WO2023209784A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023209784A1
WO2023209784A1 PCT/JP2022/018777 JP2022018777W WO2023209784A1 WO 2023209784 A1 WO2023209784 A1 WO 2023209784A1 JP 2022018777 W JP2022018777 W JP 2022018777W WO 2023209784 A1 WO2023209784 A1 WO 2023209784A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
guard period
resource
pucch
transmission
Prior art date
Application number
PCT/JP2022/018777
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/018777 priority Critical patent/WO2023209784A1/ja
Publication of WO2023209784A1 publication Critical patent/WO2023209784A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the measurement reference signal (SRS) has a wide variety of uses. Furthermore, expansion of SRS is being considered for future wireless communication systems (eg, Rel. 17).
  • SRS expansion there may be cases where SRS resources overlap, but the existing Rel. 15/16 The NR standard cannot handle such cases. In this case, SRS transmission may not be carried out properly and system throughput may decrease.
  • the physical uplink control channel (PUCCH), which overlaps only with the above guard period, is ) is unclear in some cases. In this case, control of PUCCH transmission may not be performed appropriately, and system throughput may decrease.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately perform SRS transmission/PUCCH transmission.
  • a terminal provides a physical uplink control channel (Physical Uplink Control Channel) in a guard period between SRS resources associated with a measurement reference signal (SRS) resource set whose usage is set to antenna switching.
  • a control unit that determines whether or not to transmit a Control Channel (PUCCH) based on the content of the PUCCH and the time direction setting of the SRS resource related to the guard period, and the PUCCH that is determined to be transmitted. and a transmitting unit that transmits during the guard period.
  • PUCCH Control Channel
  • SRS transmission/PUCCH transmission can be appropriately performed.
  • FIG. 1 is a diagram illustrating an example of guard periods between SRS resources in different slots.
  • FIG. 2 is a diagram illustrating an example of slots available for A-SRS.
  • FIG. 3 is a diagram illustrating an example of SRS frequency resources for RPFS.
  • FIGS. 4A and 4B are diagrams illustrating an example of the applicable range of the non-transmission operation in the first embodiment.
  • 5A and 5B are diagrams illustrating an example of a contradiction between the second rule and the third rule.
  • FIGS. 6A and 6B are diagrams illustrating an example of PUCCH priorities according to a modification of the third embodiment.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 8 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of a vehicle according to an embodiment.
  • SRS Signal Reference Signal
  • CSI uplink
  • DL downlink
  • CSI downlink
  • a terminal (user terminal, User Equipment (UE)) may be configured with one or more SRS resources.
  • SRS resources may be identified by an SRS Resource Index (SRI).
  • SRI SRS Resource Index
  • Each SRS resource may have one or more SRS ports (may correspond to one or more SRS ports).
  • the number of ports for each SRS may be 1, 2, 4, etc.
  • the UE may be configured with one or more SRS resource sets.
  • One SRS resource set may be associated with a predetermined number of SRS resources.
  • the UE may use upper layer parameters in common with respect to SRS resources included in one SRS resource set.
  • the resource set in the present disclosure may be read as a set, resource group, group, or the like.
  • Information regarding SRS resources or resource sets may be configured in the UE using upper layer signaling, physical layer signaling (for example, Downlink Control Information (DCI)), or a combination thereof.
  • DCI Downlink Control Information
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the SRS configuration information (for example, the RRC information element "SRS-Config") may include SRS resource set configuration information, SRS resource configuration information, etc.
  • SRS resource set configuration information (for example, "SRS-ResourceSet” of RRC parameters) includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, and SRS The information may include resource type, SRS usage information, and the like. Note that the SRS resource ID may be called an SRS Resource ID (SRI).
  • the SRS resource types are periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (SP-SRS), and aperiodic SRS (Aperiodic SRS (A-SRS)). It may also indicate either of the following.
  • P-SRS Period SRS
  • SP-SRS semi-persistent SRS
  • A-SRS aperiodic SRS
  • the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation).
  • the UE may transmit the A-SRS based on the DCI's SRS request.
  • the use of SRS (“usage" of the RRC parameter) may be, for example, beam management, codebook, non-codebook, antenna switching, etc.
  • the SRS for codebook or non-codebook use may be used to determine a precoder for SRI-based codebook-based or non-codebook-based Physical Uplink Shared Channel (PUSCH) transmission.
  • PUSCH Physical Uplink Shared Channel
  • SRS for beam management purposes may assume that only one SRS resource for each SRS resource set can be transmitted at a given time instant. Note that if multiple SRS resources belong to different SRS resource sets, these SRS resources may be transmitted simultaneously.
  • SRS resource configuration information includes SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmission comb, SRS resource mapping (e.g., time and Information regarding frequency resource location, resource offset, resource period, repetition number, number of SRS symbols, SRS bandwidth, etc.), hopping, SRS resource type, sequence ID, spatial relationship, etc. may be included.
  • the UE may transmit SRS in adjacent symbols equal to the number of SRS symbols among the last six symbols in one slot. Note that the number of SRS symbols may be 1, 2, 4, etc.
  • the UE may start SRS transmission from a symbol before the offset counting from the last symbol in one slot.
  • the offset may be a number of symbols from 0 to 5 given by the RRC parameter "startPosition".
  • the number of repetitions may be a value equal to or less than the number of SRS symbols.
  • SRS of the number of SRS symbols may be repeatedly transmitted over multiple slots.
  • the UE may switch the BWP (Bandwidth Part) that transmits the SRS for each slot, or may switch the antenna. Further, the UE may apply at least one of intra-slot hopping and inter-slot hopping to SRS transmission.
  • BWP Bandwidth Part
  • antenna switching (also referred to as antenna port switching) can be set as an SRS application.
  • SRS antenna switching may be used, for example, when performing downlink CSI acquisition using uplink SRS in a time division duplex (TDD) band.
  • TDD time division duplex
  • UL SRS measurements may be used to determine the DL precoder.
  • the UE may report UE capability information (for example, RRC parameter "supportedSRS-TxPortSwitch") indicating the SRS transmission port switching pattern that it supports to the network.
  • UE capability information for example, RRC parameter "supportedSRS-TxPortSwitch”
  • This pattern is expressed in the form of "txry” such as “t1r2", “t2r4", etc., and it means that SRS can be transmitted using x antenna ports out of a total of y antennas (denoted as xTyR).
  • y may correspond to all or a subset of the UE's receive antennas.
  • a 2T4R (2 transmit ports, 4 receive ports) UE may be configured with an SRS resource set that includes two SRS resources each having two ports and whose purpose is antenna switching for DL CSI acquisition. good.
  • the UE may assume that the starting symbols of each SRS resource in the SRS resource set whose purpose is antenna switching are different from each other. The UE may also assume that there is a guard period between SRS resources of the same SRS resource set.
  • the guard period may also be called a no-transmission period, an SRS switching period, a port switching period, etc.
  • the UE may assume that it does not transmit any signals (eg, any other signals) during the guard period in the slot in which the PUSCH is transmitted.
  • the UE may use the guard period to turn on (also referred to as enabling, activating, etc.) the antenna port to be used for the next SRS transmission.
  • Rel. 15/16 NR UE expects the same number of SRS ports to be configured for all SRS resources in an SRS resource set with antenna switching usage.
  • the number of symbols that can be set for SRS transmission is being considered in order to improve coverage/capacity.
  • the number of SRS symbols, the number of repetitions, etc. can take on values of 8, 10, 12, 14, etc. at maximum.
  • the symbols in the first half of the slot can also be used for SRS transmission.
  • consideration is being given to considering (existing) the guard period Y symbols required for antenna switching even between SRS resources configured in different SRS resource sets.
  • the UE may perform SRS transmission for obtaining DL CSI using multiple SRS resource sets whose purpose is antenna switching.
  • the first A minimum gap period (guard period) of Y symbols may exist between the last OFDM symbol occupied by the SRS resource set in a slot and the first OFDM symbol occupied by the SRS resource set in the second slot. preferable.
  • FIG. 1 is a diagram illustrating an example of guard periods between SRS resources in different slots.
  • the UE is configured to transmit SRS #1 included in SRS resource set #1 in slot #n-1, and configured to transmit SRS #2 included in SRS resource set #2 in slot #n. ing.
  • a minimum gap period (guard period) of Y symbols exists between these SRS #1 and SRS #2.
  • A-SRS triggering is being considered for flexible triggering/DCI overhead reduction.
  • the 15/16 A-SRS is transmitted in a slot after the slot offset set by higher layer signaling (upper layer parameter "slotOffset") from the slot in which the triggering DCI was transmitted.
  • slotOffset upper layer parameter
  • the triggering DCI transmission slot was limited depending on the slot in which A-SRS was desired to be transmitted.
  • the 17 A-SRS can be transmitted in the t+1st available slot counting from the reference slot.
  • the reference slot may be a slot with a triggering DCI and a Rel. 15/16 A-SRS transmission slot (slot after the slot offset set by upper layer signaling from the slot in which the triggering DCI was transmitted).
  • the available slots are slots in which there are UL or flexible symbols corresponding to the time domain positions for all SRS resources in a certain resource set, and in which the triggering PDCCH (DCI) and the It may be a slot that meets the UE's capabilities regarding minimum timing requirements between all SRS resources.
  • DCI triggering PDCCH
  • the value of t may be specified by the DCI, set by the RRC, or implicitly specified (e.g., based on other parameters).
  • Candidate values (possible values) for t may include 0.
  • t may correspond to information indicating in which available slot SRS transmission is to be performed.
  • FIG. 2 is a diagram showing an example of slots available for A-SRS.
  • six slots are shown, the first three slots being DL slots, and the next three slots being called special slots (flexible slots, slots containing flexible symbols, etc.). (which may include at least one of DL, UL, and guard period), and two UL slots.
  • DL slots, flexible slots, UL slots, etc. may be specified by TDD UL/DL configuration settings that are notified to the UE by upper layer signaling.
  • the UE receives the A-SRS triggering DCI on the PDCCH of the first DL slot.
  • the reference slot is Rel.
  • the A-SRS transmission slot is 15/16 and the slot offset set by the upper layer parameter "slotOffset" is 2.
  • the third DL slot becomes the reference slot.
  • the t+1st available slot counting from the reference slot is the first UL slot shown.
  • the UE may transmit the triggered A-SRS in the available slot.
  • the A-SRS transmission slot would have become a DL slot, so the triggering DCI could not be transmitted in the first DL slot, but in the example of Figure 2, the actual A-SRS transmission slot is the UL slot.
  • Flexible scheduling is possible because it is an available slot that contains symbols.
  • the present inventors conceived of a control method for a UE to appropriately transmit at least one of multiple SRS resources with insufficient or overlapping guard periods.
  • the present inventors came up with a control method for appropriately controlling PUCCH transmission during the guard period.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • drop, abort, cancel, puncture, rate match, postpone (postpone), do not transmit, etc. may be read interchangeably.
  • SRS SRS resource
  • SRS transmission may be interchanged.
  • time offset time difference, offset, distance, etc. may be read interchangeably.
  • case 2 may correspond to a case that occurs due to at least one of 8, 10, 12, or 14 being set as the number of symbols of overlapping SRS resources, or may correspond to a case that occurs due to the setting of at least one of 8, 10, 12, and 14 as the number of symbols of overlapping SRS resources, or a case that is triggered by a triggering DCI. This may correspond to the case where the A-SRS resource/resource set is transmitted in the available slots counted from the reference slot, or may correspond to cases other than these.
  • the above case may be read as case 1/2, or a value with a time difference between multiple SRS resources, which is a superordinate concept of case 1/2. For example, it may be read in a case where the number is less than Y symbol or 0 symbol). The fact that a plurality of SRS resources overlap may be read as the time difference between them being less than 0 symbols.
  • the UE controls transmission of at least one SRS resource among the plurality of SRS resources in the above case, whether transmission is possible (transmission presence or absence) or transmission using a different SRS resource. Good too.
  • the UE does not actually transmit (cancels/drops) at least one or both of the multiple SRS resources in the above case.
  • the UE may decide which SRS resources to not transmit based on any or a combination of the following: (1) Resource types configured in the SRS resource set related to SRS resources (including SRS resources), (2) SRS resource ID (srs-ResourceId) of the SRS resource, (3) SRS resource set ID (srs-ResourceSetId) of the SRS resource set related to the SRS resource, (4) SRS resource symbol, (5) Number of repeated transmissions of SRS resources; (6) SRS resource com settings (com number/com offset), (7) Settings related to SRS resources (e.g., transmission settings, transmission band settings), (8) Use of SRS resource set related to SRS resources, (9) SRS resource transmission cycle/transmission offset.
