groove 6h connected to the separate communication hole (fuel supply hole 6g). Further, in the axial direction of the plunger 2, the width of the third annular groove 6h is larger than the width of the separate communication hole (fuel supply hole 6g).
  • This third annular groove 6h allows fuel to be supplied to the entire circumferential gap of the plunger 2.
  • the scraping groove 2g allows the fuel accumulated in the separate communication hole (fuel supply hole 6g) and the third annular groove 6h to be supplied in the axial direction of the plunger 2, thereby more effectively preventing the plunger 2 from sticking. can.
  • the high-pressure fuel supply pump (fuel pump) 100 of the present embodiment described above has a fuel supply hole that guides fuel to a lower pressure side than the seal member 20 where the sliding portion of the cylinder 6 and the plunger 2 tends to be short of fuel supply. is provided in the cylinder 6.
  • the cylinder 6 is provided with a fuel supply hole that connects the plunger 2, the sliding portion of the cylinder 6, and the auxiliary chamber 17a.
  • the high-pressure fuel supply pump (fuel pump) 100 of the present embodiment even if high-pressure fuel is cut off by the seal member 20, it is possible to form a fuel oil film on the sliding part, and the plunger 2 Sticking can be prevented.
  • 1...Pump body 1a...First chamber, 1b...Second chamber, 1c...Third chamber (cylinder insertion hole), 1d...Suction passage, 1e...Communication hole, 1f...Tapered surface, 1g...Top surface (stepped part) ), 1A... Center line, 2... Plunger, 2a... Plunger large diameter part, 2b... Plunger small diameter part, 2c... Plunger step part, 2d... Scraping groove, 2g... Scraping groove (separate scraping groove), 2r... Annular groove (first annular groove), 3... Electromagnetic suction valve, 4... Relief valve, 5... Suction joint, 6... Cylinder, 6a... Press-fitting part, 6b...
  • Stopper 39... Magnetic core, 40... Terminal member, 42... Relief valve holder, 43... Valve part, 44... Seat member, 81... Discharge valve seat, 82... Valve section, 84... Discharge valve stopper, 85... Plug, 100... High pressure fuel supply pump (fuel pump), 101... ECU, 102... Feed pump, 103... Fuel tank , 104...Low pressure piping, 105...Fuel pressure sensor, 106...Common rail, 107...Injector

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

The present invention provides a fuel pump that supplies fuel to a side having lower pressure than a seal member, which is prone to insufficient fuel supply, that achieves higher efficiency for a discharge flow rate, and that can prevent sticking of a plunger. The fuel pump comprises a seal member 20 that is disposed in an annular groove 2r provided in a sliding surface of a plunger 2, and that makes contact with a sliding surface of a cylinder 6. The annular groove 2r and the seal member 20 are provided between a compression chamber 11 and an auxiliary chamber 17a. The cylinder 6 has a communication hole (fuel supply hole 6d) that is connected to the auxiliary chamber 17a, on the cylinder sliding surface further to the auxiliary chamber 17a side than the seal member 20 in the axial direction of the plunger 2.

