WO2023208163A1 - 充电装置及储能式充电装置 - Google Patents
充电装置及储能式充电装置 Download PDFInfo
- Publication number
- WO2023208163A1 WO2023208163A1 PCT/CN2023/091438 CN2023091438W WO2023208163A1 WO 2023208163 A1 WO2023208163 A1 WO 2023208163A1 CN 2023091438 W CN2023091438 W CN 2023091438W WO 2023208163 A1 WO2023208163 A1 WO 2023208163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- energy storage
- module
- storage module
- power
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 532
- 238000004891 communication Methods 0.000 claims description 157
- 230000003993 interaction Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 17
- 238000003780 insertion Methods 0.000 claims description 11
- 230000037431 insertion Effects 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims description 3
- 208000019901 Anxiety disease Diseases 0.000 abstract description 7
- 230000036506 anxiety Effects 0.000 abstract description 7
- 238000010413 gardening Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000005611 electricity Effects 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the present invention relates to the field of charging, and in particular, to a charging device and an energy storage charging device.
- Fuel tools have the advantages of high power, easy access to power source and long working time. For professional gardening teams, in order to improve work efficiency in outdoor working scenarios, the gardening team usually uses fuel-based gardening tools for work. However, the exhaust gas released when fuel tools are used can cause environmental pollution, and fuel-powered tools make a lot of noise when working, causing noise pollution to the surrounding environment.
- Electric tools are environmentally friendly, clean, and produce relatively little noise compared to fuel-powered tools. Therefore, power tools are becoming more and more popular among power tool users.
- Lithium batteries have been widely used in the tool industry.
- the gardening team will carry various gardening tools to work outside for a day. The working hours are long and the workload is heavy, and they need to work almost all day long.
- the way to recharge lithium batteries is usually to use a charger to convert the mains power into DC power for charging.
- the garden team goes out to work, it is difficult to obtain mains power, which makes charging difficult. If they want to use power tools for work, they have to carry a large amount of power.
- the battery pack causes the battery pack to be expensive to use and inconvenient for the gardening team to carry.
- the charging device includes a first charging module, a second charging module and a charging interface module.
- the charging interface module at least includes a first DC interface unit and a second DC interface unit. Interface unit, the first DC interface unit is used to connect to the first energy storage module, the second DC interface unit is used to connect to the second energy storage module; the first end of the first charging module is connected to the third A DC interface unit, the second end of the first charging module is connected to the second DC interface unit, the first charging module is used to convert and transmit the electric energy stored in the first energy storage module to The second energy storage module allows the first energy storage module to charge the second energy storage module; the charging interface module also includes an AC input interface, and the AC input interface is used to connect an AC power supply; The first end of the second charging module is connected to the AC input interface, the second end of the second charging module is connected to the first DC interface unit, and the second charging module is used to convert AC power into DC power. and output to the first DC interface unit to charge the first energy storage module; the
- the output end of the second charging module is connected to the first charging module, so that the DC power is transmitted to the second DC interface unit through the first charging module.
- the switch module also includes a control module and a switch module.
- the switch module is connected to the control module and is used to receive a control signal from the control module to turn on or off under the action of the control signal.
- the switch module includes a loop switch, the loop switch is disposed between the first charging module and the second DC interface unit, and is used to control the connection between the first charging module and the second DC interface unit.
- the circuit is on and off; the switch mode
- the block also includes a charging switch. One end of the charging switch is connected to the first DC interface unit, and the other end is connected to the first charging module and the second charging module respectively, for controlling the connection of the first energy storage module. into or out of the charging device.
- control module is used to determine the type of input power, and control the charging method of the second energy storage module by the charging device according to the type of input power, wherein the input power includes the AC power supply and the first energy storage module; when the control module determines that both the AC power supply and the first energy storage module are connected, the control module also obtains the charging request of the second energy storage module.
- the control module controls the charging switch and the loop switch to close at the same time, and controls the AC power supply to charge the second energy storage module and the first energy storage module at the same time;
- the control module controls the charging switch and the loop switch to close at the same time, and controls the AC power supply and the first energy storage module to close at the same time.
- the control module controls the charging switch and the loop switch to close in sequence , and controls the AC power supply to charge the second energy storage module and the first energy storage module in sequence.
- the rated power of the second energy storage module is less than the rated power of the first energy storage module; the control module controls the AC power supply to the second energy storage module and the When the first energy storage module is charging, the circuit switch is first controlled to close to charge the second energy storage module. When the control module determines that the second energy storage module is full, it then controls the charging switch to close, which is The first energy storage module is charged.
- control module when the control module determines that only the first energy storage module is connected, the control module controls the loop switch and the charging switch to close so that the first energy storage module Charge the second energy storage module; when the control module determines that only the AC power supply is connected, the control module controls the loop switch to close and the charging switch to open, so that the AC power supply is The second energy storage module is charged.
- the output end of the second charging module is connected to the second DC interface unit so as to directly transmit the DC power to the second DC interface unit.
- the first charging module is a bidirectional charging module
- the second energy storage module is also used to charge the first energy storage module through the first charging module.
- the second charging module includes a first capacity battery pack and a second capacity battery pack, and the rated capacity of the first capacity battery pack is greater than the rated capacity of the second capacity battery pack;
- the first charging module is also used to convert the electrical energy stored in the first capacity battery pack and charge the second capacity battery pack.
- the charging device when the charging device charges the second energy storage module, the charging device at least includes a first charging mode and a second charging mode. In the second charging mode, a single charging interface The output power is greater than the output power of a single charging interface in the first charging mode.
- the second DC interface unit includes at least one charging interface, each of the charging interfaces is used to detachably connect one of the second energy storage modules;
- the first charging module includes at least two There are two charging units, the input end of each charging unit is connected to the first DC interface unit and the second charging module, and the output end of each charging unit is connected to at least one charging interface.
- the switch module further includes a switch, and the switch is disposed adjacent to between the charging units, used to control the connection relationship between adjacent charging units; when the switch is turned off, the output terminals of at least two charging units are connected; when the switch is closed, at least two The output terminals of the charging units are disconnected.
- a single charging unit in the first charging mode, is used to provide electric energy to a single second energy storage module correspondingly connected thereto; in the second charging mode, the The control module obtains the requested charging power of the second energy storage module, compares the requested charging power with the maximum output power of a single charging unit, and determines whether to control the switching switch to close based on the comparison result.
- the control module when the requested charging power is less than or equal to the maximum output power of the single charging unit, the control module controls the switch to turn off so that the single charging unit can store energy for the second energy. Module charging; when the requested charging power is greater than the maximum output power of the single charging unit, the control module controls the switch to close so that at least two charging units connected in parallel form a single second energy storage module Charge.
- control module is configured to obtain information about the input power supply, and determine whether the charging device is allowed to enter the second charging mode based on the information about the input power supply.
- the input power source includes the AC power source and/or the first energy storage module; when the input power source is the AC power source, the control module prohibits the charging device from entering the Second charging mode; when the input power source includes the first energy storage module and the remaining power of the first energy storage module is less than the preset power, the control module prohibits the charging device from entering the second charging mode.
- Charging mode when the input power source is the first energy storage module and the remaining power of the first energy storage module is greater than or equal to the preset power, the charging device is allowed to enter the second charging mode.
- the control module obtains the second The temperatures of the energy storage module and the first energy storage module, when the temperatures of the second energy storage module and the first energy storage module meet the preset temperature conditions, allow the charging device to enter the second charging model.
- a human-computer interaction module is further included.
- the human-computer interaction module is connected to the control module.
- the human-computer interaction module is used to obtain fast charging instructions issued by the user.
- the fast charging instructions are used to Instruct the charging device to enter the second charging mode; when the human-computer interaction module does not receive the fast charging instruction, the control module controls the charging device to enter the first charging mode; when the human-computer interaction module
- the module receives the fast charging instruction, and the control module controls the charging device to switch from the first charging mode to the second charging mode.
- the control module in the first charging mode, when the control module determines that at least two charging units are connected to the second energy storage module, the control module is also used to obtain input power. information, and control at least two charging units to charge at least two second energy storage modules simultaneously or sequentially according to the information of the input power supply.
- the control module controls at least two charging units to charge the second energy storage module at the same time; when the input power source includes the first energy storage module energy module, and the remaining power of the first energy storage module is less than the preset value of power, the control module controls at least two charging units to charge the second energy storage module in sequence; when the input power supply is the An energy storage module, and the remaining power of the first energy storage module is greater than or equal to the preset power, and the control module controls at least two charging units to charge the second energy storage module at the same time.
- a single charging unit is connected to at least two charging interfaces; in the first charging mode, the control module determines that multiple charging interfaces connected to a single charging unit are connected to When the second energy storage module is used, the control module is also used to obtain information about a plurality of second energy storage modules and information about the input power supply, and based on the information about a plurality of second energy storage modules and the information about the input power supply, The information about the input power source controls a single charging unit to charge a plurality of second energy storage modules and the first energy storage modules in sequence according to a preset priority.
- the second energy storage module includes a battery pack and a self-propelled tool.
- the battery pack is used to be detachably installed on the electric tool and provide power to the electric tool.
- the self-propelled tool The tool has a built-in battery; the control module determines whether the second energy storage module connected to the charging interface module includes the battery pack and the self-propelled tool.
- the control module determines whether the input power source includes the AC power source, and when the input power source includes the AC power source, the charging priority of the battery pack is higher than that of the first energy storage module The charging priority of the first energy storage module is higher than the charging priority of the self-propelled tool; when the control module determines that the input power source does not include the AC power source, the battery pack The charging priority is higher than that of the self-propelled vehicle.
- the charging interface includes at least two types of digital communication terminals, and the charging device is configured to communicate with battery packs having different digital communication types through at least one of the digital communication terminals.
- control module determines whether each charging interface is connected to the battery pack. When each charging interface is connected to the battery pack, the control module also determines whether each charging interface is connected to the battery pack.
- the digital communication type of the connected battery pack controls the charging priority of the charging device for multiple battery packs according to the digital communication type.
- the digital communication terminals of the charging device include serial communication terminals and differential communication terminals, and the charging device is used to communicate with the battery pack having the serial communication type through the serial communication terminals, and the The charging device is used to communicate with the battery pack having the differential communication type through the differential communication terminal; the control module determines the digital communication type of the battery pack and controls the charging priority of the battery pack having the differential communication type. higher than battery packs with the serial communication type.
- control module when the control module determines that the digital communication types of multiple battery packs are the same, it also obtains the insertion sequence of multiple battery packs, and controls the charging device to charge the battery packs according to the insertion sequence. order.
- control module also controls the output power of the charging unit according to the communication type of the battery pack connected to each charging interface; the control module determines that the charging device adopts the serial communication type to communicate with the battery.
- the charging power output by the charging interface is smaller than the charging power output by the charging interface when the charging device uses differential communication type to communicate with the battery pack.
- the energy storage charging device further includes a first energy storage module.
- the first energy storage module is connected to the charging device for charging through the charging device.
- the device charges the second energy storage module or obtains electric energy through the charging device.
- the energy storage charging device includes a first energy storage module, a first charging module and a charging interface module; the first energy storage module is used to store DC power.
- the input end of the first charging module is connected to the output end of the first energy storage module, the output end of the first charging module is connected to the charging interface module, and the charging interface module is used to connect the battery pack;
- the first charging module is used to transfer the electric energy of the first energy storage module to the charging interface module and charge the battery pack connected to the charging interface module, wherein the battery pack is used to be detachably installed.
- the first charging rate when the first energy storage module charges the battery pack is greater than the second charging rate when the mains charges the battery pack;
- the ratio of the first charging rate to the second charging rate is greater than 1 and less than or equal to 10.
- the first charging time required by the first energy storage module to charge the battery pack from an empty state to a fully charged state is less than the AC power supply charging the battery pack.
- the second charging time required for the battery pack to be charged from an empty state to a fully charged state is less than the AC power supply charging the battery pack.
- the maximum output power of the first energy storage module is greater than the maximum output power of the AC power supply.
- the maximum output power of the first energy storage module is greater than or equal to 1.8KW; preferably, the maximum output power of the first energy storage module is greater than or equal to 3KW.
- the rated power of the first energy storage module is not less than 2KWh, and the maximum sustained discharge rate of the first energy storage module is greater than or equal to 1C, wherein the maximum sustained discharge rate is the third The maximum discharge rate maintained by an energy storage module when the remaining power is greater than or equal to 80% and is continuously discharged to the remaining power is less than or equal to 10%.
- a second charging module is further included, the input end of the second charging module is used to connect to an external AC power supply, and the second charging module is used to convert the electrical energy of the AC power supply into DC electrical energy. , and charges the battery pack connected to the charging interface module; the maximum output power of the second charging module is less than 1.6KW.
- the first charging module includes at least a first charging unit and a second charging unit
- the charging interface module at least includes a first charging interface and a second charging interface
- the first charging unit and the The input terminals of the second input unit are connected to the output terminal of the first energy storage module and the output terminal of the second charging module, and the output terminal of the first charging unit is connected to the first charging interface.
- the output end of the second charging unit is connected to the second charging interface.
- the switch module at least includes a first switch.
- One end of the first switch is connected to the output end of the first charging unit, and the other end is connected to the output end of the second charging unit.
- the connection relationship of the charging unit when the first switch is closed, the output end of the first charging unit and the output end of the second charging unit are connected to each other, so that the first charging unit
- the electric energy of the second charging unit and the second charging unit are both output to the same charging interface; when the first switch is turned on, the output end of the first charging unit and the output end of the second charging unit are disconnected.
- the energy storage charging device Connected so that the electric energy of the first charging unit is output to the first charging interface, and the electric energy output of the second charging unit is equal to the second charging interface; the energy storage charging device also includes a control module, The control module is connected to the control end of the first switch and is used to control the first switch to switch between an on state and an off state.
- the energy storage charging device includes at least a first charging mode and a second charging mode; when the control module controls the first switch to turn off, the energy storage charging device is in the desired state.
- each charging unit provides electric energy to a single charging interface connected to it; when the control module controls the first switch to be turned on, the energy storage charging device is in the state of the first charging mode.
- the second charging mode at least two of the charging units are connected in parallel to provide electric energy for one charging interface; the maximum output power of the charging interface in the first charging mode to the battery pack is less than that of the second charging mode.
- the charging interface outputs the maximum output power to the battery pack in mode.
- the maximum output power output by the charging interface to the battery pack is not less than 3.6KW.
- it also includes a human-computer interaction module connected to the control module; the control module is configured to receive a fast charging instruction through the human-computer interaction module, and charge according to the fast charging instruction.
- the instruction controls the first switch to be turned on so that the energy storage charging device enters the second charging mode.
- Figure 1 is an overall structural diagram of an energy storage charging device provided by an embodiment of the present application.
- FIG. 2 is a circuit module diagram of an energy storage charging device provided by an embodiment of the present application.
- FIG. 3 is a circuit module diagram of an energy storage charging device provided by another embodiment of the present application.
- FIG. 4 is a circuit module diagram of an energy storage charging device provided by yet another embodiment of the present application.
- FIG. 5 is a circuit module diagram of an energy storage charging device provided by another embodiment of the present application.
- Figure 6 is a schematic diagram of a first-capacity battery pack plugged into a charging device to charge a second-capacity battery pack according to an embodiment of the present application;
- Figure 7 is a schematic diagram of a scene in which an energy storage charging device charges a battery pack and a self-propelled tool is charged through an adapter according to an embodiment of the present application;
- Figure 8 is a schematic diagram of a scene in which an energy storage charging device charges a battery pack through a backpack device according to an embodiment of the present application;
- Figure 9 is a terminal arrangement diagram of the charging interface of the energy storage charging device and charger provided by one embodiment of the present application.
- Figure 10 is a terminal arrangement diagram of the charging interface of the battery pack provided by one embodiment of the present application.
- Figure 11 is a terminal arrangement diagram of the battery pack interface on the back frame body and the battery pack interface on the electric tool provided by one embodiment of the present application;
- Figure 12 is a terminal arrangement diagram of a backframe cable interface provided by an embodiment of the present application.
- Figure 13 is a terminal arrangement diagram of the charge and discharge interface on the main body of the energy storage self-propelled tool provided by one embodiment of the present application;
- Figure 14 is a flow chart of a charging control method of a charging device provided by an embodiment of the present application.
- Figure 15 is a flow chart of a charging control method of a charging device provided by yet another embodiment of the present application.
- Figure 16 is a flow chart of a charging control method of a charging device provided by yet another embodiment of the present application.
- this application provides a charging device that can transfer electric energy from a DC energy storage module to one or more power tool battery packs, and can also use The AC power supply recharges the DC energy storage module and multiple power tool battery packs.
- the charging device can be placed on the vehicle to move with the gardening team, while carrying a large-capacity DC energy storage module to charge the battery pack carried by the gardening team from one garden to another. Carrying this mobile energy replenishing device can relieve the gardening team's anxiety about using power tools when they go out to work.
- the charging device 110 can be connected to the first energy storage module 120, and is used to convert DC power stored in the first energy storage module 120 to charge external devices.
- the charging device 110 can also be connected to an AC power supply, and convert the electrical energy of the AC power supply into DC electrical energy to charge external devices.
- the charging device 110 and the first energy storage module 120 are detachably connected.
- the charging device 110 is provided with a first DC interface unit (not shown in Figure 1 ).
- the first energy storage module 120 can be connected through a cable.
- the first DC interface unit is connected to the charging device 110 .
- the charging device includes a first charging module 130 , a second charging module 150 and a charging interface module 140 .
- the charging interface module 140 at least includes a first DC interface unit 141 and a second DC interface unit 142.
- the DC interface unit 141 is used to connect the first energy storage module 120
- the second DC interface unit 142 is used to connect the second energy storage module.
- the second DC interface unit 142 is provided on the casing of the charging device 110 .
- the second energy storage module may include a battery pack of an electric tool. The battery pack of the electric tool may be directly plugged into the casing of the charging device 110 . on the second DC interface unit 142 .
- the first end of the first charging module 130 is connected to the first DC interface unit 141, and the second end of the first charging module 130 is connected to the second DC interface unit 142.
- the first charging module 130 is used to store the first energy storage module 120.
- the DC power is converted to charge the second energy storage module.
- the first charging module 130 is a DCDC (Direct Current-Direct Current, DC to DC) module, and the first charging module 130 is used to convert the DC power stored in the first energy storage module 120 into a power supply suitable for transferring to the second energy storage module. DC power for charging.
- the first charging module 130 is used to perform voltage conversion to convert the voltage received at the input end into an output voltage adapted to the second energy storage module.
- the charging interface module 140 also includes an AC input interface 143, which is used to connect to an AC power source.
- the first end of the second charging module 150 is connected to the AC input interface 143, and the second end of the second charging module 150 is connected to the first DC interface unit 141.
- the second charging module 150 is used to convert the electric energy of the AC power supply into DC electric energy. And output to the first DC interface unit 141 to charge the first energy storage module 120 . That is, the second charging module 150 is an ACDC (Alternating Current-Direct Current) module.
- the second charging module 150 is also used to convert the electric energy of the AC power supply into DC electric energy, transmit it to the second DC interface unit 142 without passing through the first energy storage module, and charge the second energy storage module through the DC electric energy.
- the first charging module 110 includes both a DCDC charging module and an ACDC charging module, and can be connected to either a DC power supply or an AC power supply.
- a DC power supply or an AC power supply.
- the gardening team goes out to work during the day and AC power is not available, they can directly carry a large-capacity first energy storage module 120 and use DC power to charge the second energy storage module (such as a power tool battery pack), which solves the problem for the gardening team. Electricity anxiety when working outside the home.
- the AC power can be used to charge the second energy storage module and the first energy storage module that needs to be carried out as a charging power source, so that the gardening team can carry multiple fully charged battery packs and fully charged battery packs when going out to work.
- DC power supply is not working at night.
- the electric energy of the AC power supply does not need to be stored in the first energy storage module and then released to the second energy storage module, so that the life of the first energy storage module is not lost and the second energy storage module is extended.
- the usage time of an energy storage module is not limited.
