WO2023207648A1 - 联供系统及其控制器和控制方法 - Google Patents

联供系统及其控制器和控制方法 Download PDF

Info

Publication number
WO2023207648A1
WO2023207648A1 PCT/CN2023/088603 CN2023088603W WO2023207648A1 WO 2023207648 A1 WO2023207648 A1 WO 2023207648A1 CN 2023088603 W CN2023088603 W CN 2023088603W WO 2023207648 A1 WO2023207648 A1 WO 2023207648A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
sub
flow channel
load
heat
Prior art date
Application number
PCT/CN2023/088603
Other languages
English (en)
French (fr)
Inventor
乔晓光
赵德威
黄强
Original Assignee
艾欧史密斯(中国)热水器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾欧史密斯(中国)热水器有限公司 filed Critical 艾欧史密斯(中国)热水器有限公司
Publication of WO2023207648A1 publication Critical patent/WO2023207648A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps

Definitions

  • the present invention relates to the field of heating technology, and in particular to a joint supply system and its controller and control method.
  • the joint supply system can supply the heat required for water heating and the heat required for heating. Since the hot water load required for water heating and the required heating time are uncertain, the load required for heating and the time required for heating are also uncertain. Therefore, how to intelligently adjust the operation mode of the joint supply system so that Its intelligent meeting of hot water load and heating load is a problem that needs to be solved.
  • the technical problem to be solved by the embodiments of the present invention is to provide a joint supply system and its controller and control method, which can ensure that the joint supply system can intelligently supply hot water load and heating load. .
  • the invention discloses a control method of a joint supply system.
  • the joint supply system includes a first heat source.
  • the control method of the joint supply system includes the following steps:
  • Control the first heat source to supply a hot water load until the hot water load is satisfied by the first heat source
  • the operating state of the first heat source is changed, and the hot water is supplied on the basis that the heating load is satisfied. load.
  • the invention also discloses a controller of the joint supply system, which executes the above control method of the joint supply system.
  • the invention also discloses a joint supply system.
  • the joint supply system includes: a controller of the joint supply system as described above; a first heat source; a first flow channel and a second flow channel that can communicate with the first heat source respectively. flow channel;
  • the first flow control device is used to control the flow of the fluid from the first heat source to the first flow channel and the second flow channel.
  • the first flow channel and the second flow channel are used to provide the first end and the second flow channel respectively.
  • the two ends provide heat, the first end is used to supply hot water load, and the second end is used to supply heating load.
  • the above control method of the joint supply system can ensure that the joint supply system can intelligently supply hot water load and heating load. Specifically, when one of the hot water load and heating load is satisfied by the first heat source first or the first heat source is When it is configured to give priority to one of the hot water load and the heating load, and the other of the hot water load and the heating load appears or the other of the hot water load and the heating load appears at the same time, if the first heat source has sufficient output
  • the load on the premise that it can ensure that the previous load or the load configured as a higher priority is continuously satisfied, changes its operating state to supply the abundant output load to the other one of the reappearing hot water load and heating load. Or configured as a low-priority load.
  • the first heat source is insufficient in supplying the previous load due to the appearance of another load, or that the first heat source is insufficient in supplying the load configured with a higher priority due to the simultaneous appearance of two loads.
  • the first heat source can take into account subsequent loads or be configured as a load with a lower priority, so that the first heat source can be maximized.
  • Figure 1 is a schematic structural diagram of the joint supply system in the first implementation mode according to the embodiment of the present invention
  • Figure 2 is a schematic structural diagram of the joint supply system in the second implementation mode according to the embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the joint supply system in the third implementation mode according to the embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of the joint supply system in the fourth implementation mode according to the embodiment of the present invention.
  • Figure 5 is a step flow chart of the control method of the joint supply system in the first implementation mode according to the embodiment of the present invention
  • Figure 6 is a step flow chart of the second implementation mode of the control method of the joint supply system in the embodiment of the present invention.
  • connection should be understood in a broad sense. For example, it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components. It can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in a broad sense. For example, it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components. It can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in a broad sense. For example, it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components. It can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in a broad sense. For example, it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components. It can be a direct connection or an indirect connection through an intermediate medium.
  • Fig. 1 is a schematic structural diagram of the joint supply system in the first implementation mode according to the embodiment of the present invention.
  • the joint supply system may include: a first heat source 1; The first flow channel 2 and the second flow channel 3; the first flow control device 4 is used to control the flow of the fluid from the first heat source 1 to the first flow channel 2 and the second flow channel 3.
  • the first flow channel 2 and the second flow channel Channel 3 is used to provide heat to the first end 17 and the second end 8 respectively.
  • the first end 17 is used to supply hot water load, and the second end 8 is used to supply heat.
  • the first heat source 1 can be any type of device capable of providing heat, which can supply the provided heat in the form of fluid carrying through the first flow channel 2 to the first end 17 and/or through the second flow channel 3 to the second end 17 .
  • the first heat source 1 may include a heat pump device, a gas water heater, an electric water heater, etc., which are not specifically limited in this application, and may be any combination of the above-mentioned devices.
  • the first flow control device 4 controls the flow of the fluid from the first heat source 1 to the first flow channel 2 and the second flow channel 3.
  • the first flow control device 4 can split all the fluid to the first flow channel 2 or the second flow channel 2.
  • part of the flow channel can also be branched to the first flow channel 2, and another part of the fluid can be branched to the second flow channel 3.
  • the first flow control device 4 can also achieve the function of flow control, that is, it can arbitrarily control the flow rate of the fluid separated into the first flow channel 2 and the second flow channel 3 .
  • the first flow control device 4 can be disposed at the connection between the first flow channel 2 and the second flow channel 3, which directly controls the flow of the first heat source 1 to the first flow channel 2 and the second flow channel 3; the first flow control device 4 can also be two, which are respectively arranged on the first flow channel 2 and the second flow channel 3.
  • the first heat source 1 is controlled to be diverted to the third flow channel.
  • the first flow control device 4 can reasonably distribute the hot fluid provided by the first heat source 1 so that it can supply hot fluid with corresponding flow rates according to the specific needs of the first end 17 and the second end 8 to meet the needs of the first end 17 and the second end 8 .
  • the first end 17 and the second end 8 vary as required.
  • the first end 17 is used to supply a hot water load, which may be a type of device capable of outputting hot water for use by users.
  • the first end 17 can be a water heating device, which can heat water and supply the heated water to the user, or can be a hot water output device, such as a faucet or shower head used in daily life. Such device can directly output the thermal fluid such as hot water output by the first heat source 1 through the first flow channel 2 to the user.
  • the second end 8 is used to supply the heating load.
  • the second end 8 may be a type of heating device.
  • the second end 8 may include at least one of the following: a fan plate, floor heating, radiator, wall heat exchange equipment, etc., which are not used in this application. Make specific limitations.
  • FIG. 2 is a schematic structural diagram of the joint supply system in the second embodiment of the present invention.
  • the first heat source 1 can include multiple first sub-heat sources 11, and multiple first heat sources 11.
  • the sub-heat sources 11 are connected in parallel.
  • the first flow control device 4 may include a plurality of first sub-flow control devices 41.
  • the channel 2 includes a plurality of first sub-flow channels 21
  • the second flow channel 3 includes a plurality of second sub-flow channels 31 .
  • the first sub-flow control device 41 is used to control the flow rate of the fluid from the corresponding first sub-heat source 11 to the corresponding first sub-flow channel 21 and the second sub-flow channel 31 .
  • the first sub-flow channel 21 and the second sub-flow channel 31 can be connected with their corresponding first sub-heat sources 11 .
  • the first sub-flow control device 41 can be disposed at the connection between its corresponding first sub-flow channel 21 and the second sub-flow channel 31, Or, for one first sub-heat source 11, there are two corresponding first sub-flow control devices 41, which are respectively provided on the corresponding first sub-flow channel 21 and the second sub-flow channel 31.
  • the downstream of multiple first sub-flow channels 21 can be merged into one flow channel and used to supply heat to the first end 17.
  • the downstream of multiple second sub-flow channels 31 can be merged into one flow channel and used to supply heat to the second end. End 8 supplies heat.
  • the first sub-heat sources 11 in the first heat source 1 can be used by multiple first sub-heat sources 11 connected in parallel.
  • the other part of the first sub-heat source 11 generates heat of different temperatures, thereby supplying it to the first end 17 and the second end 8 respectively.
  • the hot water supplied by the first end 17 needs to reach a high temperature, such as above 80 degrees, but the hot water supplied by the second end 8 for heating only needs to reach about 65 degrees.
  • part of the first heat source 1 can be One sub-heat source 11 generates hot fluid above 80 degrees, while another part of the first sub-heat source 11 generates hot fluid around 65 degrees, thereby supplying the first end 17 and the second end 8 respectively to meet the completely different temperature requirements of the two. .
  • part of the first sub-section of the first heat source 1 can be used.
  • the heat source 11 is in heating operation to generate hot fluid, which is transported to the first end 17 through the first sub-flow control device 41 to meet the hot water load of the first end 17, while the other part of the first sub-heat source 11 is in cooling operation. state to generate cold fluid, which is transported to the second end 8 through the first sub-flow control device 41 to meet the cooling load of the second end 8 .
  • the hot fluid and cold fluid generated by different first sub-heat sources 11 can be delivered to the first end 17 and the second end 8 respectively to meet the requirements. Completely different type of caloric needs.
  • Figure 3 is a schematic structural diagram of the joint supply system in the third embodiment of the present invention.
  • the joint supply system in the embodiment of the present application may include: a second heat source 5;
  • the heat source 5 communicates with the third flow channel 6 and the fourth flow channel 7 .
  • the second flow control device 19 is used to control the flow of the fluid from the second heat source 5 to the third flow channel 6 and the fourth flow channel 7.
  • the third flow channel 6 and the fourth flow channel 7 are respectively used to control the first end. 17 and the second end 8 provide heat.
  • the second heat source 5 can be any type of device capable of providing heat, which can supply the provided heat in the form of fluid carrying to the first end 17 through the third flow channel 6 and/or to the third end 17 through the fourth flow channel 7 .
  • the second heat source 5 may include a heat pump device, a gas water heater, an electric water heater, etc., which are not specifically limited in this application, and may be any combination of the above-mentioned devices.
  • the second flow control device 19 controls the flow of the fluid from the second heat source 5 to the third flow channel 6 and the fourth flow channel 7 .
  • the function, specific installation position, etc. of the second flow channel 3 control device can be the same as those of the first flow channel 2
  • the control devices are similar and will not be described again.
  • the device 19 can reasonably allocate the hot fluid provided by the second heat source 5 so that it can supply the corresponding flow of hot fluid according to the specific needs of the first end 17 and the second end 8, thereby satisfying the first end 17 and the second end 8. Second end 8 changing needs.
  • the second heat source 5 can also supply hot fluid or cold fluid to the first end 17 and the second end 8 respectively. Therefore, Through the control of the first flow control device 4 and the second flow control device 19, the fluid generated by the first heat source 1 can be supplied to the first end 17 and the second end 8 in a reasonable split. At the same time, the fluid generated by the second heat source 5 can The fluid can also be supplied to the first end 17 and the second end 8 in a reasonable split flow, so that the different loads required by the first end 17 and the second end 8 can be met in a reasonable and selective manner. In addition, through the cooperation of the first heat source 1 and the second heat source 5, the load required by the first end 17 or the second end 8 can be satisfied in a wider range at certain times, making the entire joint supply system more balanced.
  • the second heat source 5 may also include multiple second sub-heat sources, and the multiple second sub-heat sources are connected in parallel.
  • the second flow control device 19 includes a plurality of second sub-flow control devices, the third flow channel 6 includes a plurality of third sub-flow channels, the fourth flow channel 7 includes a plurality of fourth sub-flow channels, and the second sub-flow control device It is used to control the flow rate of the fluid from the corresponding second sub-heat source to the corresponding third sub-flow channel and the corresponding fourth sub-flow channel.
  • some of the first sub-heat sources 11 and other parts of the first sub-heat sources 11 in the first heat source 1 can respectively generate heat of different temperatures.
  • they are supplied to the first end 17 and the second end 8 respectively; the hot fluid and the cold fluid generated by different second sub-heat sources can also be delivered to the first end 17 and the second end 8 respectively to meet completely different types of heat requirements. .
  • the second sub-flow control device may only need to control the fluid generated by the corresponding second sub-heat source to completely flow into the third sub-flow channel or the fourth sub-flow channel to supply the heating that occurs later. load or hot water load.
  • the second sub-flow control device may include a switch valve provided on the third sub-flow channel and the fourth sub-flow channel respectively or a switch valve provided on the third sub-flow channel and the fourth sub-flow channel. Three-way valve at the connecting point.
  • outlets of the second flow channel 3 and the fourth flow channel 7 are used to communicate with the second end 8, so that the first heat source 1 and the second The fluid generated by the heat source 5 can be directly passed into the second end 8 to provide corresponding heat.
  • the outlets of the first flow channel 2 and the third flow channel 6 are used to communicate with the first end 17, so that the fluid generated by the first heat source 1 and the second heat source 5 can directly pass into the first end 17 to provide the corresponding heat.
  • FIG. 4 is a schematic structural diagram of the joint supply system in the fourth embodiment of the present invention.
  • the joint supply system may include: a first heat exchange flow channel and the second heat exchange runner A heat exchange device 9.
  • the second flow channel 3 may include a second heat exchange flow channel
  • the fourth flow channel 7 may include a first heat exchange flow channel
  • the second flow channel 3 may be used to communicate with the second end 8 .
  • the fluid generated by the first heat source 1 flows through the second heat exchange channel of the first heat exchange device 9 and then is transported to the second end 8 , while the fluid generated by the second heat source 5 flows through the first heat exchange device
  • the first heat exchange flow channel of 9 can exchange heat with the fluid generated by the first heat source 1 flowing through the second heat exchange flow channel during this period, thereby further increasing or reducing the temperature of the fluid generated by the first heat source 1, specifically It can be determined according to the requirements of the second end 8 .
