WO2023207768A1 - 一种高强韧薄型7系铝合金带材的制备方法 - Google Patents

一种高强韧薄型7系铝合金带材的制备方法 Download PDF

Info

Publication number
WO2023207768A1
WO2023207768A1 PCT/CN2023/089645 CN2023089645W WO2023207768A1 WO 2023207768 A1 WO2023207768 A1 WO 2023207768A1 CN 2023089645 W CN2023089645 W CN 2023089645W WO 2023207768 A1 WO2023207768 A1 WO 2023207768A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
strength
series aluminum
strip
thin
Prior art date
Application number
PCT/CN2023/089645
Other languages
English (en)
French (fr)
Inventor
阙石生
蔡峰
黄瑞银
陈国生
张希园
冉继龙
彭有新
刘九松
罗富鑫
邱龙涛
黄金哲
李学云
钟森源
唐远路
Original Assignee
中铝瑞闽股份有限公司
中铝东南材料院(福建)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝瑞闽股份有限公司, 中铝东南材料院(福建)科技有限公司 filed Critical 中铝瑞闽股份有限公司
Publication of WO2023207768A1 publication Critical patent/WO2023207768A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Definitions

  • the invention belongs to the field of aluminum alloy strip preparation, and specifically relates to a method for preparing high-strength and thin 7-series aluminum alloy strips.
  • An air-cushion continuous annealing furnace is used for continuous heat treatment.
  • the strip obtains tensile stress through speed difference and is blown by an upper and lower circulating fan to ensure that the strip is in a stable floating state and is cooled by water cooling or air cooling.
  • the production efficiency is high and the temperature control accuracy is high. , with stable organizational properties and favored by material manufacturers.
  • 7 series aluminum alloy is an ultra-high-strength aluminum alloy with high specific strength, specific modulus, good electrical and thermal conductivity, and excellent cutting performance. It is widely used in aerospace, automobiles, machinery manufacturing, shipbuilding, and chemical industries. And civil industry, it has also been widely used in backlight panels and structural parts of computers, mobile phones, and display screens.
  • Ultra-high-strength 7 series aluminum alloy has high strength and poor plastic toughness, so it is very difficult to process thin materials.
  • hot-rolled coils are cut into medium-thick plates, which are solution quenched in a roller hearth furnace, and then straightened by a pre-stretching machine. Finally, the finished product is produced through artificial aging. There are almost no cold-rolled thin materials and solution quenching in air-cushion continuous annealing furnaces. production methods reported. The main reason is that during the solution quenching process in the air cushion continuous annealing furnace, on the one hand, it needs to be quickly raised to high temperature and rapidly cooled to achieve good structural properties.
  • the heat treatment process of the front and rear coils may be quite different, and it is easy to wrinkle after joining and sewing. Improper process operation can easily cause the strip to deviate or even break during fast operation. On the other hand, rapid quenching causes rapid deterioration of the thin strip pattern and residual stress, which seriously limits its application. Therefore, the current preparation technology of high-strength and thin 7-series aluminum alloy strips with a thickness of 0.15 ⁇ 0.50mm is still a common problem in the industry.
  • the Chinese patent application number 202011392715.8 discloses a method for preparing a 650MPa ultra-high-strength aluminum alloy thin strip. It adds an appropriate amount of rare earth element Er to the Al-Zn-Mg-Cu alloy, and combines cold rolling and annealing processes to obtain a thickness of 0.50 mm ultra-high-strength aluminum alloy thin strip, without production instructions for thickness 0.15 ⁇ 0.50mm.
  • the Chinese patent with application number 202010013070.6 discloses an ultra-high-strength aluminum alloy and its preparation method. Zr, Ti and Y elements are added on the basis of the Al-Zn-Cu-Mg system, and solid solution aging is performed after hot extrusion processing. Processing, the strength is higher than 900MPa, and the elongation after break is up to 5.6%, but the processing method of cold-rolled thin strip in air cushion continuous annealing furnace is not involved.
  • Chinese patents with application numbers 201911372829.3 and 201811484941.1 respectively disclose a 7-series aluminum alloy profile and its manufacturing method and a production method of ultra-high-strength 7-series aluminum alloy profiles for aerospace. Neither of them involves rolling thin strips and Manufacturing method of air cushion type continuous annealing furnace.
  • the present invention proposes a preparation method for high-strength and tough thin 7-series aluminum alloy strips by combining cold rolling, solid solution, quenching, artificial aging and other processes to comply with computer, The development trend of high-strength thinning of materials used in mobile phones and display screens.
  • a method for preparing high-strength and tough thin 7-series aluminum alloy strips The 7-series aluminum alloy strips are cold-rolled and then mechanically stitched, threaded, pre-cleaned, solid-solved, and quenched in an air-cushion continuous annealing furnace. After pre-stretching treatment, box-type artificial aging annealing is performed to obtain the high-strength and tough thin 7 series aluminum alloy strip.
  • the specific operations are as follows:
  • step 2) Perform pre-cleaning such as alkali washing and rinsing on the aluminum alloy strips arranged in step 1) to remove oil stains and aluminum powder produced during the rolling process;