Description

燃料ポンプFuel pump
 本発明は、燃料を高圧にしてエンジンに供給する燃料ポンプに関する。 The present invention relates to a fuel pump that supplies high-pressure fuel to an engine.
 燃料ポンプとしては、例えば、特許文献1に記載されている。特許文献1に記載された高圧燃料供給ポンプは、ポンプボディに取り付けられたプランジャを摺動自在に保持するシリンダを収容するとともに加圧室を形成する筒型状の空間を有している。エンジンのカムシャフトに取り付けられたカムの回転運動によりプランジャが上下運動することで燃料を吸入、吐出する。プランジャには高圧燃料を低圧側へ漏れるのを遮断するシール部材が取り付けられており、吐出流量の高効率化を図っている。 The fuel pump is described in Patent Document 1, for example. The high-pressure fuel supply pump described in Patent Document 1 has a cylindrical space that accommodates a cylinder that slidably holds a plunger attached to a pump body and that forms a pressurizing chamber. The plunger moves up and down due to the rotation of a cam attached to the engine's camshaft, sucking in and discharging fuel. A seal member is attached to the plunger to prevent high-pressure fuel from leaking to the low-pressure side, thereby increasing the efficiency of the discharge flow rate.
国際公開第2018/009390号International Publication No. 2018/009390
 しかしながら、特許文献1に記載されている高圧燃料供給ポンプは、シール部材により高圧燃料を低圧側へ漏れるのを遮断することで、シール部材より低圧側が燃料供給不足になりやすくなることで油膜切れが発生し、プランジャがシリンダに固着(焼き付き)する事象が発生する問題があった。 However, in the high-pressure fuel supply pump described in Patent Document 1, the seal member blocks the high-pressure fuel from leaking to the low-pressure side, so that the low-pressure side is more likely to be short of fuel supply than the seal member, and the oil film runs out. There was a problem in which the plunger became stuck (seized) to the cylinder.
 本発明の目的は、上記の問題点を考慮し、燃料供給不足になりやすいシール部材よりも低圧側に燃料を供給し、吐出流量の高効率化を達成し、且つプランジャの固着を防止することができる燃料ポンプを提供することにある。 In consideration of the above-mentioned problems, an object of the present invention is to supply fuel to a lower pressure side than a sealing member that is prone to insufficient fuel supply, to achieve high efficiency in discharge flow rate, and to prevent sticking of a plunger. Our goal is to provide fuel pumps that can.
 上記課題を解決し、本発明の目的を達成するため、本発明の燃料ポンプは、プランジャと、前記プランジャの往復運動をガイドするシリンダと、加圧室と連通し、前記シリンダが挿入されるシリンダ挿入孔が設けられたポンプボディと、前記プランジャの前記加圧室と反対側の位置に設けられ、低圧燃料を収容した副室と、前記プランジャの摺動面に設けられた第1の環状溝に配置され、前記シリンダの摺動面と接するシール部材と、を備え、前記第1の環状溝および前記シール部材は、前記加圧室と前記副室の間に設けられており、前記シリンダは、前記プランジャの軸方向において前記シール部材よりも前記副室側のシリンダ摺動面に前記副室と接続される連通孔を有する。 In order to solve the above problems and achieve the objects of the present invention, the fuel pump of the present invention includes a plunger, a cylinder that guides the reciprocating motion of the plunger, and a cylinder that communicates with a pressurizing chamber and into which the cylinder is inserted. a pump body provided with an insertion hole; a sub-chamber provided on the opposite side of the plunger to the pressurizing chamber and containing low-pressure fuel; and a first annular groove provided in the sliding surface of the plunger. a sealing member disposed in the cylinder and in contact with the sliding surface of the cylinder, the first annular groove and the sealing member being provided between the pressurizing chamber and the auxiliary chamber, and the cylinder , a communication hole connected to the sub-chamber is provided on a cylinder sliding surface closer to the sub-chamber than the seal member in the axial direction of the plunger.
 本発明の燃料ポンプによれば、シール部材によって高圧燃料が遮断された状態にあっても、摺動部に燃料油膜を形成することが可能となり、プランジャの固着を防止することができる。 According to the fuel pump of the present invention, even when high-pressure fuel is cut off by the seal member, it is possible to form a fuel oil film on the sliding portion, and it is possible to prevent the plunger from sticking.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.
本発明の一実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to an embodiment of the present invention. 本発明の一実施形態に係る高圧燃料供給ポンプの縦断面図(その1)である。FIG. 1 is a vertical cross-sectional view (part 1) of a high-pressure fuel supply pump according to an embodiment of the present invention. 本発明の一実施形態に係る高圧燃料供給ポンプの縦断面図(その2)である。FIG. 2 is a vertical cross-sectional view (part 2) of the high-pressure fuel supply pump according to an embodiment of the present invention. 本発明の一実施形態に係る高圧燃料供給ポンプの上方から見た水平方向断面図である。1 is a horizontal cross-sectional view of a high-pressure fuel supply pump according to an embodiment of the present invention, viewed from above. 本発明の一実施形態に係る高圧燃料供給ポンプの縦断面図(その3)である。FIG. 3 is a vertical cross-sectional view (part 3) of the high-pressure fuel supply pump according to an embodiment of the present invention. 本発明の一実施形態に係る高圧燃料供給ポンプのプランジャとシリンダ周辺部の要部拡大縦断面図である。FIG. 2 is an enlarged longitudinal cross-sectional view of a main part of a plunger and a cylinder surrounding area of a high-pressure fuel supply pump according to an embodiment of the present invention. 本発明の一実施形態に係る高圧燃料供給ポンプのプランジャとシリンダ周辺部の他例の要部拡大縦断面図である。FIG. 7 is an enlarged vertical cross-sectional view of another example of the main parts of the plunger and cylinder peripheral portion of the high-pressure fuel supply pump according to an embodiment of the present invention.
 以下、本発明の一実施形態に係る高圧燃料供給ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。 Hereinafter, a high-pressure fuel supply pump according to an embodiment of the present invention will be described. Note that common members in each figure are given the same reference numerals.
[燃料供給システム]
 最初に、本実施形態に係る高圧燃料供給ポンプ(燃料ポンプ)を用いた燃料供給システムについて、図1を用いて説明する。
[Fuel supply system]
First, a fuel supply system using a high-pressure fuel supply pump (fuel pump) according to the present embodiment will be described using FIG. 1.
 図1は、本実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。 FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
 図1に示すように、燃料供給システムは、高圧燃料供給ポンプ(燃料ポンプ)100と、ECU(Engine Control Unit)101と、燃料タンク103と、コモンレール106と、複数のインジェクタ107とを備えている。高圧燃料供給ポンプ100の部品は、ポンプボディ1に一体に組み込まれている。 As shown in FIG. 1, the fuel supply system includes a high-pressure fuel supply pump (fuel pump) 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107. . The parts of the high-pressure fuel supply pump 100 are integrated into the pump body 1.
 燃料タンク103の燃料は、ECU101からの信号に基づいて駆動するフィードポンプ102によって汲み上げられる。汲み上げられた燃料は、不図示のプレッシャレギュレータにより適切な圧力に加圧され、低圧配管104を通して高圧燃料供給ポンプ100の低圧燃料吸入口51に送られる。 Fuel in the fuel tank 103 is pumped up by a feed pump 102 that is driven based on a signal from the ECU 101. The pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown), and is sent to the low-pressure fuel inlet 51 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104.
 高圧燃料供給ポンプ100は、燃料タンク103から供給された燃料を加圧して、コモンレール106に圧送する。コモンレール106には、複数のインジェクタ107と、燃料圧力センサ105が装着されている。複数のインジェクタ107は、気筒(燃焼室)数にあわせて装着されており、ECU101から出力される駆動電流に従って燃料を噴射する。本実施形態の燃料供給システムは、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムである。 The high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106. A plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106. The plurality of injectors 107 are installed according to the number of cylinders (combustion chambers), and inject fuel according to the drive current output from the ECU 101. The fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 injects fuel directly into the cylinder of the engine.
 燃料圧力センサ105は、検出した圧力データをECU101に出力する。ECU101は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料長)や適切な燃料圧力(目標燃料圧力)等を演算する。 The fuel pressure sensor 105 outputs detected pressure data to the ECU 101. The ECU 101 determines an appropriate amount of injected fuel (target injection fuel length) and appropriate fuel pressure (target (fuel pressure), etc.
 また、ECU101は、燃料圧力(目標燃料圧力)等の演算結果に基づいて、高圧燃料供給ポンプ100や複数のインジェクタ107の駆動を制御する。すなわち、ECU101は、高圧燃料供給ポンプ100を制御するポンプ制御部と、インジェクタ107を制御するインジェクタ制御部を有する。 Furthermore, the ECU 101 controls the driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as fuel pressure (target fuel pressure). That is, ECU 101 includes a pump control section that controls high-pressure fuel supply pump 100 and an injector control section that controls injector 107.
 高圧燃料供給ポンプ100は、圧力脈動低減機構9と、容量可変機構である電磁吸入弁3と、リリーフ弁4(図2参照)と、吐出弁8とを有している。低圧燃料吸入口51から流入した燃料は、圧力脈動低減機構9、吸入通路10bを介して電磁吸入弁3の吸入ポート31bに到達する。 The high-pressure fuel supply pump 100 includes a pressure pulsation reduction mechanism 9, an electromagnetic suction valve 3 that is a variable capacity mechanism, a relief valve 4 (see FIG. 2), and a discharge valve 8. Fuel flowing in from the low-pressure fuel intake port 51 reaches the intake port 31b of the electromagnetic intake valve 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b.
 電磁吸入弁3に流入した燃料は、弁部32を通過し、ポンプボディ1に形成された吸入通路1dを流れた後に加圧室11に流入する。加圧室11には、プランジャ2が往復動可能に挿入されている。プランジャ2は、エンジンのカム91(図2参照)により動力が伝えられて往復動する。 The fuel that has flowed into the electromagnetic suction valve 3 passes through the valve portion 32, flows through the suction passage 1d formed in the pump body 1, and then flows into the pressurizing chamber 11. A plunger 2 is inserted into the pressurizing chamber 11 so as to be able to reciprocate. The plunger 2 reciprocates as power is transmitted by a cam 91 of the engine (see FIG. 2).
 加圧室11では、プランジャ2の下降行程において電磁吸入弁3から燃料が吸入され、上昇行程において燃料が加圧される。加圧室11の燃料圧力が所定値を超えると、吐出弁8が開弁し、吐出通路12aを経てコモンレール106へ高圧燃料が圧送される。高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁3の開閉によって操作される。そして、電磁吸入弁3の開閉は、ECU101によって制御される。 In the pressurizing chamber 11, fuel is sucked in from the electromagnetic intake valve 3 during the downward stroke of the plunger 2, and the fuel is pressurized during the upward stroke. When the fuel pressure in the pressurizing chamber 11 exceeds a predetermined value, the discharge valve 8 opens and high-pressure fuel is force-fed to the common rail 106 through the discharge passage 12a. The discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve 3. The opening and closing of the electromagnetic intake valve 3 is controlled by the ECU 101.
[高圧燃料供給ポンプ]
 次に、高圧燃料供給ポンプ100の構成について、図2~図5を用いて説明する。
[High pressure fuel supply pump]
Next, the configuration of the high-pressure fuel supply pump 100 will be explained using FIGS. 2 to 5.
 図2は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図(その1)である。図3は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図(その2)である。図4は、高圧燃料供給ポンプ100の垂直方向に直交する断面で見た水平方向断面図である。また、図5は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図(その3)である。 FIG. 2 is a vertical cross-sectional view (part 1) of the high-pressure fuel supply pump 100 taken in a cross section perpendicular to the horizontal direction. FIG. 3 is a vertical cross-sectional view (part 2) of the high-pressure fuel supply pump 100 taken in a cross section perpendicular to the horizontal direction. FIG. 4 is a horizontal cross-sectional view of the high-pressure fuel supply pump 100 taken along a cross section perpendicular to the vertical direction. Further, FIG. 5 is a vertical cross-sectional view (No. 3) of the high-pressure fuel supply pump 100 taken in a cross section perpendicular to the horizontal direction.
 図2~図5に示すように、高圧燃料供給ポンプ100のポンプボディ1は、略円柱状に形成されている。図2及び図3に示すように、ポンプボディ1は、内部に第1室1aと、第2室1bと、第3室1cと、吸入通路1dが設けられている。また、ポンプボディ1は、燃料ポンプ取付け部90に密着し、図示しない複数のボルト(ねじ)で固定されている。 As shown in FIGS. 2 to 5, the pump body 1 of the high-pressure fuel supply pump 100 is formed into a substantially cylindrical shape. As shown in FIGS. 2 and 3, the pump body 1 is provided with a first chamber 1a, a second chamber 1b, a third chamber 1c, and a suction passage 1d. Further, the pump body 1 is in close contact with the fuel pump mounting portion 90 and is fixed with a plurality of bolts (screws) not shown.
 第1室1aは、ポンプボディ1に設けた円柱状の空間部であり、第1室1aの中心線1Aは、ポンプボディ1の中心線1Aに一致している。この第1室1aには、プランジャ2の一端部が挿入されており、プランジャ2は、第1室1a内を往復動する。第1室1aとプランジャ2の一端は、加圧室11を形成している。 The first chamber 1a is a cylindrical space provided in the pump body 1, and the centerline 1A of the first chamber 1a coincides with the centerline 1A of the pump body 1. One end of the plunger 2 is inserted into the first chamber 1a, and the plunger 2 reciprocates within the first chamber 1a. The first chamber 1a and one end of the plunger 2 form a pressurizing chamber 11.
 第2室1bは、ポンプボディ1に設けた円柱状の空間部であり、第2室1bの中心線は、ポンプボディ1(第1室1a)の中心線1Aに直交している。この第2室1bには、リリーフ弁4が配置されている。なお、第2室1bの径は、第1室1aの径よりも小さい。 The second chamber 1b is a cylindrical space provided in the pump body 1, and the center line of the second chamber 1b is perpendicular to the center line 1A of the pump body 1 (first chamber 1a). A relief valve 4 is arranged in this second chamber 1b. Note that the diameter of the second chamber 1b is smaller than the diameter of the first chamber 1a.
 また、第1室1aと第2室1bは、円形の連通孔1eによって連通している。連通孔1eの径は、第1室1aの径と同一であり、連通孔1eは、第1室1aの一端を延長している。そして、連通孔1eの直径は、プランジャ2の外径よりも大きい。そして、連通孔1eの中心線は、第2室1bの中心線に直交している。 Furthermore, the first chamber 1a and the second chamber 1b communicate with each other through a circular communication hole 1e. The diameter of the communication hole 1e is the same as the diameter of the first chamber 1a, and the communication hole 1e extends one end of the first chamber 1a. The diameter of the communication hole 1e is larger than the outer diameter of the plunger 2. The center line of the communication hole 1e is perpendicular to the center line of the second chamber 1b.
 図3及び図5に示すように、連通孔1eの径は、第2室1bの径よりも大きい。そして、連通孔1eは、第2室1bの中心線に直交する断面において、第2室1bに向かうにつれて径を小さくするテーパー面1fを有している。これにより、第2室1bに配置されるリリーフ弁4を通過した燃料が、テーパー面1fを伝って円滑に加圧室11に戻ることができる。 As shown in FIGS. 3 and 5, the diameter of the communication hole 1e is larger than the diameter of the second chamber 1b. The communication hole 1e has a tapered surface 1f whose diameter decreases toward the second chamber 1b in a cross section perpendicular to the center line of the second chamber 1b. Thereby, the fuel that has passed through the relief valve 4 disposed in the second chamber 1b can smoothly return to the pressurizing chamber 11 along the tapered surface 1f.
 第3室1cは、ポンプボディ1に設けた円柱状の空間部であり、第1室1aの他端に連続している。第3室1cの中心線1Aは、第1室1aの中心線1A及びポンプボディ1の中心線1Aに一致しており、第3室1cの径は、第1室1aの径よりも大きい。この第3室1cには、プランジャ2の往復動をガイドするシリンダ6が配置されている。すなわち、第3室1cは、シリンダ6が挿入されるシリンダ挿入孔となっている。 The third chamber 1c is a cylindrical space provided in the pump body 1, and is continuous with the other end of the first chamber 1a. The center line 1A of the third chamber 1c coincides with the center line 1A of the first chamber 1a and the center line 1A of the pump body 1, and the diameter of the third chamber 1c is larger than the diameter of the first chamber 1a. A cylinder 6 that guides the reciprocating movement of the plunger 2 is arranged in the third chamber 1c. That is, the third chamber 1c serves as a cylinder insertion hole into which the cylinder 6 is inserted.