  • the fluid generated by the operation of the second heat source 5 can be used to further increase or decrease the fluid generated by the operation of the first heat source 1
  • the temperature finally makes the temperature of the fluid input to the second end 8 reach the requirement.
  • the first heat source 1 is a heat pump
  • the performance of the heat pump in producing high-temperature fluid is low, and it is difficult for it to produce higher-temperature hot fluid to meet the needs of the second end 8.
  • the third end The second heat source 5 can be a gas water heater or an electric water heater, etc., which can still produce higher temperature thermal fluid.
  • the thermal fluid generated by the second heat source 5 further heats the lower temperature thermal fluid generated by the first heat source 1.
  • the heat pump has a high energy consumption ratio under many operating conditions (such as when producing low-temperature fluids)
  • a second heat source 5 such as a gas water heater or an electric water heater to meet the needs of the second end. 8 demand, it also takes into account the energy consumption ratio and economic benefits of the joint supply system.
  • the weather temperature is high, the performance of the heat pump in producing cold fluid is low, and it is difficult to produce cold fluid with a lower temperature to meet the needs of the second terminal 8.
  • the second heat source 5 can be a heat pump, It can produce cold fluid with a smaller flow rate but a lower temperature.
  • the cold fluid generated by the second heat source 5 further reduces the cold fluid generated by the first heat source 1 with a higher temperature but a larger flow rate. In order to finally make the temperature of the fluid input to the second end 8 reach the requirement.
  • the first heat exchange device 9 can use a plate heat exchanger.
  • plate heat exchangers can also meet the high flow rate of heat exchange fluid.
  • the co-generation system may include a second heat exchange device 10 having a third heat exchange flow channel, and the first flow channel 2 is used to communicate with the third heat exchange flow channel.
  • the hot fluid generated by the first heat source 1 can be transported to the third heat exchange flow channel of the second heat exchange device 10 to exchange heat with the water in the second heat exchange device 10, thereby achieving the second heat exchanger.
  • the heated water in the second heat exchange device 10 can be output to the user.
  • the joint supply system may include a third heat exchange device 12 with a fourth heat exchange flow channel, and the third flow channel 6 is used to communicate with the fourth heat exchange flow channel.
  • the hot fluid generated by the second heat source 5 can be transported to the fourth heat exchange flow channel of the third heat exchange device 12 to exchange heat with the water in the third heat exchange device 12, thereby achieving the purpose of controlling the third heat exchange device.
  • the heated water in the third heat exchange device 12 can also be output to the user.
  • the interiors of the second heat exchange device 10 and the third heat exchange device 12 can be connected to the water source 23 respectively to replenish water.
  • the co-generation system may include a second heat exchange device 10 having a third heat exchange flow channel and a fourth heat exchange flow channel; the first flow channel 2 is used to communicate with the third heat exchange flow channel. connected; the third flow channel 6 is used to connect with the third heat exchange flow channel.
  • the hot fluid generated by the first heat source 1 can be transported to the third heat exchange flow channel of the second heat exchange device 10 through the first flow channel 2 to heat exchange the water in the third heat exchange device 12 .
  • the hot fluid generated by the second heat source 5 is transported to the fourth heat exchange flow channel of the second heat exchange device 10 through the third flow channel 6 to heat exchange the water in the second heat exchange device 10 .
  • the first heat source 1 and the second heat source 5 can simultaneously exchange heat for the water in the second heat exchange device 10, thereby further increasing the heating speed of the water in the second heat exchange device 10 to reduce the user's waiting time.
  • the co-generation system may include a second heat exchange device 10 with a third heat exchange flow channel and a third heat exchange device 12 with a fourth heat exchange flow channel.
  • the third heat exchange device 12 is connected with the second heat exchange device 10; the first flow channel 2 is used to communicate with the third heat exchange flow channel; the third flow channel 6 is used to communicate with the fourth heat exchange flow channel.
  • the hot fluid generated by the first heat source 1 can be transported to the third heat exchange flow channel of the second heat exchange device 10 to exchange heat with the water in the second heat exchange device 10, thereby achieving the second heat exchanger.
  • the third heat exchange device 12 is connected with the second heat exchange device 10, so that the water in both can be supplied to the user at the same time.
  • the first heat source 1 and the second heat source 5 heat the third heat exchange device 12 and the second heat exchange device 10 respectively. Therefore, the heating degree and heating temperature of the water in the two can be completely different.
  • the insides of the second heat exchange device 10 and the third heat exchange device 12 can be connected with the water source 23 to replenish water.
  • the second heat exchange device 10 may have a first water storage chamber for storing water.
  • the third heat exchange device 12 has a second water storage chamber for storing water.
  • the first water storage chamber is connected with the second water storage chamber, so that the third heat exchange device 12 is connected with the second heat exchange device 10 .
  • the third heat exchange flow channel can exchange heat with the water stored in the first water storage cavity; the fourth heat exchange flow channel can exchange heat with the water stored in the second water storage cavity.
  • the water outlet of the second heat exchange device 10 that is connected to the first water storage chamber can be connected to the water inlet of the third heat exchange device 12 that is connected to the second water storage chamber.
  • the water inlet of the second heat exchange device 10 that communicates with the first water storage chamber is used to communicate with the water source 23 .
  • the water outlet of the third heat exchange device 12 that is connected to the second water storage chamber is used to supply hot water.
  • the water from the water source 23 can first enter the first water storage chamber of the second heat exchange device 10, and the hot fluid transported to the third heat exchange flow channel through the first heat source 1 is preliminarily heated to the first preset level. temperature, when the third heat exchange device 12 After the water in the first water storage chamber of the second heat exchange device 10 is output to the user, the water at the first preset temperature in the first water storage chamber of the second heat exchange device 10 can be replenished to the second water storage chamber of the third heat exchange device 12. Afterwards, the hot fluid delivered by the second heat source 5 to the fourth heat exchange flow channel can reheat the water in the third heat exchange device 12 to a higher temperature.
  • the different abilities of the first heat source 1 and the second heat source 5 to generate hot fluid can be utilized step by step to improve the energy consumption ratio of the entire joint power supply system.
  • the first heat source 1 is a heat pump and the second heat source 5 is a gas water heater or an electric water heater
  • the heat pump when the heat pump produces hot fluid with a relatively low temperature, its energy consumption is relatively high and it has a high cost-effective advantage.
  • the co-supply system may include: a first return flow channel 13 and a second return flow channel 14 that can communicate with the first heat source 1 respectively; the first return flow channel 13 and the second return flow channel The channel 14 is used to communicate with the third heat exchange flow channel of the second heat exchange device 10 and the outlet of the second end 8 respectively.
  • the joint supply system may include: a fourth return flow channel 16 that can be connected to the second heat source 5 , and the fourth return flow channel 16 can be connected to the outlet of the first heat exchange flow channel.
  • the co-generation system may include: a third return flow channel 15 that can be connected to the second heat source 5, and the third return flow channel 15 can be connected to the outlet of the fourth heat exchange flow channel.
  • the fluid that has been heat exchanged through the third heat exchange flow channel, the second end 8, the fourth heat exchange flow channel, and the first heat exchange flow channel can be recycled through the return flow channel, while exchanging heat.
  • the resulting fluid still has a small amount of cooling load or heat load, which is better than the fluid re-inputted from the outside. Therefore, the operating power of the first heat source 1 and the second heat source 5 can be reduced.
  • a first circulation pump 20 can be provided on the first flow channel 2 or the first return flow channel 13.
  • a second circulation pump 22 is provided on the second flow channel 3 or the second return flow channel 14 .
  • a third circulation pump can be provided on the third flow channel 6 or the third return flow channel 15
  • a fourth circulation pump can be provided on the fourth flow channel 7 or the fourth return flow channel 16 .
  • Figure 5 is a step flow chart of the control method of the joint supply system in the first embodiment of the present invention.
  • the control method of the joint supply system can Includes the following steps:
  • S101 Control the first heat source 1 to supply the hot water load until the hot water load is satisfied by the first heat source 1.
  • Hot water load can refer to the load required by a type of device that can output hot water for use by users when heating water, for example, the load required to maintain the supply of hot water at a set temperature, or to maintain a set temperature. The load required to heat the water at the heating rate.
  • the hot water load being satisfied by the first heat source 1 may specifically include the following situation: the thermal power output by the first heat source 1 to the first end 17 per unit time through the thermal fluid meets the demand of the first end 17 per unit time ( For example, when the first end 17 requires hot water at a set temperature, the first heat source 1 may be in an operating state to ensure the supply of hot water at the set temperature).
  • the hot water load is satisfied by the first heat source 1 and there is a demand for heating load, for example, the second end 8 then has a demand for heating load, or the second end 8 has a demand for heating load that is different from the first end 17
  • the demand for hot water load appears at the same time.
  • Heating load can refer to the load required by a heating device to provide heat, for example, the load required to maintain the supply of heating fluid at a set temperature.
  • Figure 6 is a step flow chart of the control method of the joint supply system in the second embodiment of the present invention.
  • the control method of the joint supply system can Includes the following steps:
  • S101 Control the first heat source 1 to supply the heating load until the heating load is satisfied by the first heat source 1.
  • the first heat source 1 when the heating load occurs first or when the first heat source 1 of the joint supply system is used to meet the heating load with priority, for example, when the second terminal 8 needs a heating load, the first heat source 1 is controlled to supply the heating load to the second terminal 8 The heating load is supplied until the heating load of the second end 8 is satisfied by the first heat source 1 .
  • the heating load is satisfied by the first heat source 1, which may specifically include the following situations: the thermal power output by the first heat source 1 to the second end 8 units of time through the thermal fluid reaches the demand of the second end 8 units of time (for example, In order to keep the indoor temperature gradually rising to the set temperature, the first heat source 1 can be in operation to ensure the indoor temperature rises).
  • the first end 17 has a demand for hot water load, or the second end 8 has a demand for heating load that is different from the first end.
  • the demand for hot water load 17 appears at the same time.
  • the operating state of the first heat source 1 is changed, so that on the basis that the heating load continues to be satisfied, the first heat source 1 can also supply hot water load to the first end 17 .
  • the above control method of the joint supply system can ensure that the joint supply system can intelligently supply the hot water load and the heating load. Specifically, when one of the hot water load and the heating load is preferentially satisfied by the first heat source 1 or the first heat source 1 When it is configured to give priority to one of the hot water load and the heating load, the other of the hot water load and the heating load When one reappears or appears at the same time, if the first heat source 1 has a sufficient output load, on the premise of ensuring that the previous load or the load configured as a higher priority will continue to be satisfied, the operating state of the first heat source 1 will be changed to increase the output load.
  • the output load supplies the other one of the reoccurring hot water load and the heating load or is configured as a lower priority load.
  • the first heat source 1 is insufficient in supplying the previous load due to the appearance of another load, or that the first heat source 1 is configured to supply the load with a higher priority due to the simultaneous appearance of two loads.
  • the first heat source 1 can take into account subsequent loads or be configured as a load with a lower priority, so that the first heat source 1 can be maximized.
  • step S201 when the first heat source 1 is a single heat source, changing the operating state of the first heat source 1 may specifically include: increasing the operating power of the first heat source 1, so that the first heat source 1 One of the hot water load and heating load that occurs after the increased power supply of this part.
  • the first flow control device 4 can divert the fluid corresponding to the part of the increased power of the first heat source 1 to a flow channel corresponding to one of the hot water load and the heating load that appears later.
  • changing the operating state of the first heat source 1 may specifically include: increasing the number of operating first sub-heat sources 11; and/or increasing at least part of the conditions that are already operating.
  • the first sub-heat source that is not running is determined based on the demand for heating load or hot water load that appears later or has a lower supply priority than the first heat source 1 .
  • the number of openings is 11, and the newly opened first sub-heat source 11 is used to supply the heating load on the basis of the hot water load being satisfied, or to supply the hot water load on the basis of the heating load being satisfied.
  • the power of the first sub-heat source 11 that is not running can meet the demand of the heating load or the hot water load that appears later, the heating load that appears later or has a lower supply priority than the first heat source 1 can be satisfied through the above method.
  • the newly opened first sub-heat source 11 since the newly opened first sub-heat source 11 is set up in parallel with the previously opened first sub-heat source 11, therefore, the newly opened first sub-heat source 11 can operate completely independently, so,
  • the operating mode of the newly opened first sub-heat source 11 for example, it may include a cooling mode or a heating mode, etc.
  • the temperature of the same type of fluid produced hot fluid or cold fluid
  • this can meet the demand for heating load or hot water load that appears after the supply or has a lower priority.
  • This demand can be a completely different type of heat demand from the first sub-heat source 11 that has been turned on before, or it can be The temperature requirement is completely different from that of the first sub-heat source 11 that has been turned on before, so that the operation of the first sub-heat source 11 that has been turned on before is not affected.
  • the first sub-flow control device 41 since the first sub-flow control device 41 only needs to control the corresponding first sub-heat source 11 to generate The fluid completely flows into the first sub-flow channel 21 or the second sub-flow channel 31 to supply the heating load or hot water load that appears later or has a lower priority than the first heat source 1. Therefore, the first sub-flow control device 41 may include on-off valves respectively provided on the first sub-flow channel 21 and the second sub-flow channel 31 or a three-way valve provided at the connection point between the first sub-flow channel 21 and the second sub-flow channel 31 .
  • first sub-heat sources 11 are turned on and the total operating power of all first sub-heat sources 11 does not reach the total maximum rated power of all first sub-heat sources 11, then at least part of all first sub-heat sources 11 can be increased. operating power.
  • the demand for heating load or hot water load that appears later or has a lower supply priority than the first heat source 1 can be met on the premise that the first sub-heat sources 11 are all turned on.
  • the fluid corresponding to the part of the power increased by the first sub-heat source 11 can be diverted to a flow channel corresponding to one of the hot water load and the heating load that appears later, thereby supplying the subsequent hot water load and heating load.