- the first DC interface unit 141 may include a plurality of first DC interfaces, and the plurality of first DC interfaces are connected to the first charging module 130 and the second charging module 150 in parallel, so that the plurality of first DC interfaces A plurality of first energy storage modules 120 connected to a DC interface are connected in parallel to achieve capacity expansion.
- the second charging module 150 charges the first energy storage module 120 and the second energy storage module in various ways:
- the second charging module 150 can be directly connected to the first energy storage module 120 through the first DC interface unit 141, so that the external AC power supply supplies the first energy storage module through the second charging module 150. 120 recharge.
- the second charging module 150 is also connected to the first charging module 130, so that the alternating current generated by the external AC power supply is converted into direct current by the second charging module 150, and then converted into direct current by the first charging module 130 suitable for the external second energy storage module. DC power for charging. Therefore, the external AC power supply can charge the first energy storage module 120 and the second energy storage module with different rated voltages.
- the second charging module 150 may also include two ACDC modules. As shown in FIG. 3 , the second charging module 150 includes ACDC1 module and ACDC2 module, ACDC1 module is connected to the first DC interface unit 141, and ACDC2 module is connected to the second DC interface unit 141. Yuan 142, so that the external power source charges the first energy storage module 120 through the ACDC1 module, and charges the second energy storage module through the ACDC2 module. The first energy storage module 120 charges the second energy storage module through the DCDC module.
- the second charging module 150 may also include only one ACDC module, and one ACDC module is connected to the first DC interface unit 141 and The second DC interface unit 142 and ACDC module charge the first energy storage module 120 and the second energy storage module in a time-sharing or simultaneous manner.
- the second charging module The output end of 150 is directly connected to the first DC interface unit 141 to charge the first energy storage module 120; the second charging module 150 is connected to the second energy storage module through the first charging module 130; the first energy storage module 120 is also connected through the first charging module 130.
- a charging module 130 is connected to the second energy storage module.
- the electric energy does not need to pass through the first energy storage module 120, thereby reducing the number of charging and discharging times of the first energy storage module 120 and improving the efficiency of the first energy storage module 120. service life.
- the charging device also includes a control module (not shown in Figure 4) and a switch module 160.
- the switch module 160 is connected to the control module and is used to receive a control signal from the control module to respond to the control signal. is turned on or off under the action of
- the switch module 160 includes a loop switch 161.
- the loop switch 161 is disposed between the first charging module 130 and the second DC interface unit 142, and is used to control the loop opening and closing of the first charging module 130 to the second DC interface unit 142.
- the switch module 160 also includes a charging switch 162.
- the charging switch 162 is connected to the first DC interface unit 141, and the other end is connected to the first charging module 130 and the second charging module 150 respectively, for controlling the access of the first energy storage module 120 for charging.
- the device 110 may be disconnected from the charging device 110 .
- the control module is used to detect the type of input power of the charging device, and control the on/off of the control loop switch 161 and the switching switch 162 according to the type of the input power, so as to switch the input power for charging the second energy storage module.
- the input power source includes an external AC power source and/or the first energy storage module 120 .
- the first energy storage module 120 can be used as an input power source of the charging device 110 and as a power consumption device that receives electric energy through the charging device 110 .
- the control module When the control module determines that both the AC power supply and the first energy storage module 120 are connected, the control module mainly controls the AC power supply to charge the second energy storage module. When the AC power supply has excess power, the first energy storage module 120 can also be charged. Specifically, in this embodiment, since the second energy storage module is a battery pack for users, in order to prevent the user from waiting for energy for a long time and affecting work efficiency, the control module responds to the request for charging power of the second energy storage module first and controls the AC power supply. Priority is given to charging the second energy storage module.
- the control unit obtains the requested charging power of the second energy storage module and determines whether the requested charging power of the second energy storage module is greater than the maximum output power of the second charging module 150 .
- the control module controls the charging switch 162 and the loop switch 161 to close at the same time, and controls the AC power supply to simultaneously power the second energy storage module and the first storage module.
- the module 120 can be charged. Therefore, when the AC power supply has enough capacity to charge the second energy storage module, it can also charge the first energy storage module at the same time, maximizing the use of the output power of the AC power supply and improving the charging efficiency.
- the control module controls the charging switch 162 and the loop switch 161 to close at the same time, and controls the AC power supply and the first energy storage module 120 to be the second energy storage module at the same time. Charging the energy storage module. That is, when the requested charging power of the second energy storage module is greater than the maximum output power of the second charging module 150, because the AC power supply cannot meet the charging demand of the second energy storage module, at this time, the control module AC power supply and the first storage module The energy module 120 charges the second energy storage module at the same time. When the second energy storage module is full, the control module controls the circuit switch 161 to open and controls the charging switch 162 to close, so that the AC power source charges the first energy storage module 120 .
- the control module controls the loop switch 161 and the charging switch 162 to close in sequence, and controls the AC power supply to the second energy storage module and the first energy storage module in sequence. Module 120 is charged.
- the rated power of the second energy storage module is smaller than the rated power of the first energy storage module. Since the second energy storage module is a battery pack for users, and the rated power of the second energy storage module is small and the charging speed is slow, The control module first controls the circuit switch to close 161 and the charging switch 162 to open, so that the AC power supply charges the second energy storage module first. When the second energy storage module is full, the control module controls the charging switch 162 to close and the loop switch 161 to open, so that the AC power source charges the first energy storage module 120 .
- control module determines that the input power source only includes the first energy storage module 120
- the control module controls the loop switch 161 and the charging switch 162 to close, so that the first energy storage module 120 charges the second energy storage module.
- control module determines that the input power source only includes AC power
- the control module controls the loop switch 161 to close and the charging switch 162 to open, allowing the AC power to charge the second energy storage module.
- the input power source includes an external AC power source
- the external AC power source is used to charge the second energy storage module to save the first energy storage module 120 of power.
- the second energy storage module can also charge the first energy storage module 120 through the first charging module 130 .
- the first charging module 130 is a bidirectional DCDC charging module
- the first energy storage module 120 can charge the second energy storage module through the DCDC charging module
- the second energy storage module can also store the first energy through the DCDC module.
- Module 120 is charged.
- the second energy storage module may be a battery pack or a self-propelled tool.
- the self-propelled tool stores a large amount of electricity, when the self-propelled tool completes its work in the garden, the self-propelled tool can be used to charge the first energy storage module 120 .
- the battery pack when the second energy storage module is a battery pack, the battery pack includes a first capacity battery pack 211 and a second capacity battery pack 212.
- the rated power of the first capacity battery pack 211 is greater than The rated power of the second capacity battery pack 212.
- Both the first-capacity battery pack 211 and the second-capacity battery pack 212 can be directly plugged into the second DC interface unit 142, so that the charging device 110 can connect the first-capacity battery pack 211 and the second-capacity battery pack 211 when connected to a DC power source or an AC power source.
- the battery pack 212 is charged.
- the first charging module 130 is also used to convert the stored electrical energy of the first capacity battery pack 211 and charge the second capacity battery pack 212 .
- the gardening team when the gardening team goes out to work, they usually bring several large-capacity first-capacity battery packs 211 and several small-capacity second-capacity battery packs 212 .
- the rated power of the first capacity battery pack 211 is not less than twice the rated power of the second capacity battery pack 212 .
- the rated power of the first-capacity battery pack 211 is 2 to 3 times the rated power of the second-capacity battery pack 212 . Since the rated power of the second-capacity battery pack 212 is smaller than that of the first-capacity battery pack 211 , correspondingly, the weight of the second-capacity battery pack 212 is also smaller than that of the first-capacity battery pack 211 .
- the first-capacity battery pack 211 is used to be installed on the lawn mower to power the lawn mower, and the user does not need to bear the weight of the first-capacity battery pack 211 directly.
- the second capacity battery pack 212 is used to be installed on handheld power tools, such as lawn trimmers, pruners, and hair dryers. After the user completes the lawn mowing work with the lawn mower, the lawn mower, pruner and hair dryer are used to complete other tasks.
- the control module controls the charging switch 162 to open and controls the circuit switch 161 to close, so that the first capacity battery pack 211 can charge the second capacity battery pack 212 .
- the charging interface module also includes a third DC interface unit.
- the third DC interface unit is mainly used as a DC input interface for connecting an external DC power supply.
- the external DC power supply supplies the first energy storage module 120 with and charging the second energy storage module.
- the external DC power supply can be a solar power supply.
- the solar power can be used to charge the first energy storage module 120 and the battery pack, so that the gardening team can replenish energy while working during the day.
- the external DC power supply can first charge the second energy storage module connected to the energy storage charging device, and then charge the first energy storage module 120 after the second energy storage module is fully charged. .
- the second charging module 150 can also be directly connected to the charging interface module 140, so that the DC power converted by the second charging module 150 is directly output to the charging interface.
- the charging interface can be connected to an inverter, and the DC power can be transferred to the charging interface through the inverter. It can be inverted into AC power for use by AC tools.
- the second charging module 150 may not be connected to the charging interface module 140, and the external inverter may receive the DC power output by the first charging module 130 (DCDC) for inversion.
- DCDC first charging module 130
- the charging device 110 provided by the present application has a variety of energy replenishment methods. It can provide the first energy storage module 120 and the power tool battery pack ( That is, the second energy storage module), you can also use the first energy storage module 120 to recharge the power tool battery pack, you can also use a large-capacity battery pack to replenish the small-capacity battery pack, or you can also use an external DC power supply.
- solar energy can replenish energy for the first energy storage module 120 and the power tool battery pack, and can also provide AC power to connect to an external socket to power the user's AC equipment, thereby meeting user needs in different scenarios and solving the problem of users using electric power outdoors. Electricity anxiety when using tools.
- the charging device 110 can charge multiple battery packs.
- the first charging module 130 includes at least two charging units
- the second DC interface unit 142 includes at least Two charging interfaces
- the input end of each charging unit is connected to the first energy storage module 120 through the first DC interface unit 141
- the input end of each charging unit is also connected to the second charging module 150
- the output of each charging unit The terminal is connected to at least one charging interface so that the two charging units can charge the battery pack simultaneously or sequentially.
- the first charging module 130 may include two charging units, each charging unit is connected to one charging interface, or each charging unit is connected to two charging interfaces, or one charging unit is connected to one charging interface and the other is connected to one charging interface.
- the charging unit is connected to two charging interfaces.
- the first charging module 130 may include three charging units, each of which is connected to one or more charging interfaces. The number of charging units and charging interfaces can be set according to the charging requirements and the size of the energy storage charging device 100, and is not limited in this application.
- the multiple charging interfaces are connected in parallel. At the same time, the charging unit charges the second energy storage module connected to one of the charging interfaces. That is, the charging unit charges the connected second energy storage module in a time-sharing manner.
- the charging unit can also charge the multiple second energy storage modules at the same time.
- the charging unit can first charge the multiple second energy storage modules in turn, so that the voltages of the multiple second energy storage modules are all charged to the predetermined level.
- the charging unit takes turns to store energy for the multiple second energy storage modules.
- the module is charged, so that one of the second energy storage modules can be filled as quickly as possible, which is convenient for users to use.
- each charging unit is a DCDC conversion unit, used to convert the DC power stored in the first energy storage module 120 into the DC power required by the second energy storage module.
- the charging unit is not limited to a DCDC conversion unit, and may also be a DC-AC conversion unit (that is, a DCAC conversion unit), or the charging unit may be the same as the DCDC conversion unit. It includes DCDC conversion unit and DCAC conversion unit.
- the first charging module 130 includes two charging units, namely the first charging unit 131 and the second charging unit 132, and the second DC interface unit 142 includes three charging interfaces, respectively.
- the number of loop switches 161 is the same as the number of charging interfaces.
- the loop switches 161 correspondingly include a first switch K1, a second switch K2 and a third switch K3. .
- the output end of the first charging unit 131 is connected to the first charging interface 142ba through the loop switch K1, and the output end of the second charging unit 132 is connected to the second charging interface 142b and the third charging interface 142c through the loop switches K2 and K3 respectively.
- the charging switch 162 includes a switch K5, and the input terminals of the first charging unit 131 and the second charging unit 132 are connected to the first energy storage module 120 through the switch K5.
- the first switch K1, the second switch K2, the third switch K3 and the charging switch K5 may be composed of two switch modules connected in parallel. Even if one of the switch terminals is short-circuited, the other switch module can still be disconnected normally. Open to achieve double insurance.
- the first charging unit 131 and the second charging unit 132 are two independent charging units that can work in a time-sharing manner or at the same time.
- the first charging unit 131 and the second charging unit 132 work in a time-sharing manner, after one of the charging units has completed charging the second energy storage module connected to it, the other charging unit starts to charge the second energy storage module connected to it. .
- the two charging units can charge a second energy storage module connected to each other at the same time. That is, the energy storage charging device 100 can simultaneously charge two second energy storage modules. module charging.
- the energy storage charging device can charge multiple second energy storage modules at the same time.
- the maximum output power of a single charging unit is not less than 1.8KW.
- the maximum output power of a single charging unit is 1.8KW, 2KW, and 2.4KW.
- the maximum output power of a single charging unit is 3.6KW. Due to the large output power of a single charging unit, it can support fast charging of the battery pack. And when multiple charging units work at the same time, multiple battery packs can be quickly charged at the same time, preventing the gardening team from affecting work efficiency due to waiting for energy when they go out to work.
- the charging device 110 when charging the second energy storage module, has at least two charging modes, which are a first charging mode (also a normal charging mode) and a second charging mode (also a fast charging mode). model).
- a first charging mode also a normal charging mode
- a second charging mode also a fast charging mode
- model For the same second energy storage module, in the first charging mode, the maximum output power of the output terminal of the first charging module 130 is less than the maximum output power of the output terminal of the first charging module 130 in the second charging mode. That is to say, for the same second energy storage module, the charging time required in the second charging mode is less than The required charging time in the first charging mode.
- the energy storage charging device 100 further includes a human-computer interaction module.
- the human-computer interaction module is connected to the control module.
- the human-computer interaction module is used to receive fast charging instructions issued by the user, where the fast charging instructions are used to indicate The energy storage charging device enters the second charging mode.
- the control module can switch between the first charging mode and the second charging mode according to the user's instructions.
- the charging priority of the second charging mode is higher than the charging priority of the first charging mode. That is, when the human-computer interaction module does not receive the fast charging instruction, the control module controls the energy storage charging device to enter the first charging mode; when the human-computer interaction module receives the fast charging instruction, the control module controls the energy storage charging device. Enter the second charging mode.
- the output power of a single charging unit can meet the charging needs of the battery pack, so the control module controls the single charging unit to charge the single battery pack connected to it.
- the energy storage charging device charges the battery pack 200 connected to the first charging interface 142ba through the first charging unit 131, and/or alternately charges the second charging interface 142b and the third charging interface 142c through the second charging unit 132. Connected battery pack 200 for charging.
- the maximum output power of the charging unit output to a single charging interface is not less than 1.8KW, for example Ground
- the maximum output power of a single second DC interface unit 142 is between 1.8KW and 3.6KW.
- the maximum output power can be 1.8KW, 2KW, 2.4KW, 3KW, and 3.6KW.
- the control module obtains the requested charging power of the second energy storage module and compares the requested charging power of the second energy storage module with the maximum output power of the single charging unit.
- the requested charging power is less than or equal to the maximum output power of a single charging unit
- the output power of a single charging unit can meet the fast charging requirements of the battery pack
- the control module controls the single charging unit to charge the second energy storage module.
- the requested charging power is greater than the maximum output power of a single charging unit, the sum of the output powers of multiple charging units is required to meet the fast charging demand.
- the control module controls at least two charging units to be connected in parallel to charge a single second energy storage module. .
- the switch module 160 further includes a switch 163, which is disposed between two adjacent charging units.
- the other end of the switch 163 is connected to the connection point of another charging unit and the charging interface corresponding to it. That is, as shown in Figure 5, one end of the switch K4 is connected to the output end of the first charging unit 131, and the other end of the switch K4 is connected to the output end of the second charging unit 132 for controlling the first charging unit 131 and The connection relationship of the second charging unit 132.
- the switch K4 When the switch K4 is closed, the output terminals of the first charging unit 131 and the second charging unit 132 are interconnected, so that the two adjacent charging units are connected in parallel.
- the switch K4 is turned off, the output terminals of two adjacent charging units are disconnected.
- the control module can determine whether to control the switching switch 163 to close based on the requested charging power of the battery pack in the second charging mode.
- the control module controls the switching switch 163. closed, so that at least two charging units are closed; when the requested charging power of the battery pack is greater than the maximum output power output by a single charging unit, the control module controls the switch 163 to open, so that the output terminals of at least two charging units are disconnected connection, each charging unit charges the corresponding connected battery pack.
- this embodiment provides two battery packs, namely a first capacity battery pack 211 and a second capacity battery pack 212.
- the rated capacity of the first capacity battery pack 211 is smaller than the rated capacity of the second capacity battery pack 212. Since the rated capacities of battery packs are different, the charging power required by the battery packs is also different at the same charging rate.
- the requested charging power of the small-capacity battery pack in the second charging mode is smaller than the requested charging power of the large-capacity battery pack in the second charging mode.
- the requested charging power of the first capacity battery pack 211 is 6KW
- the requested charging power of the second capacity battery pack 212 is 2.4KW.
- the output power of a single charging unit is 3.6KW.
- the control module when the control module receives the requested charging power of 6KW, it controls the switching switch 163 to close, so that the first charging unit 131 and the second charging unit 132 are connected in parallel to the first charging interface 142ba.
- the first capacity battery pack 211 is charged. Therefore, the output power of the first charging interface 142ba is the sum of the output powers of the first charging unit 131 and the second charging unit 132. Since the output power of the charging interface is large, correspondingly, the charging speed of the battery pack 200 is fast and the charging time is shortened. This enables fast charging.
- the control module When the control module receives the requested charging power of 2.4KW, it controls a single charging unit to charge the battery pack.
- the switch includes only one switch as an example. In an actual solution, when there are multiple charging units, there may be more than one switch. For example, when there are n charging units (n is an integer greater than 2), there can be at most n-1 switches.
- the number of parallel charging units can be selected according to the requested charging power of the battery pack and is not limited to two.
- the maximum power output by the first charging module 130 is not less than 3.6KW.
- the maximum output power output by the first charging module 130 may be 3.6KW, 4KW, or 4.8KW. , 6KW or 7.2KW, etc.
- the output power of the first charging module 130 is the sum of the output powers of multiple charging units in the first charging module that participate in charging the battery pack.
- the output power output by the first charging module 130 to the single second DC interface unit 142 is 3.6KW.
- the output power output by the first charging module 130 to the single second DC interface unit 142 is 7.2KW.
- the energy storage charging device In the first charging mode, for a 0.2KWH battery pack, the energy storage charging device can be fully charged in 8-15 minutes, and the empty battery pack can be charged to 80% of the rated capacity in 5-12 minutes. For a 0.6KWH battery pack, the energy storage charging device can be fully charged in 13-25 minutes, and the empty battery pack can be charged to 80% of the rated capacity in 9-22 minutes.
- the charging device In fast charging mode, for a 0.2KWH battery pack, the charging device can fully charge it in 4-7 minutes, and for a 0.6KWH battery pack, the charging device can fully charge it in 8-15 minutes. Therefore, when the garden team urgently needs the battery pack, they can turn on the fast charging mode to reduce the waiting time for power consumption.
- the above embodiment provides two charging modes, so that when the user urgently needs to use the battery pack, the fast charging mode can be turned on, and when the user does not need electricity urgently, the normal charging mode can be turned on to meet the user's usage needs in different scenarios.
- a certain charging interface on the energy storage charging device can be preset as the charging interface in the second charging mode.
- a certain charging interface is designated as a fast charging interface
- the control module detects that the battery pack 210 is not installed in the designated charging interface and the battery pack 210 is installed in other charging interfaces, even if the control module receives a fast charging instruction, the fast charging mode will still not be started.