 シリンダ6は、筒状に形成されており、その中間部に外径最大の圧入部6a(図6、図7参照)を有する。シリンダ6は、その外周側においてポンプボディ1の第3室1cに圧入部6aにて圧入されており、シリンダ6の一端は、第3室1cの天面(第1室1aと第3室1cとの間の段部)1gに当接しており、圧入とかしめにより固定される。シリンダ6は、圧入部6aのみが圧入寸法となっており、圧入部6aよりも加圧室11側(一端側)の径は圧入部6aよりも小さく設定されており、第3室1cとの間には円環状のクリアランス(隙間)が存在する。プランジャ2は、シリンダ6の内周面に摺動可能に接触している。 The cylinder 6 is formed into a cylindrical shape, and has a press-fitting part 6a (see FIGS. 6 and 7) with the largest outer diameter in the middle thereof. The outer peripheral side of the cylinder 6 is press-fitted into the third chamber 1c of the pump body 1 at a press-fitting part 6a, and one end of the cylinder 6 is connected to the top surface of the third chamber 1c (first chamber 1a and third chamber 1c). The stepped part between the In the cylinder 6, only the press-fitting part 6a has a press-fitting dimension, and the diameter of the press-fitting part 6a on the pressurizing chamber 11 side (one end side) is set smaller than that of the press-fitting part 6a, and the diameter of the press-fitting part 6a on the pressurizing chamber 11 side (one end side) is set smaller than the press-fitting part 6a. There is an annular clearance (gap) between them. The plunger 2 is in slidable contact with the inner peripheral surface of the cylinder 6.
 燃料ポンプ取付け部90とポンプボディ1との間には、シート部材の一具体例を示すOリング93が介在されている。このOリング93は、エンジンオイルが燃料ポンプ取付け部90とポンプボディ1との間を通ってエンジン(内燃機関)の外部に漏れることを防止している。 An O-ring 93, which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the pump body 1. This O-ring 93 prevents engine oil from leaking to the outside of the engine (internal combustion engine) through between the fuel pump mounting portion 90 and the pump body 1.
 プランジャ2の下端には、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2は、リテーナ15を介してばね16によりカム91側に付勢されており、タペット92に圧着されている。タペット92は、カム91の回転に伴って往復動する。プランジャ2は、タペット92と一緒に往復動し、加圧室11の容積を変化させる。 A tappet 92 is provided at the lower end of the plunger 2 to convert the rotational motion of a cam 91 attached to the camshaft of the engine into vertical motion and transmit it to the plunger 2. The plunger 2 is urged toward the cam 91 by a spring 16 via a retainer 15, and is pressed against a tappet 92. The tappet 92 reciprocates as the cam 91 rotates. The plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurizing chamber 11.
 また、シリンダ6とリテーナ15との間には、シールホルダ17が配置されている。シールホルダ17は、プランジャ2が挿入される筒状に形成されており、シリンダ6側である上端部に副室17aを有している。副室17aは、シリンダ6が配置される第3室1cの下端に連続している。すなわち、副室17aは、プランジャ2の加圧室11(第1室1a側)と反対側の位置に設けられている。また、シールホルダ17は、リテーナ15側である下端部にプランジャシール18を保持している。 Furthermore, a seal holder 17 is arranged between the cylinder 6 and the retainer 15. The seal holder 17 is formed into a cylindrical shape into which the plunger 2 is inserted, and has a subchamber 17a at the upper end on the cylinder 6 side. The auxiliary chamber 17a is continuous with the lower end of the third chamber 1c where the cylinder 6 is arranged. That is, the auxiliary chamber 17a is provided at a position opposite to the pressurizing chamber 11 (first chamber 1a side) of the plunger 2. Further, the seal holder 17 holds a plunger seal 18 at a lower end portion on the retainer 15 side.
 プランジャシール18は、プランジャ2の外周に摺動可能に接触しており、プランジャ2が往復動したとき、副室17aの燃料をシールし、副室17aの燃料がエンジン内部へ流入しないようにしている。また、プランジャシール18は、エンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプボディ1の内部に流入することを防止している。 The plunger seal 18 is in slidable contact with the outer periphery of the plunger 2, and when the plunger 2 moves back and forth, it seals the fuel in the subchamber 17a and prevents the fuel in the subchamber 17a from flowing into the engine. There is. Further, the plunger seal 18 prevents lubricating oil (including engine oil) that lubricates sliding parts within the engine from flowing into the inside of the pump body 1.
 図2において、プランジャ2は、上下方向に往復動する。プランジャ2が下降すると、加圧室11の容積が拡大し、プランジャ2が上昇すると、加圧室11の容積が減少する。すなわち、プランジャ2は、加圧室11の容積を拡大及び縮小させる方向に往復動するように配置されている。 In FIG. 2, the plunger 2 reciprocates in the vertical direction. When the plunger 2 descends, the volume of the pressurizing chamber 11 increases, and when the plunger 2 ascends, the volume of the pressurizing chamber 11 decreases. That is, the plunger 2 is arranged so as to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 11.
 プランジャ2は、ポンプボディ1の中心線1A(軸方向)に沿って延びる段付き円柱状に形成されている。すなわち、プランジャ2の中心線1A(軸方向)は、ポンプボディ1の中心線1Aに一致しており、プランジャ2は、中心線1A(軸方向)に沿って往復動する。プランジャ2は、大径部2aと小径部2bを有している。そして、プランジャ2の大径部2aの外周面がシリンダ6の内周面に摺動可能に接触している。プランジャ2が往復動すると、大径部2a及び小径部2b並びに大径部2aと小径部2bとの間の段差部2cは、副室17aに位置する。したがって、副室17aの体積は、プランジャ2の往復動によって増減(変動)が促進される。 The plunger 2 is formed into a stepped cylindrical shape extending along the center line 1A (axial direction) of the pump body 1. That is, the center line 1A (axial direction) of the plunger 2 coincides with the center line 1A of the pump body 1, and the plunger 2 reciprocates along the center line 1A (axial direction). The plunger 2 has a large diameter portion 2a and a small diameter portion 2b. The outer peripheral surface of the large diameter portion 2a of the plunger 2 is in slidable contact with the inner peripheral surface of the cylinder 6. When the plunger 2 reciprocates, the large diameter portion 2a, the small diameter portion 2b, and the stepped portion 2c between the large diameter portion 2a and the small diameter portion 2b are located in the subchamber 17a. Therefore, the volume of the subchamber 17a is increased or decreased (varied) by the reciprocating motion of the plunger 2.
 副室17aは、燃料通路10c(図5参照)により低圧燃料室10と連通している。つまり、副室17aは、低圧燃料を収容している。燃料通路10cは、ポンプボディ1においてシリンダ6(第3室1c)の外周側を上下方向(ポンプボディ1の中心線1Aと平行)に貫通するように設けられている。この燃料通路10cを通して、プランジャ2の下降時は、副室17aから低圧燃料室10へ燃料の流れが発生し、プランジャ2の上昇時は、低圧燃料室10から副室17aへ燃料の流れが発生する。これにより、高圧燃料供給ポンプ100の吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料供給ポンプ100内部で発生する圧力脈動を低減することができる。 The auxiliary chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 5). In other words, the subchamber 17a accommodates low pressure fuel. The fuel passage 10c is provided in the pump body 1 so as to pass through the outer peripheral side of the cylinder 6 (third chamber 1c) in the vertical direction (parallel to the center line 1A of the pump body 1). Through this fuel passage 10c, when the plunger 2 descends, fuel flows from the sub-chamber 17a to the low-pressure fuel chamber 10, and when the plunger 2 ascends, fuel flows from the low-pressure fuel chamber 10 to the sub-chamber 17a. do. Thereby, the fuel flow rate in and out of the pump during the suction stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced, and pressure pulsations occurring inside the high-pressure fuel supply pump 100 can be reduced.
 図6を用いてプランジャ2およびシリンダ6周辺の詳細を説明する。図6は、高圧燃料供給ポンプ100のプランジャ2とシリンダ6周辺部の要部拡大縦断面図である。 Details around the plunger 2 and cylinder 6 will be explained using FIG. 6. FIG. 6 is an enlarged longitudinal cross-sectional view of the main parts of the vicinity of the plunger 2 and cylinder 6 of the high-pressure fuel supply pump 100.
 プランジャ2とシリンダ6の摺動部には、加圧行程において高圧化された燃料の加圧室11側から副室17a側への流れが発生する。従来は、加圧行程時においてプランジャ2とシリンダ6の摺動部に高圧燃料が流れ込むことでプランジャ2とシリンダ6の間に燃料による油膜が形成され、プランジャ2がシリンダ6に固着することを防止していた。しかし、近年の高圧化に伴い、加圧室11から副室17aへの高圧燃料の流れが増大し、吐出流量が不足する虞があった。そのため、プランジャ2とシリンダ6の摺動部において、プランジャ2またはシリンダ6に高圧燃料をシールするシール部材20を配置することで、吐出流量の低下防止を図っている。しかし、高圧燃料をシールしたために、シール部材20よりも副室17a側の摺動部において、油膜切れが発生し、プランジャ2がシリンダ6に固着する虞があった。本実施形態は、上記課題を解決するために、高圧燃料がシールされた状態にあっても油膜切れが起きやすいシール部材20よりも下側のプランジャ2とシリンダ6の摺動部に燃料供給が可能となり、油膜形成できるような構造とした。 In the sliding portion between the plunger 2 and the cylinder 6, a flow of highly pressurized fuel from the pressurizing chamber 11 side to the auxiliary chamber 17a side occurs during the pressurizing stroke. Conventionally, during the pressurization stroke, high-pressure fuel flows into the sliding parts of the plunger 2 and cylinder 6, forming an oil film of fuel between the plunger 2 and cylinder 6, which prevents the plunger 2 from sticking to the cylinder 6. Was. However, as the pressure has increased in recent years, the flow of high-pressure fuel from the pressurizing chamber 11 to the auxiliary chamber 17a has increased, and there is a possibility that the discharge flow rate may be insufficient. Therefore, a sealing member 20 that seals high-pressure fuel is placed in the plunger 2 or the cylinder 6 at the sliding portion between the plunger 2 and the cylinder 6 to prevent the discharge flow rate from decreasing. However, since the high-pressure fuel was sealed, there was a risk that the plunger 2 would become stuck to the cylinder 6 due to lack of oil film in the sliding portion closer to the auxiliary chamber 17a than the seal member 20. In order to solve the above-mentioned problem, the present embodiment provides fuel supply to the sliding parts of the plunger 2 and cylinder 6 below the seal member 20, which is prone to run out of oil film even when high-pressure fuel is in a sealed state. The structure is designed to allow oil film formation.
 プランジャ2の大径部2aの外周部(摺動部)には環状溝2rが形成されており、環状溝2rには、リング状のシール部材(シールリングとも呼ぶ)20が配置されている。シール部材20は、加圧室11と副室17aの間でシリンダ6の摺動部であるシリンダ内周部6bと接するように構成されている。 An annular groove 2r is formed in the outer peripheral part (sliding part) of the large diameter part 2a of the plunger 2, and a ring-shaped seal member (also referred to as a seal ring) 20 is arranged in the annular groove 2r. The seal member 20 is configured to be in contact with the cylinder inner circumferential portion 6b, which is the sliding portion of the cylinder 6, between the pressurizing chamber 11 and the auxiliary chamber 17a.
 シリンダ6には、シール部材20よりも副室17a側において副室17aとプランジャ2とシリンダ6の摺動部が接続される連通孔からなる燃料供給孔6dが形成される。換言すると、シリンダ6は、上下方向においてシール部材20よりも副室17a側のシリンダ内周部6bに副室17aと接続される連通孔からなる燃料供給孔6dが形成される。なお、燃料供給孔6dは、プランジャ2が下死点の際においてもシール部材20よりも副室17a側に形成されると良い。 A fuel supply hole 6d is formed in the cylinder 6 on the side closer to the sub-chamber 17a than the seal member 20, which is a communication hole through which the sub-chamber 17a, the plunger 2, and the sliding portion of the cylinder 6 are connected. In other words, in the cylinder 6, the fuel supply hole 6d, which is a communication hole connected to the sub-chamber 17a, is formed in the inner circumferential portion 6b of the cylinder that is closer to the sub-chamber 17a than the seal member 20 in the vertical direction. The fuel supply hole 6d is preferably formed closer to the auxiliary chamber 17a than the seal member 20 even when the plunger 2 is at the bottom dead center.
 これにより、高圧燃料をシール部材20により遮断した状態においても、燃料供給孔6dを通してシール部材20よりも副室17a側のプランジャ2とシリンダ6の摺動部に燃料供給が可能となることで、油膜形成が可能となり、プランジャ2の固着が防止可能となる。 As a result, even when high-pressure fuel is cut off by the seal member 20, fuel can be supplied to the sliding portion of the plunger 2 and the cylinder 6 on the sub chamber 17a side than the seal member 20 through the fuel supply hole 6d. This makes it possible to form an oil film and prevent the plunger 2 from sticking.
 図示例において、シリンダ6は、圧入部6aよりも副室17a側(他端側)の径は圧入部6aよりも小さく設定されており、その縮径部(圧入部6aよりも副室17a側の部分)6cは副室17に突出している。燃料供給孔6dは、シリンダ6の縮径部6cに、シリンダ内周部6b(摺動部側)から外周部(副室17a側)まで横向きに貫通するように設けられており、燃料供給孔6dの中心線は、ポンプボディ1の中心線1Aに直交している。燃料供給孔6dは、ポンプボディ1の中心線1A周り(プランジャ2の軸周り又は周方向)で少なくとも一つ形成されれば良いが、図6に示すように燃料通路10cと同じ位置に形成されると良い。燃料供給孔6dと燃料通路10cをポンプボディ1の中心線1A周り(プランジャ2の軸周り又は周方向)で同じ位置に形成することで、燃料通路10cを通した燃料流れにより、燃料供給孔6dに燃料を効果的に供給することが可能となる(点線矢印参照)。 In the illustrated example, the diameter of the cylinder 6 on the sub-chamber 17a side (other end side) is set smaller than that of the press-fitting part 6a, and the diameter of the cylinder 6 is set smaller than the press-fitting part 6a (on the sub-chamber 17a side than the press-fitting part 6a). 6c protrudes into the auxiliary chamber 17. The fuel supply hole 6d is provided in the reduced diameter portion 6c of the cylinder 6 so as to pass horizontally from the cylinder inner circumferential portion 6b (sliding portion side) to the outer circumferential portion (auxiliary chamber 17a side). The center line 6d is orthogonal to the center line 1A of the pump body 1. At least one fuel supply hole 6d may be formed around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction), but as shown in FIG. That's good. By forming the fuel supply hole 6d and the fuel passage 10c at the same position around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction), the fuel flow through the fuel passage 10c allows the fuel supply hole 6d to (See dotted arrow).
 なお、燃料供給孔6dの内周側には環状溝6eが形成されても良い。換言すると、シリンダ6の摺動部であるシリンダ内周部6bに燃料供給孔6dと接続された環状溝6eが形成されても良い。また、燃料供給孔6dの上下方向の幅よりも環状溝6eの上下方向の幅が大きく形成されても良いし、小さく形成されても良い。これにより、プランジャ2の周方向全体に燃料供給が可能となる。 Note that an annular groove 6e may be formed on the inner peripheral side of the fuel supply hole 6d. In other words, the annular groove 6e connected to the fuel supply hole 6d may be formed in the cylinder inner circumferential portion 6b, which is the sliding portion of the cylinder 6. Further, the annular groove 6e may be formed to have a vertical width larger or smaller than the vertical width of the fuel supply hole 6d. Thereby, fuel can be supplied to the entire circumferential direction of the plunger 2.
 また、副室17aはプランジャ2の往復動によって体積が変動するように構成されているため、副室17aの体積変動による副室17a内の燃料流れにより、燃料供給孔6dに燃料を効果的に供給することが可能となる。特に、プランジャ2の段差部2cが副室17aに(常時)位置するため、段差部2cで副室17aの体積変動が促進されるため、燃料供給孔6dに燃料をより効果的に供給することが可能となる。 Further, since the volume of the subchamber 17a is configured to change due to the reciprocating motion of the plunger 2, the fuel flow in the subchamber 17a due to the volume change of the subchamber 17a effectively supplies fuel to the fuel supply hole 6d. It becomes possible to supply In particular, since the step portion 2c of the plunger 2 is (always) located in the subchamber 17a, the step portion 2c promotes volume fluctuations in the subchamber 17a, so that fuel can be more effectively supplied to the fuel supply hole 6d. becomes possible.