  • the first sub-heat source 11 that is not running If there is a first sub-heat source 11 that is not running, and the total operating power of the first sub-heat source 11 that is not running cannot meet the needs of the newly existing heating load or hot water load, the first sub-heat source that is already in operation will When the total operating power of the first sub-heat source 11 does not reach the total maximum rated power of the first sub-heat source 11 that is already in operation, you can turn on the first sub-heat source 11 that is not in operation and increase the power of the first sub-heat source 11 that is already in operation. of at least part of the operating power.
  • the external output power of the first heat source 1 can be maximized through the above method, thereby maximizing the possible The heating load demand or the hot water load demand that appears after the first heat source 1 is satisfied or has a lower supply priority than the first heat source 1.
  • the first sub-flow control device 41 can be used to divert the fluid corresponding to the part of the increased power of the first sub-heat source 11 to the hot water load that appears later or has a lower priority than the first heat source 1 .
  • the flow channel corresponding to one of the heating loads transports the fluid output by the newly opened first sub-heat source 11 to the hot water load and heating load that appears later or has a lower supply priority than the first heat source 1.
  • One of the corresponding flow channels appears after the final supply or supplies one of the hot water load and the heating load with a lower priority than the first heat source 1 .
  • step of changing the operating state of the first heat source 1 if the operating power of at least part of the first sub-heat sources 11 that are already in the operating state is increased, optionally, all first sub-heat sources 11 that are already in the operating state can be changed.
  • the sub-heat sources 11 are redistributed so that part of them supplies the hot water load and part of it supplies the heating load. In this way, it is possible to avoid that the fluid output by a first sub-heat source 11 needs to be divided into two parts by the first sub-flow control device 41 to supply hot water load and heating load respectively.
  • the above method can be used to divide the plurality of first sub-heat sources 11 into two parts, and the two parts of the first sub-heat sources 11 can generate Fluids of different temperatures thus supply hot water load and heating load respectively.
  • changing the operating state of the first heat source 1 may include: keeping the number of first sub-heat sources 11 in the cooling operating state unchanged. , if there is a first sub-heat source 11 that is not in operation, at least part of the first sub-heat source 11 that is not in operation is used to supply the hot water load. Or, if the first heat source 1 supplies a hot water load and there is a demand for heating load, and the heating load is a cooling load, changing the operating state of the first heat source 1 may include: maintaining the first sub-heat source 11 in the heating operating state. The number remains unchanged, if there is a first sub-heat source 11 that is not in operation, at least part of the first sub-heat source 11 that is not in operation is used for cooling to supply the heating load.
  • the first heat source 1 includes a type of device capable of generating both cooling load and heating load, such as multiple heat pumps connected in parallel.
  • the above method can be used to divide the plurality of first sub-heat sources 11 into two parts, and the two parts of the first sub-heat sources 11 operate in different operating modes, that is, Cooling mode and heating mode can generate fluids with different hot and cold properties to supply heating load and hot water load respectively.
  • control method of the joint supply system may also include the following steps:
  • the supply heating load is reduced.
  • the operating quantity of the first sub-heat source 11 is used to supply an increased hot water load.
  • the second embodiment after performing the step of changing the operating state of the first heat source 1 and supplying the hot water load on the basis that the heating load is satisfied, if the heating load increases, the amount of heat used for supplying heat is reduced.
  • the hot water load or the heating load that appears after the supply is reduced.
  • the operating quantity of the first sub-heat source 11 corresponding to the heating load or hot water load configured with lower priority is used to supply the hot water load or heating load that is supplied with priority or is configured with higher priority. In this way, the hot water load or heating load that is supplied with priority or is configured as a higher priority is always satisfied first, and there will be no subsequent hot water load or heating load that is supplied with priority or is configured as a higher priority. Changes occur that result in inability to be satisfied.
  • step S102 of the first embodiment when the joint supply system includes the second heat source 5 and the second heat source 5 can also be used to meet the heating load, if the operation of the first heat source 1 is more efficient than the operation of the second heat source 5 When the hot water load is satisfied by the first heat source 1 and there is a demand for heating load, the operating state of the first heat source 1 is changed, and the heating load is supplied after the hot water load is satisfied.
  • step S102 of the second embodiment When the joint supply system includes a second heat source 5, and the second heat source 5 can also be used to meet the hot water load, if the operation of the first heat source 1 has more advantages than the operation of the second heat source 5, then when the heating load is When the heat source 1 is satisfied and there is a demand for hot water load, the operating state of the first heat source 1 is changed, and the hot water load is supplied after the heating load is satisfied.
  • This advantage can be an energy consumption advantage or a cost-effective advantage.
  • the first heat source 1 when there is a second heat source 5 in the joint supply system that can be used to meet the heating load or hot water load that appears later or has a lower priority than the first heat source 1, when there is a second heat source 5 that appears later or supplies a lower priority than the first heat source 1,
  • the first heat source 1 when one heat source 1 supplies a heating load or hot water load with a lower priority, the first heat source 1 with more advantages is given priority to supply the heating load or hot water load that appears later or has a lower priority than the first heat source 1.
  • the advantage is the energy consumption ratio advantage, it can make the entire joint supply system more energy-saving and environmentally friendly during operation; when the advantage is the cost-effectiveness advantage, it can make the entire joint supply system save more operating costs during operation.
  • the second heat source 5 will be operated again, so that Further supply the heating load or hot water load that appears later or has a lower priority than the first heat source 1, and then try to maximize the heating load or hot water load that appears later or has a lower priority than the first heat source 1. satisfied.
  • step S102 of the first embodiment on the premise that the joint supply system includes the second heat source 5 and the second heat source 5 can also be used to satisfy the heating load, when the hot water load is satisfied by the first heat source 1 and there is a need for When the heating load is needed, the operating state of the first heat source 1 can be changed and the second heat source 5 can be operated to supply the heating load on the basis that the hot water load is satisfied.
  • the power of the first heat source 1 can be increased and the second heat source 5 can be operated, so that the overall increased power of the first heat source 1 and the second heat source 5 can be used to supply the heating load.
  • the above-mentioned increasing the power of the first heat source 1 is to increase the overall power of the first heat source 1, which may include starting the first sub-heat source 11 that is not in operation, and/or increasing the power of at least part of the first sub-heat source 11 that is already running, or Increase the power of a single first heat source 1, etc.
  • the power of the first heat source 1 is increased, and the fluid corresponding to the increased power of the first heat source 1 is diverted to the second flow channel 3 through the first flow control device 4 to supply the heating load.
  • the fluid corresponding to the power generated by the operation of the second heat source 5 is diverted through the second flow control device 19 to the fourth flow channel 7 to supply the heating load.
  • the second heat source 5 is operated, and the fluid corresponding to the power generated by the operation of the second heat source 5 is diverted through the second flow control device 19 to further increase or decrease the fluid generated by the operation of the first heat source 1 temperature, finally causing the temperature of the fluid input to the second end 8 to meet the requirements.
  • the fluid corresponding to the part of the power increased by the first heat source 1 is diverted through the second flow control device 19 and flows through the first exchanger.
  • the second heat exchange flow channel of the heat device 9 After the second heat exchange flow channel of the heat device 9, it is then transported to the second end 8, and the fluid generated by the second heat source 5 passes through the second end 8.
  • the second flow control device 19 diverts the flow into the first heat exchange flow channel of the first heat exchange device 9. During this period, it can exchange heat with the fluid generated by the first heat source 1 flowing through the second heat exchange flow channel, thereby further improving or The temperature of the fluid generated by the first heat source 1 is reduced.
  • the heat or cold carried by the fluid generated by the second heat source 5 is delivered to the second end 8 through the fluid generated by the first heat source 1 .
  • step S102 of the second embodiment on the premise that the joint supply system includes the second heat source 5 and the second heat source 5 can also be used to meet the heating load, when the heating load is met by the first heat source 1, and When there is a demand for hot water load, the operating state of the first heat source 1 is changed and the second heat source 5 is operated. After the heating load is satisfied, the hot water load is supplied.
  • the power of the first heat source 1 can be increased and the second heat source 5 can be operated, so that the overall increased power of the first heat source 1 and the second heat source 5 can be used to supply the hot water load.
  • the above-mentioned increasing the power of the first heat source 1 is to increase the overall power of the first heat source 1, which may include starting the first sub-heat source 11 that is not in operation, and/or increasing the power of at least part of the first sub-heat source 11 that is already running. power, or increase the power of a single first heat source 1.
  • hot water can be heated by the first heat source 1 and the second heat source 5 together.
  • the hot fluid generated by the first heat source 1 can be transported to the third heat exchange flow channel of the second heat exchange device 10 through the first flow channel 2 to heat exchange the water in the third heat exchange device 12; the second heat source 5
  • the generated hot fluid is transported to the fourth heat exchange flow channel of the second heat exchange device 10 through the third flow channel 6 to heat exchange the water in the third heat exchange device 12 .
  • the hot fluid generated by the first heat source 1 can be transported to the third heat exchange flow channel of the second heat exchange device 10 to exchange heat with the water in the second heat exchange device 10, thereby achieving the purpose of controlling the second heat exchange device.
  • the purpose of heating the water in 10; the hot fluid generated by the second heat source 5 can be transported to the fourth heat exchange flow channel of the third heat exchange device 12 to exchange heat with the water in the third heat exchange device 12, so as to achieve the purpose of heating the water in the third heat exchange device 12.
  • the heated water in the third heat exchange device 12 can also be output to the user.
  • the first heat source 1 may be controlled to first heat the water to a first preset temperature, and then the second heat source 5 may be controlled to heat the water a second time.
  • the cogeneration system includes a second heat exchange device 10 with a third heat exchange flow channel and a third heat exchange device 12 with a fourth heat exchange flow channel, and the third heat exchange device 12 is connected with the second heat exchange device 10 , and the second heat exchange device 10 has a first water storage chamber for storing water, the third heat exchange device 12 has a second water storage chamber for storing water, and the first water storage chamber is connected to the second water storage chamber.
  • the third heat exchange device 12 is connected with the second heat exchange device 10, the third heat exchange flow channel can exchange heat with the stored water in the first water storage chamber, and the fourth heat exchange flow channel can communicate with the third heat exchange flow channel.
  • the water stored in the second water storage chamber undergoes heat exchange, and the water outlet of the second heat exchange device 10 connected to the first water storage chamber can be connected to the water inlet of the third heat exchange device 12 connected to the second water storage chamber.
  • the water inlet of the second heat exchange device 10 connected to the first water storage chamber is used to communicate with the water source 23, and the water outlet of the third heat exchange device 12 connected to the second water storage chamber is used to communicate with the water source 23.
  • the thermal fluid generated by the first heat source 1 can be controlled to flow into the third heat exchange channel through the first flow channel 2, and the thermal fluid generated by the second heat source 5 can be controlled to flow into the fourth heat exchange channel through the third flow channel 6. flow channel.
  • step S102 of the first embodiment if the operation of the second heat source 5 is more advantageous than the operation of the first heat source 1, when the hot water load is satisfied by the first heat source 1 and there is a demand for heating load, The second heat source 5 is operated with priority, and the heating load is supplied on the basis of satisfying the hot water load.
  • step S102 of the second embodiment if the operation of the second heat source 5 is more advantageous than the operation of the first heat source 1, when the heating load is satisfied by the first heat source 1 and there is a demand for hot water load, The second heat source 5 is operated with priority, and the hot water load is supplied on the basis of satisfying the heating load.
  • the more advantageous heat source can be prioritized to supply the heating load or hot water load that appears later or has a lower priority than the first heat source 1.
  • Heating load or hot water load with lower priority can make the overall operation of the entire joint supply system have a higher energy consumption ratio, making it more energy-saving and environmentally friendly; or it can make the overall operation of the entire joint supply system more cost-effective and increase economical operation. cost.
  • the step of giving priority to operating the second heat source 5 is executed, if the heating load or hot water load is not satisfied, the operating state of the first heat source 1 is changed to supply the heating load or hot water load, so that the subsequent occurrence or the heating load or hot water load with a lower supply priority than the first heat source 1 can be satisfied to the greatest extent possible.
  • the joint supply system includes the second heat source 5
  • the joint supply system includes the second heat source 5
  • the operating number of the first sub-heat sources 11 supplying the heating load is reduced to supply the increased hot water load.
  • the second heat source 5 can be operated to supply the hot water load; in the second embodiment, after changing the first heat source In the operating state of 1, after the heating load is satisfied, after the step of supplying the hot water load, if the heating load increases, the operating number of the first sub-heat source 11 for supplying the hot water load is reduced. Supply increased heating load. If the step of reducing the operating number of the first sub-heat source 11 for supplying the heating load is performed, the second heat source 5 is operated to supply the heating load.
  • the second heat source 5 requires subsequent diversion.
  • the controller 18 of the joint supply system in this application can execute the above control method of the joint supply system.
  • the joint supply system in the embodiment of the present application may include a controller 18 that executes the above control method of the joint supply system.
  • the controller 18 can be used to communicate with the first heat source 1 and the second heat source 5 through power line carrier communication or serial communication.
  • the controller 18 may be used to communicate with the first flow control device 4 and the second flow control device 19 through power line carrier communication or serial communication.
  • the controller 18 can communicate with the first heat source 1 , the second heat source 5 , the first flow control device 4 and the second flow control device 19 through other existing methods, such as electricity. Communication is realized through sexual connection, wired and wireless transmission methods are used to realize communication, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

