WO2023203761A1 - Electromagnetic valve mechanism and fuel supply pump - Google Patents

Electromagnetic valve mechanism and fuel supply pump Download PDF

Info

Publication number
WO2023203761A1
WO2023203761A1 PCT/JP2022/018575 JP2022018575W WO2023203761A1 WO 2023203761 A1 WO2023203761 A1 WO 2023203761A1 JP 2022018575 W JP2022018575 W JP 2022018575W WO 2023203761 A1 WO2023203761 A1 WO 2023203761A1
Authority
WO
WIPO (PCT)
Prior art keywords
lid member
valve mechanism
yoke
electromagnetic
fuel
Prior art date
Application number
PCT/JP2022/018575
Other languages
French (fr)
Japanese (ja)
Inventor
将通 谷貝
亨 小野瀬
章吾 南原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/018575 priority Critical patent/WO2023203761A1/en
Publication of WO2023203761A1 publication Critical patent/WO2023203761A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages

Definitions

  • the present invention relates to a solenoid valve mechanism and a fuel supply pump.
  • the high-pressure fuel supply pump described in Patent Document 1 includes an electromagnetic valve mechanism driven by a solenoid.
  • the electromagnetic valve mechanism includes an electromagnetic coil, a yoke that is disposed radially outside the electromagnetic coil and has one end open, and a lid member (second yoke) that closes the opening of the yoke.
  • the yoke, the lid member, and the fixed core constitute a part of the magnetic path of the solenoid.
  • the lid member is formed in an annular shape. The inner diameter side of the lid member is held by a fixed core.
  • An object of the present invention is to provide an electromagnetic valve mechanism and a fuel supply pump that can reduce radiated sound in consideration of the above problems.
  • the electromagnetic valve mechanism includes a valve part that opens and closes the fuel introduction opening, and a solenoid that moves the valve part in the opening and closing direction.
  • a solenoid consists of an electromagnetic coil, a stator placed radially inside the electromagnetic coil, a movable element that engages with a valve part and generates a magnetic attraction force between it and the stator, and a cylinder surrounding the electromagnetic coil. It has a yoke formed in the shape of a shape, and a lid member that closes an opening of the yoke.
  • a stator protrudes from one opening of the yoke.
  • the lid member is formed into a substantially annular shape having an inner circumferential portion and an outer circumferential portion. The inner peripheral part of the lid member contacts the stator, and the outer peripheral part of the lid member is fixed to the inner peripheral part of the yoke.
  • the fuel supply pump of the present invention includes a body including a pressurizing chamber, a plunger that is supported by the body so as to be able to reciprocate and increases or decreases the capacity of the pressurizing chamber by reciprocating movement, and a plunger that discharges fuel into the pressurizing chamber. and the above electromagnetic valve mechanism.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to a first embodiment of the present invention.
  • FIG. 1 is a longitudinal cross-sectional view of a high-pressure fuel supply pump according to a first embodiment of the present invention.
  • FIG. 1 is a horizontal cross-sectional view of the high-pressure fuel supply pump according to the first embodiment of the present invention, viewed from above.
  • FIG. 2 is an enlarged longitudinal sectional view of the electromagnetic suction valve mechanism in the high-pressure fuel supply pump according to the first embodiment of the present invention, showing a state in which the electromagnetic suction valve mechanism is open.
  • FIG. 1 is a longitudinal cross-sectional view of a high-pressure fuel supply pump according to a first embodiment of the present invention.
  • FIG. 1 is a horizontal cross-sectional view of the high-pressure fuel supply pump according to the first embodiment of the present invention, viewed from above.
  • FIG. 2 is an enlarged longitudinal sectional view of the electromagnetic suction valve mechanism in the high-pressure
  • FIG. 2 is a diagram of the electromagnetic suction valve mechanism of the high-pressure fuel supply pump according to the first embodiment of the present invention, viewed from the side opposite to the pressurizing chamber.
  • FIG. 7 is an enlarged longitudinal sectional view of the electromagnetic suction valve mechanism in the high-pressure fuel supply pump according to the second embodiment of the present invention, showing a state in which the electromagnetic suction valve mechanism is open.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
  • the fuel supply system includes a high-pressure fuel supply pump 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107.
  • the parts of the high-pressure fuel supply pump 100 are integrated into the body 1.
  • Fuel in the fuel tank 103 is pumped up by a feed pump 102 that is driven based on a signal from the ECU 101.
  • the pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown), and is sent to the low-pressure fuel inlet 51 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104.
  • the high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106.
  • a plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106.
  • a plurality of injectors 107 are installed according to the number of cylinders (combustion chambers).
  • the plurality of injectors 107 inject fuel according to the drive current output from the ECU 101.
  • the fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 injects fuel directly into the cylinder of the engine.
  • the fuel pressure sensor 105 outputs detected pressure data to the ECU 101.
  • the ECU 101 determines an appropriate amount of injected fuel (target injection fuel length) and appropriate fuel pressure (target (fuel pressure), etc.
  • the ECU 101 controls the driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as fuel pressure (target fuel pressure). That is, ECU 101 includes a pump control section that controls high-pressure fuel supply pump 100 and an injector control section that controls injector 107.
  • the high-pressure fuel supply pump 100 includes a pressure pulsation reduction mechanism 9, an electromagnetic suction valve mechanism 3 that is a variable capacity mechanism, a relief valve mechanism 4 (see FIG. 2), and a discharge valve mechanism 8. Fuel flowing from the low-pressure fuel intake port 51 reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b.
  • the fuel that has flowed into the electromagnetic suction valve mechanism 3 passes through the suction valve 32, flows through the suction passage 1a formed in the body 1, and then flows into the pressurizing chamber 11.
  • a plunger 2 is slidably held in the pressurizing chamber 11 .
  • the plunger 2 reciprocates as power is transmitted by a cam 91 of the engine (see FIG. 2).
  • the pressurizing chamber 11 fuel is sucked from the electromagnetic intake valve mechanism 3 during the downward stroke of the plunger 2, and the fuel is pressurized during the compression stroke.
  • the discharge valve mechanism 8 opens, and high-pressure fuel is force-fed to the common rail 106 through the discharge passage 1f.
  • the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3. Opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101.
  • Abnormally high pressure may occur in the fuel in the common rail 106 etc. due to a failure of the injector 107 or the like.
  • the relief valve mechanism 4 opens.
  • the abnormally high pressure fuel is returned to the pressurizing chamber 11 through the relief valve mechanism 4.
  • the pipes such as the common rail 106 are protected.
  • FIG. 2 is a longitudinal cross-sectional view of the high-pressure fuel supply pump 100 taken in a cross section orthogonal to the horizontal direction.
  • FIG. 3 is a horizontal cross-sectional view of the high-pressure fuel supply pump 100 taken along a cross section perpendicular to the vertical direction.
  • the body 1 of the high-pressure fuel supply pump 100 is provided with the above-mentioned suction passage 1a and the mounting flange 1b.
  • the mounting flange 1b is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine), and is fixed with a plurality of bolts (screws) not shown. That is, the high-pressure fuel supply pump 100 is fixed to the fuel pump mounting portion 90 by the mounting flange 1b.
  • an O-ring 93 which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the body 1.
  • This O-ring 93 prevents engine oil from leaking to the outside of the engine (internal combustion engine) through the space between the fuel pump mounting portion 90 and the body 1.
  • a cylinder 6 that guides the reciprocating motion of the plunger 2 is attached to the body 1 of the high-pressure fuel supply pump 100.
  • the cylinder 6 is formed into a cylindrical shape.
  • the cylinder 6 is press-fitted into the body 1 at its outer peripheral side.
  • the body 1 and the cylinder 6 form a pressurizing chamber 11 together with the electromagnetic suction valve mechanism 3, the plunger 2, and the discharge valve mechanism 8 (see FIG. 4).
  • the body 1 is provided with a fixing portion 1c that engages with the center portion of the cylinder 6 in the axial direction.
  • the fixing portion 1c of the body 1 presses the cylinder 6 upward (upward in FIG. 2). Thereby, the fuel pressurized in the pressurizing chamber 11 can be prevented from leaking from between the upper end surface of the cylinder 6 and the body 1.
  • a tappet 92 is provided at the lower end of the plunger 2.
  • Tappet 92 converts the rotational motion of cam 91 attached to the camshaft of the engine into vertical motion and transmits it to plunger 2 .
  • the plunger 2 is urged toward the cam 91 by a spring 16 via a retainer 15. Thereby, the plunger 2 is crimped onto the tappet 92.
  • the tappet 92 reciprocates as the cam 91 rotates.
  • the plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurizing chamber 11.
  • a seal holder 17 is arranged between the cylinder 6 and the retainer 15.
  • the seal holder 17 is formed into a cylindrical shape into which the plunger 2 is inserted.
  • a subchamber 17a is formed between the upper part of the seal holder 17 and the pump body 1. Further, the seal holder 17 holds a plunger seal 18 at a lower end portion on the retainer 15 side.
  • the plunger seal 18 is in slidable contact with the outer periphery of the plunger 2.
  • the plunger seal 18 seals the fuel in the auxiliary chamber 17a when the plunger 2 reciprocates, and prevents the fuel in the auxiliary chamber 17a from flowing into the engine. Further, the plunger seal 18 prevents lubricating oil (including engine oil) that lubricates sliding parts within the engine from flowing into the interior of the body 1 .
  • the plunger 2 reciprocates in the vertical direction.
  • the volume of the pressurizing chamber 11 increases, and when the plunger 2 ascends, the volume of the pressurizing chamber 11 decreases. That is, the plunger 2 is arranged so as to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 11.
  • the plunger 2 has a large diameter portion 2a and a small diameter portion 2b.
  • the large diameter portion 2a and the small diameter portion 2b are located in the subchamber 17a. Therefore, the volume of the subchamber 17a increases or decreases as the plunger 2 reciprocates.
  • the auxiliary chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 3).
  • a fuel passage 10c see FIG. 3
  • the plunger 2 descends, fuel flows from the auxiliary chamber 17a to the low pressure fuel chamber 10.
  • the plunger 2 is raised, fuel flows from the low pressure fuel chamber 10 to the auxiliary chamber 17a.
  • the fuel flow rate into and out of the pump during the suction stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced.
  • pressure pulsations occurring inside the high-pressure fuel supply pump 100 can be reduced.
  • the body 1 is provided with a relief valve mechanism 4 that communicates with the pressurizing chamber 11.
  • the relief valve mechanism 4 opens when some problem occurs in the common rail 106 or a member beyond it and the pressure of the fuel in the common rail 106 becomes high pressure equal to or higher than a predetermined value. As a result, the fuel in the discharge passage 1f returns to the pressurizing chamber 11.
  • the relief valve mechanism 4 includes a relief spring 41, a relief valve holder 42, a relief valve 43, and a seat member 44.
  • One end of the relief spring 41 is in contact with the body 1.
  • the other end of the relief spring 41 is in contact with the relief valve holder 42 .
  • the relief valve holder 42 is engaged with the relief valve 43.
  • the urging force of the relief spring 41 acts on the relief valve 43 via the relief valve holder 42 .
  • the relief valve 43 is pressed by the urging force of the relief spring 41. This blocks the fuel passage of the seat member 44.
  • the fuel passage of the seat member 44 communicates with the discharge passage 1f. Movement of fuel between the pressurizing chamber 11 (upstream side) and the seat member 44 (downstream side) is blocked by the relief valve 43 coming into contact with (adhering to) the seat member 44 .
  • relief valve mechanism 4 of this embodiment communicates with the pressurizing chamber 11, it is not limited to this.
  • the relief valve mechanism according to the present invention may, for example, communicate with a low pressure passage (low pressure fuel inlet 51, suction passage 10b, etc.).
  • a suction joint 5 is attached to the side surface of the body 1.
  • the suction joint 5 is connected to a low pressure pipe 104 through which fuel supplied from a fuel tank 103 passes. Fuel in the fuel tank 103 is supplied into the high-pressure fuel supply pump 100 from the suction joint 5.
  • the suction joint 5 has a low-pressure fuel suction port 51 connected to the low-pressure pipe 104 and a suction flow path 52 communicating with the low-pressure fuel suction port 51.
  • a suction filter (not shown) is disposed within the suction flow path 52. The suction filter removes foreign matter present in the fuel and prevents foreign matter from entering the high-pressure fuel supply pump 100.
  • the fuel that has passed through the intake flow path 52 reaches the intake port 31b (see FIG. 2) of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 provided in the low-pressure fuel chamber 10 and the intake passage 10b (see FIG. 2). do.
  • the body 1 of the high-pressure fuel supply pump 100 is provided with a low-pressure fuel chamber 10.
  • the low pressure fuel chamber 10 is covered by a damper cover 14.
  • the low pressure fuel chamber 10 is provided with a low pressure fuel passage 10a and an intake passage 10b.
  • the suction passage 10b communicates with the suction port 31b (see FIG. 2) of the electromagnetic suction valve mechanism 3, and the fuel that has passed through the low-pressure fuel passage 10a passes through the suction passage 10b to the suction port 31b of the electromagnetic suction valve mechanism 3. 31b is reached.
  • a pressure pulsation reduction mechanism 9 is provided in the low pressure fuel flow path 10a.
  • the fuel that has flowed into the pressurizing chamber 11 is returned to the suction passage 10b (see FIG. 2) through the electromagnetic suction valve mechanism 3 which is in an open state again, pressure pulsations occur in the low pressure fuel chamber 10.
  • the pressure pulsation reduction mechanism 9 reduces pressure pulsations generated within the high-pressure fuel supply pump 100 from spreading to the low-pressure piping 104.
  • the pressure pulsation reduction mechanism 9 has a metal diaphragm damper made by laminating two corrugated disk-shaped metal plates together at their outer peripheries. An inert gas such as argon is injected into the metal diaphragm damper. A metal diaphragm damper absorbs or reduces pressure pulsations by expanding and contracting.
  • the discharge valve mechanism 8 is connected to the outlet side of the pressurizing chamber 11.
  • the discharge valve mechanism 8 is housed in a discharge valve chamber 1d formed in the body 1.
  • the discharge valve mechanism 8 includes a discharge valve seat member 81 and a discharge valve 82 that comes into contact with and separates from the discharge valve seat member 81.
  • the discharge valve mechanism 8 also includes a discharge valve spring 83 that biases the discharge valve 82 toward the discharge valve seat member 81, a discharge valve stopper 84 that determines the lift amount (movement distance) of the discharge valve 82, and a discharge valve stopper 84 that determines the lift amount (movement distance) of the discharge valve 82. It is provided with a plug 85 that locks the movement of.
  • the discharge valve stopper 84 is press-fitted into the plug 85. Plug 85 is joined to body 1 by welding.
  • a discharge joint 12 is joined to the body 1 by a welded portion 12b.
  • the discharge joint 12 has a fuel discharge port 12a.
  • the fuel discharge port 12a communicates with the discharge valve chamber 1d via a discharge passage 1f.
  • the discharge passage 1f extends horizontally inside the body 1.
  • the fuel discharge port 12a is connected to the common rail 106.
  • the discharge valve mechanism 8 When the discharge valve mechanism 8 is in the open state, the fuel in the pressurizing chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 1d, the discharge passage 1f, and the fuel discharge port 12a of the discharge joint 12. Ru. With the above configuration, the discharge valve mechanism 8 functions as a check valve that restricts the direction of fuel flow.
  • FIG. 4 is a longitudinal sectional view showing a state in which the electromagnetic intake valve mechanism 3 is opened.
  • FIG. 5 is a diagram of the electromagnetic suction valve mechanism 3 viewed from the side opposite to the pressurizing chamber 11.
  • the electromagnetic intake valve mechanism 3 is inserted into a side hole formed in the body 1.
  • the electromagnetic suction valve mechanism 3 includes a suction valve seat 31 press-fitted into a horizontal hole formed in the body 1, a suction valve 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor 36. are doing.
  • the suction valve 32 is a specific example of the valve portion according to the present invention.
  • the rod 33 and the anchor 36 represent a specific example of the mover according to the present invention.
  • the suction valve seat 31 is formed into a cylindrical shape.
  • a seating portion 31a is provided on the inner peripheral portion of the suction valve seat 31.
  • the suction valve seat 31 is formed with a suction port 31b that reaches from the outer circumference to the inner circumference.
  • the suction port 31b communicates with the suction passage 10b in the low pressure fuel chamber 10 described above. Further, the suction valve seat 31 has a rod guide 31c through which the rod 33 passes.
  • a stopper 37 facing the seating portion 31a of the suction valve seat 31 is arranged in the side hole formed in the body 1.
  • the suction valve 32 is arranged between the stopper 37 and the seating portion 31a. Further, a valve biasing spring 38 is interposed between the stopper 37 and the suction valve 32. The valve biasing spring 38 biases the suction valve 32 toward the seating portion 31a.
  • the suction valve 32 closes the communication portion between the suction port 31b and the pressurizing chamber 11 by coming into contact with the seating portion 31a. As a result, the electromagnetic intake valve mechanism 3 enters the closed state. On the other hand, the suction valve 32 opens the communication portion between the suction port 31b and the pressurizing chamber 11 by coming into contact with the stopper 37. As a result, the electromagnetic intake valve mechanism 3 becomes open.
  • the rod 33 passes through the rod guide 31c of the suction valve seat 31 and the anchor 36.
  • the rod 33 is formed with a rod flange 33a.
  • One end of a rod biasing spring 34 is engaged with the rod flange 33a.
  • the other end of the rod biasing spring 34 is engaged with a fixed core 39 arranged to surround the rod biasing spring 34 .
  • the rod biasing spring 34 biases the suction valve 32 via the rod 33 in the valve opening direction, which is the stopper 37 side.
  • the fixed core 39 represents a specific example of the stator according to the present invention.
  • the anchor 36 is formed into a substantially cylindrical shape.
  • One end of an anchor biasing spring 40 contacts one end of the anchor 36 in the axial direction.
  • the other end of the anchor 36 in the axial direction faces the end surface of the fixed core 39.
  • the other end of the anchor 36 in the axial direction is formed with a flange abutting portion against which the rod flange 33a of the rod 33 abuts.
  • the other end of the anchor biasing spring 40 is in contact with the rod guide 31c.
  • the anchor biasing spring 40 biases the anchor 36 toward the rod flange 33a of the rod 33.
  • the movable distance of the anchor 36 is set longer than the movable distance of the suction valve 32. Thereby, the suction valve 32 can be reliably brought into contact (seated) with the seating portion 31a. As a result, the electromagnetic intake valve mechanism 3 can be reliably brought into the closed state.
  • Anchor guide 310 is connected to the opening of the side hole formed in the body 1.
  • Anchor guide 310 is formed into a substantially cylindrical shape.
  • An outer peripheral portion of the anchor guide 310 at one end in the axial direction is fitted into a horizontal hole formed in the body 1.
  • Anchor guide 310 is fixed to body 1 by welding.
  • the anchor 36 is slidably engaged with the inner peripheral portion of the anchor guide 310. That is, the anchor 36 is guided by the inner peripheral portion of the anchor guide 310 and moves in the axial direction (the valve opening direction and the valve closing direction).
  • the other end of the anchor guide 310 in the axial direction protrudes from the body 1.
  • a yoke 320 is fitted to the outer circumferential portion of the other end of the anchor guide 310 in the axial direction.
  • Anchor guide 310 is press-fitted and fixed to yoke 320.
  • the yoke 320 is formed into a cylindrical shape with a bottom that surrounds the electromagnetic coil 35.
  • the yoke 320 includes a cylindrical portion 321 surrounding the electromagnetic coil 35 and a fitting portion 322 provided at one end of the cylindrical portion 321 in the axial direction.
  • the fixed core 39 protrudes from the other end of the cylindrical portion 321 in the axial direction.
  • Fitting portion 322 forms the bottom of yoke 320 .
  • a fitting hole for fitting the anchor guide 310 is formed in the center of the fitting portion 322 .
  • Yoke 320 and lid member 330 constitute a magnetic circuit.
  • the lid member 330 is made of the same material as the yoke 320. Examples of the material for the yoke 320 and the lid member 330 include magnetic stainless steel material.
  • the lid member 330 is made of a substantially annular plate.
  • the lid member 330 has an inner peripheral part 331 and an outer peripheral part 332.
  • the inner peripheral portion 331 is formed by providing a circular through hole approximately in the center of the lid member 330 .
  • the fixed core 39 passes through the through hole of the lid member 330.
  • the inner circumferential portion 331 of the lid member 330 is in contact with the outer circumferential portion of the fixed core 39.
  • the outer peripheral portion 332 of the lid member 330 has an arcuate arc portion 332a and a straight portion 332b continuous to both ends of the arcuate portion 332a.
  • the arcuate portion 332a of the lid member 330 is press-fitted and fixed to the inner peripheral portion of the cylindrical portion 321 of the yoke 320.
  • the electromagnetic coil 35 is arranged so as to go around the fixed core 39 inside the cylindrical portion 321 of the yoke 320.
  • a terminal member 30 (see FIG. 2) is electrically connected to the electromagnetic coil 35.
  • a current flows through the electromagnetic coil 35 via the terminal member 30.
  • the terminal member 30 is arranged in the recess of the connector 30a.
  • the connector 30a is integrally molded with the terminal member 30 and the electromagnetic coil 35.
  • the connector 30a passes through a notch in the yoke 320.
  • a lower portion of the connector 30a faces the straight portion 332b of the lid member 330.
  • the straight portion 332b of the lid member 330 is a cutout portion for avoiding interference between the connector 30a and the lid member 330.
  • a sealing 340 is provided on the inner circumference of the electromagnetic coil 35.
  • a sealing 340 provided at one end of the electromagnetic coil 35 in the axial direction is fixed to the anchor guide 310 by welding.
  • a sealing 340 provided at the other end of the electromagnetic coil 35 in the axial direction is fixed to the fixed core 39 by welding.
  • an anchor 36 and a rod 33 which are movers, a rod guide 31c, which is a fixed part, a rod biasing spring 34, and an anchor biasing spring 40 are arranged. .
  • the rod 33 In a non-energized state where no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the suction valve 32 in the valve opening direction. As a result, the suction valve 32 is separated from the seating portion 31a and comes into contact with the stopper 37, and the electromagnetic suction valve mechanism 3 is in an open state. That is, the electromagnetic suction valve mechanism 3 is of a normally open type that opens in a non-energized state.
  • the yoke 320 and the anchor guide 310 are press-fitted and fixed, so there is no air gap between the yoke 320 and the anchor guide 310.
  • the outer circumferential portion 332 (arc portion 332a) of the lid member 330 is press-fitted and fixed to the inner circumferential portion of the cylindrical portion 321 of the yoke 320. Therefore, there is no air gap between the lid member 330 and the yoke 320. Further, the inner peripheral portion 331 of the lid member 330 is in contact with the fixed core 39. Therefore, there is no air gap between the lid member 330 and the fixed core 39. With the above structure, the air gap in the magnetic path of the electromagnetic intake valve mechanism 3 can be minimized. As a result, the magnetic efficiency of the electromagnetic intake valve mechanism 3 can be improved.
  • the outer peripheral portion 332 of the lid member 330 has an arcuate portion 332a.
  • the entire area of the arcuate portion 332a is press-fitted into the inner peripheral portion of the cylindrical portion 321 of the yoke 320.
  • the electromagnetic suction valve mechanism 3 If the electromagnetic suction valve mechanism 3 is closed during the compression stroke, the fuel sucked into the pressurizing chamber 11 during the suction stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic suction valve mechanism 3 is open during the compression stroke, the fuel in the pressurizing chamber 11 is pushed back to the suction passage 1a side and is not discharged to the common rail 106 side. In this way, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3. Opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101.
  • the volume of the pressurizing chamber 11 increases and the fuel pressure within the pressurizing chamber 11 decreases. Thereby, the fuel pressure in the pressurizing chamber 11 becomes lower than the fuel pressure in the suction port 31b.
  • the biasing force due to the pressure difference between the two exceeds the biasing force due to the valve biasing spring 38, the suction valve 32 separates from the seating portion 31a.
  • the electromagnetic suction valve mechanism 3 becomes open.
  • the fuel on the suction port 31b side passes between the suction valve 32 and the seating portion 31a, passes through the plurality of holes provided in the stopper 37, and flows into the pressurizing chamber 11.
  • the difference between the biasing forces between the anchor biasing spring 40 and the rod biasing spring 34 is set to be larger than the fluid force.
  • the volume of the pressurizing chamber 11 decreases as the plunger 2 rises. Therefore, the fuel that has been sucked into the pressurizing chamber 11 passes between the suction valve 32 and the suction valve seat 31 and is returned to the suction port 31b. Therefore, the fuel pressure inside the pressurizing chamber 11 does not increase. This stroke is called a return stroke.
  • the anchor 36 moves toward the fixed core 39 (in the valve closing direction) against the biasing force of the rod biasing spring 34.
  • the rod 33 that engages with the anchor 36 moves in a direction away from the suction valve 32.
  • the suction valve 32 is seated on the seating portion 31a due to the biasing force of the valve biasing spring 38 and the fluid force caused by the fuel flowing into the suction passage 10b.
  • the electromagnetic suction valve mechanism 3 is in a closed state.
  • the pressure of the fuel in the pressurizing chamber 11 is increased as the plunger 2 rises.
  • the pressure in the pressurizing chamber 11 exceeds a predetermined pressure, the fuel in the pressurizing chamber 11 passes through the discharge valve mechanism 8 and is discharged to the common rail 106 (see FIG. 1).
  • This stroke is called a discharge stroke. That is, the compression stroke from the lower starting point to the upper starting point of the plunger 2 consists of a return stroke and a discharge stroke.
  • the timing of energizing the electromagnetic coil 35 is made earlier, the proportion of the return stroke during the compression stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the suction passage 10b, and more fuel is discharged under high pressure.
  • the timing of energizing the electromagnetic coil 35 is delayed, the proportion of the return stroke during the compression stroke will increase, and the proportion of the discharge stroke will decrease. As a result, more fuel is returned to the suction passage 10b, and less fuel is discharged under high pressure. In this way, by controlling the timing of energization to the electromagnetic coil 35, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
  • FIG. 6 is a longitudinal sectional view showing an open state of the electromagnetic intake valve mechanism 3A according to the second embodiment.
  • the high-pressure fuel supply pump according to the second embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment.
  • the only difference between the high-pressure fuel supply pump according to the second embodiment and the high-pressure fuel supply pump 100 (see FIG. 2) is the electromagnetic intake valve mechanism 3A. Therefore, here, the configuration of the electromagnetic intake valve mechanism 3A will be explained, and the explanation of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
  • the electromagnetic suction valve mechanism 3A As shown in FIG. 6, the electromagnetic suction valve mechanism 3A is inserted into a side hole formed in the body 1.
  • the electromagnetic suction valve mechanism 3A includes a suction valve seat 31, a suction valve 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor 36.
  • An anchor guide 310 is connected to the opening of the side hole formed in the body 1.
  • Anchor guide 310 is press-fitted and fixed to yoke 320.
  • the yoke 320 includes a cylindrical portion 321 surrounding the electromagnetic coil 35 and a fitting portion 322 provided at one end of the cylindrical portion 321 in the axial direction.
  • An opening in the cylindrical portion 321 on the side opposite to the fitting portion 322 is closed by a lid member 330.
  • the lid member 330 has an inner peripheral part 331 and an outer peripheral part 332 (see FIG. 5). An inner peripheral portion 331 of the lid member 330 is in contact with the fixed core 39. Therefore, there is no air gap between the lid member 330 and the fixed core 39.
  • the outer circumferential portion 332 of the lid member 330 has an arc-shaped arc portion 332a and a straight portion 332b continuous to both ends of the arc portion 332a.
  • the arcuate portion 332a of the lid member 330 is fixed to the inner peripheral portion of the cylindrical portion 321 of the yoke 320 by a welded portion 350.
  • the welded portion 350 is continuously formed along the arcuate portion 332a. Therefore, there is no air gap between the lid member 330 and the yoke 320.
  • the air gap in the magnetic path of the electromagnetic intake valve mechanism 3 can be minimized.
  • the magnetic efficiency of the electromagnetic intake valve mechanism 3 can be improved.
  • vibration of the lid member 330 can be suppressed during operation of the electromagnetic intake valve mechanism 3.
  • the radiated sound generated due to the vibration of the lid member 330 can be reduced.
  • the arcuate portion 332a of the lid member 330 is connected to the inner peripheral portion of the cylindrical portion 321 of the yoke 320 without any gap. Thereby, the air gap in the magnetic path of the electromagnetic suction valve mechanism 3 can be minimized, and the magnetic efficiency of the electromagnetic suction valve mechanism 3 can be improved.
  • the inner peripheral portion 331 of the lid member 330 may be fixed to the fixed core 39. That is, the lid member 330 may be held by the fixed core 39. Thereby, vibration of the lid member 330 can be suppressed more than when the lid member 330 is not fixed to the fixed core 39. As a result, radiated sound can be reduced more than when the lid member 330 is fixed to the fixed core 39.
  • the electromagnetic intake valve mechanism 3 (electromagnetic valve mechanism) includes an intake valve 32 (valve part) that opens and closes the intake valve seat 31 (fuel introduction opening), and a solenoid that operates when the intake valve 32 is moved in the opening/closing direction. Equipped with The solenoid engages with the electromagnetic coil 35, a fixed core 39 (stator) disposed radially inside the electromagnetic coil 35, and the intake valve 32, and generates a magnetic attraction force between the electromagnetic coil 35 and the fixed core 39. It has an anchor 36 (mover), a cylindrical yoke 320 that surrounds the electromagnetic coil 35, and a lid member 330 that closes the opening of the yoke 320.
  • the lid member 330 is formed into a substantially annular shape having an inner peripheral part 331 and an outer peripheral part 332.
  • An inner peripheral part 331 of the lid member 330 contacts the fixed core 39, and an outer peripheral part 332 of the lid member 330 is fixed to the inner peripheral part of the yoke 320.
  • the lid member 330 of the electromagnetic suction valve mechanism 3 is press-fitted and fixed to the yoke 320. Thereby, the lid member 330 can be easily fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
  • the lid member 330 of the electromagnetic suction valve mechanism 3A is welded and fixed to the yoke 320 by a welding portion 350. Thereby, the lid member 330 can be firmly fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
  • the lid member 330 of the electromagnetic suction valve mechanism 3 may be fixed to the yoke 320 by caulking. Thereby, the lid member 330 can be easily fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
  • the lid member 330 of the electromagnetic suction valve mechanism 3 may be adhesively fixed to the yoke 320. Thereby, the lid member 330 can be easily fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
  • the outer peripheral portion 332 of the lid member 330 in the electromagnetic suction valve mechanism 3 includes an arcuate portion 332a and a straight portion 332b continuous to both ends of the arcuate portion 332a.
  • the arc portion 332a is fixed to the yoke 320.
  • the straight part 332b becomes a notch part for avoiding interference between the lid member 330 and other parts (the connector 30a) of the electromagnetic suction valve mechanism 3.
  • the arc portion 332a can be easily fixed to the inner peripheral portion of the yoke 320.
  • the arc portion 332a can be easily aligned along the inner peripheral portion of the yoke 320. Thereby, it is possible to prevent an air gap from occurring between the arc portion 332a and the yoke 320.
  • an inner peripheral portion 331 of the lid member 330 in the electromagnetic suction valve mechanism 3 is fixed to a fixed core 39 (stator).
  • the high-pressure fuel supply pump 100 (fuel supply pump) includes a body 1 having a pressurizing chamber 11, and a plunger 2 that is supported by the body 1 so as to be able to reciprocate and increase or decrease the capacity of the pressurizing chamber 11 through the reciprocating movement.
  • the high-pressure fuel supply pump 100 includes the above-described electromagnetic intake valve mechanism 3 (electromagnetic valve mechanism) that discharges fuel into the pressurizing chamber 11.
  • Tappet 93...O-ring, 100...High pressure fuel supply pump, 101...ECU, 102...Feed pump, 103...Fuel tank, 104...Low pressure piping, 105...Fuel pressure sensor, 106...Common rail, 107...Injector, 310...Anchor Guide, 320... Yoke, 321... Cylindrical part, 322... Fitting part, 330... Lid member, 331... Inner peripheral part, 332... Outer peripheral part, 332a... Arc part, 332b... Straight part, 340... Sealing, 350... Welding Department