- the charging device 110 when the user issues a fast charging instruction and simultaneously specifies one of the charging interfaces as a fast charging interface through the human-computer interaction module, then the charging device 110, after receiving the fast charging instruction and the corresponding charging interface, will charge the battery pack connected to the charging interface. 210 for fast charging. Or when there are three charging interfaces on the charging device 110 and only one of the charging interfaces has the battery pack 210 installed, after the user issues a quick charging command, the charging device 110 identifies the charging interface connected to the battery pack 210 and uses this interface as A fast charging interface is used to quickly charge the battery pack 210 connected to the charging interface.
- the charging device 100 in this embodiment has three charging interfaces.
- the first charging interface 142ba is set to be used as the charging interface in the second charging mode, which can be marked on the corresponding interface on the object. for user identification.
- the first charging interface 142ba can also be used as an interface in the first charging mode, that is, the charging interface in the second charging mode is the first charging interface 142ba, and the charging interface in the first charging mode is the first charging interface 142ba.
- the second charging interface 142b and the third charging interface 142c When the user issues a quick charging instruction and does not specify a quick charging interface, the charging device 110 quickly charges the battery pack connected to the first charging interface 142ba.
- the charging device 110 includes a human-computer interaction module for receiving a fast charging instruction, so that the control module enters the second charging mode according to the fast charging instruction. Furthermore, when receiving the fast charging instruction, the control module does not immediately control the charging device to enter the second charging mode. The control module also obtains the information of the input power supply and determines whether the charging device is allowed to enter the second charging mode based on the information of the input power supply.
- the control module prohibits the energy storage charging mode from entering the second charging mode.
- the input power source includes the first energy storage module 120, for example, the input power source is the first energy storage module 120, or the input power source is the first energy storage module 120 and the AC power supply
- the control module obtains the status information of the first energy storage module 120, And determine whether the energy storage charging device is allowed to enter the second charging mode according to the status information of the first energy storage module 120 .
- the status information of the first energy storage module 120 includes the remaining power and temperature of the first energy storage module 120 .
- the control module prohibits the energy storage charging mode from entering the second charging mode.
- the control module further determines whether the temperature of the first energy storage module 120 meets the preset temperature condition.
- the temperature of the first energy storage module meets the preset temperature condition
- the preset electric power may be 10%, or 15%, or 20% of the rated electric power of the first energy storage module 120, which may be specifically selected according to the rated electric power of the first energy storage module.
- the control module when the input power source includes the first energy storage module 120, the control module not only obtains the status information of the first energy storage module 120, but also obtains the status information of the battery pack.
- the status of the first energy storage module 120 The energy storage charging device is allowed to enter the second charging mode only when both the information and the status information of the battery pack meet the preset conditions.
- the status information of the first energy storage module 120 includes the remaining power of the first energy storage module 120 and the battery temperature of the first energy storage module 120
- the status information of the battery pack includes the temperature of the battery pack.
- the battery temperature of the first energy storage module 120 meets the first preset temperature condition, and the temperature of the battery pack meets the second preset temperature condition, entering the second charging mode is allowed, otherwise it is prohibited. Enter the second charging mode.
- multiple charging units of the first charging module 130 can work at the same time or in time-sharing. Further, when the control module determines that the charging interfaces corresponding to at least two charging units are connected to the second energy storage module, the control module is also used to obtain the information of the input power supply, and control the at least two charging units to simultaneously provide the third energy storage module according to the information of the input power supply. The second energy storage module is charged or the second energy storage module is charged sequentially.
- the control module controls at least two charging units to charge the second energy storage modules at the same time, so that multiple second energy storage modules can be fully charged at the same time.
- the control module controls at least two charging units to charge the second energy storage module in sequence.
- the control module controls at least two charging units to charge the second energy storage module at the same time.
- the maximum output power of each charging unit output to a single charging interface is less than or equal to The maximum output power of the charging port.
- the maximum output power of each charging unit to a single charging interface is not less than 1.8KW; when multiple charging units operate in sequence, the maximum output power of each charging unit to a single charging interface The output power is not less than 3KW.
- the maximum output power of each charging unit to a single charging interface can be 1.8KW or 2.4KW.
- the maximum output power of each charging unit to a single charging interface can be 1.8KW or 2.4KW.
- the maximum output power of the charging interface can be 3KW; or, when multiple charging units work at the same time, the maximum output power of each charging unit to a single charging interface can be 3KW.
- each charging unit The maximum output power of a unit to a single charging interface can be 3.6KW; or when multiple charging units are working at the same time, the maximum output power of each charging unit to a single charging interface can be 3.6KW. When multiple charging units are working in sequence , the maximum output power of each charging unit to a single charging interface can be 3.6KW.
- the control module determines that multiple charging interfaces connected to a single charging unit are connected to at least two second energy storage modules
- the control module is also used to obtain information about the multiple second energy storage modules and the input power supply. information, and charges a plurality of second energy storage modules and the first energy storage module according to a preset priority according to the information of the second energy storage module and the information of the input power supply.
- the second energy storage module includes a battery pack 210 and a self-propelled tool 220.
- the battery pack 210 is used to be detachably installed on the electric tool to provide power for the electric tool and to self-propelled.
- the walking tool 220 has a built-in battery for walking and working.
- the charging device charges the battery pack 210, the battery pack 210 can be directly inserted into the charging interface.
- the self-propelled tool 220 may be charged through the adapter 230.
- One end of the adapter 230 is connected to the first DC interface unit of the charging device, and the other end is connected to the charging interface of the self-propelled tool 220 .
- the charging device can not only charge self-propelled tools through the adapter You can also charge other energy storage tools through an adapter. This application only uses energy storage self-propelled tools as an example.
- the control module determines whether the second energy storage module connected to the charging interface module includes the battery pack 210 and the self-propelled tool 220. When the second energy storage module includes the battery pack 210 and the self-propelled tool 220, the control module determines whether the input power source includes AC power. When the input power source includes AC power, the charging priority of the battery pack 210 is higher than the charging priority of the first energy storage module 120 , and the charging priority of the first energy storage module 120 is higher than the charging priority of the self-propelled tool 220 . That is, the control module controls the charging device 110 to charge the battery pack 210 first. After the battery pack 210 is full, it then charges the first energy storage module 120. When the first energy storage module 120 is full, it charges the self-propelled tool.
- the charging priority of the battery pack 210 is higher than the charging priority of the self-propelled tool 220 .
- the scene with AC power supply is the scene where the garden team returns indoors at night to replenish power.
- the control module controls the AC power supply to give priority to charging the battery pack so that the garden team can work with a fully charged battery pack during the day.
- the first energy storage module 120 is charged, so that the gardening team can bring the fully charged first energy storage module 120 to replenish the battery pack during the day, and finally charge the self-propelled tools.
- the scene without AC power supply is usually a scene of working outdoors during the day.
- the charging device 110 charges the battery pack and the self-propelled tool through the first energy storage module 120, because the rated capacity of the battery pack is smaller than the rated capacity of the self-propelled tool. , so the battery pack charging speed is limited. In order to avoid the user waiting, the battery pack is charged first.
- the user when there is no AC power supply, in order to allow the self-propelled tool 220 to be fully charged first and work, the user can also issue a priority charging instruction through the human-computer interaction module to instruct the charging device 110 to give priority to Charging self-propelled tools.
- the power stored in the self-propelled tool is not less than 5KWh.
- the electric power stored in the self-propelled tool may be 5KWh, 7KWh or 10KWh.
- the power stored in the self-propelled tool is 7.7KWh. Due to the large capacity of the self-propelled tool, it is difficult to quickly charge the self-propelled tool to full capacity in a short period of time.
- the user issues a priority charging command, the user can instruct the charging device to charge the self-propelled tool to a specified power level.
- the human-computer interaction module receives the priority charging instruction, the control module gives priority to charging the self-propelled tool 220. After charging to the specified power, it then charges the battery pack 210.
- the control module After the battery pack is full, if the control module detects that the self-propelled tool If the charging device 110 is still connected, the charging device 110 is controlled to continue charging the self-propelled tool 220 so that the self-propelled tool 220 is fully charged.
- the control module first charges the battery pack 210 so that the user can work with the fully charged battery pack 210. After the battery pack 210 is full, the control module then controls the energy storage charging device. Charge the energy storage self-propelled tool 220.
- the control module when the charging device charges multiple battery packs, the control module obtains the digital communication methods of the multiple battery packs and controls the charging sequence of the multiple battery packs according to the digital communication methods.
- the charging interface of the charging device includes at least two types of digital communication terminals for communicating with battery packs having different digital communication types.
- the charging device includes at least two types of digital communication modules for connecting to two types of digital communication terminals respectively.
- the digital communication terminals of the charging device at least include CAN (Controller Area Network, local communication network) communication terminals and serial communication terminals, which are used to communicate with the battery pack with CAN communication and the battery pack with serial communication respectively.
- CAN Controller Area Network, local communication network
- the charging device 110 when the charging device 110 communicates with the battery pack, digital communication with the battery pack is performed through the CAN communication terminal first.
- the serial communication terminal When CAN communication fails, the serial communication terminal is used for digital communication with the battery pack.
- the control module identifies the communication type of the battery pack through the communication terminal and controls the charging priority of multiple battery packs according to the communication type. That is to say, battery packs with different digital communication types have different charging priorities.
- the control module recognizes the differential communication terminal, the charging device 110 gives priority to charging the second energy storage module with the differential communication terminal. When the second energy storage module with the differential communication terminal is full, the charging device 110 then charges the second energy storage module with the differential communication terminal. The second energy storage module Charge.
- the control module identifies the insertion sequence of the multiple battery packs through communication, and controls the charging sequence of the multiple battery packs by a single charging unit according to the insertion sequence of the battery packs.
- the charging priority of the battery pack 210 inserted first is higher than the charging priority of the battery pack 210 inserted later.
- the control module controls the charging sequence according to the remaining power of the multiple battery packs 210 , wherein the charging priority of the battery pack 210 with high remaining power is higher than the charging priority of the battery pack 210 with low remaining power.
- control module can also first control the charging sequence of multiple battery packs 210 according to the remaining power of the multiple battery packs 210.
- the control module can then control the charging sequence of the multiple battery packs 210 according to the insertion sequence. The charging sequence of the battery pack 210.
- control module can identify the type of the second energy storage module, obtain the insertion sequence of the battery pack and the remaining power of the second energy storage module by communicating with the battery pack.
- the battery pack 200 can obtain electric energy by being directly plugged into the charging interface of the charging device, or can also be connected to the charging interface of the charging device through a cable.
- the actual output power output by the charging interface is greater than the actual output power when the battery pack 200 is connected to the charging device through a cable.
- the battery pack 210 when the battery pack 210 is connected to the charging device through a cable, the battery pack 210 is installed on the backpack device 310 and connected to the charging device through the backpack device 310 .
- the backpack device 310 has a battery pack installation position, and the battery pack 200 is detachably installed on the battery pack installation position of the backpack device 310 .
- the backpack device 310 also has a cable 311 and a first interface 312.
- the first interface 312 has the same shape and size as the charging and discharging interface of the battery pack 200, so that the first interface 312 can be plugged into the charging device.
- the charging device can charge the battery pack through the cable.
- the charging device When the charging device charges the battery pack through the cable, the charging power is smaller than the charging power when the battery pack 200 is directly plugged into the charging device 100 for charging.
- the reason is that usually when the battery pack is installed on the carrying device 310 to power the electric tool, the user carries the carrying device 310 on his back, and the carrying device 310 is connected to the power tool through the cable 311 and the first interface 312 .
- the charging device 100 increases the charging power when charging the battery pack 200 through the backpack device 310, the overcurrent capacity of the cable will also need to be increased accordingly, which will inevitably cause the cable to become thicker, causing inconvenience to the user when carrying the battery pack 200 on their back.
- this application sets the charge and discharge terminals of the battery pack interface and the charge and discharge terminals of the cable interface to have different structures, so that the charging device 100 can identify whether the charging type of the battery pack is cable charging or direct plug charging.
- the charging interface of the charging device 110 is provided with charging pole pieces, and the charging interface of the battery pack 220 is provided with an interface slot. Each interface slot is provided with charging contacts.
- the charging pole piece on the charging device 110 can be inserted into the interface slot on the battery pack 210 side and connected to the charging contacts in a one-to-one correspondence.
- the first interface 312 of the backpack device 310 also has interface slots, and the number of interface slots of the first interface 312 is the same as the number of interface slots of the charging interface of the battery pack. When the first interface 312 is plugged into the charging device 110, the charging pole piece at the charging device 110 can be inserted into the interface slot of the first interface 312.
- the charging pole piece of the charging device 110 includes a positive pole piece 101, a negative pole piece 102, an analog signal communication pole piece 103, a first digital signal communication pole piece 104 and a second digital signal communication pole piece. 105. That is, the charging device 100 has two digital communication methods and can communicate with two different types of second energy storage modules.
- the communication type of the first digital signal communication pole piece 104 is serial communication
- the communication type of the second digital signal communication pole piece 105 is differential communication.
- the differential communication may be CAN (Controller Area Network, domain communication network) communication.
- the second digital signal communication pole piece 105 has two plug pieces, respectively 105a and 105b.
- the plug piece 105a and the plug piece 105b are independent of each other and insulated from each other. On the surface perpendicular to the direction of the battery pack plug, the plug piece 105a and the plug piece 105b are The projections of slice 105b overlap.
- digital communication is performed with the second energy storage module through the second digital communication pole piece 105 first.
- the first digital signal communication pole piece 104 is used. Communicate digitally with the second energy storage module.
- the charging interface of the battery pack 210 includes a positive contact 301, a negative contact 302, an analog signal communication contact 303, a first digital signal communication contact 304 and a second digital signal communication contact.
- Signal communication contacts 305 In this embodiment, the communication type of the first digital signal communication contact 304 is serial communication, and the communication type of the second digital signal communication contact 305 is differential communication. In detail, the differential communication may be CAN communication.
- the second digital signal communication contact 305 includes two independent contacts, namely a contact 305a and a contact 305b. The contact 305a and the contact 305b are disposed in the same terminal slot, and there is a gap between the contact 305a and the contact 305b. Insulating parts are provided.
- the contacts 305a and 305b are arranged front to back, and the projections of the contacts 305a and 305b overlap each other.
- the positive pole piece 101, the negative pole piece 102, the analog signal communication pole piece 103, the first digital signal communication pole piece 104 and the second digital signal communication pole piece 105 are respectively Connected to the positive contact 301 , the negative contact 302 , the analog signal communication contact 303 , the first digital signal communication contact 304 and the second digital signal communication contact 305 , the charging device 100 first activates the battery through the analog signal communication pole piece 303 package, and then performs digital signal communication with the battery pack 200 through the second digital signal communication pole piece 105.
- the charging device 100 recognizes that the battery pack is a direct plug-in connection.
- the main body of the backpack device 310 provided in this embodiment is provided with a second interface 313.
- the second interface 313 is used to connect with the battery pack 210.
- the backpack device 312 is also connected to the first interface 312 through a cable 311.
- the first interface 312 is used for coupling with the charging interface of the charging device 100 .
- the second interface 313 has four kinds of pole pieces, namely the positive pole piece 101 , the negative pole piece 102 , the analog signal communication pole piece 103 and the first digital signal communication pole piece 104 .
- the positive pole piece 101, the negative pole piece 102, the analog signal communication pole piece 103, and the first digital signal communication pole piece 104 of the second interface 313 are respectively connected with the positive electrode contact 301 on the battery pack.
- the negative electrode contact 302, the analog signal communication contact 303, and the first digital signal communication contact 304 are connected in a one-to-one correspondence, and the second digital signal communication contact 305 on the battery pack is not connected.
- the first interface 312 of the backpack device has four charging contacts, including a positive contact 301, a negative contact 302, an analog signal communication contact 303 and a first digital signal communication contact 304.
- the first interface 312 of the backpack device 310 When the first interface 312 of the backpack device 310 is plugged into the charging interface of the charging device 100, the positive pole piece 101, the negative pole piece 102, the analog signal communication pole piece 103, and the first digital signal communication pole piece 104 are in contact with the positive pole respectively.
- the head 301, the negative contact 302, the analog signal communication contact 303, and the first digital signal communication contact 304 are connected in a one-to-one correspondence, and the second digital signal communication pole piece 105 is inserted into the vacant interface slot.
- the charging device 100 When the charging device 100 first communicates with the battery pack on the backpack device through the second digital signal communication pole piece 105, since the second digital signal communication pole piece 105 is inserted into the control interface slot, there is no electrical connection, so there is no communication signal. At this time, charging The device 100 then communicates with the battery pack on the backpack device through the first digital signal communication pole piece 104. If the communication is successful, the charging device can recognize that the current charging interface is connected to the cable output interface of the backpack device.
- the battery pack 210 and the first interface 310 of the backpack device 310 are plugged into the charging device 110 At this time, the digital communication types are different, so that the charging device 110 can identify whether the battery pack is connected in a direct plug-in type or a cable type, thereby outputting different charging powers.
- the present application provides an adapter 230 for connecting the charging device 110 and the self-propelled tool 220, so that the charging device 110 can transmit electric energy to the self-propelled tool 220 through the adapter 230.
- the adapter 230 has a first interface 231, a second interface 232, and a first cable 233 connecting the first interface 231 and the second interface 232.
- the first interface 231 is used for coupling with the charging interface of the charging device 110
- the second interface 232 is used for coupling with the charging interface of the self-propelled tool 220
- any interface on the charging device 110 can be connected to the first interface 231 to transmit electric energy.
- one of the interfaces can also be designated as a dedicated interface of the self-propelled tool 400 .
- the third charging interface 142c on the charging device 110 can be designated as a dedicated interface of the self-propelled tool 220 . That is, when the first interface 231 is inserted into the third charging interface 233, the charging device 110 can output direct current through the second charging unit 132, and transmit power to the self-propelled tool 220 through the third charging interface 233 and the first interface 231.
- both the first interface 231 and the second interface 232 include a positive contact 301, a negative contact 302, a first analog signal communication contact 303, a first digital signal communication contact 304 and a second digital signal communication contact.
- Contact 305, the communication type of the first digital signal communication contact 304 is serial communication, and the communication type of the second digital signal communication contact 305 is differential communication.
- the charging device 110 can perform digital signal transmission with the self-propelled tool 220 through serial communication, or can also perform digital signal transmission through differential communication. Preferably, digital signal transmission is performed between the charging device 100 and the self-propelled tool through differential communication.
- both the first interface 231 and the second interface 232 include a positive contact 301, a negative contact 302, a first analog signal communication contact 303 and a second digital signal communication contact 305
- the communication type of the second digital signal communication contact 305 is differential communication.
- the second digital signal communication contact 305 includes two independent contacts, as shown in Figure 13, namely a contact 305a, a contact 305b, and a contact 305a.
- the contacts 305a and the contacts 305b are insulated from each other.
- the contacts 305a and the contacts 305b are arranged up and down in the same interface slot, and within the area defined by the interface slot. , the projections of contact 305a and contact 305b at least partially overlap, and the widths of contact 305a and contact 305b are . That is, the self-propelled tool 220 can only communicate with the charging device through digital signals through differential communication.
- the charging power output is also different.
- the charging power output may be different from the charging power output when it communicates with the second energy storage module through serial communication.
- the charging device 110 obtains the charging power required by the second energy storage module by communicating with the second energy storage module, and controls the output power according to the communication result.
- the output power is limited to less than or equal to 3.6KW.
- the output power when the charging device 110 communicates with the second energy storage module through differential communication is different from the output power when the energy storage cabinet communicates with the second energy storage module through the serial port.
- the charging When the device 110 communicates with the second energy storage module through differential communication the output power is 3.6KW.
- the output power is 2.4KW.
- the above-mentioned charging device can either use DC power to charge the second energy storage module, or use AC power to charge the second energy storage module.
- DC power By carrying a DC power supply to charge the second energy storage module, it can solve the power consumption of the garden team when working outside.
- AC power can also be used to charge the second energy storage module, which diversifies the power replenishment methods, reduces energy waiting time, and improves work efficiency.
- one embodiment of the present application provides an energy storage charging device, including a first energy storage module 120 and a charging device 110 .
- the first energy storage module 120 is used to store DC power
- the charging device 110 is used to convert the DC power stored in the first energy storage module 120 and charge the connected battery pack.
