WO2023209082A1 - Combinaisons d'un polymère organique et de silicate de calcium hydraté pour la production de membranes d'étanchéité minérales - Google Patents
Combinaisons d'un polymère organique et de silicate de calcium hydraté pour la production de membranes d'étanchéité minérales Download PDFInfo
- Publication number
- WO2023209082A1 WO2023209082A1 PCT/EP2023/061098 EP2023061098W WO2023209082A1 WO 2023209082 A1 WO2023209082 A1 WO 2023209082A1 EP 2023061098 W EP2023061098 W EP 2023061098W WO 2023209082 A1 WO2023209082 A1 WO 2023209082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- composition
- range
- weight
- component
- Prior art date
Links
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 94
- 239000011707 mineral Substances 0.000 title claims abstract description 94
- 238000004078 waterproofing Methods 0.000 title claims abstract description 62
- 239000012528 membrane Substances 0.000 title claims abstract description 61
- 229920000620 organic polymer Polymers 0.000 title claims abstract description 45
- 239000000378 calcium silicate Substances 0.000 title claims abstract description 30
- 229910052918 calcium silicate Inorganic materials 0.000 title claims abstract description 30
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 144
- 239000000843 powder Substances 0.000 claims abstract description 104
- 229920000642 polymer Polymers 0.000 claims abstract description 94
- 239000002245 particle Substances 0.000 claims abstract description 55
- 239000011230 binding agent Substances 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910001868 water Inorganic materials 0.000 claims abstract description 49
- 239000004815 dispersion polymer Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000004568 cement Substances 0.000 claims abstract description 35
- 229920001038 ethylene copolymer Polymers 0.000 claims abstract description 26
- 239000000945 filler Substances 0.000 claims abstract description 22
- 239000011575 calcium Substances 0.000 claims abstract description 21
- 239000002002 slurry Substances 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 230000009477 glass transition Effects 0.000 claims abstract description 16
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000000113 differential scanning calorimetry Methods 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical group C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000001694 spray drying Methods 0.000 claims description 53
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 47
- 150000003839 salts Chemical class 0.000 claims description 43
- 239000000178 monomer Substances 0.000 claims description 36
- 239000002270 dispersing agent Substances 0.000 claims description 27
- 239000007787 solid Substances 0.000 claims description 27
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 23
- 238000009472 formulation Methods 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 239000007900 aqueous suspension Substances 0.000 claims description 21
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 16
- 229920000570 polyether Polymers 0.000 claims description 16
- 229920003169 water-soluble polymer Polymers 0.000 claims description 16
- 230000036571 hydration Effects 0.000 claims description 13
- 238000006703 hydration reaction Methods 0.000 claims description 13
- 239000004615 ingredient Substances 0.000 claims description 13
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 12
- 150000007513 acids Chemical class 0.000 claims description 12
- 125000000129 anionic group Chemical group 0.000 claims description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 12
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims description 10
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 9
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 claims description 8
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 8
- 235000013399 edible fruits Nutrition 0.000 claims description 7
- 150000002772 monosaccharides Chemical class 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 5
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 claims description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 4
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 235000015165 citric acid Nutrition 0.000 claims description 4
- 239000000174 gluconic acid Substances 0.000 claims description 4
- 235000012208 gluconic acid Nutrition 0.000 claims description 4
- 239000008103 glucose Substances 0.000 claims description 4
- 239000011975 tartaric acid Substances 0.000 claims description 4
- 235000002906 tartaric acid Nutrition 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 claims description 3
- 239000000292 calcium oxide Substances 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 229930182830 galactose Natural products 0.000 claims description 3
- 239000012669 liquid formulation Substances 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 235000002639 sodium chloride Nutrition 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical group 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims 1
- JLDKGEDPBONMDR-UHFFFAOYSA-N calcium;dioxido(oxo)silane;hydrate Chemical compound O.[Ca+2].[O-][Si]([O-])=O JLDKGEDPBONMDR-UHFFFAOYSA-N 0.000 description 60
- -1 calcium silicate hydrates Chemical class 0.000 description 51
- 239000006185 dispersion Substances 0.000 description 41
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 41
- 239000000725 suspension Substances 0.000 description 37
- 229920001577 copolymer Polymers 0.000 description 36
- 229920001223 polyethylene glycol Polymers 0.000 description 35
- 239000002202 Polyethylene glycol Substances 0.000 description 34
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 27
- 125000004432 carbon atom Chemical group C* 0.000 description 23
- 235000012241 calcium silicate Nutrition 0.000 description 21
- 229960003340 calcium silicate Drugs 0.000 description 21
- 239000005977 Ethylene Substances 0.000 description 20
- 229940093470 ethylene Drugs 0.000 description 20
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 19
- 239000004816 latex Substances 0.000 description 19
- 229920000126 latex Polymers 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 17
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 17
- 238000001035 drying Methods 0.000 description 17
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical group C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 17
- 229940117958 vinyl acetate Drugs 0.000 description 17
- 239000010408 film Substances 0.000 description 16
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 13
- 229910052708 sodium Inorganic materials 0.000 description 13
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 12
- 239000000084 colloidal system Substances 0.000 description 12
- 239000003995 emulsifying agent Substances 0.000 description 12
- 239000011976 maleic acid Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 230000001681 protective effect Effects 0.000 description 12
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 11
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 11
- 229910052700 potassium Inorganic materials 0.000 description 11
- 239000004576 sand Substances 0.000 description 11
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000011591 potassium Substances 0.000 description 10
- 239000005995 Aluminium silicate Substances 0.000 description 9
- 239000011398 Portland cement Substances 0.000 description 9
- 235000012211 aluminium silicate Nutrition 0.000 description 9
- 238000007046 ethoxylation reaction Methods 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 9
- 150000003863 ammonium salts Chemical class 0.000 description 8
- 150000007942 carboxylates Chemical group 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 7
- 239000000920 calcium hydroxide Substances 0.000 description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 7
- RSIPQRDGPVEGLE-UHFFFAOYSA-L calcium;disulfamate Chemical compound [Ca+2].NS([O-])(=O)=O.NS([O-])(=O)=O RSIPQRDGPVEGLE-UHFFFAOYSA-L 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000006068 polycondensation reaction Methods 0.000 description 7
- 229920001567 vinyl ester resin Polymers 0.000 description 7
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- 125000005396 acrylic acid ester group Chemical group 0.000 description 6
- 229940043430 calcium compound Drugs 0.000 description 6
- 150000001674 calcium compounds Chemical class 0.000 description 6
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 6
- 159000000007 calcium salts Chemical class 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 235000010980 cellulose Nutrition 0.000 description 6
- 239000002274 desiccant Substances 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 5
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 229920004482 WACKER® Polymers 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 239000002981 blocking agent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000004567 concrete Substances 0.000 description 5
- 230000001955 cumulated effect Effects 0.000 description 5
- 238000007720 emulsion polymerization reaction Methods 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920001515 polyalkylene glycol Polymers 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 125000003827 glycol group Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 3
- BYACHAOCSIPLCM-UHFFFAOYSA-N 2-[2-[bis(2-hydroxyethyl)amino]ethyl-(2-hydroxyethyl)amino]ethanol Chemical compound OCCN(CCO)CCN(CCO)CCO BYACHAOCSIPLCM-UHFFFAOYSA-N 0.000 description 3
- POLZHVHESHDZRD-UHFFFAOYSA-N 2-hydroxyethyl 2-methylprop-2-enoate;phosphoric acid Chemical compound OP(O)(O)=O.CC(=C)C(=O)OCCO POLZHVHESHDZRD-UHFFFAOYSA-N 0.000 description 3
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 3
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 239000004281 calcium formate Substances 0.000 description 3
- 229940044172 calcium formate Drugs 0.000 description 3
- 235000019255 calcium formate Nutrition 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 229940052303 ethers for general anesthesia Drugs 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000012764 mineral filler Substances 0.000 description 3
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 2
- NEYTXADIGVEHQD-UHFFFAOYSA-N 2-hydroxy-2-(prop-2-enoylamino)acetic acid Chemical compound OC(=O)C(O)NC(=O)C=C NEYTXADIGVEHQD-UHFFFAOYSA-N 0.000 description 2
- ZDMZLTIFXMREFI-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate;phosphoric acid Chemical compound OP(O)(O)=O.OCCOC(=O)C=C ZDMZLTIFXMREFI-UHFFFAOYSA-N 0.000 description 2
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical class OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910006069 SO3H Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical class [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- UGGQKDBXXFIWJD-UHFFFAOYSA-N calcium;dihydroxy(oxo)silane;hydrate Chemical compound O.[Ca].O[Si](O)=O UGGQKDBXXFIWJD-UHFFFAOYSA-N 0.000 description 2
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 125000004956 cyclohexylene group Chemical group 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- QJAUKMLCDVOYNX-UHFFFAOYSA-N formaldehyde;2-hydroxybenzenesulfonic acid Chemical compound O=C.OC1=CC=CC=C1S(O)(=O)=O QJAUKMLCDVOYNX-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920000831 ionic polymer Polymers 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 239000011777 magnesium Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000004058 oil shale Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229940044654 phenolsulfonic acid Drugs 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- GOPSAMYJSPYXPL-UHFFFAOYSA-N prop-2-enyl n-(hydroxymethyl)carbamate Chemical compound OCNC(=O)OCC=C GOPSAMYJSPYXPL-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Chemical class 0.000 description 2
- 239000011347 resin Chemical class 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 238000001238 wet grinding Methods 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- DTCCVIYSGXONHU-CJHDCQNGSA-N (z)-2-(2-phenylethenyl)but-2-enedioic acid Chemical compound OC(=O)\C=C(C(O)=O)\C=CC1=CC=CC=C1 DTCCVIYSGXONHU-CJHDCQNGSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- IBDVWXAVKPRHCU-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C(C)=C IBDVWXAVKPRHCU-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- JJRUAPNVLBABCN-UHFFFAOYSA-N 2-(ethenoxymethyl)oxirane Chemical compound C=COCC1CO1 JJRUAPNVLBABCN-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- GWRKYBXTKSGXNJ-UHFFFAOYSA-N 2-methyl-1-(2-methylpropoxyperoxy)propane Chemical compound CC(C)COOOCC(C)C GWRKYBXTKSGXNJ-UHFFFAOYSA-N 0.000 description 1
- YHSYGCXKWUUKIK-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C=C YHSYGCXKWUUKIK-UHFFFAOYSA-N 0.000 description 1
- FOGYNLXERPKEGN-UHFFFAOYSA-N 3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfopropyl)phenoxy]propane-1-sulfonic acid Chemical compound COC1=CC=CC(CC(CS(O)(=O)=O)OC=2C(=CC(CCCS(O)(=O)=O)=CC=2)OC)=C1O FOGYNLXERPKEGN-UHFFFAOYSA-N 0.000 description 1
- FHPDNLOSEWLERE-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCCOC(=O)C(C)=C FHPDNLOSEWLERE-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- CZRCOWVNDIYQQC-UHFFFAOYSA-N COC(=O)C(O)NC(=O)C=CC Chemical compound COC(=O)C(O)NC(=O)C=CC CZRCOWVNDIYQQC-UHFFFAOYSA-N 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- IQYMRQZTDOLQHC-ZQTLJVIJSA-N [(1R,4S)-2-bicyclo[2.2.1]heptanyl] prop-2-enoate Chemical compound C1C[C@H]2C(OC(=O)C=C)C[C@@H]1C2 IQYMRQZTDOLQHC-ZQTLJVIJSA-N 0.000 description 1
- FDXNZIIASVNQSJ-UHFFFAOYSA-N [3-(2-methylprop-2-enoyloxy)-2-(3-oxobutanoyloxy)propyl] 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCC(COC(=O)C(C)=C)OC(=O)CC(C)=O FDXNZIIASVNQSJ-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- MOVRNJGDXREIBM-UHFFFAOYSA-N aid-1 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)CO)C(O)C1 MOVRNJGDXREIBM-UHFFFAOYSA-N 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000011411 calcium sulfoaluminate cement Substances 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical class [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 229940071162 caseinate Drugs 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910052857 chondrodite Inorganic materials 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- LPTQBQUNGHOZHM-UHFFFAOYSA-N dicalcium;silicate;hydrate Chemical compound O.[Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] LPTQBQUNGHOZHM-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 238000006253 efflorescence Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002118 epoxides Chemical group 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical compound C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- SBGKURINHGJRFN-UHFFFAOYSA-M hydroxymethanesulfinate Chemical compound OCS([O-])=O SBGKURINHGJRFN-UHFFFAOYSA-M 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- GSGDTSDELPUTKU-UHFFFAOYSA-N nonoxybenzene Chemical compound CCCCCCCCCOC1=CC=CC=C1 GSGDTSDELPUTKU-UHFFFAOYSA-N 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 239000011414 polymer cement Substances 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- BTAAXEFROUUDIL-UHFFFAOYSA-M potassium;sulfamate Chemical compound [K+].NS([O-])(=O)=O BTAAXEFROUUDIL-UHFFFAOYSA-M 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- AXLMPTNTPOWPLT-UHFFFAOYSA-N prop-2-enyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCC=C AXLMPTNTPOWPLT-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 101150072471 rdp1 gene Proteins 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- ADWOPMYHFFDXFB-UHFFFAOYSA-M sodium;1-hydroxyoctadecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(O)S([O-])(=O)=O ADWOPMYHFFDXFB-UHFFFAOYSA-M 0.000 description 1
- QDWYPRSFEZRKDK-UHFFFAOYSA-M sodium;sulfamate Chemical compound [Na+].NS([O-])(=O)=O QDWYPRSFEZRKDK-UHFFFAOYSA-M 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/04—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
- C04B40/0042—Powdery mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0027—Standardised cement types
- C04B2103/004—Standardised cement types according to DIN
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0057—Polymers chosen for their physico-chemical characteristics added as redispersable powders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0065—Polymers characterised by their glass transition temperature (Tg)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
- C04B2111/00801—Membranes; Diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/27—Water resistance, i.e. waterproof or water-repellent materials
Definitions
- the present invention relates to the use of combinations of an organic polymer P and calcium silicate hydrate CSH for producing mineral water-proofing membranes which comprise at least one mineral binder, in particular a cementitious binder.