Abstract

The present invention addresses the problem of reducing radiation sound from an electromagnetic valve mechanism. The electromagnetic valve mechanism is provided with a solenoid that drives a valve part. The solenoid has an electromagnetic coil, a stator that is disposed on an inner side in a radial direction of the electromagnetic coil, a mover that engages the valve part and generates a magnetic suction force between the mover and the stator, a yoke that is formed in a cylindrical shape surrounding the electromagnetic coil, and a lid member that blocks an opening part of the yoke. The stator protrudes from one opening of the yoke. The lid member is formed in a substantially annular shape having an inner peripheral part and an outer peripheral part. The inner peripheral part of the lid member is in contact with the stator, and the outer peripheral part of the lid member is fixed to the inner peripheral part of the yoke.

Description

電磁弁機構及び燃料供給ポンプSolenoid valve mechanism and fuel supply pump
 本発明は、電磁弁機構及び燃料供給ポンプに関する。 The present invention relates to a solenoid valve mechanism and a fuel supply pump.
 従来から内燃機関の燃料噴射弁に燃料を圧送する高圧燃料供給ポンプが知られている。この高圧燃料供給ポンプとしては、例えば、特許文献1に記載されている。特許文献1に記載された高圧燃料供給ポンプは、ソレノイドで駆動する電磁弁機構を備えている。電磁弁機構は、電磁コイルと、電磁コイルの径方向外側に配置され一端が開口したヨークと、ヨークの開口部を塞ぐ蓋部材(第2ヨーク)を備えている。ヨーク、蓋部材、及び固定コアは、ソレノイドの磁路の一部を構成している。蓋部材は、円環状に形成されている。蓋部材の内径側は、固定コアに保持されている。 High-pressure fuel supply pumps that forcefully feed fuel to fuel injection valves of internal combustion engines have been known. This high-pressure fuel supply pump is described in, for example, Patent Document 1. The high-pressure fuel supply pump described in Patent Document 1 includes an electromagnetic valve mechanism driven by a solenoid. The electromagnetic valve mechanism includes an electromagnetic coil, a yoke that is disposed radially outside the electromagnetic coil and has one end open, and a lid member (second yoke) that closes the opening of the yoke. The yoke, the lid member, and the fixed core constitute a part of the magnetic path of the solenoid. The lid member is formed in an annular shape. The inner diameter side of the lid member is held by a fixed core.
国際公開第2020/085041号International Publication No. 2020/085041
 しかし、特許文献1に記載されている高圧燃料供給ポンプは、ソレノイドの磁路の一部を構成する蓋部材が、その内径側で固定コアに保持されている。そのため、ソレノイド内で発生する衝突力が固定コアを介して蓋部材に伝わると、蓋部材がヨークに対して振動する。その結果、電磁弁機構の放射音が大きくなってしまうという課題があった。 However, in the high-pressure fuel supply pump described in Patent Document 1, the lid member that forms part of the magnetic path of the solenoid is held by a fixed core on its inner diameter side. Therefore, when the collision force generated within the solenoid is transmitted to the lid member via the fixed core, the lid member vibrates with respect to the yoke. As a result, there was a problem in that the sound radiated from the solenoid valve mechanism became louder.
 本発明の目的は、上記の問題点を考慮し、放射音を低減することができる電磁弁機構及び燃料供給ポンプを提供することにある。 An object of the present invention is to provide an electromagnetic valve mechanism and a fuel supply pump that can reduce radiated sound in consideration of the above problems.
 上記課題を解決し、本目的を達成するため、電磁弁機構は、燃料導入開口を開閉する弁部と、弁部を開閉方向に移動させるソレノイドとを備える。ソレノイドは、電磁コイルと、電磁コイルの径方向の内側に配置された固定子と、弁部に係合し、固定子との間に磁気吸引力を発生させる可動子と、電磁コイルを囲う筒状に形成されたヨークと、ヨークの開口部を塞ぐ蓋部材とを有する。固定子は、ヨークの一方の開口から突出する。蓋部材は、内周部と外周部を有する略環状に形成されている。蓋部材の内周部は、固定子と接触し、蓋部材の外周部は、ヨークの内周部に固定されている。 In order to solve the above problems and achieve the present object, the electromagnetic valve mechanism includes a valve part that opens and closes the fuel introduction opening, and a solenoid that moves the valve part in the opening and closing direction. A solenoid consists of an electromagnetic coil, a stator placed radially inside the electromagnetic coil, a movable element that engages with a valve part and generates a magnetic attraction force between it and the stator, and a cylinder surrounding the electromagnetic coil. It has a yoke formed in the shape of a shape, and a lid member that closes an opening of the yoke. A stator protrudes from one opening of the yoke. The lid member is formed into a substantially annular shape having an inner circumferential portion and an outer circumferential portion. The inner peripheral part of the lid member contacts the stator, and the outer peripheral part of the lid member is fixed to the inner peripheral part of the yoke.
 また、本発明の燃料供給ポンプは、加圧室を備えたボディと、ボディに往復運動可能に支持され、往復運動により加圧室の容量を増減させるプランジャと、加圧室へ燃料を吐出する上記電磁弁機構とを備える。 Further, the fuel supply pump of the present invention includes a body including a pressurizing chamber, a plunger that is supported by the body so as to be able to reciprocate and increases or decreases the capacity of the pressurizing chamber by reciprocating movement, and a plunger that discharges fuel into the pressurizing chamber. and the above electromagnetic valve mechanism.
 上記構成の電磁弁機構によれば、蓋部材の振動を抑制して、放射音を低減することができる。
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the electromagnetic valve mechanism configured as described above, vibration of the lid member can be suppressed and radiated sound can be reduced.
Note that problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.
本発明の第1実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to a first embodiment of the present invention. 本発明の第1実施形態に係る高圧燃料供給ポンプの縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a high-pressure fuel supply pump according to a first embodiment of the present invention. 本発明の第1実施形態に係る高圧燃料供給ポンプの上方から見た水平方向断面図である。FIG. 1 is a horizontal cross-sectional view of the high-pressure fuel supply pump according to the first embodiment of the present invention, viewed from above. 本発明の第1実施形態に係る高圧燃料供給ポンプにおける電磁吸入弁機構を拡大したものであり、電磁吸入弁機構が開弁している状態を示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of the electromagnetic suction valve mechanism in the high-pressure fuel supply pump according to the first embodiment of the present invention, showing a state in which the electromagnetic suction valve mechanism is open. 本発明の第1実施形態に係る高圧燃料供給ポンプの電磁吸入弁機構を加圧室と反対側から見た図である。FIG. 2 is a diagram of the electromagnetic suction valve mechanism of the high-pressure fuel supply pump according to the first embodiment of the present invention, viewed from the side opposite to the pressurizing chamber. 本発明の第2実施形態に係る高圧燃料供給ポンプにおける電磁吸入弁機構を拡大したものであり、電磁吸入弁機構が開弁している状態を示す縦断面図である。FIG. 7 is an enlarged longitudinal sectional view of the electromagnetic suction valve mechanism in the high-pressure fuel supply pump according to the second embodiment of the present invention, showing a state in which the electromagnetic suction valve mechanism is open.
1.実施形態
 以下、本発明の実施形態に係る高圧燃料供給ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。
1. Embodiment Hereinafter, a high-pressure fuel supply pump according to an embodiment of the present invention will be described. Note that common members in each figure are given the same reference numerals.
[燃料供給システム]
 まず、本実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムについて、図1を用いて説明する。
 図1は、本実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。
[Fuel supply system]
First, a fuel supply system using a high-pressure fuel supply pump according to the present embodiment will be explained using FIG. 1.
FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
 図1に示すように、燃料供給システムは、高圧燃料供給ポンプ100と、ECU(Engine Control Unit)101と、燃料タンク103と、コモンレール106と、複数のインジェクタ107とを備えている。高圧燃料供給ポンプ100の部品は、ボディ1に一体に組み込まれている。 As shown in FIG. 1, the fuel supply system includes a high-pressure fuel supply pump 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107. The parts of the high-pressure fuel supply pump 100 are integrated into the body 1.
 燃料タンク103の燃料は、ECU101からの信号に基づいて駆動するフィードポンプ102によって汲み上げられる。汲み上げられた燃料は、不図示のプレッシャレギュレータにより適切な圧力に加圧され、低圧配管104を通して高圧燃料供給ポンプ100の低圧燃料吸入口51に送られる。 Fuel in the fuel tank 103 is pumped up by a feed pump 102 that is driven based on a signal from the ECU 101. The pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown), and is sent to the low-pressure fuel inlet 51 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104.
 高圧燃料供給ポンプ100は、燃料タンク103から供給された燃料を加圧して、コモンレール106に圧送する。コモンレール106には、複数のインジェクタ107と、燃料圧力センサ105が装着されている。複数のインジェクタ107は、気筒(燃焼室)数にあわせて装着されている。複数のインジェクタ107は、ECU101から出力される駆動電流に従って燃料を噴射する。本実施形態の燃料供給システムは、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムである。 The high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106. A plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106. A plurality of injectors 107 are installed according to the number of cylinders (combustion chambers). The plurality of injectors 107 inject fuel according to the drive current output from the ECU 101. The fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 injects fuel directly into the cylinder of the engine.
 燃料圧力センサ105は、検出した圧力データをECU101に出力する。ECU101は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料長)や適切な燃料圧力(目標燃料圧力)等を演算する。 The fuel pressure sensor 105 outputs detected pressure data to the ECU 101. The ECU 101 determines an appropriate amount of injected fuel (target injection fuel length) and appropriate fuel pressure (target (fuel pressure), etc.
 ECU101は、燃料圧力(目標燃料圧力)等の演算結果に基づいて、高圧燃料供給ポンプ100や複数のインジェクタ107の駆動を制御する。すなわち、ECU101は、高圧燃料供給ポンプ100を制御するポンプ制御部と、インジェクタ107を制御するインジェクタ制御部を有する。 The ECU 101 controls the driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as fuel pressure (target fuel pressure). That is, ECU 101 includes a pump control section that controls high-pressure fuel supply pump 100 and an injector control section that controls injector 107.
 高圧燃料供給ポンプ100は、圧力脈動低減機構9と、容量可変機構である電磁吸入弁機構3と、リリーフ弁機構4(図2参照)と、吐出弁機構8とを有している。低圧燃料吸入口51から流入した燃料は、圧力脈動低減機構9、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。 The high-pressure fuel supply pump 100 includes a pressure pulsation reduction mechanism 9, an electromagnetic suction valve mechanism 3 that is a variable capacity mechanism, a relief valve mechanism 4 (see FIG. 2), and a discharge valve mechanism 8. Fuel flowing from the low-pressure fuel intake port 51 reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b.
 電磁吸入弁機構3に流入した燃料は、吸入弁32を通過し、ボディ1に形成された吸入通路1aを流れた後に加圧室11に流入する。加圧室11には、プランジャ2が摺動可能に保持されている。プランジャ2は、エンジンのカム91(図2参照)により動力が伝えられて往復運動する。 The fuel that has flowed into the electromagnetic suction valve mechanism 3 passes through the suction valve 32, flows through the suction passage 1a formed in the body 1, and then flows into the pressurizing chamber 11. A plunger 2 is slidably held in the pressurizing chamber 11 . The plunger 2 reciprocates as power is transmitted by a cam 91 of the engine (see FIG. 2).
 加圧室11では、プランジャ2の下降行程において電磁吸入弁機構3から燃料が吸入され、圧縮行程において燃料が加圧される。加圧室11の燃料圧力が設定値を超えると、吐出弁機構8が開弁し、吐出通路1fを経てコモンレール106へ高圧燃料が圧送される。高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。 In the pressurizing chamber 11, fuel is sucked from the electromagnetic intake valve mechanism 3 during the downward stroke of the plunger 2, and the fuel is pressurized during the compression stroke. When the fuel pressure in the pressurizing chamber 11 exceeds a set value, the discharge valve mechanism 8 opens, and high-pressure fuel is force-fed to the common rail 106 through the discharge passage 1f. The discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3. Opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101.
 インジェクタ107の故障等によりコモンレール106等の燃料に異常高圧が発生する場合がある。この場合に、コモンレール106に連通する燃料吐出口12a(図2参照)の燃料と加圧室11の燃料との差圧が予め設定された所定値以上になると、リリーフ弁機構4が開弁する。これにより、異常高圧となった燃料は、リリーフ弁機構4内を通って加圧室11へと戻される。その結果、燃料が異常高圧になった場合であっても、コモンレール106等の配管が保護される。 Abnormally high pressure may occur in the fuel in the common rail 106 etc. due to a failure of the injector 107 or the like. In this case, when the differential pressure between the fuel at the fuel discharge port 12a (see FIG. 2) communicating with the common rail 106 and the fuel in the pressurizing chamber 11 exceeds a preset value, the relief valve mechanism 4 opens. . As a result, the abnormally high pressure fuel is returned to the pressurizing chamber 11 through the relief valve mechanism 4. As a result, even if the fuel becomes abnormally high pressure, the pipes such as the common rail 106 are protected.
[高圧燃料供給ポンプ]
 次に、高圧燃料供給ポンプ100の構成について、図2~図3を用いて説明する。
 図2は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図である。図3は、高圧燃料供給ポンプ100の垂直方向に直交する断面で見た水平方向断面図である。
[High pressure fuel supply pump]
Next, the configuration of the high-pressure fuel supply pump 100 will be explained using FIGS. 2 and 3.
FIG. 2 is a longitudinal cross-sectional view of the high-pressure fuel supply pump 100 taken in a cross section orthogonal to the horizontal direction. FIG. 3 is a horizontal cross-sectional view of the high-pressure fuel supply pump 100 taken along a cross section perpendicular to the vertical direction.
 図2及び図3に示すように、高圧燃料供給ポンプ100のボディ1には、上述した吸入通路1aと、取付けフランジ1bが設けられている。この取付けフランジ1bは、エンジン(内燃機関)の燃料ポンプ取付け部90に密着し、図示しない複数のボルト(ねじ)で固定されている。すなわち、高圧燃料供給ポンプ100は、取付けフランジ1bによって燃料ポンプ取付け部90に固定されている。 As shown in FIGS. 2 and 3, the body 1 of the high-pressure fuel supply pump 100 is provided with the above-mentioned suction passage 1a and the mounting flange 1b. The mounting flange 1b is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine), and is fixed with a plurality of bolts (screws) not shown. That is, the high-pressure fuel supply pump 100 is fixed to the fuel pump mounting portion 90 by the mounting flange 1b.