  • the solid solution described in step 3) is heated from 0 ⁇ 60°C to 450°C ⁇ 490°C and kept for 0 ⁇ 1000s.
  • the slope K 1 of the curve of temperature (unit: °C) changing with time (unit: sec) is 1 ⁇ K 1 ⁇ 5; the slope K 2 of the curve of the quenching temperature changing with time is 3 ⁇ K 2 ⁇ 10.
  • Fan flow difference ⁇ 5%; tensile stress in the furnace (20% ⁇ 50%) ⁇ high temperature yield strength of 7 series aluminum alloy strip in the range of 450°C ⁇ 490°C.
  • the online shape of the strip used should be ⁇ 50I, the thickness difference between the front and back seamed strips should be ⁇ 20%, the width difference should be ⁇ 20%, and the cross-sectional area difference should be ⁇ 20%.
  • This invention aims at the production and preparation difficulties of high-strength and thin 7-series aluminum alloy strips.
  • a reasonable solid solution and quenching process is formulated, and the furnace
  • the coordinated control of internal tensile stress and fan flow achieves stable production using an air-cushion continuous annealing furnace.
  • a method for preparing high-strength and tough 7-series aluminum thin strips is developed.
  • the finished thickness of the aluminum alloy thin strips is 0.15 ⁇ 0.50mm, tensile strength ⁇ 510MPa, yield strength ⁇ 430MPa, elongation after break ⁇ 15%, and can be widely used in backlight panels and structural parts of computers, mobile phones, and display screens.
  • Figure 1 is a schematic diagram of the curve slope of the temperature changing with time during solid solution and quenching according to the present invention.
  • Figure 2 is a comparison diagram of the plate shapes of the strips used in Example 1 and Comparative Example 1.
  • Figure 3 is a comparative view of the outlet plate shape of the air cushion continuous annealing furnace in Example 2 (A) and Comparative Example 2 (B).
  • the invention provides a method for preparing high-strength and tough thin 7-series aluminum alloy strips.
  • the 7-series aluminum alloy strips are produced using an air-cushion continuous annealing furnace; the specific steps are as follows:
  • step 2) Perform pre-cleaning such as alkali washing and rinsing on the aluminum alloy strips arranged in step 1) to remove oil stains and aluminum powder produced during the rolling process;
  • the pre-stretched coil is subjected to box-type artificial aging annealing to obtain the high-strength and thin 7-series aluminum alloy strip.
  • the rapid heating of the strip to the solid solution temperature is beneficial to the refinement of recrystallized grains, but rapid hot conditions can easily cause the strip shape to deteriorate, so the strip should be heated from 0 to 60°C to 450°C during the solution process. ⁇ 490°C, holding for 0 ⁇ 1000s, the slope K 1 of the curve of temperature changing with time is preferably 1 ⁇ K 1 ⁇ 5; similarly, rapid quenching and cooling is conducive to controlling the aggregation and growth of the precipitated phase, but rapid cooling conditions are easy to cause Wrinkles, deviations or even belt breakage, therefore the slope K 2 of the curve of temperature changing with time during the quenching process should be 3 ⁇ K 2 ⁇ 10 ( Figure 1).
  • the air-cushion continuous annealing furnace uses tension and the floating effect of the upper and lower circulating air to achieve stable production. Excessive fan flow and upper and lower flow differences can easily cause thin materials to float up and down, left and right, and operate unstable, which can even cause scraping. If the strip reaches the furnace wall, the strip will directly crack and break.
  • the finished aluminum alloy thin strip has a thickness of 0.15mm, a tensile strength of 582MPa, a yield strength of 514MPa, and an elongation after break of 16.2%.
  • the thin plate can be widely used in backlight panels and structural parts of computers, mobile phones, and display screens.
  • the quenched coil is subjected to online 1% pre-stretching treatment in an air cushion furnace
  • the finished aluminum alloy thin strip has a thickness of 0.30mm, a tensile strength of 567MPa, a yield strength of 489MPa, and an elongation after break of 16.7%.
  • the thin plate can be widely used in backlight panels and structural parts of computers, mobile phones, and display screens.
  • the quenched coil is subjected to online 2% pre-stretching treatment in an air cushion furnace;
  • the finished aluminum alloy thin strip has a thickness of 0.45mm, a tensile strength of 600MPa, a yield strength of 537MPa, and an elongation after break of 15.3%.
  • the thin plate can be widely used in backlight panels and structural parts of computers, mobile phones, and display screens.
  • the cleaned strip is subjected to online solid solution and quenching treatment; the fan flow for upper and lower heating and cooling of the aluminum strip is 15m 3 /sec and 15.5m 3 /sec respectively; the fan flow for upper and lower heating and cooling of the strip is The flow difference is ⁇ 3.23%; the tensile stress in the furnace is 6N/mm 2 (the yield strength of the strip at 470°C is 15MPa); the cleaned aluminum alloy strip is heated from 20°C to 470°C (taking 85 seconds) and kept warm.
  • the fan flow rates for upper and lower heating and cooling of the aluminum strip are 90m 3 /sec and 95m 3 /sec respectively; the fan flow rates for upper and lower heating and cooling of the strip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