- the present invention also relates to compositions for producing mineral water-proofing membranes containing and methods for producing mineral water-proofing membranes
- mineral water-proofing membranes are used for example in water drains, such as sewage or rainwater drains and lines, or as water barrier under tiles in wet rooms (e.g. bathrooms), swimming pools or water tanks. They are typically based on a mineral binder, in particular a hydraulically setting mineral binder, and an organic polymer as a co-binder.
- the polymeric co-binder improves the mechanical properties of the the mineral water-proofing membranes, such as their flexural tensile strength, substrate adhesion, flexibility and crack resistance.
- the mineral components of the mineral water-proofing membranes including the mineral binder and optionally fillers, are admixed with one or more polymers in the form of aqueous polydispersions or of the polymer powders obtainable from these dispersions.
- a disadvantage of these polymers is that they generally exhibit a retardant effect on the setting behavior of the water-proofing slurries for producing the mineral waterproofing membranes.
- cementitious waterproofing membranes Besides good mechanical properties, fast drying and rapid setting and a high "early strength" are important properties of the slurries for producing mineral waterproofing membranes, in particular those based on cementitious binders (hereinafter cementitious waterproofing membranes). Moreover, the water-uptake of the mineral waterproofing membranes should be low when being in contact with water for prolonged time, because a high water-uptake leads to a water-swollen covering, which may result in leakage, decreased mechanical strength and crack formation.
- Such finely divided calcium silicate hydrates are described, for example, in WO 2010/026155, WO 2011/026720, WO 2011/026723, WO 2012/143205, WO 2014/114784 and WO 2018/154012.
- a disadvantage of calcium silicate hydrates is that their accelerating effect on the setting of the mortars and concretes as adversely affected by polymers, in particular if the polymers are present in large amounts as in compositions for waterproofing membranes. Moreover, calcium silicate hydrate may be incompatible with aqueous polymer dispersions and thus cause instability of the aqueous polymer dispersions.
- WO 2013/117465 describes aqueous dispersions containing a finely divided calcium silicate hydrate and polymer P in the form of an aqueous polymer dispersion, where the polymer P is an all-acrylate polymer or a styrene acrylate polymer containing small amounts of a hydroxyalkyl(meth)acrylate or a (meth) acrylamide. While the dispersions show good stability and provide acceptable tensile adhesion, the setting behavior is adversely affected. Moreover, the presence of CSH may result in an increased water-up- take.
- US 2012/0077906 describes a compositions for providing water-tight roof coatings which contain one or more polymers, in particular vinylacetate-ethylene copolmers, a cement and one or more fillers and which have a polymer cement ratio of at least 1.8:1.
- the compositions have a comparativlely high water-uptake.
- compositions for mineral water-tight applications in particular for producing mineral waterproofing membranes, which besides good mechanical properties and good bond strength, are fast drying and rapid setting and provide a high "early strength". Moreover, a low water-uptake of the covering after setting is highly desiable.
- the object is achieved by incorporating a combination of the components A and B as defined herein, a) an organic polymer P as a component A in the form of an aqueous polymer dispersion or in the form of a polymer powder, where the organic polymer P is a vi- nylacetate-ethylene copolymer, where the organic polymer P has a glass transition temperature Tg of at most +10°C, in particular in the range of -30 to +5°C, especially in the range of -20 to +0°C, as determined by the differential scanning calorimetry (DSC) method according to ISO 11357-2:2013, and b) a component B comprising particles of a calcium silicate hydrate containing calcium and silicon in a molar ratio Ca/Si in the range of 0.1 to 2.2, in particular in the range of 0.5 to 2.2 and especially in the range of 1 .5 to 2.2; in compositions for producing mineral waterproofing membranes, i.e. in waterproofing membranes which comprise at least one mineral bin
- a first aspect of the invention thus relates to the use of the combination of components A and B in in compositions for producing waterproofing membranes, which comprise at least one mineral binder.
- a second aspect of the invention relates to compositions for producing mineral waterproofing membranes which comprises a combination of the components A and B as defined herein and a powdery composition C comprising c.1 at least one mineral binder, in particular a mineral binder comprising a cement of the cement group CEM I according to EN 197, more particularly a cement classified as CEM I 42.5(R) or CEM I 52.5(R) or a mixture thereof; and c.2 at least one powdery filler.
- a third aspect of the invention relates to a method for producing mineral waterproofing membranes which comprises incorporating a combination of the components A and B as defined herein and water into a powdery composition C comprising a mineral binder c.1 as defined herein and at least one powdery filler c.2 as described herein to obtain a slurry and applying the slurry to a surface, where a mineral waterproofing membrane is required.
- a fourth aspect of the invention relates to powdery composition consisting of a) an organic polymer P as a component A in the form of an aqueous polymer dispersion or in the form of a polymer powder, where the organic polymer P is a vi- nylacetate-ethylene copolymer, where the organic polymer has a glass transition temperature Tg of at most +10°C, in particular in the range of -30 to +5°C, especially in the range of -20 to +0°C, as determined by the differential scanning calorimetry (DSC) method according to ISO 11357-2:2013, b) a component B comprising particles of a calcium silicate hydrate containing calcium and silicon in a molar ratio Ca/Si in the range of 0.1 to 2.2, in particular in the range of 0.5 to 2.2 and especially in the range of 1 .5 to 2.2; and d) up to 30% by weight of further ingredients, based on the total weight of the composition; wherein the weight ratio of the organic polymer of component A
- the invention is associated with several benefits.
- the combination of the components A and B can be easily incorporated into compositions for producing mineral waterproofing membranes.
- the combination of the components A and B provide for mineral waterproofing membranes, which besides good mechanical properties, such as high flexural tensile strength, flexibility and crack resistance, and good bond strength or substrate adhesion, are fast drying and rapid setting and provide a high "early strength”. Moreover, they provide a low water-uptake of the covering after setting of the composition which forms the mineral waterproofing membrane.
- mineral binders are understood as meaning inorganic compounds which, after being brought into contact with water, solidify in a stone-like manner over time when left to themselves in the air under atmospheric conditions or partly also under water.
- mineral binders are also termed hydraulic binders.
- Hydraulic binders include but are not limited to calcined lime, gypsum, blastfurnace slag, fly ash, silica fume, metakaolin, natural pozzolans or burnt oil shale, cements (see for example EN 197-1) such as Portland cements, white cements, thurament, celite, alumina cements, swelling cements, blastfurnace cements and combinations thereof.
- the terms “powder” and “powdery compositions” refer to free flowing compositions of particles wherein at least 90% by weight of the particles have a particle size of at most 500 pm, in particular of at most 400 pm, especially of at most 300 pm.
- the particle size given here refers to the D90 value.
- Particle sizes, such as D10, D50 and D90 values and particle size distributions of powders and powdery materials can be determined using a wide variety of measurement methods known per se to the person skilled in the art, for example via sieve analyses according to DIN 66165- 2:2016-08, sedimentation or light scattering, e.g. laser diffraction in accordance with DIN ISO 13321 :2004-10.
- given particle sizes of the components of the powdery compositions C are either such as indicated by the commercial producer or as determined using sieve analyses according to DIN 66165-2:2016-08.
- the content of calcium silicate hydrate in the component B and in the powder composition can be calculated by determining the solids content of the respective powder or suspensions through evaporation of the volatile water part followed by substraction of the amount of organic part (e.g. dispersing agents, spray-drying aids etc.), followed by substraction of the mass of ions besides the calcium and silicate ions that were introduced during synthesis.
- the amount of organic part e.g. dispersing agents, spray-drying aids etc.
- C n -C m refers to the number of carbon atoms a molecule or radical may have.
- C n -C m -alkyl refers to the group of linear or branched alkyl radicals having from n to m carbon atoms.
- C1-C4 alkyl refers to linear or branched alkyl radicals which have 1 , 2, 3 or 4 carbon atoms, examples thereof being methyl, ethyl, n-propyl, 2-propyl, 1 -butyl, 2-butyl, 2-methyl-1 -propyl (isobutyl) and 2-methyl-2-propyl (tert.-butyl).
- an organic polymer is termed water soluble if the organic polymer at 20 C and atmospheric pressure has a solubility in water of at least 10 gram per liter (g/L), in particular at least 20g/L and especially at least 50 g/L.
- the combination and compositions of the method comprise a vinyl acetate-ethylene copolymer in the form of a powder or an aqueous polymer dispersion.
- vinyl acetate-ethylene copolymer is well understood as a copolymer of vinyl acetate and ethylene and optionally one or more further comonomers, wherein the polymerized units of vinyl acetate and ethylene form the majority, i.e. at least 50% by weight or at least 55% by weight or at least 60% by weight, of all repeating units in the vinyl acetate-ethylene copolymer.
- the total amount of repeating units stemming from vinylacetate and ethylene may be as high as 100% by weight, based on the total weight of the monomers forming the vinyl acetate-ethylene copolymer.
- the monomers forming the vinyl acetate-ethylene copolymer comprise 30 to 95% by weight of vinyl acetate and 5 to 70 wt % of ethylene, preferably 40 to 90% by weight of vinyl acetate and 10 to 60 wt % of ethylene, especially 50 to 90% by weight of vinyl acetate and 10 to 50 wt % of ethylene, based in each case on the total weight of the monomers forming the vinyl acetate-ethylene copolymer.
- the monomers forming the vinyl acetate-ethylene copolymer may optionally comprise one or more further comonomers in an amount of up to 50% by weight, preferably up to 45% by weight and especially up to 40% by weight.
- Suitable further comonomers are those monoethylenically unsaturated neutral monomers having a solubility in deionized water at 25°C and 1 bar of at most 40 g/L.
- Example of such monomers are
- methyl acrylate methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, norbornyl acrylate.
- the relative amount of such further neutral monomers, if present, is typically in the range of 1 to 50% by weight, in particular 5 to 45% by weight or 5 to 40% by weight, based on the total amount of monomers forming the vinyl acetate-ethylene copolymer.
- Suitable further comonomers inlcude auxiliary monomers include monoethylenically unsaturated monocarboxylic and dicarboxylic acids, preferably acrylic acid, methacrylic acid, fumaric acid, and maleic acid; ethylenically unsaturated carboxamides and carbonitriles, preferably acrylamide and acrylonitrile; monoesters and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters, and also maleic anhydride, ethylenically unsaturated sulfonic acids and/or their salts, preferably vinyl- sulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid.
- monoethylenically unsaturated monocarboxylic and dicarboxylic acids preferably acrylic acid, methacrylic acid, fumaric acid, and maleic acid
- ethylenically unsaturated carboxamides and carbonitriles preferably acryl
- precrosslinking comonomers such as polyethylenically unsaturated comonomers, as for example divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyan urate
- postcrosslinking comonomers as for example acrylamidoglycolic acid (AGA), methylacrylamidoglycolic acid methyl ester (MAGME), N-methylolacrylamide (NMA), N-methylolmethacrylamide (NMMA), N-methylolallylcarbamate
- alkyl ethers such as the isobutoxy ether or esters of N-methylolacrylamide or of N- methylolmethacrylamide and of N-methylolallylcarbamate.
- monomers with hydroxyl groups such as, for example, methacrylic hydroxyalkyl esters and acrylic hydroxyalkyl esters such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate, and also
- 1 ,3-dicarbonyl compounds such as acetoacetoxyethyl acrylate, acetoacetoxypropyl methacrylate, acetoacetoxyethyl methacrylate, ancetoacetoxybutyl methacrylate, 2,3-di(acetoacetoxy)propyl methacrylate, and allyl acetoacetate; monoethylenically unsaturated comonomers with epoxide functionality such as glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, vinyl glycidyl ether.
- suitable further comonomers are comonomers with silicon functionality, such as acryloyloxypropyltri(alkoxy)- and methacryloyloxypro- pyltri(alkoxy)-silanes, vinyltrialkoxysilanes and vinylmethyldialkoxysilanes, preferably with alkyl and/or alkoxy groups having in each case 1 to 2 carbon atoms, as for example vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloyloxy- propyltrimethoxysilane.
- silicon functionality such as acryloyloxypropyltri(alkoxy)- and methacryloyloxypro- pyltri(alkoxy)-silanes, vinyltrialkoxysilanes and vinylmethyldialkoxysilanes, preferably with alkyl and/or alkoxy groups having in each case 1 to 2 carbon atoms, as for example vinyltrimethoxysilane, vinyltri
- auxiliary monomers if present, is typically in the range of 0.1 to 20% by weight, in particular 0.2 to 10% by weight or 0.5 to 5% by weight, based on the total amount of monomers forming the vinyl acetate-ethylene copolymer.