 図2に示すように、燃料ポンプ取付け部90とボディ1との間には、シート部材の一具体例を示すOリング93が介在されている。このOリング93は、エンジンオイルが燃料ポンプ取付け部90とボディ1との間を通ってエンジン(内燃機関)の外部に漏れることを防止している。 As shown in FIG. 2, an O-ring 93, which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the body 1. This O-ring 93 prevents engine oil from leaking to the outside of the engine (internal combustion engine) through the space between the fuel pump mounting portion 90 and the body 1.
 高圧燃料供給ポンプ100のボディ1には、プランジャ2の往復運動をガイドするシリンダ6が取り付けられている。シリンダ6は、筒状に形成されている。シリンダ6は、その外周側においてボディ1に圧入されている。ボディ1及びシリンダ6は、電磁吸入弁機構3、プランジャ2、吐出弁機構8(図4参照)と共に加圧室11を形成している。 A cylinder 6 that guides the reciprocating motion of the plunger 2 is attached to the body 1 of the high-pressure fuel supply pump 100. The cylinder 6 is formed into a cylindrical shape. The cylinder 6 is press-fitted into the body 1 at its outer peripheral side. The body 1 and the cylinder 6 form a pressurizing chamber 11 together with the electromagnetic suction valve mechanism 3, the plunger 2, and the discharge valve mechanism 8 (see FIG. 4).
 ボディ1には、シリンダ6の軸方向の中央部に係合する固定部1cが設けられている。ボディ1の固定部1cは、シリンダ6を上方(図2中の上方)へ押圧する。これにより、加圧室11において加圧された燃料が、シリンダ6の上端面とボディ1との間から漏れないようにすることができる。 The body 1 is provided with a fixing portion 1c that engages with the center portion of the cylinder 6 in the axial direction. The fixing portion 1c of the body 1 presses the cylinder 6 upward (upward in FIG. 2). Thereby, the fuel pressurized in the pressurizing chamber 11 can be prevented from leaking from between the upper end surface of the cylinder 6 and the body 1.
 プランジャ2の下端には、タペット92が設けられている。タペット92は、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達する。プランジャ2は、リテーナ15を介してばね16によりカム91側に付勢されている。これにより、プランジャ2は、タペット92に圧着されている。タペット92は、カム91の回転に伴って往復動する。プランジャ2は、タペット92と一緒に往復動し、加圧室11の容積を変化させる。 A tappet 92 is provided at the lower end of the plunger 2. Tappet 92 converts the rotational motion of cam 91 attached to the camshaft of the engine into vertical motion and transmits it to plunger 2 . The plunger 2 is urged toward the cam 91 by a spring 16 via a retainer 15. Thereby, the plunger 2 is crimped onto the tappet 92. The tappet 92 reciprocates as the cam 91 rotates. The plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurizing chamber 11.
 シリンダ6とリテーナ15との間には、シールホルダ17が配置されている。シールホルダ17は、プランジャ2が挿入される筒状に形成されている。シールホルダ17の上部とポンプボディ1との間には、副室17aが形成されている。また、シールホルダ17は、リテーナ15側である下端部にプランジャシール18を保持している。 A seal holder 17 is arranged between the cylinder 6 and the retainer 15. The seal holder 17 is formed into a cylindrical shape into which the plunger 2 is inserted. A subchamber 17a is formed between the upper part of the seal holder 17 and the pump body 1. Further, the seal holder 17 holds a plunger seal 18 at a lower end portion on the retainer 15 side.
 プランジャシール18は、プランジャ2の外周に摺動可能に接触している。プランジャシール18は、プランジャ2が往復動したとき、副室17aの燃料をシールし、副室17aの燃料がエンジン内部へ流入しないようにする。また、プランジャシール18は、エンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がボディ1の内部に流入することを防止する。 The plunger seal 18 is in slidable contact with the outer periphery of the plunger 2. The plunger seal 18 seals the fuel in the auxiliary chamber 17a when the plunger 2 reciprocates, and prevents the fuel in the auxiliary chamber 17a from flowing into the engine. Further, the plunger seal 18 prevents lubricating oil (including engine oil) that lubricates sliding parts within the engine from flowing into the interior of the body 1 .
 図2において、プランジャ2は、上下方向に往復動する。プランジャ2が下降すると、加圧室11の容積が拡大し、プランジャ2が上昇すると、加圧室11の容積が減少する。すなわち、プランジャ2は、加圧室11の容積を拡大及び縮小させる方向に往復動するように配置されている。 In FIG. 2, the plunger 2 reciprocates in the vertical direction. When the plunger 2 descends, the volume of the pressurizing chamber 11 increases, and when the plunger 2 ascends, the volume of the pressurizing chamber 11 decreases. That is, the plunger 2 is arranged so as to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 11.
 プランジャ2は、大径部2aと小径部2bを有している。プランジャ2が往復動すると、大径部2a及び小径部2bは、副室17aに位置する。したがって、副室17aの体積は、プランジャ2の往復動によって増減する。 The plunger 2 has a large diameter portion 2a and a small diameter portion 2b. When the plunger 2 reciprocates, the large diameter portion 2a and the small diameter portion 2b are located in the subchamber 17a. Therefore, the volume of the subchamber 17a increases or decreases as the plunger 2 reciprocates.
 副室17aは、燃料通路10c(図3参照)により低圧燃料室10と連通している。プランジャ2の下降時は、副室17aから低圧燃料室10へ燃料の流れが発生する。プランジャ2の上昇時は、低圧燃料室10から副室17aへ燃料の流れが発生する。これにより、高圧燃料供給ポンプ100の吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができる。その結果、高圧燃料供給ポンプ100内部で発生する圧力脈動を低減することができる。 The auxiliary chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 3). When the plunger 2 descends, fuel flows from the auxiliary chamber 17a to the low pressure fuel chamber 10. When the plunger 2 is raised, fuel flows from the low pressure fuel chamber 10 to the auxiliary chamber 17a. Thereby, the fuel flow rate into and out of the pump during the suction stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced. As a result, pressure pulsations occurring inside the high-pressure fuel supply pump 100 can be reduced.
 ボディ1には、加圧室11に連通するリリーフ弁機構4が設けられている。リリーフ弁機構4は、コモンレール106やその先の部材に何らかの問題が生じ、コモンレール106内の燃料の圧力が予め定めた所定値以上の高圧になった場合に開弁する。その結果、吐出通路1f内の燃料は、加圧室11に戻る。 The body 1 is provided with a relief valve mechanism 4 that communicates with the pressurizing chamber 11. The relief valve mechanism 4 opens when some problem occurs in the common rail 106 or a member beyond it and the pressure of the fuel in the common rail 106 becomes high pressure equal to or higher than a predetermined value. As a result, the fuel in the discharge passage 1f returns to the pressurizing chamber 11.
 リリーフ弁機構4は、リリーフばね41と、リリーフ弁ホルダ42と、リリーフ弁43及びシート部材44を有している。リリーフばね41の一端部は、ボディ1に当接している。リリーフばね41の他端部は、リリーフ弁ホルダ42に当接している。リリーフ弁ホルダ42は、リリーフ弁43に係合している。リリーフ弁43には、リリーフばね41の付勢力がリリーフ弁ホルダ42を介して作用する。 The relief valve mechanism 4 includes a relief spring 41, a relief valve holder 42, a relief valve 43, and a seat member 44. One end of the relief spring 41 is in contact with the body 1. The other end of the relief spring 41 is in contact with the relief valve holder 42 . The relief valve holder 42 is engaged with the relief valve 43. The urging force of the relief spring 41 acts on the relief valve 43 via the relief valve holder 42 .
 リリーフ弁43は、リリーフばね41の付勢力により押圧される。これにより、シート部材44の燃料通路を塞いでいる。シート部材44の燃料通路は、吐出通路1fに連通している。加圧室11(上流側)とシート部材44(下流側)との間における燃料の移動は、リリーフ弁43がシート部材44に接触(密着)することにより遮断されている。 The relief valve 43 is pressed by the urging force of the relief spring 41. This blocks the fuel passage of the seat member 44. The fuel passage of the seat member 44 communicates with the discharge passage 1f. Movement of fuel between the pressurizing chamber 11 (upstream side) and the seat member 44 (downstream side) is blocked by the relief valve 43 coming into contact with (adhering to) the seat member 44 .
 コモンレール106やその先の部材内の燃料の圧力が高くなると、シート部材44側の燃料がリリーフ弁43を押圧する。これにより、リリーフ弁43は、リリーフばね41の付勢力に抗して移動する。その結果、リリーフ弁43が開弁し、吐出通路1f内の燃料が、シート部材44の燃料通路を通って加圧室11に戻る。したがって、リリーフ弁43を開弁させる圧力は、リリーフばね41の付勢力によって決定される。 When the pressure of the fuel in the common rail 106 and the members beyond it increases, the fuel on the seat member 44 side presses the relief valve 43. As a result, the relief valve 43 moves against the biasing force of the relief spring 41. As a result, the relief valve 43 opens, and the fuel in the discharge passage 1f returns to the pressurizing chamber 11 through the fuel passage of the seat member 44. Therefore, the pressure for opening the relief valve 43 is determined by the biasing force of the relief spring 41.
 なお、本実施形態のリリーフ弁機構4は、加圧室11に連通しているが、これに限定されるものではない。本発明に係るリリーフ弁機構は、例えば、低圧通路(低圧燃料吸入口51や吸入通路10b等)に連通するようにしてもよい。 Note that although the relief valve mechanism 4 of this embodiment communicates with the pressurizing chamber 11, it is not limited to this. The relief valve mechanism according to the present invention may, for example, communicate with a low pressure passage (low pressure fuel inlet 51, suction passage 10b, etc.).
 図3に示すように、ボディ1の側面部には、吸入ジョイント5が取り付けられている。吸入ジョイント5は、燃料タンク103から供給された燃料を通す低圧配管104に接続されている。燃料タンク103の燃料は、吸入ジョイント5から高圧燃料供給ポンプ100の内部に供給される。 As shown in FIG. 3, a suction joint 5 is attached to the side surface of the body 1. The suction joint 5 is connected to a low pressure pipe 104 through which fuel supplied from a fuel tank 103 passes. Fuel in the fuel tank 103 is supplied into the high-pressure fuel supply pump 100 from the suction joint 5.
 吸入ジョイント5は、低圧配管104に接続される低圧燃料吸入口51と、低圧燃料吸入口51に連通する吸入流路52とを有している。吸入流路52内には、吸入フィルタ(不図示)が配置されている。吸入フィルタは、燃料に存在する異物を除去し、高圧燃料供給ポンプ100内に異物が進入することを防ぐ。吸入流路52を通過した燃料は、低圧燃料室10に設けた圧力脈動低減機構9及び吸入通路10b(図2参照)を介して電磁吸入弁機構3の吸入ポート31b(図2参照)に到達する。 The suction joint 5 has a low-pressure fuel suction port 51 connected to the low-pressure pipe 104 and a suction flow path 52 communicating with the low-pressure fuel suction port 51. A suction filter (not shown) is disposed within the suction flow path 52. The suction filter removes foreign matter present in the fuel and prevents foreign matter from entering the high-pressure fuel supply pump 100. The fuel that has passed through the intake flow path 52 reaches the intake port 31b (see FIG. 2) of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 provided in the low-pressure fuel chamber 10 and the intake passage 10b (see FIG. 2). do.
 図2に示すように、高圧燃料供給ポンプ100のボディ1には、低圧燃料室10が設けられている。低圧燃料室10は、ダンパーカバー14によって覆われている。低圧燃料室10には、低圧燃料流路10aと、吸入通路10bが設けられている。吸入通路10bは、電磁吸入弁機構3の吸入ポート31b(図2参照)に連通しており、低圧燃料流路10aを通った燃料は、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。 As shown in FIG. 2, the body 1 of the high-pressure fuel supply pump 100 is provided with a low-pressure fuel chamber 10. The low pressure fuel chamber 10 is covered by a damper cover 14. The low pressure fuel chamber 10 is provided with a low pressure fuel passage 10a and an intake passage 10b. The suction passage 10b communicates with the suction port 31b (see FIG. 2) of the electromagnetic suction valve mechanism 3, and the fuel that has passed through the low-pressure fuel passage 10a passes through the suction passage 10b to the suction port 31b of the electromagnetic suction valve mechanism 3. 31b is reached.
 低圧燃料流路10aには、圧力脈動低減機構9が設けられている。加圧室11に流入した燃料が再び開弁状態の電磁吸入弁機構3を通って吸入通路10b(図2参照)へ戻されると、低圧燃料室10に圧力脈動が発生する。圧力脈動低減機構9は、高圧燃料供給ポンプ100内で発生した圧力脈動が低圧配管104へ波及することを低減する。 A pressure pulsation reduction mechanism 9 is provided in the low pressure fuel flow path 10a. When the fuel that has flowed into the pressurizing chamber 11 is returned to the suction passage 10b (see FIG. 2) through the electromagnetic suction valve mechanism 3 which is in an open state again, pressure pulsations occur in the low pressure fuel chamber 10. The pressure pulsation reduction mechanism 9 reduces pressure pulsations generated within the high-pressure fuel supply pump 100 from spreading to the low-pressure piping 104.
 圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせた金属ダイアフラムダンパを有する。金属ダイアフラムダンパの内部には、アルゴンのような不活性ガスが注入されている。金属ダイアフラムダンパは、膨張・収縮することで圧力脈動を吸収或いは低減する。 The pressure pulsation reduction mechanism 9 has a metal diaphragm damper made by laminating two corrugated disk-shaped metal plates together at their outer peripheries. An inert gas such as argon is injected into the metal diaphragm damper. A metal diaphragm damper absorbs or reduces pressure pulsations by expanding and contracting.
 図3に示すように、吐出弁機構8は、加圧室11の出口側に接続されている。吐出弁機構8は、ボディ1に形成された吐出弁室1dに収納されている。吐出弁機構8は、吐出弁シート部材81と、吐出弁シート部材81と接離する吐出弁82を備える。また、吐出弁機構8は、吐出弁82を吐出弁シート部材81側へ付勢する吐出弁ばね83と、吐出弁82のリフト量(移動距離)を決める吐出弁ストッパ84と、吐出弁ストッパ84の移動を係止するプラグ85を備える。吐出弁ストッパ84は、プラグ85に圧入されている。プラグ85は、溶接によりボディ1に接合されている。 As shown in FIG. 3, the discharge valve mechanism 8 is connected to the outlet side of the pressurizing chamber 11. The discharge valve mechanism 8 is housed in a discharge valve chamber 1d formed in the body 1. The discharge valve mechanism 8 includes a discharge valve seat member 81 and a discharge valve 82 that comes into contact with and separates from the discharge valve seat member 81. The discharge valve mechanism 8 also includes a discharge valve spring 83 that biases the discharge valve 82 toward the discharge valve seat member 81, a discharge valve stopper 84 that determines the lift amount (movement distance) of the discharge valve 82, and a discharge valve stopper 84 that determines the lift amount (movement distance) of the discharge valve 82. It is provided with a plug 85 that locks the movement of. The discharge valve stopper 84 is press-fitted into the plug 85. Plug 85 is joined to body 1 by welding.
 ボディ1には、吐出ジョイント12が溶接部12bにより接合されている。吐出ジョイント12は、燃料吐出口12aを有している。燃料吐出口12aは、吐出通路1fを介して吐出弁室1dに連通している。吐出通路1fは、ボディ1の内部において水平方向に延びている。燃料吐出口12aは、コモンレール106に接続されている。 A discharge joint 12 is joined to the body 1 by a welded portion 12b. The discharge joint 12 has a fuel discharge port 12a. The fuel discharge port 12a communicates with the discharge valve chamber 1d via a discharge passage 1f. The discharge passage 1f extends horizontally inside the body 1. The fuel discharge port 12a is connected to the common rail 106.