 なお、プランジャ2の大径部2aの外周部(摺動部)の環状溝2rおよびシール部材20よりも副室17a側に燃料掻き出し用の溝(掻き出し溝)2dを設けても良い。掻き出し溝2dは、プランジャ2の周方向の少なくとも一部に形成されれば良いが、プランジャ2の周方向全体に環状に形成されても良い。この掻き出し溝2dは、プランジャ2の往復動によって少なくとも一部が燃料供給孔6dや環状溝6eと重なる位置(換言すると、プランジャ2の可動域で一致する位置)に形成されると良い。図示例では、プランジャ2が下死点の際において掻き出し溝2dが燃料供給孔6dや環状溝6eと重なる位置に形成されている。これにより、燃料供給孔6dまたは環状溝6eに溜まった燃料をプランジャ2の軸方向に供給可能となり、油膜形成範囲を更に広げることが可能となる。 Note that a fuel scraping groove (scraping groove) 2d may be provided closer to the auxiliary chamber 17a than the annular groove 2r of the outer peripheral part (sliding part) of the large diameter portion 2a of the plunger 2 and the seal member 20. The scraping groove 2d may be formed in at least a part of the circumferential direction of the plunger 2, but may be formed in an annular shape in the entire circumferential direction of the plunger 2. This scraping groove 2d is preferably formed at a position where at least a portion thereof overlaps with the fuel supply hole 6d and the annular groove 6e due to the reciprocating movement of the plunger 2 (in other words, at a position where they coincide in the movable range of the plunger 2). In the illustrated example, the scraping groove 2d is formed at a position overlapping the fuel supply hole 6d and the annular groove 6e when the plunger 2 is at the bottom dead center. Thereby, the fuel accumulated in the fuel supply hole 6d or the annular groove 6e can be supplied in the axial direction of the plunger 2, and the range in which an oil film can be formed can be further expanded.
 なお、シール部材20はプランジャ2ではなく、シリンダ6の摺動部であるシリンダ内周部6bに配置されても良い。つまり、シール部材20は、プランジャ2とシリンダ6の摺動部隙間をシールするように、プランジャ2とシリンダ6の間に介装されれば良い。 Note that the sealing member 20 may be arranged not on the plunger 2 but on the cylinder inner peripheral portion 6b, which is the sliding portion of the cylinder 6. That is, the sealing member 20 may be interposed between the plunger 2 and the cylinder 6 so as to seal the gap between the sliding parts of the plunger 2 and the cylinder 6.
 図7は、高圧燃料供給ポンプ100のプランジャ2とシリンダ6周辺部の他例の要部拡大縦断面図である。 FIG. 7 is an enlarged longitudinal cross-sectional view of the main parts of another example of the vicinity of the plunger 2 and cylinder 6 of the high-pressure fuel supply pump 100.
 図7に示すように、シリンダ6には、シール部材20よりも加圧室11側において加圧室11とプランジャ2とシリンダ6の摺動部が接続される連通孔からなる燃料供給孔6gが形成されても良い。換言すると、シリンダ6は、上下方向においてシール部材20よりも加圧室11側のシリンダ内周部6bに加圧室11と接続される連通孔からなる燃料供給孔6gが形成されても良い。図示例において、燃料供給孔6gは、シリンダ6の圧入部6aよりも加圧室11側(一端側)の部分(ポンプボディ1の第3室1cに配置した部分)に横向きに貫通するように設けられており、燃料供給孔6gの中心線は、ポンプボディ1の中心線1Aに直交している。燃料供給孔6gは、ポンプボディ1の中心線1A周り(プランジャ2の軸周り又は周方向)で少なくとも一つ形成されれば良い。シリンダ6は、ポンプボディ1と加圧室11側で当接している天面6iに、内外周を連通する連通溝6jが形成されている。連通溝6jは、ポンプボディ1の中心線1A周り(プランジャ2の軸周り又は周方向)で少なくとも一つ形成されれば良い。加圧室11側の燃料供給孔6gは、シリンダ6(圧入部6aよりも加圧室11側の部分)とポンプボディ1の第3室1cの隙間(外周側の円環状の隙間、及び、天面6i側の連通溝6j)を通して加圧室11と接続される。すなわち、加圧室11から連通溝6jを通り、シリンダ6の外周部(圧入部6aよりも加圧室11側の部分)とポンプボディ1の第3室1cの円環状の隙間と通り、加圧室11側の燃料供給孔6gを通り、プランジャ2の摺動部に燃料が供給されるように構成される。これにより、シール部材20よりも加圧室11側の摺動部において、燃料ベーパ化等により燃料潤滑が枯渇した場合においても安定した油膜形成が可能となり、プランジャ2の固着防止につながる。 As shown in FIG. 7, the cylinder 6 has a fuel supply hole 6g, which is a communication hole where the pressurizing chamber 11, the plunger 2, and the sliding part of the cylinder 6 are connected on the side closer to the pressurizing chamber 11 than the sealing member 20. may be formed. In other words, in the cylinder 6, the fuel supply hole 6g, which is a communication hole connected to the pressurizing chamber 11, may be formed in the inner peripheral portion 6b of the cylinder that is closer to the pressurizing chamber 11 than the seal member 20 in the vertical direction. In the illustrated example, the fuel supply hole 6g extends horizontally through a portion of the cylinder 6 closer to the pressurizing chamber 11 (one end side) than the press-fitting portion 6a (a portion disposed in the third chamber 1c of the pump body 1). The center line of the fuel supply hole 6g is perpendicular to the center line 1A of the pump body 1. At least one fuel supply hole 6g may be formed around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction). In the cylinder 6, a communication groove 6j is formed in the top surface 6i which is in contact with the pump body 1 on the pressurizing chamber 11 side, which communicates the inner and outer circumferences. At least one communication groove 6j may be formed around the center line 1A of the pump body 1 (around the axis of the plunger 2 or in the circumferential direction). The fuel supply hole 6g on the pressurizing chamber 11 side has a gap between the cylinder 6 (the part closer to the pressurizing chamber 11 than the press-fitting part 6a) and the third chamber 1c of the pump body 1 (an annular gap on the outer circumferential side, and It is connected to the pressurizing chamber 11 through a communication groove 6j) on the top surface 6i side. That is, it passes from the pressurizing chamber 11 through the communication groove 6j, passes through the annular gap between the outer peripheral part of the cylinder 6 (the part closer to the pressurizing chamber 11 than the press-fitting part 6a) and the third chamber 1c of the pump body 1, and passes through the pressurizing chamber 11. The configuration is such that fuel passes through the fuel supply hole 6g on the pressure chamber 11 side and is supplied to the sliding portion of the plunger 2. As a result, even when fuel lubrication is depleted due to fuel vaporization, etc., a stable oil film can be formed in the sliding portion on the pressure chamber 11 side of the seal member 20, leading to prevention of sticking of the plunger 2.
 なお、副室17a側の環状溝6eと同様に、燃料供給孔6gの内周側には環状溝6hが設けられていてもよい。換言すると、シリンダ6の摺動部であるシリンダ内周部6bに燃料供給孔6gと接続された環状溝6hが設けられていてもよい。また、燃料供給孔6gの上下方向の幅よりも環状溝6hの上下方向の幅が大きく形成されても良いし、小さく形成されても良い。これにより、プランジャ2の周方向全体に燃料供給が可能となる。 Note that, similar to the annular groove 6e on the side of the auxiliary chamber 17a, an annular groove 6h may be provided on the inner peripheral side of the fuel supply hole 6g. In other words, an annular groove 6h connected to the fuel supply hole 6g may be provided in the cylinder inner peripheral portion 6b, which is the sliding portion of the cylinder 6. Further, the vertical width of the annular groove 6h may be larger or smaller than the vertical width of the fuel supply hole 6g. Thereby, fuel can be supplied to the entire circumferential direction of the plunger 2.
 なお、副室17a側の掻き出し溝2gと同様に、プランジャ2の大径部2aの外周部(摺動部)の環状溝2rおよびシール部材20よりも加圧室11側に燃料掻き出し用の溝(掻き出し溝)2gが設けられていても良い。掻き出し溝2gは、プランジャ2の周方向の少なくとも一部に形成されれば良いが、プランジャ2の周方向全体に環状に形成されても良い。この掻き出し溝2gは、プランジャ2の往復動によって少なくとも一部が燃料供給孔6gや環状溝6hと重なる位置(換言すると、プランジャ2の可動域で一致する位置)に形成されると良い。図示例では、プランジャ2が上死点付近の際において掻き出し溝2gが燃料供給孔6gや環状溝6hと重なる位置に形成されている。これにより、燃料供給孔6gまたは環状溝6hに溜まった燃料をプランジャ2の軸方向に供給可能となり、油膜形成範囲を更に広げることが可能となる。 Note that, similarly to the scraping groove 2g on the subchamber 17a side, there is a fuel scraping groove on the pressurizing chamber 11 side than the annular groove 2r on the outer peripheral part (sliding part) of the large diameter part 2a of the plunger 2 and the seal member 20. (Scraping groove) 2g may be provided. The scraping groove 2g may be formed in at least a part of the circumferential direction of the plunger 2, but may be formed in an annular shape in the entire circumferential direction of the plunger 2. This scraping groove 2g is preferably formed at a position where at least a portion thereof overlaps with the fuel supply hole 6g and the annular groove 6h due to the reciprocating movement of the plunger 2 (in other words, at a position where they coincide in the movable range of the plunger 2). In the illustrated example, the scraping groove 2g is formed at a position overlapping the fuel supply hole 6g and the annular groove 6h when the plunger 2 is near the top dead center. Thereby, the fuel accumulated in the fuel supply hole 6g or the annular groove 6h can be supplied in the axial direction of the plunger 2, making it possible to further expand the oil film formation range.
 なお、燃料供給孔6d、6gは、シール部材20に対して上下方向いずれか一方でも良く、又、両方を備える構成であってもよい。 It should be noted that the fuel supply holes 6d and 6g may be provided either in the vertical direction with respect to the seal member 20, or may be configured to include both.
 図3に示ように、高圧燃料供給ポンプ100のポンプボディ1の上部には、低圧燃料室10が設けられており、ポンプボディ1の側面部には、吸入ジョイント5が取り付けられている。吸入ジョイント5は、燃料タンク103(図1参照)から供給された燃料を通す低圧配管104に接続されている。燃料タンク103の燃料は、吸入ジョイント5からポンプボディ1の内部に供給される。 As shown in FIG. 3, a low-pressure fuel chamber 10 is provided in the upper part of the pump body 1 of the high-pressure fuel supply pump 100, and a suction joint 5 is attached to the side surface of the pump body 1. The intake joint 5 is connected to a low pressure pipe 104 through which fuel supplied from a fuel tank 103 (see FIG. 1) passes. Fuel in the fuel tank 103 is supplied into the pump body 1 from the suction joint 5.
 吸入ジョイント5は、低圧配管104に接続された低圧燃料吸入口51と、低圧燃料吸入口51に連通する吸入流路52とを有している。吸入流路52を通過した燃料は、ポンプボディ1の内部に設けられた吸入フィルタ53を通過して低圧燃料室10に供給される。吸入フィルタ53は、燃料に存在する異物を除去し、高圧燃料供給ポンプ100内に異物が進入することを防ぐ。 The suction joint 5 has a low-pressure fuel suction port 51 connected to the low-pressure pipe 104 and a suction flow path 52 communicating with the low-pressure fuel suction port 51. The fuel that has passed through the suction passage 52 passes through a suction filter 53 provided inside the pump body 1 and is supplied to the low-pressure fuel chamber 10 . The suction filter 53 removes foreign substances present in the fuel and prevents foreign substances from entering the high-pressure fuel supply pump 100.
 低圧燃料室10には、低圧燃料流路10aと、吸入通路10b(図2参照)が設けられている。低圧燃料流路10aには、圧力脈動低減機構9が設けられている。加圧室11に流入した燃料が再び開弁状態の電磁吸入弁3を通って吸入通路10bへと戻されると、低圧燃料室10に圧力脈動が発生する。圧力脈動低減機構9は、高圧燃料供給ポンプ100内で発生した圧力脈動が低圧配管104へ波及することを低減する。 The low pressure fuel chamber 10 is provided with a low pressure fuel passage 10a and an intake passage 10b (see FIG. 2). A pressure pulsation reduction mechanism 9 is provided in the low pressure fuel flow path 10a. When the fuel that has flowed into the pressurizing chamber 11 is returned to the suction passage 10b through the electromagnetic suction valve 3 which is in an open state again, pressure pulsations occur in the low pressure fuel chamber 10. The pressure pulsation reduction mechanism 9 reduces pressure pulsations generated within the high-pressure fuel supply pump 100 from spreading to the low-pressure piping 104.
 圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されている。圧力脈動低減機構9の金属ダイアフラムダンパは、膨張・収縮することで圧力脈動を吸収或いは低減する。 The pressure pulsation reduction mechanism 9 is formed of a metal diaphragm damper made by laminating two corrugated disc-shaped metal plates together at their outer peripheries and injecting an inert gas such as argon into the interior. The metal diaphragm damper of the pressure pulsation reduction mechanism 9 absorbs or reduces pressure pulsations by expanding and contracting.
 吸入通路10bは、電磁吸入弁3の吸入ポート31b(図2参照)に連通しており、低圧燃料流路10aを通った燃料は、吸入通路10bを介して電磁吸入弁3の吸入ポート31bに到達する。 The suction passage 10b communicates with the suction port 31b (see FIG. 2) of the electromagnetic suction valve 3, and the fuel that has passed through the low-pressure fuel passage 10a is delivered to the suction port 31b of the electromagnetic suction valve 3 via the suction passage 10b. reach.
 図2及び図4に示すように、電磁吸入弁3は、ポンプボディ1に形成された横穴に挿入されている。電磁吸入弁3は、ポンプボディ1に形成された横穴に圧入された吸入弁シート31と、弁部32と、ロッド33と、ロッド付勢ばね34と、電磁コイル35と、アンカー36とを有している。 As shown in FIGS. 2 and 4, the electromagnetic suction valve 3 is inserted into a side hole formed in the pump body 1. The electromagnetic suction valve 3 includes a suction valve seat 31 press-fitted into a side hole formed in the pump body 1, a valve portion 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor 36. are doing.
 吸入弁シート31は、筒状に形成されており、内周部に着座部31aが設けられている。また、吸入弁シート31には、外周部から内周部に到達する吸入ポート31bが形成されている。この吸入ポート31bは、上述した低圧燃料室10における吸入通路10bに連通している。 The suction valve seat 31 is formed into a cylindrical shape, and a seating portion 31a is provided on the inner circumference. Further, the suction valve seat 31 is formed with a suction port 31b that reaches from the outer circumference to the inner circumference. This suction port 31b communicates with the suction passage 10b in the low pressure fuel chamber 10 described above.
 ポンプボディ1に形成された横穴には、吸入弁シート31の着座部31aに対向するストッパ37が配置されており、ストッパ37と着座部31aとの間に弁部32が配置されている。また、ストッパ37と弁部32との間には、弁付勢ばね38が介在されている。弁付勢ばね38は、弁部32を着座部31a側に付勢する。 A stopper 37 facing the seating portion 31a of the suction valve seat 31 is arranged in the side hole formed in the pump body 1, and the valve portion 32 is arranged between the stopper 37 and the seating portion 31a. Further, a valve biasing spring 38 is interposed between the stopper 37 and the valve portion 32. The valve biasing spring 38 biases the valve portion 32 toward the seating portion 31a.
 弁部32は、着座部31aに当接することにより、吸入ポート31bと加圧室11との連通部を閉鎖し、電磁吸入弁3が閉弁状態になる。一方、弁部32は、ストッパ37に当接することにより、吸入ポート31bと加圧室11との連通部を開放し、電磁吸入弁3が開弁状態になる。 By contacting the seating portion 31a, the valve portion 32 closes the communication portion between the suction port 31b and the pressurizing chamber 11, and the electromagnetic suction valve 3 is placed in a closed state. On the other hand, the valve portion 32 opens the communication portion between the suction port 31b and the pressurizing chamber 11 by coming into contact with the stopper 37, and the electromagnetic suction valve 3 becomes open.
 ロッド33は、吸入弁シート31の筒孔を貫通しており、一端(内端)が弁部32に当接している。ロッド付勢ばね34は、ロッド33を介して弁部32をストッパ37側である開弁方向に付勢する。ロッド付勢ばね34の一端(内端)は、ロッド33の他端(外端)に係合しており、ロッド付勢ばね34の他端(外端)は、ロッド付勢ばね34を囲うように配置された磁性コア39に係合している。 The rod 33 passes through the cylindrical hole of the suction valve seat 31, and one end (inner end) is in contact with the valve portion 32. The rod biasing spring 34 biases the valve portion 32 via the rod 33 in the valve opening direction, which is the stopper 37 side. One end (inner end) of the rod biasing spring 34 is engaged with the other end (outer end) of the rod 33, and the other end (outer end) of the rod biasing spring 34 surrounds the rod biasing spring 34. The magnetic core 39 is engaged with the magnetic core 39 arranged as shown in FIG.
 アンカー36は、磁性コア39の端面に対向している。また、アンカー36は、ロッド33の中間部に設けられたフランジに係合している。電磁コイル35は、磁性コア39の周りを一周するように配置されている。この電磁コイル35には、端子部材40が電気的に接続されており、端子部材40を介して電流が流れる。 The anchor 36 faces the end surface of the magnetic core 39. Further, the anchor 36 is engaged with a flange provided at the intermediate portion of the rod 33. The electromagnetic coil 35 is arranged so as to go around the magnetic core 39. A terminal member 40 is electrically connected to the electromagnetic coil 35, and a current flows through the terminal member 40.
 電磁コイル35に電流が流れていない無通電状態において、ロッド33がロッド付勢ばね34による付勢力によって開弁方向に付勢され、弁部32を開弁方向に押圧している。その結果、弁部32が着座部31aから離れてストッパ37に当接し、電磁吸入弁3が開弁状態になっている。すなわち、電磁吸入弁3は、無通電状態において開弁するノーマルオープン式となっている。 In a non-energized state where no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the valve portion 32 in the valve opening direction. As a result, the valve portion 32 is separated from the seating portion 31a and comes into contact with the stopper 37, and the electromagnetic suction valve 3 is in an open state. That is, the electromagnetic suction valve 3 is of a normally open type, which opens in a non-energized state.
