WO2023207518A1 - 信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质 - Google Patents

信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质 Download PDF

Info

Publication number
WO2023207518A1
WO2023207518A1 PCT/CN2023/085711 CN2023085711W WO2023207518A1 WO 2023207518 A1 WO2023207518 A1 WO 2023207518A1 CN 2023085711 W CN2023085711 W CN 2023085711W WO 2023207518 A1 WO2023207518 A1 WO 2023207518A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
state information
reference signal
precoding matrix
information reference
Prior art date
Application number
PCT/CN2023/085711
Other languages
English (en)
French (fr)
Inventor
李永
李伦
郑国增
王瑜新
刘文丰
鲁照华
肖华华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023207518A1 publication Critical patent/WO2023207518A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of wireless communication technology, for example, to a channel state information report, a receiving method, a terminal, a base station and a storage medium.
  • Wireless communication technology has developed to the fifth generation of communication technology.
  • Long Term Evolution (LTE) in the fourth generation of communication technology and New Radio (NR) in the fifth generation of wireless communication technology are both Based on Orthogonal Frequency Division Multiplexing (OFDM) technology, the smallest frequency domain unit in OFDM technology is a subcarrier, and the smallest time domain unit is an OFDM symbol;
  • resource blocks are defined (Resource Block, RB), a resource block is defined as a specific number of continuous subcarriers; a bandwidth part (Bandwidth part, BWP) is also defined, a bandwidth part is defined as a specific number of continuous resource blocks on a carrier; for convenience of use
  • Time domain resources define time slots, and a time slot is defined as a specific number of consecutive OFDM symbols.
  • channel state information is obtained and utilized in the wireless communication system.
  • the efficiency and accuracy of obtaining the channel state information directly affect the transmission efficiency in the wireless communication system.
  • multi-antenna technology is usually used to transmit data in wireless communication systems.
  • Reference signals of multiple antenna ports are sent on resources carrying reference signals.
  • the resource overhead of the signal increases, thereby reducing the resources used to transmit data, resulting in a reduction in the data transmission efficiency of the wireless system.
  • the terminal needs to feedback high-precision channel state information, which inevitably requires a large amount of uplink resource overhead and increases the burden on uplink resources.
  • the development of wireless communication technology requires optimizing the method of obtaining channel status information to improve the accuracy of channel status information and reduce the resource overhead used to obtain channel status information.
  • the main purpose of the embodiments of this application is to propose a channel status information reporting method, a channel status information receiving method, a terminal, a base station and a storage medium, so as to at least solve the problem of excessive channel status information resource occupancy and improve the channel status information. Accuracy, reducing resource overhead for obtaining channel status information, and improving data transmission efficiency.
  • This embodiment of the present application provides a channel state information reporting method, which method includes:
  • An embodiment of the present application also provides a method for receiving channel state information, which method includes:
  • Send configuration information of a channel state information reference signal and configuration information of a reported channel state information send a channel state information reference signal according to the configuration information of the channel state information reference signal; receive configuration information based on the reported channel state information and the configuration information based on the reported channel state information.
  • the channel state information refers to the channel state information of the measurement report of the reference signal.
  • An embodiment of the present application also provides a terminal, which includes:
  • One or more processors used to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the application as described in this application.
  • An embodiment of the present application also provides a base station, which includes:
  • One or more processors used to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the application as described in this application.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores one or more programs, and the one or more programs are executed by one or more processors to implement the implementation of the present application.
  • Figure 1 is a flow chart of a channel state information reporting method provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a method for receiving channel state information provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a channel state information reporting device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a channel state information receiving device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • the acquisition and utilization of channel state information in wireless communication systems includes the following methods:
  • the base station sends a reference signal; the terminal measures the reference signal, determines the channel status information from the base station to the terminal, and reports the channel status information to the base station; the base station receives the channel status information reported by the terminal.
  • the base station determines the data transmission strategy based on the channel state represented by the received channel state information and transmits the data, thereby improving the efficiency of data transmission.
  • the accuracy of the channel status represented by the channel status information affects the transmission strategy of the base station, thereby affecting the efficiency of data transmission.
  • the reference signal sent by the base station to the terminal is the downlink reference signal;
  • the downlink reference signal used for channel state information reporting in the LTE system includes cell-specific reference signal (CRS, Cell-specific Reference Signal), channel state information reference signal (Channel-State Information Reference Signal, CSI-RS);
  • the downlink reference signal used for channel state information reporting in the NR system includes the channel state information reference signal.
  • the channel state information reference signal (CSI-RS) is carried by the channel state information reference signal resource (CSI-RS Resource).
  • the channel state information reference signal resource is composed of a code division multiplexing group (Code Division Multiplexing group, CDM group).
  • a CDM A group is composed of wireless resource elements, on which the CSI-RS of a group of CSI-RS ports are multiplexed through code division multiplexing.