- the first energy storage module 120 and the charging device 110 can be provided in the same housing, which can save storage space.
- the housing of the energy storage charging device 100 includes a first housing and a second housing.
- the first housing is used to store the first energy storage module 120
- the second housing is used to store the charging device 110 .
- the first housing and the second housing are detachably connected, so that the first energy storage module 120 and the charging device are detachable, so that the user can replace the first energy storage module 120 .
- the first energy storage module 120 and the charging device 110 When the first energy storage module 120 and the charging device 110 are detachably connected, the first energy storage module 120 and the charging device 110 can be connected through a cable. One end of the cable is detachably connected to the first energy storage module 120, and the other end of the cable can be detachably connected to the first energy storage module 120. Detachably connect the DC interface of the charging device 110 .
- the first energy storage module 120 and the charging device 110 can be stacked, so that when the energy storage charging device is installed on a garden tool transport vehicle, space in the vehicle can be saved.
- the charging device 110 includes a first charging module 130 and a charging interface module 140 .
- the input end of the first charging module 130 is connected to the output end of the first energy storage module 120, and the output end of the first charging module 130 is connected to the charging interface module 140.
- the charging interface module 140 is used to connect the battery pack.
- the first charging module 130 is used to transfer the electric energy of the first energy storage module 120 to the charging interface module and charge the battery pack, where the battery pack is used to be detachably installed on the electric tool to provide power to the electric tool.
- the first charging rate when the first energy storage module 120 charges the battery pack is greater than the second charging rate when the mains charges the battery pack, and the ratio of the first charging rate to the second charging rate is greater than 1 and less than or equal to 10.
- the charging rate of the battery pack is the ratio of the input power received by the battery pack to the rated power of the battery pack. That is, the greater the input power received by the battery pack, the greater the charging rate of the battery pack.
- Battery packs charge faster.
- the first charging rate of the battery pack by the first energy storage module 120 is the ratio of the maximum output power output by the first energy storage module 120 to the battery pack and the rated power of the battery pack.
- the second charging rate of the battery pack by the city power is It is the ratio of the maximum output power of the mains to the rated capacity of the battery pack.
- the input power is usually the mains power. Due to the power limit of the mains power, the charging speed of the battery pack is slow.
- the energy storage charging device provided in this embodiment uses a DC energy storage module to charge the battery pack, which can increase the charging power of the battery pack and increase the charging speed.
- the charging power provided by the first energy storage module 120 can make the first charging rate of the battery pack greater than or equal to 3C.
- the first charging power is 3C, 4C, 5C, 6C, 10C or 12C.
- the charging power provided by the mains power can only support the second charging rate of the battery pack between 1C and 2C. Therefore, when the first energy storage module is used for charging, the charging speed of the battery pack is much greater than the charging speed of the charger using commercial power to charge the battery pack.
- the first charging time required by the first energy storage module 120 to charge the battery pack from an empty state to a fully charged state is less than the AC power supply required to charge the battery pack from an empty state to a fully charged state. the second charging time.
- the maximum output power of the first energy storage module 120 is greater than the maximum output power of the mains.
- the ratio of the maximum output power of the first energy storage module 120 to the maximum output power of the AC power supply is greater than 1 and less than or equal to 10.
- the ratio of the maximum output power of the first energy storage module 120 to the maximum output power of the AC power supply may be 2, 3, 4, 5, 6, 8 or 10.
- the maximum output power of the first energy storage module 120 is greater than or equal to 1.8KW; preferably, the maximum output power of the first energy storage module is greater than or equal to 3KW.
- the maximum output power of the first energy storage module 120 is 3.6KW, 4KW, 5KW, 6KW, 7KW, 10KW or 12KW.
- the output power of the mains power is less than 1.8KW.
- the first energy storage module 120 serves as a DC power supply, and its stored power is greater than or equal to 2KWh. Further, the rated power of the first energy storage module 120 is greater than or equal to 5KWh and less than or equal to 20KWh. When the power stored in the first energy storage module 120 is greater than 20KWh, the volume and weight of the first energy storage module 120 also increase accordingly, making it inconvenient to carry. When the power stored in the first energy storage module 120 is less than 3KWh, it cannot meet the power demand of the gardening team for a day of work.
- the electrical energy stored in the energy storage charging device 100 can not only support the gardening team to work out for at least one day, but also has a size and weight that is easy to carry.
- the amount of electricity stored in the first energy storage module 120 may be 3KWh, 4KWh, 5KWh, 6KWh, 7KWh, 8KWh, 9KWh, 10KWh, 12KWh, 15KWh, 18KWh or 20KWh.
- the amount of electricity stored in the first energy storage module 120 may be 5KWh or 7.7KWh.
- the first energy storage module 120 may be a battery pack.
- the battery pack includes a plurality of cells, and the plurality of cells are connected in series and/or in parallel.
- the battery pack may include 15 battery cells, and the 15 battery cells are connected in series.
- the second energy storage module can be a battery pack of the electric tool, and the battery pack can be directly plugged into the electric tool to provide power to the electric tool.
- the power of the battery pack is not greater than 1KWh.
- the power of the battery pack is between 0.5KWh and 0.6KWh. Since the power stored in the first energy storage module 120 is much greater than the power stored in the battery pack, multiple battery packs can be replenished with electric power by carrying the first energy storage module 120 .
- the voltage platform of the first energy storage module 120 is not less than 30V.
- the voltage platform of the first energy storage module can be 48V, 56V or 60V. Since the power stored in the first energy storage module 120 is much greater than the rated power of the battery pack, and the voltage platform of the first energy storage module 120 is high, the first energy storage module 120 can support high-power discharge, and thus can quickly charge the battery pack.
- the continuous discharge rate of the first energy storage module 120 is not less than 1C, that is, during the continuous discharge process of the first energy storage module 120 from the remaining power being greater than or equal to 90% to the remaining power being at least less than or equal to 10%, the discharge rate is Not less than 1C. Therefore, the first energy storage module 120 can support larger output power and quickly charge the battery pack.
- the charging device 110 also includes a second charging module.
- the input end of the second charging module is connected to the mains power.
- the second charging module 150 is used to convert the AC power provided by the mains into DC power.
- the second charging module The output terminals are respectively connected to the first energy storage module 120 and the first charging module, and are used to charge the first energy storage module and charge the battery pack through the first charging module.
- the energy storage charging device provided in this embodiment can charge the battery pack through the DC power of the first energy storage module, can also charge the battery pack through the AC power supply, and can also use the AC power supply to recharge the first energy storage module. This can meet the needs of users in different scenarios, and can also solve the problem of users' electricity anxiety when using power tools outdoors.
- the first charging module includes at least a first charging unit and a second charging unit
- the charging interface module at least includes a first charging interface and a second charging interface.
- the input terminals of the first charging unit and the second input unit are both connected to the output terminal of the first energy storage module and the output terminal of the second charging module.
- the output terminal of the first charging unit is connected to the first charging interface.
- the second charging unit The output end is connected to the second charging interface.
- the charging device further includes a switch module.
- the switch module at least includes a first switch. One end of the first switch is connected to the output end of the first charging unit, and the other end is connected to the output end of the second charging unit for controlling Charging unit connection relationship. When the first switch is closed, the output terminal of the first charging unit and the output terminal of the second charging unit are connected to each other, so that the electric energy of the first charging unit and the second charging unit is output to the same charging interface. When the first switch is turned on, the output terminal of the first charging unit and the output terminal of the second charging unit are disconnected, so that the electric energy of the first charging unit is output to the first charging interface, and the electric energy of the second charging unit is output to the second charging port.
- the energy storage charging device also includes a control module. The control module is connected to the control end of the first switch and is used to control the first switch to switch between the on state and the off state.
- the energy storage charging device includes at least a first charging mode and a second charging mode.
- the control module controls the first switch to turn off, the energy storage charging device is in the first charging mode, and each charging unit is A single charging interface connected to it provides power.
- the control module controls the first switch to be turned on, the energy storage charging device is in the second charging mode, and at least two charging units are connected in parallel to provide electric energy for one charging interface.
