WO2023207865A1 - 链路恢复方法、装置、设备及处存储介质 - Google Patents

链路恢复方法、装置、设备及处存储介质 Download PDF

Info

Publication number
WO2023207865A1
WO2023207865A1 PCT/CN2023/090146 CN2023090146W WO2023207865A1 WO 2023207865 A1 WO2023207865 A1 WO 2023207865A1 CN 2023090146 W CN2023090146 W CN 2023090146W WO 2023207865 A1 WO2023207865 A1 WO 2023207865A1
Authority
WO
WIPO (PCT)
Prior art keywords
emr
measurement
relay
configuration information
measurement configuration
Prior art date
Application number
PCT/CN2023/090146
Other languages
English (en)
French (fr)
Inventor
彦楠
赵亚利
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023207865A1 publication Critical patent/WO2023207865A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present disclosure relates to the field of communication technology. Specifically, the present disclosure relates to a link recovery method, device, equipment and storage medium.
  • relay UE In order to expand network coverage, when the UE (User Equipment) signal in the cell is poor, you can consider connecting to the relay UE (relay UE) to continue the connection and data transmission in the current cell.
  • the relay UE itself is a terminal with relay function.
  • the UE itself connected to the network through the relay UE is the remote UE (remote UE).
  • the sidelink (edge link) direct communication interface is used between the relay UE and the remote UE, and the Uu link (air interface link) is used between the relay UE and the network/base station.
  • the sidelink of R17 only allows the remote UE to access the network side through a single link connection of a single relay UE.
  • R18 introduces a multi-path scenario, that is, the remote UE can access the network side through one or more relay UEs and a direct Uu link to improve the reliability and peak rate of remote UE access to the network.
  • R18 currently only allows multi-path access to the same base station. In the future, it may allow multi-path access to different base stations, that is, multi-connection, to achieve multi-path/multi-connection scenarios.
  • the current link recovery solution cannot achieve fast link recovery in this scenario and limits the peak rate. Therefore, it is necessary to provide a multi-path/multi-connection solution. Fast link recovery solution for connection scenarios.
  • the purpose of the present disclosure is to solve at least one of the above technical deficiencies to a certain extent, and the embodiments of the present disclosure provide the following technical solutions.
  • embodiments of the present disclosure provide a link recovery method, which is applied to the user equipment UE side.
  • the method includes: obtaining an edge link early measurement report when it is in a non-connected state. SL-EMR measurement results; when entering the connected state, the SL-EMR measurement results are sent to the corresponding network side for link recovery.
  • the method further includes: receiving multipath link configuration information sent by the network side based on the SL-EMR measurement result, and performing link recovery based on the multipath link configuration information.
  • the method further includes: before being in the non-connected state, receiving SL-EMR measurement configuration information sent by the network side; while being in the non-connected state, obtaining the SL-EMR measurement result, Including: when in the non-connected state, obtaining SL-EMR measurement results based on SL-EMR measurement configuration information.
  • the SL-EMR measurement configuration information includes one or more of the following: SL-EMR measurement object information; SL-EMR report configuration information; SL-EMR measurement time timing Device length information and measurement interval information; SL-EMR measurement area range information; subcarrier spacing of the BWP of the partial bandwidth where the measurement is performed.
  • the SL-EMR measurement object information includes identification information of at least one preset relay UE, and the relay UE indicated by the identification information of the preset relay UE is measured preferentially.
  • obtaining the SL-EMR measurement result based on the SL-EMR measurement configuration information includes: if the SL-EMR measurement configuration information includes the SL-EMR measurement time timing If the SL-EMR measurement timer length information is included, the SL-EMR measurement result will be obtained based on the SL-EMR measurement configuration information before the SL-EMR measurement timer times out; if the SL-EMR measurement configuration information does not contain the SL EMR measurement timer length information, then The SL-EMR measurement results are always obtained based on the SL-EMR measurement configuration information, or the SL-EMR measurement results are obtained based on the SL-EMR measurement configuration information before the air interface link early measurement report Uu-EMR measurement time timer times out.
  • the method further includes: before being in the non-connected state, receiving a relay discovery instruction sent by the network side; while being in the non-connected state, obtaining the SL-EMR measurement result, including: When in the non-connected state, the relay discovery instruction is executed and the discovered relay UE is measured, and the measurement results are used as SL-EMR measurement results.
  • sending the SL-EMR measurement result to the corresponding network side includes: when entering the connected state, carrying the SL-EMR measurement result to the radio resource control Send the RRC establishment/recovery completion message to the corresponding network side; or, when entering the connected state, send the RRC establishment/recovery completion message carrying the SL-EMR measurement result indication information to the corresponding network side for the network side to Obtain the SL-EMR measurement result based on the SL-EMR measurement result indication information.
  • the method further includes: if handover or reestablishment occurs during sending the SL-EMR measurement result to the corresponding network side, when accessing the new cell, The cell resends the SL-EMR measurement results to the corresponding network side.
  • performing link recovery based on the multipath link configuration information includes: establishing a PC5 port connection with the relay UE indicated by the multipath link configuration information.
  • the method further includes: before entering the non-connected state, sending support SL-EMR measurement indication information to the network side.
  • embodiments of the present disclosure provide a link recovery method, which is applied to the network side.
  • the method includes: when the UE enters the connected state, receive the edge link early measurement sent by the UE and report the SL-EMR measurement result; if Based on the SL-EMR measurement results, it is determined that a multipath link needs to be configured, then the corresponding multipath link configuration information is determined based on the SL-EMR measurement results, and the multipath link configuration information is sent to the UE for the UE to use the multipath link based on the SL-EMR measurement results. Use the path configuration information to perform link recovery.
  • the method further includes: sending SL-EMR measurement configuration information to the UE before it is in the non-connected state, so that the UE can configure the SL-EMR measurement configuration based on the SL-EMR measurement configuration when it is in the non-connected state. Information to obtain SL-EMR measurement results.
  • sending the SL-EMR measurement configuration information to the UE includes: carrying the SL-EMR measurement configuration information in dedicated signaling and sending it to the UE; and/or, sending the SL-EMR measurement configuration information to the UE.
  • the configuration information is carried in system information and sent to the UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is air interface link early measurement reporting Uu-EMR measurement common system message block SIB message or SIB message given separately.
  • the SL-EMR measurement configuration information is obtained in the following manner: obtaining the relay-related measurement configuration; obtaining the SL-EMR measurement based on the relay-related measurement configuration and the network-related measurement configuration. Configuration information.
  • obtaining the relay-related measurement configuration includes any of the following methods: before the UE enters the non-connected state, sending the first relay UE connected to the UE.
  • a measurement configuration request and receiving the relay-related measurement configuration required to be measured by the current relay UE sent by the current relay UE in response to the first measurement configuration request; before the UE enters the non-connected state, sending the relay-related measurement configuration to the current relay UE.
  • the SL-EMR measurement configuration information is carried in the RRC connection release message and sent to the UE, the SL-EMR measurement is obtained based on the relay-related measurement configuration and the network-related measurement configuration.
  • Configuration information including: integrating relay-related measurement configuration and network-related measurement configuration into a separate field in the RRC connection release message to obtain SL-EMR measurement configuration information; or, integrating relay-related measurement configuration with Network-related measurement configurations are integrated into the same set of parameters to obtain SL-EMR measurement configuration information.
  • the method further includes: sending a relay discovery instruction to the UE before it is in the non-connected state, so that the UE can execute the relay discovery instruction and perform the relay discovery when it is in the non-connected state.
  • the discovered relay nodes perform measurements and use the measurement results as SL-EMR measurement results.
  • sending SL-EMR measurement configuration information to the UE includes:
  • the relay discovery instruction is carried in dedicated signaling and sent to the UE; and/or the relay discovery instruction is carried in system information and sent to the UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is a system message block SIB message shared with the air interface link early measurement report Uu-EMR measurement or a separate SIB message.
  • embodiments of the present disclosure provide a user equipment UE, including a memory, a transceiver, and a processor:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations: obtain edge links when in a non-connected state Measure and report SL-EMR measurement results in advance; when entering the connected state, send the SL-EMR measurement results to the corresponding network side for link recovery.
  • the processor is further configured to perform the following operations: receive multipath link configuration information sent by the network side based on the SL-EMR measurement result, and perform link processing based on the multipath link configuration information. recover.
  • the processor is further configured to perform the following operations: before entering the non-connected state, receiving the SL-EMR measurement configuration information sent by the network side; while being in the non-connected state, obtaining the SL-EMR measurement configuration information.
  • EMR measurement results include: obtaining SL-EMR measurement results based on SL-EMR measurement configuration information when in the non-connected state.
  • the SL-EMR measurement configuration information includes one or more of the following: SL-EMR measurement object information; SL-EMR report configuration information; SL-EMR measurement time timing Device length information and measurement interval information; SL-EMR measurement area range information; subcarrier spacing of the BWP of the partial bandwidth where the measurement is performed.
  • the SL-EMR measurement object information includes identification information of at least one preset relay UE, and the relay UE indicated by the identification information of the preset relay UE is measured preferentially.
  • obtaining the SL-EMR measurement result based on the SL-EMR measurement configuration information includes: if the SL-EMR measurement configuration information includes the SL-EMR measurement time timing If the SL-EMR measurement timer length information is provided, the SL-EMR measurement result will be obtained based on the SL-EMR measurement configuration information before the SL-EMR measurement timer times out; if the SL-EMR measurement configuration information does not contain the SL EMR measurement timer length information, then Always obtain SL-EMR measurement results based on SL-EMR measurement configuration information, or measure early on the air interface link Before the reporting Uu-EMR measurement timer times out, obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information.
  • the processor is also configured to perform the following operations: receive a relay discovery instruction sent by the network side before entering the non-connected state; and obtain SL-EMR measurements while in the non-connected state.
  • the results include: executing the relay discovery instruction and measuring the discovered relay UE when in the non-connected state, and using the measurement results as the SL-EMR measurement results.
  • sending the SL-EMR measurement result to the corresponding network side includes: when entering the connected state, carrying the SL-EMR measurement result to the radio resource control Send the RRC establishment/recovery completion message to the corresponding network side; or, when entering the connected state, send the RRC establishment/recovery completion message carrying the SL-EMR measurement result indication information to the corresponding network side for the network side to Obtain the SL-EMR measurement result based on the SL-EMR measurement result indication information.
  • the processor is also configured to perform the following operations: if handover or reestablishment occurs during sending the SL-EMR measurement results to the corresponding network side, before accessing the new cell When, the SL-EMR measurement results are re-sent to the corresponding network side in the new cell.
  • performing link recovery based on the multipath link configuration information includes: establishing a PC5 port connection with the relay UE indicated by the multipath link configuration information.
  • the processor is further configured to perform the following operations: before entering the non-connected state, send support SL-EMR measurement indication information to the network side.
  • embodiments of the present disclosure provide a base station, including a memory, a transceiver, and a processor: the memory is used to store a computer program; the transceiver is used to send and receive data under the control of the processor; the processor is used to Read the computer program in the memory and perform the following operations: when the UE enters the connected state, receive early measurement of the edge link sent by the UE and report the SL-EMR measurement results; if it is determined based on the SL-EMR measurement results that a multipath link needs to be configured, Then the corresponding multipath link configuration information is determined based on the SL-EMR measurement result, and the multipath link configuration information is sent to the UE, so that the UE can perform link recovery based on the multipath link configuration information.
  • the processor is further configured to perform the following operations: while in Before entering the non-connected state, the SL-EMR measurement configuration information is sent to the UE so that the UE can obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information when it is in the non-connected state.
  • sending the SL-EMR measurement configuration information to the UE includes: carrying the SL-EMR measurement configuration information in dedicated signaling and sending it to the UE; and/or, sending the SL-EMR measurement configuration information to the UE.
  • the configuration information is carried in system information and sent to the UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is a system message block SIB message shared with the air interface link early measurement report Uu-EMR measurement or a separate SIB message.
  • the SL-EMR measurement configuration information is obtained in the following manner: obtaining the relay-related measurement configuration; obtaining the SL-EMR measurement based on the relay-related measurement configuration and the network-related measurement configuration. Configuration information.
  • obtaining the relay-related measurement configuration includes any of the following methods: before the UE enters the non-connected state, sending the first relay UE connected to the UE.
  • a measurement configuration request and receiving the relay-related measurement configuration required to be measured by the current relay UE sent by the current relay UE in response to the first measurement configuration request; before the UE enters the non-connected state, sending the relay-related measurement configuration to the current relay UE.
  • the SL-EMR measurement configuration information is carried in the RRC connection release message and sent to the UE, the SL-EMR measurement is obtained based on the relay-related measurement configuration and the network-related measurement configuration.
  • Configuration information including: integrating relay-related measurement configuration and network-related measurement configuration into a separate field in the RRC connection release message to obtain SL-EMR measurement configuration information; or, integrating relay-related measurement configuration with Network-related measurement configurations are integrated into the same set of parameters to obtain SL-EMR measurement configuration information.
  • the processor is further configured to perform the following operations: send a relay discovery instruction to the UE before it is in the non-connected state, so that when the UE is in the non-connected state, Execute the relay discovery command and measure the discovered relay nodes, and use the measurement results as SL-EMR measurement results.
  • sending SL-EMR measurement configuration information to the UE includes: carrying a relay discovery instruction in dedicated signaling and sending it to the UE; and/or carrying a relay discovery instruction in Sent to UE in system information.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is a system message block SIB message shared with the air interface link early measurement report Uu-EMR measurement or a separate SIB message.
  • an embodiment of the present disclosure provides a link recovery device.
  • the device includes:
  • the measurement result acquisition module is used to obtain the edge link early measurement and report the SL-EMR measurement results when it is in the non-connected state; the measurement result sending module is used to send the SL-EMR measurement results to the corresponding device when it enters the connected state. network side for link recovery.
  • inventions of the present disclosure provide a link recovery device.
  • the device includes: a measurement result receiving module, configured to receive the edge link early measurement report SL-EMR measurement result sent by the UE when the UE enters the connected state;
  • the multipath link configuration information determination module is used to determine the corresponding multipath link configuration information based on the SL-EMR measurement results and configure the multipath link if it is determined based on the SL-EMR measurement results that a multipath link needs to be configured.
  • the information is sent to the UE for the UE to perform link recovery based on the multi-path link configuration information.
  • embodiments of the present disclosure provide a processor-readable storage medium.
  • the processor-readable storage medium stores a computer program.
  • the computer program is used to cause the processor to execute any embodiment of the first aspect or the second aspect. methods provided.