  • the UE may decide not to transmit an SRS resource that satisfies the conditions based on any of (1) to (9) above or a combination thereof.
  • priorities may be defined for resource types in the order of aperiodic > semi-persistent > periodic (in this case, aperiodic has the highest priority).
  • the UE may not transmit low priority SRSs.
  • the priority order may be an arbitrary order of aperiodic, semi-persistent, and periodic, or a plurality of resource types may have the same priority.
  • the UE may not transmit the SRS resource associated with the smaller (or larger) SRS resource ID.
  • (2) above may be applied when the plurality of SRS resources are related to the same (single) SRS resource set, or may be applied when they are related to different SRS resource sets. .
  • the UE may not transmit the SRS resources associated with the smaller (or larger) SRS resource set ID. Note that (3) above may be applied when the plurality of SRS resources are associated with different SRS resource sets.
  • the UE does not have to transmit an SRS resource whose configured first (or last) symbol is later (late/future) in time.
  • “later/later/future in time” may be interchanged with “previous/earlier/in the past”.
  • the set first symbol may be determined based on the RRC parameter "startPosition" related to the SRS resource.
  • RRC information elements include suffixes (for example, "_r16”, “_r17”, “-r16”, “-r17”) indicating that they have been introduced in a specific resource. etc.) may be added.
  • the suffix may not be added, or another word may be added.
  • the UE does not need to transmit an SRS resource with a larger (or smaller) set repetition number (repetitive transmission number).
  • the set repetition number may be determined by the RRC parameter "repetitionFactor" related to the SRS resource.
  • the UE does not need to transmit an SRS resource with a smaller (or larger) configured comb number/comb offset.
  • the set comb configuration (number of combs/com offset) may be determined by the RRC parameter "transmissionComb" related to the SRS resource.
  • the UE does not need to transmit SRS resources for resource block level partial frequency sounding (RPFS).
  • RPFS resource block level partial frequency sounding
  • FIG. 3 is a diagram illustrating an example of SRS frequency resources for RPFS.
  • the existing SRS (legacy SRS) of 15/16 NR is transmitted using m SRS and b resource blocks (RBs) derived by upper layer parameters.
  • the SRS for RPFS considered for 17 is an offset (N offset m SRS , b /P F ) using a smaller bandwidth (m SRS, b /P F ) than the legacy SRS, within the bandwidth of the legacy SRS. ) is applied and sent.
  • N offset is the denominator for division when calculating the RPFS SRS band based on SRS of 15/16
  • N offset is Rel. This is the offset to the starting RB of the RPFS SRS with respect to the starting RB of the 15/16 SRS.
  • P F and N offset may be configured in the UE using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels, or a combination thereof. Alternatively, it may be determined based on the UE capabilities.
  • physical layer signaling e.g. DCI
  • higher layer signaling e.g. RRC signaling, MAC CE
  • specific signals/channels e.g. RRC signaling, MAC CE
  • the UE does not need to transmit the SRS resource with which the setting regarding P F /N offset is associated. Further, it is not necessary to transmit an SRS resource with a larger (or smaller) associated P F /N offset value.
  • priorities may be defined in the following order for applications: antenna switching>beam management>codebook>non-codebook (in this case, antenna switching has the highest priority).
  • the UE may not transmit low priority SRSs.
  • the order of priority may be an order in which antenna switching, beam management, codebook, and non-codebook are arbitrarily replaced, or the priority of a plurality of applications may be the same.
  • the UE does not need to transmit an SRS resource with a smaller (or larger) configured transmission cycle/transmission offset.
  • the set transmission period/transmission offset may be determined by the RRC parameter "SRS-PeriodicityAndOffset" related to the SRS resource.
  • SRS resources not to be transmitted may be used to determine SRS resources to be transmitted ("SRS resources not to be transmitted" may be replaced with "SRS resources to be transmitted”).
  • the SRS resource that is not the SRS resource to be transmitted may be determined to be the SRS resource not to be transmitted.
  • the UE may apply the non-transmission operation only to the SRS resource that corresponds to the above case (in other words, (Whether to transmit or not may be determined for each period/for each transmission opportunity) and may be applied to a plurality of SRS resources including SRS resources corresponding to the above case.
  • the plurality of SRS resources may include an SRS resource that corresponds to the above case and related SRS resources subsequent to the SRS resource.
  • the related SRS resource may be at least one of the same SRS resource as the SRS resource corresponding to the above case, and one or more SRS resources of the SRS resource set in which the SRS resource is included. .
  • the UE may apply the non-transmission operation only to the SRS resource that corresponds to the above case.
  • FIGS. 4A and 4B are diagrams illustrating an example of the applicable range of the non-transmission operation in the first embodiment.
  • SRS resource #1 which is P-SRS and SRS resource #2 which is an arbitrary SRS
  • P-SRS #n+1 which is the n+1st SRS resource #1
  • m-th SRS resource # An example in which SRS#m, which is 2, corresponds to the above case 1 is shown.
  • the SRS resource determined not to be transmitted is P-SRS#n+1.
  • FIG. 4A is an example in which the non-transmission operation is applied only to SRS resources that correspond to the above case.
  • P-SRS #n+2 which is the (n+2)th SRS resource #1, which does not correspond to the above case, may be transmitted.
  • FIG. 4A is an example in which the non-transmission operation is applied to the SRS resource corresponding to the above case and all the same SRS resources after the SRS resource. In this case, P-SRS#n+2 is not transmitted.
  • the application of the non-transmission operation may be canceled after a certain period of time has elapsed.
  • the P-SRS of SRS resource #1 may be returned to be transmittable after the certain period of time has elapsed.
  • the certain period of time may be defined in advance by specifications, or may be determined using physical layer signaling (e.g., DCI), upper layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. It may be set in the UE or may be determined based on the UE capabilities.
  • a timer for measuring the certain period of time may be started/restarted every time the above case occurs. Once the timer expires, the UE may stop applying the no transmit action.
  • the P-SRS resource when applying an operation of not transmitting to a P-SRS resource, the P-SRS resource may be determined (or deemed) to be invalidated.
  • the SP-SRS resource When applying an operation of not transmitting to an SP-SRS resource, the SP-SRS resource may be determined (or deemed) to be deactivated.
  • the application of the non-transmission operation may be canceled for P-SRS resources by resetting RRC, and for SP-SRS resources, it may be canceled by activation using MAC CE.
  • the UE can appropriately transmit any of the plurality of SRS resources with insufficient or overlapping guard periods.
  • the UE transmits one or both of the plurality of SRS resources in the above case in a resource that is different from the resource that was scheduled to be transmitted (for example, the configured resource).
  • this "different resource” will also be referred to as a changed resource. Note that, among the plurality of SRS resources in the above case, the UE transmits the SRS resource that is not the SRS resource to be transmitted in the changed resource, using the resource originally scheduled to be transmitted.
  • the method for determining the SRS resource not to be transmitted described above in the first embodiment may be used to determine the SRS resource to be transmitted in the changed resource ("SRS resource not to be transmitted" is replaced with "SRS resource to be transmitted in the changed resource”). ).
  • the conditions for determining the SRS resources to be transmitted in the changed resources are A condition that some or all of the SRS resource is included in the UL symbol/UL slot (for example, if included, it is determined as the SRS resource to be transmitted in the modified SRS resource) may be used.
  • the UE may determine that the modified resource is at least one of the following resources: - If the resource that was scheduled to be transmitted is temporally earlier (in the past) among the multiple SRS resources in the above case, the resource that was scheduled to be transmitted is shifted earlier, - If the resource that was scheduled to be transmitted is later (future) in time among the plurality of SRS resources in the above case, it is a resource that is shifted later than the resource that was scheduled to be transmitted.
  • the UE uses the resource that was shifted before or after the resource that was scheduled to be transmitted as the changed resource until the time offset between the changed resource and the other SRS resource becomes Y symbols or more. It may be determined as Here, the other SRS resource may be a resource that is not changed among the plurality of SRS resources in the above case, or another resource that is changed among the plurality of SRS resources in the above case (both resources are changed). case).
  • the changed resource is a UL symbol.
  • the UE uses the resource that was scheduled to be transmitted until the time offset between the changed resource and other SRS resources becomes Y symbols or more, and some or all of the changed resource becomes a UL symbol.
  • a resource shifted forward or backward may be determined as the changed resource.
  • a sufficient guard period can be ensured between SRS resources.
  • the unit of shift amount of the changed resource from the resource that was originally scheduled to be transmitted may be, for example, in units of symbols or in units of slots.
  • the UE may change the value of startPosition (or interpret that it is/has become a different value from the set value).
  • the UE sets the value of SRS-PeriodicityAndOffset (periodicityAndOffset-p/-sp) in P-/SP-SRS, and the value of slotOffset or t indicating the above-mentioned available slots in AP-SRS.
  • the value may be changed (or interpreted to be/have become a different value from the set/specified value).
  • Information regarding the shift amount of the time resource position of SRS is configured in the UE using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. or may be determined based on the UE capabilities.
  • physical layer signaling e.g., DCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., MAC CE
  • the information regarding the shift amount of the time resource position of the SRS may include, for example, at least one of the following: ⁇ Period/offset (for P-SRS/SP-SRS), ⁇ Slot offset/symbol offset (in case of A-SRS), - SRS resource ID of the SRS resource to which the shift is applied (targeted for change), - SRS resource set ID of the SRS resource set that includes the SRS resource to which the shift is applied, ⁇ Resource type/number of repeated transmissions/com settings/related settings (e.g., transmission settings, transmission band settings) of the SRS resource to which the shift is applied, - Purpose of the SRS resource set that includes the SRS resources to which the shift is applied.
  • ⁇ Period/offset for P-SRS/SP-SRS
  • ⁇ Slot offset/symbol offset in case of A-SRS
  • - SRS resource ID of the SRS resource to which the shift is applied targeted for change
  • the information regarding the shift amount of the SRS time resource position includes the SRS resource set ID
  • all the SRS resources in the SRS resource set corresponding to the SRS resource set ID may be shifted based on the information.
  • some SRS resources may be shifted based on the information.
  • the UE adjusts SRS-PeriodicityAndOffset (periodicityAndOffset-p/-sp) in P-/SP-SRS or slotOffset in A-SRS based on the notification from the MAC CE that includes information regarding the shift amount of the time resource position of the SRS.
  • the set value may be changed (updated).
  • the UE selects the SRS resource/SRS resource set to which temporal resource allocation changes (shifts) are applied based on the relevant SRS resource ID/SRS resource set ID. may be determined.
  • the UE may have a set of shift amount candidate values set/activated by the RRC/MAC CE. Further, the UE may determine the actual shift amount to be applied from among the set of set/activated candidate values based on the notification of the MAC CE/DCI.
  • the UE may treat the shift amount of the SRS time resource position as an absolute value or as a cumulative value. In the former case, each time the UE receives information regarding the shift amount of the SRS time resource location for a certain SRS resource, the UE may determine the shift amount of the SRS time resource location based on the newly received information. In the latter case, each time the UE receives information regarding the shift amount of the SRS time resource location for a certain SRS resource, the UE determines the shift amount of the SRS time resource location based on the current shift amount and the newly received information. You may.
  • the UE can appropriately transmit both SRS resources with insufficient or overlapping guard periods.
  • the third embodiment relates to the transmission priority of PUCCH in the guard period between SRS resources associated with an SRS resource set whose usage is set to antenna switching.
  • association with the SRS resource set may be interchangeably read as “included in the SRS resource set,” “used in the SRS resource set,” “within the SRS resource set,” etc.
  • the NR standard specifies the following regarding PUCCH and SRS on the same carrier: - The UE does not transmit SP-SRS/P-SRS configured in the same symbol as a PUCCH that transmits only CSI report, only L1-RSRP report, or only L1-SINR report, - The UE receives SP-SRS/P-SRS configured on the same symbol as the PUCCH that transmits at least one of Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), Link Recovery Request (LRR), and SR.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • LRR Link Recovery Request
  • A-SRS is Semi-Persistent (SP) - CSI/Periodic (P) - CSI report only, or SP-L1-RSRP/P-L1-RSRP report only, or , L1-SINR report only, is triggered to be transmitted redundantly in the same symbol as a PUCCH that carries only the L1-SINR report, then the PUCCH is not transmitted.