- the maximum output power of the charging interface to the battery pack in the first charging mode is less than the maximum output power of the charging interface to the battery pack in the second charging mode.
- the maximum output power output by the charging interface to the battery pack is not less than 3.6KW.
- the charging device 110 further includes a human-computer interaction module, and the human-computer interaction module is connected to the control module.
- the control module is used to receive the fast charging instruction through the human-computer interaction module, and control the first switch to conduct according to the fast charging instruction, so that the energy storage charging device enters the second charging mode.
- the energy storage charging device of this embodiment uses the DC power stored in the energy storage module to charge the battery pack, which can solve the problems of limited charging power and slow charging speed caused by traditional chargers obtaining mains power from the socket.
- the energy storage module The output power is greater than the power of the mains power, so when the energy storage module is used to charge the battery pack, the charging speed is also greater than the charging speed of the mains power to charge the battery pack.
- Yet another embodiment of the present application provides a charging control method of a charging device.
- the method is based on the aforementioned charging device, and the method is executed by the aforementioned control device.
- the charging control method includes the following steps:
- Step S10 obtain the information of the input power supply and the number of charging tasks.
- the input power supply includes the first energy storage module and/or AC power supply.
- the number of charging tasks is related to the number of external devices;
- obtaining the number of charging tasks includes obtaining the number of charging tasks connected to each charging unit, and the number of charging tasks is the same as the number of second energy storage modules connected to the charging unit.
- Step S20 determine the maximum output parameter of the energy storage charging device according to the input power information and the number of charging tasks; wherein the maximum output parameter can be the maximum output current or the maximum output power;
- Step S30 receive the requested charging parameter sent by the external device, and compare the maximum output parameter and the requested charging parameter; wherein the requested charging parameter may be the requested charging current or the requested charging power;
- Step S40 According to the comparison result, charge the external device according to the preset priority.
- step S10 obtaining input power information includes:
- Step S11 determine whether the input power source includes the first energy storage module and/or an external AC power source
- Step S12 when the input power source includes the first energy storage module, control the operation of the first charging module to charge the second energy storage module through the first energy storage module;
- Step S13 when the input power source includes an AC power source, control the second charging module to operate so as to charge the first energy storage module and/or the second energy storage module through the AC power source.
- step S13 also includes:
- Step S131 determine whether the first energy storage module is connected
- Step S132 when the first energy storage module is connected, determine whether the remaining power of the first energy storage module is greater than or equal to the preset power
- Step S133 when the remaining power of the first energy storage module is greater than or equal to the preset power, control the AC power supply and the first energy storage module to charge the second energy storage module at the same time;
- Step S134 When the remaining power of the first energy storage module is less than the preset power, the AC power supply is controlled to charge the second energy storage module first. After the second energy storage module receives the charge, it then charges the first energy storage module.
- Step S133 also includes controlling the AC power supply to charge the first energy storage module after the AC power supply and the first energy storage module have finished charging the second energy storage module.
- step S20 the maximum output parameter of the energy storage charging device is determined based on the input power information and the number of charging tasks, including: determining whether a fast charging instruction is received; when a fast charging instruction is received, according to The input power information determines whether entry into the second charging mode is allowed.
- the second charging mode is allowed, at least two charging units are controlled to be connected in parallel to charge a single second charging module, and the second charging mode is calculated based on the input power information.
- the control method of the above charging device can charge the battery pack of the electric tool through the first energy storage module 120, and can also charge the first energy storage module 120 and the battery pack through the AC power supply.
- the power tool battery pack can be charged directly by carrying a large-capacity first energy storage module 120, which solves the problem of power consumption anxiety of the gardening team when they go out to work.
- AC power can be used to charge the battery pack and the first energy storage module 120, so that the garden team can carry multiple fully charged battery packs and the first energy storage module 120 when they go out to work.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明涉及一种充电装置及储能式充电装置,充电装置包括第一充电模块、第二充电模块和充电接口模块,第一充电模块一端连接第一直流接口单元,另一端连接第二直流接口单元,用于将第一储能模块存储的电能进行转换并传输至第二储能模块;充电接口模块还包括交流输入接口,用于连接交流电源;第二充电模块的第一端连接交流输入接口,第二端连接第一直流接口单元,用于将交流电能转换为直流电能并输出至第一直流接口单元,以便为第一储能模块充电;第二充电模块还用于将交流电能转换为直流电能并传输至第二直流接口单元,以便为第二储能模块充电。当园林团队外出工作时,通过携带上述充电模块,可以随时为电池包补能,解决了用电焦虑问题。
Description
本申请要求申请号为“CN202210457481.3”申请日为2022.04.28的中国专利申请、申请号为“CN202211058090.0”申请日为2022.08.31的中国专利申请的优先权。
本发明涉及充电领域,尤其涉及一种充电装置及储能式充电装置。
燃油工具具有动力强、动力源易于获取且工作时间持久等优点。对于专业园林团队来说,在户外作业场景下,为了提高工作效率,园林团队通常会采用燃油类的园林工具进行作业。但是燃油类工具在使用时释放的废气会导致环境污染,而且燃油动力工具工作时的噪音较大,会对周围环境形成噪音污染。
电动工具具有环保、清洁的优点,而且与燃油动力工具相比,电动工具产生的噪音也相对较小。因此,电动工具越来越受到动力工具使用者的青睐。
随着锂电技术的发展,工具行业逐渐从汽油工具、交流电动工具向直流电动工具转型,锂电池已广泛应用于工具行业。通常,对于专业的园林工作团队而言,园林团队会携带各种园林工具在外工作一天,工作时间长且工作量大,几乎需要一整天持续工作。而锂电池的补电方式通常为利用充电器将市电转换为直流电源为其充电,而园林团队外出工作时市电难以获得,导致充电困难,若要采用电动工具工作,不得不携带大量的电池包,导致电池包的使用成本高,且园林团队携带不便。
发明内容
基于此,本身请提供一种储能式充电装置,所述充电装置包括第一充电模块、第二充电模块和充电接口模块;所述充电接口模块至少包括第一直流接口单元和第二直流接口单元,所述第一直流接口单元用于连接第一储能模块,所述第二直流接口单元用于连接第二储能模块;所述第一充电模块的第一端连接所述第一直流接口单元,所述第一充电模块的第二端连接所述第二直流接口单元,所述第一充电模块用于将所述第一储能模块存储的电能进行转换并传输至所述第二储能模块,以使所述第一储能模块为所述第二储能模块充电;所述充电接口模块还包括交流输入接口,所述交流输入接口用于连接交流电源;所述第二充电模块的第一端连接所述交流输入接口,所述第二充电模块的第二端连接所述第一直流接口单元,所述第二充电模块用于将交流电能转换为直流电能并输出至所述第一直流接口单元,以便为所述第一储能模块充电;所述第二充电模块还用于将所述交流电能转换为直流电能,不经过所述第一储能模块传输至所述第二直流接口单元,以便为所述第二储能模块充电。
在其中一个实施例中,所述第二充电模块的输出端连接所述第一充电模块,以使将所述直流电能通过所述第一充电模块传输至所述第二直流接口单元。
在其中一个实施例中,还包括控制模块和开关模块,所述开关模块连接所述控制模块,用于接收所述控制模块的控制信号,以在所述控制信号的作用下导通或断开;所述开关模块包括回路开关,所述回路开关设置于所述第一充电模块到所述第二直流接口单元之间,用于控制所述第一充电模块至所述第二直流接口单元的回路通断;所述开关模
块还包括充电开关,所述充电开关一端连接所述第一直流接口单元,另一端分别连接所述第一充电模块和所述第二充电模块,用于控制所述第一储能模块接入所述充电装置或从所述充电装置断开。
在其中一个实施例中,所述控制模块用于判断输入电源的类型,并根据输入电源的类型控制所述充电装置对所述第二储能模块的充电方式,其中所述输入电源包括所述交流电源和所述第一储能模块;当所述控制模块判断所述交流电源和所述第一储能模块均接入时,所述控制模块还获取所述第二储能模块的请求充电功率,并判断所述第二储能模块的请求充电功率是否大于所述第二充电模块的最大输出功率;所述第二储能模块的请求充电功率小于所述第二充电模块的最大输出功率时,所述控制模块控制所述充电开关和所述回路开关同时闭合,并控制所述交流电源同时为所述第二储能模块和所述第一储能模块充电;所述第二储能模块的请求充电功率大于所述第二充电模块的最大输出功率时,所述控制模块控制所述充电开关和所述回路开关同时闭合,并控制所述交流电源和所述第一储能模块同时为所述第二储能模块充电;所述第二储能模块的请求充电功率等于所述第二充电模块的最大输出功率时,所述控制模块控制所述充电开关和所述回路开关依次闭合,并控制所述交流电源依次为所述第二储能模块和所述第一储能模块充电。
在其中一个实施例中,所述第二储能模块的额定电量小于所述第一储能模块的额定电量;所述控制模块控制所述交流电源依次为所述第二储能模块和所述第一储能模块充电时,先控制所述回路开关闭合,为所述第二储能模块充电,当所述控制模块判断所述第二储能模块充满,再控制所述充电开关闭合,为所述第一储能模块充电。
在其中一个实施例中,当所述控制模块判断仅所述第一储能模块接入时,所述控制模块控制所述回路开关和所述充电开关闭合,以使所述第一储能模块为所述第二储能模块充电;当所述控制模块判断仅所述交流电源接入时,所述控制模块控制所述回路开关闭合、所述充电开关断开,使所述交流电源为所述第二储能模块充电。
在其中一个实施例中,所述第二充电模块的输出端连接至所述第二直流接口单元,以便将所述直流电能直接传输至所述第二直流接口单元。
在其中一个实施例中,所述第一充电模块为双向充电模块,所述第二储能模块还用于通过所述第一充电模块为所述第一储能模块充电。
在其中一个实施例中,所述第二充电模块包括第一容量电池包和第二容量电池包,所述第一容量电池包的额定容量大于所述第二容量电池包的额定容量;所述第一充电模块还用于将所述第一容量电池包存储的电能进行转换,并为所述第二容量电池包充电。
在其中一个实施例中,当所述充电装置为所述第二储能模块充电时,所述充电装置至少包括第一充电模式和第二充电模式,所述第二充电模式下单个充电接口的输出功率大于所述第一充电模式下单个充电接口的输出功率。
在其中一个实施例中,所述第二直流接口单元包括至少一个充电接口,每个所述充电接口用于可拆卸的连接一个所述第二储能模块;所述第一充电模块包括至少两个充电单元,每个充电单元的输入端均连接所述第一直流接口单元和所述第二充电模块,每个充电单元的输出端连接至少一个充电接口。
在其中一个实施例中,所述开关模块还包括切换开关,所述切换开关设置于相邻所
述充电单元之间,用于控制相邻所述充电单元的连接关系;当所述切换开关断开时,至少两个所述充电单元的输出端连接;当所述切换开关闭合时,至少两个所述充电单元的输出端断开连接。
在其中一个实施例中,在所述第一充电模式下,单个所述充电单元用于为与其对应连接的单个所述第二储能模块提供电能;在所述第二充电模式下,所述控制模块获取所述第二储能模块的请求充电功率,并比较所述请求充电功率与单个充电单元的最大输出功率的大小,根据比较结果判断是否控制所述切换开关闭合。
在其中一个实施例中,当所述请求充电功率小于等于所述单个充电单元的最大输出功率时,控制模块控制所述切换开关断开,以使单个所述充电单元为所述第二储能模块充电;当所述请求充电功率大于所述单个充电单元的最大输出功率时,控制模块控制所述切换开关闭合,以使至少两个所述充电单元并联后为单个所述第二储能模块充电。
在其中一个实施例中,所述控制模块用于获取输入电源的信息,并根据所述输入电源的信息判断所述充电装置是否允许进入所述第二充电模式。
在其中一个实施例中,所述输入电源包括所述交流电源和/或所述第一储能模块;当所述输入电源为所述交流电源,所述控制模块禁止所述充电装置进入所述第二充电模式;当所述输入电源包括所述第一储能模块,且所述第一储能模块的剩余电量小于预设电量时,所述控制模块禁止所述充电装置进入所述第二充电模式;当所述输入电源为所述第一储能模块,且所述第一储能模块的剩余电量大于等于所述预设电量时,允许所述充电装置进入所述第二充电模式。
在其中一个实施例中,当所述输入电源为所述第一储能模块,且所述第一储能模块的剩余电量大于等于所述预设电量时,所述控制模块获取所述第二储能模块和所述第一储能模块的温度,当所述第二储能模块和所述第一储能模块的温度满足预设温度条件时,允许所述充电装置进入所述第二充电模式。
在其中一个实施例中,还包括人机交互模块,所述人机交互模块连接所述控制模块,所述人机交互模块用于获取用户下发的快速充电指令,所述快速充电指令用于指示所述充电装置进入所述第二充电模式;当所述人机交互模块未接收到所述快速充电指令,所述控制模块控制所述充电装置进入第一充电模式;当所述人机交互模块接收到所述快速充电指令,所述控制模块控制所述充电装置从所述第一充电模式切换至所述第二充电模式。
在其中一个实施例中,在所述第一充电模式下,所述控制模块判断至少两个所述充电单元均连接有所述第二储能模块时,所述控制模块还用于获取输入电源的信息,并根据所述输入电源的信息控制至少两个充电单元同时或依次为至少两个所述第二储能模块充电。
在其中一个实施例中,当所述输入电源为所述交流电源,所述控制模块控制至少两个充电单元同时为所述第二储能模块充电;当所述输入电源包括所述第一储能模块,且所述第一储能模块的剩余电量小于预设值电量,所述控制模块控制至少两个充电单元依次为所述第二储能模块充电;当所述输入电源为所述第一储能模块,且所述第一储能模块的剩余电量大于等于所述预设电量,所述控制模块控制至少两个充电单元同时为所述第二储能模块充电。
在其中一个实施例中,单个所述充电单元连接至少两个充电接口;在所述第一充电模式下,所述控制模块判断单个所述充电单元连接的多个所述充电接口均连接有所述第二储能模块时,所述控制模块还用于获取多个所述第二储能模块的信息和所述输入电源的信息,并根据多个所述第二储能模块的信息和所述输入电源的信息控制单个所述充电单元按照预设的优先级依次为多个所述第二储能模块和所述第一储能模块充电。
在其中一个实施例中,所述第二储能模块包括电池包和自行走工具,所述电池包用于可拆卸地安装于所述电动工具,并为所述电动工具供电,所述自行走工具具有内置式电池;所述控制模块判断所述充电接口模块连接的所述第二储能模块是否包括所述电池包和所述自行走工具,当所述第二储能模块包括所述电池包和所述自行走工具,所述控制模块判断所述输入电源是否包括交流电源,当所述输入电源包括所述交流电源,所述电池包的充电优先级高于所述第一储能模块的充电优先级,所述第一储能模块的充电优先级高于所述自行走工具的充电优先级;当所述控制模块判断所述输入电源不包括所述交流电源,所述电池包的充电优先级高于所述自行走工具的充电优先级。
在其中一个实施例中,所述充电接口包括至少两种数字通信端子,所述充电装置用于至少通过其中一种所述数字通信端子与具有不同数字通信类型的电池包通信。
在其中一个实施例中,所述控制模块判断每个所述充电接口是否均连接所述电池包,当每个充电接口均连接所述电池包时,所述控制模块还判断与每个充电接口连接的所述电池包的数字通信类型,根据所述数字通信类型控制所述充电装置对多个所述电池包的充电优先级。
在其中一个实施例中,所述充电装置的数字通信端子包括串口通信端子和差分通信端子,所述充电装置用于通过所述串口通信端子与具有所述串口通信类型的电池包通信,所述充电装置用于通过所述差分通信端子与具有所述差分通信类型的电池包通信;所述控制模块判断所述电池包的数字通信类型,并控制具有所述差分通信类型的电池包的充电优先级高于具有所述串口通信类型的电池包。
在其中一个实施例中,控制模块判断多个电池包的数字通信类型相同时,还获取多个所述电池包的插入顺序,根据所述插入顺序控制所述充电装置对所述电池包的充电顺序。
在其中一个实施例中,所述控制模块还根据与每个充电接口连接的电池包的通信类型,控制充电单元的输出功率;所述控制模块判断所述充电装置采用串口通信类型与所述电池包通信时,所述充电接口输出的充电功率小于所述充电装置采用差分通信类型与所电池包通信时所述充电接口输出的充电功率。
本申请的又一实施例提供一种储能式充电装置,所述储能式充电装置还包括第一储能模块,所述第一储能模块连接所述充电装置,用于通过所述充电装置为第二储能模块充电,或通过所述充电装置获取电能。在其中一个实施例中,