- Particularly preferred polymers P are copolymers of 40 to 95% by weight of vinyl acetate with 5 to 60% by weight of ethylene, in particular copolymers of 50 to 90% by weight of vinyl acetate with 10 to 50% by weight of ethylene; copolymers of 40 to 90% by weight of vinyl acetate with 5 to 50% by weight of ethylene and 5% to 50% by weight of one or more further comonomers from the group consisting of vinyl esters having 1 to 12 C atoms in the carboxylic acid radical such as vinyl propionate, vinyl laurate, vinyl esters of alpha-branched carboxylic acids having 9 to 13 C atoms such as VeoVa9, VeoVal O, VeoVal 1 ; copolymers of 40 to 90% by weight of vinyl acetate with 5 to 45% by weight of ethylene and 5% to 45% by weight of (meth)acrylic esters of unbranched or branched alcohols having 1 to 15 C atoms, more particularly n-butyl acrylate or 2-ethy
- the type and relative amounts of the monomers forming the vinyl acetate-ethylene copolymer are generally chosen in a way that the vinyl acetate-ethylene copolymer has a glass transition temperature Tg of at most +10°C, of at most +5°C and especially of at most 0°C, e.g. in the range of -40 to +10°C, in particular in the range of -30 to +5°C, especially in the range of -20 to +0°C.
- the glass transition temperature Tg of the polymers can be determined in a known way of DSC (Differential Scanning Calorimetry, DIN EN ISO 11357-1/2, preferably with sample preparation according to ISO 16805:2003).
- the glass transition temperature Tg can also be calculated from the monomer composition forming the vinyl acetate-ethylene copolymer. This calculated temperature is also referred to as theoretical glass transition temperatures Tg* which is usually calculated from the monomer composition by the Fox equation:
- x a , x b x n are the mass fractions of the monomers a, b n
- Tg a , Tg b Tg n are the actual glass transition temperatures in Kelvin of the homopolymers synthesized from only one of the monomers a, b n at a time.
- the Fox equation is described by T. G. Fox in Bull. Am. Phys. Soc. 1956, 1 , page 123 and as well as in Ullmann's Encyclopadie der ischen Chemie [Ullmann's Encyclopedia of Industrial Chemistry], vol. 19, p. 18, 4th ed., Verlag Chemie, Weinheim, 1980.
- the vinyl acetate-ethylene copolymers are commercially available or they can be prepared in a known way, preferably by radically initiated emulsion polymerization in water. This technique has been exhaustively described in the art, and is therefore well known to the skilled person [cf., e.g., Encyclopedia of Polymer Science and Engineering, vol. 8, pages 659 to 677, John Wiley & Sons, Inc., 1987; D. C. Blackley, Emulsion Polymerisation, pages 155 to 465, Applied Science Publishers, Ltd., Essex, 1975;
- the radically initiated aqueous emulsion polymerization is normally accomplished by dispersing the ethylenically unsaturated monomers in aqueous medium, generally with accompanying use of dispersing assistants, such as emulsifiers and/or protective colloids, and polymerizing them by means of at least one water-soluble radical polymerization initiator.
- dispersing assistants such as emulsifiers and/or protective colloids
- the residual amounts of unreacted ethylenically unsaturated monomers are frequently lowered by chemical and/or physical techniques that are likewise known to the skilled person [see, for example, EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741184, DE-A 19741187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586, and 19847115]; the polymer solids content is adjusted to a desired level by dilution or concentration; or the aqueous polymer dispersion is admixed with further customary adjuvants, such as bactericidal, foam-modifying or viscosity-modifying additives, for example.
- further customary adjuvants such as bactericidal, foam-modifying or viscosity-modifying additives, for example.
- the monomers forming the vinyl acetate-ethylene copolymer are usually polymerized in the presence of protective colloid or in the presence of emulsifier, or in the presence of a combination of protective colloid and emulsifier.
- Customary protective colloids for stabilizing the polymerization batch include, for example, partially or fully hydrolyzed polyvinyl alcohols; polyvinylpyrrolidones; polyvinyl acetals; polysaccharides in water-soluble form such as starches, celluloses or their derivatives, such as carboxymethyl, methyl, hydroxyethyl or hydroxypropyl derivatives; proteins such as casein or caseinate, soy protein, gelatin; lignosulfonates; synthetic polymers such as poly(meth)acrylic acid, copolymers of (meth)acrylates with carboxyl-functional comonomer units, poly(meth)acrylamide, polyvinylsulfonic acids and their water- soluble copolymers; melamine-formaldehyde sulfonates, naphthalene-formaldehyde sulfonates, styrene-maleic acid and vinyl ether-maleic acid copolymers.
- polyvinyl alcohols each having a preferably 80 to 95 mol %, more preferably 85 to 90 mol % and most preferably 87 to 89 mol % degree of hydrolysis and which have a low molecular weight and a Hoeppler viscosity of in each case preferably 1 to 5 mPas and more preferably 2 to 4 mPas as determined to DIN 53015, Hoeppler method, at 20° C, in 4% aqueous solution.
- partially hydrolyzed high molecular weight polyvinyl alcohols having a hydrolysis degree of preferably 80 to 95 mol % and a Hoeppler viscosity, in 4% aqueous solution, of preferably >5 to 40 mPas, more preferably 8 to 40 mPas (DIN 53015 Hoeppler method at 20° C) in admixture with the partially hydrolyzed low molecular weight polyvinyl alcohols.
- the partially hydrolyzed high molecular weight polyvinyl alcohols and/or the fully hydrolyzed high molecular weight polyvinyl alcohols are each employed here in an amount of 0.1 to 4 wt %, all based on the total weight of the comonomers.
- modified polyvinyl alcohols hereinafter also referred to as X-PVOH, having a hydrolysis degree of 80 to 99.9 mol %, preferably 85 to 95 mol %, and a Hoeppler viscosity, in 4% by weight aqueous solution, of 1 to 30 mPas as determined to DIN 53015 at 20° C.
- X-PVOH modified polyvinyl alcohols
- examples thereof are polyvinyl alcohols bearing functional groups, such as acetoacetyl groups.
- E- PVOH polyvinyl alcohols which contain ethylene units and are known, for example, by the trade name of EXCEVAL®.
- E-PVOHs are partially or preferably fully hydrolyzed copolymers of vinyl acetate and ethylene.
- Preferred E-PVOHs have an ethylene content of 0.1 to 12 mol %, preferably 1 to 7 mol %, more preferably 2 to 6 mol % and especially 2 to 4 mol %.
- the mass-average degree of polymerization is in the range from 500 to 5000, preferably in the range from 2000 to 4500 and more preferably in the range from 3000 to 4000.
- the hydrolysis degree is generally greater than 92 mol %, preferably in the range from 94.5 to 99.9 mol % and more preferably in the range from 98.1 to 99.5 mol %.
- the protective colloids are commercially available and are obtainable using methods known to a person skilled in the art. It is also possible to use mixtures of said protective colloids.
- the polymerization is preferably carried out in the presence of altogether 2 to 10% by weight of protective colloid, more preferably altogether 5 to 10% by weight, all based on the total weight of the comonomers.
- the polymerization can be carried out in the presence of emulsifiers, which are in particular non-ionic emulsifiers.
- emulsifiers which are in particular non-ionic emulsifiers.
- Ionic, preferably anionic, emulsifiers can also be used.
- Combinations of nonionic emulsifiers with anionic emulsifiers are also usable.
- the emulsifier quantity is generally in the range from 0.1 to 5.0% by weight, based on the total weight of the comonomers.
- Suitable nonionic emulsifiers include, for example, acyl, alkyl, oleyl and alkylaryl ethoxylates. These products are commercially available as Genapol® or Lutensol® for example. They subsume ethoxylated mono-, di- and trialkylphenols, preferably with an ethoxylation degree of 3 to 50 ethylene oxide units and C4-C12 alkyl moieties; and also ethoxylated fatty alcohols, preferably with an ethoxylation degree of 3 to 80 ethylene oxide units and C8-C20 alkyl moieties.
- Suitable nonionic emulsifiers further include C13 to C15 oxo alcohol ethoxylates having an ethoxylation degree of 3 to 30 ethylene oxide units, C16-C18 fatty alcohol ethoxylates with an ethoxylation degree of 11 to 80 ethylene oxide units, C10 oxo process alcohol ethoxylates with an ethoxylation degree of 3 to 11 ethylene oxide units, C13 oxo process alcohol ethoxylates with an ethoxylation degree of 3 to 20 ethylene oxide units, polyoxyethylene sorbitan monooleate with 20 ethylene oxide groups, copolymers of ethylene oxide and propylene oxide with a minimum ethylene oxide content of 10 wt %, polyethylene oxide ethers of oleyl alcohol with an ethoxylation degree of 4 to 20 ethylene oxide units, and also the polyethylene oxide ethers of nonylphenol with an ethoxylation degree of 4 to 20 ethylene oxide units. Particular preference is green to C12-
- Suitable anionic emulsifiers include the sodium, potassium and ammonium salts of linear aliphatic carboxylic acids having 12 to 20 carbon atoms; sodium hydroxyoctadecanesulfonate; the sodium, potassium and ammonium salts of hydroxyl fatty acids having 12 to 20 carbon atoms and their sulfonation and/or acetylation products; the sodium, potassium and ammonium salts of alkyl sulfates, including as triethanolamine salts, and one sodium, potassium and ammonium salts of alkylsulfonates having 10 to 20 carbon atoms each and of alkylarylsulfonates having 12 to 20 carbon atoms; dimethyldialkylammonium chloride having 8 to 18 carbon atoms in the alkyl moiety and sulfonation products thereof; the sodium, potassium and ammonium salts of sulfosuccinic esters with aliphatic saturated monohydric alcohols having 4 to 16 carbon atoms and of
- the polymerization temperature is usually in the range of 40°C to 120°C, preferably in the range of 60°C to 90°C. Preference is given to working under pressure, in general in the range of 5 to 120 bar.
- the polymerization may be initiated using the initiators customary for emulsion polymerization, such as hydroperoxide or tert-butyl hydroperoxide, or using redox initiator combinations, with reducing agents, such as (iso)ascorbic acid or Na hydroxymethanesulfinate (Bruggolite FF). Substances with a regulating action can be used during the polymerization in order to control the molecular weight.
- the polymerization is generally in each case carried out to a conversion of >95 wt %, preferably up to a conversion of from 95 to 99 wt %, for the monomers which are liquid under polymerization conditions.
- aqueous dispersions of the vinyl acetate-ethylene copolymer each have a solids content of 30 to 75 wt %, preferably of 50 to 65 wt %.
- Suitable aqueous dispersions of vinyl acetate-ethylene copolymers are also commercially available; Vinnapas* dispersions from Wacker Chemie AG for example.
- composition B are insoluble in water and are present in the form of disperse polymer particles within the aqueous coating compositions.
- the average diameter of the polymers (polymer particles) present in the aqueous dispersion vinyl acetate-ethylene copolymer is generally in the range from 50 to 1500 nm, frequently in the range from 70 to 1200 nm, e.g. from 100 to 1200 nm.
- this specification means the Z average particle diameter as determined by dynamic light scattering (also termed quasielastic light scattering) of an aqueous polymer dispersion diluted with deionized water to 0.001 to 0.5% by weight at 22°C by means of a HPPS from Malvern Instruments, England. What is reported is the cumulant Z average diameter calculated from the measured autocorrelation function (ISO Standard 13321).
- the combination further contains a component B which comprises a calcium silicate hydrate in the form of particles, hereinafter abbreviated CSH or C-S-H, respectively.
- a component B which comprises a calcium silicate hydrate in the form of particles, hereinafter abbreviated CSH or C-S-H, respectively.
- CSH calcium silicate hydrate
- C-S-H a calcium silicate hydrate in the form of particles
- Suitable compositions comprising particles of CSH which can be used as component B are described, for example, in WO 02/070425, WO 2010/026155, WO 2011/026720, WO 2011/026723, WO 2012/025567, WO 2012/143205, WO 2014/114784, WO 2018/154012 and WO 2021/185718.
- the C-S-H contained in the component B comprises calcium and silicon in a molar ratio Ca/Si in the range of 0.1 to 2.2, in particular in the range of 0.5 to 2.2 and especially in the range of 1 .5 to 2.2.
- the component B is typically a powder or a suspension of particles comprising the C-S-H.
- the calcium-silicate-hydrate may contain elements other than Ca and Si, e. g. elements from the group of transition metals, aluminum, alkali metals and alkaline earth metals, such as magnesium. A skilled person will immediately understand that the elements are present in their oxidic form.
- the calcium-silicate-hydrate can be preferably described with regard to its elemental composition by the following empirical formula: a CaO SiO 2 b AI 2 O 3 c H 2 O d X 2 O e WO
- X refers to an alkali metal ion, in particular sodium or potassium
- W refers to an alkaline earth metal.
- the variables a, b, c, d and e refer to the relative molar proportions of the units with respect to SiC>2 and are preferably in the following ranges:
- 1 ⁇ c ⁇ 6 preferably 1 ⁇ c ⁇ 6.0
- the particles of the C-S-H can e.g. be characterized by electron microscopy (TEM/SEM) and the molar ratios of the respective elements can be determined using EDX elemental analysis in an electron microscope like TEM or SEM.
- TEM/SEM electron microscopy
- the weight ratio of the amount of organic polymer P of component A to the amount of calcium silicate hydrate in component B is generally in the range of 800:1 to 10:1 , frequently in the range of 800:1 to 20:1 , in particular in the range of 500:1 to 10:1 or in the range of or 500:1 to 20:1 , more particularly in the range of 200:1 to 10:1 or in the range of 200:1 to 20:1 and especially in the range of 150:1 to 20:1 or in the range of 150:1 to 30:1 or in the range of 100:1 to 30:1.
- the CSH may be a stabilized aqueous dispersion of CSH particles or a powder of CSH particles.