  • SP Semi-Persistent
  • P CSI/Periodic
  • the PUCCH and SRS collision handling rule based on the above regulations is also referred to as the first rule below for simplicity.
  • the first rule means that the priorities of PUCCH and SRS on the same carrier are in the following order (the higher the number (the lower the number), the higher the priority): - Priority 1: PUCCH transmitting at least one of HARQ-ACK, LRR and SR, Aperiodic (A)-PUCCH containing CSI report or A-L1-RSRP report, ⁇ Priority 2: A-SRS, ⁇ Priority 3: PUCCH that transmits only SP-CSI/P-CSI report, only SP-L1-RSRP/P-L1-RSRP report, or only L1-SINR report, -Priority 4: SP-SRS/P-SRS.
  • the CSI report includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), a CSI-RS resource indicator (CSI-RS resource indicator (CRI)), SS/PBCH Block Resource Indicator (SSBRI), Layer Indicator (LI), Rank Indicator (RI), L1-RSRP (reference signal in layer 1) Received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio) Contains at least one of But that's fine.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CSI-RS resource indicator CRI
  • SSBRI SS/PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP reference signal in layer 1 Received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received
  • the LRR may correspond to a scheduling request (SR) for requesting a PUSCH resource for transmitting a BFR MAC CE for beam failure recovery (BFR) for a secondary cell.
  • SR scheduling request
  • BFR beam failure recovery
  • the LRR may be an SR corresponding to the upper layer parameter schedulingRequestID-BFR-SCell.
  • the UE has the same priority as when SRS is set in the guard period. (the UE shall use the same priority rules as defined above during the guard period as if SRS was configured).
  • the collision handling rule in the guard period based on this rule will be referred to below as the second rule for simplicity.
  • the same priority rules means “the same priority rules as defined above” and “the same priority rules as defined above”. They may be read interchangeably as “the priority rules as defined above.”
  • the “same priority rule as defined above” is, for example, the first rule.
  • the priority of the guard period between A-SRS resources is the above-mentioned priority 2
  • the priority of the guard period between P-SRS/SP-SRS resources is the above-mentioned priority. It is degree 4. If the priority of the guard period is higher than the priority of the overlapping PUCCH, the PUCCH is not transmitted, and if the priority of the guard period is less than or equal to the priority of the overlapping PUCCH, the PUCCH is transmitted.
  • the UE is configured with a Y symbol guard period in which the UE does not transmit any other signals if multiple SRS resources of a certain SRS resource set are transmitted in the same slot; - the guard period is between a plurality of SRS resources of the set; - For two SRS resource sets of antenna switching located in two consecutive slots, if the UE can transmit SRS in all symbols in one slot, one SRS resource set of the above two SRS resource sets is occupied.
  • the UE may No signal sent. If both the SRS resources in all corresponding symbols before this gap (above interval) and the SRS resources in all corresponding symbols after this gap (above interval) are dropped due to collision handling. , the gap may also be dropped with the same priority and used for UL transmission.
  • the rules regarding the guard period based on these regulations are hereinafter also referred to as the third rule for the sake of simplicity.
  • the transmission priority of the PUCCH that overlaps only with the guard period is unclear. That is, when the UE determines whether to transmit PUCCH during the guard period by considering all of the first to third rules, a conflict may occur between the second rule and the third rule.
  • FIGS. 5A and 5B are diagrams illustrating an example of a contradiction between the second rule and the third rule.
  • the UE is configured/instructed to transmit the two illustrated SRS resources and any of the three PUCCH resources (PUCCH1-3).
  • PUCCH1-3 the three PUCCH resources
  • they will be referred to as a first SRS resource and a second SRS resource, starting from the one that is earlier in time (the one on the left).
  • the first and second SRS resources are associated with an SRS resource set whose usage is set to antenna switching, and there is a Y symbol guard period between these SRS resources.
  • a part of PUCCH1 overlaps with the first SRS resource. Further, in PUCCH1, the end of the first SRS resource and the final symbol coincide.
  • PUCCH3 exists during the Y symbol guard period.
  • a part of PUCCH2 overlaps with the second SRS resource. Furthermore, the start of the first symbol of PUCCH2 coincides with that of the second SRS resource.
  • FIG. 5A shows the signals transmitted when the first/second rules are followed. If the transmission of PUCCH1 is scheduled, the UE transmits PUCCH1 and does not transmit the first SRS based on the first rule.
  • the UE transmits PUCCH2 and does not transmit the second SRS based on the first rule.
  • the UE determines that the priority of the guard period is priority 2, which is the same as the first/second SRS, based on the second rule, and PUCCH3 is transmitted according to rule 1.
  • FIG. 5B shows the signal transmitted when the first/third rule is followed.
  • PUCCH1/PUCCH2 When the transmission of PUCCH1/PUCCH2 is scheduled, it may be the same as that in FIG. 5A, so a redundant explanation will not be given.
  • the UE drops PUCCH3 in the guard period based on the third rule.
  • the present inventors came up with the idea of modifying the second rule or the third rule, and arrived at the third embodiment.
  • Embodiment 3.1 which modifies the third rule
  • Embodiment 3.2 which modifies the second rule.
  • PUCCH in the guard period may be interchanged with “PUCCH that overlaps with the guard period”, “PUCCH included only in the guard period”, etc.
  • the third embodiment may be applied only to the Y symbol guard period between SRS resources associated (linked) with different SRS resource sets (in this case, the "guard period" in the third embodiment is , is the Y symbol guard period between SRS resources associated with different SRS resource sets).
  • the third embodiment may be applied to the Y symbol guard period between SRS resources associated with the same or different SRS resource sets (in this case, the "guard period" in the third embodiment is the same or different SRS resource set). Y symbol guard period between SRS resources associated with different SRS resource sets).
  • the priority of the PUCCH in the guard period depends on the content of the PUCCH (for example, the type of information/signal transmitted by the PUCCH) and the guard period.
  • the determination may be made based on the time direction setting (time direction behavior, that is, whether it is A-SRS, SP-SRS, or P-SRS) of the SRS resource related to the SRS resource.
  • the third rule "the UE does not transmit any other signal” means that "the UE does not transmit any other signal” means “the UE does not transmit any other signal”
  • the UE does not transmit any other signal, except for PUCCH that is prioritized compared to the associated SRS according to the first/second rule(s)) ” may be read instead.
  • "SRSs associated in the first/second rule” may be SRSs in SRS resources before/after the Y symbol guard period (or Y symbol interval).
  • Embodiment 3.1.1 If the PUCCH that transmits at least one of HARQ-ACK, LRR, and SR overlaps with the guard period, the UE specifies that the SRS resources related to the guard period are SP-SRS/P- Regardless of whether it is an SRS/A-SRS resource, the relevant PUCCH is transmitted with priority (the UE also drops the relevant SRS resource even if the relevant SRS resource does not overlap with a higher priority PUCCH) , - Embodiment 3.1.2: The UE transmits only the CSI report, only the L1-RSRP report, or only the L1-SINR report if the PUCCH overlaps with the guard period and the SRS resources related to the guard period are In the case of SP-SRS/P-SRS resources, the relevant PUCCH
  • the third rule no longer contradicts the second rule, and transmission of the UL signal during the guard period is allowed under certain conditions. .
  • Embodiment 3.2 the priority of the PUCCH in the guard period (in other words, whether or not to transmit the PUCCH) is determined regardless of the content of the PUCCH and the time direction setting of the SRS resource related to the guard period. First, the PUCCH may be dropped.
  • the second rule "The UE shall use the same priority rules during the guard period as if SRS "was configured)" means "the UE shall not be able to use any other The UE does not transmit any other signal during the guard period, if the associated SRS was configured and not dropped due to the priority rule as defined above),” or “UE shall if the SRS transmission before and after the guard period of Y symbols are not dropped. due to the priority rule as defined above, the UE does not transmit any other signal during the guard period).
  • associated SRS may mean one or more SRSs associated with the guard period, for example, the corresponding SRS resource before the guard period and the corresponding SRS resource after the guard period. It may be SRS in at least one of the following.
  • the UE may transmit PUCCH in the guard period. Good (in this case, it can be said that the guard period no longer exists).
  • the second rule no longer contradicts the third rule, and basically no UL signal is transmitted during the guard period.
  • the UE may not consider the second rule (may treat it as if there is no second rule). In this case, since there is no second rule regarding collision handling during the guard period, there is no conflict with the third rule, and basically no UL signal is transmitted during the guard period.
  • the second rule is a second rule for an intra-set guard period and a second rule for an inter-set guard period.
  • the second rule may be defined separately.
  • the intra-set guard period refers to a guard period that exists between SRS resources in the same SRS resource set
  • the inter-set guard period refers to a guard period that exists between SRS resources in different SRS resource sets. good.
  • the UE determines whether PUCCH transmission is possible during the intra-set guard period based on the second rule (and third rule) for the intra-set guard period, and the second rule (and third rule) for the inter-set guard period. It may be determined whether PUCCH transmission is possible during the inter-set guard period based on the following rules.
  • the second rule for intra-set guard period is that if the guard period between SRS resources associated with an SRS resource set whose usage is set to antenna switching is set between SRS transmissions associated with the same SRS resource set, then The UE may use the same priority rule as when SRS is configured in the guard period.
  • the second rule for inter-set guard periods is that if the guard period between SRS resources associated with an SRS resource set whose usage is set to antenna switching is set between SRS transmissions associated with different SRS resource sets, The UE shall not transmit any other signals in the guard period if the SRS transmissions before and after the guard period are not dropped due to the priority rules defined above. good.
  • the second rule for inter-set guard periods is that if the guard period between SRS resources associated with an SRS resource set whose usage is set to antenna switching is set between SRS transmissions associated with different SRS resource sets, The UE shall not transmit any other signals in the guard period if both the SRS transmissions before and after the guard period are sent due to the priority rules defined above. There may be.
  • the UE can appropriately control whether or not PUCCH can be transmitted during the guard period between SRS resources in the SRS resource set whose usage is set to antenna switching.
  • the UE may make a different judgment from the third embodiment described above regarding the PUCCH priority rule in the inter-set guard period of an SRS resource set whose usage is set to antenna switching (replacement of the second rule). ).
  • the priority here may be the priority 1-4 mentioned in the first rule.
  • the UE may determine that the priority of the guard period for PUCCH in the inter-set guard period of the SRS resource set whose usage is set to antenna switching is at least one of the following: ⁇ Option 1: The same priority as the lower priority SRS transmission among the SRS transmissions in which the relevant PUCCH overlaps, - Option 2: Same priority as the lower priority SRS transmission, regardless of whether the PUCCH overlaps with the SRS transmission (and whether it overlaps with the inter-set guard period).
  • Option 2 corresponds to determining that the priority of the guard period is the lower priority of the SRSs before and after the guard period.
  • the UE may determine that the priority of the SRS is the same as the guard period.
  • FIGS. 6A and 6B are diagrams illustrating an example of PUCCH priorities according to a modification of the third embodiment.
  • FIG. 6A is an example according to option 1 above
  • FIG. 6B is an example according to option 2 above.
  • the UE is configured/instructed to transmit the two SRSs shown and one of PUCCHs 1-3.
  • these will be referred to as the first SRS and the second SRS, starting from the earliest one in terms of time (the one on the left).
  • the first SRS is A-SRS and the second SRS is P-/SP-SRS. Further, the first SRS and the second SRS belong to different SRS resource sets.
  • the first and second SRSs are associated with different SRS resource sets whose usage is set to antenna switching, and there is an inter-set Y symbol guard period between these SRS resources.
  • PUCCH1 overlaps with all of the first SRS, guard period, and second SRS.
  • PUCCH2 overlaps with the first SRS and part of the guard period.
  • PUCCH3 overlaps with the second SRS and part of the guard period.
  • PUCCH1-3 all correspond to priority level 3. Further, A-SRS corresponds to priority 2, and P-/SP-SRS corresponds to priority 4.
  • the priority of the guard period is priority 4, which is the lower one among the SRSs that overlap with PUCCH1.
  • the UE may also determine that the priority of the first SRS (and the second SRS) is priority 4, which is the same as the guard period. In this case, the first SRS and the second SRS are dropped and PUCCH1 is transmitted.
  • the priority of the guard period is priority 2 of the first SRS overlapping with PUCCH2. Since the first SRS is transmitted, PUCCH2 is dropped. A second SRS may be sent.