  • FIG. 1 is a schematic flow diagram of an EMR for the Uu port provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a link recovery method applied to the UE side provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a link recovery method applied to the network side provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of a network side generating and delivering SL-EMR measurement configuration information according to an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of a link recovery method in a multi-path/multi-connection scenario in an example of an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of a user equipment UE provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure.
  • Figure 8 is a structural block diagram of a link recovery device provided by an embodiment of the present disclosure.
  • Figure 9 is a structural block diagram of another link recovery device provided by an embodiment of the present disclosure.
  • EMR early measurement report
  • MN Master Node
  • SN Secondary Node
  • Both MN and SN nodes are base station nodes and can use LTE/e-LTE/NR and other technologies.
  • the current EMR process for the Uu interface when releasing the UE connection for the MN, carries EMR-related configuration information in the RRC release message, including: carrier information, area range, timer, etc.
  • EMR-related configuration information can also be carried in the system information.
  • the EMR process for the Uu port can include the following steps:
  • the MN negotiates the UE measurement configuration process with the SN. This step is optional.
  • the MN can directly decide what early measurement configuration information to deliver to the UE;
  • the MN determines whether to deliver early measurement configuration to the UE
  • the network side When the network side sends the connection release message to the UE, it can carry the EMR configuration information;
  • the UE After receiving the message, the UE enters the IDLE (idle mode)/INACTIVE (deactivation mode) state and collects relevant measurement results;
  • the RRC establishment/recovery completion message carries EMR available indication information
  • the network wants to obtain the EMR measurement results, it requests the UE to report them.
  • the UE reports the previously collected IDLE/INACTIVE state EMR measurement results to the network side;
  • the network side can configure dual connectivity for the UE based on the collected measurement results. Based on the content of the EMR measurement results reported by the UE, the newly configured SN may be the same as or different from the SN that was released before the UE connection was released.
  • the network side needs to re-configure the measurement for the UE, and then the UE will report to the network side after the measurement evaluation, and then the network can configure the UE.
  • Suitable dual connection Using the above EMR method for the Uu port saves the time of re-receiving measurement configuration and performing measurement and evaluation after the UE enters the connected state, allowing the network to perform dual connection configuration for the UE as soon as possible, restore/establish dual connections, and quickly increase the peak rate .
  • the link recovery method, device, equipment and storage medium provided by this disclosure are intended to solve the above technical problems of the existing technology.
  • Figure 2 is a schematic flowchart of a link recovery method provided by an embodiment of the present disclosure. This solution is applied to the user equipment UE side. As shown in Figure 2, the method may include:
  • Step S201 When in the non-connected state, obtain the edge link early measurement and report the SL-EMR measurement results; Step S202: When entering the connected state, send the SL-EMR measurement results to the corresponding network side for link recovery .
  • the UE when the UE is in the non-connected state, the UE performs EMR measurement on SL (sideline) related nodes based on the received SL-EMR measurement indication, and obtains the corresponding SL-EMR measurement result.
  • the SL-EMR measurement result is sent to the corresponding network side.
  • the network side performs analysis and judgment based on the received SL-EMR measurement results to restore the connection between the UE and the corresponding network side.
  • the UE obtains the SL-EMR measurement results when it is in the non-connected state, and reports the SL-EMR measurement results to the corresponding network side when it enters the connected state, so that the UE can communicate with the corresponding network when needed.
  • the UE Before link recovery on the UE side, there is no need to perform EMR measurements on SL-related nodes, which saves the time to re-obtain SL-EMR measurement results after the UE enters the connected state, thereby enabling rapid link recovery in multi-path/multi-connection scenarios.
  • the method may further include:
  • the network side determines whether to configure multi-path/multi-connection for the UE based on the content of the SL-EMR measurement result. If it is determined that multi-path/multi-connection needs to be configured, the network side will generate corresponding multi-path link configuration information based on the received SL-EMR measurement results and feed back the multi-path link configuration information. To the UE, after receiving the multi-path link configuration information, the UE will perform link recovery based on the multi-path link configuration information.
  • the UE can obtain the SL-EMR measurement results in two ways. One is to obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information issued by the network side, and the second is based on the SL-EMR measurement results issued by the network side. relay discovery instructions. These two methods will be described in detail below.
  • the method may further include:
  • the SL-EMR measurement results are obtained based on the SL-EMR measurement configuration information.
  • the UE Before the UE is in the non-connected state, it receives the SL-EMR measurement configuration information sent by the network side, and when it is in the connected state, it performs EMR measurement of the SL related nodes based on the received SL-EMR measurement configuration information to obtain the SL -EMR measurement results.
  • the SL-EMR measurement configuration information may include one or more of the following:
  • the subcarrier spacing of the BWP of the part of the bandwidth where the measurement is located is located.
  • the SL-EMR measurement object information may further include: transmission resource pool related information, frequency point information, reference symbol information, channel configuration information, measurement bandwidth information, etc.
  • the SL-EMR report configuration information may further include: measurement trigger event configuration, related threshold information (such as measurement evaluation threshold value, which may be the threshold value of any one of SL-RSRP, SD-RSRP and SL-U measurement quantity ), measurement recording period, number of recordings, etc.
  • measurement evaluation threshold value such as the threshold value of any one of SL-RSRP, SD-RSRP and SL-U measurement quantity
  • the SL-EMR measurement area range information may further include: cell-level area information, TA-level area information, frequency-level area information or PLMN list.
  • the SL-EMR measurement object information includes at least one The identification information of a preset relay UE is preset, and the relay UE indicated by the identification information of the preset relay UE is measured preferentially.
  • the preset relay UE may be one or more relay UEs connected to the UE before the UE is in the non-connected state.
  • the UE When the UE performs EMR measurement, it will give priority to measure these preset relay UEs.
  • the link recovery mentioned in the embodiment of the present disclosure may be based on the SL-EMR measurement results to restore the link between the UE and the previously connected relay UE, or it may be based on the SL-EMR measurement results to restore the link.
  • the relay nodes corresponding to the restored link and the previous link may be the same or different.
  • obtaining SL-EMR measurement results based on SL-EMR measurement configuration information includes:
  • the SL-EMR measurement configuration information contains SL-EMR measurement time timer length information
  • the SL-EMR measurement result is obtained based on the SL-EMR measurement configuration information before the SL-EMR measurement time timer times out;
  • the SL-EMR measurement configuration information does not contain the SL-EMR measurement timer length information, the SL-EMR measurement results will always be obtained based on the SL-EMR measurement configuration information, or the Uu-EMR measurement time will be reported in advance on the air interface link. Before the server times out, obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information.
  • the SL-EMR measurement configuration information contains SL-EMR measurement timer length information
  • the network side has separately configured an SL-EMR measurement timer for the UE, and then the UE's EMR measurement for the relay is based on this timer.
  • Execute before timeout that is, obtain the SL-EMR measurement result based on the SL-EMR measurement configuration information, and whether to continue execution after the timer times out depends on the UE implementation.
  • the SL-EMR measurement configuration information does not contain the SL-EMR measurement timer length information, it means that the network side has not separately configured the SL-EMR measurement timer for the UE.
  • the UE's EMR measurement for the relay is performed before the original EMR timer configured for the Uu port (i.e., Uu-EMR measurement time timer) times out, and the SL-EMR measurement result is obtained based on the SL-EMR measurement configuration information. Whether to continue execution after the timer times out depends on the UE implementation; alternatively, the UE always obtains the SL-EMR measurement results based on the SL-EMR measurement configuration information.
  • the SL-EMR configuration information may also include Uu-EMR configuration parameters.
  • the process of EMR measurement for the Uu port based on the Uu-EMR configuration parameters will not be described in detail here.
  • the UE receives the EMR configuration for the relay, it only performs EMR measurement and recording for the relay. If the UE receives the EMR configuration for the cell/base station and relay at the same time, EMR measurement and recording are performed for both the cell/base station and the relay.
  • the method may further include:
  • the relay discovery instruction When in the non-connected state, the relay discovery instruction is executed and the discovered relay UE is measured, and the measurement result is used as the SL-EMR measurement result.
  • the UE Before the UE is in the non-connected state, it receives the relay discovery instruction sent by the network side, and when it is in the connected state, it executes the relay discovery instruction and measures the discovered relay UE, and uses the measurement results as SL- EMR measurement results.
  • This method saves the network side the workload of configuring SL-EMR measurement configuration information and simplifies the work of the network side during the link recovery process.
  • sending the SL-EMR measurement results to the corresponding network side includes:
  • the RRC establishment/recovery completion message carrying the SL-EMR measurement result indication information is sent to the corresponding network side, so that the network side can obtain the SL-EMR measurement result based on the SL-EMR measurement result indication information.
  • the UE can report the SL-EMR measurement result to the network side in two ways when entering the connected state.
  • One is to directly carry the SL-EMR measurement result in the radio resource control RRC establishment/recovery completion message and send it to the corresponding network side.
  • the second is to send the RRC establishment/recovery completion message carrying the SL-EMR measurement result indication information to the corresponding network side, that is, to send the SL-EMR measurement result available indicator (available indicator) to the network side.
  • the available indicator can be reused.
  • Existing EMR measurement results for the Uu port are available for indication.
  • the network side requests the corresponding UE from the UE based on the available indication.
  • SL-EMR measurement results are available for indication.
  • the UE indicates to the network side that the UE saves the SL-EMR measurement results, or the UE reuses the existing EMR measurement result available indication for the Uu port; the network side requests the UE for the SL individual EMR measurement result based on the available indication, Or all EMR measurement results; accordingly, the UE reports the SL individual EMR measurement results, or all EMR measurement results to the network side.
  • the method may further include:
  • the SL-EMR measurement results are re-sent to the corresponding network side in the new cell.
  • the reporting method can be:
  • link recovery based on multipath link configuration information includes:
  • the UE after receiving the multipath link configuration information on the network side, the UE initiates a PC5 port connection with the relay UE indicated in the multipath link configuration information.
  • the connection may be triggered by the UE or the relay UE.
  • the method may further include:
  • the SL-EMR measurement indication information is sent to the network side.
  • the UE can report whether it supports SL-EMR in the AS capability report. Specifically, if the UE supports SL-EMR, then Before entering the non-connected state, the SL-EMR measurement indication information is sent to the network side.
  • the network can determine whether the UE supports SL's EMR, and thereby determine whether to deliver SL-related EMR configuration information to the UE. If the UE's Uu-related EMR and SL-related EMR use a common available indicator (available indicator), this capability allows the network to determine whether the EMR measurement results obtained from the UE contain SL-EMR measurement results, thereby evaluating before requesting the indication from the UE. The size of the information reported by the UE determines the appropriate time to obtain the EMR measurement results.
  • Figure 3 is a schematic flowchart of a link recovery method provided by an embodiment of the present disclosure, applied to the network side. As shown in Figure 3, the method may include:
  • Step S301 When the UE enters the connected state, receive the edge link early measurement sent by the UE and report the SL-EMR measurement result; Step S302, if it is determined based on the SL-EMR measurement result that a multi-path link needs to be configured, then based on the SL-EMR measurement As a result, the corresponding multipath link configuration information is determined, and the multipath link configuration information is sent to the UE, so that the UE can perform link recovery based on the multipath link configuration information.
  • the SL-EMR measurement result sent by the UE is measured based on the received SL-EMR measurement indication when it is in the non-connected state.
  • the UE obtains the SL-EMR measurement results when it is in the non-connected state, and reports the SL-EMR measurement results to the corresponding network side when it enters the connected state, so that the UE can communicate with the corresponding network when needed.
  • the UE Before link recovery on the UE side, there is no need to perform EMR measurements on SL-related nodes, which saves the time to re-obtain SL-EMR measurement results after the UE enters the connected state, thereby enabling rapid link recovery in multi-path/multi-connection scenarios.
  • the UE can obtain the SL-EMR measurement results in two ways. One is to obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information issued by the network side, and the other is to obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information issued by the network side.
  • Relay discovery instructions issued by the network side Therefore, in the first method, the network side needs to deliver SL-EMR measurement configuration information, and in the second method, the network side needs to deliver relay discovery instructions. The delivery process on the network side in the two methods will be described in detail below.
  • the method may further include:
  • the SL-EMR measurement configuration information is sent to the UE, so that the UE can obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information when it is in the non-connected state.
  • sending the SL-EMR measurement configuration information to the UE includes: carrying the SL-EMR measurement configuration information in dedicated signaling and sending it to the UE; and/or carrying the SL-EMR measurement configuration information in system information and sending it to the UE. UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is the system information block SIB message shared with the air interface link early measurement report Uu-EMR measurement or the SIB message given separately.
  • the SL-EMR measurement configuration information is obtained in the following manner: obtaining the relay-related measurement configuration; obtaining the SL-EMR measurement based on the relay-related measurement configuration and the network-related measurement configuration. Configuration information.
  • the delivery of measurement configuration information for rapid establishment/restoration of multi-path/multi-connection may allow negotiation between the NW node and the existing relay UE of the remote UE (that is, the current relay UE connected to the UE), In the end, the NW decides the measurement configuration information to deliver to the UE and sends it to the UE; it is also possible that the NW decides on its own the measurement configuration information to deliver to the UE and sends it directly to the UE.
  • the finally delivered measurement configuration information can be obtained by integrating the relay-related measurement configuration and the network-related measurement configuration.
  • obtaining the relay-related measurement configuration includes any of the following methods: before the UE enters the non-connected state, sending the first relay UE connected to the UE. A measurement configuration request, and receiving the relay-related measurement configuration that the current relay UE needs to measure sent by the current relay UE in response to the first measurement configuration request;
  • the relay-related measurement configuration sent by the current relay UE is received.
  • the NW decides to release the RRC connection with the UE to IDLE or to INACTIVE, and wants to configure the UE for SL-EMR multi-path/multi-connection measurement, it can contact the UE.
  • the current relay UE negotiates SL-EMR measurement configuration information.
  • the negotiation process may include the following three solutions:
  • the NW node can send a measurement configuration request (i.e., the first measurement configuration request) to the current relay UE, and the current relay UE will feed back the content that needs to be measured by the UE to the NW node;
  • a measurement configuration request i.e., the first measurement configuration request
  • the NW can send a request carrying recommended configuration (i.e., the second measurement configuration request) to the current relay UE.
  • the current relay UE sends the relay-related supplementary/corrected measurement configuration parameters based on the existing measurement configuration of the NW. To NW.
  • Solution 3 The current relay UE directly sends relay-related measurement configuration to the NW node.
  • the SL-EMR measurement configuration information is carried in the RRC connection release message and sent to the UE, the SL-EMR measurement is obtained based on the relay-related measurement configuration and the network-related measurement configuration.
  • Configuration information including:
  • the NW when assembling the SL-EMR measurement configuration information finally sent to the UE, the NW can configure the relay-related measurement configuration and the NW-related measurement configuration together in an RRC connection release message, and set a separate domain ( field) is carried independently (for example, the NW node and relay node are inter-RAT), or the NW node performs decision-making/integration and only sets a set of final parameters to be delivered to the UE.
  • the NW negotiates with the current relay UE for the measurement configuration delivered to the UE (including network-related measurement configuration and relay-related measurement configuration);
  • the NW makes decisions/integrates/assembles network-related measurement configurations and relay-related measurement configurations to obtain the SL-EMR measurement configuration information delivered to the UE;
  • the NW delivers the obtained SL-EMR measurement configuration information to the UE
  • the UE When the UE is in the non-connected state, it performs measurement based on the received SL-EMR measurement configuration information. Measurement.
  • the method may further include:
  • the relay discovery instruction sent to the UE before it is in the non-connected state, so that the UE can execute the relay discovery instruction and measure the discovered relay nodes when it is in the non-connected state, and use the measurement results as SL-EMR measurements. result.
  • sending the SL-EMR measurement configuration information to the UE includes: carrying the relay discovery instruction in dedicated signaling and sending it to the UE; and/or carrying the relay discovery instruction in system information and sending it to the UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is the system information block SIB message shared with the air interface link early measurement report Uu-EMR measurement or the SIB message given separately.
  • the method may include the following steps:
  • the UE performs measurement of the SL-EMR measurement configuration information based on network configuration in the IDLE/INACTIVE state and obtains the corresponding SL-EMR measurement results;
  • the UE establishes/restores an RRC connection with the network side. This step may be initiated because the network side pages the UE, or the UE initiates connection establishment/restoration on its own. In this step, the UE may establish a direct connection with the NW. connection; or establish an indirect connection through one or more relay UEs, then the connection between the NW and the connected relay UE is Uu interface, between the UE and the relay UE, and between the possible relay UE and the relay UE.
  • PC5 port connection For PC5 port connection;
  • the UE reports the SL-EMR measurement results to the network side;
  • the network-side node that establishes/restores the connection with the UE decides whether to configure multi-path/multi-connection for the UE based on the content of the measurement results. If it is determined that configuration is required, send multipath link configuration information to the corresponding relay UE, which may include the UE's measurement results for the relay;
  • the NW delivers multipath link configuration information to the UE in the RRC reconfiguration message.
  • the NW delivers multipath link configuration information to the UE in the RRC reconfiguration message.
  • the UE After receiving the network side configuration, the UE initiates a PC5 port connection with the relay UE indicated in the configuration.
  • the connection may be triggered by a UE or by a relay UE.
  • Figure 6 is a schematic structural diagram of a user equipment UE provided by an embodiment of the present disclosure. As shown in Figure 6, it includes a memory 620, a transceiver 610, a processor 600, and a user interface 630:
  • Memory 620 is used to store computer programs; transceiver 610 is used to send and receive data under the control of the processor; processor 600 is used to read the computer program in memory 620 and perform the following operations:
  • the SL-EMR measurement results are sent to the corresponding network side for link recovery.
  • the processor is further configured to perform the following operations:
  • the processor is further configured to perform the following operations:
  • the SL-EMR measurement results are obtained based on the SL-EMR measurement configuration information.
  • the SL-EMR measurement configuration information includes one or more of the following:
  • the subcarrier spacing of the BWP of the part of the bandwidth where the measurement is located is located.
  • the SL-EMR measurement object information includes identification information of at least one preset relay UE, and the relay UE indicated by the identification information of the preset relay UE Measured first.
  • obtaining SL-EMR measurement results based on SL-EMR measurement configuration information includes:
  • the SL-EMR measurement configuration information contains SL-EMR measurement time timer length information
  • the SL-EMR measurement result is obtained based on the SL-EMR measurement configuration information before the SL-EMR measurement time timer times out;
  • the SL-EMR measurement results will always be obtained based on the SL-EMR measurement configuration information, or the Uu-EMR measurement timer will be measured and reported early on the air interface link. Before timeout, obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information.
  • the processor is further configured to perform the following operations:
  • the relay discovery instruction When in the non-connected state, the relay discovery instruction is executed and the discovered relay UE is measured, and the measurement result is used as the SL-EMR measurement result.
  • sending the SL-EMR measurement results to the corresponding network side includes:
  • the RRC establishment/recovery completion message carrying the SL-EMR measurement result indication information is sent to the corresponding network side, so that the network side can obtain the SL-EMR measurement result based on the SL-EMR measurement result indication information.
  • the processor is further configured to perform the following operations:
  • the SL-EMR measurement results are re-sent to the corresponding network side in the new cell.
  • link recovery based on multipath link configuration information includes:
  • the processor is further configured to perform the following operations:
  • the SL-EMR measurement indication information is sent to the network side.
  • transceiver 610 is used to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors 600 represented by the processor 600 and various circuits of the memory 620 represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface 630 can also be an interface capable of externally connecting internal and external required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 can be a CPU (Central Processor), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device) , complex programmable logic device), the processor 600 may also adopt a multi-core architecture.
  • CPU Central Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic device complex programmable logic device
  • the processor 600 is configured to execute any method provided by the embodiment of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 620 .
  • the processor 600 and the memory 620 may also be physically separated.
  • Figure 7 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure. As shown in Figure 7, it includes a memory 720, a transceiver 710, and a processor 700:
  • Memory 720 is used to store computer programs; transceiver 710 is used to send and receive data under the control of the processor; processor 700 is used to read the computer program in memory 720 and perform the following operations:
  • the corresponding multipath link configuration information is determined based on the SL-EMR measurement results, and the multipath link configuration information is sent to the UE for the UE to configure based on the multipath link.
  • Link configuration information is used for link recovery.
  • the processor is further configured to perform the following operations:
  • the SL-EMR measurement configuration information is sent to the UE, so that the UE can obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information when it is in the non-connected state.
  • sending SL-EMR measurement configuration information to the UE includes:
  • the SL-EMR measurement configuration information is carried in the system information and sent to the UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is a system message block SIB message shared with the air interface link early measurement report Uu-EMR measurement or a separate SIB message.
  • SL-EMR measurement configuration information is obtained in the following manner:
  • obtaining relay-related measurement configuration includes any of the following methods:
  • the relay-related measurement configuration sent by the current relay UE is received.
  • the SL-EMR measurement configuration information is carried in the RRC connection release message and sent to the UE, the SL-EMR measurement is obtained based on the relay-related measurement configuration and the network-related measurement configuration.
  • Configuration information including:
  • the processor is further configured to perform the following operations:
  • the relay discovery instruction sent to the UE before it is in the non-connected state, so that the UE can execute the relay discovery instruction and measure the discovered relay nodes when it is in the non-connected state, and use the measurement results as SL-EMR measurements. result.
  • sending SL-EMR measurement configuration information to the UE includes:
  • the relay discovery instruction is carried in the system information and sent to the UE.
  • the dedicated signaling is a radio resource control RRC connection release message or an RRC reconfiguration message.
  • the system information is a system message block SIB message shared with the air interface link early measurement report Uu-EMR measurement or a separate SIB message.
  • transceiver 710 is used to receive and send data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors 700 represented by the processor 700 and various circuits of the memory 720 represented by the memory 720 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 710 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables and other transmission media.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 when performing operations.
  • the processor 700 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor 700 may also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • FPGA Field-Programmable Gate Array
  • CPLD complex programmable logic device
  • Figure 8 is a structural block diagram of a link recovery device provided by an embodiment of the present disclosure.
  • the device 800 may include: a measurement result acquisition module 801 and a measurement result transmission module 802, wherein:
  • the measurement result acquisition module 801 is used to obtain the edge link early measurement and report SL-EMR measurement results when it is in the non-connected state;
  • the measurement result sending module 802 is used to send the SL-EMR measurement result to the corresponding network side for link recovery when entering the connected state.
  • the measurement result sending module is also used to:
  • the measurement result acquisition module is also used to:
  • obtaining the SL-EMR measurement results includes: when in the non-connected state, obtaining the SL-EMR measurement results based on the SL-EMR measurement configuration information.
  • the SL-EMR measurement configuration information includes one or more of the following:
  • the subcarrier spacing of the BWP of the part of the bandwidth where the measurement is located is located.
  • the SL-EMR measurement object information includes identification information of at least one preset relay UE, and the relay UE indicated by the identification information of the preset relay UE is measured first.
  • the measurement result acquisition module when the measurement result acquisition module is in the non-connected state, it acquires the SL-EMR measurement results based on the SL-EMR measurement configuration information, including:
  • the SL-EMR measurement configuration information contains SL-EMR measurement time timer length information
  • the SL-EMR measurement result is obtained based on the SL-EMR measurement configuration information before the SL-EMR measurement time timer times out;
  • the SL-EMR measurement configuration information does not contain the SL-EMR measurement timer length information, the SL-EMR measurement results will always be obtained based on the SL-EMR measurement configuration information, or the Uu-EMR measurement time will be reported in advance on the air interface link. Before the server times out, obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information.
  • the measurement result acquisition module is also used to:
  • the relay discovery instruction When in the non-connected state, the relay discovery instruction is executed and the discovered relay UE is measured, and the measurement result is used as the SL-EMR measurement result.
  • the measurement result sending module when entering the connection state, sends the SL-EMR measurement results to the corresponding network side, including:
  • the RRC establishment/recovery completion message carrying the SL-EMR measurement result indication information is sent to the corresponding network side, so that the network side can obtain the SL-EMR measurement result based on the SL-EMR measurement result indication information.
  • the measurement result sending module is also used to:
  • the SL-EMR measurement results are re-sent to the corresponding network side in the new cell.
  • the measurement result acquisition module is also used to:
  • the SL-EMR measurement indication information is sent to the network side.
  • Figure 9 is a structural block diagram of a link recovery device provided by an embodiment of the present disclosure.
  • the device 900 may include: a measurement result receiving module 901 and a multipath link configuration information determination module 902, wherein:
  • the measurement result receiving module 901 is configured to receive the edge link early measurement report SL-EMR measurement result sent by the UE when the UE enters the connected state;
  • the multipath link configuration information determination module 902 is configured to determine the corresponding multipath link configuration information based on the SL-EMR measurement results and configure the multipath link if it is determined based on the SL-EMR measurement results that a multipath link needs to be configured.
  • the information is sent to the UE for the UE to perform link recovery based on the multi-path link configuration information.
  • the measurement result receiving module is also used to:
  • the SL-EMR measurement configuration information is sent to the UE, so that the UE can obtain the SL-EMR measurement results based on the SL-EMR measurement configuration information when it is in the non-connected state.
  • the measurement result receiving module sends SL-EMR measurement configuration information to the UE, including:
  • the SL-EMR measurement configuration information is carried in the system information and sent to the UE.
  • the dedicated signaling includes a Radio Resource Control RRC connection release message or an RRC reconfiguration message.
  • the system information includes a system information block SIB message shared with the air interface link early measurement report Uu-EMR measurement or a separate SIB message.
  • SL-EMR measurement configuration information is obtained in the following manner:
  • obtaining relay-related measurement configuration includes any of the following methods:
  • the relay-related measurement configuration sent by the current relay UE is received.
  • the SL-EMR measurement configuration information when the SL-EMR measurement configuration information is carried in the RRC connection release message and sent to the UE, the SL-EMR measurement configuration information is obtained based on the relay-related measurement configuration and the network-related measurement configuration, including:
  • the measurement result receiving module is also used to:
  • the relay discovery instruction Before being in the non-connected state, the relay discovery instruction is sent to the UE, so that when the UE is in the non-connected state, the relay discovery instruction is executed and the discovered relay node is measured, and the measurement results are used as SL-EMR measurements. result.
  • the device of the embodiment of the present application can execute the method provided by the embodiment of the present application, and its implementation principle is similar.
  • the actions performed by each module in the device of the embodiment of the present application are the same as the steps in the method of the embodiment of the present application.
  • for the detailed functional description of each module of the device please refer to the description in the corresponding method shown above, and will not be described again here.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit may be stored in a processor-readable storage medium if it is implemented in the form of a software functional unit and sold or used as an independent product.
  • the technical solution of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • Embodiments of the present disclosure provide a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the method of the above embodiment.
  • the processor-readable storage medium may be a non-transitory memory-readable storage medium.
  • the processor-readable storage medium may be any available media or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.), optical storage (such as CDs, DVD, BD, HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.
  • optical storage such as CDs, DVD, BD, HVD, etc.
  • semiconductor memories such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet Wireless service general packet radio service, GPRS
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A Long term evolution advanced
  • UMTS universal mobile telecommunication system
  • GSM Global System of mobile communication
  • EPS Evolved Packet System
  • 5GS 5G System
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the names of terminal equipment may also be different.
  • the terminal equipment may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the Radio Access Network (RAN).
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (also known as a "cell phone").
  • Wireless terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal user terminal
  • user agent user agent
  • user device user device
  • the network device involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the network device may be used to exchange received air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, where the remainder of the access network may include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the network device involved in the embodiment of the present disclosure may be a Global System for Mobile Communications communications, GSM) or code division multiple access (Code Division Multiple Access, CDMA) network equipment (Base Transceiver Station, BTS), or bandwidth code division multiple access (Wide-band Code Division Multiple Access,
  • the network equipment (NodeB) in WCDMA) can also be the evolutionary network equipment (evolutional Node B, eNB or e-NodeB) in the long term evolution (long term evolution, LTE) system, or the 5G network architecture (next generation system)
  • the 5G base station (gNB) may also be a Home evolved Node B (HeNB), a relay node (relay node), a home base station (femto), a pico base station (pico), etc., which are not used in the embodiments of the present disclosure. limited.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized units and distributed units may also be arranged geographically separately.
  • Network equipment and terminal equipment can each use one or more antennas for multi-input multi-output (MIMO) transmission.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO,MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoding transmission or beamforming transmission, etc.