- the CSH may contain up to 50% by weight of the solid constituents of organic matter including e. g. salts of sulfonic acids, such as amidosulfonic acid, organic polymer dispersants, monosaccharides, fruit acids and salts thereof, such as glucose, galactose, citric acid, gluconic acid or tartaric acid or salts thereof.
- the total amount of such stabilizing agents will typically not exceed 70% by weight of the total amount of solid matter in the component B and is typically in the range of 5 to 70% by weight.
- the mass ratio of calcium silicate hydrate and organic matter is usually at least 1 : 1 and frequently in the range of 1 :1 to 19:1.
- the CSH is typically obtained by pozzolanic reaction of calcium hydroxide and silicic acid or SiC>2 which can be summarized in abbreviated notation of cement chemist as follows: CS + SH - CSH or by reaction of soluble salts such as calcium nitrate or water glass (e.g. sodium silicate).
- Calcium-silicate-hydrate (also named as C-S-H) can be obtained preferably by reaction of a calcium compound with a silicate compound, preferably in the presence of a polycarboxylate ether (PCE).
- PCE polycarboxylate ether
- C-S-H may be provided, e.g., as low-density C-S-H, C-S-H gel, or C-S-H seeds.
- the seed size of the C-S-H is small and can also be adjusted for example by milling of C-S-H.
- C-S-H seeds having an average diameter of less the 10 pm, preferably less than 2 pm, and in particular of less than 1 pm are preferred.
- the particle size, referred to, is determined by laser diffraction and data analysis according to Mie-theory according ISO13320:2009.
- the component B may be provided in solid form or in liquid form. When provided as solid, the component B is preferably in powder from containing the C-S-H particles.
- a suitable liquid form of the component B may be an aqueous solution or gel or an aqueous suspension of the C-S-H particles.
- the water content of the component B in powder form is preferably from 0.1 weight % to 5.5 weight % with respect to the total weight of the powder sample. Said water content is measured by putting a sample into a drying chamber at 80 °C until the weight of the sample becomes constant. The difference in weight of the sample before and after the drying treatment is the weight of water contained in the sample. The water content (%) is calculated as the weight of water contained in the sample divided with the weight of the sample.
- the component B may preferably be provided as an aqueous suspension.
- the water content of the aqueous suspension is preferably from 10 to 95% by weight, preferably from 40 to 90% by weight, more preferably from 50 to 85% by weight, in each case the percentage is given with respect to the total weight of the aqueous suspension sample.
- the water content is determined in an analogous way as described in the before standing text by use of a drying chamber.
- the solid content of the liquid form is usually in the range of from 1 to 60% by weight, preferred from 5 to 50% by weight, more preferred from 7 to 40% by weight, based on the total weight of the liquid form.
- the solid content of the liquid form can be determined by drying to constant weight at 150 °C in a drying oven, with the weight difference found being regarded as the proportion of water (including bound water of solids in the suspension).
- the hardening accelerator A is preferably an aqueous suspension.
- a suspension containing the calcium-silicate-hydrate in finely dispersed form is obtained from the reaction of the calcium compound with the silicate compound.
- the suspension effectively accelerates the hardening process of hydraulic binders, in particular of ordinary Portland Cement.
- the suspension can be dried in a conventional manner, for example by spray drying or drum drying to give a powder.
- the calcium-silicate-hydrate in the composition is present in the form of one or more more of the following crystalline forms: foshagite, hillebrandite, xonotlite, nekoite, clinotobermorite , 9A-tobermorite (riversiderite), 11 A-tobermorite, 14 A-tobermorite (plombierite), jennite, metajennite, calcium chondrodite, afwillite, O-C2SH, dellaite, jaf- feite, rosenhahnite, killalaite and/or suolunite.
- the calcium-silicate-hydrate in the composition is xonotlite, 9A - tobermorite (riversiderite), 11 A - tobermorite, 14 A - tobermorite (plombierite), jennite, metajennite, afwillite and/or jaffeite.
- the component B is provided in liquid form, wherein the average particle size d(50) of the CSH particles is smaller than 5 pm, preferably smaller than 2 pm, more preferably smaller than 1 pm, and in particular smaller than 500 nm, the particle size being measured by light scattering with a Master- Sizer® 3000 from the company Malvern according to DIN ISO13320:2009.
- the component B is provided in liquid form, wherein the average particle size d(50) of the CSH particles is smaller than 2 pm, more preferably smaller than 1 pm, and in particular smaller than 500 nm, the particle size being measured by light scattering with a MasterSizer® 3000 from the company Malvern according to DIN ISO13320:2009.
- the C-S-H is provided in the form of powder particles having a diameter of less than 150 pm, wherein said powder particles comprise calcium-silicate-hydrate primary particles having a diameter of less than 200 nm, or in the form of particles having a particle size distribution characterized by a d(50) value of ⁇ 200 nm.
- the component B comprises a calcium-silicate-hydrate, which is obtainable in the form of a suspension by a process a) comprising the reaction of a water-soluble calcium compound with a water-soluble silicate compound, the reaction of the water-soluble calcium compound with the water-soluble silicate compound being carried out in the presence of an aqueous solution which contains at least one polymeric dispersant, which contains anionic and/or anionogenic groups and polyether side chains, preferably poly alkylene glycol side chains, or by a process P) comprising the reaction of a calcium compound, preferably a calcium salt, most preferably a water-soluble calcium salt, with a silicon dioxide containing component under alkaline conditions, wherein the reaction is carried out in the presence of an aqueous solution of at least one polymeric dispersant, which contains anionic and/or anionogenic groups and polyether side chains, preferably polyalkylene glycol side chains.
- a process a) comprising the reaction of a water-soluble calcium compound with a water-soluble si
- the suspension obtainable from said processes a) or P) is dried in a further step in a conventional manner, for example by spray drying.
- the component B comprises a calcium-silicate-hydrate, which is obtainable in the form of a suspension by a process a-1 ) in which the water-soluble calcium compound is selected from calcium hydroxide and/or calcium oxide and the water-soluble silicate compound is selected from an alkali metal silicate with the formula m SiO 2 ⁇ n M 2 O, wherein M is Li, Na, K or NH4 or mixtures thereof, m and n are molar numbers and the ratio of m:n is from about 2.0 to about 4, provided that in the case the component B being a powder product, the product in the form of a suspension obtainable from said process a-1 ) is dried in a further step in order to obtain the powder product.
- the water-soluble calcium compound is selected from calcium hydroxide and/or calcium oxide
- the water-soluble silicate compound is selected from an alkali metal silicate with the formula m SiO 2 ⁇ n M 2 O, wherein M is Li, Na, K or NH4 or mixtures thereof, m
- the calcium hydroxide can also be produced from a calcium hydroxide forming compound, e.g. from calcium carbide which upon contact with water will release acetylene and calcium hydroxide.
- a calcium hydroxide forming compound e.g. from calcium carbide which upon contact with water will release acetylene and calcium hydroxide. Examples for the processes a), a-1 ), and ) are given in the international patent application published as WO 2010/026155 A1.
- the component B comprises semiordered C-S-H with a crystallite size of less than 15 nm and at least one polymeric dispersant.
- a material is obtainable for example by a process y ) by wet milling of C-S-H produced under hydrothermal conditions and where the milling was performed in presence of a water-soluble dispersant.
- Examples for the composition containing semiordered C-S-H and a polymeric dispersant are given in the international patent application published as WO 2018/154012 A1 .
- the mineral constituent of the CSH is typically essentially free of cement clinker and/or ettringite.
- “essentially free” means less than 10% by weight or less than 5% by weight, preferably less than 1 % by weight and in particular 0% by weight, in each case based on the total weight of the mineral constituents of the CSH.
- the component B comprises a calcium-sili- cate-hydrate, which is a suspension or which is a powder product and in which before the drying step to obtain the powder product in the case a) at least one polymeric dispersant, which has anionic and/or anionogenic groups and polyether side chains, preferably poly alkylene glycol side chains, is added to the product in the form of a suspension obtained from the process a), P), y ), or a-1 ) or in the case b) at least one sulfonic acid compound of the formula (I) in which
- a 1 is NH 2 , NHMe, NMe 2 , N(CH 2 -CH 2 -OH) 2 , CH 3 , C 2 H 5 , CH 2 -CH 2 -OH, phenyl, or p- CHs-phenyl, and
- K n+ is an alkali metal cation or a cation selected from the group of Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Fe 2+ , Fe 3+ , Al 3+ , Mn 2+ and Cu 2+ and n is the valency of the cation; was added to the product in the form of a suspension obtained from the process a), P), y ), or a-1 ).
- a 1 is NH2, CH3 and/or phenyl.
- K n+ is Ca 2+ .
- the at least one polymeric dispersant which has anionic and/or aniono- genic groups and polyether side chains, preferably poly alkylene glycol side chains, serves as a drying aid added to the suspensions obtained by the processes a), ) or a - 1 ) before drying said suspensions.
- the case a) are given in the international patent application published as WO 2012/143205.
- the sulfonic acid compound of the formula (I) serves as a drying aid added to the suspensions obtained by the processes a), P), y ), or a-1 ) before drying said suspensions.
- the component B may contain stabilizing agents, which particularly comprise one or more organic polymeric dispersants.
- the polymeric dispersants are typically water-soluble, i. e. they are selected from organic polymer which at 20 C and atmospheric pressure have a solubility in water of at least 10 gram per liter, in particular at least 20 gram per liter and especially at least 50 gram per liter.
- the polymer dispersant typically comprise structural units having anionic or anionogenic groups and/or structural units having polyether side chains.
- the dispersant comprises at least one polymer obtained by polymerizing at least one monomer having at least one anionic or anionogenic group and at least one monomer comprising at least one polyether side chain.
- polymer dispersants containing relatively polyether long side chains with a molecular weight of in each case at least 200 g/mol, more preferably at least 400 g/mol in varying distances on the main chain.
- Lengths of these side chains are often identical, but may also differ greatly from one another, for instance, in the case polyether macromonomers containing side chains of different lengths are copolymerized.
- Polymers of these kinds are obtainable, for example, by radical polymerization of acid monomers and polyether macromonomers.
- An alternative route to comb polymers of this kind is the esterification and/or amidation of poly(meth)acrylic acid and similar (co)polymers, such as acrylic acid/maleic acid copolymers, for example, with suitable monohydroxy-functional or monoamino-functional polyalkylene glycols, respectively, preferably alkyl polyethylene glycols.
- suitable monohydroxy-functional or monoamino-functional polyalkylene glycols respectively, preferably alkyl polyethylene glycols.
- Comb polymers obtainable by esterification and/or amidation of poly(meth)acrylic acid are described for example in EP 1138697B1.
- the average molecular weight Mw of said water-soluble polymer dispersants is 5,000 g/mol to 200,000 g/mol, preferably 10,000 g/mol to 80,000 g/mol, in particular 20,000 g/mol to 70,000 g/mol, as determined by gel permeation chromatography (GPC).
- the average molecular weight of the polymers was analyzed by means of GPC (column combinations: OH-Pak SB-G, OH-Pak SB 804 HQ and OH-Pak SB 802.5 HQ from Shodex, Japan; eluent: 80 vol% aqueous solution of HCO2NH4 (0.05 mol/l) and 20 vol% acetonitrile; injection volume 100 pl; flow rate 0.5 ml/min). Calibration for the purpose of determining the average molar mass was carried out with linear polyethylene oxide) standards and polyethylene glycol standards.
- the polymeric dispersant preferably meets the requirements of industrial standard EN 934-2 (February 2002).
- the relative amount of CSH to the stabilizing agent is typically in the range of 20:1 to 1 :1.5, in particular in the range of 10:1 to 1 :1 , especially in the range of 5:1 to 1 :1.
- the polymeric dispersant has at least one structural unit of the general formulae (la), (lb), (Ic) and/or (Id), where the structural units (la), (lb), (Ic) and (Id) are able to be identical or different within a single polymer molecule and also between various polymer molecules: in which
- R 1 is H or an unbranched or branched C1-C4 alkyl group, CH2COOH or CH2CO-X- R 2 , preferably H or CH3;
- R 3 is H or an unbranched or branched C1-C4 alkyl group, preferably H or CH3; n is 0, 1 , 2, 3 or 4, preferably 0 or 1 ;
- R 4 is PO3M2, or O-PO3M2; in which
- R 5 is H or an unbranched or branched C1-C4 alkyl group, preferably H;
- Z is O or NR 7 , preferably O;
- R 7 is H, (CnH 2n )-OH, (CnH 2 n)-PO 3 M2, (CnH 2 n)-OPO 3 M2, (C 6 H4)-PO 3 M2, or (C 6 H4)-OPO 3 M2, and n is 1 , 2, 3 or 4, preferably 1 , 2 or 3; in which
- R 6 is H or an unbranched or branched C1-C4 alkyl group, preferably H;
- Q is NR 7 or O, preferably O;
- R 7 is H, (CnH 2n )-OH, (CnH 2 n)-PO 3 M2, (CnH 2 n)-OPO 3 M2, (C 6 H4)-PO 3 M2, or (C 6 H4)-OPO 3 M2, n is 1 , 2, 3 or 4, preferably 1 , 2 or 3; and each M independently of any other is H or a cation equivalent.