  • the content of the channel state information transmitted between the base station and the terminal includes a channel quality indicator (Channel Quality Indicator, CQI) to indicate the quality of the channel; or a precoding matrix indicator (Precoding Matrix Indicator, PMI) to indicate Precoding matrix applied to base station antenna.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • the reporting format of one type of CQI is wideband CQI reporting (wideband CQI reporting), which reports a channel quality for the channel state information reporting band (CSI reporting band), and the channel quality corresponds to the entire channel state information reporting band; the other type of CQI
  • the reporting format is subband CQI reporting (subband CQI reporting), that is, the channel status information reporting band (CSI reporting band) is given in units of subbands.
  • One channel quality corresponds to a subband, which is the channel status.
  • Each subband of the information reporting band reports a channel quality.
  • the subband is a frequency domain unit, defined as N consecutive resource blocks (RB, Resource Block), N is a positive integer; for the convenience of description, this application is called the channel quality indicator subband, or CQI subband, or Sub-band; where N is called the size of the CQI sub-band, or the CQI sub-band size, or the sub-band size.
  • the bandwidth part (BWP, Bandwidth part) is divided into sub-bands, and the channel state information reporting band (CSI reporting band) is defined by a subset of the sub-bands of the bandwidth part (BWP, Bandwidth part).
  • the channel status information reporting band (CSI reporting band) is the frequency band on which channel status information needs to be reported.
  • One way of determining the channel quality is based on the strength of the reference signal received by the terminal; another way of determining the channel quality is based on the signal-to-noise ratio of the received reference signal.
  • reporting CQI in the wideband CQI reporting mode can reduce the time required. Due to the resource overhead of CQI reporting; if the channel quality varies greatly in the frequency domain, reporting CQI in sub-band CQI reporting mode can increase the accuracy of CQI reporting.
  • the reporting format of a type of PMI is a broadband PMI report, that is, a PMI is reported for the channel state information reporting band (CSI reporting band), and the PMI corresponds to the entire channel state information reporting band.
  • Another type of PMI reporting format is subband PMI reporting, that is, reporting a PMI for each subband of the channel state information reporting frequency band, or reporting a PMI component for each subband of the channel state information reporting frequency band.
  • the PMI consists of X1 and X2.
  • One way to report a component of the PMI for each subband of the channel state information reporting band is to report an is, one X1 and one X2 are reported for each subband.
  • the reporting format of another type of PMI is: the reported PMI indicates R precoding matrices for each subband, where R is a positive integer. In the sense of the frequency domain granularity of the feedback precoding matrix, R also represents the number of precoding matrix subbands included in each subband, or the number of precoding matrix subbands included in each CQI subband.
  • Figure 1 is a flow chart of a channel state information reporting method provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the situation where a terminal reports channel state information to a base station.
  • the method can be executed by a channel state information reporting device.
  • the device is generally integrated in the terminal.
  • the method provided by the embodiment of the present application includes:
  • the configuration information of the channel state information reference signal may be information used to configure the terminal to receive the channel state information reference signal.
  • the configuration information of the channel state information reference signal may include the time-frequency resources occupied by the channel state information reference signal and the channel state information reference The number of ports for signals, etc.
  • the configuration information for reporting channel status information may be parameters that configure the content of channel status information reporting.
  • the configuration information for reporting channel status information may include channel status information quality indication, precoding matrix, precoding matrix indication, and channel coefficients. , channel coefficient indication, received power of the reference signal, codebook used by the precoding matrix, etc., and may also include a method of reporting the precoding matrix, for example, reporting the precoding matrix using artificial intelligence.
  • the terminal can receive configuration information for receiving channel state information reference signals and configuration information for reporting channel state information sent by the base station.
  • the above two configuration information can be determined by the base station.
  • the terminal may receive the channel state information reference signal according to the channel state information reference signal configuration signal.
  • the terminal may use the configuration information of the channel state information reference signal.
  • the terminal can use the first configuration information to configure appropriate time-frequency resources for the channel state information reference signal resources carrying the channel state information reference signal, or the system can use the first configuration information to configure appropriate antenna ports. number, thereby saving channel state information reference signal transmission resources.
  • the configuration information of reporting channel state information can be recorded as second configuration information, and the terminal can determine the content and granularity of reporting channel state information according to the second configuration information, thereby improving the accuracy of channel state information feedback.
  • the terminal can obtain the channel status information reference signal measurement, and report the channel status information through the measurement and the configuration parameters for reporting the channel status information, which can improve the accuracy of the channel status information feedback, thereby saving the resource occupation of channel status information transmission and improving data Transmission resource utilization.
  • the channel state information reference signal is received according to the configuration information of the channel state information reference signal, and the channel state information reference signal is received according to the configuration information of the reporting channel state information and the channel
  • the measurement of the status information reference signal is used to report the channel status information, which realizes accurate reporting of the channel status information, reduces the resource occupation of channel status information transmission, and improves the resource utilization of data transmission.