本发明公开了一种联供系统及其控制器和控制方法,所述联供系统包括第一热源,所述联供系统的控制方法包括以下步骤:控制第一热源供给热水负荷直至所述热水负荷被所述第一热源满足;当所述热水负荷被所述第一热源满足,且存在对采暖负荷的需求时,改变所述第一热源的运行状态,在使所述热水负荷被满足的基础上,供给所述采暖负荷;或者,控制第一热源供给采暖负荷直至所述采暖负荷被所述第一热源满足;当所述采暖负荷被所述第一热源满足,且存在对热水负荷的需求时,改变所述第一热源的运行状态,在使所述采暖负荷被满足的基础上,供给所述热水负荷。本申请的联供系统能够智能地供给热水负荷和采暖负荷。

Description

联供系统及其控制器和控制方法
相关申请
本发明要求专利申请号为202210439954.7、发明名称为“联供系统及其控制器和控制方法”的中国发明专利的优先权。
技术领域
本发明涉及供热技术领域,特别涉及一种联供系统及其控制器和控制方法。
背景技术
联供系统可以供给水加热所需的热量,也可以供给采暖所需的热量。由于水加热所需的热水负荷和所需加热的时间是不确定的,采暖所需的负荷和采暖需要进行的时间也是不确定的,因此,如何智能地调整联供系统的运行方式,使其智能地满足热水负荷和采暖负荷是一个需要解决的问题。
发明内容
为了克服现有技术的上述缺陷,本发明实施例所要解决的技术问题是提供了一种联供系统及其控制器和控制方法,其能够确保联供系统能够智能地供给热水负荷和采暖负荷。
为了实现上述目的,本发明所采用的技术方案内容具体如下:
本发明公开了一种联供系统的控制方法,所述联供系统包括第一热源,所述联供系统的控制方法包括以下步骤:
控制第一热源供给热水负荷直至所述热水负荷被所述第一热源满足;
当所述热水负荷被所述第一热源满足,且存在对采暖负荷的需求时,改变所述第一热源的运行状态,在使所述热水负荷被满足的基础上,供给所述采暖负荷;
或者,
控制第一热源供给采暖负荷直至所述采暖负荷被所述第一热源满足;
当所述采暖负荷被所述第一热源满足,且存在对热水负荷的需求时,改变所述第一热源的运行状态,在使所述采暖负荷被满足的基础上,供给所述热水负荷。
本发明还公开了一种联供系统的控制器,所述联供系统的控制器执行如上述的联供系统的控制方法。
本发明还公开了一种联供系统,所述联供系统包括:如上述所述的联供系统的控制器;第一热源;分别能与所述第一热源连通的第一流道和第二流道;
第一流量控制装置,用于控制所述第一热源的流体分流至第一流道和第二流道的流量,所述第一流道和所述第二流道分别用于为第一末端和第二末端提供热量,所述第一末端用于供给热水负荷,所述第二末端用于供给采暖负荷。
与现有技术相比,本发明的有益效果在于:
通过上述联供系统的控制方法能够确保联供系统能够智能地供给热水负荷和采暖负荷,具体而言,当热水负荷和采暖负荷中的一个优先被第一热源满足之后或者第一热源被配置为优先满足热水负荷和采暖负荷中的一个时,热水负荷和采暖负荷中的另一个再出现或同时出现热水负荷和采暖负荷中的另一个时,若第一热源具有富裕的输出负荷,在能够确保在先的负荷或被配置为优先级较高的负荷持续被满足的前提下,改变自身运行状态以将富裕的输出负荷供给再出现的热水负荷和采暖负荷中的另一个或被配置为优先级低的负荷。这样就能够避免因另一个负荷的出现而造成第一热源对在先的负荷供给的不足,或者,两个负荷同时出现而造成第一热源对被配制为优先级较高的负荷供给的不足,与此同时,又能够在一定程度上使得第一热源能够兼顾到在后的负荷或被配制为优先级较低的负荷,使得第一热源被最大化利用。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图1为本发明实施例中联供系统在第一种实施方式下的结构示意图;
图2为本发明实施例中联供系统在第二种实施方式下的结构示意图;
图3为本发明实施例中联供系统在第三种实施方式下的结构示意图;
图4为本发明实施例中联供系统在第四种实施方式下的结构示意图;
图5为本发明实施例中联供系统的控制方法在第一种实施方式下的步骤流程图;
图6为本发明实施例中联供系统的控制方法在第二种实施方式下的步骤流程图。
以上附图的附图标记:
1、第一热源;11、第一子热源;2、第一流道;21、第一子流道;3、第二流道;
31、第二子流道;4、第一流量控制装置;41、第一子流量控制装置;5、第二热源;6、第三流道;7、第四流道;8、第二末端;9、第一换热装置;10、第二换热装置;12、第三换热装置;13、第一回流流道;14、第二回流流道;15、第三回流流道;16、第四回流流道;17、第一末端;18、控制器;19、第二流量控制装置;20、第一循环泵;22、第二循环泵;23、水源。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了能够确保联供系统能够智能地供给热水负荷和采暖负荷,在本申请实施例中提出了一种联供系统及其控制器和控制方法。其中,图1为本发明实施例中联供系统在第一种实施方式下的结构示意图,如图1所示,联供系统可以包括:第一热源1;分别能与第一热源1连通的第一流道2和第二流道3;第一流量控制装置4,用于控制第一热源1的流体分流至第一流道2和第二流道3的流量,第一流道2和第二流道3分别用于为第一末端17和第二末端8提供热量,第一末端17用于供给热水负荷,第二末端8用 于供给采暖负荷。
第一热源1可以是能够提供热量的任意一类装置,其可以将提供的热量以流体携带的形式通过第一流道2供给至第一末端17和/或通过第二流道3供给至第二末端8。例如,第一热源1可以包括热泵装置或燃气热水器或电热水器等等,在本申请中并不对其做具体的限定,也可以是上述一类装置的任意组合。第一流量控制装置4控制第一热源1的流体分流至第一流道2和第二流道3的流量,例如,第一流量控制装置4可以将全部的流体分流至第一流道2或第二流道3,也可以将部分流道分流至第一流道2,另外一部分流体分流至第二流道3。另外,第一流量控制装置4也可以达到流量控制的作用,即可以任意控制流体分离至第一流道2和第二流道3的流量。第一流量控制装置4可以设置在第一流道2和第二流道3的连通处,其直接控制第一热源1分流至第一流道2和第二流道3的流量;第一流量控制装置4也可以为两个,其分别设置在第一流道2和第二流道3上,通过各自控制第一流道2的流量、第二流道3的流量以达到控制第一热源1分流至第一流道2和第二流道3的流量。通过第一流量控制装置4可以对第一热源1提供的热流体进行合理的分配,使其根据第一末端17和第二末端8具体不同的需求,供给相对应流量的热流体,从而满足第一末端17和第二末端8变化的需求。
第一末端17用于供给热水负荷,其可以为能够输出热水以供用户使用的一类装置。具体而言,第一末端17可以是水的加热装置,其能对水进行加热并将加热后的水供给用户使用,也可以是热水的输出装置,例如,生活中使用的龙头、花洒等装置,能够将第一热源1通过第一流道2输出的如热水一类的热流体直接输出供给用户使用。第二末端8则用于供给采暖负荷。第二末端8可以为供热采暖的一类装置,例如,第二末端8可以至少包括以下之一:风盘、地暖、暖气片、墙内换热设备等等,在本申请中并不对其做具体的限定。
作为可行的,图2为本发明实施例中联供系统在第二种实施方式下的结构示意图,如图2所示,第一热源1可以包括多个第一子热源11,多个第一子热源11并联连接。为了实现多个第一子热源11均能够独立的控制流体分流至第一流道2和第二流道3的流量,第一流量控制装置4可以包括多个第一子流量控制装置41,第一流道2包括多个第一子流道21,第二流道3包括多个第二子流道31。第一子流量控制装置41用于控制相对应的第一子热源11的流体分流至相对应的第一子流道21和第二子流道31的流量。例如,第一子流道21和第二子流道31能与自己相对应的第一子热源11相连通。第一子流量控制装置41可以设置在自己相对应的第一子流道21和第二子流道31的连通处, 亦或者,对于一个第一子热源11,相对应的第一子流量控制装置41为两个,其分别设置在相对应的第一子流道21和第二子流道31上。多个第一子流道21的下游可以合并为一个流道并用于为第一末端17供应热量,同理,多个第二子流道31的下游可以合并为一个流道并用于为第二末端8供应热量。
进一步的,当第一末端17和第二末端8都需要热量,但是所需热量的温度不同时,通过并联的多个第一子热源11可以将第一热源1中的部分第一子热源11与另外一部分第一子热源11分别产生不同温度的热量,从而分别供给至第一末端17和第二末端8。例如,第一末端17供给的热水需要达到高温,如80度以上,但是第二末端8供给采暖的热水只需要达到65度左右,此时,就可以将第一热源1中的部分第一子热源11生成80度以上的热流体,而另外一部分第一子热源11生成65度左右的热流体,从而分别供给第一末端17和第二末端8,以满足两者完全不同的温度需求。
又例如,在天气炎热的时候,当第一末端17供给的为热水负荷,第二末端8供给的采暖负荷为冷负荷时,此时,就可以将第一热源1中的部分第一子热源11处于制热运行状态以生成热流体,通过第一子流量控制装置41向第一末端17输送,从而满足第一末端17的热水负荷,而另外一部分第一子热源11则处于制冷运行状态以生成冷流体,通过第一子流量控制装置41向第二末端8输送,从而满足第二末端8的冷负荷。通过并联的多个第一子热源11和第一子流量控制装置41的配合可以将不同第一子热源11生成的热流体和冷流体分别输送给第一末端17和第二末端8,以满足完全不同类型的热量需求。
图3为本发明实施例中联供系统在第三种实施方式下的结构示意图,如图3所示,本申请实施例中的联供系统可以包括:第二热源5;分别能与第二热源5连通的第三流道6和第四流道7。第二流量控制装置19,用于控制第二热源5的流体分流至第三流道6和第四流道7的流量,第三流道6和第四流道7分别用于为第一末端17和第二末端8提供热量。
第二热源5可以是能够提供热量的任意一类装置,其可以将提供的热量以流体携带的形式通过第三流道6供给至第一末端17和/或通过第四流道7供给至第二末端8。例如,第二热源5可以包括热泵装置或燃气热水器或电热水器等等,在本申请中并不对其做具体的限定,也可以是上述一类装置的任意组合。第二流量控制装置19控制第二热源5的流体分流至第三流道6和第四流道7的流量,第二流道3控制装置的功能、具体安装的位置等可以与第一流道2控制装置相类似,在此不再赘述。通过第二流量控制装 置19可以对第二热源5提供的热流体进行合理的分配,使其根据第一末端17和第二末端8具体不同的需求,供给相对应流量的热流体,从而满足第一末端17和第二末端8变化的需求。
由于第一热源1能够分别给第一末端17和第二末端8供给热流体或冷流体,第二热源5也能够分别给第一末端17和第二末端8供给热流体或冷流体,因此,通过第一流量控制装置4和第二流量控制装置19的控制,可以使得第一热源1产生的流体以合理的分流供给至第一末端17和第二末端8,同时,第二热源5产生的流体也可以以合理的分流供给至第一末端17和第二末端8,这样使得第一末端17和第二末端8需要的不同负荷可以合理的选择性的被满足。另外,通过第一热源1和第二热源5的配合在某些时刻可以更大范围的满足第一末端17或第二末端8需要的负荷,使得整个联供系统的兼顾性更佳。
作为可行的,第二热源5也可以包括多个第二子热源,多个第二子热源并联连接。第二流量控制装置19包括多个第二子流量控制装置,第三流道6包括多个第三子流道,第四流道7包括多个第四子流道,第二子流量控制装置用于控制相对应的第二子热源的流体分流至相对应的第三子流道和第四子流道的流量。同理,通过并联的多个第二子热源和第二子流量控制装置的配合可以将第一热源1中的部分第一子热源11与另外一部分第一子热源11分别产生不同温度的热量,从而分别供给至第一末端17和第二末端8;也可以将不同第二子热源生成的热流体和冷流体分别输送给第一末端17和第二末端8,以满足完全不同类型的热量需求。
作为可行的,在一些实施方式中,第二子流量控制装置可以只需要控制相对应的第二子热源产生的流体完全流入第三子流道或者第四子流道,以供给后出现的采暖负荷或热水负荷,在这些情况下,第二子流量控制装置可以包括分别设置在第三子流道和第四子流道上的开关阀或设置在第三子流道和第四子流道连通处的三通阀。
在一种可行的实施方式中,如图1至图3所示,第二流道3和第四流道7的出口用于与第二末端8相连通,从而使得第一热源1和第二热源5生成的流体能够直接通入第二末端8中,以提供相应的热量。第一流道2和第三流道6的出口用于与第一末端17相连通,从而使得第一热源1和第二热源5生成的流体能够直接通入第一末端17中,以提供相应的热量。
在一种可行的实施方式中,图4为本发明实施例中联供系统在第四种实施方式下的结构示意图,如图4所示,联供系统可以包括:具有第一换热流道和第二换热流道的第 一换热装置9。第二流道3可以包括第二换热流道,第四流道7包括第一换热流道,第二流道3用于与第二末端8相连通。第一热源1生成的流体在流经第一换热装置9的第二换热流道以后,再输送至第二末端8中,而第二热源5生成的流体则流经第一换热装置9的第一换热流道,在此期间能够与第二换热流道中流经的第一热源1生成的流体进行换热,从而进一步提高或降低第一热源1生成的流体的温度,具体可以根据第二末端8的需求所确定。