- the comb polymer comprises as units having a polyether side chain at least one structural unit of the general formulae (Ila), (lib), (He) and/or (lid): in which
- R 10 , R 11 and R 12 independently of one another are H or an unbranched or branched C1-C4 alkyl group
- Z is O or S
- E is an unbranched or branched Ci-Ce alkylene group, a cyclohexylene group, CH2-C6H10, 1 ,2-phenylene, 1 ,3-phenylene or 1 ,4-phenylene;
- G is O, NH or CO-NH;
- R 13 is H, an unbranched or branched C1-C4 alkyl group, CO-NH2 and/or COCH3; in which
- R 16 , R 17 and R 18 independently of one another are H or an unbranched or branched C1-C4 alkyl group
- E is an unbranched or branched Ci-C 6 alkylene group, a cyclohexylene group, CH2-C6H10, 1 ,2-phenylene, 1 ,3-phenylene, or 1 ,4-phenylene, or is a chemical bond;
- R 19 is H or an unbranched or branched C1-C4 alkyl group
- R 20 is H or an unbranched C1-C4 alkyl group; in which
- R 21 , R 22 and R 23 independently of one another are H or an unbranched or branched C1-C4 alkyl group
- W is O, NR 25 , or is N;
- R 24 is H or an unbranched or branched C1-C4 alkyl group
- R 25 is H or an unbranched or branched C1-C4 alkyl group
- R 6 is H or an unbranched or branched C1-C4 alkyl group
- Q is NR 10 , N or O
- R 10 is H or an unbranched or branched C1-C4 alkyl group
- R 24 is H or an unbranched or branched C1-C4 alkyl group
- M is H or a cation equivalent; and a is an integer from 2 to 350, preferably 5 to 150.
- R 13 is H or an unbranched or branched C1-C4 alkyl group
- a is an integer from 2 to 150
- d is an integer from 1 to 150
- R 19 is H or an unbranched or branched C1-C4 alkyl group
- R 20 is H or an unbranched or branched C1-C4 alkyl group
- R 6 is H
- Q is O
- R 7 is (C n H2n)-O-(AO) a -R 9
- n is 2 and/or 3
- a is an integer from 1 to 150 and R 9 is H or an unbranched or branched C1-C4 alkyl group.
- the comb polymer comprises at least one structural unit of the formula (Ila) and/or (He).
- the comb polymer comprises units of the formulae (I) and (II).
- the comb polymer comprises structural units of the formulae (la) and (Ila).
- the comb polymer comprises structural units of the formulae (la) and (He).
- the comb polymer comprises structural units of the formulae (Ic) and (Ha).
- the comb polymer comprises structural units of the formulae (la), (Ic) and (Ha).
- the comb polymer comprises (i) anionic or anionogenic structural units derived from acrylic acid, methacrylic acid, maleic acid, hydroxyethyl acrylate phosphoric acid ester, and/or hydroxyethyl methacrylate phosphoric acid ester, hydroxyethyl acrylate phosphoric acid diester, and/or hydroxyethyl methacrylate phosphoric acid diester, and (ii) polyether side chain structural units derived from C1-C4 alkyl-polyethylene glycol acrylic acid ester, polyethylene glycol acrylic acid ester, C1-C4 alkyl-polyethylene glycol methacrylic acid ester, polyethylene glycol methacrylic acid ester, C1-C4 alkyl-polyethylene glycol acrylic acid ester, polyethylene glycol acrylic acid ester, vinyl oxy-C2-C4 alkylene-polyethylene glycol, vinyl oxy-C2-C4 alkylene-poly-poly- ethylene glycol C
- the comb polymer comprises structural units (i) and (ii) derived from hydroxyethyl acrylate phosphoric acid ester and/or hydroxyethyl methacrylate phosphoric acid ester and (ii) C1-C4 alkyl-polyethylene glycol acrylic acid ester and/or C1-C4 alkyl-polyethylene glycol methacrylic acid ester; or acrylic acid and/or methacrylic acid and (ii) C1-C4 alkyl-polyethylene glycol acrylic acid ester and/or C1-C4 alkyl-polyethylene glycol methacrylic acid ester; or acrylic acid, methacrylic acid and/or maleic acid and (ii) vinyloxy-C2-C4 alkylenepolyethylene glycol, allyloxy-polyethylene glycol, methallyloxy-polyethylene glycol and/or isoprenyloxy-polyethylene glycol.
- the comb polymer preferably comprises structural units (i) and (ii) derived from hydroxyethyl methacrylate phosphoric acid ester and (ii) C1-C4 alkyl-polyethylene glycol methacrylic acid ester or polyethylene glycol methacrylic acid ester; or methacrylic acid and (ii) C1-C4 alkyl-polyethylene glycol methacrylic acid ester or polyethylene glycol methacrylic acid ester; or acrylic acid and maleic acid and (ii) vinyloxy-C2-C4 alkylene-polyethylene glycol or acrylic acid and maleic acid and (ii) isoprenyloxy-polyethylene glycol or acrylic acid and (ii) vinyloxy-C2-C4 alkylene-polyethylene glycol or acrylic acid and (ii) isoprenyloxy-polyethylene glycol or acrylic acid and (ii) methallyloxy-polyethylene glycol or maleic acid and (ii) isoprennyl
- the molar ratio of the structural units (I) : (II) is 1 :4 to 15:1 , more particularly 1 :1 to 10:1.
- the comb polymer is a phosphorylated polycondensation product comprising structural units (III) and (IV): in which T is a substituted or unsubstituted phenyl or naphthyl radical or a substituted or unsubstituted heteroaromatic radical having 5 to 10 ring atoms, of which 1 or 2 atoms are heteroatoms selected from N, O and S; n is 1 or 2;
- B is N, NH or O, with the proviso that n is 2 if B is N and with the proviso that n is 1 if B is NH or O;
- A is an unbranched or branched alkylene with 2 to 5 carbon atoms or CH 2 CH(C 6 H 5 ); a is an integer from 1 to 300;
- R 25 is H, a branched or unbranched Ci to Cw alkyl radical, Cs to Cs cycloalkyl radical, aryl radical, or heteroaryl radical having 5 to 10 ring atoms, of which 1 or 2 atoms are heteroatoms selected from N, O and S; where the structural unit (IV) is selected from the structural units (IVa) and (IVb): in which
- D is a substituted or unsubstituted phenyl or naphthyl radical or a substituted or unsubstituted heteroaromatic radical having 5 to 10 ring atoms, of which 1 or 2 atoms are heteroatoms selected from N, O and S;
- E is N, NH or O, with the proviso that m is 2 if E is N and with the proviso that m is 1 if E is NH or O;
- A is an unbranched or branched alkylene with 2 to 5 carbon atoms or CH 2 CH(C 6 H 5 ); b is an integer from 0 to 300;
- M independently at each occurrence is H or a cation equivalent
- V is a substituted or unsubstituted phenyl or naphthyl radical and is optionally substituted by 1 or two radicals selected from R 8 , OH, OR 8 , (CO)R 8 , COOM, COOR 8 , SO3R 8 and NO 2 ;
- R 7 is COOM, OCH 2 COOM, SO 3 M or OPO 3 M 2 ;
- M is H or a cation equivalent;
- R 8 is C1-C4 alkyl, phenyl, naphthyl, phenyl-Ci-C4 alkyl or C1-C4 alkylphenyl.
- T is preferably a substituted or unsubstituted phenyl radical or naphthyl radical
- a is an integer from 1 to 150
- R 25 is H, or a branched or unbranched Ci to C10 alkyl radical.
- D is preferably a substituted or unsubstituted phenyl radical or naphthyl radical
- E is NH or O
- b is an integer from 1 to 150.
- T and/or D are preferably phenyl or naphthyl which is substituted by 1 or 2 C1-C4 alkyl, hydroxyl or 2 C1-C4 alkoxy groups.
- V is preferably phenyl or naphthyl which is substituted by 1 or 2 C1-C4 alkyl, OH, OCH 3 or COOM, and R 7 is COOM or OCH 2 COOM.
- the polycondensation product comprises a further structural unit (V) of the formula
- R 5 and R 6 may be identical or different and are H, CH3, COOH or a substituted or unsubstituted phenyl or naphthyl group or are a substituted or unsubstituted heteroaromatic group having 5 to 10 ring atoms, of which 1 or 2 atoms are heteroatoms selected from N, O and S.
- R 5 and R 6 may be identical or different and are H, CH3, or COOH, more particularly H, or one of the radicals R 5 and R 6 is H and the other is CH3.
- the molar weight of the polyether side chains is >200 g/mol, preferably >300 g/mol and ⁇ 6000 g/mol, preferably ⁇ 5000 g/mol. In one embodiment of the present invention, the molecular weight of the polyether side chains is in the range from 200-6000 g/mol, more particularly 500-5000 g/mol and more preferably 1000-5000 g/mol. In one embodiment of the present invention, where the charge density of the comb polymer is in the range from 0.5 meq/g -5 meq/g polymer, preferably 0.6 meq/g - 3 meq/g polymer.
- the water-soluble polymer is a copolymer comprising sulfo group containing units and/or sulfonate group-containing units and carboxylic acid and/or carboxylate group- containing units.
- the sulfo or sulfonate group containing units are units derived from vinylsulfonic acid, methallylsulfonic acid, 4-vinylphenylsulfonic acid or are sulfonic acid-containing structural units of formula wherein
- R 1 represents hydrogen or methyl
- R 2 , R 3 and R 4 independently of each other represent hydrogen, straight or branched Ci-Ce-alkyl or Ce-Ci4-aryl,
- M represents hydrogen, a metal cation, preferably a monovalent or divalent metal cation, or an ammonium cation a represents 1 or 1 /valency of the cation, preferably Vi or 1 .
- Preferred sulfo group containing units are derived from monomers selected from vinylsulfonic acid, methallylsulfonic acid, and 2-acrylamido-2-methylpropylsulfonic acid (AMPS) with AMPS being particularly preferred.
- AMPS 2-acrylamido-2-methylpropylsulfonic acid
- the carboxylic acid or carboxylate containing units are preferably derived from monomers selected from acrylic acid, methacrylic acid, 2-ethylacrylic acid, vinyl acetic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and in particular acrylic acid and methacrylic acid.
- the sulfo group containing copolymer in general has a molecular weight M w in the range from 1000 g/mol to 50,000 g/mol, preferably 1500 g/mol to 30,000 g/mol, as determined by aqueous gel permeation chromatography.
- M w molecular weight
- the molar ratio between the sulfo group containing units and carboxylic acids containing units is, in general, in the range from 5:1 to 1 :5, preferably 4:1 to 1 :4.
- the (co)polymer dispersant having carboxylic acid groups and/or carboxylate groups and sulfonic acid groups and/or sulfonate groups has a main polymer chain of carbon atoms and the ratio of the sum of the number of carboxylic acid groups and/or carboxylate groups and sulfonic acid groups and/or sulfonate groups to the number of carbon atoms in the main polymer chain is in the range from 0.1 to 0.6, preferably from 0.2 to 0.55.
- said (co)polymer dispersant is obtainable from a free-radical (co)polymerisation and the carboxylic acid groups and/or carboxylate groups are derived from monocarboxylic acid monomers.
- a (co)polymer which can be obtained from a free-radical (co)polymerisation and the carboxylic acid groups and/or carboxylate groups are derived from the monomers acrylic acid and/or methacrylic acid and the sulfonic acid groups and/or sulfonate groups are derived from 2-acrylamido-2- methylpropanesulfonic acid.
- the weight average molecular weight M w of the (co)polymer(s) is from 8,000 g/mol to 200,000 g/mol, preferably from 10,000 to 50,000 g/mol.
- the weight ratio of the (co)polymer or (co)polymers to the calcium silicate hydrate is preferably from 1/100 to 4/1 , more preferably from 1/10 to 2/1 , most preferably from 1/5 to 1/1.
- the water-soluble polymer dispersant is selected from copolymers, comprising the structural units of formula (la) and (Ila), in particular copolymers, comprising structural units derived from acrylic and/or methacrylic acid and ethoxylated hydroxyalkylvinylether, such as ethoxylated hydroxybutyl- vinylether; copolymers, comprising the structural units of formula (la), (Id) und (Ila), in particular copolymers, comprising structural units derived from acrylic acid and/or methacrylic acid, maleic acid, and ethoxylated hydroxyalkylvinylether, such as ethoxylated hydroxybutyl-vinylether; copolymers, comprising the structural units of formula (la) und (He), in particular copolymers, comprising structural units derived from acrylic and/or methacrylic acid and esters of the acrylic and/or methacrylic acid with polyethylenglykol or polyeth
- the combination further comprises at least one salt of a sulfonic acid.
- a sulfonic acid examples include salts of Ci-C4-alkylsulfonic acid, such as salts of methane sulfonic acid and salts of the monoamides of sulfonic acid, such as the salts of amidosulfonic acid, the salts of N-Ci- C4-alkylamiodsulfonic acid and the salts of N,N-di-Ci-C4-alkylamiodsulfonic acid.
- Suitable salts are in particular the alkalimetal salts and the earth alkali metal salts, in particular, the sodium, potassium and calcium salts.
- the salt of the sulfonic acid is a salt of amidosulfonic acid (H2N-SO3H), in particular the calcium salt thereof.
- the amount of the salt of a sulfonic acid is typically in the range of 0.01 to 5% by weight, in particular 0.05 to 2% by weight, based on the total weight of the polymer P of component A and the CSH of component B.
- the combination does not comprise more than 5% by weight, in particular less than 2% by weight, based on the weight of the organic polymer P, of water-soluble polymers having carboxylic acid groups and/or sulfonic acid groups, because it was found by the inventors that these polymers may cause a retardation of the setting.
- Typical polymers having such a retardation effect include water-soluble polymers comprising more than 40% by weight of ethylenically unsaturated monomers bearing a carboxyl group or a sulfonic acid group and polycondensation products of aryl sulfonic acids with formaldehyde, such as polycondensation products of napthalene sulfonic acid or phenolsulfonic acid with formaldehyde.