 加圧室11の燃料圧力が吐出弁室1dの燃料圧力より低い状態では、吐出弁82に作用する差圧力及び吐出弁ばね83による付勢力により、吐出弁82が吐出弁シート部材81に圧着される。その結果、吐出弁機構8は閉弁状態となる。一方、加圧室11の燃料圧力が、吐出弁室1dの燃料圧力よりも大きくなり、吐出弁82に作用する差圧力が吐出弁ばね83の付勢力よりも大きくなると、吐出弁82が吐出弁シート部材81から離れる。その結果、吐出弁機構8は開弁状態となる。 When the fuel pressure in the pressurizing chamber 11 is lower than the fuel pressure in the discharge valve chamber 1d, the differential pressure acting on the discharge valve 82 and the biasing force of the discharge valve spring 83 cause the discharge valve 82 to be pressed against the discharge valve seat member 81. Ru. As a result, the discharge valve mechanism 8 enters the closed state. On the other hand, when the fuel pressure in the pressurizing chamber 11 becomes greater than the fuel pressure in the discharge valve chamber 1d and the differential pressure acting on the discharge valve 82 becomes greater than the biasing force of the discharge valve spring 83, the discharge valve 82 becomes a discharge valve. It separates from the sheet member 81. As a result, the discharge valve mechanism 8 becomes open.
 吐出弁機構8が開弁状態になると、加圧室11内の燃料は、吐出弁室1d、吐出通路1f、吐出ジョイント12の燃料吐出口12aを経て、コモンレール106(図1参照)に吐出される。以上のような構成により、吐出弁機構8は、燃料の流通方向を制限する逆止弁として機能する。 When the discharge valve mechanism 8 is in the open state, the fuel in the pressurizing chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 1d, the discharge passage 1f, and the fuel discharge port 12a of the discharge joint 12. Ru. With the above configuration, the discharge valve mechanism 8 functions as a check valve that restricts the direction of fuel flow.
[電磁吸入弁機構]
 次に、電磁吸入弁機構3の構成について、図4及び図5を用いて説明する。
 図4は、電磁吸入弁機構3が開弁している状態を示す縦断面図である。図5は、電磁吸入弁機構3を加圧室11と反対側から見た図である。
[Solenoid suction valve mechanism]
Next, the configuration of the electromagnetic intake valve mechanism 3 will be explained using FIGS. 4 and 5.
FIG. 4 is a longitudinal sectional view showing a state in which the electromagnetic intake valve mechanism 3 is opened. FIG. 5 is a diagram of the electromagnetic suction valve mechanism 3 viewed from the side opposite to the pressurizing chamber 11.
 図4に示すように、電磁吸入弁機構3は、ボディ1に形成された横穴に挿入されている。電磁吸入弁機構3は、ボディ1に形成された横穴に圧入された吸入弁シート31と、吸入弁32と、ロッド33と、ロッド付勢ばね34と、電磁コイル35と、アンカー36とを有している。吸入弁32は、本発明に係る弁部の一具体例を示す。ロッド33及びアンカー36は、本発明に係る可動子の一具体例を示す。 As shown in FIG. 4, the electromagnetic intake valve mechanism 3 is inserted into a side hole formed in the body 1. The electromagnetic suction valve mechanism 3 includes a suction valve seat 31 press-fitted into a horizontal hole formed in the body 1, a suction valve 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor 36. are doing. The suction valve 32 is a specific example of the valve portion according to the present invention. The rod 33 and the anchor 36 represent a specific example of the mover according to the present invention.
 吸入弁シート31は、筒状に形成されている。吸入弁シート31の内周部には、着座部31aが設けられている。吸入弁シート31には、外周部から内周部に到達する吸入ポート31bが形成されている。吸入ポート31bは、上述した低圧燃料室10における吸入通路10bに連通している。また、吸入弁シート31は、ロッド33が貫通するロッドガイド31cを有している。 The suction valve seat 31 is formed into a cylindrical shape. A seating portion 31a is provided on the inner peripheral portion of the suction valve seat 31. The suction valve seat 31 is formed with a suction port 31b that reaches from the outer circumference to the inner circumference. The suction port 31b communicates with the suction passage 10b in the low pressure fuel chamber 10 described above. Further, the suction valve seat 31 has a rod guide 31c through which the rod 33 passes.
 ボディ1に形成された横穴には、吸入弁シート31の着座部31aに対向するストッパ37が配置されている。吸入弁32は、ストッパ37と着座部31aとの間に配置されている。また、ストッパ37と吸入弁32との間には、弁付勢ばね38が介在されている。弁付勢ばね38は、吸入弁32を着座部31a側に付勢する。 A stopper 37 facing the seating portion 31a of the suction valve seat 31 is arranged in the side hole formed in the body 1. The suction valve 32 is arranged between the stopper 37 and the seating portion 31a. Further, a valve biasing spring 38 is interposed between the stopper 37 and the suction valve 32. The valve biasing spring 38 biases the suction valve 32 toward the seating portion 31a.
 吸入弁32は、着座部31aに当接することにより、吸入ポート31bと加圧室11との連通部を閉鎖する。その結果、電磁吸入弁機構3は、閉弁状態になる。一方、吸入弁32は、ストッパ37に当接することにより、吸入ポート31bと加圧室11との連通部を開放する。その結果、電磁吸入弁機構3は、開弁状態になる。 The suction valve 32 closes the communication portion between the suction port 31b and the pressurizing chamber 11 by coming into contact with the seating portion 31a. As a result, the electromagnetic intake valve mechanism 3 enters the closed state. On the other hand, the suction valve 32 opens the communication portion between the suction port 31b and the pressurizing chamber 11 by coming into contact with the stopper 37. As a result, the electromagnetic intake valve mechanism 3 becomes open.
 ロッド33は、吸入弁シート31のロッドガイド31cとアンカー36を貫通している。ロッド33には、ロッド鍔部33aが形成されている。ロッド鍔部33aには、ロッド付勢ばね34の一端が係合している。ロッド付勢ばね34の他端は、ロッド付勢ばね34を囲うように配置された固定コア39に係合している。ロッド付勢ばね34は、ロッド33を介して吸入弁32をストッパ37側である開弁方向に付勢する。なお、固定コア39は、本発明に係る固定子の一具体例を示す。 The rod 33 passes through the rod guide 31c of the suction valve seat 31 and the anchor 36. The rod 33 is formed with a rod flange 33a. One end of a rod biasing spring 34 is engaged with the rod flange 33a. The other end of the rod biasing spring 34 is engaged with a fixed core 39 arranged to surround the rod biasing spring 34 . The rod biasing spring 34 biases the suction valve 32 via the rod 33 in the valve opening direction, which is the stopper 37 side. Note that the fixed core 39 represents a specific example of the stator according to the present invention.
 アンカー36は、略円筒状に形成されている。アンカー36の軸方向の一端には、アンカー付勢ばね40の一端が当接する。アンカー36の軸方向の他端は、固定コア39の端面に対向している。アンカー36の軸方向の他端には、ロッド33のロッド鍔部33aが当接するフランジ当接部が形成されている。 The anchor 36 is formed into a substantially cylindrical shape. One end of an anchor biasing spring 40 contacts one end of the anchor 36 in the axial direction. The other end of the anchor 36 in the axial direction faces the end surface of the fixed core 39. The other end of the anchor 36 in the axial direction is formed with a flange abutting portion against which the rod flange 33a of the rod 33 abuts.
 アンカー付勢ばね40の他端は、ロッドガイド31cに当接している。アンカー付勢ばね40は、アンカー36をロッド33のロッド鍔部33a側に付勢している。アンカー36の移動可能距離は、吸入弁32の移動可能距離よりも長く設定される。これにより、吸入弁32を着座部31aに確実に当接(着座)させることができる。その結果、電磁吸入弁機構3を確実に閉弁状態にすることができる。 The other end of the anchor biasing spring 40 is in contact with the rod guide 31c. The anchor biasing spring 40 biases the anchor 36 toward the rod flange 33a of the rod 33. The movable distance of the anchor 36 is set longer than the movable distance of the suction valve 32. Thereby, the suction valve 32 can be reliably brought into contact (seated) with the seating portion 31a. As a result, the electromagnetic intake valve mechanism 3 can be reliably brought into the closed state.
 ボディ1に形成された横穴の開口部には、アンカーガイド310が接続されている。アンカーガイド310は、略筒状に形成されている。アンカーガイド310の軸方向の一端部における外周部は、ボディ1に形成された横穴に嵌合されている。アンカーガイド310は、溶接によりボディ1に固定されている。 An anchor guide 310 is connected to the opening of the side hole formed in the body 1. Anchor guide 310 is formed into a substantially cylindrical shape. An outer peripheral portion of the anchor guide 310 at one end in the axial direction is fitted into a horizontal hole formed in the body 1. Anchor guide 310 is fixed to body 1 by welding.
 アンカーガイド310の内周部には、アンカー36が摺動可能に係合する。すなわち、アンカー36は、アンカーガイド310の内周部に案内されて、軸方向(開弁方向及び閉弁方向)に移動する。アンカーガイド310の軸方向の他端部は、ボディ1から突出している。アンカーガイド310の軸方向の他端部における外周部には、ヨーク320が嵌合されている。アンカーガイド310は、ヨーク320に圧入固定されている。 The anchor 36 is slidably engaged with the inner peripheral portion of the anchor guide 310. That is, the anchor 36 is guided by the inner peripheral portion of the anchor guide 310 and moves in the axial direction (the valve opening direction and the valve closing direction). The other end of the anchor guide 310 in the axial direction protrudes from the body 1. A yoke 320 is fitted to the outer circumferential portion of the other end of the anchor guide 310 in the axial direction. Anchor guide 310 is press-fitted and fixed to yoke 320.
 ヨーク320は、電磁コイル35を囲う有底の筒状に形成されている。ヨーク320は、電磁コイル35を囲う筒部321と、筒部321の軸方向の一端に設けられた嵌合部322とを有する。固定コア39は、筒部321の軸方向の他端から突出している。嵌合部322は、ヨーク320の底部を形成する。嵌合部322の中央には、アンカーガイド310に嵌合するための嵌合穴が形成されている。 The yoke 320 is formed into a cylindrical shape with a bottom that surrounds the electromagnetic coil 35. The yoke 320 includes a cylindrical portion 321 surrounding the electromagnetic coil 35 and a fitting portion 322 provided at one end of the cylindrical portion 321 in the axial direction. The fixed core 39 protrudes from the other end of the cylindrical portion 321 in the axial direction. Fitting portion 322 forms the bottom of yoke 320 . A fitting hole for fitting the anchor guide 310 is formed in the center of the fitting portion 322 .
 筒部321における嵌合部322と反対側の開口は、蓋部材330によって塞がれている。ヨーク320及び蓋部材330は、磁気回路を構成する。蓋部材330は、ヨーク320と同じ材料から形成されている。ヨーク320及び蓋部材330の材料としては、例えば、磁性ステンレス材料を挙げることができる。 The opening of the cylinder portion 321 on the opposite side to the fitting portion 322 is closed by a lid member 330. Yoke 320 and lid member 330 constitute a magnetic circuit. The lid member 330 is made of the same material as the yoke 320. Examples of the material for the yoke 320 and the lid member 330 include magnetic stainless steel material.
 図5に示すように、蓋部材330は、略環状の板体からなる。蓋部材330は、内周部331と、外周部332とを有する。内周部331は、蓋部材330の略中央部に円形の貫通孔を設けることにより形成されている。 As shown in FIG. 5, the lid member 330 is made of a substantially annular plate. The lid member 330 has an inner peripheral part 331 and an outer peripheral part 332. The inner peripheral portion 331 is formed by providing a circular through hole approximately in the center of the lid member 330 .
 固定コア39は、蓋部材330の貫通孔を貫通する。そして、蓋部材330の内周部331は、固定コア39の外周部に接触している。蓋部材330の外周部332は、円弧状の円弧部332aと、円弧部332aの両端に連続する直線部332bとを有する。蓋部材330の円弧部332aは、ヨーク320における筒部321の内周部に圧入固定されている。 The fixed core 39 passes through the through hole of the lid member 330. The inner circumferential portion 331 of the lid member 330 is in contact with the outer circumferential portion of the fixed core 39. The outer peripheral portion 332 of the lid member 330 has an arcuate arc portion 332a and a straight portion 332b continuous to both ends of the arcuate portion 332a. The arcuate portion 332a of the lid member 330 is press-fitted and fixed to the inner peripheral portion of the cylindrical portion 321 of the yoke 320.
 図4に示すように、電磁コイル35は、ヨーク320における筒部321の内側において、固定コア39の周りを一周するように配置されている。電磁コイル35には、端子部材30(図2参照)が電気的に接続されている。電磁コイル35には、端子部材30を介して電流が流れる。端子部材30は、コネクタ30aの凹部に配置されている。コネクタ30aは、端子部材30及び電磁コイル35と一体にモールド成形されている。 As shown in FIG. 4, the electromagnetic coil 35 is arranged so as to go around the fixed core 39 inside the cylindrical portion 321 of the yoke 320. A terminal member 30 (see FIG. 2) is electrically connected to the electromagnetic coil 35. A current flows through the electromagnetic coil 35 via the terminal member 30. The terminal member 30 is arranged in the recess of the connector 30a. The connector 30a is integrally molded with the terminal member 30 and the electromagnetic coil 35.
 コネクタ30aは、ヨーク320の切欠き部を貫通している。コネクタ30aの下部は、蓋部材330の直線部332bと対向する。蓋部材330の直線部332bは、コネクタ30aと蓋部材330との干渉を避けるための切欠き部である。 The connector 30a passes through a notch in the yoke 320. A lower portion of the connector 30a faces the straight portion 332b of the lid member 330. The straight portion 332b of the lid member 330 is a cutout portion for avoiding interference between the connector 30a and the lid member 330.
 電磁コイル35の内周部には、シーリング340が設けられている。電磁コイル35の軸方向の一端部に設けたシーリング340は、アンカーガイド310に溶接固定されている。一方、電磁コイル35の軸方向の他端部に設けたシーリング340は、固定コア39に溶接固定されている。 A sealing 340 is provided on the inner circumference of the electromagnetic coil 35. A sealing 340 provided at one end of the electromagnetic coil 35 in the axial direction is fixed to the anchor guide 310 by welding. On the other hand, a sealing 340 provided at the other end of the electromagnetic coil 35 in the axial direction is fixed to the fixed core 39 by welding.
 シーリング340及びアンカーガイド310の内周側には、可動子であるアンカー36及びロッド33と、固定部であるロッドガイド31cと、ロッド付勢ばね34と、アンカー付勢ばね40が配置されている。 On the inner circumferential side of the ceiling 340 and the anchor guide 310, an anchor 36 and a rod 33, which are movers, a rod guide 31c, which is a fixed part, a rod biasing spring 34, and an anchor biasing spring 40 are arranged. .
 電磁コイル35に電流が流れていない無通電状態において、ロッド33は、ロッド付勢ばね34による付勢力によって開弁方向に付勢され、吸入弁32を開弁方向に押圧している。その結果、吸入弁32が着座部31aから離れてストッパ37に当接し、電磁吸入弁機構3が開弁状態になっている。すなわち、電磁吸入弁機構3は、無通電状態において開弁するノーマルオープン式となっている。 In a non-energized state where no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the suction valve 32 in the valve opening direction. As a result, the suction valve 32 is separated from the seating portion 31a and comes into contact with the stopper 37, and the electromagnetic suction valve mechanism 3 is in an open state. That is, the electromagnetic suction valve mechanism 3 is of a normally open type that opens in a non-energized state.