在上述实施方式中,当第一热源1运行产生的流体的温度不足够高或者不足够低时,可以通过第二热源5运行产生的流体去进一步升高或降低第一热源1运行产生的流体的温度,最终使得输入至第二末端8的流体的温度达到要求。例如,当第一热源1为热泵时,在天气温度较低时,热泵制取高温流体的性能偏低,其不易产生温度较高的热流体以满足第二末端8的需求,此时,第二热源5可以是燃气热水器或电热水器等,其依然能够产生温度较高的热流体,通过第二热源5产生的热流体进一步给第一热源1产生的温度偏低一些的热流体进行加热,以最终使得输入至第二末端8的流体的温度达到要求。由于热泵在较多运行工况下(比如制取温度偏低的流体时)具有较高的能耗比,其与燃气热水器或电热水器等一类的第二热源5配合使用在满足第二末端8需求的同时,也兼顾了联供系统的能耗比和经济效益。同理,在天气温度较高时,在热泵制取冷流体的性能偏低,其不易产生温度较低的冷流体以满足第二末端8的需求,此时,第二热源5可以是热泵,其可以产生流量较小的、但温度较低的冷流体,通过第二热源5产生的冷流体进一步给第一热源1产生的温度偏高一些的、但流量偏大的冷流体进行进一步降低,以最终使得输入至第二末端8的流体的温度达到要求。
为了进一步提高第一热源1生成的流体在流经第一换热装置9的第二换热流道与第二热源5生成的、流经第一换热装置9的第一换热流道的流体之间的换热效率,第一换热装置9可以采用板式换热器。另外,板式换热器还可以满足换热流体的高流量。
在一种可行的实施方式中,联供系统可以包括具有第三换热流道的第二换热装置10,第一流道2用于与第三换热流道相连通。在该方式中,第一热源1生成的热流体可以输送至第二换热装置10的第三换热流道中以与第二换热装置10中的水进行换热,从而达到对第二换热装置10中的水的加热目的,第二换热装置10中加热后的水则可以输出供给用户使用。同理,联供系统可以包括具有第四换热流道的第三换热装置12,第三流道6用于与第四换热流道相连通。第二热源5生成的热流体可以输送至第三换热装置12的第四换热流道中以与第三换热装置12中的水进行换热,从而达到对第三换热装置 12中的水的加热目的,第三换热装置12中加热后的水也可以输出供给用户使用。当然的,第二换热装置10和第三换热装置12的内部可以分别与水源23相连通,以补水。
在另一种可行的实施方式中,联供系统可以包括具有第三换热流道和第四换热流道的第二换热装置10;第一流道2用于与第三换热流道相连通;第三流道6用于与第三换热流道相连通。在该方式中,第一热源1生成的热流体通过第一流道2可以输送至第二换热装置10的第三换热流道中,以对第三换热装置12中的水进行换热。第二热源5生成的热流体通过第三流道6输送至第二换热装置10的第四换热流道中,以对第二换热装置10中的水进行换热。第一热源1和第二热源5能够同时对第二换热装置10中的水进行换热,从而能够进一步提高第二换热装置10中的水的加热速度,以减少用户的等待时间。
在又一种可行的实施方式中,如图4所示,联供系统可以包括具有第三换热流道的第二换热装置10和具有第四换热流道的第三换热装置12,第三换热装置12与第二换热装置10相连通;第一流道2用于与第三换热流道相连通;第三流道6用于与第四换热流道相连通。在该方式中,第一热源1生成的热流体可以输送至第二换热装置10的第三换热流道中以与第二换热装置10中的水进行换热,从而达到对第二换热装置10中的水的加热目的;第二热源5生成的热流体可以输送至第三换热装置12的第四换热流道中以与第三换热装置12中的水进行换热,从而达到对第三换热装置12中的水的加热目的。第三换热装置12与第二换热装置10相连通,从而使得两者中的水可以同时供给用户。另外,第一热源1与第二热源5分别独立的对第三换热装置12与第二换热装置10进行加热,因此,对两者中的水的加热程度和加热温度可以完全不同。当然的,第二换热装置10和第三换热装置12的内部可以与水源23相连通,以补水。
在上述实施方式中,进一步,如图4所示,第二换热装置10可以具有用于存储水的第一储水腔。第三换热装置12具有用于存储水的第二储水腔。第一储水腔与第二储水腔相连通,从而达到第三换热装置12与第二换热装置10相连通。第三换热流道能与第一储水腔中的存储水进行换热;第四换热流道能与第二储水腔中的存储水进行换热。第二换热装置10的与第一储水腔相连通的出水口能与第三换热装置12的与第二储水腔相连通的进水口相连通。第二换热装置10的与第一储水腔相连通的进水口用于与水源23相连通。第三换热装置12的与第二储水腔相连通的出水口用于供给热水。
在该结构中,水源23的水可以先进入至第二换热装置10的第一储水腔,通过第一热源1输送至第三换热流道的热流体进行初步加热至第一预设温度,当第三换热装置12 中的水向外输出供给用户使用后,第二换热装置10的第一储水腔中处于第一预设温度的水就能补充至第三换热装置12的第二储水腔中,之后,第二热源5输送至第四换热流道的热流体能对第三换热装置12中的水二次加热至更高的温度。通过上述加热方式,可以对第一热源1和第二热源5产生热流体的不同能力进行阶梯利用,以提高整个联供系统的能耗比。
例如,当第一热源1为热泵,第二热源5为燃气热水器或电热水器时,由于热泵制取温度偏低的热流体时,其能耗比较高,具有很高的性价比优势,但是其制取高温流体时,其能耗比就会大幅下降,不再具有较高的性价比,因此,可以先采用热泵对第二换热装置10的第一储水腔中刚补入的水进行初步加热至第一预设温度,之后再利用能够燃气热水器或电热水器等产生的热流体对流入至第三换热装置12中的水进行二次加热至更高的温度。
作为可行的,如图4所示,联供系统可以包括:分别能与第一热源1连通的第一回流流道13和第二回流流道14,第一回流流道13和第二回流流道14分别用于与第二换热装置10的第三换热流道和第二末端8的出口相连通。同理,联供系统可以包括:能与第二热源5连通的第四回流流道16,第四回流流道16能与第一换热流道的出口相连通。联供系统可以包括:能与第二热源5连通第三回流流道15,第三回流流道15能与第四换热流道的出口相连通。在上述方式中,通过回流流道可以将经过第三换热流道、第二末端8、第四换热流道、第一换热流道进行换热后的流体进行循环利用,同时换热后的流体依然具有少量的冷负荷或热负荷,其优于外界重新输入的流体,因此,可以减轻第一热源1和第二热源5的运行功率。
为了驱动流体在第一流道2和第二流道3中流动,相对应的,如图4所示,可以在第一流道2或第一回流流道13上设置第一循环泵20,可以在第二流道3或第二回流流道14上设置第二循环泵22。同样的,可以在第三流道6或第三回流流道15上设置第三循环泵,可以在第四流道7或第四回流流道16上设置第四循环泵。
在本申请的第一个实施例中,图5为本发明实施例中联供系统的控制方法在第一种实施方式下的步骤流程图,如图5所示,联供系统的控制方法可以包括以下步骤:
S101:控制第一热源1供给热水负荷直至热水负荷被第一热源1满足。
S102:当热水负荷被第一热源1满足,且存在对采暖负荷的需求时,改变第一热源1的运行状态,在使热水负荷被满足的基础上,供给采暖负荷。
在该实施例中,当先出现热水负荷时或者当联供系统的第一热源1用于优先满足热 水负荷时,例如,第一末端17需要热水负荷时,控制第一热源1向第一末端17供给热水负荷直至第一末端17的热水负荷被第一热源1满足。热水负荷可以指,能够输出热水以供用户使用的一类装置在对水进行加热时所需的负荷,例如,维持设定温度的热水供给下所需的负荷,或,维持设定加热速度下的给水加热所需的负荷。在该处,热水负荷被第一热源1满足可以具体包括下述情形:第一热源1通过热流体向第一末端17单位时间内输出的热功率满足第一末端17单位时间内的需求(例如,当第一末端17需求设定温度的热水时,所述第一热源1可以处于运行状态以保证设定温度的热水的供给)。当热水负荷被第一热源1满足,且存在对采暖负荷的需求时,例如,之后第二末端8出现对采暖负荷的需求,或者第二末端8出现对采暖负荷的需求与第一末端17对热水负荷的需求同时出现,此时,改变第一热源1的运行状态,从而使热水负荷在被继续满足的基础上,第一热源1还能够向第二末端8供给采暖负荷。采暖负荷可以指供热采暖一类装置在进行供热时所需的负荷,例如,维持设定温度的采暖流体供给下所需的负荷。
在本申请的第二个实施例中,图6为本发明实施例中联供系统的控制方法在第二种实施方式下的步骤流程图,如图6所示,联供系统的控制方法可以包括以下步骤:
S101:控制第一热源1供给采暖负荷直至采暖负荷被第一热源1满足。
S102:当采暖负荷被第一热源1满足,且存在对热水负荷的需求时,改变第一热源1的运行状态,在使采暖负荷被满足的基础上,供给热水负荷。
在该实施例中,当先出现采暖负荷时或者当联供系统的第一热源1用于优先满足采暖负荷时,例如,第二末端8需要采暖负荷时,控制第一热源1向第二末端8供给采暖负荷直至第二末端8的采暖负荷被第一热源1满足。在该处,采暖负荷被第一热源1满足具体可以包括以下情形:第一热源1通过热流体向第二末端8单位时间内输出的热功率达到第二末端8单位时间内的需求(例如,为保持室内的温度逐步上升至设定温度,使第一热源1可以处于运行状态以保证室内温度的上升)。当采暖负荷被第一热源1满足,且存在对热水负荷的需求时,例如,之后第一末端17出现对热水负荷的需求,或者第二末端8出现对采暖负荷的需求与第一末端17对热水负荷的需求同时出现,此时,改变第一热源1的运行状态,从而使采暖负荷在被继续满足的基础上,第一热源1还能够向第一末端17供给热水负荷。
通过上述联供系统的控制方法能够确保联供系统能够智能地供给热水负荷和采暖负荷,具体而言,当热水负荷和采暖负荷中的一个优先被第一热源1满足之后或者第一热源1被配置为优先满足热水负荷和采暖负荷中的一个时,热水负荷和采暖负荷中的另 一个再出现或同时出现时,若第一热源1具有富裕的输出负荷,在能够确保在先的负荷或被配置为优先级较高的负荷持续被满足的前提下,改变自身运行状态以将富裕的输出负荷供给再出现的热水负荷和采暖负荷中的另一个或被配置为优先级较低的负荷。这样就能够避免因另一个负荷的出现而造成第一热源1对在先的负荷供给的不足,或者,两个负荷同时出现而造成第一热源1对被配制为优先级较高的负荷供给的不足,与此同时,又能够在一定程度上使得第一热源1能够兼顾到在后的负荷或被配制为优先级较低的负荷,使得第一热源1被最大化利用。
在上述两种实施例中,在步骤S201中,当第一热源1为单一热源时,改变第一热源1的运行状态具体可以包括:提高第一热源1的运行功率,从而使得第一热源1提高的该部分功率供给后出现的热水负荷和采暖负荷中的其中一个。通过第一流量控制装置4可以将第一热源1提高的该部分功率相对应的流体分流至后出现的热水负荷和采暖负荷中的其中一个相对应的流道。
当第一热源1包括至少两个并联的第一子热源11时,改变第一热源1的运行状态具体可以包括:增加第一子热源11的运行数量;和/或,提高至少部分处于已经运行的第一子热源11的运行功率。
具体而言,若存在未运行的第一子热源11,则基于后出现的或相对第一热源1供给优先级较低的采暖负荷的需求或热水负荷的需求确定未运行的第一子热源11的开启数量,并使新开启的第一子热源11用于在使热水负荷被满足的基础上,供给采暖负荷,亦或者,在使采暖负荷被满足的基础上,供给热水负荷。当未运行的第一子热源11的功率能够满足后出现的采暖负荷的需求或热水负荷的需求时,可以通过上述方法满足后出现的或相对第一热源1供给优先级较低的采暖负荷的需求或热水负荷的需求,由于新开启的第一子热源11与之前已开启的第一子热源11是并联设置,因此,新开启的第一子热源11可以完全独立的运行,如此,新开启的第一子热源11的运行模式(例如可以包括制冷模式或制热模式等)或产出同一类型流体(热流体或冷流体)的温度可以与之前已开启的第一子热源11的不同,这样可以满足供给后出现的或者优先级较低的采暖负荷的需求或热水负荷的需求,该需求可以是与之前已开启的第一子热源11完全不同类型的热量需求,还可以是与之前已开启的第一子热源11完全不同的温度需求,进而实现不会影响到之前已经开启的第一子热源11的运行。通过上述步骤,可以满足第一末端17和第二末端8完全不同的温度需求或者不同类型的热量需求。
在该方式中,由于第一子流量控制装置41只需要控制相对应的第一子热源11产生 的流体完全流入第一子流道21或者第二子流道31,以供给后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷,因此,第一子流量控制装置41可以包括分别设置在第一子流道21和第二子流道31上的开关阀或设置在第一子流道21和第二子流道31连通处的三通阀。
若所有第一子热源11均已开启,所有第一子热源11的总的运行功率未达到所有第一子热源11的总的最大额定功率,则可以提高所有第一子热源11中的至少部分的运行功率。通过上述方法可以在第一子热源11均已开启的前提下满足后出现的或相对第一热源1供给优先级较低的采暖负荷的需求或热水负荷的需求。通过第一子流量控制装置41可以将第一子热源11提高的该部分功率相对应的流体分流至后出现的热水负荷和采暖负荷中的其中一个相对应的流道,从而供给后出现的热水负荷和采暖负荷中的其中一个。