本申请的又一实施例提供一种储能式充电装置,所述储能式充电装置包括第一储能模块、第一充电模块和充电接口模块;所述第一储能模块用于存储直流电能;所述第一充电模块的输入端连接所述第一储能模块的输出端,所述第一充电模块的输出端连接所述充电接口模块,所述充电接口模块用于连接电池包;所述第一充电模块用于将所述第一储能模块的电能传递至所述充电接口模块,并为所述充电接口模块连接的电池包充电,其中所述电池包用于可拆卸地安装于电动工具以便为所述电动工具供电;所述第一储能模块为所述电池包充电时的第一充电倍率大于市电为所述电池包充电时的第二充电倍率;
所述第一充电倍率与所述第二充电倍率的比值大于1且小于等于10。
在其中一个实施例中,对于同一所述电池包,所述第一储能模块将所述电池包从空电状态充电至满电状态所需的第一充电时间小于所述交流电源将所述电池包从空电状态充电至满电状态所需的第二充电时间。
在其中一个实施例中,所述第一储能模块的最大输出功率大于所述交流电源的最大输出功率。
在其中一个实施例中,所述第一储能模块的最大输出功率大于等于1.8KW;优选地,所述第一储能模块的最大输出功率大于等于3KW。
在其中一个实施例中,所述第一储能模块的额定电量不小于2KWh,且所述第一储能模块的最大持续放电倍率大于等于1C,其中,所述最大持续放电倍率为所述第一储能模块从剩余电量大于等于80%持续放电至剩余电量小于等于10%的过程中保持的最大放电倍率。
在其中一个实施例中,还包括第二充电模块,所述第二充电模块的输入端用于连接外部的交流电源,所述第二充电模块用于将所述交流电源的电能转换为直流电能,并为所述充电接口模块连接的电池包充电;所述第二充电模块的最大输出功率小于1.6KW。
在其中一个实施例中,所述第一充电模块至少包括第一充电单元和第二充电单元,所述充电接口模块至少包括第一充电接口和第二充电接口;所述第一充电单元和所述第二输入单元的输入端均连接所述第一储能模块的输出端和所述第二充电模块的输出端,所述第一充电单元的输出端连接所述第一充电接口,所述第二充电单元的输出端连接所述第二充电接口。
在其中一个实施例中,所述开关模块至少包括第一切换开关,所述第一切换开关一端连接所述第一充电单元的输出端,另一端连接所述第二充电单元的输出端,用于控制所述充电单元的连接关系;当所述第一切换开关闭合时,所述第一充电单元的输出端和所述第二充电单元的输出端相互连接,以使所述第一充电单元和所述第二充电的那元的电能均输出至同一充电接口;当所述第一切换开关导通时,所述第一充电单元的输出端和所述第二充电单元的输出端断开连接,以使所述第一充电单元的电能输出至所述第一充电接口,所述第二充电单元的电能输出值所述第二充电接口;所述储能式充电装置还包括控制模块,所述控制模块连接所述第一切换开关的控制端,用于控制所述第一切换开关在导通状态和断开状态之间切换。
在其中一个实施例中,所述储能式充电装置至少包括第一充电模式和第二充电模式;所述控制模块控制所述第一切换开关断开时,所述储能式充电装置处于所述第一充电模式,每个所述充电单元分别为与其对应连接的单个充电接口提供电能;所述控制模块控制所述第一切换开关导通时,所述储能式充电装置处于所述所述第二充电模式,至少两个所述充电单元并联后为一个充电接口提供电能;所述第一充电模式下的所述充电接口输出至所述电池包的最大输出功率小于所述第二充电模式下所述充电接口输出至所述电池包的最大输出功率。
在其中一个实施例中,在所述第二充电模式下,所述充电接口输出至所述电池包的最大输出功率不小于3.6KW。
在其中一个实施例中,还包括人机交互模块,所述人机交互模块连接所述控制模块;所述控制模块用于通过所述人机交互模块接收快速充电指令,并根据所述快速充电指令控制所述第一切换开关导通,以使所述储能式充电装置进入所述第二充电模式。
图1为本申请的一个实施例提供的储能式充电装置的整体结构图;
图2为本申请的一个实施例提供的储能式充电装置的电路模块图;
图3为本申请的又一实施例提供的储能式充电装置的电路模块图;
图4为本申请的又一实施例提供的储能式充电装置的电路模块图;
图5为本申请的又一实施例提供的储能式充电装置的电路模块图;
图6为本申请的一个实施例提供的第一容量电池包插接于充电装置上为第二容量电池包充电的示意图;
图7为本申请的一个实施例提供的储能式充电装置为电池包充电及通过适配器为自行走工具充电的场景示意图;
图8为本申请的一个实施例提供的储能式充电装置通过背负装置为电池包充电的场景示意图;
图9为本申请的一个实施例提供的储能式充电装置和充电器的充电接口的端子排布图;
图10为本申请的一个实施例提供的电池包的充电接口的端子排布图;
图11为本申请的一个实施例提供的背架主体上电池包接口及电动工具上电池包接口的端子排布图;
图12为本申请的一个实施例提供的背架线缆接口的端子排布图;
图13为本申请的一个实施例提供的储能式自行走工具主体上充放电接口的端子排布图;
图14为本申请的一个实施例提供的充电装置的充电控制方法流程图;
图15为本申请的又一实施例提供的充电装置的充电控制方法流程图;
图16为本申请的又一实施例提供的充电装置的充电控制方法流程图。
为了解决园林团队在外持续工作一天直流电源难以获得的问题,本申请提供一种充电装置,该充电装置可以将电能从一个直流储能模块转移至一个或多个电动工具电池包,并且还可以利用交流电源为该直流储能模块和多个电动工具电池包补电。园林团队外出工作时,可以将该充电装置放在车辆上随园林团队移动,同时携带一个大容量直流储能模块,从一家花园转场至另一家花园为园林团队所携带的电池包充电,通过携带该移动式补能装置,可以缓解园林团队外出工作时使用电动工具的用电焦虑问题。
参考图1,本申请的一个实施例提供一种充电装置110,充电装置110可连接第一储能模块120,用于将第一储能模块120存储的直流电能进行转换,为外部设备充电。充电装置110还可以连接交流电源,将交流电源的电能转换为直流电能为外部设备充电。本实施例中,充电装置110和第一储能模块120可拆卸地连接,充电装置110上设置有第一直流接口单元(图1未示出),第一储能模块120可通过线缆连接第一直流接口单元,从而与充电装置110连接。
参考图1和图2,充电装置包括第一充电模块130、第二充电模块150和充电接口模块140。充电接口模块140至少包括第一直流接口单元141和第二直流接口单元142,第
一直流接口单元141用于连接第一储能模块120,第二直流接口单元142用于连接第二储能模块。如图1所示,第二直流接口单元142设置于充电装置110的壳体上,本实施例中,第二储能模块可以包括电动工具的电池包,电动工具的电池包可以直接插接在第二直流接口单元142上。
第一充电模块130的第一端连接第一直流接口单元141,第一充电模块130的第二端连接第二直流接口单元142,第一充电模块130用于对第一储能模块120存储的直流电能进行转换,以便为第二储能模块充电。也即第一充电模块130为DCDC(Direct Current-Direct Current,直流转直流)模块,第一充电模块130用于将第一储能模块120存储的直流电能转换为适于向第二储能模块充电的直流电能。通常,第一充电模块130用于进行电压转换,以将输入端接收到的电压转换为与第二储能模块适配的输出电压。
充电接口模块140还包括交流输入接口143,交流输入接口143用于连接交流电源。第二充电模块150的第一端连接交流输入接口143,第二充电模块150的第二端连接第一直流接口单元141,第二充电模块150用于将交流电源的电能转换为直流电能,并输出至第一直流接口单元141,以便为第一储能模块120充电。也即第二充电模块150为ACDC(Alternating Current-Direct Current,交流转直流)模块。
第二充电模块150还用于将交流电源的电能转换为直流电能,不经过第一储能模块传输至第二直流接口单元142,通过直流电能为第二储能模块充电。
本实施例中,第一充电模块110既包括DCDC充电模块,也包括ACDC充电模块,既可以连接直流电源,也可以连接交流电源。当园林团队白天外出工作且交流电源不可获得时,可以直接通过携带一个大容量的第一储能模块120,利用直流电能为第二储能模块(例如电动工具电池包)充电,解决了园林团队外出工作时的用电焦虑问题。当夜间园林团队不工作时,可以利用交流电源为第二储能模块和作为充电电源需要携带外出的第一储能模块充电,使得园林团队外出工作时可以携带满电的多个电池包和满电的直流电源。并且,利用交流电源为第二储能模块充电时,交流电源的电能无需经过第一储能模块先存储再释放至第二储能模块,从而可以不损失第一储能模块的寿命,延长第一储能模块的使用时间。
在一个实施例中,第一直流接口单元141可以包括多个第一直流接口,多个第一直流接口并联连接至第一充电模块130和第二充电模块150,以使多个第一直流接口连接的多个第一储能模块120并联连接,以实现扩容。
在一个实施例中,第二充电模块150为第一储能模块120和第二储能模块充电的实现方式有多种:
作为一种示例,如图2所示,第二充电模块150可以通过第一直流接口单元141直接连接第一储能模块120,使得外部交流电源通过第二充电模块150为第一储能模块120充电。第二充电模块150还连接第一充电模块130,使得外部交流电源产生的交流电通过第二充电模块150转换成直流电后,再通过第一充电模块130转换为适于为外部的第二储能模块充电的直流电能。由此,外部交流电源可以为额定电压不同的第一储能模块120和第二储能模块充电。
作为又一种示例,当第二储能模块和第一储能模块120的额定电压不同时,第二充电模块150还可以包括两个ACDC模块,如图3所示,第二充电模块150包括ACDC1模块和ACDC2模块,ACDC1模块连接第一直流接口单元141,ACDC2模块连接第二直流接口单
元142,从而外部电源通过ACDC1模块为第一储能模块120充电,并通过ACDC2模块为第二储能模块充电。第一储能模块120通过DCDC模块为第二储能模块充电。可以理解的是,当第二储能模块和第一储能模块120的额定电压相同时,第二充电模块150也可以仅包括一个ACDC模块,一个ACDC模块分别连接第一直流接口单元141和第二直流接口单元142,ACDC模块分时或同时为第一储能模块120和第二储能模块充电。
由于第一储能模块的额定电压与第二储能模块的电压可能不同,为了节约成本,减少ACDC模块的使用,因此,优选地,采用图2所示的实施方式,也即第二充电模块150的输出端直接连接第一直流接口单元141,为第一储能模块120充电;第二充电模块150通过第一充电模块130连接第二储能模块;第一储能模块120也通过第一充电模块130连接第二储能模块。并且,通过如此设置,当交流电源为第二储能模块充电时,电能无需经过第一储能模块120,从而减少了第一储能模块120的充放电次数,提高了第一储能模块120的使用寿命。
在一个实施例中,如图4所示,充电装置还包括控制模块(图4未示出)和开关模块160,开关模块160连接控制模块,用于接收控制模块的控制信号,以在控制信号的作用下导通或断开。开关模块160包括回路开关161,回路开关161设置于第一充电模块130到第二直流接口单元142之间,用于控制第一充电模块130至第二直流接口单元142的回路通断。开关模块160还包括充电开关162,充电开关162一端连接第一直流接口单元141,另一端分别连接第一充电模块130和第二充电模块150,用于控制第一储能模块120接入充电装置110或从充电装置110断开。进一步地,控制模块用于检测充电装置的输入电源的类型,并根据输入电源的类型控制控制回路开关161和切换开关162的通断,以切换为第二储能模块充电的输入电源。其中,输入电源包括外部交流电源和/或第一储能模块120。需要说明的是,第一储能模块120既可以用作充电装置110的输入电源,又可以用作通过充电装置110接收电能的用电装置。
当控制模块判断交流电源和第一储能模块120均接入时,控制模块主要控制交流电源为第二储能模块充电。当交流电源有余力时,还可以为第一储能模块120充电。具体地,本实施例中由于第二储能模块为供用户使用的电池包,为了避免用户等待能源时间长影响工作效率,控制模块优先响应第二储能模块的请求充电功率,并控制交流电源优先为第二储能模块充电。
控制单元获取第二储能模块的请求充电功率,并判断第二储能模块的请求充电功率是否大于第二充电模块150的最大输出功率。当第二储能模块的请求充电功率小于第二充电模块150的最大输出功率时,控制模块控制充电开关162和回路开关161同时闭合,并控制交流电源同时为第二储能模块和第一储能模块120充电。从而在交流电源为第二储能模块充电有余力时,还可以同时为第一储能模块充电,最大化利用交流电源的输出功率,提高充电效率。
当第二储能模块的请求充电功率大于第二充电模块150的最大输出功率时,控制模块控制充电开关162和回路开关161同时闭合,并控制交流电源和第一储能模块120同时为第二储能模块充电。也即,当第二储能模块的请求充电功率大于第二充电模块150的最大输出功率时,由于交流电源无法满足第二储能模块的充电需求,此时,控制模块交流电源和第一储能模块120同时为第二储能模块充电。当第二储能模块充满后,控制模块控制回路开关161断开,并控制充电开关162闭合,以使交流电源为第一储能模块120充电。
当第二储能模块的请求充电功率等于第二充电模块的最大输出功率时,控制模块控制回路开关161和充电开关162依次闭合,并控制交流电源依次为第二储能模块和第一储能模块120充电。
优选地,第二储能模块的额定电量小于第一储能模块的额定电量,由于第二储能模块为供用户使用的电池包、且第二储能模块的额定电量小、充电速度块,控制模块先控制回路开关闭合161、充电开关162断开,以使交流电源先为第二储能模块充电。当第二储能模块充满后,控制模块再控制充电开关162闭合、回路开关161断开,以使交流电源为第一储能模块120充电。
进一步地,当控制模块判断输入电源仅包括第一储能模块120时,控制模块控制回路开关161和充电开关162闭合,以使第一储能模块120为第二储能模块充电。当控制模块判断输入电源仅包括交流电源时,控制模块控制回路开关161闭合、充电开关162断开,使交流电源为第二储能模块充电。
作为另一种示例,当输入电源包括外部交流电源时,无论此时输入电源是否包括第一储能模块120,均采用外部交流电源为第二储能模块充电,以节约第一储能模块120的电量。
在一个实施例中,第二储能模块也可以通过第一充电模块130为第一储能模块120充电。也即,第一充电模块130为双向DCDC充电模块,第一储能模块120可以通过该DCDC充电模块为第二储能模块充电,第二储能模块也可以通过该DCDC模块为第一储能模块120充电。本实施例中,第二储能模块可以是电池包,也可以是自行走工具。优选地,由于自行走工具存储的电量较多,因此当自行走工具在花园内的工作完成后,可以利用自行走工具为第一储能模块120充电。
在一个实施例中,如图6所示,当第二储能模块为电池包时,电池包包括第一容量电池包211和第二容量电池包212,第一容量电池包211的额定电量大于第二容量电池包212的额定电量。第一容量电池包211和第二容量电池包212均可以直接插接于第二直流接口单元142上,以便充电装置110在连接直流电源或交流电源时为第一容量电池包211和第二容量电池包212充电。本实施例中,第一充电模块130还用于将第一容量电池包211的存储的电能进行转换,并为第二容量电池包212充电。
具体地,园林团队外出工作时通常会带数个大容量的第一容量电池包211和数个小容量的第二容量电池包212。第一容量电池包211的额定电量不小于第二容量电池包212的额定电量的2倍。优选地,第一容量电池包211的额定电量为第二容量电池包212的额定电量的2倍~3倍。由于第二容量电池包212的额定电量小于第一容量电池包211,相应地,第二容量电池包212的重量也小于第一容量电池包211。因此,第一容量电池包211用于安装于割草机上为割草机供电,用户无需直接负担第一容量电池包211的重量。第二容量电池包212用于安装于手持式电动工具,如打草机、修枝机和吹风机等。当用户利用割草机将割草工作完成后,再用打草机、修枝机和吹风机完成其他工作。当第二容量电池包212电量耗尽时,且充电装置110未接入第一储能模块120和外部交流电源,用户也可以通过第一容量电池包211为第二容量电池包212补电,此时,控制模块控制充电开关162断开,并控制回路开关161闭合,以使第一容量电池包211可以为第二容量电池包212充电。
在一个实施例中,充电接口模块还包括第三直流接口单元,第三直流接口单元主要用作直流输入接口,用于连接外部的直流电源,通过外部直流电源为第一储能模块120
和第二储能模块充电。具体来说,外部直流电源可以是太阳能电源,当园林团队在外工作时,可以利用太阳能电源为第一储能模块120和电池包等充电,从而使得园林团队在白天工作时也可以进行补能。采用外部直流电源补能时,优选地,外部直流电源可以先为连接至储能式充电装置上的第二储能模块充电,第二储能模块充满后,再为第一储能模块120充电。
在一个实施例中,第二充电模块150还可以直接连接充电接口模块140,使得第二充电模块150转换的直流电能直接输出至充电接口,充电接口可以连接逆变器,通过逆变器将直流电能逆变为交流电能,供交流工具使用。当然,第二充电模块150也可以不连接充电接口模块140,外部逆变器可以接收第一充电模块130(DCDC)输出的直流电能进行逆变。但相较于接收ACDC的电能进行逆变,接收DCDC的电能逆变时,电能先经过ACDC,再经过DCDC,输出功率会降低。因此,本实施例优选地通过ACDC连接充电接口,外部逆变器直接接收ACDC输出的直流电进行逆变。
上述实施例提供的方案可以与其他任一实施例结合,也即,本申请提供的充电装置110具有多种补能方式,既可以通过交流电源为第一储能模块120和电动工具电池包(也即第二储能模块),也可以利用第一储能模块120为电动工具电池包补能,也可以利用大容量的电池包为小容量电池包补能,还可以利用外部的直流电源,例如太阳能为第一储能模块120和电动工具电池包补能,还可以提供交流电能连接外部插座,为用户的交流设备供电,从而满足不同场景下的用户需求,还可以解决用户再户外使用电动工具时的用电焦虑问题。
进一步地,为了提高充电装置110的充电效率,让充电装置110可以为多个电池包充电,如图5所示,第一充电模块130包括至少两个充电单元,第二直流接口单元142包括至少两个充电接口,每个充电单元的输入端均通过第一直流接口单元141连接第一储能模块120,每个充电单元的输入端还连接第二充电模块150,每个充电单元的输出端连接至少一个充电接口,以使两个充电单元可以同时或依次为电池包充电。
示例性地,第一充电模块130可以包括两个充电单元,每个充电单元分别连接一个充电接口,或每个充电单元分别连接两个充电接口,或其中一个充电单元连接一个充电接口,另一个充电单元连接两个充电接口。或者,第一充电模块130可以包括三个充电单元,每个充电单元各连接一个或多个充电接口等。充电单元和充电接口的数量可以根据充电需求及储能式充电装置100的尺寸进行设置,本申请不做限制。
在一个实施例中,当一个充电单元连接多个充电接口时,多个充电接口并联。同一时刻,充电单元为其中一个充电接口连接的第二储能模块充电,也即,充电单元分时为连接的第二储能模块充电。或者,当充电单元连接的多个第二储能模块的电压相同时,充电单元也可以同时为多个第二储能模块充电。亦或者,当充电单元连接的多个第二储能模块的电压相同时,充电单元可以先轮流为多个第二储能模块充电,以使多个第二储能模块的电压均充到预设电压,再同时为多个第二储能模块充电,直至多个第二储能模块充满。本实施例中,为了简化充电装置110的充电控制逻辑,同时保障第二储能模块的充电效率,当一个充电单元连接多个第二储能模块时,充电单元轮流为多个第二储能模块充电,从而可以以最快速度充满其中一个第二储能模块,便于用户使用。
本实施例中,每个充电单元均为DCDC转换单元,用于将第一储能模块120存储的直流电能转换为第二储能模块所需的直流电能。当然,在其他实施方式中,充电单元不限于DCDC转换单元,也可以是直流-交流转换单元(也即DCAC转换单元),或充电单元同
时包括DCDC转换单元和DCAC转换单元。
作为一个具体示例,如图5所示,第一充电模块130包括两个充电单元,分别为第一充电单元131和第二充电单元132,第二直流接口单元142包括三个充电接口,分别为第一充电接口142ba、第二充电接口142b和第三充电接口142c,回路开关161的数量与充电接口的数量相同,回路开关161相应地包括第一开关K1、第二开关K2和第三开关K3。第一充电单元131的输出端通过回路开关K1连接第一充电接口142ba,第二充电单元132的输出端分别通过回路开关K2、K3连接第二充电接口142b和第三充电接口142c。充电开关162包括开关K5,第一充电单元131和第二充电单元132的输入端均通过开关K5连接第一储能模块120。本示例中,第一开关K1、第二开关K2、第三开关K3和充电开关K5可以是由并联的两个开关模块组成,即使其中一个开关端元短路时,另一个开关模块仍然可以正常断开,实现双保险。
第一充电单元131和第二充电单元132为两个独立的充电单元,可以分时工作,也可以同时工作。当第一充电单元131和第二充电单元132分时工作时,其中一个充电单元为与其连接的第二储能模块充电完成后,另一个充电单元才开始为与其连接的第二储能模块充电。当第一充电单元131和第二充电单元132同时工作时,两个充电单元可以同时为各自连接的一个第二储能模块充电,也即储能式充电装置100同时为两个第二储能模块充电。本实施例通过设置多个DCDC充电单元,在多个第二储能模块请求的充电电流不同的情况下,储能式充电装置可以为多个第二储能模块同时充电。
本实施例中,单个充电单元的最大输出功率不小于1.8KW。示例性地,单个充电单元的最大输出功率为1.8KW、2KW、2.4KW。优选地,单个充电单元的最大输出功率为3.6KW。由于单个充电单元的输出功率较大,从而可以支持为电池包实现快速充电。并且当多个充电单元同时工作时,可以为多个电池包同时快速充电,避免园林团队外出工作时由于等待能源影响工作效率。
进一步地,本实施例提供的充电装置110为第二储能模块充电时,具有至少两种充电模式,分别为第一充电模式(也为普通充电模式)和第二充电模式(也为快速充电模式)。对于同一第二储能模块,第一充电模式下,第一充电模块130输出端的最大输出功率小于第二充电模式下第一充电模块130输出端的最大输出功率。也就是说,对于同一第二储能模块,从空电状态(例如SOC小于等于5%)充电至满电状态(例如SOC大于等于95%),在第二充电模式下所需的充电时间小于在第一充电模式下所需的充电时间。
在一个实施例中,储能式充电装置100还包括人机交互模块,人机交互模块连接控制模块,人机交互模块用于接收用户下发的快速充电指令,其中,快速充电指令用于指示储能式充电装置进入第二充电模式。当为第二储能模块充电时,控制模块可以根据用户的指令,在第一充电模式和第二充电模式之间切换。本申请中,第二充电模式的充电优先级高于第一充电模式的充电优先级。也即,当人机交互模块未接收到快速充电指令时,控制模块控制储能式充电装置进入第一充电模式;当人机交互模块接收到快速充电指令时,控制模块控制储能式充电装置进入第二充电模式。
在第一充电模式下,单个充电单元的输出功率即可满足电池包的充电需求,因此控制模块控制单个充电单元为与其对应连接的单个电池包充电。示例性地,储能式充电装置通过第一充电单元131为第一充电接口142ba连接的电池包200充电,和/或通过第二充电单元132轮流为第二充电接口142b和第三充电接口142c连接的电池包200充电。在第一充电模式下,充电单元输出至单个充电接口的最大输出功率不小于1.8KW,示例性
地,单个第二直流接口单元142的最大输出功率在1.8KW~3.6KW,例如,最大输出功率可以是1.8KW、2KW、2.4KW、3KW、3.6KW。
在第二充电模式下,控制模块获取第二储能模块的请求充电功率,并比较第二储能模块的请求充电功率和单个充电单元的最大输出功率。当请求充电功率小于等于单个充电单元的最大输出功率时,单个充电单元的输出功率即可满足电池包的快速充电需求,控制模块控制单个充电单元为第二储能模块充电。当请求充电功率大于单个充电单元的最大输出功率时,需要多个充电单元的输出功率之和才能满足快速充电需求,此时控制模块控制至少两个充电单元并联后为单个第二储能模块充电。
进一步地,开关模块160还包括切换开关163,切换开关163设置于相邻两个充电单元之间,切换开关163的另一端连接另一个充电单元和与其对应连接的充电接口的连接点。也即如图5所示,切换开关K4的一端连接第一充电单元131的输出端,切换开关K4的另一端连接第二充电的那元132的输出端,用于控制第一充电单元131和第二充电单元132的连接关系。当切换开关K4闭合时,第一充电单元131和第二充电单元132的输出端互连,从而相邻两个充电单元并联连接。当切换开关K4断开时,相邻两个充电单元的输出端断开连接。从而控制模块可以根据第二充电模式下电池包的请求充电功率,判断是否控制切换开关163闭合,当电池包的请求充电功率小于等于单个充电单元输出的最大输出功率时,控制模块控制切换开关163闭合,以使至少两个充电单元闭合;当电池包的请求充电功率大于单个充电单元输出的最大输出功率时,控制模块控制切换开关163断开,以使至少两个充电单元的输出端断开连接,每个充电单元分别为对应连接的电池包充电。
示例性地,本本实施例供两种电池包,分别为第一容量电池包211和第二容量电池包212,第一容量电池包211的额定容量小于第二容量电池包212的额定容量。由于电池包的额定容量不同,同一充电倍率下,电池包所需的充电功率也不同。小容量电池包在第二充电模式下的请求充电功率小于大容量电池包在第二充电模式下的请求充电功率。示例性地,在第二充电模式下,第一容量电池包211的请求充电功率为6KW,第二容量电池包212的请求充电功率为2.4KW。本实施例中,单个充电单元的输出功率为3.6KW。因此,在第二充电模式下,当控制模块接收到请求充电功率为6KW时,控制切换开关163闭合,以使第一充电单元131和第二充电单元132并联后为第一充电接口142ba连接的第一容量电池包211充电。从而第一充电接口142ba的输出功率为第一充电单元131和第二充电单元132的输出功率之和,由于充电接口的输出功率大,相应地,电池包200的充电速度快,充电时间缩短,从而实现快速充电。当控制模块接收到请求充电功率为2.4KW时,控制单个充电单元为该电池包充电。上述实施例中仅以切换开关包括一个开关为例进行说明,实际方案中,当充电单元有多个时,切换开关也可以不止一个。例如,当充电单元有n个时(n为大于2的整数),则切换开关至多可以有n-1个。