  • the channel state information includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applied is greater than the number of antenna ports of the channel state information reference signal, where the antenna ports of the channel state information reference signal and There is a corresponding relationship between the antenna ports applied by the precoding matrix, and the corresponding relationship is indicated by the configuration information.
  • the reported channel state information may include a precoding matrix, where the number of antenna ports used by the precoding matrix may be greater than the number of antenna ports of the channel state information reference signal, and the terminal may use the smaller
  • the measurement of the channel state information reference signal for the number of antenna ports estimates the precoding matrix corresponding to more antenna ports. There is no need to transmit the channel state information reference signal for the same number of antenna ports as the precoding matrix, which can reduce the channel state information. Resource occupancy for reference signal transmission.
  • the number of antenna ports for the channel state information reference signal may be indicated by the configuration information of the channel state information reference signal, and the number of antenna ports to which the precoding matrix is applicable may be indicated by the configuration information of the reporting channel state information.
  • the channel state information The number of antenna ports indicated by the configuration information of the reference signal may be smaller than the number of antenna ports indicated by the configuration information of the reporting channel state information.
  • the number of antenna ports of the precoding matrix may be indicated by additional third configuration information.
  • an antenna port of the channel state information reference signal A port may correspond to one or more antenna ports to which the precoding matrix is applicable.
  • the antenna ports used by the precoding matrix are divided into multiple groups. Each group of antenna ports of the precoding matrix can correspond to the antenna ports of the channel state information reference signal.
  • the base station or terminal can indicate a group of antenna ports of the precoding matrix.
  • the antenna ports of the channel state information reference signal can also be divided into multiple groups.
  • the correspondence can be a group of antenna ports to which the precoding matrix is applied and which group of antennas of the channel state information reference signal port to correspond.
  • the corresponding relationship can be determined by the terminal, adaptable to channel scenarios and change with time, thereby improving the accuracy of the fed back precoding matrix.
  • the corresponding relationship can be predetermined by a protocol. The manner determined by the protocol can reduce the resource overhead of negotiating the corresponding relationship between the base station and the terminal, and can reduce system complexity.
  • the corresponding relationship may be configured by the base station.
  • the way of indicating the corresponding relationship may include indicating in the form of bit mapping.
  • each bit may correspond to one of the antenna ports to which the precoding matrix is applicable, and each bit may indicate the antenna port of the channel state information reference signal to which the bit corresponds. one of the.
  • the bit mapping method may include using bits with a non-zero value as bits indicating the antenna port, or using bits with a zero value as bits indicating the antenna port.
  • the corresponding relationship indicates a way to generate the indication information of the precoding matrix.
  • the method of generating the indication information of the precoding matrix includes the terminal generating an inference model or inference model parameters for the indication information of the precoding matrix.
  • Different mapping relationships can use different inference models or inference model parameters. Different correspondences can be used to map the inference model or inference model parameters.
  • the precoding matrix or the indication information of the precoding matrix can be inferred from the measurement results of the channel state information reference signal, but based on different inference models or inference model parameters.
  • the derivation results are different, or the derivation effects are different; one inference model or inference model parameters are suitable for this correspondence, another inference model or inference model parameters are suitable for another correspondence, and another inference model Or inference model parameters apply to yet another correspondence. Therefore, using the correspondence relationship to indicate the inference model or inference model parameters can reduce the complexity of the system and reduce the resource overhead of mutual negotiation between the base station and the terminal.
  • the inference model used by the terminal is the encoding module of the autoencoder; the correspondence indicates the encoding module of the autoencoder selected by the terminal.
  • the report precoding matrix includes:
  • the precoding matrix can be indicated by the coefficients of X1 vectors. There can be multiple constituent elements in each vector. The number of constituent elements in each vector can be the number of antenna ports of the channel state information reference signal. That is, the constituent elements of each vector are equal to the number of antenna ports of the channel state information reference signal.
  • the coefficients of X1 vectors can be fed back, where X1 is an integer greater than or equal to 1.
  • the precoding matrix is reported, including:
  • the precoding matrix can be indicated by the coefficients of The constituent elements are equal to the number of antenna ports to which the precoding matrix is applicable.
  • the coefficients of X2 vectors can be fed back, where X2 is an integer greater than or equal to 1.
  • the channel state information includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is equal to the number of antenna ports of the channel state information reference signal, and the number is denoted as Nt, Where Nt is an integer greater than or equal to 1.
  • the number of antenna ports to which the precoding matrix is applied may be the same as the number of antenna ports for the channel state information reference signal, and this number may be recorded as Nt.
  • reporting the precoding matrix includes: selecting Np antenna ports from the Nt antenna ports of the channel state information reference signal, and feeding back the channel status of the Np antenna ports, Wherein, Np is an integer greater than or equal to 1, and Np is less than Nt.
  • a part of the antenna ports can be selected for feedback of channel status, where the number of selected antenna ports is smaller than the number of antenna ports to which the data of the channel status information reference signal or the precoding matrix is applied, which can be reduced.