 電磁吸入弁機構3の開弁状態において、吸入ポート31bの燃料は、吸入弁32と着座部31aとの間を通り、ストッパ37の複数の燃料通過孔(不図示)及び吸入通路1aを通って加圧室11に流入する。電磁吸入弁機構3の開弁状態において、吸入弁32は、ストッパ37と接触するため、吸入弁32の開弁方向の位置が規制される。電磁吸入弁機構3の開弁状態において、吸入弁32と着座部31aとの間に存在する隙間は、吸入弁32の可動範囲であり、これが開弁ストローク32Sとなる。 When the electromagnetic suction valve mechanism 3 is in the open state, fuel in the suction port 31b passes between the suction valve 32 and the seating portion 31a, passes through a plurality of fuel passage holes (not shown) in the stopper 37, and the suction passage 1a. It flows into the pressurizing chamber 11. When the electromagnetic suction valve mechanism 3 is in the open state, the suction valve 32 comes into contact with the stopper 37, so that the position of the suction valve 32 in the opening direction is regulated. When the electromagnetic suction valve mechanism 3 is in the open state, the gap existing between the suction valve 32 and the seating portion 31a is the movable range of the suction valve 32, and this is the valve opening stroke 32S.
 電磁コイル35に電流が流れると、磁束が発生する。発生した磁束は、固定コア39、蓋部材330、ヨーク320、アンカーガイド310、アンカー36を磁路として通過する。そして、アンカー36と固定コア39のそれぞれの磁気吸引面Sに、磁気吸引力が作用する。その結果、アンカー36は、ロッド付勢ばね34の付勢力に抗して移動し、固定コア39に接触する。 When current flows through the electromagnetic coil 35, magnetic flux is generated. The generated magnetic flux passes through the fixed core 39, the lid member 330, the yoke 320, the anchor guide 310, and the anchor 36 as a magnetic path. Then, a magnetic attraction force acts on each of the magnetic attraction surfaces S of the anchor 36 and the fixed core 39. As a result, the anchor 36 moves against the biasing force of the rod biasing spring 34 and comes into contact with the fixed core 39.
 アンカー36が固定コア39側である閉弁方向へ移動すると、アンカー36が係合するロッド33がアンカー36と共に移動する。その結果、吸入弁32は、開弁方向への付勢力から解放され、弁付勢ばね38による付勢力により閉弁方向に移動する。そして、吸入弁32が、吸入弁シート31の着座部31aに接触すると、電磁吸入弁機構3が閉弁状態になる。 When the anchor 36 moves toward the fixed core 39 in the valve closing direction, the rod 33 that the anchor 36 engages moves together with the anchor 36. As a result, the suction valve 32 is released from the biasing force in the valve-opening direction and moves in the valve-closing direction by the biasing force of the valve biasing spring 38. When the suction valve 32 comes into contact with the seating portion 31a of the suction valve seat 31, the electromagnetic suction valve mechanism 3 enters the closed state.
 前述した磁路を構成する部品同士の間は、磁気吸引面部である固定コア39とアンカー36の間と、摺動面となるアンカー36とアンカーガイド310の間を除いて、エアギャップがないことが望ましい。本実施例では、ヨーク320とアンカーガイド310を圧入固定している、そのため、ヨーク320とアンカーガイド310との間にエアギャップが無い。 There should be no air gap between the components constituting the magnetic path described above, except between the fixed core 39 and the anchor 36, which are magnetic attraction surfaces, and between the anchor 36 and the anchor guide 310, which are sliding surfaces. is desirable. In this embodiment, the yoke 320 and the anchor guide 310 are press-fitted and fixed, so there is no air gap between the yoke 320 and the anchor guide 310.
 また、蓋部材330の外周部332(円弧部332a)は、ヨーク320における筒部321の内周部に圧入固定している。そのため、蓋部材330とヨーク320との間にエアギャップが無い。さらに、蓋部材330の内周部331は、固定コア39に接触している。そのため、蓋部材330と固定コア39との間にエアギャップが無い。以上の構造により、電磁吸入弁機構3の磁路におけるエアギャップを最小限にすることができる。その結果、電磁吸入弁機構3の磁気効率を改善することができる。 Furthermore, the outer circumferential portion 332 (arc portion 332a) of the lid member 330 is press-fitted and fixed to the inner circumferential portion of the cylindrical portion 321 of the yoke 320. Therefore, there is no air gap between the lid member 330 and the yoke 320. Further, the inner peripheral portion 331 of the lid member 330 is in contact with the fixed core 39. Therefore, there is no air gap between the lid member 330 and the fixed core 39. With the above structure, the air gap in the magnetic path of the electromagnetic intake valve mechanism 3 can be minimized. As a result, the magnetic efficiency of the electromagnetic intake valve mechanism 3 can be improved.
 また、図5に示すように、蓋部材330の外周部332は、円弧部332aを有する。そして、円弧部332aの全域が、ヨーク320における筒部321の内周部に圧入固定されている。これにより、電磁吸入弁機構3の動作時に、蓋部材330の振動を抑制することができる。その結果、蓋部材330の振動に起因して発生する放射音を低減することができる。 Further, as shown in FIG. 5, the outer peripheral portion 332 of the lid member 330 has an arcuate portion 332a. The entire area of the arcuate portion 332a is press-fitted into the inner peripheral portion of the cylindrical portion 321 of the yoke 320. Thereby, vibration of the lid member 330 can be suppressed when the electromagnetic suction valve mechanism 3 is operated. As a result, the radiated sound generated due to the vibration of the lid member 330 can be reduced.
[高圧燃料ポンプの動作]
 次に、本実施形態に係る高圧燃料ポンプの動作について、図2を用いて説明する。
[High pressure fuel pump operation]
Next, the operation of the high-pressure fuel pump according to this embodiment will be explained using FIG. 2.
 図2において、プランジャ2が下降した場合に、電磁吸入弁機構3が開弁していると、吸入通路1aから加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁吸入弁機構3が閉弁していると、加圧室11内の燃料は昇圧される。これにより、加圧室11内の燃料は、吐出弁機構8を通過してコモンレール106(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を圧縮行程と称する。 In FIG. 2, when the plunger 2 is lowered and the electromagnetic intake valve mechanism 3 is open, fuel flows into the pressurizing chamber 11 from the intake passage 1a. Hereinafter, the stroke in which the plunger 2 descends will be referred to as a suction stroke. On the other hand, when the plunger 2 is raised and the electromagnetic intake valve mechanism 3 is closed, the pressure of the fuel in the pressurizing chamber 11 is increased. Thereby, the fuel in the pressurizing chamber 11 is forced to pass through the discharge valve mechanism 8 and to the common rail 106 (see FIG. 1). Hereinafter, the process in which the plunger 2 moves upward will be referred to as a compression stroke.
 圧縮行程中に電磁吸入弁機構3が閉弁していれば、吸入行程中に加圧室11に吸入された燃料が加圧され、コモンレール106側へ吐出される。一方、圧縮行程中に電磁吸入弁機構3が開弁していれば、加圧室11内の燃料は吸入通路1a側へ押し戻され、コモンレール106側へ吐出されない。このように、高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。 If the electromagnetic suction valve mechanism 3 is closed during the compression stroke, the fuel sucked into the pressurizing chamber 11 during the suction stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic suction valve mechanism 3 is open during the compression stroke, the fuel in the pressurizing chamber 11 is pushed back to the suction passage 1a side and is not discharged to the common rail 106 side. In this way, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3. Opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101.
 吸入行程では、加圧室11の容積が増加し、加圧室11内の燃料圧力が低下する。これにより、加圧室11の燃料圧力が吸入ポート31bの燃料圧力よりも低くなる。そして、両者の差圧による付勢力が弁付勢ばね38による付勢力を超えると、吸入弁32は着座部31aから離れる。これにより、電磁吸入弁機構3は、開弁状態になる。その結果、吸入ポート31b側の燃料は、吸入弁32と着座部31aとの間を通り、ストッパ37に設けられた複数の孔を通って加圧室11に流入する。 In the suction stroke, the volume of the pressurizing chamber 11 increases and the fuel pressure within the pressurizing chamber 11 decreases. Thereby, the fuel pressure in the pressurizing chamber 11 becomes lower than the fuel pressure in the suction port 31b. When the biasing force due to the pressure difference between the two exceeds the biasing force due to the valve biasing spring 38, the suction valve 32 separates from the seating portion 31a. As a result, the electromagnetic suction valve mechanism 3 becomes open. As a result, the fuel on the suction port 31b side passes between the suction valve 32 and the seating portion 31a, passes through the plurality of holes provided in the stopper 37, and flows into the pressurizing chamber 11.
 吸入行程を終了した後は、圧縮行程に移る。このとき、電磁コイル35は、無通電状態を維持したままであり、アンカー36と固定コア39との間に磁気吸引力は作用していない。そして、吸入弁32には、アンカー付勢ばね40とロッド付勢ばね34の付勢力の差に応じた開弁方向への付勢力が加わる。さらに、吸入弁32には、燃料が加圧室11から低圧燃料流路10aへ逆流する時に発生する流体力(閉弁方向への押圧力)が加わる。 After completing the suction stroke, move on to the compression stroke. At this time, the electromagnetic coil 35 remains in a non-energized state, and no magnetic attraction force is acting between the anchor 36 and the fixed core 39. Then, a biasing force in the valve opening direction is applied to the suction valve 32 in accordance with the difference in the biasing forces between the anchor biasing spring 40 and the rod biasing spring 34. Furthermore, fluid force (pressure force in the valve closing direction) generated when fuel flows backward from the pressurizing chamber 11 to the low-pressure fuel flow path 10a is applied to the suction valve 32.
 この状態において、電磁吸入弁機構3が開弁状態を維持するために、アンカー付勢ばね40とロッド付勢ばね34の付勢力の差は、流体力よりも大きく設定されている。加圧室11の容積は、プランジャ2の上昇に伴い減少する。そのため、加圧室11に吸入されていた燃料は、吸入弁32と吸入弁シート31との間を通り、吸入ポート31bへと戻される。したがって、加圧室11内部の燃料圧力が上昇することは無い。この行程を戻し行程と称する。 In this state, in order for the electromagnetic suction valve mechanism 3 to maintain the valve open state, the difference between the biasing forces between the anchor biasing spring 40 and the rod biasing spring 34 is set to be larger than the fluid force. The volume of the pressurizing chamber 11 decreases as the plunger 2 rises. Therefore, the fuel that has been sucked into the pressurizing chamber 11 passes between the suction valve 32 and the suction valve seat 31 and is returned to the suction port 31b. Therefore, the fuel pressure inside the pressurizing chamber 11 does not increase. This stroke is called a return stroke.
 戻し工程において、ECU101(図1参照)からの制御信号が電磁吸入弁機構3に印加されると、電磁コイル35には、端子部材30を介して電流が流れる。電磁コイル35に電流が流れると、固定コア39とアンカー36の磁気吸引面Sにおいて磁気吸引力が作用し、アンカー36が固定コア39に引き寄せられる。 In the return process, when a control signal from the ECU 101 (see FIG. 1) is applied to the electromagnetic intake valve mechanism 3, a current flows through the electromagnetic coil 35 via the terminal member 30. When a current flows through the electromagnetic coil 35, a magnetic attraction force acts on the magnetic attraction surface S of the fixed core 39 and the anchor 36, and the anchor 36 is attracted to the fixed core 39.
 そして、磁気吸引力がロッド付勢ばね34の付勢力よりも大きくなると、アンカー36は、ロッド付勢ばね34の付勢力に抗して固定コア39側(閉弁方向)へ移動する。これにより、アンカー36と係合するロッド33が吸入弁32から離れる方向に移動する。その結果、弁付勢ばね38による付勢力と燃料が吸入通路10bに流れ込むことによる流体力により吸入弁32が着座部31aに着座する。吸入弁32が着座部31aに着座すると、電磁吸入弁機構3は、閉弁状態になる。 Then, when the magnetic attraction force becomes larger than the biasing force of the rod biasing spring 34, the anchor 36 moves toward the fixed core 39 (in the valve closing direction) against the biasing force of the rod biasing spring 34. As a result, the rod 33 that engages with the anchor 36 moves in a direction away from the suction valve 32. As a result, the suction valve 32 is seated on the seating portion 31a due to the biasing force of the valve biasing spring 38 and the fluid force caused by the fuel flowing into the suction passage 10b. When the suction valve 32 is seated on the seating portion 31a, the electromagnetic suction valve mechanism 3 is in a closed state.
 電磁吸入弁機構3が閉弁状態になった後、加圧室11の燃料は、プランジャ2の上昇と共に昇圧される。そして、加圧室11の燃料は、所定の圧力以上になると、吐出弁機構8を通過してコモンレール106(図1参照)へ吐出される。この行程を吐出行程と称する。すなわち、プランジャ2の下始点から上始点までの間の圧縮行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構3の電磁コイル35への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。 After the electromagnetic intake valve mechanism 3 enters the closed state, the pressure of the fuel in the pressurizing chamber 11 is increased as the plunger 2 rises. When the pressure in the pressurizing chamber 11 exceeds a predetermined pressure, the fuel in the pressurizing chamber 11 passes through the discharge valve mechanism 8 and is discharged to the common rail 106 (see FIG. 1). This stroke is called a discharge stroke. That is, the compression stroke from the lower starting point to the upper starting point of the plunger 2 consists of a return stroke and a discharge stroke. By controlling the timing at which the electromagnetic coil 35 of the electromagnetic intake valve mechanism 3 is energized, the amount of high-pressure fuel discharged can be controlled.
 電磁コイル35へ通電するタイミングを早くすれば、圧縮行程中における戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。その結果、吸入通路10bに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、電磁コイル35へ通電するタイミングを遅くすれば、圧縮行程中における戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。その結果、吸入通路10bに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。このように、電磁コイル35への通電タイミングを制御することで、高圧吐出される燃料の量をエンジン(内燃機関)が必要とする量に制御することができる。 If the timing of energizing the electromagnetic coil 35 is made earlier, the proportion of the return stroke during the compression stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the suction passage 10b, and more fuel is discharged under high pressure. On the other hand, if the timing of energizing the electromagnetic coil 35 is delayed, the proportion of the return stroke during the compression stroke will increase, and the proportion of the discharge stroke will decrease. As a result, more fuel is returned to the suction passage 10b, and less fuel is discharged under high pressure. In this way, by controlling the timing of energization to the electromagnetic coil 35, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
2.第2実施形態
 次に、第2実施形態に係る高圧燃料ポンプについて、図6を参照して説明する。
 図6は、第2実施形態に係る電磁吸入弁機構3Aが開弁している状態を示す縦断面図である。
2. Second Embodiment Next, a high-pressure fuel pump according to a second embodiment will be described with reference to FIG. 6.
FIG. 6 is a longitudinal sectional view showing an open state of the electromagnetic intake valve mechanism 3A according to the second embodiment.
 第2実施形態に係る高圧燃料供給ポンプは、第1実施形態に係る高圧燃料供給ポンプ100と同様の構成を有している。第2実施形態に係る高圧燃料供給ポンプが高圧燃料供給ポンプ100(図2参照)と異なる部分は、電磁吸入弁機構3Aのみである。そのため、ここでは、電磁吸入弁機構3Aの構成について説明し、高圧燃料供給ポンプ100と共通する構成の説明を省略する。 The high-pressure fuel supply pump according to the second embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment. The only difference between the high-pressure fuel supply pump according to the second embodiment and the high-pressure fuel supply pump 100 (see FIG. 2) is the electromagnetic intake valve mechanism 3A. Therefore, here, the configuration of the electromagnetic intake valve mechanism 3A will be explained, and the explanation of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