Abstract

本公开的实施例提供了一种链路恢复方法、装置、设备及处存储介质。该方法包括:在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。该方案通过UE在处于非连接态时获取了SL-EMR测量结果,并在进入连接态时将SL-EMR测量结果上报至相应的网络侧,使得UE在需要与相应的网络侧进行链接恢复前,无需进行SL相关节点的EMR测量,节省了UE进入连接态后重新获取SL-EMR测量结果的时间,进而能够实现多路径/多连接场景下的链路快速恢复。

Description

链路恢复方法、装置、设备及处存储介质 技术领域
本公开涉及通信技术领域,具体而言,本公开涉及一种链路恢复方法、装置、设备及处存储介质。
背景技术
为了扩展网络覆盖,当UE(User Equipment,用户设备)在小区内信号不佳时可以考虑连接到中继UE(relay UE),以接续在当前小区的连接与数据传递。中继UE本身是具有中继功能的终端。经过中继UE连接到网络的UE本身为远端UE(remote UE)。
对于UE-to-network relay(即U2N relay),中继UE和远端UE之间使用sidelink(边缘链路)直接通信接口,中继UE与网络/基站之间使用Uu link(空口链路)。R17的sidelink仅允许远端UE通过单个中继UE的单链路连接接入到网络侧。R18引入了多路径场景,即远端UE可以通过一个至多个中继UE以及一个直连Uu link接入网络侧,用以提升remote UE接入网络的可靠性以及峰值速率。R18目前仅允许多路径接入同一个基站,后续可能允许多路径接入不同的基站也即多连接,即可实现多路径(multi-path)/多连接(multi-connection)的场景。
由于多路径/多连接的场景涉及sidelink直接通信接口和Uu口,当前的链路恢复方案无法实现该场景下链路的快速恢复,限制了峰值速率,因此有必要提供一种针对多路径/多连接场景的快速链路恢复方案。
发明内容
本公开的目的旨在一定程度上解决上述的技术缺陷中的至少一项,本公开的实施例提供了如下技术方案。
第一方面,本公开实施例提供了一种链路恢复方法,应用于用户设备UE侧,该方法包括:在处于非连接态时,获取边缘链路提早测量上报 SL-EMR测量结果;在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
在本公开的一种可选实施例中,该方法还包括:接收网络侧基于SL-EMR测量结果发送的多路径链路配置信息,并基于多路径链路配置信息进行链路恢复。
在本公开的一种可选实施例中,该方法还包括:在处于非连接态之前,接收网络侧发送的SL-EMR测量配置信息;在处于非连接态时,获取SL-EMR测量结果,包括:在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,SL-EMR测量配置信息包括以下各项中的一项或多项:SL-EMR测量对象信息;SL-EMR报告配置信息;SL-EMR测量时间定时器长度信息和测量间隔信息;SL-EMR测量区域范围信息;测量所在部分带宽BWP的子载波间隔。
在本公开的一种可选实施例中,SL-EMR测量对象信息包含有至少一个预设中继UE的标识信息,预设中继UE的标识信息所指示的中继UE被优先测量。
在本公开的一种可选实施例中,在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果,包括:若SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,则在SL-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果;若SL-EMR测量配置信息中不包含SL EMR测量时间定时器长度信息,则一直基于SL-EMR测量配置信息获取SL-EMR测量结果,或者在空口链路提早测量上报Uu-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,方法还包括:在处于非连接态之前,接收网络侧发送的中继发现指令;在处于非连接态时,获取SL-EMR测量结果,包括:在处于非连接态时,执行中继发现指令并对发现的中继UE进行测量,并将测量结果作为SL-EMR测量结果。
在本公开的一种可选实施例中,在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,包括:在进入连接态时,将SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供网络侧基于SL-EMR测量结果指示信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,该方法还包括:若在将SL-EMR测量结果发送至对应的网络侧过程中发生了切换或重建,则在接入新的小区时,在新的小区将SL-EMR测量结果重新发送至对应的网络侧。
在本公开的一种可选实施例中,基于多路径链路配置信息进行链路恢复,包括:与多路径链路配置信息所指示的中继UE建立PC5口连接。
在本公开的一种可选实施例中,该方法还包括:在处于非连接态之前,向网络侧发送支持SL-EMR测量指示信息。
第二方面,本公开实施例提供了一种链路恢复方法,应用于网络侧,该方法包括:在UE进入连接态时,接收UE发送的边缘链路提早测量上报SL-EMR测量结果;若基于SL-EMR测量结果确定需要配置多路径链路,则基于SL-EMR测量结果确定相应的多路径链路配置信息,并将多路径链路配置信息发送至UE,以供UE基于多路径链路配置信息进行链路恢复。
在本公开的一种可选实施例中,该方法还包括:在处于非连接态之前,向UE发送SL-EMR测量配置信息,以供UE在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,向UE发送SL-EMR测量配置信息,包括:将SL-EMR测量配置信息携带于专用信令中发送至UE;和/或,将SL-EMR测量配置信息携带于系统信息中发送至UE。
在本公开的一种可选实施例中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
在本公开的一种可选实施例中,系统信息为与空口链路提早测量上报 Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
在本公开的一种可选实施例中,SL-EMR测量配置信息通过以下方式获取:获取中继相关的测量配置;基于中继相关的测量配置和网络相关的测量配置,获取SL-EMR测量配置信息。
在本公开的一种可选实施例中,获取中继相关的测量配置,包括以下各方式中的任一种方式:在UE进入非连接态之前,向与UE连接的当前中继UE发送第一测量配置请求,并接收当前中继UE响应于第一测量配置请求发送的当前中继UE所需测量的中继相关的测量配置;在UE进入非连接态之前,向当前中继UE发送携带有网络相关的测量配置的第二测量配置请求,并接收当前中继UE响应于第二测量配置请求发送的与网络相关的测量配置互补的中继相关的测量配置;在UE进入非连接态之前,接收当前中继UE发送的中继相关的测量配置。
在本公开的一种可选实施例中,若将SL-EMR测量配置信息携带于RRC连接释放消息中发送至UE,则基于中继相关的测量配置和网络相关的测量配置获取SL-EMR测量配置信息,包括:将中继相关的测量配置与网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到SL-EMR测量配置信息;或者,将中继相关的测量配置与网络相关的测量配置整合为同一套参数,得到SL-EMR测量配置信息。
在本公开的一种可选实施例中,该方法还包括:在处于非连接态之前,向UE发送的中继发现指令,以供UE在处于非连接态时,执行中继发现指令并对发现的中继节点进行测量,并将测量结果作为SL-EMR测量结果。
在本公开的一种可选实施例中,向UE发送SL-EMR测量配置信息,包括:
将中继发现指令携带于专用信令中发送至UE;和/或,将中继发现指令携带于系统信息中发送至UE。
在本公开的一种可选实施例中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
在本公开的一种可选实施例中,系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
第三方面,本公开实施例提供了一种用户设备UE,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在处理器的控制下收发数据;处理器,用于读取存储器中的计算机程序并执行以下操作:在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
在本公开的一种可选实施例中,处理器还用于执行以下操作:接收网络侧基于SL-EMR测量结果发送的多路径链路配置信息,并基于多路径链路配置信息进行链路恢复。
在本公开的一种可选实施例中,处理器还用于执行以下操作:在处于非连接态之前,接收网络侧发送的SL-EMR测量配置信息;在处于非连接态时,获取SL-EMR测量结果,包括:在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,SL-EMR测量配置信息包括以下各项中的一项或多项:SL-EMR测量对象信息;SL-EMR报告配置信息;SL-EMR测量时间定时器长度信息和测量间隔信息;SL-EMR测量区域范围信息;测量所在部分带宽BWP的子载波间隔。
在本公开的一种可选实施例中,SL-EMR测量对象信息包含有至少一个预设中继UE的标识信息,预设中继UE的标识信息所指示的中继UE被优先测量。
在本公开的一种可选实施例中,在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果,包括:若SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,则在SL-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果;若SL-EMR测量配置信息中不包含SL EMR测量时间定时器长度信息,则一直基于SL-EMR测量配置信息获取SL-EMR测量结果,或者在空口链路提早测量 上报Uu-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,处理器还用于执行以下操作:在处于非连接态之前,接收网络侧发送的中继发现指令;在处于非连接态时,获取SL-EMR测量结果,包括:在处于非连接态时,执行中继发现指令并对发现的中继UE进行测量,并将测量结果作为SL-EMR测量结果。
在本公开的一种可选实施例中,在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,包括:在进入连接态时,将SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供网络侧基于SL-EMR测量结果指示信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,处理器还用于执行以下操作:若在将SL-EMR测量结果发送至对应的网络侧过程中发生了切换或重建,则在接入新的小区时,在新的小区将SL-EMR测量结果重新发送至对应的网络侧。
在本公开的一种可选实施例中,基于多路径链路配置信息进行链路恢复,包括:与多路径链路配置信息所指示的中继UE建立PC5口连接。
在本公开的一种可选实施例中,处理器还用于执行以下操作:在处于非连接态之前,向网络侧发送支持SL-EMR测量指示信息。
第四方面,本公开实施例提供了一种基站,包括存储器,收发机,处理器:存储器,用于存储计算机程序;收发机,用于在处理器的控制下收发数据;处理器,用于读取存储器中的计算机程序并执行以下操作:在UE进入连接态时,接收UE发送的边缘链路提早测量上报SL-EMR测量结果;若基于SL-EMR测量结果确定需要配置多路径链路,则基于SL-EMR测量结果确定相应的多路径链路配置信息,并将多路径链路配置信息发送至UE,以供UE基于多路径链路配置信息进行链路恢复。
在本公开的一种可选实施例中,处理器还用于执行以下操作:在处于 非连接态之前,向UE发送SL-EMR测量配置信息,以供UE在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,向UE发送SL-EMR测量配置信息,包括:将SL-EMR测量配置信息携带于专用信令中发送至UE;和/或,将SL-EMR测量配置信息携带于系统信息中发送至UE。
在本公开的一种可选实施例中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
在本公开的一种可选实施例中,系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
在本公开的一种可选实施例中,SL-EMR测量配置信息通过以下方式获取:获取中继相关的测量配置;基于中继相关的测量配置和网络相关的测量配置,获取SL-EMR测量配置信息。
在本公开的一种可选实施例中,获取中继相关的测量配置,包括以下各方式中的任一种方式:在UE进入非连接态之前,向与UE连接的当前中继UE发送第一测量配置请求,并接收当前中继UE响应于第一测量配置请求发送的当前中继UE所需测量的中继相关的测量配置;在UE进入非连接态之前,向当前中继UE发送携带有网络相关的测量配置的第二测量配置请求,并接收当前中继UE响应于第二测量配置请求发送的与网络相关的测量配置互补的中继相关的测量配置;在UE进入非连接态之前,接收当前中继UE发送的中继相关的测量配置。
在本公开的一种可选实施例中,若将SL-EMR测量配置信息携带于RRC连接释放消息中发送至UE,则基于中继相关的测量配置和网络相关的测量配置获取SL-EMR测量配置信息,包括:将中继相关的测量配置与网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到SL-EMR测量配置信息;或者,将中继相关的测量配置与网络相关的测量配置整合为同一套参数,得到SL-EMR测量配置信息。
在本公开的一种可选实施例中,处理器还用于执行以下操作:在处于非连接态之前,向UE发送的中继发现指令,以供UE在处于非连接态时, 执行中继发现指令并对发现的中继节点进行测量,并将测量结果作为SL-EMR测量结果。
在本公开的一种可选实施例中,向UE发送SL-EMR测量配置信息,包括:将中继发现指令携带于专用信令中发送至UE;和/或,将中继发现指令携带于系统信息中发送至UE。
在本公开的一种可选实施例中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
在本公开的一种可选实施例中,系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
第五方面,本公开实施例提供了一种链路恢复装置,装置包括:
测量结果获取模块,用于在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;测量结果发送模块,用于在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
第六方面,本公开实施例提供了一种链路恢复装置,装置包括:测量结果接收模块,用于在UE进入连接态时,接收UE发送的边缘链路提早测量上报SL-EMR测量结果;多路径链路配置信息确定模块,用于若基于SL-EMR测量结果确定需要配置多路径链路,则基于SL-EMR测量结果确定相应的多路径链路配置信息,并将多路径链路配置信息发送至UE,以供UE基于多路径链路配置信息进行链路恢复。
第七方面,本公开实施例提供了一种处理器可读存储介质,处理器可读存储介质存储有计算机程序,计算机程序用于使处理器执行第一方面或第二方面中任一实施例所提供的方法。
公开
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍。
图1为本公开实施例提供的一种针对Uu口的EMR流程示意图;
图2为本公开实施例提供的一种应用于UE侧的链路恢复方法的流程示意图;
图3为本公开实施例提供的一种应用于网络侧的链路恢复方法的流程示意图;
图4为本公开实施例提供的一种网络侧生成和下发SL-EMR测量配置信息的流程示意图;
图5为本公开实施例的一个示例中多路径/多连接场景下的链接恢复方法的流程示意图;
图6为本公开实施例提供的一种用户设备UE的结构示意图;
图7为本公开实施例提供的一种基站的结构示意图;
图8为本公开实施例提供的一种链路恢复装置的结构框图;
图9为本公开实施例提供的另一种链路恢复装置的结构框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
对于仅涉及Uu口的链路,可以采用基于提早测量上报(early measurement report,EMR)的方式实现链路快速恢复。在一个LTE/NR双 连接架构的示例中,可能有一个MN(Master Node,主节点),以及一至多个SN(Secondary Node,辅助节点)。MN与SN节点均为基站节点,可以使用LTE/e-LTE/NR等技术。当前针对Uu口的EMR流程,为MN释放UE连接时,在RRC释放消息中携带EMR相关的配置信息,包括:载波信息、区域范围、以及定时器等内容。当然,也可以在系统信息中携带EMR相关配置信息。如图1所示,针对Uu口的EMR流程可以包括一下几个步骤:
1、MN与SN协商UE的测量配置过程,该步骤可选,MN可以直接决定给UE下发哪些提早测量配置信息;
2、MN确定是否给UE下发提早测量配置;
3、当网络侧给UE下发连接释放消息时,可以携带EMR配置信息;
4、UE收到后,进入IDLE(空闲模式)/INACTIVE(去激活模式)态后收集相关测量结果;
5、当UE建立/恢复连接时,在RRC建立/恢复完成消息中携带EMR可用指示信息;
6、如果网络想要获得EMR测量结果,则请求UE上报。UE将之前收集的IDLE/INACTIVE态EMR测量结果上报给网络侧;
7、网络侧可以根据收集到的测量结果给UE配置双连接。基于UE上报的EMR测量结果内容,新配置的SN可以与UE连接释放在前的SN相同或不同。
如果没有上述针对Uu口的EMR提早测量与上报机制,当UE建立/恢复RRC连接后,需要网络侧重新给UE配置测量,然后UE经过测量评估后再上报给网络侧,进而网络才能给UE配置合适的双连接。使用上述针对Uu口的EMR方式后,节省了UE进入连接态后重新接收测量配置与执行测量与评估的时间,使得网络可以尽快为UE执行双连接配置,恢复/建立双连接,快速提升峰值速率。
但是,当前仅有针对Uu口的EMR方式与配置参数,但针对sidelink的PC5接口,尚未有相关的EMR方式及配置参数。因此,由于多路径/多连接的场景涉及sidelink直接通信接口和Uu口,当前的链路恢复方案 无法实现该场景下链路的快速恢复。
本公开提供的链路恢复方法、装置、设备及处存储介质,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本公开的技术方案以及本公开的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本公开的实施例进行描述。
图2为本公开实施例提供的一种链路恢复方法的流程示意图,该方案应用于用户设备UE侧,如图2所示,该方法可以包括:
步骤S201,在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;步骤S202,在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
具体地,在UE处于非连接态时,UE基于接收到的SL-EMR测量指示,执行对SL(sideline)相关节点的EMR测量,获得相应的SL-EMR测量结果。在UE进入连接态时,将该SL-EMR测量结果发送至对应的网络侧。网络侧基于接收到的SL-EMR测量结果进行分析判断,以实现UE和相应网络侧的连接恢复。
本公开实施例提供的方案,UE在处于非连接态时获取了SL-EMR测量结果,并在进入连接态时将SL-EMR测量结果上报至相应的网络侧,使得UE在需要与相应的网络侧进行链接恢复前,无需进行SL相关节点的EMR测量,节省了UE进入连接态后重新获取SL-EMR测量结果的时间,进而能够实现多路径/多连接场景下的链路快速恢复。
在本公开的一种可选实施例中,该方法还可以包括:
接收网络侧基于SL-EMR测量结果发送的多路径链路配置信息,并基于多路径链路配置信息进行链路恢复。
具体地,在UE将获得的SL-EMR测量结果发送至对应的网络侧后,网络侧基于SL-EMR测量结果的内容确定是否给UE配置多路径/多连接。如果确定需要配置多路径/多连接,则网络侧会基于接收到的SL-EMR测量结果生成相应的多路径链路配置信息,并将该多路径链路配置信息反馈 至UE,UE接收到该多路径链路配置信息后,将基于该多路径链路配置信息进行链路恢复。
本公开方案中,UE获取SL-EMR测量结果可以基于两种方式,其一为基于网络侧下发的SL-EMR测量配置信息获取SL-EMR测量结果,其二是基于网络侧下发的中继发现(relay discovery)指示。下面将对这两种方式进行详细说明。
在本公开的一种可选实施例中,该方法还可以包括:
在处于非连接态之前,接收网络侧发送的SL-EMR测量配置信息;
在处于非连接态时,获取SL-EMR测量结果,包括:
在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
具体地,UE在处于非连接态之前,接收网络侧发送的SL-EMR测量配置信息,并在处于连接态时,基于接收到的SL-EMR测量配置信息进行SL相关节点的EMR测量,得到SL-EMR测量结果。
在本公开的一种可选实施例中,SL-EMR测量配置信息可以包括以下各项中的一项或多项:
SL-EMR测量对象信息;
SL-EMR报告配置信息;
SL-EMR测量时间定时器长度信息和测量间隔信息;
SL-EMR测量区域范围信息;
测量所在部分带宽BWP的子载波间隔。
具体地,SL-EMR测量对象信息可以进一步包括:传输资源池相关信息,频点信息,参考符号信息,信道配置信息,测量带宽信息等。
SL-EMR报告配置信息可以进一步包括:测量触发事件配置,相关门限信息(例如测量评估门限值,可以为SL-RSRP,SD-RSRP以及SL-U测量量中的任何一种的门限值),测量记录周期,记录次数等。
SL-EMR测量区域范围信息可以进一步包括:小区级区域信息,TA级区域信息,频点级区域信息或PLMN列表。
在本公开的一种可选实施例中,SL-EMR测量对象信息包含有至少一 个预设中继UE的标识信息,预设中继UE的标识信息所指示的中继UE被优先测量。
具体地,预设中继UE可以为在UE处于非连接态之前,与UE连接的一个或多个中继UE。UE在执行EMR测量时,将优先对这些预设中继UE进行测量。
需要说明的是,本公开实施例中所说的链路恢复,可以是基于SL-EMR测量结果,恢复UE与之前连接的中继UE的链路,也可以是基于SL-EMR测量结果,恢复UE与一个新的中继UE之间的链路。换言之,恢复后的链路与之前的链路相应的中继节点可以相同也可以不相同。
在本公开的一种可选实施例中,在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果,包括:
若SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,则在SL-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果;
若SL-EMR测量配置信息中不包含SL-EMR测量时间定时器长度信息,则一直基于SL-EMR测量配置信息获取SL-EMR测量结果,或者在空口链路提早测量上报Uu-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果。
具体地,如果SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,说明网络侧为UE单独配置了SL-EMR测量时间定时器,那么UE针对中继的EMR测量在该定时器超时前执行,即基于SL-EMR测量配置信息获取SL-EMR测量结果,且在该定时器超时后是否继续执行取决于UE实现。如果SL-EMR测量配置信息中不包含SL-EMR测量时间定时器长度信息,说明网络侧没有为UE单独配置了SL-EMR测量时间定时器。那么,UE针对中继的EMR测量在原有针对Uu口配置的EMR定时器(即Uu-EMR测量时间定时器)超时前执行,基于SL-EMR测量配置信息获取SL-EMR测量结果,且在该定时器超时后是否继续执行取决于UE实现;或者,UE一直基于SL-EMR测量配置信息获取SL-EMR测量结果。
需要说明的是,SL-EMR配置信息中除了包含SL-EMR配置参数还可以包含有Uu-EMR配置参数,基于Uu-EMR配置参数进行针对Uu口的EMR测量的过程在此不在赘述。
可以理解的是,如果UE收到针对中继的EMR配置,仅针对中继执行EMR测量与记录。如果UE同时收到针对小区/基站与中继的EMR配置,针对小区/基站与中继均进行EMR测量与记录。
在本公开的一种可选实施例中,该方法还可以包括:
在处于非连接态之前,接收网络侧发送的中继发现指令;
在处于非连接态时,获取SL-EMR测量结果,包括:
在处于非连接态时,执行中继发现指令并对发现的中继UE进行测量,并将测量结果作为SL-EMR测量结果。
具体地,UE在处于非连接态之前,接收网络侧发送的中继发现指令,并在处于连接态时,执行中继发现指令并对发现的中继UE进行测量,并将测量结果作为SL-EMR测量结果。该方式省去了网络侧进行SL-EMR测量配置信息配置的工作量,简化了链路恢复过程中网络侧的工作。
在本公开的一种可选实施例中,在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,包括:
在进入连接态时,将SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,
在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供网络侧基于SL-EMR测量结果指示信息获取SL-EMR测量结果。
具体地,UE在获得了SL-EMR测量结果后,在进入连接态时可以有两种方式向网络侧上报SL-EMR测量结果。其一是,直接将SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧。其二是将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,即向网络侧发送SL-EMR测量结果可用指示(available indicator),该可用指示可以复用现有的针对Uu口的EMR测量结果可用指示。然后网络侧再基于该可用指示向UE请求对应的 SL-EMR测量结果。
具体来说,UE向网络侧指示UE保存有SL-EMR测量结果,或者UE复用现有的针对Uu口的EMR测量结果可用指示;网络侧基于可用指示向UE请求SL单独的EMR测量结果,或者所有EMR测量结果;相应地,UE向网络侧上报SL单独的EMR测量结果,或者所有EMR测量结果。
在本公开的一种可选实施例中,该方法还可以包括:
若在将SL-EMR测量结果发送至对应的网络侧的过程中发生了切换或重建,则在接入新的小区时,在新的小区将SL-EMR测量结果重新发送至对应的网络侧。
具体地,如果UE保存有SL-EMR测量配置信息,但在接入连接态后尚未上报完成时发生了切换或者重建,当UE接入新小区时,可以在新小区重新上报。上报方式可以为:
在RRC重配/重建完成消息中直接携带测量结果;或者,
仅在RRC重配/重建完成消息中携带相关结果可用指示(available indicator),然后在后续步骤中单独上报测量结果(例如网络侧收到可用指示后请求UE上报测量结果)。
如果使用发送可用指示后等待网络请求测量结果的方式,相关的方式或方式组合与前述实施例相同。
在本公开的一种可选实施例中,基于多路径链路配置信息进行链路恢复,包括:
与多路径链路配置信息所指示的中继UE建立PC5口连接。
具体地,UE接收到网络侧的多路径链路配置信息后,与多路径链路配置信息中指示的中继UE发起PC5口连接。该连接可以是由UE触发的,也可以是由中继UE触发的。
在本公开的一种可选实施例中,该方法还可以包括:
在处于非连接态之前,向网络侧发送支持SL-EMR测量指示信息。
具体地,为了使网络侧能够获知UE是否支持SL相关的提早测量以及记录/上报,或者与当前现有的Uu-EMR相区分,UE可以在AS能力上报中,上报是否支持SL-EMR。具体来说,若UE支持SL-EMR,则在处 于非连接态之前,向网络侧发送支持SL-EMR测量指示信息。
网络收到该UE能力指示后,可以确定该UE是否支持SL的EMR,从而确定是否给该UE下发SL相关的EMR配置信息。如果UE的Uu相关EMR与SL相关EMR使用共同的可用指示(available indicator),该能力可以使网络确定从UE获取的EMR测量结果中是否包含SL-EMR测量结果,从而在向UE请求指示前评估UE上报信息的大小,确定获取EMR测量结果的合适时机。
图3为本公开实施例提供的一种链路恢复方法的流程示意图,应用于网络侧,如图3所示,该方法可以包括:
步骤S301,在UE进入连接态时,接收UE发送的边缘链路提早测量上报SL-EMR测量结果;步骤S302,若基于SL-EMR测量结果确定需要配置多路径链路,则基于SL-EMR测量结果确定相应的多路径链路配置信息,并将多路径链路配置信息发送至UE,以供UE基于多路径链路配置信息进行链路恢复。
其中,UE发送的SL-EMR测量结果是其在处于非连接态时,基于接收到的SL-EMR测量指示测量得到的。
本公开实施例提供的方案,UE在处于非连接态时获取了SL-EMR测量结果,并在进入连接态时将SL-EMR测量结果上报至相应的网络侧,使得UE在需要与相应的网络侧进行链接恢复前,无需进行SL相关节点的EMR测量,节省了UE进入连接态后重新获取SL-EMR测量结果的时间,进而能够实现多路径/多连接场景下的链路快速恢复。
由前文所述可知,本公开方案中,UE获取SL-EMR测量结果可以基于两种方式,其一为基于网络侧下发的SL-EMR测量配置信息获取SL-EMR测量结果,其二是基于网络侧下发的中继发现指示。因此在第一种方式中网络侧需要下发SL-EMR测量配置信息,在第二种方式中网络侧需要下发中继发现指示。下面将对两种方式中网络侧的下发过程进行详细说明。
在本公开的一种可选方式中,该方法还可以包括:
在处于非连接态之前,向UE发送SL-EMR测量配置信息,以供UE在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
具体地,向UE发送SL-EMR测量配置信息,包括:将SL-EMR测量配置信息携带于专用信令中发送至UE;和/或,将SL-EMR测量配置信息携带于系统信息中发送至UE。
其中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
在本公开的一种可选实施例中,SL-EMR测量配置信息通过以下方式获取:获取中继相关的测量配置;基于中继相关的测量配置和网络相关的测量配置,获取SL-EMR测量配置信息。
具体地,用于快速建立/恢复多路径/多连接的测量配置信息下发,可能允许NW节点与远端UE现有中继UE(即与UE连接的当前中继UE)之间进行协商,并最终由NW决定给UE下发的测量配置信息,并发送给UE;也可能NW自行决定给UE下发的测量配置信息,并直接发送给UE。而最终下发的测量配置信息可以由中继相关的测量配置和网络相关的测量配置整合得到。
在本公开的一种可选实施例中,获取中继相关的测量配置,包括以下各方式中的任一种方式:在UE进入非连接态之前,向与UE连接的当前中继UE发送第一测量配置请求,并接收当前中继UE响应于第一测量配置请求发送的当前中继UE所需测量的中继相关的测量配置;
在UE进入非连接态之前,向当前中继UE发送携带有网络相关的测量配置的第二测量配置请求,并接收当前中继UE响应于第二测量配置请求发送的与网络相关的测量配置互补的中继相关的测量配置;
在UE进入非连接态之前,接收当前中继UE发送的中继相关的测量配置。
具体地,NW决定释放与UE的RRC连接到IDLE或者到INACTIVE,并且想要给UE配置用于SL-EMR多路径/多连接的测量时,可以与UE的 当前中继UE进行SL-EMR测量配置信息的协商,该协商过程可以包括有以下三种方案:
方案1:可以由NW节点向当前中继UE发送测量配置请求(即第一测量配置请求),当前中继UE将需要UE测量的内容反馈给NW节点;
方案2:可以由NW向当前中继UE发送携带推荐配置的请求(即第二测量配置请求),当前中继UE基于NW已有的测量配置,将中继相关的补充/修正测量配置参数发送给NW。
方案3:当前中继UE直接向NW节点发送中继相关的测量配置。
在本公开的一种可选实施例中,若将SL-EMR测量配置信息携带于RRC连接释放消息中发送至UE,则基于中继相关的测量配置和网络相关的测量配置获取SL-EMR测量配置信息,包括:
将中继相关的测量配置与网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到SL-EMR测量配置信息;或者,
将中继相关的测量配置与网络相关的测量配置整合为同一套参数,得到SL-EMR测量配置信息。
具体地,在组装最终发送给UE的SL-EMR测量配置信息时,NW可以将中继相关的测量配置与NW相关的测量配置,一起配置在一条RRC连接释放消息中,并设置单独的域(field)独立携带(例如NW节点与relay节点为inter-RAT),或者由NW节点进行决策/整合,仅设置一套给UE下发的最终参数。
可以理解的是,网络侧生成SL-EMR测量配置信息,并下发给UE进行相应的SL-EMR测量的过程如图4所示,可以包括以下几个步骤:
1、NW与当前中继UE协商下发给UE的测量配置(包括网络相关的测量配置和中继相关的测量配置);
2、NW针对网络相关的测量配置和中继相关的测量配置进行决策/整合/组装,得到下发给UE的SL-EMR测量配置信息;
3、NW将得到的SL-EMR测量配置信息下发给UE;
4、UE在处于非连接态时,基于接收到的SL-EMR测量配置信息进行 测量。
在本公开的一种可选实施例中,该方法还可以包括:
在处于非连接态之前,向UE发送的中继发现指令,以供UE在处于非连接态时,执行中继发现指令并对发现的中继节点进行测量,并将测量结果作为SL-EMR测量结果。
具体地,向UE发送SL-EMR测量配置信息,包括:将中继发现指令携带于专用信令中发送至UE;和/或,将中继发现指令携带于系统信息中发送至UE。
其中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
下面通过一个示例来对本公开实施例提供的多路径/多连接场景下的链接恢复方法进行进一步说明,如图5所示,该方法可以包括以下几个步骤:
1、UE在IDLE/INACTIVE态执行基于网络配置的SL-EMR测量配置信息的测量,得到相应的SL-EMR测量结果;
2、UE与网络侧建立/恢复RRC连接,该步骤可能是由于网络侧寻呼了该UE而发起的,或者UE自行发起的连接建立/恢复;该步骤中,UE可能与NW之间建立直接连接;或者通过一至多个中继UE建立非直接连接,则NW与所连接的中继UE之间为Uu口连接,UE与中继UE之间以及可能的中继UE与中继UE之间为PC5口连接;
3、UE向网络侧上报SL-EMR测量结果;
4、与UE建立/恢复连接的网络侧节点接收到SL-EMR测量结果后,根据测量结果内容决定是否给UE配置多路径/多连接。如果确定需要配置,向相应的中继UE发送多路径链路配置信息,该信息中可能包括UE针对该中继的测量结果;
5、同时NW在RRC重配置消息中给UE下发多路径链路配置信息, 完成针对UE的配置;该步骤5与步骤4的顺序可变换;
6、UE接收到网络侧配置后,与配置中指示的中继UE发起PC5口连接。该连接可能是有UE触发的,或者由中继UE触发的。
图6为本公开实施例提供的一种用户设备UE的结构示意图,如图6所示,包括存储器620,收发机610,处理器600,用户接口630:
存储器620,用于存储计算机程序;收发机610,用于在处理器的控制下收发数据;处理器600,用于读取存储器620中的计算机程序并执行以下操作:
在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;
在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
接收网络侧基于SL-EMR测量结果发送的多路径链路配置信息,并基于多路径链路配置信息进行链路恢复。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
在处于非连接态之前,接收网络侧发送的SL-EMR测量配置信息;
在处于非连接态时,获取SL-EMR测量结果,包括:
在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,SL-EMR测量配置信息包括以下各项中的一项或多项:
SL-EMR测量对象信息;
SL-EMR报告配置信息;
SL-EMR测量时间定时器长度信息和测量间隔信息;
SL-EMR测量区域范围信息;
测量所在部分带宽BWP的子载波间隔。
在本公开的一种可选实施例中,SL-EMR测量对象信息包含有至少一个预设中继UE的标识信息,预设中继UE的标识信息所指示的中继UE 被优先测量。
在本公开的一种可选实施例中,在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果,包括:
若SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,则在SL-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果;
若SL-EMR测量配置信息中不包含SL EMR测量时间定时器长度信息,则一直基于SL-EMR测量配置信息获取SL-EMR测量结果,或者在空口链路提早测量上报Uu-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
在处于非连接态之前,接收网络侧发送的中继发现指令;
在处于非连接态时,获取SL-EMR测量结果,包括:
在处于非连接态时,执行中继发现指令并对发现的中继UE进行测量,并将测量结果作为SL-EMR测量结果。
在本公开的一种可选实施例中,在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,包括:
在进入连接态时,将SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,
在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供网络侧基于SL-EMR测量结果指示信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
若在将SL-EMR测量结果发送至对应的网络侧过程中发生了切换或重建,则在接入新的小区时,在新的小区将SL-EMR测量结果重新发送至对应的网络侧。
在本公开的一种可选实施例中,基于多路径链路配置信息进行链路恢复,包括:
与多路径链路配置信息所指示的中继UE建立PC5口连接。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
在处于非连接态之前,向网络侧发送支持SL-EMR测量指示信息。
进一步地,收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器600和存储器620代表的存储器620的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器600也可以采用多核架构。
处理器600通过调用存储器620存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一方法。处理器600与存储器620也可以物理上分开布置。
图7为本公开实施例提供的一种基站的结构示意图,如图7所示,包括存储器720,收发机710,处理器700:
存储器720,用于存储计算机程序;收发机710,用于在处理器的控制下收发数据;处理器700,用于读取存储器720中的计算机程序并执行以下操作:
在UE进入连接态时,接收UE发送的边缘链路提早测量上报SL-EMR 测量结果;
若基于SL-EMR测量结果确定需要配置多路径链路,则基于SL-EMR测量结果确定相应的多路径链路配置信息,并将多路径链路配置信息发送至UE,以供UE基于多路径链路配置信息进行链路恢复。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
在处于非连接态之前,向UE发送SL-EMR测量配置信息,以供UE在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在本公开的一种可选实施例中,向UE发送SL-EMR测量配置信息,包括:
将SL-EMR测量配置信息携带于专用信令中发送至UE;和/或,
将SL-EMR测量配置信息携带于系统信息中发送至UE。
在本公开的一种可选实施例中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
在本公开的一种可选实施例中,系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
在本公开的一种可选实施例中,SL-EMR测量配置信息通过以下方式获取:
获取中继相关的测量配置;
基于中继相关的测量配置和网络相关的测量配置,获取SL-EMR测量配置信息。
在本公开的一种可选实施例中,获取中继相关的测量配置,包括以下各方式中的任一种方式:
在UE进入非连接态之前,向与UE连接的当前中继UE发送第一测量配置请求,并接收当前中继UE响应于第一测量配置请求发送的当前中继UE所需测量的中继相关的测量配置;
在UE进入非连接态之前,向当前中继UE发送携带有网络相关的测量配置的第二测量配置请求,并接收当前中继UE响应于第二测量配置请求发送的与网络相关的测量配置互补的中继相关的测量配置;
在UE进入非连接态之前,接收当前中继UE发送的中继相关的测量配置。
在本公开的一种可选实施例中,若将SL-EMR测量配置信息携带于RRC连接释放消息中发送至UE,则基于中继相关的测量配置和网络相关的测量配置获取SL-EMR测量配置信息,包括:
将中继相关的测量配置与网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到SL-EMR测量配置信息;或者,
将中继相关的测量配置与网络相关的测量配置整合为同一套参数,得到SL-EMR测量配置信息。
在本公开的一种可选实施例中,处理器还用于执行以下操作:
在处于非连接态之前,向UE发送的中继发现指令,以供UE在处于非连接态时,执行中继发现指令并对发现的中继节点进行测量,并将测量结果作为SL-EMR测量结果。
在本公开的一种可选实施例中,向UE发送SL-EMR测量配置信息,包括:
将中继发现指令携带于专用信令中发送至UE;和/或,
将中继发现指令携带于系统信息中发送至UE。
在本公开的一种可选实施例中,专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
在本公开的一种可选实施例中,系统信息为与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
进一步地,收发机710,用于在处理器700的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器700和存储器720代表的存储器720的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆 等传输介质。处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
处理器700可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器700也可以采用多核架构。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图8为本公开实施例提供的一种链路恢复装置的结构框图,如图8所示,该装置800可以包括:测量结果获取模块801和测量结果发送模块802,其中:
测量结果获取模块801用于在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;
测量结果发送模块802用于在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
在一些实施例中,测量结果发送模块还用于:
接收网络侧基于SL-EMR测量结果发送的多路径链路配置信息,并基于多路径链路配置信息进行链路恢复。
在一些实施例中,测量结果获取模块还用于:
在处于非连接态之前,接收网络侧发送的SL-EMR测量配置信息;
在处于非连接态时,获取SL-EMR测量结果,包括:在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在一些实施例中,SL-EMR测量配置信息包括以下各项中的一项或多项:
SL-EMR测量对象信息;
SL-EMR报告配置信息;
SL-EMR测量时间定时器长度信息和测量间隔信息;
SL-EMR测量区域范围信息;
测量所在部分带宽BWP的子载波间隔。
在一些实施例中,SL-EMR测量对象信息包含有至少一个预设中继UE的标识信息,预设中继UE的标识信息所指示的中继UE被优先测量。
在一些实施例中,测量结果获取模块在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果,包括:
若SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,则在SL-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果;
若SL-EMR测量配置信息中不包含SL-EMR测量时间定时器长度信息,则一直基于SL-EMR测量配置信息获取SL-EMR测量结果,或者在空口链路提早测量上报Uu-EMR测量时间定时器超时前,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在一些实施例中,测量结果获取模块还用于:
在处于非连接态之前,接收网络侧发送的中继发现指令;
在处于非连接态时,获取SL-EMR测量结果,包括:
在处于非连接态时,执行中继发现指令并对发现的中继UE进行测量,并将测量结果作为SL-EMR测量结果。
在一些实施例中,测量结果发送模块在进入连接态时,将SL-EMR测量结果发送至对应的网络侧,包括:
在进入连接态时,将SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,
在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供网络侧基于SL-EMR测量结果指示信息获取SL-EMR测量结果。
在一些实施例中,测量结果发送模块还用于:
若在将SL-EMR测量结果发送至对应的网络侧的过程中发生了切换或重建,则在接入新的小区时,在新的小区将SL-EMR测量结果重新发送至对应的网络侧。
在一些实施例中,测量结果获取模块还用于:
在处于非连接态之前,向网络侧发送支持SL-EMR测量指示信息。
图9为本公开实施例提供的一种链路恢复装置的结构框图,如图9所示,该装置900可以包括:测量结果接收模块901和多路径链路配置信息确定模块902,其中:
测量结果接收模块901用于在UE进入连接态时,接收UE发送的边缘链路提早测量上报SL-EMR测量结果;
多路径链路配置信息确定模块902用于若基于SL-EMR测量结果确定需要配置多路径链路,则基于SL-EMR测量结果确定相应的多路径链路配置信息,并将多路径链路配置信息发送至UE,以供UE基于多路径链路配置信息进行链路恢复。
在一些实施例中,测量结果接收模块还用于:
在处于非连接态之前,向UE发送SL-EMR测量配置信息,以供UE在处于非连接态时,基于SL-EMR测量配置信息获取SL-EMR测量结果。
在一些实施例中,测量结果接收模块向UE发送SL-EMR测量配置信息,包括:
将SL-EMR测量配置信息携带于专用信令中发送至UE;和/或,
将SL-EMR测量配置信息携带于系统信息中发送至UE。
在一些实施例中,专用信令包括无线资源控制RRC连接释放消息或RRC重配置消息。
在一些实施例中,系统信息包括与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
在一些实施例中,SL-EMR测量配置信息通过以下方式获取:
获取中继相关的测量配置;
基于中继相关的测量配置和网络相关的测量配置,获取SL-EMR测量配置信息。
在一些实施例中,获取中继相关的测量配置,包括以下各方式中的任一种方式:
在UE进入非连接态之前,向与UE连接的当前中继UE发送第一测量配置请求,并接收当前中继UE响应于第一测量配置请求发送的当前中继UE所需测量的中继相关的测量配置;
在UE进入非连接态之前,向当前中继UE发送携带有网络相关的测量配置的第二测量配置请求,并接收当前中继UE响应于第二测量配置请求发送的与网络相关的测量配置互补的中继相关的测量配置;
在UE进入非连接态之前,接收当前中继UE发送的中继相关的测量配置。
在一些实施例中,当将SL-EMR测量配置信息携带于RRC连接释放消息中发送至UE时,基于中继相关的测量配置和网络相关的测量配置获取SL-EMR测量配置信息,包括:
将中继相关的测量配置与网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到SL-EMR测量配置信息;或者,
将中继相关的测量配置与网络相关的测量配置整合为同一套参数,得到SL-EMR测量配置信息。
在一些实施例中,测量结果接收模块还用于:
在处于非连接态之前,向UE发送的中继发现指令,以使UE在处于非连接态时,执行中继发现指令并对发现的中继节点进行测量,并将测量结果作为SL-EMR测量结果。
本申请实施例的装置可执行本申请实施例所提供的方法,其实现原理相类似,本申请各实施例的装置中的各模块所执行的动作是与本申请各实施例的方法中的步骤相对应的,对于装置的各模块的详细功能描述具体可以参见前文中所示的对应方法中的描述,此处不再赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本发明实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例提供了一种处理器可读存储介质,其中,处理器可读存储介质存储有计算机程序,计算机程序用于使处理器执行上述实施例的方法。处理器可读存储介质可以是非临时性存储器可读存储介质。
处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波 接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile  communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (41)