  • the base station side can recover the channel state information of all antenna ports based on the channel state of a part of the antenna ports. It can feed back the overhead of precoding matrix information, which reduces the complexity of the system and improves the efficiency of all antenna ports. The accuracy of the precoding matrix.
  • an interpolation algorithm is used to restore the precoding matrix suitable for Nt ports; for another example, a fitting algorithm is used to restore the precoding matrix suitable for Nt ports; for another example, a maximum likelihood estimation algorithm is used to restore the precoding matrix suitable for Nt ports.
  • the method of selecting Np antenna ports from the Nt antenna ports of the channel state information reference signal instructs the base station side to restore the precoding matrix suitable for the Nt antenna ports.
  • the number of antenna ports selected by the terminal for feedback of channel status is less than the number of channel status information reference signals.
  • the precoding matrices for Nt ports have multiple candidate methods. For example, an interpolation algorithm is used to restore the precoding matrices suitable for Nt ports; another example is a fitting algorithm is used to restore all the precoding matrices suitable for Nt ports.
  • the precoding matrix is used; for another example, a maximum likelihood estimation algorithm is used to restore the precoding matrix suitable for Nt ports; for another example, a machine learning algorithm is used to restore the precoding matrix suitable for Nt ports. But which method is adopted is indicated by the terminal.
  • the terminal instructs the base station to restore the precoding matrix applicable to Nt ports by selecting a combination of Np ports from Nt ports.
  • the first combination of Np ports indicates that the first restoration is applicable to Nt ports.
  • the way of the precoding matrix, the second combination of Np ports indicates the second way of recovering the precoding matrix applicable to Nt ports.
  • the antenna port indicates the selected machine learning algorithm or module for recovering the precoding matrix applicable to Nt ports
  • the terminal indicates the selected machine learning algorithm or module for recovering the precoding matrix applicable to Np ports in a combination of Np ports
  • the precoding matrix of the port For example, the first combination of Np ports indicates that the first recovery is suitable for the machine learning algorithm or module of the precoding matrix of Nt ports, and the second combination of Np ports indicates that the second recovery is suitable for Nt ports. Port the precoding matrix to a machine learning algorithm or module.
  • feedback of the channel status of the Np antenna ports includes:
  • feedback of the channel status of Np antenna ports can be achieved by feeding back X1 vector coefficients, where the number of constituent elements of each vector can be Np, and X1 is a positive integer.
  • the base station side recovers the precoding matrix applicable to Nt ports from the coefficients of X1 vectors.
  • the antenna ports of the channel state information reference signal are divided into two parts.
  • the first part of the antenna port transmits on the channel state information reference signal resource according to non-zero power, and the second part of the antenna port transmits on the channel according to zero power.
  • Status information is transmitted on reference signal resources,
  • the antenna ports of the channel state information reference signal are divided into two parts, where the first part of the antenna port transmits on the channel state information reference signal resource with non-zero power, and the second part of the antenna port transmits on the channel state information reference signal resource with zero power. or, wherein the first part of the antenna ports transmits the channel state information reference signal on the channel state information reference signal resource, and the second part of the antenna port does not transmit the channel state information reference signal on the channel state information reference signal resource.
  • the number of antenna ports for the channel state information reference signal is Nt, where Np antenna ports Transmit on the channel state information reference signal resource with non-zero power, and the remaining Nt-Np antenna ports transmit on the channel state information reference signal resource with zero power; or Np antenna ports transmit the channel state on the channel state information reference signal resource.
  • Information reference signals, the remaining Nt-Np antenna ports do not transmit channel state information reference signals on the channel state information reference signal resources.
  • the antenna port of the channel state information reference signal includes two parts.
  • the first part of the antenna port occupies the time-frequency resource on the channel state information reference signal resource, and the second part of the antenna port occupies the channel state information reference signal resource on the channel state information reference signal resource. It does not occupy time and frequency resources.
  • the number of antenna ports for the channel state information reference signal is Nt, of which Np antenna ports occupy time-frequency resources on the channel state information reference signal resource, and the remaining Nt-Np antenna ports do not occupy the channel state information reference signal resource. Occupy time and frequency resources.
  • reporting channel status information includes:
  • a precoding matrix for which the number of applicable antenna ports is equal to the number of antennas of the channel state information reference signal is fed back.
  • the number of antenna ports of the channel state information reference signal is Nt, of which Np antenna ports occupy time-frequency resources on the channel state information reference signal resource, and the remaining Nt-Np antenna ports occupy the channel state information reference signal resource.
  • the state information reference signal resource does not occupy time-frequency resources; the terminal feeds back a precoding matrix suitable for the number of antenna ports Nt based on the measurement of the channel state information reference signal transmitted on the Np antenna port.
  • the antenna port is indicated by the base station, and the indication includes at least one of the following:
  • the index number of the first part of the antenna port is indicated by the base station; the index number of the second part of the antenna port is indicated by the base station; the mapping relationship between the first part of the antenna port and the antenna port to which the precoding matrix is applied is indicated by the base station; the second part of the antenna port The mapping relationship to the antenna ports to which the precoding matrix applies is indicated by the base station.