[電磁吸入弁機構]
 図6に示すように、電磁吸入弁機構3Aは、ボディ1に形成された横穴に挿入されている。電磁吸入弁機構3Aは、吸入弁シート31と、吸入弁32と、ロッド33と、ロッド付勢ばね34と、電磁コイル35と、アンカー36とを有している。
[Solenoid suction valve mechanism]
As shown in FIG. 6, the electromagnetic suction valve mechanism 3A is inserted into a side hole formed in the body 1. The electromagnetic suction valve mechanism 3A includes a suction valve seat 31, a suction valve 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor 36.
 ボディ1に形成された横穴の開口部には、アンカーガイド310が接続されている。アンカーガイド310は、ヨーク320に圧入固定されている。ヨーク320は、電磁コイル35を囲う筒部321と、筒部321の軸方向の一端に設けられた嵌合部322とを有する。筒部321における嵌合部322と反対側の開口は、蓋部材330によって塞がれている。 An anchor guide 310 is connected to the opening of the side hole formed in the body 1. Anchor guide 310 is press-fitted and fixed to yoke 320. The yoke 320 includes a cylindrical portion 321 surrounding the electromagnetic coil 35 and a fitting portion 322 provided at one end of the cylindrical portion 321 in the axial direction. An opening in the cylindrical portion 321 on the side opposite to the fitting portion 322 is closed by a lid member 330.
 蓋部材330は、内周部331と、外周部332とを有する(図5参照)。蓋部材330の内周部331は、固定コア39に接触している。したがって、蓋部材330と固定コア39との間にエアギャップが無い。 The lid member 330 has an inner peripheral part 331 and an outer peripheral part 332 (see FIG. 5). An inner peripheral portion 331 of the lid member 330 is in contact with the fixed core 39. Therefore, there is no air gap between the lid member 330 and the fixed core 39.
 蓋部材330の外周部332は、円弧状の円弧部332aと、円弧部332aの両端に連続する直線部332bとを有する。蓋部材330の円弧部332aは、ヨーク320における筒部321の内周部に溶接部350により固定されている。溶接部350は、円弧部332aに沿って連続して施されている。したがって、蓋部材330とヨーク320との間にエアギャップが無い。 The outer circumferential portion 332 of the lid member 330 has an arc-shaped arc portion 332a and a straight portion 332b continuous to both ends of the arc portion 332a. The arcuate portion 332a of the lid member 330 is fixed to the inner peripheral portion of the cylindrical portion 321 of the yoke 320 by a welded portion 350. The welded portion 350 is continuously formed along the arcuate portion 332a. Therefore, there is no air gap between the lid member 330 and the yoke 320.
 以上の構造により、電磁吸入弁機構3の磁路におけるエアギャップを最小限にすることができる。その結果、電磁吸入弁機構3の磁気効率を改善することができる。また、電磁吸入弁機構3の動作時に、蓋部材330の振動を抑制することができる。その結果、蓋部材330の振動に起因して発生する放射音を低減することができる。 With the above structure, the air gap in the magnetic path of the electromagnetic intake valve mechanism 3 can be minimized. As a result, the magnetic efficiency of the electromagnetic intake valve mechanism 3 can be improved. Furthermore, vibration of the lid member 330 can be suppressed during operation of the electromagnetic intake valve mechanism 3. As a result, the radiated sound generated due to the vibration of the lid member 330 can be reduced.
 なお、蓋部材330の固定方法としては、例えば、カシメ固定、接着材を用いた接着固定を採用することもできる。このとき、蓋部材330の円弧部332aが、ヨーク320における筒部321の内周部に隙間なく接続されていることが好ましい。これにより、電磁吸入弁機構3の磁路におけるエアギャップを最小限にして、電磁吸入弁機構3の磁気効率を改善することができる。 Note that as a method of fixing the lid member 330, for example, caulking fixing or adhesive fixing using an adhesive can also be adopted. At this time, it is preferable that the arcuate portion 332a of the lid member 330 is connected to the inner peripheral portion of the cylindrical portion 321 of the yoke 320 without any gap. Thereby, the air gap in the magnetic path of the electromagnetic suction valve mechanism 3 can be minimized, and the magnetic efficiency of the electromagnetic suction valve mechanism 3 can be improved.
 また、本発明に係る電磁吸入弁機構としては、蓋部材330の内周部331を、固定コア39に固定してもよい。すなわち、蓋部材330が固定コア39に保持されていてもよい。これにより、蓋部材330を固定コア39に固定しない場合よりも、蓋部材330の振動を抑制することができる。その結果、蓋部材330を固定コア39に固定しい場合よりも、放射音を低減することができる。 Furthermore, in the electromagnetic intake valve mechanism according to the present invention, the inner peripheral portion 331 of the lid member 330 may be fixed to the fixed core 39. That is, the lid member 330 may be held by the fixed core 39. Thereby, vibration of the lid member 330 can be suppressed more than when the lid member 330 is not fixed to the fixed core 39. As a result, radiated sound can be reduced more than when the lid member 330 is fixed to the fixed core 39.
 以上説明したように、電磁吸入弁機構3(電磁弁機構)は、吸入弁シート31(燃料導入開口)を開閉する吸入弁32(弁部)と、吸入弁32を開閉方向に移動させるとソレノイドを備える。ソレノイドは、電磁コイル35と、電磁コイル35の径方向の内側に配置された固定コア39(固定子)と、吸入弁32に係合し、固定コア39との間に磁気吸引力を発生させるアンカー36(可動子)と、電磁コイル35を囲う筒状に形成されたヨーク320と、ヨーク320の開口部を塞ぐ蓋部材330とを有する。固定コア39は、ヨーク320の一方の開口から突出する。蓋部材330は、内周部331と外周部332を有する略環状に形成されている。蓋部材330の内周部331は、固定コア39と接触し、蓋部材330の外周部332は、ヨーク320の内周部に固定されている。
 これにより、電磁吸入弁機構3の動作時に、蓋部材330の振動を抑制することができる。その結果、蓋部材330の振動に起因して発生する放射音を低減することができる。また、電磁吸入弁機構3の磁路におけるエアギャップを最小限にして、電磁吸入弁機構3の磁気効率を改善することができる。
As explained above, the electromagnetic intake valve mechanism 3 (electromagnetic valve mechanism) includes an intake valve 32 (valve part) that opens and closes the intake valve seat 31 (fuel introduction opening), and a solenoid that operates when the intake valve 32 is moved in the opening/closing direction. Equipped with The solenoid engages with the electromagnetic coil 35, a fixed core 39 (stator) disposed radially inside the electromagnetic coil 35, and the intake valve 32, and generates a magnetic attraction force between the electromagnetic coil 35 and the fixed core 39. It has an anchor 36 (mover), a cylindrical yoke 320 that surrounds the electromagnetic coil 35, and a lid member 330 that closes the opening of the yoke 320. Fixed core 39 protrudes from one opening of yoke 320. The lid member 330 is formed into a substantially annular shape having an inner peripheral part 331 and an outer peripheral part 332. An inner peripheral part 331 of the lid member 330 contacts the fixed core 39, and an outer peripheral part 332 of the lid member 330 is fixed to the inner peripheral part of the yoke 320.
Thereby, vibration of the lid member 330 can be suppressed when the electromagnetic suction valve mechanism 3 is operated. As a result, the radiated sound generated due to the vibration of the lid member 330 can be reduced. Furthermore, the air gap in the magnetic path of the electromagnetic suction valve mechanism 3 can be minimized, and the magnetic efficiency of the electromagnetic suction valve mechanism 3 can be improved.
 また、電磁吸入弁機構3の蓋部材330は、ヨーク320に圧入固定されている。
 これにより、蓋部材330をヨーク320に容易に固定することができる。また、蓋部材330とヨーク320との間にエアギャップが生じないようにすることができる。
Further, the lid member 330 of the electromagnetic suction valve mechanism 3 is press-fitted and fixed to the yoke 320.
Thereby, the lid member 330 can be easily fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
 また、電磁吸入弁機構3Aの蓋部材330は、溶接部350によりヨーク320に溶接固定されている。
 これにより、蓋部材330をヨーク320に強固に固定することができる。また、蓋部材330とヨーク320との間にエアギャップが生じないようにすることができる。
Further, the lid member 330 of the electromagnetic suction valve mechanism 3A is welded and fixed to the yoke 320 by a welding portion 350.
Thereby, the lid member 330 can be firmly fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
 また、電磁吸入弁機構3の蓋部材330は、ヨーク320にかしめ固定されていてもよい。
 これにより、蓋部材330をヨーク320に容易に固定することができる。また、蓋部材330とヨーク320との間にエアギャップが生じないようにすることができる。
Further, the lid member 330 of the electromagnetic suction valve mechanism 3 may be fixed to the yoke 320 by caulking.
Thereby, the lid member 330 can be easily fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
 また、電磁吸入弁機構3の蓋部材330は、ヨーク320に接着固定されていてもよい。
 これにより、蓋部材330をヨーク320に容易に固定することができる。また、蓋部材330とヨーク320との間にエアギャップが生じないようにすることができる。
Further, the lid member 330 of the electromagnetic suction valve mechanism 3 may be adhesively fixed to the yoke 320.
Thereby, the lid member 330 can be easily fixed to the yoke 320. Further, it is possible to prevent an air gap from occurring between the lid member 330 and the yoke 320.
 また、電磁吸入弁機構3における蓋部材330の外周部332は、円弧状の円弧部332aと、円弧部332aの両端に連続する直線部332bとを有する。そして、円弧部332aがヨーク320に固定されている。
 これにより、直線部332bが、電磁吸入弁機構3の他の部品(コネクタ30a)と蓋部材330との干渉を避けるための切欠き部となる。また、円弧部332aをヨーク320の内周部に容易に固定することができる。さらに、円弧部332aをヨーク320の内周部に容易に沿わせることができる。これにより、円弧部332aとヨーク320との間にエアギャップが生じないようにすることができる。
Further, the outer peripheral portion 332 of the lid member 330 in the electromagnetic suction valve mechanism 3 includes an arcuate portion 332a and a straight portion 332b continuous to both ends of the arcuate portion 332a. The arc portion 332a is fixed to the yoke 320.
Thereby, the straight part 332b becomes a notch part for avoiding interference between the lid member 330 and other parts (the connector 30a) of the electromagnetic suction valve mechanism 3. Further, the arc portion 332a can be easily fixed to the inner peripheral portion of the yoke 320. Furthermore, the arc portion 332a can be easily aligned along the inner peripheral portion of the yoke 320. Thereby, it is possible to prevent an air gap from occurring between the arc portion 332a and the yoke 320.
 また、電磁吸入弁機構3における蓋部材330の内周部331は、固定コア39(固定子)に固定されている。
 これにより、蓋部材330を固定コア39に固定しない場合よりも、蓋部材330の振動を抑制することができる。その結果、蓋部材330を固定コア39に固定しい場合よりも、放射音を低減することができる。
Further, an inner peripheral portion 331 of the lid member 330 in the electromagnetic suction valve mechanism 3 is fixed to a fixed core 39 (stator).
Thereby, vibration of the lid member 330 can be suppressed more than when the lid member 330 is not fixed to the fixed core 39. As a result, radiated sound can be reduced more than when the lid member 330 is fixed to the fixed core 39.
 また、高圧燃料供給ポンプ100(燃料供給ポンプ)は、加圧室11を備えたボディ1と、ボディ1に往復運動可能に支持され、往復運動により加圧室11の容量を増減させるプランジャ2とを備える。さらに、高圧燃料供給ポンプ100は、加圧室11へ燃料を吐出する上述の電磁吸入弁機構3(電磁弁機構)を備える。
 これにより、電磁吸入弁機構3の動作時に、蓋部材330の振動を抑制することができる。その結果、蓋部材330の振動に起因して発生する放射音を低減することができる。また、電磁吸入弁機構3の磁路におけるエアギャップを最小限にして、電磁吸入弁機構3の磁気効率を改善することができる。
The high-pressure fuel supply pump 100 (fuel supply pump) includes a body 1 having a pressurizing chamber 11, and a plunger 2 that is supported by the body 1 so as to be able to reciprocate and increase or decrease the capacity of the pressurizing chamber 11 through the reciprocating movement. Equipped with Further, the high-pressure fuel supply pump 100 includes the above-described electromagnetic intake valve mechanism 3 (electromagnetic valve mechanism) that discharges fuel into the pressurizing chamber 11.
Thereby, vibration of the lid member 330 can be suppressed when the electromagnetic suction valve mechanism 3 is operated. As a result, the radiated sound generated due to the vibration of the lid member 330 can be reduced. Furthermore, the air gap in the magnetic path of the electromagnetic suction valve mechanism 3 can be minimized, and the magnetic efficiency of the electromagnetic suction valve mechanism 3 can be improved.
 本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The present invention is not limited to the embodiments described above and shown in the drawings, and various modifications can be made without departing from the gist of the invention as set forth in the claims.
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Furthermore, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 1…ボディ、 1a…吸入通路、 1b…フランジ、 1c…固定部、 1d…吐出弁室、 1f…吐出通路、 2…プランジャ、 3,3A…電磁吸入弁機構、 4…リリーフ弁機構、 5…吸入ジョイント、 6…シリンダ、 8…吐出弁機構、 9…圧力脈動低減機構、 10…低圧燃料室、 11…加圧室、 12…吐出ジョイント、 14…ダンパーカバー、 15…リテーナ、 17…シールホルダ、 17a…副室、 18…プランジャシール、 30…端子部材、 30a…コネクタ、 31…吸入弁シート、 31a…着座部、 31b…吸入ポート、 31c…ロッドガイド、 32…吸入弁、 32S…開弁ストローク、 33…ロッド、 33a…ロッド鍔部、 35…電磁コイル、 36…アンカー、 37…ストッパ、 39…固定コア、 42…リリーフ弁ホルダ、 43…リリーフ弁、 44…シート部材、 51…低圧燃料吸入口、 52…吸入流路、 81…吐出弁シート部材、 82…吐出弁、 83…吐出弁ばね、 84…吐出弁ストッパ、 85…プラグ、 90…燃料ポンプ取付け部、 91…カム、 92…タペット、 93…Oリング、 100…高圧燃料供給ポンプ、 101…ECU、 102…フィードポンプ、 103…燃料タンク、 104…低圧配管、 105…燃料圧力センサ、 106…コモンレール、 107…インジェクタ、 310…アンカーガイド、 320…ヨーク、 321…筒部、 322…嵌合部、 330…蓋部材、 331…内周部、 332…外周部、 332a…円弧部、 332b…直線部、 340…シーリング、 350…溶接部 1... Body, 1a... Suction passage, 1b... Flange, 1c... Fixed part, 1d... Discharge valve chamber, 1f... Discharge passage, 2... Plunger, 3, 3A... Electromagnetic suction valve mechanism, 4... Relief valve mechanism, 5... Suction joint, 6... Cylinder, 8... Discharge valve mechanism, 9... Pressure pulsation reduction mechanism, 10... Low pressure fuel chamber, 11... Pressurizing chamber, 12... Discharge joint, 14... Damper cover, 15... Retainer, 17... Seal holder , 17a... subchamber, 18... plunger seal, 30... terminal member, 30a... connector, 31... suction valve seat, 31a... seating section, 31b... suction port, 31c... rod guide, 32... suction valve, 32S... valve opening Stroke, 33... Rod, 33a... Rod flange, 35... Electromagnetic coil, 36... Anchor, 37... Stopper, 39... Fixed core, 42... Relief valve holder, 43... Relief valve, 44... Seat member, 51... Low pressure fuel Suction port, 52... Suction channel, 81... Discharge valve seat member, 82... Discharge valve, 83... Discharge valve spring, 84... Discharge valve stopper, 85... Plug, 90... Fuel pump mounting part, 91... Cam, 92... Tappet, 93...O-ring, 100...High pressure fuel supply pump, 101...ECU, 102...Feed pump, 103...Fuel tank, 104...Low pressure piping, 105...Fuel pressure sensor, 106...Common rail, 107...Injector, 310...Anchor Guide, 320... Yoke, 321... Cylindrical part, 322... Fitting part, 330... Lid member, 331... Inner peripheral part, 332... Outer peripheral part, 332a... Arc part, 332b... Straight part, 340... Sealing, 350... Welding Department