  1. 一种链路恢复方法,应用于用户设备UE侧,包括:
    在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;
    在进入连接态时,将所述SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收所述网络侧基于所述SL-EMR测量结果发送的多路径链路配置信息,并基于所述多路径链路配置信息进行链路恢复。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    在处于非连接态之前,接收所述网络侧发送的SL-EMR测量配置信息;
    所述在处于非连接态时,获取SL-EMR测量结果,包括:
    在处于非连接态时,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果。
  4. 根据权利要求3所述的方法,其中,所述SL-EMR测量配置信息包括以下各项中的一项或多项:
    SL-EMR测量对象信息;
    SL-EMR报告配置信息;
    SL-EMR测量时间定时器长度信息和测量间隔信息;
    SL-EMR测量区域范围信息;
    测量所在部分带宽BWP的子载波间隔。
  5. 根据权利要求4所述的方法,其中,所述SL-EMR测量对象信息包含有至少一个预设中继UE的标识信息,所述预设中继UE的标识信息所指示的中继UE被优先测量。
  6. 根据权利要求4所述的方法,其中,所述在处于非连接态时,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果,包括:
    若所述SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度 信息,则在所述SL-EMR测量时间定时器超时前,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果;
    若所述SL-EMR测量配置信息中不包含SL-EMR测量时间定时器长度信息,则一直基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果,或者在空口链路提早测量上报Uu-EMR测量时间定时器超时前,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果。
  7. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    在处于非连接态之前,接收所述网络侧发送的中继发现指令;
    所述在处于非连接态时,获取SL-EMR测量结果,包括:
    在处于非连接态时,执行所述中继发现指令并对发现的中继UE进行测量,并将测量结果作为所述SL-EMR测量结果。
  8. 根据权利要求1或2所述的方法,其中,所述在进入连接态时,将所述SL-EMR测量结果发送至对应的网络侧,包括:
    在进入连接态时,将所述SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,
    在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供所述网络侧基于所述SL-EMR测量结果指示信息获取所述SL-EMR测量结果。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    若在将所述SL-EMR测量结果发送至对应的网络侧的过程中发生了切换或重建,则在接入新的小区时,在所述新的小区将所述SL-EMR测量结果重新发送至对应的网络侧。
  10. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    在处于非连接态之前,向所述网络侧发送支持SL-EMR测量指示信息。
  11. 一种链路恢复方法,应用于网络侧,包括:
    在UE进入连接态时,接收所述UE发送的边缘链路提早测量上报SL-EMR测量结果;
    若基于所述SL-EMR测量结果确定需要配置多路径链路,则基于所述SL-EMR测量结果确定相应的多路径链路配置信息,并将所述多路径链路配置信息发送至所述UE,以供所述UE基于所述多路径链路配置信息进行链路恢复。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    在处于非连接态之前,向所述UE发送SL-EMR测量配置信息,以供所述UE在处于非连接态时,基于所述SL-EMR测量配置信息获取SL-EMR测量结果。
  13. 根据权利要求12所述的方法,其中,所述向所述UE发送SL-EMR测量配置信息,包括:
    将所述SL-EMR测量配置信息携带于专用信令中发送至所述UE;和/或,
    将所述SL-EMR测量配置信息携带于系统信息中发送至所述UE。
  14. 根据权利要求13所述的方法,其中,所述专用信令包括无线资源控制RRC连接释放消息或RRC重配置消息。
  15. 根据权利要求13所述的方法,其中,所述系统信息包括与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
  16. 根据权利要求12所述的方法,其中,所述SL-EMR测量配置信息通过以下方式获取:
    获取中继相关的测量配置;
    基于所述中继相关的测量配置和网络相关的测量配置,获取所述SL-EMR测量配置信息。
  17. 根据权利要求16所述的方法,其中,所述获取中继相关的测量配置,包括以下各方式中的任一种方式:
    在所述UE进入非连接态之前,向与所述UE连接的当前中继UE发送第一测量配置请求,并接收所述当前中继UE响应于所述第一测量配置请求发送的所述当前中继UE所需测量的中继相关的测量配置;
    在所述UE进入非连接态之前,向所述当前中继UE发送携带有所述网络相关的测量配置的第二测量配置请求,并接收所述当前中继UE响应于所述第二测量配置请求发送的与所述网络相关的测量配置互补的中继相关的测量配置;
    在所述UE进入非连接态之前,接收所述当前中继UE发送的中继相关的测量配置。
  18. 根据权利要求16所述的方法,其中,当将所述SL-EMR测量配置信息携带于RRC连接释放消息中发送至所述UE时,所述基于所述中继相关的测量配置和网络相关的测量配置获取所述SL-EMR测量配置信息,包括:
    将所述中继相关的测量配置与所述网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到所述SL-EMR测量配置信息;或者,
    将所述中继相关的测量配置与所述网络相关的测量配置整合为同一套参数,得到所述SL-EMR测量配置信息。
  19. 根据权利要求11所述的方法,其中,所述方法还包括:
    在处于非连接态之前,向所述UE发送的中继发现指令,以使所述UE在处于非连接态时,执行所述中继发现指令并对发现的中继节点进行测量,并将测量结果作为所述SL-EMR测量结果。
  20. 一种用户设备UE,包括存储器,收发机,以及处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;
    在进入连接态时,将所述SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
  21. 根据权利要求20所述的UE,其中,所述处理器还用于执行以下操作:
    接收所述网络侧基于所述SL-EMR测量结果发送的多路径链路配置 信息,并基于所述多路径链路配置信息进行链路恢复。
  22. 根据权利要求20或21所述的UE,其中,所述处理器还用于执行以下操作:
    在处于非连接态之前,接收所述网络侧发送的SL-EMR测量配置信息;
    所述在处于非连接态时,获取SL-EMR测量结果,包括:
    在处于非连接态时,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果。
  23. 根据权利要求22所述的UE,其中,所述SL-EMR测量配置信息包括以下各项中的一项或多项:
    SL-EMR测量对象信息;
    SL-EMR报告配置信息;
    SL-EMR测量时间定时器长度信息和测量间隔信息;
    SL-EMR测量区域范围信息;
    测量所在部分带宽BWP的子载波间隔。
  24. 根据权利要求23所述的UE,其中,所述SL-EMR测量对象信息包含有至少一个预设中继UE的标识信息,所述预设中继UE的标识信息所指示的中继UE被优先测量。
  25. 根据权利要求23所述的UE,其中,所述在处于非连接态时,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果,包括:
    若所述SL-EMR测量配置信息中包含SL-EMR测量时间定时器长度信息,则在所述SL-EMR测量时间定时器超时前,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果;
    若所述SL-EMR测量配置信息中不包含SL EMR测量时间定时器长度信息,则一直基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果,或者在空口链路提早测量上报Uu-EMR测量时间定时器超时前,基于所述SL-EMR测量配置信息获取所述SL-EMR测量结果。
  26. 根据权利要求20或21所述的UE,其中,所述处理器还用于执 行以下操作:
    在处于非连接态之前,接收所述网络侧发送的中继发现指令;
    所述在处于非连接态时,获取SL-EMR测量结果,包括:
    在处于非连接态时,执行所述中继发现指令并对发现的中继UE进行测量,并将测量结果作为所述SL-EMR测量结果。
  27. 根据权利要求20或21所述的UE,其中,所述在进入连接态时,将所述SL-EMR测量结果发送至对应的网络侧,包括:
    在进入连接态时,将所述SL-EMR测量结果携带于无线资源控制RRC建立/恢复完成消息中发送至对应的网络侧;或,
    在进入连接态时,将携带有SL-EMR测量结果指示信息的RRC建立/恢复完成消息发送至对应的网络侧,以供所述网络侧基于所述SL-EMR测量结果指示信息获取所述SL-EMR测量结果。
  28. 根据权利要求27所述的UE,其中,所述处理器还用于执行以下操作:
    若在将所述SL-EMR测量结果发送至对应的网络侧的过程中发生了切换或重建,则在接入新的小区时,在所述新的小区将所述SL-EMR测量结果重新发送至对应的网络侧。
  29. 根据权利要求20或21所述的UE,其中,所述处理器还用于执行以下操作:
    在处于非连接态之前,向所述网络侧发送支持SL-EMR测量指示信息。
  30. 一种基站,其中,包括存储器,收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在UE进入连接态时,接收所述UE发送的边缘链路提早测量上报SL-EMR测量结果;
    若基于所述SL-EMR测量结果确定需要配置多路径链路,则基于所述SL-EMR测量结果确定相应的多路径链路配置信息,并将所述多路径链路 配置信息发送至所述UE,以供所述UE基于所述多路径链路配置信息进行链路恢复。
  31. 根据权利要求30所述的基站,其中,所述处理器还用于执行以下操作:
    在处于非连接态之前,向所述UE发送SL-EMR测量配置信息,以供所述UE在处于非连接态时,基于所述SL-EMR测量配置信息获取SL-EMR测量结果。
  32. 根据权利要求31所述的基站,其中,所述向所述UE发送SL-EMR测量配置信息,包括:
    将所述SL-EMR测量配置信息携带于专用信令中发送至所述UE;和/或,
    将所述SL-EMR测量配置信息携带于系统信息中发送至所述UE。
  33. 根据权利要求32所述的基站,其中,所述专用信令为无线资源控制RRC连接释放消息或RRC重配置消息。
  34. 根据权利要求32所述的基站,其中,所述系统信息包括与空口链路提早测量上报Uu-EMR测量共用的系统消息块SIB消息或单独给出的SIB消息。
  35. 根据权利要求31所述的基站,其中,所述SL-EMR测量配置信息通过以下方式获取:
    获取中继相关的测量配置;
    基于所述中继相关的测量配置和网络相关的测量配置,获取所述SL-EMR测量配置信息。
  36. 根据权利要求35所述的基站,其中,所述获取中继相关的测量配置,包括以下各方式中的任一种方式:
    在所述UE进入非连接态之前,向与所述UE连接的当前中继UE发送第一测量配置请求,并接收所述当前中继UE响应于所述第一测量配置请求发送的所述当前中继UE所需测量的中继相关的测量配置;
    在所述UE进入非连接态之前,向所述当前中继UE发送携带有所述 网络相关的测量配置的第二测量配置请求,并接收所述当前中继UE响应于所述第二测量配置请求发送的与所述网络相关的测量配置互补的中继相关的测量配置;
    在所述UE进入非连接态之前,接收所述当前中继UE发送的中继相关的测量配置。
  37. 根据权利要求35所述的基站,其中,当将所述SL-EMR测量配置信息携带于RRC连接释放消息中发送至所述UE时,所述基于所述中继相关的测量配置和网络相关的测量配置获取所述SL-EMR测量配置信息,包括:
    将所述中继相关的测量配置与所述网络相关的测量配置整合到RRC连接释放消息中的一个单独的域中,得到所述SL-EMR测量配置信息;或者,
    将所述中继相关的测量配置与所述网络相关的测量配置整合为同一套参数,得到所述SL-EMR测量配置信息。
  38. 根据权利要求30所述的基站,其中,所述处理器还用于执行以下操作:
    在处于非连接态之前,向所述UE发送的中继发现指令,以供所述UE在处于非连接态时,执行所述中继发现指令并对发现的中继节点进行测量,并将测量结果作为所述SL-EMR测量结果。
  39. 一种链路恢复装置,包括:
    测量结果获取模块,用于在处于非连接态时,获取边缘链路提早测量上报SL-EMR测量结果;
    测量结果发送模块,用于在进入连接态时,将所述SL-EMR测量结果发送至对应的网络侧,以进行链路恢复。
  40. 一种链路恢复装置,其特征在于,所述装置包括:
    测量结果接收模块,用于在UE进入连接态时,接收所述UE发送的边缘链路提早测量上报SL-EMR测量结果;
    多路径链路配置信息确定模块,用于若基于所述SL-EMR测量结果确 定需要配置多路径链路,则基于所述SL-EMR测量结果确定相应的多路径链路配置信息,并将所述多路径链路配置信息发送至所述UE,以供所述UE基于所述多路径链路配置信息进行链路恢复。
  41. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至19中任一项所述的方法。
PCT/CN2023/090146 2022-04-26 2023-04-23 链路恢复方法、装置、设备及处存储介质 WO2023207865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210451477.6 2022-04-26
CN202210451477.6A CN116996929A (zh) 2022-04-26 2022-04-26 链路恢复方法、装置、设备及处存储介质