  • the priority of the guard period is priority 4 of the second SRS overlapping PUCCH3. Since PUCCH3 is transmitted, the second SRS is dropped.
  • the first SRS may be transmitted.
  • the priority of the guard period is priority 4, which is the lower of the first SRS and the second SRS.
  • the UE may determine that the priority of the first SRS (and the second SRS) is priority 4, which is the same as the guard period. In this case, the first SRS and the second SRS are dropped and PUCCH1 is transmitted.
  • the UE may determine that the priority of the first SRS is priority 4, which is the same as the guard period. In this case, the first SRS is dropped and PUCCH2 is transmitted. A second SRS may be sent.
  • PUCCH3 if transmission of PUCCH3 is scheduled, PUCCH3 is transmitted and the second SRS is dropped.
  • the first SRS may be transmitted.
  • the UE can appropriately control whether to transmit PUCCH during the guard period between SRS resources in different SRS resource sets whose usage is set to antenna switching.
  • ⁇ Supplement> At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: ⁇ Specific processing/operation/control/information regarding at least one of the above embodiments (for example, control of SRS transmission/non-transmission in case 1/2 (first embodiment), control of SRS shift (second embodiment) Embodiment), controlling PUCCH transmission in the guard period (third embodiment)); - Minimum guard period required between two SRS resources of the SRS resource set for antenna switching.
  • the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), or for each subcarrier spacing (SCS). It may be the ability of
  • the UE will trigger A-SRS on the cross-carrier (first If the DCI received in the cell triggers the A-SRS transmission of the second cell, the guard period Y is set to the SCS of the scheduling cell (the first cell) (e.g., the SCS for the PDCCH receiving the DCI). ).
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the specific information may include information indicating that control of SRS transmission or non-transmission or SRS shift control in case 1/2 is enabled, or any information for a specific release (for example, Rel. 17 or 18). It may also be an RRC parameter or the like.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 8 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 transmits configuration information (for example, “SRS-ResourceSet” of the RRC information element) of a measurement reference signal (SRS) resource set whose application is set to antenna switching to the user terminal 20. You can also send it.
  • configuration information for example, “SRS-ResourceSet” of the RRC information element
  • SRS measurement reference signal
  • the transmitting/receiving unit 120 determines whether or not to transmit based on the contents of a physical uplink control channel (PUCCH) and the time direction setting of the SRS resource associated with the SRS resource set.
  • PUCCH physical uplink control channel
  • the PUCCH in the guard period between the SRS resources may be received as determined and transmitted by 20.
  • FIG. 9 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • control unit 210 controls the physical uplink control channel (Physical Uplink Control Channel) in the guard period between the SRS resources associated with the measurement reference signal (SRS) resource set whose purpose is set to antenna switching. It may be determined whether to transmit PUCCH)) based on the content of the PUCCH and the time direction configuration of the SRS resource related to the guard period.
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • the transmitting/receiving unit 220 may transmit the PUCCH determined to be transmitted during the guard period.
  • the transmitter/receiver 220 may not transmit the SRS resources associated with the guard period even if the SRS resources associated with the guard period do not overlap with the PUCCH. good.
  • the transmitting/receiving unit 220 may also receive configuration information of a measurement reference signal (SRS) resource set whose application is set to antenna switching.
  • SRS measurement reference signal
  • the control unit 210 controls the physical uplink control channel (PUCCH) in the guard period. )) and the time direction setting of the SRS resource related to the guard period, it may be determined not to transmit the PUCCH.
  • PUCCH physical uplink control channel
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 11 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットに関連付けられるSRSリソース間のガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かを、当該PUCCHの内容と、当該ガード期間に関連するSRSリソースの時間方向設定と、に基づいて判断する制御部と、送信すると判断された前記PUCCHを、前記ガード期間において送信する送信部と、を有する。本開示の一態様によれば、SRS送信/PUCCH送信を適切に実施できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 Rel.15 NRにおいては、測定用参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。また、将来の無線通信システム(例えば、Rel.17)に向けて、SRSの拡張が検討されている。
 SRSの拡張が採用される場合、SRSリソースのオーバーラップなどが発生するケースが考えられるが、既存のRel.15/16 NRの規格においては、そのようなケースに対応できない。この場合、SRS送信が適切に実施できず、システムスループットが低下するおそれがある。
 また、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられるSRSリソース間のガード期間について、既存の規格においては、上記ガード期間のみと重複する物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かが不明確であるケースがある。この場合、PUCCH送信の制御が適切に実施できず、システムスループットが低下するおそれがある。
 そこで、本開示は、SRS送信/PUCCH送信を適切に実施できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットに関連付けられるSRSリソース間のガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かを、当該PUCCHの内容と、当該ガード期間に関連するSRSリソースの時間方向設定と、に基づいて判断する制御部と、送信すると判断された前記PUCCHを、前記ガード期間において送信する送信部と、を有する。
 本開示の一態様によれば、SRS送信/PUCCH送信を適切に実施できる。
図1は、異なるスロットのSRSリソース間についてのガード期間の一例を示す図である。 図2は、A-SRSのために利用可能なスロットの一例を示す図である。 図3は、RPFSのためのSRSの周波数リソースの一例を示す図である。 図4A及び4Bは、第1の実施形態における、送信しない動作の適用範囲の一例を示す図である。 図5A及び5Bは、第2のルール及び第3のルールの間の矛盾の一例を示す図である。 図6A及び6Bは、第3の実施形態の変形例にかかるPUCCHの優先度の一例を示す図である。 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図8は、一実施形態に係る基地局の構成の一例を示す図である。 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図11は、一実施形態に係る車両の一例を示す図である。
(SRS)
 Rel.15 NRにおいては、測定用参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。NRのSRSは、既存のLTE(LTE Rel.8-14)でも利用された上りリンク(Uplink(UL))のチャネル状態情報(Channel State Information(CSI))測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 端末(ユーザ端末(user terminal)、User Equipment(UE))は、1つ又は複数のSRSリソースを設定(configure)されてもよい。SRSリソースは、SRSリソースインデックス(SRS Resource Index(SRI))によって特定されてもよい。
 各SRSリソースは、1つ又は複数のSRSポートを有してもよい(1つ又は複数のSRSポートに対応してもよい)。例えば、SRSごとのポート数は、1、2、4などであってもよい。
 UEは、1つ又は複数のSRSリソースセット(SRS resource set)を設定されてもよい。1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい。UEは、1つのSRSリソースセットに含まれるSRSリソースに関して、上位レイヤパラメータを共通で用いてもよい。なお、本開示におけるリソースセットは、セット、リソースグループ、グループなどで読み替えられてもよい。
 SRSリソース又はリソースセットに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI)))又はこれらの組み合わせを用いてUEに設定されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 SRS設定情報(例えば、RRC情報要素の「SRS-Config」)は、SRSリソースセット設定情報、SRSリソース設定情報などを含んでもよい。
 SRSリソースセット設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)は、SRSリソースセットID(Identifier)(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報などを含んでもよい。なお、SRSリソースIDは、SRS Resource ID(SRI)と呼ばれてもよい。