Claims (8)

  1.  燃料導入開口を開閉する弁部と、前記弁部を開閉方向に移動させるソレノイドと、を備える電磁弁機構であって、
     前記ソレノイドは、
     電磁コイルと、
     前記電磁コイルの径方向の内側に配置された固定子と、
     前記弁部に係合し、前記固定子との間に磁気吸引力を発生させる可動子と、
     前記電磁コイルを囲う筒状に形成され、一方の開口から前記固定子が突出するヨークと、
     前記ヨークの開口部を塞ぐ蓋部材と、を有し、
     前記蓋部材は、内周部と外周部を有する略環状に形成されており、
     前記蓋部材の内周部は、前記固定子と接触し、
     前記蓋部材の外周部は、前記ヨークの内周部に固定されている
     電磁弁機構。
    An electromagnetic valve mechanism comprising a valve part that opens and closes a fuel introduction opening, and a solenoid that moves the valve part in an opening and closing direction,
    The solenoid is
    an electromagnetic coil,
    a stator disposed radially inside the electromagnetic coil;
    a movable element that engages with the valve portion and generates a magnetic attraction force between it and the stator;
    a yoke formed in a cylindrical shape that surrounds the electromagnetic coil, and from which the stator protrudes from one opening;
    a lid member that closes the opening of the yoke;
    The lid member is formed in a substantially annular shape having an inner circumferential portion and an outer circumferential portion,
    an inner peripheral portion of the lid member contacts the stator;
    An outer circumferential portion of the lid member is fixed to an inner circumferential portion of the yoke.
  2.  前記蓋部材は、前記ヨークに圧入固定されている
     請求項1に記載の電磁弁機構。
    The electromagnetic valve mechanism according to claim 1, wherein the lid member is press-fitted and fixed to the yoke.
  3.  前記蓋部材は、前記ヨークに溶接固定されている
     請求項1に記載の電磁弁機構。
    The electromagnetic valve mechanism according to claim 1, wherein the lid member is welded and fixed to the yoke.
  4.  前記蓋部材は、前記ヨークにかしめ固定されている
     請求項1に記載の電磁弁機構。
    The electromagnetic valve mechanism according to claim 1, wherein the lid member is caulked and fixed to the yoke.
  5.  前記蓋部材は、前記ヨークに接着固定されている
     請求項1に記載の電磁弁機構。
    The electromagnetic valve mechanism according to claim 1, wherein the lid member is adhesively fixed to the yoke.
  6.  前記蓋部材の外周部は、円弧状の円弧部と、前記円弧部の両端に連続する直線部とを有し、
     前記円弧部が前記ヨークに固定されている
     請求項1に記載の電磁弁機構。
    The outer peripheral portion of the lid member has an arcuate arc portion and a straight portion continuous to both ends of the arcuate portion,
    The electromagnetic valve mechanism according to claim 1, wherein the arc portion is fixed to the yoke.
  7.  前記蓋部材の内周部は、前記固定子に固定されている
     請求項1に記載の電磁弁機構。
    The electromagnetic valve mechanism according to claim 1, wherein an inner peripheral portion of the lid member is fixed to the stator.
  8.  加圧室を備えたボディと、
     前記ボディに往復運動可能に支持され、往復運動により前記加圧室の容量を増減させるプランジャと、
     前記加圧室へ燃料を吐出する電磁弁機構と、を備える燃料供給ポンプにおいて、
     前記電磁弁機構は、
     燃料導入開口を開閉する弁部と、前記弁部を駆動させるソレノイドと、を備え、
     前記ソレノイドは、
     電磁コイルと、
     前記電磁コイルの径方向の内側に配置された固定子と、
     前記弁部に係合し、前記固定子との間に磁気吸引力を発生させる可動子と、
     前記電磁コイルを囲う筒状に形成され、一方の開口から前記固定子が突出するヨークと、
     前記ヨークの開口部を塞ぐ蓋部材と、を有し、
     前記蓋部材は、内周部と外周部を有する略環状に形成されており、
     前記蓋部材の内周部は、前記固定子と接触し、
     前記蓋部材の外周部は、前記ヨークの内周部に固定されている
     燃料供給ポンプ。
    A body equipped with a pressurized chamber,
    a plunger that is reciprocatably supported by the body and increases or decreases the capacity of the pressurizing chamber by reciprocating;
    A fuel supply pump comprising: a solenoid valve mechanism that discharges fuel into the pressurizing chamber;
    The solenoid valve mechanism is
    A valve part that opens and closes a fuel introduction opening, and a solenoid that drives the valve part,
    The solenoid is
    an electromagnetic coil,
    a stator disposed radially inside the electromagnetic coil;
    a movable element that engages with the valve portion and generates a magnetic attraction force between it and the stator;
    a yoke formed in a cylindrical shape that surrounds the electromagnetic coil, and from which the stator protrudes from one opening;
    a lid member that closes the opening of the yoke;
    The lid member is formed in a substantially annular shape having an inner circumferential portion and an outer circumferential portion,
    an inner peripheral portion of the lid member contacts the stator;
    An outer circumferential portion of the lid member is fixed to an inner circumferential portion of the yoke.
PCT/JP2022/018575 2022-04-22 2022-04-22 Electromagnetic valve mechanism and fuel supply pump WO2023203761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018575 WO2023203761A1 (en) 2022-04-22 2022-04-22 Electromagnetic valve mechanism and fuel supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018575 WO2023203761A1 (en) 2022-04-22 2022-04-22 Electromagnetic valve mechanism and fuel supply pump