Publications (1)

Publication Number Publication Date
WO2023207865A1 true WO2023207865A1 (zh) 2023-11-02

Family

ID=88517760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090146 WO2023207865A1 (zh) 2022-04-26 2023-04-23 链路恢复方法、装置、设备及处存储介质

Country Status (2)

Country Link
CN (1) CN116996929A (zh)
WO (1) WO2023207865A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029239A1 (en) * 2018-07-20 2020-01-23 FG Innovation Company Limited Reporting early measurement results in the next generation wireless networks
CN111757368A (zh) * 2019-03-28 2020-10-09 苹果公司 载波聚合或双连接的配置的早期测量报告
WO2022012589A1 (en) * 2020-07-14 2022-01-20 FG Innovation Company Limited User equipment and method for idle mode measurement
US20220116809A1 (en) * 2019-01-18 2022-04-14 Qualcomm Incorporated Early measurement reporting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029239A1 (en) * 2018-07-20 2020-01-23 FG Innovation Company Limited Reporting early measurement results in the next generation wireless networks
CN112514452A (zh) * 2018-07-20 2021-03-16 鸿颖创新有限公司 在nr无线网络中回报早期测量结果
US20220116809A1 (en) * 2019-01-18 2022-04-14 Qualcomm Incorporated Early measurement reporting
CN111757368A (zh) * 2019-03-28 2020-10-09 苹果公司 载波聚合或双连接的配置的早期测量报告
WO2022012589A1 (en) * 2020-07-14 2022-01-20 FG Innovation Company Limited User equipment and method for idle mode measurement

Also Published As

Publication number Publication date
CN116996929A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
JP2024502369A (ja) Ue能力情報処理方法、装置、機器、及び記憶媒体
US20230262793A1 (en) Method for communication between user terminal and network, and terminal, network device and apparatus
WO2022028297A1 (zh) 辅小区组的主小区更新方法、装置及存储介质
JP2023536495A (ja) サビース処理方法、情報指示方法、端末及びネットワーク機器
US20230397020A1 (en) Method and apparatus for controlling data transmission, and storage medium
WO2023273397A1 (zh) 组切换方法、设备、装置及存储介质
WO2022156439A1 (zh) 信息传输方法、装置、基站及介质
WO2022083411A1 (zh) 辅小区变换的错误类型的判定方法及设备
WO2023207865A1 (zh) 链路恢复方法、装置、设备及处存储介质
KR20230091138A (ko) Mro 크리티컬 시나리오의 판정 방법, 장치 및 기기
WO2024022023A1 (zh) QoE测量配置的指示方法及装置
WO2023208046A1 (zh) 资源选择方法、设备、装置及存储介质
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2024027687A1 (zh) QoE测量报告的处理方法及装置
WO2023202316A1 (zh) 一种一致性lbt失败的处理方法、终端及网络设备
WO2024027679A1 (zh) 一种测量方法及装置
WO2023020276A1 (zh) 组播广播业务数据传输方法、装置、设备以及存储介质
WO2023202437A1 (zh) 多播业务的传输方法及装置
WO2024022442A1 (zh) 一种体验质量报告的传输方法、装置、终端、sn及mn
WO2023005657A1 (zh) 信息发送方法、处理方法、终端、网络设备和存储介质
WO2024021937A1 (zh) 小区服务控制、信号配置、信号发送方法、设备及终端
WO2023011411A1 (zh) 重配失败的处理方法、装置及终端
WO2023231767A1 (zh) 定时提前值传输方法、装置及存储介质
WO2024032302A1 (zh) 位置获取方法、装置及存储介质
WO2024051513A1 (zh) 一种信息处理方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795298

Country of ref document: EP

Kind code of ref document: A1