本发明公开了一种高强韧薄型7系铝合金带材的制备方法,其通过将冷轧至厚度为0.10~0.50mm的7系铝合金带材在气垫式连续退火炉中进行机械缝合、穿带、预清洗、固溶、淬火、预拉伸处理,再进行箱式人工时效退火,以制得所述高强韧薄型7系铝合金带材。所得铝合金薄带材的成品厚度为0.15~0.50mm,抗拉强度≥510MPa,屈服强度≥430MPa,断后延伸率≥15%,可广泛用于电脑、手机、显示屏的背光板和结构件。

Description

一种高强韧薄型7系铝合金带材的制备方法 技术领域
本发明属于铝合金带材制备领域,具体涉及一种高强韧薄型7系铝合金带材的制备方法。
背景技术
采用气垫式连续退火炉进行连续热处理,带材通过速度差获得张应力及上下循环风机吹动,保证带材处于稳定漂浮状态,并通过水冷或风冷进行降温,生产效率高,温度控制精度高,组织性能稳定,深受材料制作商的青睐。
7系铝合金属于超高强度铝合金,具有高的比强度、比模量、良好的导电导热性、优良的切削性能等特点,被广泛应用于航空航天、汽车、机械制造、船舶、化学工业及民用工业,在电脑、手机、显示屏的背光板和结构件上也得以推广应用。
技术问题
超高强7系铝合金因强度高,塑韧性差,其薄材加工难度很大。一般采用热轧卷切成中厚板材,经辊底炉进行固溶淬火处理,再预拉伸机矫直,最终人工时效产出成品,几乎无冷轧薄料及气垫式连续退火炉固溶淬火的生产方式报道。究其原因主要是在气垫式连续退火炉进行固溶淬火的过程中,一方面需快速升至高温和急速降温实现良好的组织性能,前后卷材热处理工艺可能相差较大,衔接缝合后容易起皱,工艺操作不当容易造成快速运行中带材容易跑偏甚至断带,另一方面快速淬火造成薄带材版型迅速恶化及应力残留,进而严重限制其应用。因此,目前关于厚度0.15~0.50mm的高强韧薄型7系铝合金带材的制备技术仍属于行业内的共性难题。
申请号为202011392715.8的中国专利公开了一种650MPa级超高强铝合金薄带制备方法,其通过在Al-Zn-Mg-Cu合金基础上添加适量稀土元素Er,结合冷轧和退火工艺获得厚度0.50mm的超高强铝合金薄带,而无厚度0.15~0.50mm的生产说明。
申请号为202010013070.6的中国专利公开了一种超高强铝合金及其制备方法,其在Al-Zn-Cu-Mg系的基础上添加Zr、Ti和Y元素,热挤压加工之后进行固溶时效处理,强度高于900MPa,断后伸长率最大为5.6%,但未涉及气垫式连续退火炉冷轧薄带的加工方法。
申请号为201911372829.3及201811484941.1的中国专利分别公开了一种7系铝合金型材及其制造方法和一种航空航天用超高强度7系铝合金型材的生产方法,其均未涉及压延薄带材及气垫式连续退火炉的制作方法。
技术解决方案
本发明针对高强韧7系铝薄材生产制备难的问题,结合冷轧、固溶、淬火、人工时效等工艺,提出一种高强韧薄型7系铝合金带材的制备方法,以顺应电脑、手机、显示屏用材高强度减薄的发展趋势。
为实现上述目的,本发明采用如下技术方案:
一种高强韧薄型7系铝合金带材的制备方法,其是将7系铝合金带材经冷轧后,于气垫式连续退火炉中进行机械缝合、穿带、预清洗、固溶、淬火及预拉伸处理后,再进行箱式人工时效退火,以制得所述高强韧薄型7系铝合金带材。其具体操作如下:
将7系铝合金带材冷轧至厚度为0.1~0.5mm,然后将其送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;
2)将步骤1)整理好的铝合金带材进行碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
3)将步骤2)清洗后的铝合金带材进行固溶、淬火;
4)将步骤3)淬火后的卷材进行0.2~3%的预拉伸处理;
5)将预拉伸后的卷材进行箱式人工时效退火。