 電磁吸入弁3の開弁状態において、吸入ポート31bの燃料は、弁部32と着座部31aとの間を通り、ストッパ37の複数の燃料通過孔(不図示)及び吸入通路1dを通って加圧室11に流入する。電磁吸入弁3の開弁状態では、弁部32は、ストッパ37と接触するため、弁部32の開弁方向の位置が規制される。そして、電磁吸入弁3の開弁状態における弁部32と着座部31aの間に存在する隙間は、弁部32の可動範囲であり、これが開弁ストロークとなる。 When the electromagnetic suction valve 3 is in the open state, fuel in the suction port 31b passes between the valve portion 32 and the seating portion 31a, passes through a plurality of fuel passage holes (not shown) in the stopper 37, and the suction passage 1d. It flows into the pressure chamber 11. When the electromagnetic suction valve 3 is in the open state, the valve portion 32 comes into contact with the stopper 37, so that the position of the valve portion 32 in the valve opening direction is regulated. The gap that exists between the valve portion 32 and the seating portion 31a when the electromagnetic suction valve 3 is in the open state is the movable range of the valve portion 32, and this is the valve opening stroke.
 電磁コイル35に電流が流れると、アンカー36が磁性コア39の磁気吸引力により閉弁方向に引き寄せられる。その結果、アンカー36は、ロッド付勢ばね34の付勢力に抗して移動し、磁性コア39に接触する。アンカー36が磁性コア39側である閉弁方向へ移動すると、アンカー36が係合するロッド33がアンカー36と共に移動する。その結果、弁部32は、開弁方向への付勢力から解放され、弁付勢ばね38による付勢力により閉弁方向に移動する。そして、弁部32が、吸入弁シート31の着座部31aに接触すると、電磁吸入弁3が閉弁状態になる。 When current flows through the electromagnetic coil 35, the anchor 36 is drawn in the valve closing direction by the magnetic attraction force of the magnetic core 39. As a result, the anchor 36 moves against the biasing force of the rod biasing spring 34 and comes into contact with the magnetic core 39. When the anchor 36 moves in the valve closing direction toward the magnetic core 39, the rod 33 with which the anchor 36 engages moves together with the anchor 36. As a result, the valve portion 32 is released from the biasing force in the valve-opening direction and moves in the valve-closing direction by the biasing force of the valve biasing spring 38. Then, when the valve portion 32 comes into contact with the seating portion 31a of the suction valve seat 31, the electromagnetic suction valve 3 enters the closed state.
 図4及び図5に示すように、吐出弁8は、加圧室11の出口側(下流側)に接続されている。吐出弁8は、加圧室11に連通する吐出弁シート81と、吐出弁シート81と接離する弁部82と、弁部82を吐出弁シート81側へ付勢する吐出弁ばね83と、弁部82のストローク(移動距離)を決める吐出弁ストッパ84とを有している。 As shown in FIGS. 4 and 5, the discharge valve 8 is connected to the outlet side (downstream side) of the pressurizing chamber 11. The discharge valve 8 includes a discharge valve seat 81 that communicates with the pressurizing chamber 11, a valve portion 82 that comes into contact with and separates from the discharge valve seat 81, and a discharge valve spring 83 that urges the valve portion 82 toward the discharge valve seat 81. It has a discharge valve stopper 84 that determines the stroke (movement distance) of the valve portion 82.
 また、吐出弁8は、燃料の外部への漏洩を遮断するプラグ85を有している。吐出弁ストッパ84は、プラグ85に圧入されている。プラグ85は、溶接部86で溶接によりポンプボディ1に接合されている。そして、吐出弁8は、弁部82によって開閉される吐出弁室87に連通している。吐出弁室87は、ポンプボディ1に形成されている。 Further, the discharge valve 8 has a plug 85 that blocks leakage of fuel to the outside. The discharge valve stopper 84 is press-fitted into the plug 85. The plug 85 is joined to the pump body 1 by welding at a welding portion 86. The discharge valve 8 communicates with a discharge valve chamber 87 that is opened and closed by a valve portion 82 . The discharge valve chamber 87 is formed in the pump body 1.
 ポンプボディ1には、第2室1b(図2参照)に連通する横穴が設けられており、その横穴には、吐出ジョイント12が挿入されている。吐出ジョイント12は、ポンプボディ1の横穴及び吐出弁室87に連通する上述の吐出通路12aと、吐出通路12aの一端である燃料吐出口12bを有している。吐出ジョイント12の燃料吐出口12bは、コモンレール106(図1参照)に連通している。なお、吐出ジョイント12は、溶接部12cにより溶接でポンプボディ1に固定されている。 The pump body 1 is provided with a side hole that communicates with the second chamber 1b (see FIG. 2), and the discharge joint 12 is inserted into the side hole. The discharge joint 12 has the above-mentioned discharge passage 12a that communicates with the side hole of the pump body 1 and the discharge valve chamber 87, and a fuel discharge port 12b that is one end of the discharge passage 12a. The fuel discharge port 12b of the discharge joint 12 communicates with the common rail 106 (see FIG. 1). Note that the discharge joint 12 is fixed to the pump body 1 by welding through a welded portion 12c.
 加圧室11と吐出弁室87の間に燃料圧力の差(燃料差圧)が無い状態では、弁部82が、吐出弁ばね83の付勢力により吐出弁シート81に圧着され、吐出弁8が閉弁状態となっている。加圧室11の燃料圧力が吐出弁室87の燃料圧力よりも大きくなった場合に、弁部82は、吐出弁ばね83の付勢力に抗して移動し、吐出弁8が開弁状態になる。 When there is no fuel pressure difference (fuel pressure difference) between the pressurizing chamber 11 and the discharge valve chamber 87, the valve portion 82 is pressed against the discharge valve seat 81 by the urging force of the discharge valve spring 83, and the discharge valve 8 is in a closed state. When the fuel pressure in the pressurizing chamber 11 becomes greater than the fuel pressure in the discharge valve chamber 87, the valve portion 82 moves against the biasing force of the discharge valve spring 83, and the discharge valve 8 opens. Become.
 吐出弁8が閉弁状態になると、加圧室11内の(高圧の)燃料は、吐出弁8を通過し、吐出弁室87に到達する。そして、吐出弁室87に到達した燃料は、吐出ジョイント12の燃料吐出口12bを経てコモンレール106(図1参照)へ吐出される。以上のような構成により、吐出弁8は、燃料の流通方向を制限する逆止弁として機能する。 When the discharge valve 8 is in the closed state, the (high pressure) fuel in the pressurizing chamber 11 passes through the discharge valve 8 and reaches the discharge valve chamber 87. The fuel that has reached the discharge valve chamber 87 is then discharged to the common rail 106 (see FIG. 1) through the fuel discharge port 12b of the discharge joint 12. With the above configuration, the discharge valve 8 functions as a check valve that restricts the direction of fuel flow.
 図2に示すリリーフ弁4は、コモンレール106やその先の部材に何らかの問題が生じ、コモンレール106が予め定めた所定の圧力を超えて高圧になった場合に作動し、吐出通路12a内の燃料を加圧室11に戻すよう構成された弁である。このリリーフ弁4は、プランジャ2が往復動する方向(上下方向)において、吐出弁8(図5参照)よりも高い位置に配置されている。 The relief valve 4 shown in FIG. 2 is activated when some problem occurs in the common rail 106 or a member beyond it and the pressure of the common rail 106 becomes high beyond a predetermined pressure. This valve is configured to return the pressure to the pressurizing chamber 11. This relief valve 4 is arranged at a higher position than the discharge valve 8 (see FIG. 5) in the direction in which the plunger 2 reciprocates (vertical direction).
 リリーフ弁4は、リリーフばね41と、リリーフ弁ホルダ42と、弁部43と、シート部材44とを有している。このリリーフ弁4は、吐出ジョイント12から挿入され、第2室1bに配置される。リリーフばね41は、一端部がポンプボディ1(第2室1bの一端)に当接し、他端部がリリーフ弁ホルダ42に当接している。リリーフ弁ホルダ42は、弁部43に係合しており、弁部43には、リリーフばね41の付勢力がリリーフ弁ホルダ42を介して作用する。 The relief valve 4 includes a relief spring 41, a relief valve holder 42, a valve portion 43, and a seat member 44. This relief valve 4 is inserted through the discharge joint 12 and arranged in the second chamber 1b. The relief spring 41 has one end in contact with the pump body 1 (one end of the second chamber 1b), and the other end in contact with the relief valve holder 42. The relief valve holder 42 is engaged with the valve portion 43 , and the urging force of the relief spring 41 acts on the valve portion 43 via the relief valve holder 42 .
 弁部43は、リリーフばね41の付勢力により押圧され、シート部材44の燃料通路を塞いでいる。弁部43(リリーフ弁ホルダ42)の移動方向は、プランジャ2が往復動する方向に直交している。そして、リリーフ弁4の中心線(リリーフ弁ホルダ42の中心線)は、プランジャ2の中心線に直交している。 The valve portion 43 is pressed by the urging force of the relief spring 41 and closes the fuel passage of the seat member 44. The moving direction of the valve portion 43 (relief valve holder 42) is orthogonal to the direction in which the plunger 2 reciprocates. The center line of the relief valve 4 (the center line of the relief valve holder 42) is perpendicular to the center line of the plunger 2.
 シート部材44は、弁部43に対向する燃料通路を有しており、燃料通路における弁部43と反対側は、吐出通路12aに連通している。加圧室11(上流側)とシート部材44(下流側)との間における燃料の移動は、弁部43がシート部材44に接触(密着)して燃料通路を塞ぐことにより遮断される。 The seat member 44 has a fuel passage facing the valve part 43, and the side of the fuel passage opposite to the valve part 43 communicates with the discharge passage 12a. Movement of fuel between the pressurizing chamber 11 (upstream side) and the seat member 44 (downstream side) is blocked by the valve portion 43 coming into contact with (adhering to) the seat member 44 to close the fuel passage.
 コモンレール106やその先の部材内の圧力が高くなると、シート部材44側の燃料が弁部43を押圧して、リリーフばね41の付勢力に抗して弁部43を移動させる。その結果、弁部43が開弁し、吐出通路12a内の燃料が、シート部材44の燃料通路を通って加圧室11に戻る。したがって、弁部43を開弁させる圧力は、リリーフばね41の付勢力によって決定される。 When the pressure inside the common rail 106 and the members beyond it increases, the fuel on the seat member 44 side presses the valve part 43 and moves the valve part 43 against the biasing force of the relief spring 41. As a result, the valve portion 43 opens, and the fuel in the discharge passage 12a returns to the pressurizing chamber 11 through the fuel passage of the seat member 44. Therefore, the pressure that causes the valve portion 43 to open is determined by the biasing force of the relief spring 41.
 リリーフ弁4における弁部43(リリーフ弁ホルダ42)の移動方向は、上述の吐出弁8における弁部82の移動方向と異なる。すなわち、吐出弁8における弁部82の移動方向は、ポンプボディ1の第1径方向であり、リリーフ弁4における弁部43の移動方向は、ポンプボディ1の第1径方向と異なる第2径方向である。これにより、吐出弁8とリリーフ弁4を上下方向において互いに重ならない位置に配置することができ、ポンプボディ1の内部のスペースを有効に活用して、ポンプボディ1の小型化を図ることができる。 The moving direction of the valve part 43 (relief valve holder 42) in the relief valve 4 is different from the moving direction of the valve part 82 in the discharge valve 8 described above. That is, the moving direction of the valve part 82 in the discharge valve 8 is the first radial direction of the pump body 1, and the moving direction of the valve part 43 in the relief valve 4 is in the second radial direction, which is different from the first radial direction of the pump body 1. It is the direction. As a result, the discharge valve 8 and the relief valve 4 can be arranged in positions where they do not overlap with each other in the vertical direction, and the space inside the pump body 1 can be effectively utilized, and the size of the pump body 1 can be reduced. .
[高圧燃料供給ポンプの動作]
 次に、本実施形態に係る高圧燃料供給ポンプの動作について、図2、図4を用いて説明する。
[Operation of high pressure fuel supply pump]
Next, the operation of the high-pressure fuel supply pump according to this embodiment will be explained using FIGS. 2 and 4.
 図2において、プランジャ2が下降した場合に、電磁吸入弁3が開弁していると、吸入通路1dから加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁吸入弁3が閉弁していると、加圧室11内の燃料は昇圧され、吐出弁8を通過してコモンレール106(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を上昇行程と称する。 In FIG. 2, when the plunger 2 is lowered and the electromagnetic intake valve 3 is open, fuel flows into the pressurizing chamber 11 from the intake passage 1d. Hereinafter, the stroke in which the plunger 2 descends will be referred to as a suction stroke. On the other hand, when the plunger 2 rises and the electromagnetic suction valve 3 is closed, the fuel in the pressurizing chamber 11 is pressurized and is forced to pass through the discharge valve 8 to the common rail 106 (see FIG. 1). Ru. Hereinafter, the process in which the plunger 2 rises will be referred to as an upward stroke.
 上述したように、上昇工程中に電磁吸入弁3が閉弁していれば、吸入行程中に加圧室11に吸入された燃料が加圧され、コモンレール106側へ吐出される。一方、上昇工程中に電磁吸入弁3が開弁していれば、加圧室11内の燃料は吸入通路1d側へ押し戻され、コモンレール106側へ吐出されない。このように、高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁3の開閉によって操作される。そして、電磁吸入弁3の開閉は、ECU101によって制御される。 As described above, if the electromagnetic suction valve 3 is closed during the ascent stroke, the fuel sucked into the pressurizing chamber 11 during the suction stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic suction valve 3 is open during the ascending process, the fuel in the pressurizing chamber 11 is pushed back to the suction passage 1d side and is not discharged to the common rail 106 side. In this way, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve 3. The opening and closing of the electromagnetic intake valve 3 is controlled by the ECU 101.
 吸入行程では、加圧室11の容積が増加し、加圧室11内の燃料圧力が低下する。これにより、吸入ポート31bと加圧室11との間の流体差圧(以下、「弁部32の前後の流体差圧」とする)が小さくなる。そして、弁部32の前後の流体差圧よりもロッド付勢ばね34の付勢力が大きくなると、ロッド33が開弁方向に移動して、弁部32が吸入弁シート31の着座部31aから離れ、電磁吸入弁3が開弁状態になる。 In the suction stroke, the volume of the pressurizing chamber 11 increases and the fuel pressure within the pressurizing chamber 11 decreases. This reduces the fluid pressure difference between the suction port 31b and the pressurizing chamber 11 (hereinafter referred to as "the fluid pressure difference before and after the valve portion 32"). When the biasing force of the rod biasing spring 34 becomes larger than the fluid pressure difference across the valve portion 32, the rod 33 moves in the valve opening direction, and the valve portion 32 separates from the seating portion 31a of the suction valve seat 31. , the electromagnetic intake valve 3 becomes open.
 電磁吸入弁3が開弁状態になると、吸入ポート31bの燃料は、弁部32と着座部31aとの間を通り、ストッパ37の複数の燃料通過孔(不図示)を通って加圧室11に流入する。電磁吸入弁3の開弁状態では、弁部32は、ストッパ37と接触するため、弁部32の開弁方向の位置が規制される。そして、電磁吸入弁3の開弁状態における弁部32と着座部31aの間に存在する隙間は、弁部32の可動範囲であり、これが開弁ストロークとなる。 When the electromagnetic intake valve 3 is in the open state, the fuel in the intake port 31b passes between the valve part 32 and the seating part 31a, passes through a plurality of fuel passage holes (not shown) in the stopper 37, and enters the pressurizing chamber 11. flows into. When the electromagnetic suction valve 3 is in the open state, the valve portion 32 comes into contact with the stopper 37, so that the position of the valve portion 32 in the valve opening direction is regulated. The gap that exists between the valve portion 32 and the seating portion 31a when the electromagnetic suction valve 3 is in the open state is the movable range of the valve portion 32, and this is the valve opening stroke.
 吸入行程を終了した後は、上昇行程に移る。このとき、電磁コイル35は、無通電状態を維持したままであり、アンカー36と磁性コア39との間に磁気吸引力は作用していない。そして、弁部32には、ロッド付勢ばね34と弁付勢ばね38の付勢力の差に応じた開弁方向への付勢力と、燃料が加圧室11から低圧燃料流路10aへ逆流する時に発生する流体力による閉弁方向へ押圧する力が働く。 After completing the suction stroke, move on to the upward stroke. At this time, the electromagnetic coil 35 remains in a non-energized state, and no magnetic attraction force is acting between the anchor 36 and the magnetic core 39. The valve portion 32 has a biasing force in the valve opening direction corresponding to the difference between the biasing forces between the rod biasing spring 34 and the valve biasing spring 38, and a backflow of fuel from the pressurizing chamber 11 to the low pressure fuel flow path 10a. The force that presses the valve in the closing direction is exerted by the fluid force generated when the valve is closed.