Publications (1)

Publication Number Publication Date
WO2023203761A1 true WO2023203761A1 (en) 2023-10-26

Family

ID=88419469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018575 WO2023203761A1 (en) 2022-04-22 2022-04-22 Electromagnetic valve mechanism and fuel supply pump

Country Status (1)

Country Link
WO (1) WO2023203761A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154478A (en) * 2011-01-28 2012-08-16 Denso Corp Electromagnetic drive device and high-pressure pump
WO2017056681A1 (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 High-pressure fuel pump and control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154478A (en) * 2011-01-28 2012-08-16 Denso Corp Electromagnetic drive device and high-pressure pump
WO2017056681A1 (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 High-pressure fuel pump and control device

Similar Documents

Publication Publication Date Title
US20190301414A1 (en) High-Pressure Fuel Supply Pump
JP2018087548A (en) High-pressure fuel supply pump
WO2021054006A1 (en) Electromagnetic suction valve and high-pressure fuel supply pump
JP7316466B2 (en) Fuel pump
WO2023203761A1 (en) Electromagnetic valve mechanism and fuel supply pump
JP7178504B2 (en) Fuel pump
JP7216840B2 (en) fuel supply pump
JP2019100268A (en) Fuel supply pump
JP7139265B2 (en) High-pressure fuel supply pump and relief valve mechanism
JP2017145731A (en) High pressure fuel supply pump
JP7385750B2 (en) Fuel pump
JP7421646B2 (en) Fuel pump
JP7397729B2 (en) Fuel pump
WO2024084567A1 (en) Fuel pump
WO2023032253A1 (en) Fuel pump
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
WO2023209949A1 (en) Fuel pump
WO2022249550A1 (en) Electromagnetic valve mechanism and fuel pump
JP7265644B2 (en) metal diaphragm, metal damper, and fuel pump
JP2023169731A (en) Fuel pump
WO2022190410A1 (en) Fuel pump
WO2023058287A1 (en) Electromagnetic intake valve mechanism and fuel pump
WO2023238214A1 (en) Electromagnetic valve mechanism and fuel pump
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump
JP2018178969A (en) High-pressure fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938560

Country of ref document: EP

Kind code of ref document: A1