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信してもよい。UEは、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、SRSの用途(RRCパラメータの「usage」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook)、ノンコードブック(nonCodebook)、アンテナスイッチング(antennaSwitching)などであってもよい。例えば、コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。
 ビーム管理用途のSRSは、各SRSリソースセットについて1つのSRSリソースだけが、ある時間インスタントにおいて送信可能であると想定されてもよい。なお、複数のSRSリソースがそれぞれ異なるSRSリソースセットに属する場合、これらのSRSリソースは同時に送信されてもよい。
 SRSリソース設定情報(例えば、RRCパラメータの「SRS-Resource」)は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信コム(transmission comb)、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング、SRSリソースタイプ、系列ID、空間関係などに関する情報を含んでもよい。
 UEは、1スロット内の最後の6シンボルのうち、SRSシンボル数分の隣接するシンボルにおいてSRSを送信してもよい。なお、SRSシンボル数は、1、2、4などであってもよい。UEは、1スロット内の最後のシンボルから数えてオフセット前のシンボルからSRS送信を開始してもよい。当該オフセットは、RRCパラメータ「startPosition」によって与えられる0以上5以下の数のシンボルであってもよい。
 なお、繰り返し数(RRCパラメータ「repetitionFactor」)は、SRSシンボル数以下の値であってもよい。繰り返し数が2以上の場合、SRSシンボル数のSRSは複数スロットにわたって繰り返し送信されてもよい。
 UEは、スロットごとにSRSを送信するBWP(Bandwidth Part)をスイッチングしてもよいし、アンテナをスイッチングしてもよい。また、UEは、スロット内ホッピング及びスロット間ホッピングの少なくとも一方をSRS送信に適用してもよい。
(SRSアンテナスイッチング)
 Rel.15 NRでは、上述したようにSRSの用途としてアンテナスイッチング(アンテナポートスイッチングと呼ばれてもよい)が設定可能である。SRSアンテナスイッチングは、例えば、時分割複信(Time Division Duplex(TDD))バンドにおいて、下りリンクのCSI取得(acquisition)を上りリンクのSRSを用いて行う際に利用されてもよい。
 例えば、送信に利用できるアンテナポート数が受信に利用できるアンテナポート数より少ないという能力を有するUEについては、DLのプリコーダの決定のために、ULのSRS測定が利用されてもよい。
 なお、UEは、サポートするSRSの送信ポートスイッチングパターンを示すUE能力情報(例えば、RRCパラメータ「supportedSRS-TxPortSwitch」)をネットワークに報告してもよい。このパターンは、例えば、”t1r2”、“t2r4”などの”txry”の形式で表現され、これは合計y個のアンテナのうちx個のアンテナポートを用いてSRS送信できること(xTyRと表記されてもよい)を意味してもよい。ここで、yは、UEの受信アンテナの全て又はサブセットに対応してもよい。
 例えば、2T4R(2送信ポート、4受信ポート)のUEは、DL CSI取得のために、それぞれ2ポートを有する2つのSRSリソースを含み、かつ用途がアンテナスイッチングであるSRSリソースセットを設定されてもよい。
 なお、“txty”のxとyが同じ値の場合、xT=xR(例えば、4T=4R)と表記されてもよい。
 UEは、用途がアンテナスイッチングのSRSリソースセット内の各SRSリソースの開始シンボルは互いに異なると想定してもよい。また、UEは、同じSRSリソースセットのSRSリソース間にガード期間(guard period)があると想定してもよい。
 ガード期間は、無送信期間、SRS切替期間、ポートスイッチング期間などと呼ばれてもよい。UEは、PUSCHが送信されるスロットにおけるガード期間において、任意の信号(例えば、任意の他の信号)を送信しないと想定してもよい。
 UEは、ガード期間を利用して、次のSRS送信で利用するアンテナポートをオン(有効化、起動などと呼ばれてもよい)してもよい。
 SRSリソース間のガード期間の長さは、3GPP TS 38.214 Table 6.2.1.2-1に示されるSRSリソース間の最小ガード期間Y(Y=1又は2シンボル)以上であってもよい。例えば、Y=1(サブキャリア間隔(SubCarrier Spacing(SCS))=15、30、60kHzの場合)、Y=2(SCS=120kHzの場合)などであってもよい。
 Rel.15/16 NRのUEは、用途がアンテナスイッチングのSRSリソースセットの内における全てのSRSリソースのために、同じSRSポート数が設定されることを期待する。
 1T1R、2T4R、1T4Rの能力を報告したRel.15/16 NRのUEは、同じスロットにおいて1つより多いSRSリソースセットを設定又はトリガされることを期待しない。
 1T=1R、2T=2R、4T=4Rの能力を報告したRel.15/16 NRのUEは、同じシンボルにおいて1つより多いSRSリソースセットを設定又はトリガされることを期待しない。
(SRSの拡張)
 将来の無線通信システム(例えば、Rel.17)に向けて、SRSの拡張が検討されている。例えば、8つまでのアンテナ(例えば、xTyR、x={1,2,4}かつy={6、8})のためのSRSスイッチングが検討されている。
 また、将来の無線通信システムでは、カバレッジ/容量改善のため、SRS送信に設定可能なシンボル数が拡張されることが検討されている。例えば、SRSシンボル数、繰り返し数などが、最大で8、10、12、14などの値を取り得ることが検討されている。
 この場合、スロット前半のシンボルもSRS送信に利用され得ることになる。このようなケースに対応するために、アンテナスイッチングに必要なガード期間Yシンボルが、異なるSRSリソースセットに設定されるSRSリソース間においても考慮される(存在する)ことが検討されている。UEは、用途がアンテナスイッチングである複数のSRSリソースセットを用いて、DL CSI取得のためのSRS送信を行ってもよい。
 例えば、2つの連続するスロットに位置するxTyRのアンテナスイッチングのための2つのSRSリソースセットについて、例えばUEが1スロットの全てのシンボルにおいてSRSを送信することができる(サポートする)場合、1番目のスロットにおける当該SRSリソースセットによって占められる最後のOFDMシンボルと2番目のスロットにおける当該SRSリソースセットによって占められる最初のOFDMシンボルとの間に、Yシンボルの最小ギャップ期間(ガード期間)が存在することが好ましい。
 図1は、異なるスロットのSRSリソース間についてのガード期間の一例を示す図である。本例では、UEは、スロット#n-1におけるSRSリソースセット#1に含まれるSRS#1の送信を設定され、スロット#nにおけるSRSリソースセット#2に含まれるSRS#2の送信を設定されている。これらのSRS#1及びSRS#2の間には、Yシンボルの最小ギャップ期間(ガード期間)が存在する。
 また、将来の無線通信システムでは、柔軟なトリガリング/DCIオーバヘッド低減のため、A-SRSトリガリングの拡張が検討されている。Rel.15/16のA-SRSは、トリガリングDCIが送信されたスロットから上位レイヤシグナリング(上位レイヤパラメータ「slotOffset」)によって設定されたスロットオフセットだけ後のスロットにおいて送信される。つまり、Rel.15/16では、A-SRSを送信したいスロットによってトリガリングDCIの送信スロットが制限されていた。
 そこで、Rel.17のA-SRSは、参照スロット(reference slot)から数えてt+1番目の利用可能なスロットで送信できるようにすることが検討されている。参照スロットは、トリガリングDCIを有するスロットであってもよいし、Rel.15/16のA-SRS送信スロット(当該トリガリングDCIが送信されたスロットから上位レイヤシグナリングによって設定されたスロットオフセットだけ後のスロット)であってもよい。
 また、利用可能なスロットは、あるリソースセット内の全てのSRSリソースのための時間ドメイン位置に対応するUL又はフレキシブルシンボルが存在するスロットであって、トリガリングPDCCH(DCI)と当該リソースセット内の全てのSRSリソースとの間の最小タイミング要件に関するUEの能力を満たしているスロットであってもよい。
 上記tの値は、DCIによって指定されてもよいし、RRCによって設定されてもよいし、暗示的に指定されてもよい(例えば他のパラメータに基づいて)。tの候補値(取り得る値)は0を含んでもよい。tは、どの利用可能なスロットにおいてSRS送信するかを指示する情報に該当してもよい。
 図2は、A-SRSのために利用可能なスロットの一例を示す図である。本例では、6つのスロットが示されており、最初の3つのスロットはDLスロットであり、次の3つのスロットは、スペシャルスロット(フレキシブルスロット、フレキシブルシンボルを含むスロットなどと呼ばれてもよい。DL、UL、ガード期間の少なくとも1つを含んでもよい)、2つのULスロットである。DLスロット、フレキシブルスロット、ULスロットなどは、上位レイヤシグナリングによってUEに通知されるTDD UL/DL構成の設定によって指定されてもよい。
 本例では、UEは、最初のDLスロットのPDCCHにおいて、A-SRSのトリガリングDCIを受信する。本例では、参照スロットは、Rel.15/16のA-SRS送信スロットであって、上位レイヤパラメータ「slotOffset」によって設定されたスロットオフセットは2であると想定する。この場合、3番目のDLスロットが参照スロットとなる。
 また、本例では、参照スロットから数えてt+1番目の利用可能なスロットは、図示される1番目のULスロットであると想定する。UEは、当該利用可能なスロットにおいて、トリガされたA-SRSを送信してもよい。
 Rel.15/16であればA-SRS送信スロットがDLスロットになってしまうためトリガリングDCIを1番目のDLスロットで送信できなかったところ、図2の例では、実際のA-SRS送信スロットがULシンボルを含む利用可能なスロットであるため、柔軟なスケジューリングが可能である。
 ところで、これらのSRSの拡張が採用される場合、SRSリソースのオーバーラップなどが発生するケースが考えられるが、既存のRel.15/16 NRの規格においては、そのようなケースに対応できない。この場合、SRS送信が適切に実施できず、システムスループットが低下するおそれがある。
 そこで、本発明者らは、ガード期間が足りない又はオーバーラップする複数のSRSリソースについて、UEが少なくとも一方を適切に送信するための制御方法を着想した。
 また、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられるSRSリソース間のガード期間について、既存の規格においては、上記ガード期間のみと重複するPUCCHを送信するか否かが不明確であるケースがある。この場合、PUCCH送信の制御が適切に実施できず、システムスループットが低下するおそれがある。
 そこで、本発明者らは、ガード期間におけるPUCCH送信を適切に制御するための制御方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、ドロップ、中止、キャンセル、パンクチャ、レートマッチ、延期(postpone)、送信しない、などは、互いに読み替えられてもよい。
 本開示において、SRS、SRSリソース及びSRS送信は、互いに読み替えられてもよい。
(無線通信方法)
 以下の第1及び第2の実施形態においては、以下の少なくとも1つのケースにおけるSRS送信の制御を説明する:
 ・ケース1:用途がアンテナスイッチングである同じ/異なるSRSリソースセットに設定される複数のSRSリソース間で、Yシンボルガード期間を保証できない(つまり、これらのSRSリソースの時間オフセットがYシンボル未満であったり、これらのSRSリソースがオーバーラップしたりする)ケース、
 ・ケース2:同じ/異なるSRSリソースセットに設定される複数のSRSリソースがオーバーラップするケース。
 なお、本開示において、時間オフセット、時間差、オフセット、距離などは、互いに読み替えられてもよい。
 なお、ケース2は、オーバーラップするSRSリソースのシンボル数として8、10、12、14の少なくとも1つが設定されることに起因して発生するケースに該当してもよいし、トリガリングDCIによってトリガされるA-SRSリソース/リソースセットが参照スロットからカウントされる利用可能スロットにおいて送信されることに起因して発生するケースに該当してもよいし、これら以外のケースに該当してもよい。
 以下の第1及び第2の実施形態において、「上記ケース」は、ケース1/2で読み替えられてもよいし、ケース1/2の上位概念である、複数のSRSリソースの時間差がある値(例えば、Yシンボル、0シンボル)未満であるケースで読み替えられてもよい。複数のSRSリソースがオーバーラップすることは、これらの時間差が0シンボル未満であると読み替えられてもよい。
 以下の第1及び第2の実施形態では、UEは、上記ケースにおける複数のSRSリソースのうち少なくとも一方のSRSリソースの送信について、送信可否(送信有無)又は異なるSRSリソースでの送信を制御してもよい。
<第1の実施形態>
 第1の実施形態において、UEは、上記ケースにおける複数のSRSリソースのうち少なくとも一方又は両方のSRSリソースを実際には送信しない(キャンセル/ドロップする)。
[送信しないSRSリソースの決定]
 UEは、以下のいずれか又はこれらの組み合わせに基づいて、送信しないSRSリソースを決定してもよい:
 (1)SRSリソースに関連する(SRSリソースが含まれる)SRSリソースセットにおいて設定されるリソースタイプ、
 (2)SRSリソースのSRSリソースID(srs-ResourceId)、
 (3)SRSリソースに関連するSRSリソースセットのSRSリソースセットID(srs-ResourceSetId)、
 (4)SRSリソースのシンボル、
 (5)SRSリソースの繰り返し送信数、
 (6)SRSリソースのコム設定(コム数/コムオフセット)、
 (7)SRSリソースに関連する設定(例えば、送信設定、送信帯域設定)、
 (8)SRSリソースに関連するSRSリソースセットの用途、
 (9)SRSリソースの送信周期/送信オフセット。
 言い換えると、UEは、上記(1)-(9)のいずれか又はこれらの組み合わせに基づく条件を満たすSRSリソースを送信しないと決定してもよい。
 上記(1)に関して、リソースタイプについて、非周期的>セミパーシステント>周期的のような順で優先度が規定されてもよい(この場合非周期的が最も優先度が高い)。UEは、優先度の低いSRSを送信しなくてもよい。なお、優先度の順は、非周期的、セミパーシステント、周期的を任意に入れ替えた順であってもよいし、複数のリソースタイプの優先度が同じであってもよい。
 上記(2)に関して、UEは、より小さい(又はより大きい)SRSリソースIDに関連するSRSリソースを送信しなくてもよい。なお、上記(2)は、上記複数のSRSリソースが同じ(単一の)SRSリソースセットに関連する場合に適用されてもよいし、それぞれ異なるSRSリソースセットに関連する場合に適用されてもよい。
 上記(3)に関して、UEは、より小さい(又はより大きい)SRSリソースセットIDに関連するSRSリソースを送信しなくてもよい。なお、上記(3)は、上記複数のSRSリソースがそれぞれ異なるSRSリソースセットに関連する場合に適用されてもよい。