- the polymer P of component A is typically obtained as an aqueous polymer dispersion of the polymer P.
- the calcium silicate hydrate of component B is typically obtained as an aqueous suspension of CSH particles.
- the components A and B may be used according to the following options (i) to (v):
- Such a powder can be obtained by mixing a powder obtained from an aqueous dispersion of the polymer P and the component B in the form of a powder or by co-spray drying of an aqueous dispersion of the polymer P and the component B in the form of an aqueous suspension or solution.
- Powders containing the components A or the component B can be obtained by spraydrying the aqueous dispersions of the polymer P and the aqueous suspensions of the CSH particles, respectively.
- Spray drying can be carried by analogy to a well known spray drying procedures, optionally the presence of spray drying agents.
- spray drying of the aqueous polymer dispersion of the vinylacetate-eth- ylene copolymer of the component A is typically carried out in the presence of a polymeric spray drying agent, such as polycarboxylic acids, arylsulfonic acid formaldehyde condensation products, cellulose, degraded starch or polyvinyl alcohols.
- a polymeric spray drying agent such as polycarboxylic acids, arylsulfonic acid formaldehyde condensation products, cellulose, degraded starch or polyvinyl alcohols.
- the amount of spray drying agent is typically in the range of 1 to 20% by weight, based on the vi- nylacetate-ethylene copolymer in the polymer dispersion.
- spray drying aids selected from the group consisting of cellulose, degraded starch and partially or fully hydrolyzed polyvinyl alcohols.
- polyvinyl alcohols in particular those having a degree of hydrolysis of at least 95% and/or a Hoeppler viscosity of in each case of preferably in the range 1 to 50 mPas and more preferably 2 to 20 mPas as determined to DIN 53015, Hoeppler method, at 20° C, in 4% aqueous solution.
- the thus obtained polymer powder may be formulated with anti-blocking agents, in particular selected from inorganic anti-blocking agents, such as limestone powder, kaolin powder or talcum powder.
- anti-blocking agents in particular selected from inorganic anti-blocking agents, such as limestone powder, kaolin powder or talcum powder.
- the amount of these antiblocking agent is typically in the range of 2 to 20% by weight, based on the total weight of the polymer powder.
- a suspension which contains a polymeric dispersant as described above. It has been found beneficial, if spray drying is carried out in the presence of a further stabilization agent, which is preferably selected from the salts of amidosulfonic acid, monosaccharides, fruit acids and salts thereof as well as combinations thereof.
- a further stabilization agent which is preferably selected from the salts of amidosulfonic acid, monosaccharides, fruit acids and salts thereof as well as combinations thereof.
- Further stabilization agents are typically used in an amount of 1 to 100% by weight, in particular 2 to 50% by weight, based on the total weight of the calcium-silicate hydrate present in the suspension.
- a particular fourth aspect of the invention relates to powdery compositions containing both the components A and B.
- the forth aspect of the invention relates to powdery compositions, consisting of a) the organic polymer P of component A b) the component B containing the calcium silicate hydrate particles, preferably in combination with the polymeric dispersant as described in the context of the aqueous suspensions of the CSH particles, d) optionally up to 30% by weight, in particular 1 to 30% by weight, based on the total dry matter of the powdery composition, of further ingredients, which are in particular selected from spray drying agent, as described in the context of the spray drying of the polymer dispersion, preferably non-ionic polymers having a plurality of hydroxyl groups, in particular a polyvinyl alcohol, and optionally a further stabilization agent, which is preferably selected from the salts of amidosulfonic acid, monosaccharides, fruit acids and salts thereof as well as combinations thereof; wherein the weight ratio of the organic polymer of component A to the
- the fourth aspect of the invention relates to powdery compositions containing a) 65 to 98.8% by weight, in particular 72 to 98% by weight, based on the total dry matter of the powdery composition, of at least one organic polymer P; b) 0.2 to 10% by weight, in particular 0.5 to 8.0% by weight, based on the total dry matter of the powdery composition, of the dry matter of component B or 0.1 to 5.0 % by weight, in particular 0.25 to 4.0% by weight, based on the total dry matter of the powdery composition, of total amount of CSH contained in the component B; e) 1 to 30% by weight, in particular 2 to 25% by weight, based on the total dry matter of the powdery composition, of further ingredients, which are in particular selected from spray drying agent, as described in the context of the spray drying of the polymer dispersion, preferably non-ionic polymers having a plurality of hydroxyl groups, in particular a polyvinyl alcohol, and optionally one or more further stabilization agents, which are preferably selected from the
- the powdery composition according to the fourth aspect of the invention further comprises at least one further ingreadient (d.1 ), (d.2) and (d.3) or any combination of said further ingredients (d.1 ), (d.2) and (d.3):
- the ingredient (d.1) is selected from one or non-ionic water soluble polymers having a plurality of hydroxyyl groups.
- non-ioninc water soluble polymers include, but are not limited to cellulose, degraded starch or polyvinyl alcohols and combinations thereof.
- Particular preference is given to polyvinylalcohols, which may be partially or completely saponified. Suitable polyvinylalcohols are those mentioned as protective colloids for the preparation of the aqueous dispersions of the vinylacetateethylene copolymers.
- polyvinyl alcohols having a degree of hydrolysis of at least 90% and/or a Hoeppler viscosity of in each case of preferably in the range 1 to 50 mPas and more preferably 2 to 20 mPas as determined to DIN 53015, Hoeppler method, at 20° C, in 4% aqueous solution.
- the amount of the non-ionic water soluble polymer having a plurality of hydroxyyl groups is typically in the range of 1 to 20% by weight, based on the total weight of the powdery composition.
- the ingredient (d.2) is selected from one or more compounds OC, which are selected from monosaccharides, fruit acids and salts thereof, such as glucose, galactose, citric acid, gluconic acid or tartaric acid or salts thereof.
- the amount of the organic compound OC is typically in the range of 0.01 to 5% by weight, in particular 0.05 to 2% by weight, the powdery composition.
- the ingredient (d.3) is selected from one or more salts of a sulfonic acid.
- examples of such compounds (d.3) include salts of Ci-C 4 -alkylsulfonic acid, such as salts of methane sulfonic acid and salts of the monoamides of sulfonic acid, such as the salts of amidosulfonic acid, the salts of N-Ci-C4-alkylamiodsulfonic acid and the salts of N,N- di-Ci-C4-alkylamiodsulfonic acid.
- Suitable salts are in particular the alkalimetal salts and the earth alkali metal salts, in particular, the sodium, potassium and calcium salts.
- the salt of the sulfonic acid is a salt of amidosulfonic acid (H2N-SO3H), in particular the calcium salt thereof.
- the amount of the salt of a sulfonic acid is typically in the range of 0.01 to 5% by weight, in particular 0.05 to 2% by weight, based on the total weight of the powdery composition.
- the powdery composition according to the fourth aspect of the invention does not comprise more than 5% by weight, in particular less than 2% by weight, based on the weight of the organic polymer P, of water-soluble polymers having carboxylic acid groups and/or sulfonic acid groups, e. g. water-soluble polymers comprising more than 40% by weight of ethylenically unsaturated monomers bearing a carboxyl group or a sulfonic acid group and polycondensation products of aryl sulfonic acids with formaldehyde, such as polycondensation products of napthalene sulfonic acid or phenolsulfonic acid with formaldehyde.
- water-soluble polymers having carboxylic acid groups and/or sulfonic acid groups e. g. water-soluble polymers comprising more than 40% by weight of ethylenically unsaturated monomers bearing a carboxyl group or a sulfonic acid group and polycondensation products of aryl
- the powder composition of the fourth aspect of the invention is prepared by joint spray drying of an aqueous polymer dispersion of the organic polymer P and an aqueous suspension of the component B.
- the optional one or more further ingredients D may be incorporated into the powder composition during spray drying or admixed to the powder composition after joint spray drying of the aqueous polymer dispersion of the organic polymer P and an aqueous suspension of the component B.
- joint spray drying is carried out in the presence of a spray drying assistant selected from non-ionic water soluble polymers having a plurality of hydroxyl groups.
- non-ionic water soluble polymers include, but are not limited to cellulose, degraded starch or polyvinyl alcohols and combinations thereof. Particular preference is given to polyvinyl alcohols as described in the context of component (d.1).
- the powder composition of the fourth aspect of the invention can also be prepared by mixing powders of the polymer P and powdery component B.
- the combination of the component A and the component B is combined with the further components which form the mineral waterproofing membrane and water to produce a slurry which can be applied to the surface for which a mineral waterproofing membrane is required.
- the combination of the invention already contains water, e. g. if the polymer P is provided as an aqueous polymer dispersion optionally containing the component B, no additional water or only small amounts of water may be required to obtain the slurry.
- these further components include, but are not limited to c.1 at least one mineral binder and c.2 one or more fillers and optionally further ingredients, such as accelerators.
- these further components are present as powders, wherein at least 90% by weight of the particles of the respective powder have a particle size of at most 500 pm, in particular of at most 400 pm, especially of at most 300 pm.
- the mineral binder is typically a hydraulic binder or latent hydraulic binder or a combination of different hydraulic binders, in particular portland cement, slag, granulated blast furnace slag, calcium sulfate, fly ash, silica flour, metakaolin, natural pozzolanas, calcined oil shale, calcium sulfoaluminate cements and/or calcium aluminate cements.
- the mineral binder comprises at least on cement selected from cements classified according to EN 197-1 :2011 as CEM I or CEM II, particular a portland cement (cement of class CEM I, also termed OPC) and especially a portland cement classified as CEM I 52.5 N, CEM I 42.5 R or CEM I 52.5 R.
- the mineral binder may also be a combination of different hydraulic binders, e.g.
- the overall amount of the mineral binder (c.1) is preferably in the range of 10 to 45% by weight, in particular from 10 to 40% by weight, based on the total weight of the dry matter of the composition used for producing the mineral waterproofing membrane.
- the relative amounts of the polymer P to the mineral binder is such that the ratio of polymer P to mineral binder is preferably in the range of 1 :3 to 2:1 .
- the powdery filler (c.2) as used in the composition for producing the mineral waterproofing membrane may be any of the usual construction fillers, including mineral fillers such as rock powder and sand; recycle aggregates produced from the recycling of concrete, which is itself chiefly manufactured from mineral fillers. Mineral fillers such as powdery dolomite, granites, gravel, sandstone, limestone, basalt and the like can also be used as fillers.
- the present powdery filler may also include one or more organic, such as ground rubber or bitumen.
- the present powdery filler includes also mixtures of two or more of the above-listed fillers.
- the overall amount of the powdery filler (c.2) is preferably in the range of 15 to 70% by weight, in particular from 20 to 50% by weight, based on the total weight of the dry matter of the composition used for producing the mineral waterproofing membrane.
- the sand is a combination of medium sand and fine sand.
- Fine sand in terms of the present invention is defined in accordance with DIN 4022:1987 and is sand with an equivalent diameter of 0.063-0.2 mm.
- Medium sand in terms of the present invention is defined in accordance with DIN 4022:1987 and is sand with an equivalent diameter of 0.2-0.63 mm.
- Medium sand and fine sand are preferably present in a weight ratio of from 2:1 to 1 :5, more preferably from 1 :1 to 1 :3, in particular from 1 :1.5 to 1 :3.
- the composition for producing the mineral waterproofing membrane comprises an organic powdery recycling material, such as powdered rubber.
- the powdered rubber is a recycle material obtained, for example from comminuting discarded tires and the like.
- the powdered rubber not only reduces the amount of natural mineral aggregates, such as sand, thus allowing to preserve their pristine natural resources, but also contributes to the flexibility and elasticity and thus crack resistance of the set system.
- the organic powdery recycling material has preferably a particle size of at most 500 pm and typically of at least 50 pm.
- the organic powdery recycling material, if present, is preferably present in an amount of from 5 to 50% by weight, in particular from 10 to 40% by weight, based on the total weight of the fillers.
- Its amount with respect to the dry matter of the composition for producing the mineral waterproofing membrane, if present, is typically in the range of 2 to 30% by weight, in particular 5 to 25% by weight, based on the total weight of the dry matter of the composition for producing the mineral waterproofing membrane.
- the components c.1 and c.2 are provided as a powdery composition C into which the components A and B of the combination of the invention and optionally water are incorporated, whereby a slurry is obtained which can be applied to the surface to which the mineral waterproofing membrane shall be applied. Upon drying and setting of the mineral binder the mineral waterproofing membrane is formed.
- the combination of the components A and B can be incorporated as powders containing either component A or component B or as a powder containing both components A and B into the powdery composition C which contains the mineral binder and the filler and to obtain a powdery composition.
- a composition is a so-called 1 K composition as it contains all necessary ingredients for producing the mineral waterproofing membrane.
- said powdery composition is mixed with an amount of water necessary for hardening the mineral binder, whereby a slurry is obtained which is then applied to the surface, where the mineral waterproofing membrane is desired.
- a liquid formulation containing the polymer P as an aqueous polymer dispersion and further containing the component P as an aqueous suspension of calcium silicate hydrate particles and optionally a suitable organic polymer dispersant as described above is provided as a first formulation of a two-kits-of-parts formulation.
- the powdery composition C is provided which contains the mineral binder and the filler as described above and optionally further additives.
- an aqueous polymer dispersion of the polymer P is provided as a first part of a two-kits-of-parts formulation.
- the powdery composition C is provided which contains the mineral binder and the filler as described above, the component B in the form of a powder as described above and optionally further additives.
- a slurry is obtained which is then applied to the surface, where the mineral waterproofing membrane is desired.