  • the base station indicates the index number of the first part of the antenna port, or the base station indicates the index number of the second part of the antenna port, or the base station indicates the mapping between the first part of the antenna port and the antenna port to which the precoding matrix is applied. relationship, or the base station indicates the mapping relationship between the second part of the antenna ports and the antenna ports to which the precoding matrix is applied.
  • the channel state information includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is smaller than the number of antenna ports of the channel state information reference signal.
  • the number of antenna ports of the channel state information reference signal is Np, and the number of antenna ports to which the precoding matrix is applied is Nt, where Np is greater than Nt; the terminal reports the precoding matrix.
  • Precoding of terminal reports The number of antenna ports that the matrix is applicable to is smaller than the number of antenna ports for the channel state information reference signal, thereby reducing the cost of reporting the resources used, reducing the complexity of the system, and improving the accuracy of the reported precoding matrix.
  • the antenna port to which the precoding matrix is applied is indicated by the base station in the antenna port of the channel state information reference signal.
  • the number of antenna ports to which the precoding matrix is applicable is less than the number of antenna ports of the channel state information reference signal.
  • the base station can indicate the antenna port used for the precoding matrix in the antenna port of the channel state information reference signal
  • the number of antenna ports for the channel state information reference signal is Np
  • the number of antenna ports for which the precoding matrix is applicable is Nt, where Np is greater than Nt
  • the terminal reports the precoding matrix
  • the base station obtains the Np number of antenna ports for the channel state information reference signal.
  • Nt antenna ports are indicated in the antenna ports, and the Nt antenna ports correspond to Nt antenna ports to which the precoding matrix is applied. That is, the base station flexibly arranges Nt ports among Np ports of the channel state information reference signal to correspond to the precoding matrix, thereby improving the accuracy of the precoding matrix and reducing the complexity of determining the Nt ports.
  • the antenna port to which the precoding matrix is applied is indicated by the terminal in the antenna port of the channel state information reference signal.
  • the number of antenna ports of the channel state information reference signal is Np
  • the number of antenna ports to which the precoding matrix is applied is Nt, where Np is greater than Nt
  • the terminal reports the precoding matrix
  • the terminal reports the precoding matrix from the channel state information Nt antenna ports are indicated among the Np antenna ports of the reference signal, and the Nt antenna ports correspond to the Nt antenna ports to which the precoding matrix is applied. That is, the terminal flexibly selects Nt ports among the Np ports of the channel state information reference signal according to the channel conditions to correspond to the precoding matrix, thereby improving the accuracy of the precoding matrix and reducing the complexity of determining the Nt ports.
  • the channel state information includes a precoding matrix
  • the precoding matrix is generated by mapping a vector matrix A, wherein the vector matrix A combines a first group of vectors and a second group of vectors by a first coefficient.
  • Vector formation
  • the precoding matrix can be fed back in the channel state information.
  • the precoding matrix can be generated by mapping the vector matrix A, and the coefficients of the vector matrix A can be generated by combining the first group of vectors and the second group of vectors.
  • the first group of vectors and the second group of vectors each include at least one vector, the number of component elements of the vector in the first group of vectors is equal and/or the second vector The vectors in have an equal number of elements.
  • the first group of vectors or the second group of vectors constituting the vector matrix A may respectively be composed of multiple vectors.
  • the number of component elements of the included vectors is equal. example For example, the number of constituent elements of each vector in the first group of vectors is the same, or the number of constituent elements of each vector in the second group of vectors is the same, or the number of constituent elements of each vector in the first group of vectors and the second group of vectors is the same.
  • the quantity is the same.
  • the number is determined in at least one of the following ways: indicated by the base station or selected by the terminal.
  • the number of constituent elements of each vector in the first set of vectors and/or the second set of vectors may be indicated by the base station or selected by the terminal.
  • the first set of vectors includes M1 vectors; the number of constituent elements of each vector in the first set of vectors is equal, which is K1; the base station indicates the number of constituent elements K1, where both M1 and K1 are greater than or equal to 1 integer.
  • the first group of vectors includes vector 0, vector 1, vector 2,..., vector M1-1; the number of component elements of vector 0 is K1, the number of component elements of vector 1 is K1, and the number of component elements of vector 2 is K1.
  • the number of constituent elements is K1,..., and the number of constituent elements of the vector M1-1 is K1; the number K1 of the constituent elements is indicated by the base station.
  • the way in which the base station indicates the number of component elements may be direct indication, for example, the number K1 of component elements is directly given through configuration information or signaling; it may also be indicated indirectly or implicitly.
  • M1 and K1 are positive integers.
  • the number is indicated by the base station, including: the number is a product of the second coefficient indicated by the base station and the number of antenna ports of the channel state information reference signal.