 上記(4)に関して、UEは、設定された先頭の(又は最後の)シンボルがより時間的に後の(遅い/将来の)SRSリソースを送信しなくてもよい。なお、本開示において、「時間的に後の/より遅い/将来の」は、「時間的に前の/より早い/過去の」と互いに読み替えられてもよい。なお、設定された先頭のシンボルは、SRSリソースに関連するRRCパラメータ「startPosition」によって判断されてもよい。
 なお、本開示において、RRC情報要素、RRCパラメータなどの名称には、特定のリソースで導入された旨を示す接尾語(例えば、”_r16”、”_r17”、”-r16”、“-r17”など)が付されてもよい。当該接尾語は、付されなくてもよいし、別の言葉が付されてもよい。
 上記(5)に関して、UEは、設定された繰り返し数(繰り返し送信数)がより大きい(又はより小さい)SRSリソースを送信しなくてもよい。なお、設定された繰り返し数は、SRSリソースに関連するRRCパラメータ「repetitionFactor」によって判断されてもよい。
 上記(6)に関して、UEは、設定されたコム数/コムオフセットがより小さい(又はより大きい)SRSリソースを送信しなくてもよい。なお、設定されたコム設定(コム数/コムオフセット)は、SRSリソースに関連するRRCパラメータ「transmissionComb」によって判断されてもよい。
 上記(7)に関して、UEは、リソースブロックレベル部分的周波数測定(RB-level Partial Frequency Sounding(RPFS))のためのSRSリソースを送信しなくてもよい。
 図3は、RPFSのためのSRSの周波数リソースの一例を示す図である。Rel.15/16 NRの既存のSRS(レガシーSRS)は、上位レイヤパラメータによって導出されるmSRS、b個のリソースブロック(Resource Block(RB))を用いて送信される。
 一方で、Rel.17向けに検討されるRPFSのためのSRSは、レガシーSRSの帯域幅内で、レガシーSRSより小さい帯域幅(mSRS、b/P)を用いてオフセット(NoffsetSRS、b/P)を適用して送信される。ここで、P及びNoffsetはRPFSのためのSRSの周波数ドメインリソースを決めるパラメータであり、Pは、Rel.15/16のSRSをベースにRPFS SRS帯域を算出する際の除算の分母であり、Noffsetは、Rel.15/16のSRSの開始RBに対するRPFS SRSの開始RBまでのオフセットである。
 なお、P及びNoffsetは、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてUEに設定されてもよいし、UE能力に基づいて決定されてもよい。
 さて、上記(7)に関して、UEは、P/Noffsetに関する設定が関連付けられているSRSリソースを送信しなくてもよい。また、関連付けられるP/Noffsetの値がより大きい(又はより小さい)SRSリソースを送信しなくてもよい。
 上記(8)に関して、用途について、アンテナスイッチング>ビーム管理>コードブック>ノンコードブックのような順で優先度が規定されてもよい(この場合アンテナスイッチングが最も優先度が高い)。UEは、優先度の低いSRSを送信しなくてもよい。なお、優先度の順は、アンテナスイッチング、ビーム管理、コードブック、ノンコードブックを任意に入れ替えた順であってもよいし、複数の用途の優先度が同じであってもよい。
 上記(9)に関して、UEは、設定された送信周期/送信オフセットがより小さい(又はより大きい)SRSリソースを送信しなくてもよい。なお、設定された送信周期/送信オフセットは、SRSリソースに関連するRRCパラメータ「SRS-PeriodicityAndOffset」によって判断されてもよい。
 なお、上述の送信しないSRSリソースの決定方法は、送信するSRSリソースの決定に用いられてもよい(「送信しないSRSリソース」を「送信するSRSリソース」で読み替えればよい)。この場合、送信するSRSリソースでない方のSRSリソースが、送信しないSRSリソースであると決定されてもよい。
[送信しない動作の適用範囲(適用期間)]
 UEは、上記ケースにおいて送信しないと決定されたSRSリソースがP-SRS/SP-SRSに該当する場合、送信しない動作を、上記ケースに該当するSRSリソースのみに適用してもよい(言い換えると、送信する/しないを、周期毎/送信機会毎に判断してもよい)し、上記ケースに該当するSRSリソースを含む複数のSRSリソースに適用してもよい。後者について、複数のSRSリソースは、上記ケースに該当するSRSリソースと、当該SRSリソース以降の関連するSRSリソースと、を含んでもよい。ここで、関連するSRSリソースは、上記ケースに該当するSRSリソースと同一のSRSリソースと、当該SRSリソースが含まれるSRSリソースセットの1つ以上のSRSリソースと、の少なくとも1つであってもよい。
 UEは、上記ケースにおいて送信しないと決定されたSRSリソースがA-SRSに該当する場合、送信しない動作を、上記ケースに該当するSRSリソースのみに適用してもよい。
 図4A及び4Bは、第1の実施形態における、送信しない動作の適用範囲の一例を示す図である。本例においては、P-SRSであるSRSリソース#1と、任意のSRSであるSRSリソース#2と、について、n+1番目のSRSリソース#1であるP-SRS#n+1とm番目のSRSリソース#2であるSRS#mとが上記ケース1に該当する例を示す。送信しないと決定されたSRSリソースは、P-SRS#n+1である。
 図4Aは、送信しない動作を、上記ケースに該当するSRSリソースのみに適用する例である。この場合、上記ケースに該当しないn+2番目のSRSリソース#1であるP-SRS#n+2は送信されてもよい。
 図4Aは、送信しない動作を、上記ケースに該当するSRSリソースと、当該SRSリソース以降の全ての同一のSRSリソースと、に適用する例である。この場合、P-SRS#n+2は送信されない。
 なお、送信しない動作の適用は、一定時間経過後に解除されてもよい。言い換えると、図4Bの例でも、当該一定時間経過後はSRSリソース#1のP-SRSを送信できるように復帰されてもよい。当該一定時間は、予め仕様によって規定されてもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてUEに設定されてもよいし、UE能力に基づいて決定されてもよい。
 なお、上記ケースが発生するたびに、上記一定時間を計測するためのタイマが起動/再起動してもよい。当該タイマが満了すると、UEは、送信しない動作の適用を止めてもよい。
 なお、P-SRSリソースに対して送信しない動作を適用する場合、当該P-SRSリソースは、無効化されたと判断されてもよい(みなされてもよい)。SP-SRSリソースに対して送信しない動作を適用する場合、当該SP-SRSリソースは、ディアクティベートされたと判断されてもよい(みなされてもよい)。
 また、送信しない動作の適用は、P-SRSリソースについてはRRCの再設定などによって解除されてもよいし、SP-SRSリソースについてはMAC CEを用いたアクティベーションなどによって解除されてもよい。
 以上説明した第1の実施形態によれば、ガード期間が足りない又はオーバーラップする複数のSRSリソースについて、UEがいずれかを適切に送信できる。
<第2の実施形態>
 第2の実施形態において、UEは、上記ケースにおける複数のSRSリソースのうち一方又は両方のSRSリソースを、送信する予定だったリソース(例えば、設定されたリソース)とは異なるリソースにおいて送信する。
 以降、この「異なるリソース」は、変更されたリソースとも呼ぶ。なお、UEは、上記ケースにおける複数のSRSリソースのうち、変更されたリソースにおいて送信するSRSリソースでない方を、もともと送信する予定のリソースで送信する。
[変更されたリソースにおいて送信するSRSリソースの決定]
 変更されたリソースにおいて送信するSRSリソースの決定には、第1の実施形態における上述の送信しないSRSリソースの決定方法が用いられてもよい(「送信しないSRSリソース」を「変更されたリソースにおいて送信するSRSリソース」で読み替えればよい)。
 なお、変更されたリソースにおいて送信するSRSリソースの決定には、第1の実施形態における上述の送信しないSRSリソースの決定方法における条件の代わりに、又は当該条件に加えて、当該変更されたリソースの一部又は全部がULシンボル/ULスロットに含まれるという条件(例えば、含まれる場合に、変更されたSRSリソースにおいて送信するSRSリソースとして決定する)が用いられてもよい。
[変更されたリソースの決定]
 UEは、上記変更されたリソースが、以下の少なくとも一方のリソースであると決定してもよい:
 ・送信する予定だったリソースが、上記ケースにおける複数のSRSリソースのうち時間的に前(過去)である場合、当該送信する予定だったリソースを前にシフトしたリソースである、
 ・送信する予定だったリソースが、上記ケースにおける複数のSRSリソースのうち時間的に後(未来)である場合、当該送信する予定だったリソースを後にシフトしたリソースである。
 なお、UEは、上記変更されたリソースと、他のSRSリソースと、の時間オフセットがYシンボル以上となるまで、上記送信する予定だったリソースを前又は後にシフトしたリソースを、上記変更されたリソースとして決定してもよい。ここで、他のSRSリソースは、上記ケースにおける複数のSRSリソースのうち変更されないリソースであってもよいし、上記ケースにおける複数のSRSリソースのうち変更された別のリソース(両方のリソースを変更する場合)であってもよい。
 変更されたリソースは、ULシンボルであることが好ましい。UEは、上記変更されたリソースと、他のSRSリソースと、の時間オフセットがYシンボル以上となり、かつ、変更されたリソースの一部又は全部がULシンボルとなるまで、上記送信する予定だったリソースを前又は後にシフトしたリソースを、上記変更されたリソースとして決定してもよい。
 このような構成によれば、SRSリソース間に十分なガード期間を確保することができる。
 なお、もともと送信する予定だったリソースからの変更されたリソースのシフト量の単位は、例えばシンボル単位であってもよいし、スロット単位であってもよい。シンボル単位でシフトする場合、UEは、startPositionの値を変更(又は設定された値とは異なる値である/になったと解釈)してもよい。スロット単位でシフトする場合、UEは、P-/SP-SRSにおいてはSRS-PeriodicityAndOffset(periodicityAndOffset-p/-sp)の値を、AP-SRSにおいてはslotOffset又は上述の利用可能なスロットを示すtの値を、変更(又は設定/指定された値とは異なる値である/になったと解釈)してもよい。
 SRSの時間リソース位置のシフト量に関する情報は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いてUEに設定されてもよいし、UE能力に基づいて決定されてもよい。
 SRSの時間リソース位置のシフト量に関する情報は、例えば、以下の少なくとも1つを含んでもよい:
 ・周期/オフセット(P-SRS/SP-SRSの場合)、
 ・スロットオフセット/シンボルオフセット(A-SRSの場合)、
 ・シフトを適用する(変更対象となる)SRSリソースのSRSリソースID、
 ・シフトを適用するSRSリソースが含まれるSRSリソースセットのSRSリソースセットID、
 ・シフトを適用するSRSリソースのリソースタイプ/繰り返し送信数/コム設定/関連する設定(例えば、送信設定、送信帯域設定)、
 ・シフトを適用するSRSリソースが含まれるSRSリソースセットの用途。
 なお、SRSの時間リソース位置のシフト量に関する情報がSRSリソースセットIDを含む場合、当該SRSリソースセットIDに対応するSRSリソースセット内の全てのSRSリソースが当該情報に基づいてシフトされてもよいし、一部のSRSリソースが当該情報に基づいてシフトされてもよい。
 UEは、例えば、SRSの時間リソース位置のシフト量に関する情報を含むMAC CEの通知に基づいて、P-/SP-SRSにおけるSRS-PeriodicityAndOffset(periodicityAndOffset-p/-sp)又はA-SRSにおけるslotOffsetに設定された値を変更(更新)してもよい。当該MAC CEにSRSリソースID/SRSリソースセットIDが含まれる場合、UEは、当該SRSリソースID/SRSリソースセットIDに基づいて、時間方向リソース配置変更(シフト)を適用するSRSリソース/SRSリソースセットを決定してもよい。
 UEは、RRC/MAC CEによって、シフト量の候補値のセットを設定/アクティベートされてもよい。また、UEは、MAC CE/DCIの通知によって、設定/アクティベートされた候補値のセットの中から、実際に適用するシフト量を決定してもよい。
 なお、UEは、SRSの時間リソース位置のシフト量を、絶対値として扱ってもよいし、累積値として扱ってもよい。前者の場合、あるSRSリソースについてSRSの時間リソース位置のシフト量に関する情報を受信するたびに、UEは、新しく受信した情報に基づいてSRSの時間リソース位置のシフト量を判断してもよい。後者の場合、あるSRSリソースについてSRSの時間リソース位置のシフト量に関する情報を受信するたびに、UEは、現在のシフト量と新しく受信した情報とに基づいてSRSの時間リソース位置のシフト量を判断してもよい。
 以上説明した第2の実施形態によれば、ガード期間が足りない又はオーバーラップする複数のSRSリソースについて、UEが両方を適切に送信できる。
<第3の実施形態>
 第3の実施形態は、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられるSRSリソース間のガード期間におけるPUCCHの送信優先度に関する。
 なお、本開示において、「SRSリソースセットに関連付けられる」は、「SRSリソースセットに含まれる」、「SRSリソースセットにおいて用いられる」、「SRSリソースセット内の」などと互いに読み替えられてもよい。
 これまで検討されているRel.17 NRの規格において規定されている、PUCCH及びSRSの衝突ハンドリングについて、まず説明する。
 これまで検討されているRel.17 NRの規格では、あるサービングセルにおける、優先度インデックス「1」のPUCCH送信(PUCCH transmission with a priority index 1)と、SRS送信とが時間的に重複する場合、UEは、当該重複するシンボルにおいてSRSを送信しない、と規定されている。
 これまで検討されているRel.17 NRの規格では、同一キャリアにおけるPUCCH及びSRSについて、以下が規定されている:
 ・UEは、CSIレポートのみ、L1-RSRPレポートのみ、又はL1-SINRレポートのみを伝送するPUCCHと同じシンボルにおいて設定されるSP-SRS/P-SRSを送信しない、
 ・UEは、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、リンクリカバリ要求(Link Recovery Request(LRR))及びSRの少なくとも1つを伝送するPUCCHと同じシンボルにおいて設定されるSP-SRS/P-SRS又は当該同じシンボルにおいて送信されるようトリガされるA-SRSを送信しない、
 ・SRSがPUCCHと重複することによって送信されないケースにおいては、PUCCHのシンボルと重複するSRSシンボルのみがドロップされる、
 ・A-SRSが、セミパーシステント(Semi-Persistent(SP))-CSI/周期的(Periodic(P))-CSIレポートのみ、又は、SP-L1-RSRP/P-L1-RSRPレポートのみ、又は、L1-SINRレポートのみ、を伝送するPUCCHと同じシンボルにおいて重複して送信されるようトリガされる場合、当該PUCCHは送信されない。
 以上の規定に基づくPUCCH及びSRSの衝突ハンドリングのルールを、以下では簡単のため、第1のルールとも呼ぶ。