若存在未运行的第一子热源11,且未运行的第一子热源11的总的运行功率不能满足新存在的采暖负荷的需求或热水负荷的需求,已经处于运行状态的第一子热源11的总的运行功率未达到已经处于运行状态的第一子热源11的总的最大额定功率时,则可以开启未运行的第一子热源11并提高已经处于运行状态的第一子热源11中的至少部分的运行功率。当未运行的第一子热源11的功率不能够满足后出现的采暖负荷的需求或热水负荷的需求时,通过上述方法可以最大化的提高第一热源1向外的输出功率,从而最大可能的满足后出现的或相对第一热源1供给优先级较低的采暖负荷的需求或热水负荷的需求。在该步骤中,可以通过第一子流量控制装置41可以将第一子热源11提高的该部分功率相对应的流体分流至后出现的或相对第一热源1供给优先级较低的热水负荷和采暖负荷中的其中一个相对应的流道,将新开启的第一子热源11输出的流体输送至后出现的或相对第一热源1供给优先级较低的热水负荷和采暖负荷中的其中一个相对应的流道,最终供给后出现的或相对第一热源1供给优先级较低的热水负荷和采暖负荷中的其中一个。
在上述改变第一热源1的运行状态的步骤中,如果提高了已经处于运行状态的第一子热源11中的至少部分的运行功率,作为可选的,可以对所有已经处于运行状态的第一子热源11进行重新分配,以使其中部分供给热水负荷,部分供给采暖负荷。这样就可以避免一个第一子热源11输出的流体需要被第一子流量控制装置41分成两部分,分别供给热水负荷和采暖负荷。尤其当热水负荷和采暖负荷所需的流体的温度不同的,通过上述方法可以使得多个第一子热源11分成两部分,这两部分第一子热源11可以生成 不同温度的流体从而分别供给热水负荷和采暖负荷。
若第一热源1供给采暖负荷且采暖负荷为冷负荷、存在对热水负荷的需求时,改变第一热源1的运行状态可以包括:保持处于制冷工作状态的第一子热源11的数量不变,若存在未运行的第一子热源11,则将至少部分未运行的第一子热源11用于供给热水负荷。亦或者,若第一热源1供给热水负荷,存在对采暖负荷的需求,采暖负荷为冷负荷时,改变第一热源1的运行状态可以包括:保持处于制热工作状态的第一子热源11的数量不变,若存在未运行的第一子热源11,则将至少部分未运行的第一子热源11用于制冷以供给采暖负荷。
在上述情况下,第一热源1包括即能够产生冷负荷、又能够产生热负荷的一类装置,如并联的多个热泵。当热水负荷和采暖负荷所需的流体的冷热负荷不同时,通过上述方法可以使得多个第一子热源11分成两部分,这两部分第一子热源11以不同的运行模式运行,即制冷模式和制热模式,从而可以生成不同冷热性质的流体,以分别供给采暖负荷和热水负荷。
进一步的,联供系统的控制方法还可以包括以下步骤:
针对于第一个实施例中,在执行改变第一热源1的运行状态,在使热水负荷被满足的基础上,供给采暖负荷的步骤之后,若热水负荷增大,则减少供给采暖负荷的第一子热源11的运行数量,以用于供给增大的热水负荷。针对于第二个实施例中,在执行改变第一热源1的运行状态,在使采暖负荷被满足的基础上,供给热水负荷的步骤之后,若采暖负荷增大,则减少用于供给热水负荷的第一子热源11的运行数量,以用于供给增大的采暖负荷。通过上述步骤,在第一热源1同时供给热水负荷和采暖负荷以后,若优先被供给的或被配置为优先级较高的热水负荷或采暖负荷增大,则减少供给后出现的或被配置为优先级较低的采暖负荷或热水负荷相对应的第一子热源11的运行数量,以用于供给优先被供给的或被配置为优先级较高的热水负荷或采暖负荷。这样能够使得优先被供给的或被配置为优先级较高的热水负荷或采暖负荷始终被优先满足,不会出现优先被供给的或被配置为优先级较高的热水负荷或采暖负荷后续出现变化而造成无法被满足。
在第一个实施例的步骤S102中,当联供系统包括第二热源5,第二热源5也可以用于满足采暖负荷时,若第一热源1的运行比第二热源5的运行更具有优势时,则当热水负荷被第一热源1满足,且存在对采暖负荷的需求时,改变第一热源1的运行状态,在使热水负荷被满足的基础上,供给采暖负荷。同理,在第二个实施例的步骤S102中, 当联供系统包括第二热源5,第二热源5也可以用于满足热水负荷时,若第一热源1的运行比第二热源5的运行更具有优势时,则当采暖负荷被第一热源1满足,且存在对热水负荷的需求时,改变第一热源1的运行状态,在使采暖负荷被满足的基础上,供给热水负荷。该优势可以为能耗比优势或者为性价比优势。
通过上述方法步骤,当联供系统存在能够用于满足后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷的第二热源5时,当存在后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷时,优先采用更具有优势的第一热源1去供给后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷。当优势为能耗比优势时,可以使得整个联供系统在运行过程中更加节能环保;当优势为性价比优势时,可以使得整个联供系统在运行过程中更加节约运行成本。
若在改变第一热源1的运行状态的步骤被执行后,后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷无法被满足,则再运行第二热源5,从而进一步供给后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷,进而尽最大可能使得后出现的或相对第一热源1供给优先级较低的采暖负荷或热水负荷被满足。
在第一个实施例的步骤S102中,在联供系统包括第二热源5,第二热源5也可以用于满足采暖负荷的前提下,当热水负荷被第一热源1满足,且存在对采暖负荷的需求时,可以改变第一热源1的运行状态并运行第二热源5,在使热水负荷被满足的基础上,供给采暖负荷。
在上述步骤中,可以提高第一热源1的功率,并运行第二热源5,将第一热源1和第二热源5整体增加的功率以用于供给采暖负荷。上述提高第一热源1的功率为提高第一热源1总体的功率,可以包括启动未处于运行状态的第一子热源11,和/或提高至少部分已经运行的第一子热源11的功率,或者提高单个的第一热源1的功率等。提高第一热源1的功率,通过第一流量控制装置4将第一热源1提高的该部分功率相对应的流体分流至第二流道3以供给采暖负荷。运行第二热源5,在一种可行的方式中,通过第二流量控制装置19将第二热源5运行产生的功率相对应的流体分流至第四流道7以供给采暖负荷。在另一种可行的方式中,运行第二热源5,通过第二流量控制装置19将第二热源5运行产生的功率相对应的流体分流去进一步升高或降低第一热源1运行产生的流体的温度,最终使得输入至第二末端8的流体的温度达到要求,具体而言,将第一热源1提高的该部分功率相对应的流体通过第二流量控制装置19分流,流经第一换热装置9的第二换热流道以后,再输送至第二末端8中,而将第二热源5生成的流体通过第 二流量控制装置19分流流入第一换热装置9的第一换热流道,在此期间能够与第二换热流道中流经的第一热源1生成的流体进行换热,从而进一步提高或降低第一热源1生成的流体的温度。通过上述方法,第二热源5产生的流体所携带的热量或冷量便通过第一热源1产生的流体,输送给第二末端8。
同理,在第二个实施例的步骤S102中,在联供系统包括第二热源5,第二热源5也可以用于满足采暖负荷的前提下,当采暖负荷被第一热源1满足,且存在对热水负荷的需求时,改变第一热源1的运行状态并运行第二热源5,在使采暖负荷被满足的基础上,供给热水负荷。
在上述步骤中,可以提高第一热源1的功率,并运行第二热源5,将第一热源1和第二热源5整体增加的功率以用于供给热水负荷。同理,上述提高第一热源1的功率为提高第一热源1总体的功率,可以包括启动未处于运行状态的第一子热源11,和/或提高至少部分已经运行的第一子热源11的功率,或者提高单个的第一热源1的功率。
例如,可以通过第一热源1和第二热源5一起对热水进行加热。如第一热源1生成的热流体通过第一流道2可以输送至第二换热装置10的第三换热流道中,以对第三换热装置12中的水进行换热;第二热源5生成的热流体通过第三流道6输送至第二换热装置10的第四换热流道中,以对第三换热装置12中的水进行换热。又例如,第一热源1生成的热流体可以输送至第二换热装置10的第三换热流道中以与第二换热装置10中的水进行换热,从而达到对第二换热装置10中的水的加热目的;第二热源5生成的热流体可以输送至第三换热装置12的第四换热流道中以与第三换热装置12中的水进行换热,从而达到对第三换热装置12中的水的加热目的,第三换热装置12中加热后的水也可以输出供给用户使用。
又例如,也可以控制第一热源1先将水加热至第一预设温度,之后,控制第二热源5再对水进行二次加热。如联供系统包括具有第三换热流道的第二换热装置10和具有第四换热流道的第三换热装置12,第三换热装置12与第二换热装置10相连通,且第二换热装置10具有用于存储水的第一储水腔,第三换热装置12具有用于存储水的第二储水腔,第一储水腔与第二储水腔相连通,从而达到第三换热装置12与第二换热装置10相连通,第三换热流道能与第一储水腔中的存储水进行换热,第四换热流道能与第二储水腔中的存储水进行换热,第二换热装置10的与第一储水腔相连通的出水口能与第三换热装置12的与第二储水腔相连通的进水口相连通,第二换热装置10的与第一储水腔相连通的进水口用于与水源23相连通,第三换热装置12的与第二储水腔相连通的出水口 用于供给热水时,可以控制第一热源1生成的热流体通过第一流道2流入第三换热流道,控制第二热源5生成的热流体通过第三流道6流入第四换热流道。通过上述方法,可以对第一热源1和第二热源5产生热流体的不同能力进行阶梯利用,以提高整个联供系统的能耗比。
在第一个实施例的步骤S102中,若第二热源5的运行比第一热源1的运行更具有优势时,当热水负荷被第一热源1满足,且存在对采暖负荷的需求时,优先运行第二热源5,在使热水负荷被满足的基础上,供给采暖负荷。在第二个实施例的步骤S102中,若第二热源5的运行比第一热源1的运行更具有优势时,当采暖负荷被第一热源1满足,且存在对热水负荷的需求时,优先运行第二热源5,在使采暖负荷被满足的基础上,供给热水负荷。
通过上述方法当存在后出现的或者相对第一热源1供给优先级较低的采暖负荷或热水负荷时,可以优先运行更加具有优势的热源,从而去供给后出现的或者相对第一热源1供给优先级较低的采暖负荷或热水负荷,这样可以使得整个联供系统整体运行的能耗比更高,更加节能环保;或者,可以使得整个联供系统整体运行的性价比更高,加节约运行成本。
在上述步骤后,若执行优先运行第二热源5的步骤之后,若采暖负荷或热水负荷没有被满足,则改变第一热源1的运行状态,供给采暖负荷或热水负荷,从而使得后出现的或者相对第一热源1供给优先级较低的采暖负荷或热水负荷能够最大可能的得到满足。
进一步的,当联供系统包括第二热源5时,在第一个实施例中,在执行改变第一热源1的运行状态,在使热水负荷被满足的基础上,供给采暖负荷的步骤之后,若热水负荷增大,则减少供给采暖负荷的第一子热源11的运行数量,以用于供给增大的热水负荷。若减少用于供给热水负荷的第一子热源11的运行数量的步骤被执行,则可以运行第二热源5,以供给热水负荷;在第二个实施例中,在执行改变第一热源1的运行状态,在使采暖负荷被满足的基础上,供给热水负荷的步骤之后,若采暖负荷增大,则减少用于供给热水负荷的第一子热源11的运行数量,以用于供给增大的采暖负荷。若减少用于供给采暖负荷的第一子热源11的运行数量的步骤被执行,则运行第二热源5,以供给采暖负荷。
通过上述步骤,在存在后出现的或者相对第一热源1供给优先级较低的采暖负荷或热水负荷时,如果优先被供给的或者相对第一热源1供给优先级较高的热水负荷或采暖 负荷增大,则优先改变第一热源1的运行状态,从而尽可能的仅通过第一热源1就满足优先被供给的或者相对第一热源1供给优先级较高的热水负荷或采暖负荷;而通过运行第二热源5,去弥补第一热源1供给后出现的或者相对第一热源1供给优先级较低的采暖负荷或热水负荷的减少量,这样可以使第一热源1满足优先被供给的热水负荷或采暖负荷,同时通过第二热源5的运行,满足后出现的或者相对第一热源1供给优先级较低的采暖负荷或热水负荷,还可以尽可能的避免运行的第二热源5需要后续分流。
本申请中联供系统的控制器18可以执行上述联供系统的控制方法。进一步的,本申请实施例中的联供系统可以包括执行上述联供系统的控制方法的控制器18。作为可行的,该控制器18可以用于与第一热源1、第二热源5通过电力线载波通信或串行通信。控制器18可以用于与第一流量控制装置4、第二流量控制装置19通过电力线载波通信或串行通信。当然的,在其它可行的实施方式中,控制器18可以与第一热源1、第二热源5、第一流量控制装置4和第二流量控制装置19通过其它现有的方式实现通信,如电性连接方式实现通信,有线、无线传输方式实现通讯等等。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (37)