 この状態において、電磁吸入弁3が開弁状態を維持するために、ロッド付勢ばね34と弁付勢ばね38の付勢力の差は、流体力よりも大きく設定されている。加圧室11の容積は、プランジャ2の上昇に伴い減少する。そのため、加圧室11に吸入されていた燃料は、再び弁部32と着座部31aとの間を通り、吸入ポート31bへと戻されることになり、加圧室11内部の圧力が上昇することは無い。この行程を戻し行程と称する。 In this state, in order to maintain the electromagnetic suction valve 3 in the open state, the difference between the biasing forces between the rod biasing spring 34 and the valve biasing spring 38 is set to be larger than the fluid force. The volume of the pressurizing chamber 11 decreases as the plunger 2 rises. Therefore, the fuel that has been sucked into the pressurizing chamber 11 passes between the valve section 32 and the seating section 31a again and is returned to the suction port 31b, causing the pressure inside the pressurizing chamber 11 to rise. There is no. This stroke is called a return stroke.
 戻し工程において、ECU101(図1参照)からの制御信号が電磁吸入弁3に印加されると、電磁コイル35には、端子部材40を介して電流が流れる。電磁コイル35に電流が流れると、磁性コア39とアンカー36との間に磁気吸引力が作用し、アンカー36(ロッド33)が磁性コア39に引き寄せられる。その結果、アンカー36(ロッド33)は、ロッド付勢ばね34による付勢力に抗して閉弁方向(弁部32から離れる方向)へ移動する。 In the return process, when a control signal from the ECU 101 (see FIG. 1) is applied to the electromagnetic intake valve 3, a current flows through the electromagnetic coil 35 via the terminal member 40. When current flows through the electromagnetic coil 35, a magnetic attraction force acts between the magnetic core 39 and the anchor 36, and the anchor 36 (rod 33) is attracted to the magnetic core 39. As a result, the anchor 36 (rod 33) moves in the valve closing direction (away from the valve portion 32) against the biasing force of the rod biasing spring 34.
 アンカー36(ロッド33)が閉弁方向へ移動すると、弁部32は、開弁方向への付勢力から解放され、弁付勢ばね38による付勢力と、燃料が吸入通路10bに流れ込むことによる流体力により閉弁方向に移動する。そして、弁部32が、吸入弁シート31の着座部31aに接触する(弁部32が着座部31aに着座する)と、電磁吸入弁3が閉弁状態になる。 When the anchor 36 (rod 33) moves in the valve-closing direction, the valve portion 32 is released from the biasing force in the valve-opening direction, and is freed from the biasing force by the valve biasing spring 38 and the flow caused by the fuel flowing into the suction passage 10b. Moves in the valve closing direction depending on physical strength. Then, when the valve portion 32 contacts the seating portion 31a of the suction valve seat 31 (the valve portion 32 is seated on the seating portion 31a), the electromagnetic suction valve 3 enters the closed state.
 電磁吸入弁3が閉弁状態になった後、加圧室11の燃料は、プランジャ2の上昇と共に昇圧され、所定の圧力以上になると、吐出弁8を通過してコモンレール106(図1参照)へ吐出される。この行程を吐出行程と称する。すなわち、プランジャ2の下始点から上始点までの間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁3の電磁コイル35への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。 After the electromagnetic suction valve 3 is closed, the pressure of the fuel in the pressurizing chamber 11 increases as the plunger 2 rises, and when the pressure reaches a predetermined level or higher, it passes through the discharge valve 8 and flows into the common rail 106 (see FIG. 1). is discharged to. This stroke is called a discharge stroke. That is, the upward stroke of the plunger 2 from the lower starting point to the upper starting point consists of a return stroke and a discharge stroke. By controlling the timing at which the electromagnetic coil 35 of the electromagnetic intake valve 3 is energized, the amount of high-pressure fuel discharged can be controlled.
 電磁コイル35へ通電するタイミングを早くすれば、上昇行程中における戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。その結果、吸入通路10bに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、電磁コイル35へ通電するタイミングを遅くすれば、上昇行程中における戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。その結果、吸入通路10bに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。このように、電磁コイル35への通電タイミングを制御することで、高圧吐出される燃料の量をエンジン(内燃機関)が必要とする量に制御することができる。 If the timing of energizing the electromagnetic coil 35 is made earlier, the proportion of the return stroke during the upward stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the suction passage 10b, and more fuel is discharged under high pressure. On the other hand, if the timing of energizing the electromagnetic coil 35 is delayed, the proportion of the return stroke during the upward stroke increases, and the proportion of the discharge stroke decreases. As a result, more fuel is returned to the suction passage 10b, and less fuel is discharged under high pressure. In this way, by controlling the timing of energization to the electromagnetic coil 35, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
[作用効果]
 以上説明したように、本実施形態の高圧燃料供給ポンプ(燃料ポンプ)100は、プランジャ2と、前記プランジャ2の往復運動をガイドするシリンダ6と、加圧室11と連通し、前記シリンダ6が挿入されるシリンダ挿入孔(第3室1c)が設けられたポンプボディ1と、前記プランジャ2の前記加圧室11と反対側の位置に設けられ、低圧燃料を収容した副室17aと、前記プランジャ2の摺動面に設けられた第1の環状溝2rに配置され、前記シリンダ6の摺動面と接するシール部材20と、を備える。前記第1の環状溝2rおよび前記シール部材20は、前記加圧室11と前記副室17aの間に設けられており、前記シリンダ6は、前記プランジャ2の軸方向において前記シール部材20よりも前記副室17a側のシリンダ摺動面に前記副室17aと接続される連通孔(燃料供給孔6d)を有する。
[Effect]
As explained above, the high-pressure fuel supply pump (fuel pump) 100 of this embodiment communicates with the plunger 2, the cylinder 6 that guides the reciprocating movement of the plunger 2, and the pressurizing chamber 11, and the cylinder 6 communicates with the pressurizing chamber 11. a pump body 1 provided with a cylinder insertion hole (third chamber 1c) into which the cylinder is inserted; A sealing member 20 is provided, which is arranged in a first annular groove 2r provided on the sliding surface of the plunger 2 and in contact with the sliding surface of the cylinder 6. The first annular groove 2r and the seal member 20 are provided between the pressurizing chamber 11 and the auxiliary chamber 17a, and the cylinder 6 is located closer to the seal member 20 in the axial direction of the plunger 2. The cylinder sliding surface on the sub-chamber 17a side has a communication hole (fuel supply hole 6d) connected to the sub-chamber 17a.
 この連通孔(燃料供給孔6d)により、シール部材20によって高圧燃料が遮断された状態にあっても、プランジャ2とシリンダ6の摺動部に燃料を供給して燃料油膜を形成することが可能となり、プランジャ2の固着を防止することができる。 This communication hole (fuel supply hole 6d) makes it possible to supply fuel to the sliding parts of the plunger 2 and cylinder 6 to form a fuel oil film even when high-pressure fuel is cut off by the seal member 20. This makes it possible to prevent the plunger 2 from sticking.
 また、前記シリンダ摺動面に前記連通孔(燃料供給孔6d)と接続された第2の環状溝6eを有する。また、前記プランジャ2の軸方向において前記連通孔(燃料供給孔6d)の幅よりも前記第2の環状溝6eの幅が大きい。 Furthermore, the cylinder sliding surface has a second annular groove 6e connected to the communication hole (fuel supply hole 6d). Further, in the axial direction of the plunger 2, the width of the second annular groove 6e is larger than the width of the communication hole (fuel supply hole 6d).
 この第2の環状溝6eにより、プランジャ2の周方向全体の隙間に燃料供給が可能となる。 This second annular groove 6e allows fuel to be supplied to the entire circumferential gap of the plunger 2.
 また、前記プランジャ2の往復運動により前記副室17aの体積が変動するように構成されている。 Furthermore, the volume of the subchamber 17a is configured to change due to the reciprocating movement of the plunger 2.
 これにより、副室17aの体積変動による燃料の流れで連通孔(燃料供給孔6d)に低圧燃料を効果的に供給可能となる。 Thereby, low-pressure fuel can be effectively supplied to the communication hole (fuel supply hole 6d) by the flow of fuel due to the volume change in the subchamber 17a.
 また、前記プランジャ2は段差部2cを有し、前記段差部2cが前記副室17aに(常時)位置する。 Further, the plunger 2 has a stepped portion 2c, and the stepped portion 2c is (always) located in the subchamber 17a.
 これにより、プランジャ2の段差部2cで副室17aの体積変動を促進することができる。 Thereby, the volume change of the subchamber 17a can be promoted by the stepped portion 2c of the plunger 2.
 また、前記プランジャ2の摺動面に設けられた掻き出し溝2dを有し、前記掻き出し溝2dは前記連通孔(燃料供給孔6d)や前記第2の環状溝6eと重なる位置に設けられている。 It also has a scraping groove 2d provided on the sliding surface of the plunger 2, and the scraping groove 2d is provided at a position overlapping with the communication hole (fuel supply hole 6d) and the second annular groove 6e. .
 この掻き出し溝2dによって連通孔(燃料供給孔6d)や第2の環状溝6eに溜まっている燃料をプランジャ2の軸方向に供給し、プランジャ2の固着をより効果的に防止することができる。 The scraping groove 2d allows the fuel accumulated in the communication hole (fuel supply hole 6d) and the second annular groove 6e to be supplied in the axial direction of the plunger 2, thereby making it possible to more effectively prevent the plunger 2 from sticking.
 また、前記ポンプボディ1に前記副室17aと低圧燃料室10を連通する燃料通路10cが設けられており、前記連通孔(燃料供給孔6d)と前記燃料通路10cが前記プランジャ2の軸周り(周方向)で同じ位置に設けられている。 Further, the pump body 1 is provided with a fuel passage 10c that communicates the auxiliary chamber 17a and the low-pressure fuel chamber 10, and the communication hole (fuel supply hole 6d) and the fuel passage 10c are arranged around the axis of the plunger 2 ( provided at the same position in the circumferential direction).
 この配置により、燃料通路10cを通した燃料流れにより、連通孔(燃料供給孔6d)に燃料を効果的に供給することが可能となる。 With this arrangement, fuel can be effectively supplied to the communication hole (fuel supply hole 6d) by the fuel flow through the fuel passage 10c.
 また、前記シリンダ6は、前記プランジャ2の軸方向において前記シール部材20よりも前記加圧室11側のシリンダ摺動面に前記加圧室11と接続される別途の連通孔(燃料供給孔6g)を有する。前記別途の連通孔(燃料供給孔6g)は、前記シリンダ6と前記ポンプボディ1の前記シリンダ挿入孔(第3室1c)との隙間を通して前記加圧室11と接続される。 Further, the cylinder 6 has a separate communication hole (fuel supply hole 6g ). The separate communication hole (fuel supply hole 6g) is connected to the pressurizing chamber 11 through a gap between the cylinder 6 and the cylinder insertion hole (third chamber 1c) of the pump body 1.
 この別途の連通孔(燃料供給孔6g)により、シール部材20よりも加圧室11側の摺動部において、燃料ベーパ化等により燃料潤滑が枯渇した場合においても安定した油膜形成が可能となり、プランジャ2の固着を防止することができる。 This separate communication hole (fuel supply hole 6g) makes it possible to form a stable oil film on the sliding part closer to the pressurizing chamber 11 than the seal member 20, even when fuel lubrication is depleted due to fuel vaporization, etc. It is possible to prevent the plunger 2 from sticking.
 また、前記シリンダ摺動面に前記別途の連通孔(燃料供給孔6g)と接続された第3の環状溝6hを有する。また、前記プランジャ2の軸方向において前記別途の連通孔(燃料供給孔6g)の幅よりも前記第3の環状溝6hの幅が大きい。 Furthermore, the cylinder sliding surface has a third annular groove 6h connected to the separate communication hole (fuel supply hole 6g). Further, in the axial direction of the plunger 2, the width of the third annular groove 6h is larger than the width of the separate communication hole (fuel supply hole 6g).
 この第3の環状溝6hにより、プランジャ2の周方向全体の隙間に燃料供給が可能となる。 This third annular groove 6h allows fuel to be supplied to the entire circumferential gap of the plunger 2.
 また、前記プランジャ2の摺動面に設けられた別途の掻き出し溝2gを有し、前記別途の掻き出し溝2gは前記別途の連通孔(燃料供給孔6g)や前記第3の環状溝6hと重なる位置に設けられている。 Further, there is a separate scraping groove 2g provided on the sliding surface of the plunger 2, and the separate scraping groove 2g overlaps with the separate communication hole (fuel supply hole 6g) and the third annular groove 6h. located at the location.
 この掻き出し溝2gによって別途の連通孔(燃料供給孔6g)や第3の環状溝6hに溜まっている燃料をプランジャ2の軸方向に供給し、プランジャ2の固着をより効果的に防止することができる。 The scraping groove 2g allows the fuel accumulated in the separate communication hole (fuel supply hole 6g) and the third annular groove 6h to be supplied in the axial direction of the plunger 2, thereby more effectively preventing the plunger 2 from sticking. can.
 すなわち、以上説明した本実施形態の高圧燃料供給ポンプ(燃料ポンプ)100は、シリンダ6とプランジャ2の摺動部の燃料供給不足になりやすいシール部材20よりも低圧側に燃料を導く燃料供給孔をシリンダ6に設ける。具体的には、プランジャ2とシリンダ6の摺動部と副室17aを接続する燃料供給孔をシリンダ6に設ける。 That is, the high-pressure fuel supply pump (fuel pump) 100 of the present embodiment described above has a fuel supply hole that guides fuel to a lower pressure side than the seal member 20 where the sliding portion of the cylinder 6 and the plunger 2 tends to be short of fuel supply. is provided in the cylinder 6. Specifically, the cylinder 6 is provided with a fuel supply hole that connects the plunger 2, the sliding portion of the cylinder 6, and the auxiliary chamber 17a.
 本実施形態の高圧燃料供給ポンプ(燃料ポンプ)100によれば、シール部材20によって高圧燃料が遮断された状態にあっても、摺動部に燃料油膜を形成することが可能となり、プランジャ2の固着を防止することができる。 According to the high-pressure fuel supply pump (fuel pump) 100 of the present embodiment, even if high-pressure fuel is cut off by the seal member 20, it is possible to form a fuel oil film on the sliding part, and the plunger 2 Sticking can be prevented.
 以上、本発明の燃料ポンプの実施形態について、その作用効果も含めて説明した。しかしながら、本発明の燃料ポンプは、上述の実施形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The embodiments of the fuel pump of the present invention have been described above, including their effects. However, the fuel pump of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the invention as set forth in the claims. Further, the embodiments described above have been described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
 1…ポンプボディ、 1a…第1室、 1b…第2室、 1c…第3室(シリンダ挿入孔)、 1d…吸入通路、 1e…連通孔、 1f…テーパー面、 1g…天面(段部)、 1A…中心線、 2…プランジャ、 2a…プランジャ大径部、 2b…プランジャ小径部、 2c…プランジャ段差部、 2d…掻き出し溝、 2g…掻き出し溝(別途の掻き出し溝)、 2r…環状溝(第1の環状溝)、 3…電磁吸入弁、 4…リリーフ弁、 5…吸入ジョイント、 6…シリンダ、 6a…圧入部、 6b…シリンダ内周部、 6c…縮径部、 6d…燃料供給孔(連通孔)、 6e…環状溝(第2の環状溝)、 6g…燃料供給孔(別途の連通孔)、 6h…環状溝(第3の環状溝)、 6i…天面、 6j…連通溝、 8…吐出弁、 9…圧力脈動低減機構、 10…低圧燃料室、 11…加圧室、 12…吐出ジョイント、 17a…副室、 20…シール部材、 31…吸入弁シート、 31a…着座部、 31b…吸入ポート、 32…弁部、 33…ロッド、 35…電磁コイル、 36…アンカー、 37…ストッパ、 39…磁性コア、 40…端子部材、 42…リリーフ弁ホルダ、 43…弁部、 44…シート部材、 81…吐出弁シート、 82…弁部、 84…吐出弁ストッパ、 85…プラグ、 100…高圧燃料供給ポンプ(燃料ポンプ)、 101…ECU、 102…フィードポンプ、 103…燃料タンク、 104…低圧配管、 105…燃料圧力センサ、 106…コモンレール、 107…インジェクタ 1...Pump body, 1a...First chamber, 1b...Second chamber, 1c...Third chamber (cylinder insertion hole), 1d...Suction passage, 1e...Communication hole, 1f...Tapered surface, 1g...Top surface (stepped part) ), 1A... Center line, 2... Plunger, 2a... Plunger large diameter part, 2b... Plunger small diameter part, 2c... Plunger step part, 2d... Scraping groove, 2g... Scraping groove (separate scraping groove), 2r... Annular groove (first annular groove), 3... Electromagnetic suction valve, 4... Relief valve, 5... Suction joint, 6... Cylinder, 6a... Press-fitting part, 6b... Cylinder inner circumferential part, 6c... Diameter reduction part, 6d... Fuel supply Hole (communicating hole), 6e...Annular groove (second annular groove), 6g...Fuel supply hole (separate communicating hole), 6h...Annular groove (third annular groove), 6i...Top surface, 6j...Communication Groove, 8...Discharge valve, 9...Pressure pulsation reduction mechanism, 10...Low pressure fuel chamber, 11...Pressure chamber, 12...Discharge joint, 17a...Subchamber, 20...Seal member, 31...Suction valve seat, 31a...Seating part, 31b... Suction port, 32... Valve part, 33... Rod, 35... Electromagnetic coil, 36... Anchor, 37... Stopper, 39... Magnetic core, 40... Terminal member, 42... Relief valve holder, 43... Valve part, 44... Seat member, 81... Discharge valve seat, 82... Valve section, 84... Discharge valve stopper, 85... Plug, 100... High pressure fuel supply pump (fuel pump), 101... ECU, 102... Feed pump, 103... Fuel tank , 104...Low pressure piping, 105...Fuel pressure sensor, 106...Common rail, 107...Injector