- an aqueous suspension of the CSH is provided as a first part of a two-kits-of-parts formulation.
- the powdery composition C which contains the mineral binder and the filler as described above, the component A in the form of a powder as described above and optionally further additives.
- a slurry is obtained which is then applied to the surface, where the mineral waterproofing membrane is desired.
- the combination of the components A and B is provided as a powder containing both components A and B as a first part of a two- kits-of-parts formulation.
- the powdery composition C is provided which contains the mineral binder and the filler as described above and optionally further additives.
- composition C can also comprise further additives which are typically used in the field of mineral waterproofing membranes, for example other curing accelerators, dispersants, plasticizers, water reducers, setting retarders, antifoams, retarders, shrinkage-reducing agents, freezing protection agents and/or antiefflorescence agents.
- additives typically used in the field of mineral waterproofing membranes, for example other curing accelerators, dispersants, plasticizers, water reducers, setting retarders, antifoams, retarders, shrinkage-reducing agents, freezing protection agents and/or antiefflorescence agents.
- Suitable other curing accelerators are alkanolamines, preferably triisopropanolamine and/or tetrahydroxyethylethylenediamine (THEED).
- the alkanolamines are preferably used in an added amount of from 0.01 to 2.5% by weight, based on the weight of the hydraulic binder.
- amines in particular triisopropanolamine and tetrahydroxyethylethylenediamine
- Further curing accelerators are, for example, calcium hydroxide, calcium chloride, calcium formate, calcium nitrate, inorganic carbonates (e.g. sodium carbonate, potassium carbonate) and lithium carabonate. Preference is given to using calcium formate, calcium hydroxide, lithium carbonate and calcium nitrate in an amount of from 0.1 to 4% by mass based on the hydraulic binder.
- Suitable setting retarders are citric acid, tartaric acid, gluconic acid, phosphonic acid, aminotrimethylenephosphonic acid, ethylenediaminotetra(methylenephosphonic) acid, diethylenetriaminopenta(methylenephosphonic) acid, in each case including the respective salts of the acids, pyrophosphates, pentaborates, metaborates and/or sugars (e.g. glucose, molasses).
- the advantage of the addition of setting retarders is that the open time can be controlled and in particular may be able to be extended.
- the setting retarders are preferably used in an amount of from 0.01 % by weight to 0.5% by weight, based on the weight of the mineral binder.
- Spray drying aid 1 (SDA-1 ): Commercially available partially saponified polyvinyl alcohol (PVOH), which is manufactured by Kuraray and is available under the trade name Poval® 4-88.
- Spray drying aid 2 (SDA-2): A polyacid based on the monomers methacrylic acid and 2-methyl-2-propene-1 -sulfonic acid. This polyacid has a molecular weight of Mw about 1400 g/mol and was synthesized as described in US 2020/0207671 A1 page 10, paragraph 0234 to paragraph 0235.
- Spray drying aid 3 (SDA-3): A phenol sulfonic acid-formaldehyde condensation product with a molecular weight Mw of about 8000 g/mol was synthesized as described in WO 98/03576 A1 page 14, line 42 to page 15, line 12.
- Polymer dispersion 1 (PD-1 ): Aqueous polymer dispersion of a copolymer of vinyl acetate and ethylene which is stabilized by polyvinyl alcohol as protective colloid. The dispersion has a solids content of 53% by weight.
- the polymer has a minimum film forming temperature (MF FT) of ⁇ 0°C, a glass transition temperature of below 0°C and a predominant particle size of 900 nm.
- MF FT minimum film forming temperature
- An example is the polymer dispersion VINNAPAS® 550 ED from Wacker.
- Polymer dispersion 2 (PD-2): Aqueous polymer dispersion of a terpolymer of vinyl acetate, ethylene, and vinyl ester. The dispersion is stabilized by surfactants and has a solids content of 59% by weight.
- the polymer has a minimum film forming temperature (MFFT) of ⁇ 0°C, a glass transition temperature of -12°C, and a predominant particle size of 300 nm.
- MFFT minimum film forming temperature
- An example is the polymer dispersion VINNAPAS® 760 ED from Wacker.
- Polymer dispersion 3 (PD-3): A styrene-acrylate polymer dispersion was produced by emulsion polymerization as described in WO 2013/117465 A1 : Example “Polymeri- satdispersion D” on page 19-20.
- the dispersion has a solids content of 57% by weight, a glass transition temperature of -13°C, and a particle size of 230 nm.
- C-S-H Calcium-silicate-hydrate
- the C-S-H suspension was prepared by wet grinding of hydrothermal calcium-silicate- hydrate according to US 2020/0231499 A1 , example S11 in table 4 on page 14.
- the calculated C-S-H content of the suspension was 9.0% by weight.
- the molar ratio Ca/Si of the C-S-H particles was 1.77.
- Aqueous suspension of a stabilized calcium silicate hydrate (C-S-H-3) The C-S-H suspension CSH-3 was synthesized according to US 2015/0344368, example H2 page 17. The calculated C-S-H content was 8.3% by weight. The molar ratio Ca/Si of the C-S-H particles was 1.44.
- the respective aqueous polymer dispersion was mixed with the respective aqueous solution of the spray-drying aid while stirring.
- the type and amounts of the polymer dispersion and the respective spray-drying aid used are shown in Table 1 . Additional water was used to adjust the concentration of the dispersion to be dried to 44 wt.-% relating to the solids content in the spray feed.
- Spray-drying was conducted by means of a commercially available, laboratory-scale spray dryer (Niro Atomizer from Niro) using nitrogen as drying gas.
- the aqueous dispersion to be dried was sprayed through a two-fluid nozzle.
- the inlet temperature of the dryer gas was 130 to 140°C; its outlet temperature was 60 to 70°C.
- a first antiblocking agent (1 % by weight of hydrophobic silica powder, based on the total of all components of the final product) was fed into the drying chamber through an additional nozzle.
- a second antiblocking agent which were selected from commercially available anti-blocking agents, namely talc, limestone powder, or kaolin.
- composition composed of a dispersion with spray-drying aid (SDA) specified in Table 1 was used to produce films and their re-dispersion was tested.
- SDA spray-drying aid
- the liquid dispersion (5 g of solids) in 10-15 mL of water was admixed with the described amount of the respective SDA and dried at room temperature for two days.
- About 0.5 g of the film was taken up in 10 mL of distilled water while stirring (200 rpm) at room temperature.
- RDP re-dispersible powder
- Table 1 Re-dispersibility of the different combinations of polymer dispersions and SDA as film and as RDP (reference examples).
- the polymer dispersions PD1 and PD2 based on a vinyl acetate-ethylene copolymer yielded re-dispersible films i powders in combination with polyvinyl alcohol (PVOH) as SDA (samples: combination 1 , combination 4, RDP1 , and RDP2).
- PVOH polyvinyl alcohol
- the combination of the polymer dispersion PD3 based on a sty- rene-acrylate polymer with polyvinyl alcohol (PVOH) as SDA was not suitable and neither re-dispersible films nor re-dispersible dispersion powders were obtained.
- the re-dispersible dispersion powder was a commercially polymer powder based on a copolymer of vinyl acetate and ethylene (VAE) and stabilized by polyvinyl alcohol as protective colloid.
- the copolymer has a minimum film forming temperature (MFFT) of about 0°C and a glass transition temperature of -5°C.
- MFFT film forming temperature
- the latex content of the powder is about 75% by weight, the remainder being essentially about 10-12 wt.-% of polyvinyl alcohol, 4-5 wt.-% kaolin and 9-11 wt.-% of limestone.
- An example is the polymer powder ETONIS® 3500 ED from Wacker.
- the re-dispersible dispersion powder (RDP-2) is a commercially polymer powder based on a terpolymer of vinyl acetate, ethylene, and vinyl ester.
- the polymer has a minimum film forming temperature (MFFT) of ⁇ 0°C, a glass transition temperature of below 0°C and is stabilized by polyvinyl alcohol as protective colloid.
- MFFT minimum film forming temperature
- the latex content of the powder is ⁇ 81% by weight the remainder being essentially about 10 wt.-% of polyvinyl alcohol 8-9 wt.-% kaolin.
- An example is the polymer powder VINNAPAS® 7055 E from Wacker.
- the polymer dispersion PD-3 was spray-dried according to the general procedure with 7 wt.-% spray-drying aid SDA-2 (based on the latex amount) as described above.
- the latex content of the powder is about 84% by weight.
- the polymer dispersion PD-3 was spray-dried according to the general procedure with 10 wt.-% spray-drying aid SDA-3 (based on the latex amount) as described above.
- the latex content of the powder is about 82% by weight.
- the polymer dispersion PD-1 was mixed with 10 wt.-% spray-drying aid SDA-1 (PVOH), 1 wt.-% C-S-H-1 , and 0.357 wt.-% calcium amidosulfonate. All percentages relate on the latex content.
- the resulting suspension was diluted to 44 wt.-% relating to the solids content in the spray feed and was then spray-dried. Then, the resulting powder was mixed with 10 wt.-% of kaolin, based on the initially obtained powder, as antiblocking agent.
- the latex content of the powder was about 81 % by weight.
- the polymer dispersion PD-1 was mixed with 10 wt.-% spray-drying aid SDA-1 (PVOH), 2 wt.-% C-S-H1 , and 0.714 wt.-% calcium amidosulfonate. All percentages relate on the latex content.
- the resulting suspension was diluted to 44 wt.-% relating to the solids content in the spray feed and then spray-dried. Then, the resulting powder was mixed with 10 wt.-% of kaolin, based on the initially obtained powder, as antiblocking agent.
- the latex content of the powder was about 80% by weight.
- the polymer dispersion PD-3 was mixed with 7 wt.-% spray-drying aid SDA-2 (polyacid), 1 wt.-% C-S-H1 , and 0.357 wt.-% calcium amidosulfonate. All percentages relate on the latex content.
- the resulting suspension was diluted to 44 wt.-% relating to the solids content in the spray feed and then spray-dried. Then, the resulting powder was mixed with 10 wt.-% of kaolin, based on the initially obtained powder, as anti-blocking agent.
- the latex content of the powder was about 83% by weight.
- the polymer dispersion PD-3 was mixed with 7 wt.-% spray-drying aid SDA-2 (polyacid)), 2 wt.-% C-S-H 1 , and 0.714 wt.-% calcium amidosulfonate. All percentages relate on the latex content.
- the resulting suspension was diluted to 44 wt.-% relating to the solids content in the spray feed and then spray-dried. Then, the resulting powder was mixed with 10 wt.-% of kaolin, based on the initially obtained powder, as antiblocking agent.
- the latex content of the powder was about 82% by weight.
- the resulting powder was not re-dispersible and cannot be used for application within a waterproofing membrane.
- the polymer dispersion PD-3 was mixed with 10 wt.-% spray-drying aid SDA-3 (a polymeric phenol sulfonic acid-formaldehyde condensate), 2 wt.-% C-S-H 1 , and 0.714 wt.- % calcium amidosulfonate (all percentages relate on the latex content).
- SDA-3 a polymeric phenol sulfonic acid-formaldehyde condensate
- C-S-H 1 a polymeric phenol sulfonic acid-formaldehyde condensate
- calcium amidosulfonate all percentages relate on the latex content.
- the resulting suspension was diluted to 44 wt.-% relating to the solids content in the spray feed and then spray-dried.
- the resulting powder was mixed with 10 wt.-% of kaolin, based on the initially obtained powder, as anti-blocking agent.
- the latex content of the powder was
- C-S-H calcium-silicate-hydrate
- Table 2 Building material composition (dry compound).
- the addition of the hardening accelerator accelerates the hardening (defined in H. F. W. Taylor (1997): Cement Chemistry, 2nd edition, p. 212ft).
- the acceleration of the hydration is reflected by an increase of heat released by the hydration process compared to a normal sample without accelerator.
- Cumulated heat of hydration released by the hydration process compared to a normal sample without accelerator was determined. Cumulated heat is given in joules per gram of cement that is released in an interval of 30 minutes to 5 hours or in an interval of 30 minutes to 10 hours after start of hydration (addition of water). For this, the slurry was filled in a PP beaker and placed in a calorimeter under isothermic conditions at a temperature of 20°C.
- accelerator solids based on the polymer P solids content 2 were included in the spray-drying process (co-spray-drying)
- the acceleration of the cement hydration is stronger for polymer powders based on vinylacetate-ethylene copolymers as indicated by a higher cumulated heat of hydration (see examples 1-12) than for powders based on styreneacrylate copolymers (see comparative examples C1-C12).
- the cement hydration cannot be accelerated appreciably.
- the dispersion-modified mineral building material mixture was used to produce a wet thin film (height: 1 .25 mm, width 12.0 cm, and length 20 to 25 cm) on a Teflon foil. The appearance of the dried building material was examined. All films, with the exception of those which were not re-dispersible (comparative examples C13 and C14), were homogeneous (no separation), mostly smooth, and had no cracks.