其中,步骤3)中所述固溶是由0~60℃加热至450℃~490℃,保温0~1000s,其温度(单位为℃)随时间(单位为sec)变化的曲线斜率K 1为1≤K 1≤5;所述淬火的温度随时间变化的曲线斜率K 2为3≤K 2≤10。进行固溶及淬火时,气垫式连续退火炉的参数设定为:带材加热和冷却的风机流量=(100 m 3/sec~200 m 3/sec)×厚度;带材上下加热和冷却的风机流量差≤±5%;炉内张应力=(20%~50%)×7系铝合金带材在450℃~490℃范围内的高温屈服强度。所用带材的在线板型应<50I,进行前后缝合的带材厚差应<±20%,宽差应<±20%,横截面积差应<±20%。
有益效果
本发明针对高强韧薄型7系铝合金带材存在的生产制备难题,通过限定缝合前后卷材的尺寸偏差及板型控制,结合产品组织性能要求,制定合理的固溶、淬火工艺,并通过炉内张应力、风机流量的协同调控,实现利用气垫式连续退火炉的稳定化生产,开发出一种高强韧7系铝薄带材的制备方法,所制得的铝合金薄带材的成品厚度为0.15~0.50mm,抗拉强度≥510MPa,屈服强度≥430MPa,断后延伸率≥15%,可广泛用于电脑、手机、显示屏的背光板和结构件。
附图说明
图1为本发明进行固溶、淬火时温度随时间变化的曲线斜率示意图。
图2为实施例1与对比例1所用带料的板型对比图。
图3为实施例2(A)与对比例2(B)中气垫式连续退火炉出口板型的对比图。
本发明的实施方式
本发明提供了一种高强韧薄型7系铝合金带材的制备方法,其是将7系铝合金带材利用气垫式连续退火炉进行生产;其具体步骤如下:
1)将7系铝合金带材冷轧至厚度为0.1~0.5mm,然后将其送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;
2)将步骤1)整理好的铝合金带材进行碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
3)将步骤2)清洗后的铝合金带材进行固溶、淬火;
4)将淬火后的卷材进行0.2~3%的预拉伸处理;
5)将预拉伸后的卷材进行箱式人工时效退火,得到所述高强韧薄型7系铝合金带材。
为避免因板型不良或突变造成带材运行过程中的急剧恶化,及因前后气垫炉工艺变化造成严重的褶皱甚至断带风险。需管控来料带材的在线板型<50I,前后缝合的带材厚差<±20%,宽差<±20%,横截面积差<±20%。
带材快速升温至固溶温度,有利于再结晶晶粒细化,但在急热的条件容易造成带板型的恶化,因此在固溶过程中带材应由0~60℃加热至450℃~490℃,保温0~1000s,温度随时间变化的曲线斜率K 1以1≤K 1≤5为宜;同理,快速淬火冷却有利于控制析出相的聚集长大,但急冷的条件容易起皱、跑偏甚至断带,因此淬火过程中温度随时间变化的曲线斜率K 2以3≤K 2≤10为宜(如图1)。
进行固溶及淬火时,气垫式连续退火炉利用张力和上下循环风的漂浮作用实现稳定化生产,过大的风机流量及上下流量差容易造成薄料上下、左右浮动运行不稳,轻则刮到炉壁,重则带材直接裂开断带,因此应控制加热和冷却时的风机流量=(100m 3/sec~200m 3/sec)×厚度;带材上下加热和冷却的风机流量差≤±5%;同理,作为气垫炉稳定化生产的核心,炉内张应力过小则带材拉扯不紧,运行不稳定,炉内张应力过大则带材高温性能偏低造成拉断风险,因此炉内张应力=(20%~50%)×7系铝合金带材的高温(450℃~490℃)屈服强度为宜。
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例
(1)将含主要元素Cu 0.67%、Mg 1.74%、Zn 5.46%,其余为铝及其他微量元素的7系铝合金带材冷轧至成品厚度为0.15mm;