  • the base station indicates a second coefficient a, wherein the number K1 of the constituent elements of the first set of vectors is the product of the number of antenna ports of the channel state information reference signal and a; where a is a positive number.
  • the base station can adjust the number of component elements without enumerating all candidate values for the number of component elements, and establish a relationship between the number of component elements and the number of antenna ports of the channel state information reference signal, thus increasing the flexibility of the system.
  • the complexity of the system is reduced and the performance of the system is improved.
  • the first set of vectors includes M1 vectors; the number of component elements of each vector in the first set of vectors is equal, which is K1, and the terminal selects the number of component elements K1, where both M1 and K1 are greater than or An integer equal to 1.
  • the protocol presets candidate values for the number of component elements K1, and the terminal selects the number of component elements K1 from the candidate values.
  • the base station sets candidate values for the number of component elements K1, and the terminal selects the number of component elements K1 from the candidate values.
  • the protocol or the base station can explicitly set the candidate value of the number K1 of the component elements; it can also implicitly set the candidate value of the number K1 of the component elements.
  • the protocol or the base station sets a candidate value of the second coefficient a, and the terminal selects the second coefficient a from the candidate value.
  • the number of constituent elements K1 is the product of the number of antenna ports of the channel state information reference signal and the coefficient a. ; where a is a positive number.
  • the terminal selects the number K1 of the component elements, including: the terminal selects the number K1 of the component elements from the candidate values set by the base station.
  • the terminal selects the number K1 of constituent elements, including: the terminal selects the second coefficient a from candidate values of the second coefficient a, where the number K1 of constituent elements is channel state information.
  • the number of vectors in the second vector group is determined in the same manner as in the first vector group.
  • the second set of vectors includes M2 vectors; the number of constituent elements of each vector in the second set of vectors is equal, which is K2; and the base station indicates the number of constituent elements K2.
  • the second set of vectors includes vector 0, vector 1, vector 2,..., vector M2-1; the number of component elements of vector 0 is K2, the number of component elements of vector 1 is K2, and the number of component elements of vector 2
  • the number of is K2,..., and the number of component elements of the vector M2-1 is K2; the number K2 of the component elements is indicated by the base station.
  • the way in which the base station indicates the number of component elements may be direct indication, for example, the number K2 of component elements is directly given through configuration information or signaling; it may also be indicated indirectly or implicitly.
  • M2 and K2 are positive integers.
  • the base station indicates the number K2 of the component elements of the second group of vectors, including: the base station indicates the third coefficient b, where the number K2 of the component elements of the second group of vectors is the number of precoding matrices and The product of the coefficient b; where b is a positive number.
  • the base station can adjust the number of component elements without enumerating all candidate values for the number of component elements, and establish a relationship between the number of component elements and the number of precoding matrices, thus increasing the flexibility of the system and reducing the risk of Reduces system complexity and improves system performance.
  • the second group of vectors includes M2 vectors; the number of component elements of the second vector in the second group of vectors is K2, and the terminal selects the number K2 of the component elements.
  • the protocol presets candidate values for the number of component elements K2, and the terminal selects the number of component elements K2 from the candidate values.
  • the base station sets candidate values for the number of component elements K2, and the terminal selects the number of component elements K2 from the candidate values.
  • the protocol or the base station can explicitly set the candidate value of the number K2 of the component elements; it can also implicitly set the candidate value of the number K2 of the component elements.
  • the protocol or the base station sets a candidate value of the third coefficient b, and the terminal selects the third coefficient b from the candidate value.
  • the number of constituent elements K2 is the product of the number of precoding matrices and the coefficient b; where b is positive number.
  • the terminal selects the number K2 of the component elements, including: the terminal selects the number K2 of the component elements from the candidate values set by the base station.
  • the terminal selects the number K2 of constituent elements, including: the terminal selects the third coefficient b from candidate values of the third coefficient b, where the number K2 of constituent elements is a precoding matrix The product of the number and the coefficient b; where b is a positive number.
  • mapping relationship between the component elements of each vector of the first group of vectors and the antenna ports of the channel state information reference signal, and the mapping relationship is determined by at least one of the following methods :
  • mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; and the mapping relationship is set by the protocol.
  • the first group of vectors includes M1 vectors; the number of component elements of the first vector in the first group of vectors is K1; the relationship between the component elements of the first vector and the antenna port of the channel state information reference signal is There is a mapping relationship between them, and the mapping relationship is determined by one of the following methods:
  • mapping relationship between the component elements of the first vector and the antenna port of the channel state information reference signal is indicated by the base station; 2) The mapping relationship between the component elements of the first vector and the antenna port of the channel state information reference signal is determined by the terminal Selection; 3) The mapping relationship between the component elements of the first vector and the antenna port of the channel state information reference signal is set by the protocol;
  • the base station configures candidate mapping relationships, selects a mapping relationship between a component element of the first vector and the antenna port of the channel state information reference signal for the terminal, and indicates the mapping relationship to the terminal.