Claims (15)

  1.  プランジャと、
     前記プランジャの往復運動をガイドするシリンダと、
     加圧室と連通し、前記シリンダが挿入されるシリンダ挿入孔が設けられたポンプボディと、
     前記プランジャの前記加圧室と反対側の位置に設けられ、低圧燃料を収容した副室と、
     前記プランジャの摺動面に設けられた第1の環状溝に配置され、前記シリンダの摺動面と接するシール部材と、を備え、
     前記第1の環状溝および前記シール部材は、前記加圧室と前記副室の間に設けられており、
     前記シリンダは、前記プランジャの軸方向において前記シール部材よりも前記副室側のシリンダ摺動面に前記副室と接続される連通孔を有する、燃料ポンプ。
    A plunger and
    a cylinder that guides the reciprocating movement of the plunger;
    a pump body communicating with a pressurizing chamber and provided with a cylinder insertion hole into which the cylinder is inserted;
    an auxiliary chamber provided at a position opposite to the pressurizing chamber of the plunger and containing low-pressure fuel;
    a sealing member disposed in a first annular groove provided on the sliding surface of the plunger and in contact with the sliding surface of the cylinder,
    The first annular groove and the sealing member are provided between the pressurizing chamber and the subchamber,
    The cylinder is a fuel pump, wherein the cylinder has a communication hole connected to the sub-chamber on a cylinder sliding surface closer to the sub-chamber than the seal member in the axial direction of the plunger.
  2.  請求項1に記載の燃料ポンプにおいて、
     前記シリンダ摺動面に前記連通孔と接続された第2の環状溝を有する、燃料ポンプ。
    The fuel pump according to claim 1,
    The fuel pump has a second annular groove connected to the communication hole on the cylinder sliding surface.
  3.  請求項1に記載の燃料ポンプにおいて、
     前記プランジャの往復運動により前記副室の体積が変動するように構成されている、燃料ポンプ。
    The fuel pump according to claim 1,
    The fuel pump is configured such that the volume of the subchamber changes due to reciprocating motion of the plunger.
  4.  請求項3に記載の燃料ポンプにおいて、
     前記プランジャは段差部を有し、前記段差部が前記副室に位置する、燃料ポンプ。
    The fuel pump according to claim 3,
    The plunger has a stepped portion, and the stepped portion is located in the subchamber.
  5.  請求項1に記載の燃料ポンプにおいて、
     前記プランジャの摺動面に設けられた掻き出し溝を有し、前記掻き出し溝は前記連通孔と重なる位置に設けられている、燃料ポンプ。
    The fuel pump according to claim 1,
    The fuel pump has a scraping groove provided on a sliding surface of the plunger, and the scraping groove is provided at a position overlapping with the communication hole.
  6.  請求項2に記載の燃料ポンプにおいて、
     前記プランジャの摺動面に設けられた掻き出し溝を有し、前記掻き出し溝は前記第2の環状溝と重なる位置に設けられている、燃料ポンプ。
    The fuel pump according to claim 2,
    A fuel pump comprising a scraping groove provided on a sliding surface of the plunger, the scraping groove being provided at a position overlapping with the second annular groove.
  7.  請求項1に記載の燃料ポンプにおいて、
     前記ポンプボディに前記副室と低圧燃料室を連通する燃料通路が設けられており、
     前記連通孔と前記燃料通路が前記プランジャの軸周りで同じ位置に設けられている、燃料ポンプ。
    The fuel pump according to claim 1,
    The pump body is provided with a fuel passage communicating the sub-chamber and the low-pressure fuel chamber,
    A fuel pump, wherein the communication hole and the fuel passage are provided at the same position around the axis of the plunger.
  8.  請求項2に記載の燃料ポンプにおいて、
     前記プランジャの軸方向において前記連通孔の幅よりも前記第2の環状溝の幅が大きい、燃料ポンプ。
    The fuel pump according to claim 2,
    A fuel pump, wherein the width of the second annular groove is greater than the width of the communication hole in the axial direction of the plunger.
  9.  請求項1に記載の燃料ポンプにおいて、
     前記シリンダは、前記プランジャの軸方向において前記シール部材よりも前記加圧室側のシリンダ摺動面に前記加圧室と接続される別途の連通孔を有する、燃料ポンプ。
    The fuel pump according to claim 1,
    In the fuel pump, the cylinder has a separate communication hole connected to the pressurizing chamber on a cylinder sliding surface closer to the pressurizing chamber than the sealing member in the axial direction of the plunger.
  10.  請求項9に記載の燃料ポンプにおいて、
     前記別途の連通孔は、前記シリンダと前記ポンプボディの前記シリンダ挿入孔との隙間を通して前記加圧室と接続される、燃料ポンプ。
    The fuel pump according to claim 9,
    In the fuel pump, the separate communication hole is connected to the pressurizing chamber through a gap between the cylinder and the cylinder insertion hole of the pump body.
  11.  請求項9に記載の燃料ポンプにおいて、
     前記シリンダ摺動面に前記別途の連通孔と接続された第3の環状溝を有する、燃料ポンプ。
    The fuel pump according to claim 9,
    The fuel pump has a third annular groove connected to the separate communication hole on the cylinder sliding surface.
  12.  請求項9に記載の燃料ポンプにおいて、
     前記プランジャの摺動面に設けられた別途の掻き出し溝を有し、前記別途の掻き出し溝は前記別途の連通孔と重なる位置に設けられている、燃料ポンプ。
    The fuel pump according to claim 9,
    The fuel pump has a separate scraping groove provided on the sliding surface of the plunger, and the separate scraping groove is provided at a position overlapping with the separate communication hole.
  13.  請求項11に記載の燃料ポンプにおいて、
     前記プランジャの摺動面に設けられた別途の掻き出し溝を有し、前記別途の掻き出し溝は前記第3の環状溝と重なる位置に設けられている、燃料ポンプ。
    The fuel pump according to claim 11,
    The fuel pump has a separate scraping groove provided on the sliding surface of the plunger, and the separate scraping groove is provided at a position overlapping with the third annular groove.
  14.  請求項11に記載の燃料ポンプにおいて、
     前記プランジャの軸方向において前記別途の連通孔の幅よりも前記第3の環状溝の幅が大きい、燃料ポンプ。
    The fuel pump according to claim 11,
    In the fuel pump, the width of the third annular groove is larger than the width of the separate communication hole in the axial direction of the plunger.
  15.  プランジャと、
     前記プランジャの往復運動をガイドするシリンダと、
     加圧室と連通し、前記シリンダが挿入されるシリンダ挿入孔が設けられたポンプボディと、
     前記プランジャの前記加圧室と反対側の位置に設けられ、低圧燃料を収容した副室と、
     前記プランジャと前記シリンダとの摺動面隙間をシールするシール部材と、を備え、
     前記シール部材は、前記加圧室と前記副室の間に設けられており、
     前記シリンダは、前記プランジャの軸方向において前記シール部材よりも前記副室側のシリンダ摺動面に前記副室と接続される連通孔を有する、燃料ポンプ。
    A plunger and
    a cylinder that guides the reciprocating movement of the plunger;
    a pump body communicating with a pressurizing chamber and provided with a cylinder insertion hole into which the cylinder is inserted;
    an auxiliary chamber provided at a position opposite to the pressurizing chamber of the plunger and containing low-pressure fuel;
    a sealing member that seals a sliding surface gap between the plunger and the cylinder;
    The sealing member is provided between the pressurizing chamber and the sub-chamber,
    The cylinder is a fuel pump, wherein the cylinder has a communication hole connected to the sub-chamber on a cylinder sliding surface closer to the sub-chamber than the seal member in the axial direction of the plunger.
PCT/JP2022/019280 2022-04-28 2022-04-28 Fuel pump WO2023209949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019280 WO2023209949A1 (en) 2022-04-28 2022-04-28 Fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019280 WO2023209949A1 (en) 2022-04-28 2022-04-28 Fuel pump