(2)将冷轧后的带材送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;所用带材的在线板型为20I,前后缝合的带材规格(厚度×宽度)分别为0.18mm×1200mm、0.15mm×1250mm,厚差16.67%,宽差-4.17%,横截面积差13.19%;
(3)将穿带后的铝合金带材进行在线碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
(4)将清洗后的带材进行在线固溶和淬火处理;铝带材上、下加热和冷却的风机流量分别为54m 3/sec、55m 3/sec;带材上下加热和冷却的风机流量差≤1.85%;炉内张应力为4.4N/mm 2(带材在450℃高温屈服强度为22MPa);将清洗后的铝合金带材由30℃加热至450℃(耗时210sec),保温600sec,再快速冷却至60℃(耗时50sec),即升温的斜率K 1=2,降温的斜率K 2=7.8;
(5)将淬火后的卷材进行气垫炉在线0.2%预拉伸处理;
(6)将预拉伸后的卷材进行110℃/24h的箱式人工时效退火。
制得的铝合金薄带材成品厚度为0.15mm,抗拉强度为582MPa,屈服强度为514MPa,断后延伸率16.2%,该薄板可广泛用于电脑、手机、显示屏的背光板和结构件。
实施例
(1)将含主要元素Cu 1.32%、Mg 2.12%、Zn 5.86%,其余为铝及其他微量元素的7系铝合金带材冷轧至成品厚度0.30mm;
(2)将冷轧后的带材送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;所用带材的在线板型为30I,前后缝合的带材规格(厚度×宽度)分别为0.28mm×1500mm、0.30mm×1450mm,厚差7.14%,宽差-3.33%,横截面积差3.57%;
(3)将穿带后的铝合金带材进行在线碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
(4)将清洗后的带材进行在线固溶和淬火处理;铝带材上、下加热和冷却的风机流量分别为15m 3/sec、15.5m 3/sec;带材上下加热和冷却的风机流量差≤3.23%;炉内张应力为6N/mm 2(带材在470℃高温屈服强度为15MPa);将清洗后的铝合金带材由20℃加热至470℃(耗时150sec),保温300sec,再快速冷却至60℃(耗时82sec),即升温的斜率K 1=3,降温的斜率K 2=5;
(5)将淬火后的卷材进行气垫炉在线1%预拉伸处理;
(6)将预拉伸后的卷材进行115℃/30h的箱式人工时效退火。
制得的铝合金薄带材成品厚度为0.30mm,抗拉强度为567MPa,屈服强度为489MPa,断后延伸率16.7%,该薄板可广泛用于电脑、手机、显示屏的背光板和结构件。
实施例
(1)将含主要元素Cu 1.32%、Mg 2.12%、Zn 5.86%,其余为铝及其他微量元素的7系铝合金带材冷轧至成品厚度0.45mm;
(2)将冷轧后的带材送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;所用卷材的在线板型12I,前后缝合的带材规格(厚度×宽度)分别为0.50mm×1600mm、0.45mm×1660mm,厚差10%,宽差3.75%,横截面积差6.625%;
(3)将穿带后的铝合金带材进行在线进行碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
(4)将清洗后的带材进行在线固溶和淬火处理;铝带材上、下加热和冷却的风机流量分别为90m 3/sec、93m 3/sec;带材上下加热和冷却的风机流量差≤3.33%;炉内张应力为4.25N/mm 2(带材在480℃高温屈服强度为17MPa);将清洗后的铝合金带材由40℃加热至480℃(耗时147sec),保温500sec,再快速冷却至60℃(耗时42sec),即升温的斜率K 1=3,降温的斜率K 2=10;