  1. 一种联供系统的控制方法,其中,所述联供系统包括第一热源,所述联供系统的控制方法包括以下步骤:
    控制第一热源供给热水负荷直至所述热水负荷被所述第一热源满足;
    当所述热水负荷被所述第一热源满足,且存在对采暖负荷的需求时,改变所述第一热源的运行状态,在使所述热水负荷被满足的基础上,供给所述采暖负荷;
    或者,
    控制第一热源供给采暖负荷直至所述采暖负荷被所述第一热源满足;
    当所述采暖负荷被所述第一热源满足,且存在对热水负荷的需求时,改变所述第一热源的运行状态,在使所述采暖负荷被满足的基础上,供给所述热水负荷。
  2. 根据权利要求1所述的联供系统的控制方法,其中,所述第一热源包括至少两个并联的第一子热源,所述改变所述第一热源的运行状态的步骤包括:
    增加所述第一子热源的运行数量;和/或,提高至少部分处于已经运行的所述第一子热源的运行功率。
  3. 根据权利要求2所述的联供系统的控制方法,其中,若存在未运行的所述第一子热源,则基于采暖负荷的需求或热水负荷的需求确定未运行的所述第一子热源的开启数量,并使新开启的所述第一子热源用于在使所述热水负荷被满足的基础上,供给所述采暖负荷或者在使所述采暖负荷被满足的基础上,供给所述热水负荷。
  4. 根据权利要求2所述的联供系统的控制方法,其中,若所有所述第一子热源均已开启,所有所述第一子热源的总的运行功率未达到所有所述第一子热源的总的最大额定功率,则提高所有所述第一子热源中的至少部分的运行功率。
  5. 根据权利要求2所述的联供系统的控制方法,其中,若存在未运行的所述第一子热源,且未运行的所述第一子热源的总的运行功率不能满足新存在的采暖负荷的需求或热水负荷的需求,已经处于运行状态的所述第一子热源的总的运行功率未达到已经处于运行状态的所述第一子热源的总的最大额定功率时,则开启未运行的所述第一子热源并提高已经处于运行状态的所述第一子热源中的至少部分的运行功率。
  6. 根据权利要求4或5所述的联供系统的控制方法,其中,所述改变所述第一热源的运行状态还包括:对所有已经处于运行状态的第一子热源进行重新分配,以使其中部分供给所述热水负荷,部分供给所述采暖负荷。
  7. 根据权利要求1所述的联供系统的控制方法,其中,所述第一热源包括至少两个 并联的第一子热源,
    当所述第一热源供给所述采暖负荷且所述采暖负荷为冷负荷、存在对所述热水负荷的需求时,所述改变所述第一热源的运行状态的步骤包括:
    保持处于制冷工作状态的第一子热源的数量不变,若存在未运行的所述第一子热源,则将至少部分所述未运行的第一子热源用于供给所述热水负荷;
    或者,
    当所述第一热源供给所述热水负荷,存在对所述采暖负荷的需求,所述采暖负荷为冷负荷时,所述改变所述第一热源的运行状态的步骤包括:
    保持处于制热工作状态的第一子热源的数量不变,若存在未运行的所述第一子热源,则将至少部分所述未运行的第一子热源用于制冷以供给所述采暖负荷。
  8. 根据权利要求1至5、7中任一项所述的联供系统的控制方法,其中,所述联供系统还包括第二热源,所述第二热源至少用于满足所述热水负荷或所述采暖负荷;
    若所述第一热源的运行比所述第二热源的运行更具有优势时,
    当所述热水负荷被所述第一热源满足,且存在对所述采暖负荷的需求时,改变所述第一热源的运行状态,在使所述热水负荷被满足的基础上,供给所述采暖负荷;
    或者,
    当所述采暖负荷被所述第一热源满足,且存在对所述热水负荷的需求时,改变所述第一热源的运行状态,在使所述采暖负荷被满足的基础上,供给所述热水负荷。
  9. 根据权利要求8所述的联供系统的控制方法,其中,若在所述改变所述第一热源的运行状态的步骤被执行后,所述采暖负荷或热水负荷无法被满足,则运行所述第二热源。
  10. 根据权利要求1至5、7中任一项所述的联供系统的控制方法,其中,所述联供系统还包括第二热源,所述第二热源至少用于满足所述热水负荷或所述采暖负荷;
    当所述热水负荷被所述第一热源满足,且存在对所述采暖负荷的需求时,改变所述第一热源的运行状态并运行所述第二热源,在使所述热水负荷被满足的基础上,供给所述采暖负荷;
    或者,
    当所述采暖负荷被所述第一热源满足,且存在对所述热水负荷的需求时,改变所述第一热源的运行状态并运行所述第二热源,在使所述采暖负荷被满足的基础上,供给所述热水负荷。
  11. 根据权利要求10所述的联供系统的控制方法,其中,所述改变所述第一热源的运行状态并运行所述第二热源,在使所述采暖负荷被满足的基础上,供给所述热水负荷的步骤,包括:
    控制所述第一热源先将水加热至第一预设温度,之后,控制所述第二热源再对水进行二次加热。
  12. 根据权利要求1至5、7中任一项所述的联供系统的控制方法,其中,所述联供系统还包括第二热源,所述第二热源至少用于满足所述热水负荷或所述采暖负荷;
    若所述第二热源的运行比所述第一热源的运行更具有优势时,
    当所述热水负荷被所述第一热源满足,且存在对所述采暖负荷的需求时,优先运行所述第二热源,在使所述热水负荷被满足的基础上,供给所述采暖负荷;
    或者,
    当所述采暖负荷被所述第一热源满足,且存在对所述热水负荷的需求时,优先运行所述第二热源,在使所述采暖负荷被满足的基础上,供给所述热水负荷。
  13. 根据权利要求12所述的联供系统的控制方法,其中,若执行所述优先运行所述第二热源的步骤之后,若所述采暖负荷或所述热水负荷没有被满足,则改变所述第一热源的运行状态,供给所述采暖负荷或所述热水负荷。
  14. 根据权利要求8所述的联供系统的控制方法,其中,所述第一热源包括热泵或燃气热水器或电热水器,所述第二热源包括燃气热水器或电热水器或热泵。
  15. 根据权利要求1至5、7中任一项所述的联供系统的控制方法,其中,在执行所述改变所述第一热源的运行状态,在使所述热水负荷被满足的基础上,供给所述采暖负荷的步骤之后,若所述热水负荷增大,则减少供给所述采暖负荷的所述第一子热源的运行数量,以用于供给增大的所述热水负荷;
    或者,
    在执行所述改变所述第一热源的运行状态,在使所述采暖负荷被满足的基础上,供给所述热水负荷的步骤之后,若所述采暖负荷增大,则减少用于供给所述热水负荷的所述第一子热源的运行数量,以用于供给增大的所述采暖负荷。
  16. 根据权利要求15所述的联供系统的控制方法,其中,所述联供系统还包括第二热源,若所述减少用于供给所述热水负荷的所述第一子热源的运行数量的步骤被执行,则运行所述第二热源,以供给所述热水负荷;
    或者,若所述减少用于供给所述采暖负荷的所述第一子热源的运行数量的步骤被执 行,则运行所述第二热源,以供给所述采暖负荷。
  17. 一种联供系统的控制器,其中,所述联供系统的控制器执行如权利要求1至16中任一所述的联供系统的控制方法。
  18. 一种联供系统,其中,所述联供系统包括:如权利要求17中所述的联供系统的控制器;第一热源;分别能与所述第一热源连通的第一流道和第二流道;
    第一流量控制装置,用于控制所述第一热源的流体分流至第一流道和第二流道的流量,所述第一流道和所述第二流道分别用于为第一末端和第二末端提供热量,所述第一末端用于供给热水负荷,所述第二末端用于供给采暖负荷。
  19. 根据权利要求18所述的联供系统,其中,所述第一热源包括多个第一子热源,多个所述第一子热源并联连接,所述第一流量控制装置包括多个第一子流量控制装置,所述第一流道包括多个第一子流道,所述第二流道包括多个第二子流道,所述第一子流量控制装置用于控制相对应的所述第一子热源的流体分流至相对应的所述第一子流道和所述第二子流道的流量。
  20. 根据权利要求18或19所述的联供系统,其中,所述联供系统还包括:第二热源;分别能与所述第二热源连通的第三流道和第四流道;
    第二流量控制装置,用于控制所述第二热源的流体分流至第三流道和第四流道的流量,所述第三流道和所述第四流道分别用于为所述第一末端和所述第二末端提供热量。
  21. 根据权利要求20所述的联供系统,其中,所述第二热源包括多个第二子热源,所述多个第二子热源并联连接,所述第二流量控制装置包括多个第二子流量控制装置,所述第三流道包括多个第三子流道,所述第四流道包括多个第四子流道,所述第二子流量控制装置用于控制相对应的所述第二子热源的流体分流至相对应的所述第三子流道和所述第四子流道的流量。
  22. 根据权利要求20所述的联供系统,其中,所述第二流道和所述第四流道的出口用于与所述第二末端相连通。
  23. 根据权利要求20所述的联供系统,其中,所述联供系统还包括:具有第一换热流道和第二换热流道的第一换热装置,所述第二流道包括所述第二换热流道,所述第四流道包括所述第一换热流道,所述第二流道用于与所述第二末端相连通。
  24. 根据权利要求23所述的联供系统,其中,所述第一换热装置包括板式换热器。
  25. 根据权利要求20所述的联供系统,其中,所述第一流道和所述第三流道的出口用于与所述第一末端相连通。
  26. 根据权利要求20所述的联供系统,其中,所述联供系统还包括具有第三换热流道的第二换热装置,所述第一流道用于与所述第三换热流道相连通,
    或者,所述联供系统还包括具有第四换热流道的第三换热装置,所述第三流道用于与所述第四换热流道相连通。
  27. 根据权利要求20所述的联供系统,其中,所述联供系统还包括具有第三换热流道和第四换热流道的第二换热装置;所述第一流道用于与所述第三换热流道相连通;所述第三流道用于与所述第三换热流道相连通。
  28. 根据权利要求20所述的联供系统,其中,所述联供系统还包括具有第三换热流道的第二换热装置和具有第四换热流道的第三换热装置,所述第三换热装置与所述第二换热装置相连通;所述第一流道用于与所述第三换热流道相连通;所述第三流道用于与所述第四换热流道相连通。
  29. 根据权利要求28所述的联供系统,其中,所述第二换热装置具有用于存储水的第一储水腔;所述第三换热装置具有用于存储水的第二储水腔,所述第一储水腔与所述第二储水腔相连通;所述第三换热流道能与所述第一储水腔中的存储水进行换热;所述第四换热流道能与所述第二储水腔中的存储水进行换热;
    所述第二换热装置的与所述第一储水腔相连通的出水口能与所述第三换热装置的与所述第二储水腔相连通的进水口相连通;
    所述第二换热装置的与所述第一储水腔相连通的进水口用于与水源相连通;
    所述第三换热装置的与所述第二储水腔相连通的出水口用于供给热水。
  30. 根据权利要求19所述的联供系统,其中,在若存在未运行的所述第一子热源,则开启至少部分未运行的所述第一子热源,并使新开启的所述第一子热源用于在使所述热水负荷被满足的基础上,供给所述采暖负荷或者在使所述采暖负荷被满足的基础上,供给所述热水负荷的步骤下,
    所述第一子流量控制装置包括分别设置在第一子流道和第二子流道上的开关阀或设置在第一子流道和第二子流道连通处的三通阀。
  31. 根据权利要求30所述的联供系统,其中,在使新开启的所述第一子热源用于在使所述热水负荷被满足的基础上,供给所述采暖负荷的步骤中,将新开启的所述第一子热源相对应的所述第二子流道上的开闭阀开启,新开启的所述第一子热源相对应的所述第一子流道上的开闭阀关闭;或者,将新开启的所述第一子热源相对应的所述三通阀切换至使所述第二子流道与所述第一子热源连通且使所述第一子流道与所述第一子热源 断开的位置。
  32. 根据权利要求30所述的联供系统,其中,使新开启的所述第一子热源用于在使所述采暖负荷被满足的基础上,供给所述热水负荷的步骤中,将新开启的所述第一子热源相对应的所述第一子流道上的开闭阀开启,新开启的所述第一子热源相对应的所述第二子流道上的开闭阀关闭;或者,将新开启的所述第一子热源相对应的所述三通阀切换至使所述第一子流道与所述第一子热源连通且所述第二子流道与所述第一子热源断开的位置。
  33. 根据权利要求21所述的联供系统,其中,所述第二子流量控制装置包括分别设置在第三子流道和第四子流道上的开关阀或设置在第三子流道和第四子流道连通处的三通阀。
  34. 根据权利要求18所述的联供系统,其中,所述第二末端至少包括以下之一:风盘、地暖、暖气片、墙内换热设备。
  35. 根据权利要求20所述的联供系统,其中,所述第一热源包括热泵或燃气热水器或电热水器,所述第二热源包括燃气热水器或电热水器或热泵。
  36. 根据权利要求20所述的联供系统,其中,所述控制器用于与所述第一热源、所述第二热源通过电力线载波通信或串行通信。
  37. 根据权利要求36所述的联供系统,其中,所述控制器还用于与所述第一流量控制装置、所述第二流量控制装置通过电力线载波通信或串行通信。
PCT/CN2023/088603 2022-04-25 2023-04-17 联供系统及其控制器和控制方法 WO2023207648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210439954.7 2022-04-25
CN202210439954.7A CN116989375A (zh) 2022-04-25 2022-04-25 联供系统及其控制器和控制方法