 第1のルールは、言い換えると、同一キャリアにおけるPUCCH及びSRSの優先度が以下の順(上に書いてあるほど(番号が低いほど)優先度が高い)であることを意味する:
 ・優先度1:HARQ-ACK、LRR及びSRの少なくとも1つを伝送するPUCCH、非周期的(Aperiodic(A))-CSIレポート又はA-L1-RSRPレポートを含むPUCCH、
 ・優先度2:A-SRS、
 ・優先度3:SP-CSI/P-CSIレポートのみ、又は、SP-L1-RSRP/P-L1-RSRPレポートのみ、又は、L1-SINRレポートのみを伝送するPUCCH、
 ・優先度4:SP-SRS/P-SRS。
 なお、CSIレポートは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。
 また、LRRは、セカンダリセル向けのビーム障害回復(Beam Failure Recovery(BFR))のためのBFR MAC CEを伝送するPUSCHリソースを求めるスケジューリングリクエスト(Scheduling Request(SR))に該当してもよい。例えば、LRRは、上位レイヤパラメータschedulingRequestID-BFR-SCellに対応するSRであってもよい。
 これまで検討されているRel.17 NRの規格では、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられる(又は含まれる)SRSリソース間のガード期間について、UEは、当該ガード期間においてSRSが設定されている場合と同じ優先度ルールを用いる(the UE shall use the same priority rules as defined above during the guard period as if SRS was configured)、と規定されている。
 この規定に基づくガード期間における衝突ハンドリングのルールを、以下では簡単のため、第2のルールとも呼ぶ。
 なお、本開示において、「同じ優先度ルール(the same priority rules)」は、「上記で定義されるのと同じ優先度ルール(the same priority rules as defined above)」、「上記で定義される優先度ルール(the priority rules as defined above)」などと互いに読み替えられてもよい。「上記で定義されるのと同じ優先度ルール」は、例えば、第1のルールである。
 つまり、第2のルールに従うと、A-SRSリソース間のガード期間の優先度は、上述の優先度2であり、P-SRS/SP-SRSリソース間のガード期間の優先度は、上述の優先度4である。ガード期間の優先度が重複するPUCCHの優先度より高い場合、PUCCHは送信されず、ガード期間の優先度が重複するPUCCHの優先度以下である場合、PUCCHは送信される。
 これまで検討されているRel.17 NRの規格では、同じSRSリソースセット内のSRSリソース間のYシンボルガード期間について、以下が規定されている:
 ・UEは、同じスロットにおいてあるSRSリソースセットの複数のSRSリソースが送信される場合、UEが任意の他の信号を送信しないYシンボルガード期間を設定される、
 ・当該ガード期間は、上記セットの複数のSRSリソースの間にある、
 ・2つの連続するスロットに位置するアンテナスイッチングの2つのSRSリソースセットについて、UEが1スロットにおける全シンボルにおいてSRSを送信可能である場合、上記2つのSRSリソースセットの1つのSRSリソースセットによって占められる第1のスロットの最後のシンボルと、当該1つのSRSリソースセットによって占められる第2のスロットの最初のシンボルと、の間にYシンボルガード期間が存在する、
 ・SRSリソースセット間のガード期間(セット間ガード期間(inter-set guard period))について、UEは、SRSリソースセット間の間隔がYシンボルである場合、当該間隔の任意のシンボルにおいて任意の他の信号を送信しない。このギャップ(上記間隔)より前の対応する全てのシンボルにおけるSRSリソースと、このギャップ(上記間隔)より後の対応する全てのシンボルにおけるSRSリソースと、の両方が衝突ハンドリングのためにドロップされる場合には、当該ギャップも同じ優先度においてドロップされ、UL送信のために用いられてもよい。
 これらの規定に基づくガード期間に関するルール(衝突ハンドリングのルールを含む)を、以下では簡単のため、第3のルールとも呼ぶ。
 しかしながら、これまで検討されているRel.17 NRの規格では、上記ガード期間のみと重複するPUCCHの送信優先度が不明確である。つまり、UEは、第1-第3のルールを全て考慮してガード期間におけるPUCCHの送信可否を判断するところ、第2のルール及び第3のルールの間で矛盾が生じる場合がある。
 図5A及び5Bは、第2のルール及び第3のルールの間の矛盾の一例を示す図である。本例では、UEは、図示される2つのSRSリソースと、3つのPUCCHリソース(PUCCH1-3)のいずれかと、を送信するように設定/指示されている。時間的に早い方(左の方)から、第1のSRSリソース、第2のSRSリソースと便宜的に呼ぶ。 
 第1及び第2のSRSリソースは、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられており、これらのSRSリソース間にはYシンボルガード期間が存在する。
 PUCCH1の一部は、第1のSRSリソースと重複する。また、PUCCH1は、第1のSRSリソースと最終シンボルの終わりが一致している。
 PUCCH3は、上記Yシンボルガード期間中に存在する。
 PUCCH2の一部は、第2のSRSリソースと重複する。また、PUCCH2は、第2のSRSリソースと最初のシンボルの開始が一致している。
 本例では、図示されるPUCCHはいずれも上述の優先度1のPUCCHであり、図示されるSRSはいずれも上述の優先度2のA-SRSであると想定する。
 図5Aは、第1/第2のルールに従う場合に送信される信号を示す。UEは、PUCCH1の送信がスケジュールされる場合は、第1のルールに基づいて、PUCCH1を送信し、第1のSRSを送信しない。
 図5Aにおいて、UEは、PUCCH2の送信がスケジュールされる場合は、第1のルールに基づいて、PUCCH2を送信し、第2のSRSを送信しない。
 図5Aにおいて、UEは、PUCCH3の送信がスケジュールされる場合は、第2のルールに基づいて、ガード期間の優先度が第1/第2のSRSと同じ優先度2であると判断し、第1のルールに従ってPUCCH3を送信する。
 図5Bは、第1/第3のルールに従う場合に送信される信号を示す。PUCCH1/PUCCH2の送信がスケジュールされる場合は、図5Aと同様であってもよいため、重複する説明は行わない。
 図5Bにおいて、UEは、PUCCH3の送信がスケジュールされる場合は、第3のルールに基づいて、ガード期間におけるPUCCH3をドロップする。
 本発明者らは、上記矛盾を解消するため、第2のルール又は第3のルールを修正することを着想し、第3の実施形態に至った。
 第3の実施形態は、第3のルールを修正する実施形態3.1と、第2のルールを修正する実施形態3.2と、に大別される。
 以下の実施形態において、「ガード期間におけるPUCCH」は、「ガード期間と重複するPUCCH」、「ガード期間のみに含まれるPUCCH」などと互いに読み替えられてもよい。
 なお、第3の実施形態は、異なるSRSリソースセットに関連付けられる(紐づく)SRSリソース間のYシンボルガード期間にのみ適用されてもよい(この場合、第3の実施形態における「ガード期間」は、異なるSRSリソースセットに関連付けられるSRSリソース間のYシンボルガード期間である)。
 また、第3の実施形態は、同じ又は異なるSRSリソースセットに関連付けられるSRSリソース間のYシンボルガード期間に適用されてもよい(この場合、第3の実施形態における「ガード期間」は、同じ又は異なるSRSリソースセットに関連付けられるSRSリソース間のYシンボルガード期間である)。
[実施形態3.1]
 実施形態3.1では、ガード期間におけるPUCCHの優先度(言い換えると、PUCCHを送信するか否か)は、当該PUCCHの内容(例えば、PUCCHが伝送する情報/信号の種類)と、当該ガード期間に関連するSRSリソースの時間方向設定(時間方向のふるまい。つまりA-SRS、SP-SRS及びP-SRSのいずれであるか)と、に基づいて決定されてもよい。
 実施形態3.1では、第3のルールの「UEが任意の他の信号を送信しない(the UE does not transmit any other signal)」は、「UEが、第1/第2のルールにおいて関連付けられるSRSと比べて優先されるPUCCH以外の任意の他の信号を送信しない(the UE does not transmit any other signal, except for PUCCH that is prioritized compared to the associated SRS according to the first/second rule(s))」で読み替えられてもよい。ここで、「第1/第2のルールにおいて関連付けられるSRS」は、Yシンボルガード期間(又はYシンボルの間隔)の前/後のSRSリソースにおけるSRSであってもよい。
 なお、実施形態3.1では、上記読み替えとともに又は上記読み替えの代わりに、同一キャリアにおけるPUCCH及びSRSについて、以下の実施形態3.1.1から3.1.3のいずれか又は複数が適用されてもよい:
 ・実施形態3.1.1:UEは、HARQ-ACK、LRR及びSRの少なくとも1つを伝送するPUCCHがガード期間と重複する場合、当該ガード期間に関連するSRSリソースがSP-SRS/P-SRS/A-SRSリソースのいずれであっても、当該PUCCHを優先して送信する(また、UEは、当該SRSリソースが、より優先されるPUCCHと重複しない場合も、当該SRSリソースをドロップする)、
 ・実施形態3.1.2:UEは、CSIレポートのみ、L1-RSRPレポートのみ、又はL1-SINRレポートのみを伝送するPUCCHがガード期間と重複し、かつ、当該ガード期間に関連するSRSリソースがSP-SRS/P-SRSリソースの場合には、当該PUCCHを優先して送信する(また、UEは、当該SRSリソースが、より優先されるPUCCHと重複しない場合も、当該SRSリソースをドロップする)、
 ・実施形態3.1.3:UEは、CSIレポートのみ、L1-RSRPレポートのみ、又はL1-SINRレポートのみを伝送するPUCCHがガード期間と重複し、かつ、当該ガード期間に関連するSRSリソースがA-SRSリソースの場合には、当該PUCCHをドロップする。
 実施形態3.1によれば、ガード期間の衝突ハンドリングについて、第3のルールが第2のルールと矛盾しなくなり、ガード期間においてUL信号が送信されることが、特定の条件下で許容される。
[実施形態3.2]
 実施形態3.2では、ガード期間におけるPUCCHの優先度(言い換えると、PUCCHを送信するか否か)は、当該PUCCHの内容と、当該ガード期間に関連するSRSリソースの時間方向設定と、に関わらず、当該PUCCHがドロップされてもよい。
 実施形態3.2では、第2のルールの「UEは、当該ガード期間においてSRSが設定されている場合と同じ優先度ルールを用いる(the UE shall use the same priority rules during the guard period as if SRS was configured)」は、「UEは、関連付けられるSRSが設定され、かつ、当該SRSが上記で定義されるのと同じ優先度ルールのためにドロップされない場合には、当該ガード期間において任意の他の信号を送信しない(the UE does not transmit any other signal during the guard period, if the associated SRS was configured and not dropped due to the priority rule as defined above)」、又は「UEは、当該ガード期間より前及び後のSRS送信が上記で定義される優先度ルールのためにドロップされない場合には、当該ガード期間において任意の他の信号を送信しない(if the SRS transmission before and after the guard period of Y symbols are not dropped due to the priority rule as defined above, the UE does not transmit any other signal during the guard period)」に変更されてもよい。
 なお、「関連付けられるSRS」は、当該ガード期間に関連付けられる1つ以上のSRSを意味してもよく、例えば、当該ガード期間より前の対応するSRSリソース及び当該ガード期間より後の対応するSRSリソースの少なくとも一方におけるSRSであってもよい。
 上記変更されたルールによれば、UEは、「関連付けられるSRS」のいずれか又は全てがPUCCH又は他のUL送信との優先度比較の結果ドロップされる場合、ガード期間におけるPUCCHを送信してもよい(この場合、もはやガード期間は存在しないとも言える)。
 実施形態3.2によれば、ガード期間の衝突ハンドリングについて、第2のルールが第3のルールと矛盾しなくなり、ガード期間においては基本的にUL信号が送信されなくなる。
[実施形態3.2の変形例]
[[実施形態3.2の変形例1]]
 実施形態3.2の変形例の1つにおいて、UEは、第2のルールを考慮しなくてもよい(第2のルールがないものとして扱ってもよい)。この場合、ガード期間の衝突ハンドリングについて、そもそも第2のルールがなくなるため、第3のルールと矛盾しなくなり、ガード期間においては基本的にUL信号が送信されなくなる。
[[実施形態3.2の変形例2]]
 実施形態3.2の変形例の1つにおいて、第2のルールは、セット内ガード期間(intra-set guard period)向けの第2のルールと、セット間ガード期間(inter-set guard period)向けの第2のルールと、に分けて規定されてもよい。なお、セット内ガード期間は、同じSRSリソースセット内のSRSリソース間に存在するガード期間を意味し、セット間ガード期間は、異なるSRSリソースセットのSRSリソース間に存在するガード期間を意味してもよい。
 UEは、セット内ガード期間向けの第2のルール(及び第3のルール)に基づいてセット内ガード期間のPUCCH送信可否を判断し、セット間ガード期間向けの第2のルール(及び第3のルール)に基づいてセット間ガード期間のPUCCH送信可否を判断してもよい。
 セット内ガード期間向けの第2のルールは、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられるSRSリソース間のガード期間が、同じSRSリソースセットに関連付けられるSRS送信間に設定される場合、UEは、当該ガード期間においてSRSが設定されている場合と同じ優先度ルールを用いる、というルールであってもよい。
 セット間ガード期間向けの第2のルールは、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられるSRSリソース間のガード期間が、異なるSRSリソースセットに関連付けられるSRS送信間に設定される場合、UEは、当該ガード期間より前及び後のSRS送信が上記で定義される優先度ルールのためにドロップされない場合には、当該ガード期間において任意の他の信号を送信しない、というルールであってもよい。
 セット間ガード期間向けの第2のルールは、用途がアンテナスイッチングに設定されるSRSリソースセットに関連付けられるSRSリソース間のガード期間が、異なるSRSリソースセットに関連付けられるSRS送信間に設定される場合、UEは、当該ガード期間より前及び後のSRS送信の両方が上記で定義される優先度ルールのために送信される場合には、当該ガード期間において任意の他の信号を送信しない、というルールであってもよい。