(5)将淬火后的卷材进行气垫炉在线2%预拉伸处理;
(6)将预拉伸后的卷材进行120℃/24h的箱式人工时效退火。
制得的铝合金薄带材成品厚度为0.45mm,抗拉强度为600MPa,屈服强度为537MPa,断后延伸率15.3%,该薄板可广泛用于电脑、手机、显示屏的背光板和结构件。
(1)将含主要元素Cu 0.67%、Mg 1.74%、Zn 5.46%,其余为铝及其他微量元素的7系铝合金带材冷轧至成品厚度为0.15mm;
(1)将冷轧后的带材送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;所用带材的在线板型为55I,前后缝合的带材规格(厚度×宽度)分别为0.18mm×1200mm、0.15mm×1250mm,厚差16.67%,宽差-4.17%,横截面积差13.19%;
(2)将穿带后的铝合金带材进行在线碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
(3)将清洗后的带材进行在线固溶和淬火处理,因来料板型不佳,在快速加热和冷却过程中造成板型突变,褶皱断带,无法继续生产及获得成品。
(1)将含主要元素Cu 1.32%、Mg 2.12%、Zn 5.86%,其余为铝及其他微量元素的7系铝合金带材冷轧至成品厚度0.30mm;
(2)将冷轧后的带材送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;所用带材的在线板型为30I,前后缝合的带材规格(厚度×宽度)分别为0.28mm×1500mm、0.30mm×1450mm,厚差7.14%,宽差-3.33%,横截面积差3.57%;
(3)将穿带后的铝合金带材进行在线碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
(4)将清洗后的带材进行在线固溶和淬火处理;铝带材上、下加热和冷却的风机流量分别为15m 3/sec、15.5m 3/sec;带材上下加热和冷却的风机流量差≤3.23%;炉内张应力为6N/mm 2(带材在470℃高温屈服强度为15MPa);将清洗后的铝合金带材由20℃加热至470℃(耗时85sec),保温300sec,再快速冷却至60℃(耗时35sec),即升温的斜率K 1=5.29,降温的斜率K 2=11.71;在快速加热和冷却过程中造成板型突变,褶皱断带,无法继续生产及获得成品。
(1)将含主要元素Cu 1.32%、Mg 2.12%、Zn 5.86%,其余为铝及其他微量元素的7系铝合金带材冷轧至成品厚度0.30mm;
(2)将冷轧后的带材送入气垫式连续退火炉进行前后卷材的机械缝合及穿带;所用卷材的在线板型12I,前后缝合的带材规格(厚度×宽度)分别为0.50mm×1600mm、0.45mm×1660mm,厚差10%,宽差3.75%,横截面积差6.625%;
(3)将穿带后的铝合金带材进行在线碱洗、漂洗等预清洗,以去除轧制过程产生的油污和铝粉;
(4)将清洗后的带材进行在线固溶和淬火处理;铝带材上、下加热和冷却的风机流量分别为90m 3/sec、95m 3/sec;带材上下加热和冷却的风机流量差5.56%;炉内张应力为4.25N/mm 2(带材在480℃高温屈服强度为17MPa);将清洗后的铝合金带材由40℃加热至480℃(耗时147sec),保温500sec,再快速冷却至60℃(耗时42sec),即升温的斜率K 1=3,降温的斜率K 2=10;因上下风机流量相差较大,薄材在快速加热和冷却过程中上下浮动大,挂至炉壁造成褶皱断带,无法继续生产及获得成品。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