  • the protocol configures candidate mapping relationships, selects a mapping relationship between a component element of the first vector and the antenna port of the channel state information reference signal for the terminal, and indicates it to the terminal.
  • the base station configures a candidate mapping relationship
  • the terminal selects a mapping relationship between a component element of the first vector and the antenna port of the channel state information reference signal from the candidate mapping relationship.
  • the protocol configures candidate mapping relationships, and the terminal selects a mapping relationship between a component element of the first vector and the antenna port of the channel state information reference signal from the candidate mapping relationships, and indicates it to the base station.
  • the base station selects a mapping relationship between the component elements of the first vector and the antenna port of the channel state information reference signal for the terminal from the candidate mapping relationship, and indicates it to the terminal.
  • the terminal selects a mapping relationship between a component element of the first vector and the antenna port of the channel state information reference signal from the candidate mapping relationships, and indicates it to the base station.
  • mapping relationship between the first set of vectors and the precoding matrix can also be applied to the second set of vectors.
  • the component elements of each vector of the second group of vectors are the same as the predetermined
  • the second group of vectors includes M2 vectors; the number of component elements of the second vector in the second group of vectors is K2; the component elements of the second vector are related to the index number of the precoding matrix or the precoding
  • mapping relationship is indicated by the base station; 2) The mapping relationship is selected by the terminal; 3) It is set by the protocol.
  • the base station configures candidate mapping relationships, selects a mapping relationship for the terminal from the candidate mapping relationships, and indicates it to the terminal.
  • the protocol configures candidate mapping relationships, selects a mapping relationship for the terminal from the candidate mapping relationships, and indicates it to the terminal.
  • the base station configures candidate mapping relationships, and the terminal selects a mapping relationship from the candidate mapping relationships.
  • the protocol configures candidate mapping relationships, and the terminal selects a mapping relationship from the candidate mapping relationships and indicates it to the base station.
  • the base station selects a mapping relationship for the terminal from the candidate mapping relationships, and indicates it to the terminal.
  • the terminal selects a mapping relationship from the candidate mapping relationships and indicates it to the base station.
  • the number of constituent elements of each vector in the first group of vectors is determined by the number of antenna ports of the channel state information reference signal, and the number of constituent elements of each vector in the second group of vectors is determined by The number of precoding matrices is determined.
  • the precoding matrix is mapped from the matrix A; where the matrix A is formed by combining the first set of vectors and the second set of vectors with the first coefficients; where the number K1 of the component elements of the vectors in the first set of vectors is based on the channel state information reference signal
  • the number of antenna ports is determined, and the number K2 of the component elements of the vectors in the second group of vectors is determined according to the number of the precoding matrices.
  • reporting the precoding matrix includes:
  • the first coefficient is the coefficient of the example matrix A, and the first partial coefficient is a part of the first coefficient.
  • the first partial coefficient may have a corresponding relationship with the first set of vectors or the second set of vectors. system, for example, the corresponding relationship between the first part of the coefficients and the first group of vectors may include at least one of the following:
  • the first partial coefficient is the coefficient of the vector with an odd index number in the first group of vectors; 2) The first partial coefficient is the coefficient of the vector with an even index number in the first group of vectors; 3) Described
  • the first part of the coefficients is divided into a first group of coefficients and a second group of coefficients.
  • the first group of coefficients are the coefficients of the vectors with odd index numbers in the first group of vectors, and the second group of coefficients are the coefficients of the first group of vectors with even index numbers.
  • the coefficients of the vector wherein the index number of the odd number corresponding to the first set of coefficients is greater than the index number of the even number corresponding to the second set of coefficients; or the index number of the odd number corresponding to the first set of coefficients The index number is smaller than the even number corresponding to the second set of coefficients; 4)
  • the first part of the coefficients are coefficients with the following characteristics: in increasing order of index numbers, one index number in every N1 index numbers corresponds to the second The coefficients of the vectors in the group of vectors; where N1 is an integer greater than 1; 5)
  • the base station indicates the starting index number of the vector in the first group of vectors corresponding to the first part of the coefficients; 6)
  • the terminal feeds back the first group of vectors corresponding to the first part of the coefficients The starting index number of the vector in the vector; 7)
  • the base station determines the number of vectors corresponding to the first part of the coefficient in the first group of vectors, and the terminal determines the starting index number of
  • the base station determines the offset of the adjacent index numbers of the vector corresponding to the first part of the coefficient in the first group of vectors, and the terminal determines the starting index number of the corresponding vector; 14) the base station determines the The starting index number of the vector corresponding to the first part of the coefficients in the first group of vectors, and the terminal determines the number of the corresponding vectors; 15) The base station determines the number of vectors corresponding to the first part of the coefficients in the first group of vectors, and the terminal determines The offset of the adjacent index numbers of the corresponding vector; 16) The base station determines the offset of the adjacent index numbers of the vector corresponding to the first part of the coefficients in the first group of vectors, and the terminal determines the number of the corresponding vectors.