- the water uptake of the dried film was evaluated by placing a part of the film (width: 8.5 cm x length: 18 cm) into a lockable plastic box with 100 g water. The water was changed every week. After three weeks, the film was dabbed with a paper towel and the weight was measured and divided by the initial weight. The percentage of weight gain due to water uptake was collected. The results are summarized in Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Sealing Material Composition (AREA)
Abstract
La présente invention concerne l'utilisation de combinaisons d'un polymère organique P et d'un silicate de calcium hydraté CSH pour produire des membranes d'étanchéité minérales comprenant au moins un liant minéral, en particulier un liant à base de ciment. La présente invention concerne également des compositions pour la production de membranes d'étanchéité minérales et des procédés de production de membranes d'étanchéité minérales. La combinaison comprend : a) un polymère organique P en tant que composant A sous la forme d'une dispersion aqueuse de polymère ou sous la forme d'une poudre de polymère, où le polymère organique P est un copolymère vinylacétate-éthylène, où le polymère organique P a une température de transition vitreuse Tg d'au plus +10°C, en particulier dans la plage de -30 à +5°C, en particulier dans la plage de -20 à +0°C, telle que déterminée par la méthode d'analyse calorimétrique différentielle (ACD) selon la norme ISO 11357-2:2013, et b) un composant B comprenant des particules d'un silicate de calcium hydraté contenant du calcium et du silicium dans un rapport molaire Ca/Si compris entre 0,1 à 2,2, en particulier dans la plage de 0,5 à 2,2 et surtout dans la plage de 1,5 à 2,2. Un deuxième aspect de l'invention concerne les compositions pour la fabrication de membranes d'étanchéité minérales qui comprennent une combinaison des composants A et B tels que définis ici et une composition pulvérulente C comprenant c.1 au moins un liant minéral, en particulier un liant minéral comprenant un ciment du groupe des ciments CEM I selon EN 197, plus particulièrement un ciment classé CEM I 42.5(R) ou CEM I 52.5(R) ou un mélange de ceux-ci ; et c.2 au moins une charge pulvérulente. Un troisième aspect de l'invention concerne un procédé de fabrication de membranes d'étanchéité minérales qui consiste à incorporer une combinaison des composants A et B tels que définis ici et de l'eau dans une composition pulvérulente C comprenant un liant minéral c.1 tel que défini ici et au moins une charge pulvérulente c.2 telle que décrite ici pour obtenir une boue et à appliquer la boue sur une surface où une membrane d'étanchéité minérale est requise.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22170887.8 | 2022-04-29 | ||
EP22170887 | 2022-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023209082A1 true WO2023209082A1 (fr) | 2023-11-02 |
Family
ID=81448697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/061098 WO2023209082A1 (fr) | 2022-04-29 | 2023-04-27 | Combinaisons d'un polymère organique et de silicate de calcium hydraté pour la production de membranes d'étanchéité minérales |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023209082A1 (fr) |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4003422A1 (de) | 1990-02-06 | 1991-08-08 | Basf Ag | Waessrige polyurethanzubereitungen |
DE19624299A1 (de) | 1995-06-30 | 1997-01-02 | Basf Ag | Verfahren zur Entfernung organischer Verbindungen aus Dispersionen und Vorrichtung zu dessen Durchführung |
EP0771328A1 (fr) | 1994-06-03 | 1997-05-07 | Basf Aktiengesellschaft | Procede de preparation d'une dispersion polymere aqueuse |
DE19621027A1 (de) | 1996-05-24 | 1997-11-27 | Basf Ag | Verfahren zur Abtrennung flüchtiger organischer Komponenten aus Suspensionen oder Dispersionen |
WO1998003576A1 (fr) | 1996-07-22 | 1998-01-29 | Basf Aktiengesellschaft | Utilisation de produits de condensation d'acide phenolsulfonique-formaldehyde comme adjuvants de sechage |
DE19741184A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung von Restmonomeren in Flüssigsystemen unter Zugabe eines Redoxinitiatorsystems |
DE19741187A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung des Restmonomerengehalts in wässrigen Polymerdispersionen |
DE19805122A1 (de) | 1998-02-09 | 1999-04-22 | Basf Ag | Verfahren zur Herstellung wässriger Polymerisatdispersionen mit geringem Restmonomerengehalt |
DE19828183A1 (de) | 1998-06-24 | 1999-12-30 | Basf Ag | Verfahren zur Entfernung von restflüchtigen Komponenten aus Polymerdispersionen |
DE19839199A1 (de) | 1998-08-28 | 2000-03-02 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19840586A1 (de) | 1998-09-05 | 2000-03-09 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19847115C1 (de) | 1998-10-13 | 2000-05-04 | Basf Ag | Gegenstrom-Stripprohr |
EP1138697B1 (fr) | 2000-03-29 | 2003-11-05 | Sika Schweiz AG | Polymères pour compositions dispersantes pour ciment |
WO2010026155A1 (fr) | 2008-09-02 | 2010-03-11 | Construction Research & Technology Gmbh | Composition d'un accélérateur de durcissement contenant un plastifiant |
WO2011026723A1 (fr) | 2009-09-02 | 2011-03-10 | Construction Research & Technology Gmbh | Compositions d'accélérateur de durcissement contenant des groupes acides sulfoniques et aromatiques |
WO2011026720A1 (fr) | 2009-09-02 | 2011-03-10 | Construction Research & Technology Gmbh | Composition d'accélérateur de durcissement contenant des produits de polycondensation phosphatés |
WO2012025567A1 (fr) | 2010-08-24 | 2012-03-01 | Sika Technology Ag | Accélérateur |
WO2012038099A1 (fr) * | 2010-09-23 | 2012-03-29 | Wacker Chemie Ag | Revêtements de toiture flexibles et imperméables |
WO2012143205A1 (fr) | 2011-04-21 | 2012-10-26 | Construction Research & Technology Gmbh | Composition d'accélérateur |
WO2013117465A1 (fr) | 2012-02-08 | 2013-08-15 | Basf Se | Dispersion aqueuse |
WO2014114784A1 (fr) | 2013-01-25 | 2014-07-31 | Basf Se | Additif pour des masses à prise hydraulique |
WO2014114782A1 (fr) | 2013-01-25 | 2014-07-31 | Basf Se | Composition d'accélérateur de durcissement |
US20170275204A1 (en) * | 2014-12-18 | 2017-09-28 | Basf Se | Construction chemical composition for tile mortar |
WO2018154012A1 (fr) | 2017-02-22 | 2018-08-30 | Basf Se | Composition contenant un silicate de calcium hydraté semi-ordonné |
US20200207671A1 (en) | 2017-06-09 | 2020-07-02 | Basf Se | Process for producing an aqueous dispersion and redispersible dispersion powder produced therefrom |
-
2023
- 2023-04-27 WO PCT/EP2023/061098 patent/WO2023209082A1/fr unknown
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4003422A1 (de) | 1990-02-06 | 1991-08-08 | Basf Ag | Waessrige polyurethanzubereitungen |
EP0771328A1 (fr) | 1994-06-03 | 1997-05-07 | Basf Aktiengesellschaft | Procede de preparation d'une dispersion polymere aqueuse |
DE19624299A1 (de) | 1995-06-30 | 1997-01-02 | Basf Ag | Verfahren zur Entfernung organischer Verbindungen aus Dispersionen und Vorrichtung zu dessen Durchführung |
DE19621027A1 (de) | 1996-05-24 | 1997-11-27 | Basf Ag | Verfahren zur Abtrennung flüchtiger organischer Komponenten aus Suspensionen oder Dispersionen |
WO1998003576A1 (fr) | 1996-07-22 | 1998-01-29 | Basf Aktiengesellschaft | Utilisation de produits de condensation d'acide phenolsulfonique-formaldehyde comme adjuvants de sechage |
DE19741187A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung des Restmonomerengehalts in wässrigen Polymerdispersionen |
DE19741184A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung von Restmonomeren in Flüssigsystemen unter Zugabe eines Redoxinitiatorsystems |
DE19805122A1 (de) | 1998-02-09 | 1999-04-22 | Basf Ag | Verfahren zur Herstellung wässriger Polymerisatdispersionen mit geringem Restmonomerengehalt |
DE19828183A1 (de) | 1998-06-24 | 1999-12-30 | Basf Ag | Verfahren zur Entfernung von restflüchtigen Komponenten aus Polymerdispersionen |
DE19839199A1 (de) | 1998-08-28 | 2000-03-02 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19840586A1 (de) | 1998-09-05 | 2000-03-09 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19847115C1 (de) | 1998-10-13 | 2000-05-04 | Basf Ag | Gegenstrom-Stripprohr |
EP1138697B1 (fr) | 2000-03-29 | 2003-11-05 | Sika Schweiz AG | Polymères pour compositions dispersantes pour ciment |
WO2010026155A1 (fr) | 2008-09-02 | 2010-03-11 | Construction Research & Technology Gmbh | Composition d'un accélérateur de durcissement contenant un plastifiant |
WO2011026723A1 (fr) | 2009-09-02 | 2011-03-10 | Construction Research & Technology Gmbh | Compositions d'accélérateur de durcissement contenant des groupes acides sulfoniques et aromatiques |
WO2011026720A1 (fr) | 2009-09-02 | 2011-03-10 | Construction Research & Technology Gmbh | Composition d'accélérateur de durcissement contenant des produits de polycondensation phosphatés |
WO2012025567A1 (fr) | 2010-08-24 | 2012-03-01 | Sika Technology Ag | Accélérateur |
WO2012038099A1 (fr) * | 2010-09-23 | 2012-03-29 | Wacker Chemie Ag | Revêtements de toiture flexibles et imperméables |
US20120077906A1 (en) | 2010-09-23 | 2012-03-29 | Wacker Chemie Ag | Flexible Watertight Roof Coatings |
WO2012143205A1 (fr) | 2011-04-21 | 2012-10-26 | Construction Research & Technology Gmbh | Composition d'accélérateur |
WO2013117465A1 (fr) | 2012-02-08 | 2013-08-15 | Basf Se | Dispersion aqueuse |
WO2014114784A1 (fr) | 2013-01-25 | 2014-07-31 | Basf Se | Additif pour des masses à prise hydraulique |
WO2014114782A1 (fr) | 2013-01-25 | 2014-07-31 | Basf Se | Composition d'accélérateur de durcissement |
US20150344368A1 (en) | 2013-01-25 | 2015-12-03 | Basf Se | Additive for masses that set hydraulically |
US20170275204A1 (en) * | 2014-12-18 | 2017-09-28 | Basf Se | Construction chemical composition for tile mortar |
WO2018154012A1 (fr) | 2017-02-22 | 2018-08-30 | Basf Se | Composition contenant un silicate de calcium hydraté semi-ordonné |
US20200231499A1 (en) | 2017-02-22 | 2020-07-23 | Basf Se | Composition containing a semi-ordered calcium silicate hydrate |
US20200207671A1 (en) | 2017-06-09 | 2020-07-02 | Basf Se | Process for producing an aqueous dispersion and redispersible dispersion powder produced therefrom |
Non-Patent Citations (8)
Title |
---|
"Encyclopedia of Polymer Science and Engineering", vol. 8, 1987, JOHN WILEY & SONS, INC., pages: 659 - 677 |
"Ullmann's Encyclopedia of Industrial Chemistry", vol. A21, 1992, VERLAG CHEMIE, pages: 169 |
D. C. BLACKLEY: "Emulsion Polymerisation", 1982, APPLIED SCIENCE PUBLISHERS, LTD., pages: 155 - 287 |
F. HOLSCHER: "Dispersionen synthetischer Hochpolymerer", 1969, SPRINGER-VERLAG, pages: 1 - 160 |
H. F. W. TAYLOR: "Cement Chemistry", vol. 1, 1997, CHAPMAN & HALL, pages: 212 - 415 |
H. WARSON: "The Applications of Synthetic Resin Emulsions", 1972, ERNEST BENN, LTD., pages: 49 - 244 |
J. BRANDRUPE. H. IMMERGUT: "Polymer Handbook", 1966, J. WILEY |
T. G. FOX, BULL. AM. PHYS. SOC., vol. 1, 1956, pages 123 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2287537C2 (ru) | Стабилизированные поливиниловым спиртом редиспергируемые порошки с разжижающими свойствами | |
US7956113B2 (en) | Hydrophobicizing additives | |
US7744694B2 (en) | Use of redispersion powder compositions with accelerated-setting action | |
US7388047B2 (en) | Redispersible powders comprising pozzolanic components | |
US9296653B2 (en) | Dry mix formulations containing carboxylated styrene-butadiene redispersible polymer powders and alumina rich containing cements | |
US6489381B1 (en) | Cement compositions comprising redispersible polymer powders | |
AU2007216574B2 (en) | Process for producing cationically stabilized and water-redispersible polymer powder compositions | |
US6300403B1 (en) | Method for producing polymers stabilized with protective colloids | |
KR20000015871A (ko) | 가요성있는 건재화합물 | |
AU2006308016A1 (en) | Dispersion powder containing fatty acid anhydrides | |
US9199881B2 (en) | Styrene-butadiene based redispersible polymer powders with improved stability in cement applications | |
US6133345A (en) | Process for preparing pulverulent polymers by drying aqueous polymer dispersions | |
US20010034391A1 (en) | Polymer composition for flexibilizing building materials | |
US7671115B2 (en) | Method for enhancing water-repellency treatment of mineral hydraulic binder compositions and compositions obtainable by said method and their uses | |
US7288580B2 (en) | Water-redispersible polymer powder compositions with accelerated-setting action | |
US11339228B2 (en) | Dispersion powder composition containing vinyl alcohol copolymerisate | |
WO2023209082A1 (fr) | Combinaisons d'un polymère organique et de silicate de calcium hydraté pour la production de membranes d'étanchéité minérales | |
CN115515912B (zh) | 制备用于建筑材料干式配制品的水可再分散聚合物粉末的方法 | |
JP6436968B2 (ja) | 素早く懸濁可能な粉末状組成物 | |
WO2023232832A1 (fr) | Composition pour membranes d'imperméabilisation | |
AU2005201589A1 (en) | Cement compositions comprising redispersible polymer powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23722872 Country of ref document: EP Kind code of ref document: A1 |