  1.  一种高强韧薄型7系铝合金带材的制备方法,其特征在于:将7系铝合金带材经冷轧后,于气垫式连续退火炉中进行机械缝合、穿带、预清洗、固溶、淬火及预拉伸处理后,再进行箱式人工时效退火,制得所述高强韧薄型7系铝合金带材。
  2.  根据权利要求1所述高强韧薄型7系铝合金带材的制备方法,其特征在于:经冷轧后7系铝合金带材的厚度为0.1~0.5mm。
  3.  根据权利要求1所述高强韧薄型7系铝合金带材的制备方法,其特征在于:进行机械缝合时,所用带材的在线板型应<50I,前后带材的厚差应<±20%,宽差应<±20%,横截面积差应<±20%。
  4.  根据权利要求1所述高强韧薄型7系铝合金带材的制备方法,其特征在于:所述固溶是由0~60℃加热至450℃~490℃,保温0~1000s,其温度随时间变化的曲线斜率K 1为1≤K 1≤5。
  5.  根据权利要求1所述高强韧薄型7系铝合金带材的制备方法,其特征在于:所述淬火的温度随时间变化的曲线斜率K 2为3≤K 2≤10。
  6.  根据权利要求1所述高强韧薄型7系铝合金带材的制备方法,其特征在于:进行固溶及淬火时,所述气垫式连续退火炉的参数设定为:带材加热和冷却的风机流量=(100 m 3/sec~200 m 3/sec)×厚度;带材上下加热和冷却的风机流量差≤±5%;炉内张应力=(20%~50%)×7系铝合金带材在450℃~490℃范围内的高温屈服强度。
  7.  根据权利要求1所述高强韧薄型7系铝合金带材的制备方法,其特征在于:进行0.2~3%的预拉伸。
PCT/CN2023/089645 2022-04-27 2023-04-21 一种高强韧薄型7系铝合金带材的制备方法 WO2023207768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210453091.9A CN114774657B (zh) 2022-04-27 2022-04-27 一种高强韧薄型7系铝合金带材的制备方法
CN202210453091.9 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023207768A1 true WO2023207768A1 (zh) 2023-11-02