可以理解的是,在第二充电模式下,并联的充电的单元的数量可以根据电池包的请求充电功率选择,并不限定为两个。
在一个实施例中,在第二充电模式下,第一充电模块130输出的最大功率不小于3.6KW,示例性地,第一充电模块130输出的最大输出功率可以是3.6KW、4KW、4.8KW、6KW或7.2KW等。其中,第一充电模块130的输出功率为第一充电模块内参与为电池包充电的多个充电单元的输出功率之和。作为一个具体示例,在第一充电模式下,第一充电模块130输出至单个第二直流接口单元142的输出功率为3.6KW,在第二充电模式下,
第一充电模块130输出至单个第二直流接口单元142的输出功率为7.2KW。在第一充电模式下,对于一个0.2KWH的电池包,储能式充电装置可以在8-15分钟内充满,并在5-12分钟内将空电电池包充至额定电量的80%。对于一个0.6KWH电池包,储能式充电装置可以在13-25分钟内充满,并在9-22分钟内将空电电池包充至额定电量的80%。在快速充电模式下,对于一个0.2KWH的电池包,充电装置可以在4-7分钟将其充满,对于一个0.6KWH电池包,电装置可以在8-15分钟内将其充满。因此,当园林团队急需用电池包时,可以开启快速充电模式,减少用电等待时间。
上述实施例通过提供两种充电模式,使得用户急需使用电池包时,可以开启快速充电模式,当用户不急需用电时,开启普通充电模式,满足用户不同场景下的使用需求。
进一步地,在第二充电模式下,可以预先设置储能式充电装置上某一充电接口为第二充电模式下的充电接口。当指定某一充电接口为快速充电接口时,若控制模块检测到指定充电接口未安装电池包210,其他充电接口安装电池包210,即使控制模块接收到快速充电指令,仍然不会启动快速充电模式。当然,也可以不预先设定某一接口为快速充电接口,而是由用户指定快速充个电接口。例如,用户在下发快速充电指令的同时通过人机交互模块指定其中一个充电接口为快速充电接口,则充电装置110在接收到快速充电指令及相应的充电接口后,对该充电接口连接的电池包210进行快速充电。或者当充电装置110上有三个充电接口,且仅其中一个充电接口上安装有电池包210,则用户在下发快速充电指令后,充电装置110识别连接电池包210的充电接口,并将该接口作为快速充电接口,对该充电接口连接的电池包210进行快速充电。
如前所述,本实施例中充电装置100具有三个充电接口,作为一个具体示例,设置第一充电接口142ba用作第二充电模式下的充电接口,可以在客体上的相应接口处标识,以便用户识别。同时,第一充电接口142ba也可以用做第一充电模式的接口,也即,第二充电模式下的充电接口为第一充电接口142ba,第一充电模式下的充电接口为第一充电接口142ba、第二充电接口142b和第三充电接口142c。当用户下发快速充电指令,且未指定快速充电接口时,充电装置110对第一充电接口142ba连接的电池包进行快速充电。
如前所示,充电装置110包括人机交互模块,用于接收快速充电指令,以使控制模块根据快速充电指令进入第二充电模式。进一步地,控制模块在接收到快速充电指令时,并非立即控制充电装置进入第二充电模式,控制模块还获取输入电源的信息,根据输入电源的信息判断充电装置是否允许进入第二充电模式。
具体来说,由于第二充电模式下单个充电接口输出的充电功率较大,因此只有当输入电源的功率大于第二充电模式下电池包所需的充电功率时,才能进行快速充电。本实施例中,当输入电源为交流电源时,控制模块禁止储能式充电模式进入第二充电模式。当输入电源包括第一储能模块120时,例如输入电源为第一储能模块120,或输入电源为第一储能模块120和交流电源,控制模块获取第一储能模块120的状态信息,并根据第一储能模块120的状态信息判断储能式充电装置是否允许进入第二充电模式。其中,第一储能模块120的状态信息包括第一储能模块120的剩余电量和温度。当第一储能模块120的剩余电量小于预设电量时,控制模块禁止储能式充电模式进入第二充电模式。当第一储能模块120的剩余电量大于等于预设电量时,控制模块还进一步判断第一储能模块120的温度是否满足预设温度条件,当第一储能模块的温度满足预设温度条件时,允许储能式充电装置进入第二充电模式,否则,禁止储能式充电装置进入第二充电模式。
其中,预设电量可以是第一储能模块120的额定电量的10%、或15%、或20%,具体可以根据第一储能模块的额定电量的大小进行选取。
在另一个实施例中,当输入电源包括第一储能模块120时,控制模块不仅获取第一储能模块120的状态信息,还获取电池包的状态信息,当第一储能模块120的状态信息和电池包的状态信息均满足预设条件时,才允许储能式充电装置进入第二充电模式。具体来说,第一储能模块120的状态信息包括第一储能模块120的剩余电量和第一储能模块120的电池温度,电池包的状态信息包括电池包的温度,当第一储能模块120的剩余电量大于等于预设电量、第一储能模块120的电池温度满足第一预设温度条件且电池包的温度满足第二预设温度条件时,允许进入第二充电模式,否则禁止进入第二充电模式。
在一个实施例中,在第一充电模式下第一充电模块130的多个充电单元可以同时工作,也可以分时工作。进一步地,控制模块判断至少两个充电单元对应的充电接口均连接有第二储能模块时,控制模块还用于获取输入电源的信息,根据输入电源的信息控制至少两个充电单元同时为第二储能模块充电或依次为第二储能模块充电。
当输入电源为交流电源,控制模块控制至少两个充电单元同时为第二储能模块充电,以使多个第二储能模块尽量同时充满。当输入电源包括第一储能模块120,且第一储能模块120的剩余电量小于预设电量时,控制模块控制至少两个充电单元依次为第二储能模块充电。当输入电源为第一储能模块120,且第一储能模块120的剩余电量大于等于预设电量,控制模块控制至少两个充电单元同时为第二储能模块充电。
进一步地,在第一充电模式下,当多个充电单元同时工作时、每个充电单元输出至单个充电接口的最大输出功率小于等于当多个充电单元依次工作时、每个充电单元输出至单个充电接口的最大输出功率。
具体地,当多个充电单元同时工作时,每个充电单元输出至单个充电接口的最大输出功率不小于1.8KW;当多个充电单元依次工作时,每个充电单元输出至单个充电接口的最大输出功率不小于3KW。示例性地,当多个充电单元同时工作时,每个充电单元输出至单个充电接口的最大输出功率可以是1.8KW或2.4KW,当多个充电单元依次工作时,每个充电单元输出至单个充电接口的最大输出功率可以是3KW;或者,当多个充电单元同时工作时,每个充电单元输出至单个充电接口的最大输出功率可以是3KW,当多个充电单元依次工作时,每个充电单元输出至单个充电接口的最大输出功率可以是3.6KW;或者当多个充电单元同时工作时,每个充电单元输出至单个充电接口的最大输出功率可以是3.6KW,当多个充电单元依次工作时,每个充电单元输出至单个充电接口的最大输出功率可以是3.6KW。
在第一充电模式下,控制模块判断单个充电单元连接的多个充电接口接入至少两个第二储能模块时,控制模块还用于获取多个第二储能模块的信息和输入电源的信息,并根据第二储能模块的信息和输入电源的信息按照预设的优先级为多个第二储能模块和所述第一储能模块充电。
具体来说,本实施例中,如图7所示,第二储能模块包括电池包210和自行走工具220,电池包210用于可拆卸地安装于电动工具上,为电动工具供电,自行走工具220具有内置电池,用于供自行走工具行走及工作。当充电装置为电池包210充电时,电池包210可以直接插入充电接口。当为自行走工具220充电时,可以通过适配器230为自行走工具220充电。适配器230一端连接充电装置的第一直流接口单元,另一端连接自行走工具220的充电接口。可以理解的是,充电装置不仅可以通过适配器为自行走工具充
电,也可以通过适配器为其他储能工具充电,本申请仅以储能式自行走工具作为示例。
控制模块判断充电接口模块连接的第二储能模块是否包括电池包210和自行走工具220,当第二储能模块包括电池包210和自行走工具220,控制模块判断输入电源是否包括交流电源,当输入电源包括交流电源,电池包210的充电优先级高于第一储能模块120的充电优先级,第一储能模块120的充电优先级高于自行走工具220的充电优先级。也即控制模块控制充电装置110先为电池包210充电,电池包210充满后,再为第一储能模块120充电,当第一储能模块120充满后,为自行走工具充电。当控制模块判断输入电源不包括交流电源,电池包210的充电优先级高于自行走工具220的充电优先级。通常,有交流电源的场景为园林团队夜间回到室内的补电场景,夜间补电情况下,控制模块控制交流电源优先为电池包充电,以便园林团队可以在白天带上满电的电池包工作,其次为第一储能模块120充电,以便园林团队白天可以带上满电的第一储能模块120为电池包补能,最后再为自行走工具充电。无交流电源接入的场景通常为白天在户外工作的场景,此时充电装置110通过第一储能模块120为电池包和自行走工具充电,由于电池包的额定容量小于自行走工具的额定容量,因此电池包充电速度块,为了避免用户等待,优先为电池包充电。
在另一个实施例中,当无交流电源接入时,为了让自行走工具220可以优先充满电后工作,用户还可以通过人机交互模块下发优先充电指令,用于指示充电装置110优先为自行走工具充电。
具体地,自行走工具内存储的电量不小于5KWh。示例性地,自行走工具内存储的电量可以是5KWh、7KWh或10KWh。优选地,自行走工具内存储的电量为7.7KWh。由于自行走工具的容量较大,难以短时间内快速将自行走工具充满,用户在下发优先充电指令时,可以指示充电装置为自行走工具充电至指定电量。当人机交互模块接收到优先充电指令时,所述控制模块优先为自行走工具220充电,充至指定电量后,再为电池包210充电,电池包充满后,若控制模块检测到自行走工具仍连接充电装置110,则控制充电装置110继续为自行走工具220充电,以使自行走工具220充满。当人机交互模块未接收到优先充电指令时,控制模块先为电池包210充电,使得用户可以先利用已充满的电池包210工作,电池包210充满后,控制模块再控制储能式充电装置为储能式自行走工具220充电。
在一个实施例中,当充电装置为多个电池包充电时,控制模块获取多个电池包的数字通信方式,并根据数字通信方式控制对多个电池包的充电顺序。
本实施例中,充电装置的充电接口包括至少两种数字通信端子,用于分别于具有不同数字通信类型的电池包通信。相应地,充电装置内包括至少两种数字通信模块,用于分别与两种数字通信端子连接。具体地,充电装置的数字通信端子至少包括CAN(Controller Area Network,局域通信网络)通信端子和串口通信端子,用于分别与具有CAN通信的电池包和具有串口通信的电池包通信。
本实施例,当充电装置110与电池包通信时,优先通过CAN通信端子与电池包进行数字通信,当CAN通信失败,则采用串口通信端子与电池包进行数字通信。控制模块通过通信端子识别电池包的通信类型,并根据通信类型控制对多个电池包的充电优先级。也即,具有不同数字通信类型的电池包,其被充电的优先级也不同。具体地,当控制模块识别到差分通信端子时,优先控制充电装置110为具有差分通信端子的第二储能模块充电,当具有差分通信端子的第二储能模块充满后,再为具有串口通信的第二储能模块
充电。
进一步地,当多个电池包的数字通信类型相同时,控制模块通过通信识别多个电池包的插入顺序,并根据电池包的插入顺序控制单个充电单元对多个电池包的充电顺序。其中,先插入的电池包210的充电优先级高于后插入的电池包210的充电优先级。当多个电池包210的插入顺序相同时(例如多个电池包210先插入储能式充电装置,然后储能式充电装置上电),控制模块按照多个电池包210的剩余电量控制充电顺序,其中,剩余电量高的电池包210的充电优先级高于剩余电量低的电池包210的充电优先级。当然,控制模块也可以先按照多个电池包210的剩余电量控制多个电池包210的充电顺序,当多个电池包210的剩余电量相同时,再按照多个电池包210的插入顺序控制多个电池包210的充电顺序。
可以理解的是,控制模块可以通过与电池包通信识别第二储能模块的类型、获取电池包的插入顺序及第二储能模块的剩余电量。
在一个实施例中,电池包200可以通过直接插接在充电装置的充电接口上获取电能,也可以通过线缆连接至充电装置的充电接口上。当电池包200插接在充电装置的充电接口上时,充电接口输出的实际输出功率大于电池包200通过线缆连接充电装置时的实际输出功率。
如图8所示,当电池包210通过线缆连接至充电装置时,电池包210安装于背负装置310上,并通过背负装置310连接充电装置。背负装置310具有电池包安装位,电池包200可拆卸地安装于背负装置310的电池包安装位上。背负装置310还具有线缆311和第一接口312,其中第一接口312的形状、尺寸与电池包200的充放电接口的形状、尺寸均相同,从而第一接口312可以插接至充电装置的任意一个充放电接口上,使得充电装置可以通过线缆为电池包充电。
当充电装置通过线缆为电池包充电时,其充电功率小于电池包200直接插接在充电装置100上充电的充电功率。原因在于,通常当电池包安装于背负装置310上为电动工具供电时,用户将背负装置310背负于背部,背负装置310通过线缆311和第一接口312连接电动工具。若充电装置100通过背负装置310为电池包200充电时提高充电功率,则线缆的过流能力也需要相应地增大,势必会导致线缆变粗,给用户背负使用时带来不便。
进一步地,本申请通过设置电池包接口的充放电端子和线缆接口的充放电端子结构相异,使得充电装置100可以识别电池包的充电类型是电缆充电还是直插充电。
具体来说,充电装置110的充电接口设置有充电极片,电池包220的充电接口设置有接口槽,每个接口槽内均设有充电触头,当电池包210插接在充电装置110上时,充电装置110端的充电极片可以插入在电池包210侧的接口槽内,并与充电触头一一对应连接。背负装置310的第一接口312也具有接口槽,且第一接口312的接口槽数量与电池包的充电接口的接口槽数量相同。当第一接口312插接在充电装置110上时,充电装置110端的充电极片可以插入在第一接口312的接口槽内。
详细地,如图9所示,充电装置110的充电极片包括正极极片101、负极极片102、模拟信号通信极片103、第一数字信号通信极片104和第二数字信号通信极片105。也即充电装置100具有两种数字通信方式,可以与两种不同类型第二储能模块通信。本实施例中,第一数字信号通信极片104的通信类型为串口通信,第二数字信号通信极片105的通信类型为差分通信。详细地,差分通信可以是CAN(Controller Area Network,局
域通信网络)通信。第二数字信号通信极片105具有两个插片,分别为105a和105b,插片105a和插片105b相互独立,互相绝缘,且在垂直于电池包插头方向的面上,插片105a和插片105b的投影重叠。当充电装置100与第二储能模块通信时,优先通过第二数字通信极片105与第二储能模块进行数字通信,当第二数字信号通信失败,则采用第一数字信号通信极片104与第二储能模块进行数字通信。
相应地,如图10所示,本实施例提供的电池包210的充电接口包括正极触头301、负极触头302、模拟信号通信触头303、第一数字信号通信触头304和第二数字信号通信触头305。本实施例中,第一数字信号通信触头304的通信类型为串口通信,第二数字信号通信触头305的通信类型为差分通信。详细地,差分通信可以是CAN通信。第二数字信号通信触头305包括两个独立的触头,分别为触头305a和触头305b,触头305a和触头305b设置在同一端子槽内,且触头305a和触头305b之间设置有绝缘件。在与电池包插拔方向垂直的方向上,触头305a和触头305b前后排布,且触头305a和触头305b的投影相互重叠。当电池包210直接插入充电装置110的充电接口上时,正极极片101、负极极片102、模拟信号通信极片103、第一数字信号通信极片104和第二数字信号通信极片105分别与正极触头301、负极触头302、模拟信号通信触头303、第一数字信号通信触头304和第二数字信号通信触头305对接,充电装置100先通过模拟信号通信极片303激活电池包,然后通过第二数字信号通信极片105与电池包200进行数字信号通信,当通信成功时,则充电装置100识别出该电池包为直插式连接。
如图8所示,本实施例提供的背负装置310的主体上设有第二接口313,第二接口313用于与电池包210配接,背负装置312还通过线缆311连接第一接口312,第一接口312用于与充电装置100的充电接口配接。如图11所示,第二接口313具有四种极片,分别为正极极片101、负极极片102、模拟信号通信极片103和第一数字信号通信极片104。当电池包210安装至充电装置上时,第二接口313的正极极片101、负极极片102、模拟信号通信极片103、第一数字信号通信极片104分别与电池包上正极触头301、负极触头302、模拟信号通信触头303、第一数字信号通信触头304一一对应连接,电池包上第二数字信号通信触头305无连接。如图12所示,背负装置的第一接口312具有四种充电触头,分别包括正极触头301、负极触头302、模拟信号通信触头303和第一数字信号通信触头304。也即,第一接口312的五个接口槽内只有其中四个接口槽设置有充电触头,一个接口槽空置,且仅包含一种数字信号通信端子。当背负装置310的第一接口312插接至充电装置100的充电接口上时,正极极片101、负极极片102、模拟信号通信极片103、第一数字信号通信极片104分别与正极触头301、负极触头302、模拟信号通信触头303、第一数字信号通信触头304一一对应连接,第二数字信号通信极片105插入空置接口槽。当充电装置100先通过第二数字信号通信极片105与背负装置上的电池包通信时,由于第二数字信号通信极片105插入控制接口槽,无电连接,因此无通信信号,此时充电装置100再通过第一数字信号通信极片104与背负装置上的电池包通信,此时通信成功,则充电装置可以识别当前充电接口连接的是背负装置的线缆输出接口。
也就是说,通过设置电池包接口的数字信号通信端子和背负装置310的接口的数字信号端子的数量和类型不同,使得电池包210和背负装置310的第一接口310插接在充电装置110上时,数字通信类型不同,使得充电装置110可以识别电池包的连接方式是直插式还是线缆式,从而输出不同的充电功率。
如图7所示,在一个实施例中,充电装置100为自行走工具220充电时,由于自行
走工具220内的内置电池存储的电量大,相应地,体积重量也较大,因此通常用户无法自行将内置电池从壳体内拆卸出来。基于此,本申请提供一种适配器230,用于连接充电装置110和自行走工具220,从而充电装置110可以通过适配器230将电能传输至自行走工具220。适配器230具有第一接口231、第二接口232和连接第一接口231和第二接口232的第一线缆233。其中,第一接口231用于与充电装置110的充电接口配接,第二接口232用于与自行走工具220的充电接口配接。本实施例中,充电装置110上的任意一个接口均可以连接第一接口231以便传输电能,当然,也可以指定其中一个接口为自行走工具400的专用接口。作为一个具体的示例,可以指定充电装置110上的第三充电接口142c为自行走工具220的专用接口。也即,当第一接口231插入第三充电接口233时,充电装置110可以通过第二充电单元132输出直流电,并通过第三充电接口233和第一接口231传输电能至自行走工具220。
进一步地,第一接口231和第二接口232的接口结构及端子相同,且第一接口231和第二接口232的接口结构及端子均与电池包的接口结构及端子相同。如图10所示,第一接口231和第二接口232均包括正极触头301、负极触头302、第一模拟信号通信触头303、第一数字信号通信触头304和第二数字信号通信触头305,第一数字信号通信触头304的通信类型为串口通信,第二数字信号通信触头305的通信类型为差分通信。充电装置110可以与自行走工具220通过串口通信进行数字信号传输,也可以通过差分通信进行数字信号传输。优选地,充电装置100与自行走工具之间通过差分通信进行数字信号传输。
作为又一个示例,如图13所示,第一接口231和第二接口232均包括正极触头301、负极触头302、第一模拟信号通信触头303和第二数字信号通信触头305,第二数字信号通信触头305为通信类型为差分通信,第二数字信号通信触头305包括两个独立的触头,如图13所示,分别为触头305a、触头305b,触头305a和触头305b相互绝缘,在与第一接口231或第二接口232插拔方向垂直的方向上,触头305a和触头305b在同一接口槽内上下排布,且在接口槽限定的区域内,触头305a和触头305b的投影至少部分重叠,触头305a和触头305b的宽度与。也即自行走工具220只能通过差分通信与充电装置进行数字信号通信。
综上所述,充电装置110通过不同数字信号端子与第二储能模块通信时,输出的充电功率也不同。本实施例中,充电装置110通过差分通信与第二储能模块通信时,输出的充电功率可以不同于通过串口通信与第二储能模块通信时输出的充电功率。详细地,充电装置100通过差分通信与第二储能模块通信时,充电装置110通过与第二储能模块进行通信,获取第二储能模块所需的充电功率,并根据通信结果控制输出功率。当充电装置110通过串口通信与第二储能模块通信时,限制输出功率小于等于3.6KW。优选地,本实施例中,充电装置110通过差分通信与第二储能模块通信时输出功率不同于储能柜通过串口通信于第二储能模块通信时的输出功率,作为一个具体示例,充电装置110通过差分通信与第二储能模块通信时,输出功率为3.6KW,充电装置110通过串口通信与第二储能模块通信时,输出功率为2.4KW。
上述充电装置既可以利用直流电源为第二储能模块充电,也可以利用交流电源为第二储能模块充电,通过携带直流电源为第二储能模块充电可以解决园林团队在外工作时的用电焦虑问题,在有交流电源的场景下,也可以利用交流电源给第二储能模块充电,使得补电方式多样化,还可以降低能源等待时间,提高工作效率。
如图1所示,本申请的一个实施例提供一种储能式充电装置,包括第一储能模块120和充电装置110。第一储能模块120用于存储直流电能,充电装置110用于将第一储能模块120存储的直流电进行转换并为连接的电池包充电。作为一个示例,第一储能模块120和充电装置110可以设置在同一个壳体中,可以节省收纳空间。作为另一个示例,储能式充电装置100的壳体包括第一壳体和第二壳体。第一壳体用于收纳第一储能模块120,第二壳体用于收纳充电装置110。第一壳体和第二壳体可拆卸地连接,使得第一储能模块120和充电装置可拆卸,进而用户可以更换第一储能模块120。
当第一储能模块120和充电装置110可拆卸地连接时,第一储能模块120和充电装置110可以通过线缆连接,线缆一端可拆卸地连接第一储能模块120,另一端可拆卸地连接充电装置110的直流接口。
进一步地,第一储能模块120和充电装置110可以堆叠设置,从而当储能式充电装置安装于园林工具运输车辆上时,可以节省车辆内的空间。充电装置110包括第一充电模块130和充电接口模块140。
充电装置110中,第一充电模块130的输入端连接第一储能模块120的输出端,第一充电模块130的输出端连接充电接口模块140,充电接口模块140用于连接电池包。第一充电模块130用于将第一储能模块120的电能传递至充电接口模块,并为电池包充电,其中电池包用于可拆卸地安装于电动工具以便为电动工具供电。第一储能模块120为电池包充电时的第一充电倍率大于市电为电池包充电时的第二充电倍率,且第一充电倍率与第二充电倍率的比值大于1且小于等于10。
本实施例中,电池包的充电倍率为电池包接收的输入功率与电池包的额定电量的比值,也即,电池包接收的输入功率越大,电池包的充电倍率也越大,相应地,电池包的充电速度更快。第一储能模块120对电池包的第一充电倍率即为第一储能模块120输出至电池包的最大输出功率与电池包的额定电量的比值,市电对电池包的第二充电倍率即为市电的最大输出功率与电池包的额定电量的比值。传统的充电器为电池包充电时,输入电源通常为市电,收到市电功率限制,电池包的充电速度较慢。本实施例提供的储能式充电装置,利用直流储能模块为电池包充电,可以提高对电池包的充电功率,提高充电速度。
具体地,第一储能模块120提供的充电功率可以使电池包的第一充电倍率大于等于3C,优选地,第一充电功率为3C、4C、5C、6C、10C或12C。而市电提供的充电功率只能支撑电池包的第二充电倍率在1C~2C之间。因此,采用第一储能模块充电时,电池包的充电速度远大于充电器采用市电为电池包充电的速度。
相应地,对于同一电池包,第一储能模块120将电池包从空电状态充电至满电状态所需的第一充电时间小于交流电源将电池包从空电状态充电至满电状态所需的第二充电时间。
在一个实施例中,第一储能模块120的最大输出功率大于市电的最大输出功率。第一储能模块120的最大输出功率与交流电源的最大输出功率的比值大于1且小于等于10。示例性地,第一储能模块120的最大输出功率与交流电源的最大输出功率的比值可以是2、3、4、5、6、8或10。第一储能模块120的最大输出功率大于等于1.8KW;优选地,第一储能模块的最大输出功率大于等于3KW。示例性地,第一储能模块120的最大输出功率为3.6KW、4KW、5KW、6KW、7KW、10KW或12KW。市电的输出功率小于1.8KW。
在一个实施例中,第一储能模块120作为直流电源,其存储的电量大于等于2KWh。