Publications (1)

Publication Number Publication Date
WO2023207648A1 true WO2023207648A1 (zh) 2023-11-02

Family

ID=88517525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088603 WO2023207648A1 (zh) 2022-04-25 2023-04-17 联供系统及其控制器和控制方法

Country Status (2)

Country Link
CN (1) CN116989375A (zh)
WO (1) WO2023207648A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201652982U (zh) * 2009-04-22 2010-11-24 钱伟民 双源阶梯式热泵热水空调系统
WO2012132699A1 (ja) * 2011-03-30 2012-10-04 三菱重工業株式会社 熱源システム及び熱源システムの台数制御方法
CN203024239U (zh) * 2013-01-15 2013-06-26 北京格瑞那环能技术有限责任公司 一种采暖热水系统
WO2015104815A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 空調給湯複合システム
CN113757772A (zh) * 2021-09-22 2021-12-07 孟伟 一种多热源互补供热系统及方法
CN114294706A (zh) * 2021-11-17 2022-04-08 芜湖美的厨卫电器制造有限公司 多机并联供暖供水系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201652982U (zh) * 2009-04-22 2010-11-24 钱伟民 双源阶梯式热泵热水空调系统
WO2012132699A1 (ja) * 2011-03-30 2012-10-04 三菱重工業株式会社 熱源システム及び熱源システムの台数制御方法
CN203024239U (zh) * 2013-01-15 2013-06-26 北京格瑞那环能技术有限责任公司 一种采暖热水系统
WO2015104815A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 空調給湯複合システム
CN113757772A (zh) * 2021-09-22 2021-12-07 孟伟 一种多热源互补供热系统及方法
CN114294706A (zh) * 2021-11-17 2022-04-08 芜湖美的厨卫电器制造有限公司 多机并联供暖供水系统

Also Published As

Publication number Publication date
CN116989375A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN109523137B (zh) 考虑楼宇热负荷需求响应的园区综合能源优化调度方法
WO2018130231A1 (zh) 一种基于热网和房屋热惯性的综合能源系统优化方法
JP7019614B2 (ja) 複合加熱冷却システム
CN110500778B (zh) 一种热泵热水器及其控制方法
CN103542614A (zh) 供热制冷系统
WO2023207648A1 (zh) 联供系统及其控制器和控制方法
CN108592140B (zh) 降低供热管路回水温度的系统
CN111219767A (zh) 一种考虑热负荷需求响应的电—气—热综合能源系统调控方法
CN115507405B (zh) 一种区域能源系统及运行方式
CN208690301U (zh) 冷热电三联供器件及系统
CN215637504U (zh) 一种热泵系统
CN217178684U (zh) 联供系统
CN111829047B (zh) 双水箱固体显热蓄热供热系统及需求响应调控方法
CN114593455A (zh) 冷热能供应系统及方法
CN210861785U (zh) 一种家庭能源智能时空输配系统
CN114076415A (zh) 一种高效即热式太阳能热水器
CN211854375U (zh) 一种空调制冷与热水器即热储水加热控制装置
CN113970122A (zh) 一种地暖热水两联供系统及控制方法
CN221301640U (zh) 一种通过智能控制实现高效节能的热泵设备
CN110553419A (zh) 一种家庭能源智能时空输配系统
CN218379554U (zh) 一种绿色智慧工业园区供热供冷系统
CN215723773U (zh) 供需融合的共享型建筑群区域能源控制系统
CN219550645U (zh) 冷热联供机组
CN212511813U (zh) 具有混合加热动力的油田相变加热炉
CN219572068U (zh) 一种氢燃料电池系统并联用热循环调节五通管网结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795081

Country of ref document: EP

Kind code of ref document: A1