Family

ID=82433207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089645 WO2023207768A1 (zh) 2022-04-27 2023-04-21 一种高强韧薄型7系铝合金带材的制备方法

Country Status (2)

Country Link
CN (1) CN114774657B (zh)
WO (1) WO2023207768A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774657B (zh) * 2022-04-27 2023-04-25 中铝瑞闽股份有限公司 一种高强韧薄型7系铝合金带材的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306466A1 (en) * 2014-12-11 2017-10-26 Aleris Aluminum Duffel Bvba Method of continuously heat-treating 7000-series aluminium alloy sheet material
CN110306136A (zh) * 2019-06-17 2019-10-08 中南大学 一种高合金化铝合金薄板高成材率的加工方法
CN110923525A (zh) * 2019-12-30 2020-03-27 天津忠旺铝业有限公司 一种高性能7系铝合金薄板的制备工艺
CN114774657A (zh) * 2022-04-27 2022-07-22 中铝瑞闽股份有限公司 一种高强韧薄型7系铝合金带材的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194700B (zh) * 2013-04-22 2015-09-30 西南铝业(集团)有限责任公司 一种汽车用铝合金板材的制备方法
CN107699756B (zh) * 2017-09-30 2019-05-31 广西南南铝加工有限公司 一种Al-Zn-Mg铝合金薄板材及其制备方法
CN109136524B (zh) * 2018-10-25 2020-08-07 中铝瑞闽股份有限公司 一种电子产品外壳用铝板带材及其制备方法
CN113528899B (zh) * 2021-07-20 2022-04-29 中铝瑞闽股份有限公司 一种高导热高强度铝合金薄板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306466A1 (en) * 2014-12-11 2017-10-26 Aleris Aluminum Duffel Bvba Method of continuously heat-treating 7000-series aluminium alloy sheet material
CN110306136A (zh) * 2019-06-17 2019-10-08 中南大学 一种高合金化铝合金薄板高成材率的加工方法
US20210156006A1 (en) * 2019-06-17 2021-05-27 Central South University Method for processing highly alloyed aluminum alloy sheet with high rolling yield
CN110923525A (zh) * 2019-12-30 2020-03-27 天津忠旺铝业有限公司 一种高性能7系铝合金薄板的制备工艺
CN114774657A (zh) * 2022-04-27 2022-07-22 中铝瑞闽股份有限公司 一种高强韧薄型7系铝合金带材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI YONG, WANG ZHAODONG; MA MINGTU; WANG GUODONG; FU TIANLIANG; LI JIADONG: "Review and prospect of the air cushion furnace technology for aluminium alloy automotive sheet pre-treatment", ENGINEERING SCIENCES, CN, vol. 16, no. 1, 1 January 2014 (2014-01-01), CN , pages 14 - 22, XP093105007, ISSN: 1009-1742 *

Also Published As

Publication number Publication date
CN114774657A (zh) 2022-07-22
CN114774657B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN105506407B (zh) 一种建筑模板用铝合金型材的制造方法
WO2023207768A1 (zh) 一种高强韧薄型7系铝合金带材的制备方法
CN101696486B (zh) 一种高强度钛合金管材的轧制工艺
CN112719179B (zh) 一种tc1钛合金棒材的锻造方法
CN103103328B (zh) 一种生产低碳钢板的方法和一种低碳钢板
CN105648322B (zh) 低成本超深冲级冷轧镀锌钢带及其制备方法
CN111872113B (zh) 中高碳钢热轧盘条及其生产方法
CN106636747A (zh) 一种采用中厚板轧机二次退火生产工业纯钛板的制造方法
CN110788134A (zh) 一种镁合金薄板带温轧-超低温冷轧生产工艺
CN112853167A (zh) 一种新型铝合金挤压型材及其制备方法
CN113699401A (zh) 一种高强高折弯铜镍硅合金带的制备方法
CN103028602B (zh) 一种轧制镁合金板带的方法
CN112267082A (zh) 一种合金板材脉冲电流回归蠕变时效成形方法
CN1974824A (zh) 一种薄板坯连铸连轧生产if钢的生产工艺
CN102108477A (zh) 铝材热处理方法
CN104259201A (zh) 一种高塑高延展性Mg-Al系镁合金板材的轧制方法
CN106756549B (zh) 一种汽车用高性能减震弹簧钢带制备方法
JPS5834139A (ja) オ−ステナイト系ステンレス鋼板及び鋼帯の製造方法
CN1962922A (zh) 用铸轧坯料生产5xxx系列铝板加工工艺中的热处理方法
CN103276175A (zh) 一种提高硅钢电磁性能的热轧方法
CN113862588A (zh) 用于增加铝型材强度的热加工工艺
CN112708806A (zh) 一种铝合金挤压型材及其制备方法
CN110918643A (zh) 一种改善钢棒热轧材成品中心等轴晶区比率的方法
CN115354198B (zh) 一种海洋船舶工业用电池组电池壳铝片的制备方法
CN104152832A (zh) 冷轧工业纯钛卷的真空退火工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795201

Country of ref document: EP

Kind code of ref document: A1