进一步地,第一储能模块120的额定电量大于等于5KWh且小于等于20KWh。当第一储能模块120存储的电量大于20KWh,第一储能模块120的体积和重量也相应地增大,不便于携带。当第一储能模块120存储的电量小于3KWh,则无法满足园林团队外出工作一天的电量需求。通过将第一储能模块120存储的电量设置为大于等于2KWh且小于等于10KWh,储能式充电装置100存储的电能不仅可以支持园林团队外出工作至少一天,而且体积和重量便于携带。详细地,第一储能模块120存储的电量可以是3KWh、4KWh、5KWh、6KWh、7KWh、8KWh、9KWh、10KWh、12KWh、15KWh、18KWh或20KWh。优选地,第一储能模块120存储的电量可以是5KWh或7.7KWh。第一储能模块120可以是电池包,电池包包括多个电芯,多个电芯串联和/或并联连接。本实施例中,电池包可以包括15个电芯,15个电芯串联连接。第二储能模块可以是电动工具的电池包,电池包可以直接插接于电动工具上为电动工具供电。电池包的电量不大于1KWh,通常,电池包的电量在0.5KWh~0.6KWh。由于第一储能模块120存储的电量远大于电池包存储的电量,因此通过携带第一储能模块120可以为多个电池包补充电能。
本实施例中,第一储能模块120的电压平台不低于30V,优选地,第一储能模块的电压平台可以为48V、56V或60V。由于第一储能模块120存储的电量远大于电池包的额定电量,且第一储能模块120的电压平台高,因此第一储能模块120可以支持大功率放电,进而可以为电池包快速充电。进一步地,第一储能模块120的持续放电倍率不小于1C,也即第一储能模块120从剩余电量大于等于90%放电至剩余电量至少小于等于10%的持续放电过程中,放电倍率均不小于1C。从而,第一储能模块120可以支持较大的输出功率,为电池包快速充电。
进一步地,充电装置110还包括第二充电模块,第二充电模块的输入端连接市电,所述第二充电模块150用于将市电提供的交流电能转换为直流电能,第二充电模块的输出端分别连接第一储能模块120和第一充电模块,用于为第一储能模块充电,以及通过第一充电模块为所述电池包充电。本实施例提供的储能式充电装置既可以通过第一储能模块的直流电能为电池包充电,也可以通过交流电源为电池包充电,还可以利用交流电源为第一储能模块补能,从而满足不同场景下的用户需求,还可以解决用户再户外使用电动工具时的用电焦虑问题。
在一个实施例中,第一充电模块至少包括第一充电单元和第二充电单元,所述充电接口模块至少包括第一充电接口和第二充电接口。第一充电单元和第二输入单元的输入端均连接第一储能模块的输出端和第二充电模块的输出端,第一充电单元的输出端连接所述第一充电接口,第二充电单元的输出端连接第二充电接口。
在一个实施例中,充电装置还包括开关模块,开关模块至少包括第一切换开关,第一切换开关一端连接第一充电单元的输出端,另一端连接第二充电单元的输出端,用于控制充电单元的连接关系。当第一切换开关闭合时,第一充电单元的输出端和第二充电单元的输出端相互连接,以使第一充电单元和第二充电的那元的电能均输出至同一充电接口。当第一切换开关导通时,第一充电单元的输出端和第二充电单元的输出端断开连接,以使第一充电单元的电能输出至第一充电接口,第二充电单元的电能输出至第二充电接口。储能式充电装置还包括控制模块,控制模块连接第一切换开关的控制端,用于控制第一切换开关在导通状态和断开状态之间切换。
在一个实施例中,储能式充电装置至少包括第一充电模式和第二充电模式。控制模块控制第一切换开关断开时,储能式充电装置处于第一充电模式,每个充电单元分别为
与其对应连接的单个充电接口提供电能。控制模块控制第一切换开关导通时,储能式充电装置处于第二充电模式,至少两个充电单元并联后为一个充电接口提供电能。第一充电模式下的所述充电接口输出至电池包的最大输出功率小于第二充电模式下充电接口输出至电池包的最大输出功率。
在一个实施例中,在第二充电模式下,充电接口输出至电池包的最大输出功率不小于3.6KW。
在一个实施例中,充电装置110还包括人机交互模块,人机交互模块连接控制模块。控制模块用于通过人机交互模块接收快速充电指令,并根据快速充电指令控制第一切换开关导通,以使储能式充电装置进入所述第二充电模式。
关于上述实施例中充电装置的具体限定,可以参考前述实施例的限定,在此不再赘述。
本实施例的储能式充电装置,通过采用储能模块存储的直流电源为电池包充电,可以解决传统充电器从插座获取市电导致充电功率受限、充电速度慢的问题,储能模块的输出功率大于市电的功率,从而利用储能模块为电池包充电时,其充电速度也大于市电为电池包充电的充电速度。
本申请的又一实施例提供一种充电装置的充电控制方法,该方法基于前述充电装置,且该方法由前述控制装置执行。如图14所示,充电控制方法包括以下步骤:
步骤S10,获取输入电源的信息和充电任务数量,输入电源包括第一储能模块和/或交流电源,充电任务数量与外部设备的数量相关;
其中,获取充电任务数量包括,获取每个充电单元连接的充电任务数量,充电任务数量与充电单元连接的第二储能模块的数量相同。
步骤S20,根据输入电源的信息和充电任务数量,确定储能式充电装置的最大输出参数;其中,最大输出参数可以是最大输出电流或最大输出功率;
步骤S30,接收外部设备发送的请求充电参数,并比较最大输出参数和请求充电参数;其中,请求充电参数可以是请求充电电流或请求充电功率;
步骤S40,根据比较结果,按照预设的优先级为外部设备充电。
在一个实施例中,如图15所示,步骤S10中,获取输入电源的信息,包括:
步骤S11,判断输入电源是否包括第一储能模块和/或外部的交流电源;
步骤S12,当输入电源包括第一储能模块,控制第一充电模块工作,以通过第一储能模块为第二储能模块充电;
步骤S13,当第输入电源包括交流电源,控制第二充电模块工作,以便通过交流电源为第一储能模块和/或第二储能模块充电。
进一步地,如图16所示,步骤S13还包括:
步骤S131,判断第一储能模块是否接入;
步骤S132,当第一储能模块接入时,判断第一储能模块的剩余电量是否大于等于预设电量;
步骤S133,当第一储能模块的剩余电量大于等于预设电量,控制交流电源和第一储能模块同时为所述第二储能模块充电;
步骤S134,当第一储能模块的剩余电量小于预设电量,控制交流电源先为第二储能模块充电,第二储能模块充电接收后,再为第一储能模块充电。
其中,步骤S133还包括,当交流电源和第一储能模块为第二储能模块充电结束后,控制交流电源为第一储能模块充电。
在一个实施例中,步骤S20中,根据输入电源的信息和充电任务数量,确定储能式充电装置的最大输出参数,包括:判断是否接收到快速充电指令;当接收到快速充电指令时,根据输入电源的信息判断是否允许进入第二充电模式,当允许进入第二充电模式时,控制至少两个充电单元并联,为单个第二充电模块充电,并根据输入电源的信息计算第二充电模式下的最大放电参数;当不允许进入第二充电模式时,进入第一充电模式,判断第一充电模式下是否允许多个充电单元同时工作,并根据判断结果结合输入电源的信息计算多个充电单元同时工作时充电接口的最大输出功率,或多个充电单元依次工作时充电接口的最大输出功率。
上述充电装置的控制方法可以通过第一储能模块120为电动工具的电池包充电,还以通过交流电源为第一储能模块120和电池包充电,当园林团队白天外出工作且交流电源不可获得时,可以直接通过携带一个大容量的第一储能模块120,为电动工具电池包充电,解决了园林团队外出工作时的用电焦虑问题。当夜间园林团队不工作时,可以利用交流电源为电池包和第一储能模块120充电,使得园林团队外出工作时可以携带满电的多个电池包和第一储能模块120。
Claims (28)
- 一种充电装置,用于为第二储能模块充电,其特征在于,所述充电装置包括第一充电模块、第二充电模块和充电接口模块;所述充电接口模块至少包括第一直流接口单元和第二直流接口单元,所述第一直流接口单元用于连接第一储能模块,所述第二直流接口单元用于连接第二储能模块;所述第一充电模块的第一端连接所述第一直流接口单元,所述第一充电模块的第二端连接所述第二直流接口单元,所述第一充电模块用于将所述第一储能模块存储的电能进行转换并传输至所述第二储能模块,以使所述第一储能模块为所述第二储能模块充电;所述充电接口模块还包括交流输入接口,所述交流输入接口用于连接交流电源;所述第二充电模块的第一端连接所述交流输入接口,所述第二充电模块的第二端连接所述第一直流接口单元,所述第二充电模块用于将交流电能转换为直流电能并输出至所述第一直流接口单元,以便为所述第一储能模块充电;所述第二充电模块还用于将所述交流电能转换为直流电能,不经过所述第一储能模块传输至所述第二直流接口单元,以便为所述第二储能模块充电。
- 根据权利要求1所述的充电装置,其特征在于,所述第二充电模块的输出端连接所述第一充电模块,以使将所述直流电能通过所述第一充电模块传输至所述第二直流接口单元。
- 根据权利要求2所述的充电装置,其特征在于,还包括控制模块和开关模块,所述开关模块连接所述控制模块,用于接收所述控制模块的控制信号,以在所述控制信号的作用下导通或断开;所述开关模块包括回路开关,所述回路开关设置于所述第一充电模块到所述第二直流接口单元之间,用于控制所述第一充电模块至所述第二直流接口单元的回路通断;所述开关模块还包括充电开关,所述充电开关一端连接所述第一直流接口单元,另一端分别连接所述第一充电模块和所述第二充电模块,用于控制所述第一储能模块接入所述充电装置或从所述充电装置断开。
- 根据权利要求3所述的充电装置,其特征在于,所述控制模块用于判断输入电源的类型,并根据输入电源的类型控制所述充电装置对所述第二储能模块的充电方式,其中所述输入电源包括所述交流电源和所述第一储能模块;当所述控制模块判断所述交流电源和所述第一储能模块均接入时,所述控制模块还获取所述第二储能模块的请求充电功率,并判断所述第二储能模块的请求充电功率是否大于所述第二充电模块的最大输出功率;所述第二储能模块的请求充电功率小于所述第二充电模块的最大输出功率时,所述控制模块控制所述充电开关和所述回路开关同时闭合,并控制所述交流电源同时为所述第二储能模块和所述第一储能模块充电;所述第二储能模块的请求充电功率大于所述第二充电模块的最大输出功率时,所述控制模块控制所述充电开关和所述回路开关同时闭合,并控制所述交流电源和所述第一储能模块同时为所述第二储能模块充电;所述第二储能模块的请求充电功率等于所述第二充电模块的最大输出功率时,所述控制模块控制所述充电开关和所述回路开关依次闭合,并控制所述交流电源依次为所述第二储能模块和所述第一储能模块充电。
- 根据权利要求4所述的充电装置,其特征在于,所述第二储能模块的额定电量小于所述第一储能模块的额定电量;所述控制模块控制所述交流电源依次为所述第二储能模块和所述第一储能模块充电时,先控制所述回路开关闭合,为所述第二储能模块充电,当所述控制模块判断所述第二储能模块充满,再控制所述充电开关闭合,为所述第一储能模块充电。
- 根据权利要求4所述的充电装置,其特征在于,当所述控制模块判断仅所述第一储能模块接入时,所述控制模块控制所述回路开关和所述充电开关闭合,以使所述第一储能模块为所述第二储能模块充电;当所述控制模块判断仅所述交流电源接入时,所述控制模块控制所述回路开关闭合、所述充电开关断开,使所述交流电源为所述第二储能模块充电。
- 根据权利要求1或2所述的充电装置,其特征在于,所述第二充电模块的输出端连接至所述第二直流接口单元,以便将所述直流电能直接传输至所述第二直流接口单元。
- 根据权利要求1所述的充电装置,其特征在于,所述第一充电模块为双向充电模块,所述第二储能模块还用于通过所述第一充电模块为所述第一储能模块充电。
- 根据权利要求8所述的充电装置,其特征在于,所述第二充电模块包括第一容量电池包和第二容量电池包,所述第一容量电池包的额定容量大于所述第二容量电池包的额定容量;所述第一充电模块还用于将所述第一容量电池包存储的电能进行转换,并为所述第二容量电池包充电。
- 根据权利要求3所述的充电装置,其特征在于,当所述充电装置为所述第二储能模块充电时,所述充电装置至少包括第一充电模式和第二充电模式,所述第二充电模式下单个充电接口的输出功率大于所述第一充电模式下单个充电接口的输出功率。
- 根据权利要求10所述的充电装置,其特征在于,所述第二直流接口单元包括至少一个充电接口,每个所述充电接口用于可拆卸的连接一个所述第二储能模块;所述第一充电模块包括至少两个充电单元,每个充电单元的输入端均连接所述第一直流接口单元和所述第二充电模块,每个充电单元的输出端连接至少一个充电接口。
- 根据权利要求11所述的充电装置,其特征在于,所述开关模块还包括切换开关,所述切换开关设置于相邻所述充电单元之间,用于控制相邻所述充电单元的连接关系;当所述切换开关断开时,至少两个所述充电单元的输出端连接;当所述切换开关闭合时,至少两个所述充电单元的输出端断开连接。
- 根据权利要求12所述的充电装置,其特征在于,在所述第一充电模式下,单个所述充电单元用于为与其对应连接的单个所述第二储能模块提供电能;在所述第二充电模式下,所述控制模块获取所述第二储能模块的请求充电功率,并比较所述请求充电功率与单个充电单元的最大输出功率的大小,根据比较结果判断是否控制所述切换开关闭合。
- 根据权利要求13所述的充电装置,其特征在于,当所述请求充电功率小于等于所述单个充电单元的最大输出功率时,控制模块控制所述切换开关断开,以使单个所述充电单元为所述第二储能模块充电;当所述请求充电功率大于所述单个充电单元的最大输出功率时,控制模块控制所述切换开关闭合,以使至少两个所述充电单元并联后为单个所述第二储能模块充电。
- 根据权利要求10所述的充电装置,其特征在于,所述控制模块用于获取输入电 源的信息,并根据所述输入电源的信息判断所述充电装置是否允许进入所述第二充电模式。
- 根据权利要求15所述的充电装置,其特征在于,所述输入电源包括所述交流电源和/或所述第一储能模块;当所述输入电源为所述交流电源,所述控制模块禁止所述充电装置进入所述第二充电模式;当所述输入电源包括所述第一储能模块,且所述第一储能模块的剩余电量小于预设电量时,所述控制模块禁止所述充电装置进入所述第二充电模式;当所述输入电源为所述第一储能模块,且所述第一储能模块的剩余电量大于等于所述预设电量时,允许所述充电装置进入所述第二充电模式。
- 根据权利要求16所述的充电装置,其特征在于,当所述输入电源为所述第一储能模块,且所述第一储能模块的剩余电量大于等于所述预设电量时,所述控制模块获取所述第二储能模块和所述第一储能模块的温度,当所述第二储能模块和所述第一储能模块的温度满足预设温度条件时,允许所述充电装置进入所述第二充电模式。
- 根据权利要求10所述的充电装置,其特征在于,还包括人机交互模块,所述人机交互模块连接所述控制模块,所述人机交互模块用于获取用户下发的快速充电指令,所述快速充电指令用于指示所述充电装置进入所述第二充电模式;当所述人机交互模块未接收到所述快速充电指令,所述控制模块控制所述充电装置进入第一充电模式;当所述人机交互模块接收到所述快速充电指令,所述控制模块控制所述充电装置从所述第一充电模式切换至所述第二充电模式。
- 根据权利要求11所述的充电装置,其特征在于,在所述第一充电模式下,所述控制模块判断至少两个所述充电单元均连接有所述第二储能模块时,所述控制模块还用于获取输入电源的信息,并根据所述输入电源的信息控制至少两个充电单元同时或依次为至少两个所述第二储能模块充电。
- 根据权利要求19所述的充电装置,其特征在于,当所述输入电源为所述交流电源,所述控制模块控制至少两个充电单元同时为所述第二储能模块充电;当所述输入电源包括所述第一储能模块,且所述第一储能模块的剩余电量小于预设值电量,所述控制模块控制至少两个充电单元依次为所述第二储能模块充电;当所述输入电源为所述第一储能模块,且所述第一储能模块的剩余电量大于等于所述预设电量,所述控制模块控制至少两个充电单元同时为所述第二储能模块充电。
- 根据权利要求10所述的充电装置,其特征在于,单个所述充电单元连接至少两个充电接口;在所述第一充电模式下,所述控制模块判断单个所述充电单元连接的多个所述充电接口均连接有所述第二储能模块时,所述控制模块还用于获取多个所述第二储能模块的信息和所述输入电源的信息,并根据多个所述第二储能模块的信息和所述输入电源的信息控制单个所述充电单元按照预设的优先级依次为多个所述第二储能模块和所述第一储能模块充电。
- 根据权利要求21所述的充电装置,其特征在于,所述第二储能模块包括电池包和自行走工具,所述电池包用于可拆卸地安装于所述电动工具,并为所述电动工具供电,所述自行走工具具有内置式电池;所述控制模块判断所述充电接口模块连接的所述第二储能模块是否包括所述电池包和所述自行走工具,当所述第二储能模块包括所述电池包和所述自行走工具,所述控制模块判断所述输入电源是否包括交流电源,当所述输入电源包括所述交流电源,所述电池包的充电优先级高于所述第一储能模块的充电优先级,所述第一储能模块的充电优先级高于所述自行走工具的充电优先级;当所述控制模块判断所述输入电源不包括所述交流电源,所述电池包的充电优先级高于所述自行走工具的充电优先级。
- 根据权利要求22所述的充电装置,其特征在于,所述充电接口包括至少两种数字通信端子,所述充电装置用于至少通过其中一种所述数字通信端子与具有不同数字通信类型的电池包通信。
- 根据权利要求23所述的充电装置,其特征在于,所述控制模块判断每个所述充电接口是否均连接所述电池包,当每个充电接口均连接所述电池包时,所述控制模块还判断与每个充电接口连接的所述电池包的数字通信类型,根据所述数字通信类型控制所述充电装置对多个所述电池包的充电优先级。
- 根据权利要求24所述的充电装置,其特征在于,所述充电装置的数字通信端子包括串口通信端子和差分通信端子,所述充电装置用于通过所述串口通信端子与具有所述串口通信类型的电池包通信,所述充电装置用于通过所述差分通信端子与具有所述差分通信类型的电池包通信;所述控制模块判断所述电池包的数字通信类型,并控制具有所述差分通信类型的电池包的充电优先级高于具有所述串口通信类型的电池包。
- 根据权利要求24所述的充电装置,其特征在于,控制模块判断多个电池包的数字通信类型相同时,还获取多个所述电池包的插入顺序,根据所述插入顺序控制所述充电装置对所述电池包的充电顺序。
- 根据权利要求25所述的充电装置,其特征在于,所述控制模块还根据与每个充电接口连接的电池包的通信类型,控制充电单元的输出功率;所述控制模块判断所述充电装置采用串口通信类型与所述电池包通信时,所述充电接口输出的充电功率小于所述充电装置采用差分通信类型与所电池包通信时所述充电接口输出的充电功率。
- 一种储能式充电装置,包括权利要求1-27所述的充电装置,所述储能式充电装置还包括第一储能模块,所述第一储能模块连接所述充电装置,用于通过所述充电装置为第二储能模块充电,或通过所述充电装置获取电能。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210457481 | 2022-04-28 | ||
CN202210457481.3 | 2022-04-28 | ||
CN202211058090.0 | 2022-08-31 | ||
CN202211058090 | 2022-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023208163A1 true WO2023208163A1 (zh) | 2023-11-02 |
Family
ID=88477404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/091438 WO2023208163A1 (zh) | 2022-04-28 | 2023-04-28 | 充电装置及储能式充电装置 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN116979668A (zh) |
WO (1) | WO2023208163A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150171632A1 (en) * | 2013-12-12 | 2015-06-18 | Milwaukee Electric Tool Corporation | Portable power supply and battery charger |
CN207670270U (zh) * | 2017-11-14 | 2018-07-31 | 深圳前海易威管理咨询有限公司 | 储能电源系统及储能电源车 |
CN113352917A (zh) * | 2021-07-08 | 2021-09-07 | 度普(苏州)新能源科技有限公司 | 一种储能充电桩控制系统 |
CN113517750A (zh) * | 2020-03-26 | 2021-10-19 | 罗伯特·博世有限公司 | 多模块便携式发电站 |
CN113765163A (zh) * | 2020-06-01 | 2021-12-07 | 蓝谷智慧(北京)能源科技有限公司 | 一种整包梯次电池储能充电系统的控制方法、装置及系统 |
CN113752885A (zh) * | 2021-07-05 | 2021-12-07 | 深圳市誉娇诚科技有限公司 | 一种可支持直流充电国标的电动汽车充电宝 |
-
2023
- 2023-04-28 WO PCT/CN2023/091438 patent/WO2023208163A1/zh unknown
- 2023-04-28 CN CN202310483199.7A patent/CN116979668A/zh active Pending
- 2023-04-28 CN CN202310483355.XA patent/CN117458636A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150171632A1 (en) * | 2013-12-12 | 2015-06-18 | Milwaukee Electric Tool Corporation | Portable power supply and battery charger |
CN207670270U (zh) * | 2017-11-14 | 2018-07-31 | 深圳前海易威管理咨询有限公司 | 储能电源系统及储能电源车 |
CN113517750A (zh) * | 2020-03-26 | 2021-10-19 | 罗伯特·博世有限公司 | 多模块便携式发电站 |
CN113765163A (zh) * | 2020-06-01 | 2021-12-07 | 蓝谷智慧(北京)能源科技有限公司 | 一种整包梯次电池储能充电系统的控制方法、装置及系统 |
CN113752885A (zh) * | 2021-07-05 | 2021-12-07 | 深圳市誉娇诚科技有限公司 | 一种可支持直流充电国标的电动汽车充电宝 |
CN113352917A (zh) * | 2021-07-08 | 2021-09-07 | 度普(苏州)新能源科技有限公司 | 一种储能充电桩控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116979668A (zh) | 2023-10-31 |
CN117458636A (zh) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102684243A (zh) | 整合型电池充电器 | |
JP5990786B2 (ja) | 充放電システム | |
CN107627868A (zh) | 用于电动车辆的快速充电家庭系统 | |
CN103227487B (zh) | 电动自行车用燃料电池/锂离子电池混合动力能量管理系统 | |
JP2013054829A (ja) | 集線装置の機能を結合した移動式予備電源装置 | |
WO2023004659A1 (zh) | 充放电装置和电池充电的方法 | |
CN112886672A (zh) | 一种可移动智能充电柜及其控制系统 | |
CN113765163B (zh) | 一种整包梯次电池储能充电系统的控制方法、装置及系统 | |
WO2023208163A1 (zh) | 充电装置及储能式充电装置 | |
CN217720784U (zh) | 储能电源 | |
CN111446755A (zh) | 可扩容热插拔式电池电源供电系统及控制方法 | |
CN214958749U (zh) | 一种可移动智能充电柜 | |
CN115441723A (zh) | 电源转换装置 | |
CN115635902A (zh) | 一种多功能接口的移动储能车及其控制系统 | |
EP4152552A1 (en) | Battery charging method and charging and discharging apparatus | |
CN115483731A (zh) | 供电系统、工作系统、充电系统以及工作方法 | |
CN112531848B (zh) | 一种电池包及其控制方法 | |
CN114614515A (zh) | 充放电装置及其输电方法 | |
CN217335109U (zh) | 电源转换装置 | |
CN221886090U (zh) | 一种led灯用兼做充电器的适配器 | |
CN220368486U (zh) | 充电设备 | |
CN221067790U (zh) | 一种电池储能装置 | |
CN219458687U (zh) | 模块化电源系统 | |
CN219164243U (zh) | 一种直流侧储能装置 | |
CN100414570C (zh) | 家电产品用遥控器及其家电产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23795595 Country of ref document: EP Kind code of ref document: A1 |