 以上説明した第3の実施形態によれば、UEは、用途がアンテナスイッチングに設定されるSRSリソースセット内のSRSリソース間のガード期間におけるPUCCHの送信可否を適切に制御できる。
<第3の実施形態の変形例>
 UEは、用途がアンテナスイッチングに設定されるSRSリソースセットのセット間ガード期間におけるPUCCHの優先度ルールについて、上述した第3の実施形態とは異なる判断を行ってもよい(第2のルールの置き換えに相当する)。ここでいう優先度は、第1のルールで述べた優先度1-4であってもよい。
 UEは、用途がアンテナスイッチングに設定されるSRSリソースセットのセット間ガード期間におけるPUCCHに対する、当該ガード期間の優先度が、以下の少なくとも一方であると判断してもよい:
 ・オプション1:当該PUCCHが重複するSRS送信のうち、低い優先度のSRS送信と同一の優先度、
 ・オプション2:当該PUCCHがSRS送信に重複するか否か(及び上記セット間ガード期間に重複するか否か)に関わらず、低い優先度のSRS送信と同一の優先度。
 オプション2は、ガード期間の優先度が、当該ガード期間の前及び後のSRSのうち低い優先度であると判断することに相当する。
 なお、第3の実施形態の変形例が適用される場合、あるPUCCHと重複するSRS及びガード期間の優先度は、当該ガード期間の優先度と同じであると判断してもよい。言い換えると、SRSと重複するPUCCHがガード期間にも重複する場合には、UEは、当該SRSの優先度を当該ガード期間と同じであると判断してもよい。
 図6A及び6Bは、第3の実施形態の変形例にかかるPUCCHの優先度の一例を示す図である。図6Aは、上記オプション1に従い、図6Bは、上記オプション2に従う例である。
 本例では、UEは、図示される2つのSRSと、PUCCH1-3のいずれかと、を送信するように設定/指示されている。時間的に早い方(左の方)から、第1のSRS、第2のSRSと便宜的に呼ぶ。第1のSRSはA-SRSであり、第2のSRSはP-/SP-SRSである。また、第1のSRSと第2のSRSとは、それぞれ異なるSRSリソースセットに属する。
 第1及び第2のSRSは、用途がアンテナスイッチングに設定されるそれぞれ異なるSRSリソースセットに関連付けられており、これらのSRSリソース間にはセット間Yシンボルガード期間が存在する。
 PUCCH1は、第1のSRS、ガード期間及び第2のSRSの全てと重複している。
 PUCCH2は、第1のSRS、及びガード期間の一部と重複している。
 PUCCH3は、第2のSRS、及びガード期間の一部と重複している。
 PUCCH1-3は、いずれも優先度3に該当する。また、A-SRSは優先度2、P-/SP-SRSは優先度4に該当する。
 図6Aについて、PUCCH1の送信がスケジュールされる場合、ガード期間の優先度は、PUCCH1に重複するSRSのうち低い方の優先度4である。また、UEは、第1のSRSの(及び第2のSRSの)優先度は、ガード期間と同じ優先度4であると判断してもよい。この場合、第1のSRS及び第2のSRSはドロップされ、PUCCH1が送信される。
 図6Aについて、PUCCH2の送信がスケジュールされる場合、ガード期間の優先度は、PUCCH2に重複する第1のSRSの優先度2である。第1のSRSが送信されるため、PUCCH2はドロップされる。第2のSRSは送信されてもよい。
 図6Aについて、PUCCH3の送信がスケジュールされる場合、ガード期間の優先度は、PUCCH3に重複する第2のSRSの優先度4である。PUCCH3が送信されるため、第2のSRSはドロップされる。第1のSRSは送信されてもよい。
 図6Bについては、PUCCH1-3のどの送信がスケジュールされる場合であっても、ガード期間の優先度は、第1のSRS及び第2のSRSのうち低い方の優先度4である。
 図6Bについて、PUCCH1の送信がスケジュールされる場合、UEは、第1のSRSの(及び第2のSRSの)優先度は、ガード期間と同じ優先度4であると判断してもよい。この場合、第1のSRS及び第2のSRSはドロップされ、PUCCH1が送信される。
 図6Bについて、PUCCH2の送信がスケジュールされる場合、UEは、第1のSRSの優先度は、ガード期間と同じ優先度4であると判断してもよい。この場合、第1のSRSはドロップされ、PUCCH2が送信される。第2のSRSは送信されてもよい。
 図6Bについて、PUCCH3の送信がスケジュールされる場合、PUCCH3が送信され、第2のSRSはドロップされる。第1のSRSは送信されてもよい。
 以上説明した第3の実施形態によれば、UEは、用途がアンテナスイッチングに設定される異なるSRSリソースセット内のSRSリソース間のガード期間におけるPUCCHの送信可否を適切に制御できる。
<補足>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報(例えば、ケース1/2におけるSRSの送信有無の制御(第1の実施形態)、SRSのシフトの制御(第2の実施形態)、ガード期間におけるPUCCH送信の制御(第3の実施形態))をサポートすること、
 ・アンテナスイッチングのためのSRSリソースセットの2つのSRSリソース間に必要な最小ガード期間。
 なお、アンテナスイッチングのためのSRSリソースセットの2つのSRSリソース間に必要な最小ガード期間は、0を含んでもよい。また、アンテナスイッチングのためのSRSリソースセットの2つのSRSリソース間に必要な最小ガード期間に関するUE能力が報告されない場合は、Yの値はRel.15/16 NRと同じ(SCS=15、30、60kHzの場合はY=1シンボル、SCS=120kHzの場合はY=2シンボル)であると想定されてもよい。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよい。
 なお、アンテナスイッチングのためのSRSリソースセットの2つのSRSリソース間に必要な最小ガード期間がSCSごとに報告される場合には、UEは、クロスキャリアでA-SRSがトリガされる(第1のセルで受信したDCIによって第2のセルのA-SRS送信をトリガする)場合、ガード期間Yを、スケジューリングセル(上記第1のセル)のSCS(例えば、上記DCIを受信するPDCCHのためのSCS)。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、ケース1/2におけるSRSの送信有無の制御又はSRSのシフトの制御を有効化することを示す情報、特定のリリース(例えば、Rel.17又は18)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットに関連付けられるSRSリソース間のガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かを、前記PUCCHの内容と、前記ガード期間に関連する前記SRSリソースの時間方向設定と、に基づいて判断する制御部と、
 送信すると判断された前記PUCCHを、前記ガード期間において送信する送信部と、を有する端末。
[付記2]
 前記送信部は、前記PUCCHを送信する場合には、前記ガード期間に関連する前記SRSリソースが前記PUCCHと重複しない場合であっても、前記ガード期間に関連する前記SRSリソースを送信しない付記1に記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報(例えば、RRC情報要素の「SRS-ResourceSet」)をユーザ端末20に送信してもよい。
 送受信部120は、物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))の内容と、前記SRSリソースセットに関連付けられるSRSリソースの時間方向設定と、に基づいて送信するか否かが前記ユーザ端末20によって判断され送信された、前記SRSリソース間のガード期間における前記PUCCHを受信してもよい。
(ユーザ端末)
 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、制御部210は、用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットに関連付けられるSRSリソース間のガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かを、前記PUCCHの内容と、前記ガード期間に関連する前記SRSリソースの時間方向設定と、に基づいて判断してもよい。
 送受信部220は、送信すると判断された前記PUCCHを、前記ガード期間において送信してもよい。
 送受信部220は、前記PUCCHを送信する場合には、前記ガード期間に関連する前記SRSリソースが前記PUCCHと重複しない場合であっても、前記ガード期間に関連する前記SRSリソースを送信しなくてもよい。
 また、送受信部220は、用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報を受信してもよい。
 制御部210は、前記SRSリソースセットに関連付けられるSRSリソース間のガード期間に関連する前記SRSリソースの全てが送信される場合には、前記ガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))の内容と、前記ガード期間に関連する前記SRSリソースの時間方向設定と、に関わらず、前記PUCCHを送信しないと判断してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図11は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (4)

  1.  用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットに関連付けられるSRSリソース間のガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かを、前記PUCCHの内容と、前記ガード期間に関連する前記SRSリソースの時間方向設定と、に基づいて判断する制御部と、
     送信すると判断された前記PUCCHを、前記ガード期間において送信する送信部と、を有する端末。
  2.  前記送信部は、前記PUCCHを送信する場合には、前記ガード期間に関連する前記SRSリソースが前記PUCCHと重複しない場合であっても、前記ガード期間に関連する前記SRSリソースを送信しない請求項1に記載の端末。
  3.  用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットに関連付けられるSRSリソース間のガード期間における物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を送信するか否かを、当該PUCCHの内容と、当該ガード期間に関連するSRSリソースの時間方向設定と、に基づいて判断するステップと、
     送信すると判断された前記PUCCHを、前記ガード期間において送信するステップと、を有する端末の無線通信方法。
  4.  用途がアンテナスイッチングに設定される測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報を端末に送信する送信部と、
     物理上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))の内容と、前記SRSリソースセットに関連付けられるSRSリソースの時間方向設定と、に基づいて送信するか否かが前記端末によって判断され送信された、前記SRSリソース間のガード期間における前記PUCCHを受信する受信部と、を有する基地局。
PCT/JP2022/018777 2022-04-25 2022-04-25 端末、無線通信方法及び基地局 WO2023209784A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018777 WO2023209784A1 (ja) 2022-04-25 2022-04-25 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018777 WO2023209784A1 (ja) 2022-04-25 2022-04-25 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2023209784A1 true WO2023209784A1 (ja) 2023-11-02

Family

ID=88518162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018777 WO2023209784A1 (ja) 2022-04-25 2022-04-25 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2023209784A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details on SRS enhancements", 3GPP TSG RAN WG1 #108-E R1-2201687, 14 February 2022 (2022-02-14), XP052114659 *
MODERATOR (INTEL CORPORATION): "Feature Lead Summary#3 for E-mail Discussion [108-e-NR-ePos-06]", 3GPP TSG RAN WG1 #108-E R1-2202525, 4 March 2022 (2022-03-04), XP052122282 *

Similar Documents

Publication Publication Date Title
WO2023170827A1 (ja) 端末、無線通信方法及び基地局
WO2023170826A1 (ja) 端末、無線通信方法及び基地局
WO2023203778A1 (ja) 端末、無線通信方法及び基地局
WO2023203777A1 (ja) 端末、無線通信方法及び基地局
WO2023203684A1 (ja) 端末、無線通信方法及び基地局
WO2023209784A1 (ja) 端末、無線通信方法及び基地局
WO2023079704A1 (ja) 端末、無線通信方法及び基地局
WO2023175777A1 (ja) 端末、無線通信方法及び基地局
WO2023181392A1 (ja) 端末、無線通信方法及び基地局
WO2023175786A1 (ja) 端末、無線通信方法及び基地局
WO2023181391A1 (ja) 端末、無線通信方法及び基地局
WO2024043179A1 (ja) 端末、無線通信方法及び基地局
WO2024029039A1 (ja) 端末、無線通信方法及び基地局
WO2024042866A1 (ja) 端末、無線通信方法及び基地局
WO2023209885A1 (ja) 端末、無線通信方法及び基地局
WO2023152791A1 (ja) 端末、無線通信方法及び基地局
WO2024029038A1 (ja) 端末、無線通信方法及び基地局
WO2023181332A1 (ja) 端末、無線通信方法及び基地局
WO2023152792A1 (ja) 端末、無線通信方法及び基地局
WO2023053389A1 (ja) 端末、無線通信方法及び基地局
WO2024034120A1 (ja) 端末、無線通信方法及び基地局
WO2023053390A1 (ja) 端末、無線通信方法及び基地局
WO2023073908A1 (ja) 端末、無線通信方法及び基地局
WO2023152981A1 (ja) 端末、無線通信方法及び基地局
WO2024009473A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940064

Country of ref document: EP

Kind code of ref document: A1