Publications (1)

Publication Number Publication Date
WO2023209949A1 true WO2023209949A1 (en) 2023-11-02

Family

ID=88518090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019280 WO2023209949A1 (en) 2022-04-28 2022-04-28 Fuel pump

Country Status (1)

Country Link
WO (1) WO2023209949A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269461A (en) * 1994-03-29 1995-10-17 Yamaha Motor Co Ltd Fuel supply system
WO2002055870A1 (en) * 2001-01-05 2002-07-18 Hitachi, Ltd. High-pressure fuel feed pump
JP2003206825A (en) * 2002-01-16 2003-07-25 Denso Corp High pressure pump for alternate fuel
JP2008025425A (en) * 2006-07-20 2008-02-07 Hitachi Ltd High pressure fuel pump
US20080224417A1 (en) * 2007-03-16 2008-09-18 Cummins, Inc. Low leakage plunger assembly for a high pressure fluid system
WO2018110206A1 (en) * 2016-12-13 2018-06-21 三菱重工業株式会社 Fuel injection pump, fuel injection device and internal combustion engine
WO2019131049A1 (en) * 2017-12-26 2019-07-04 日立オートモティブシステムズ株式会社 Fuel supply pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269461A (en) * 1994-03-29 1995-10-17 Yamaha Motor Co Ltd Fuel supply system
WO2002055870A1 (en) * 2001-01-05 2002-07-18 Hitachi, Ltd. High-pressure fuel feed pump
JP2003206825A (en) * 2002-01-16 2003-07-25 Denso Corp High pressure pump for alternate fuel
JP2008025425A (en) * 2006-07-20 2008-02-07 Hitachi Ltd High pressure fuel pump
US20080224417A1 (en) * 2007-03-16 2008-09-18 Cummins, Inc. Low leakage plunger assembly for a high pressure fluid system
WO2018110206A1 (en) * 2016-12-13 2018-06-21 三菱重工業株式会社 Fuel injection pump, fuel injection device and internal combustion engine
WO2019131049A1 (en) * 2017-12-26 2019-07-04 日立オートモティブシステムズ株式会社 Fuel supply pump

Similar Documents

Publication Publication Date Title
US10655580B2 (en) High pressure fuel supply pump
CN110832188B (en) High-pressure fuel pump
WO2022091554A1 (en) Fuel pump
JP7178504B2 (en) Fuel pump
US12006901B2 (en) Fuel pump
WO2023209949A1 (en) Fuel pump
JP2021188544A (en) Fuel pump
JP7397729B2 (en) Fuel pump
JP7385750B2 (en) Fuel pump
US20240151198A1 (en) Fuel Pump
JP7482313B2 (en) Fuel pump
WO2024089843A1 (en) Fuel pump
EP4394219A1 (en) Electromagnetic suction valve and fuel supply pump
US20240159208A1 (en) Electromagnetic Valve Mechanism and Fuel Pump
EP4191049A1 (en) Fuel pump
WO2023203761A1 (en) Electromagnetic valve mechanism and fuel supply pump
JP2023030297A (en) Fuel pump
JP2023169731A (en) Fuel pump
EP3786442A1 (en) Fuel supply pump and method for manufacturing fuel supply pump
JP2023071061A (en) Fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940223

Country of ref document: EP

Kind code of ref document: A1