  • the relationship between the first part of the coefficients and the second set of vectors may include at least one of the following:
  • the first part of the coefficient is the coefficient of the vector with an odd index number in the second group of vectors; 2) The first part of the coefficient is the coefficient of the vector with an even index in the second group of vectors; 3) The The first part of the coefficients is divided into a first group of coefficients and a second group of coefficients.
  • the first group of coefficients are the coefficients of the vectors with odd index numbers in the second group of vectors, and the second group of coefficients are the coefficients of the second group of vectors with even index numbers.
  • the coefficients of the vector wherein the index number of the odd number corresponding to the first set of coefficients is greater than the index number of the even number corresponding to the second set of coefficients; or the index number of the odd number corresponding to the first set of coefficients The number is smaller than the index number of the even number corresponding to the second set of coefficients; 4)
  • the first part of the coefficients are coefficients with the following characteristics: According to the increasing order of index numbers, one index number in every N1 index numbers corresponds to the coefficient of the vector in the second group of vectors; where N1 is an integer greater than 1; 5)
  • the base station indicates that the first group of vectors corresponding to the first part of the coefficient The starting index number of the vector; 6)
  • the terminal feeds back the starting index number of the vector in the first set of vectors corresponding to the first part of the coefficient; 7)
  • the base station determines the number of vectors corresponding to the first part of the coefficient in the second set of vectors, The terminal determines the starting index number of the corresponding
  • the base station determines the offset of the number of vectors corresponding to the first part of the coefficients in the second group of vectors and the adjacent index numbers of the corresponding vectors, and the terminal determines the starting index of the corresponding vectors 10) The base station determines the starting index number of the vector corresponding to the first part of the coefficient in the second group of vectors, and the terminal determines the number of the corresponding vectors; 11) The base station determines the starting index number of the vector corresponding to the first part of the coefficient in the second group of vectors The starting index number of the vector, the terminal determines the number of the corresponding vector and the offset of the adjacent index number of the corresponding vector; 12) The base station determines the starting index of the vector corresponding to the first part of the coefficient in the second group of vectors The terminal determines the number of the corresponding vectors based on the offset between the initial index number and the adjacent index number of the corresponding vector; 13) the base station determines the adjacent index number of the vector corresponding to the first part
  • the terminal determines the starting index number of the corresponding vector; 14) the base station determines the starting index number of the vector corresponding to the first part of the coefficient in the second group of vectors, and the terminal determines the number of the corresponding vector; 15) The base station determines the number of vectors corresponding to the first part of the coefficients in the second group of vectors, and the terminal determines the offset of the adjacent index numbers of the corresponding vectors; 16) The base station determines the vector corresponding to the first part of the coefficients in the second group of vectors The terminal determines the number of corresponding vectors based on the offset of adjacent index numbers.
  • the channel state information includes a precoding matrix. Accordingly, reporting the precoding matrix includes:
  • the first part of the coefficients among the first coefficients constituting the precoding matrix can be reported, thereby realizing the feedback of the precoding matrix.
  • the reported first part of the coefficients can be divided into P groups by dividing the first coefficients into one of them.
  • a group or multiple groups of coefficients serve as the first part of the coefficients, and the first part of the coefficients can be fed back, where P is a positive integer.
  • the first part of the coefficients is indicated by the base station or the terminal in groups, and the indication includes: indicating that the first part of the coefficients correspond to the index number of the group.
  • the first coefficient may be divided into multiple groups of coefficients, and the base station or terminal may indicate the index number of each group of coefficients that constitute the first part of the coefficients, thereby determining the first part of the coefficients.
  • the first part of the coefficients is indicated by the base station or the terminal in groups, and the indication includes: indicating the number of the groups in the first part of the coefficients.
  • the first coefficient is divided into a plurality of groups of coefficients, and the base station or the terminal may indicate the number of groups constituting the first part of the coefficients, thereby determining the first part of the coefficients.
  • Figure 2 is a flow chart of a channel state information receiving method provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the situation where a base station receives channel state information reported by a terminal.
  • This method can be executed by a channel state information receiving device.
  • This device is generally integrated in the base station.
  • the method provided by the embodiment of the present application includes:
  • the base station can send channel state information reference signal configuration information to configure the terminal to receive the channel state information reference signal.
  • the base station can also send configuration information for receiving report channel state information to configure the terminal. Feedback the content of channel status information.
  • the base station may send configuration information that configures the channel state information reference signal of the terminal, so that the terminal can receive the channel state information reference signal according to the configuration information.
  • the configuration information of the channel state information reference signal may be recorded as the first configuration information, and the terminal
  • the first configuration information can be used to configure appropriate time-frequency resources for the channel state information reference signal resources carrying the channel state information reference signal, or the system can use the first configuration information to configure an appropriate number of antenna ports, thereby realizing the channel state information reference signal. Saving of signal transmission resources.
  • the configuration information of reporting channel state information can be recorded as second configuration information, and the terminal can determine the content and granularity of reporting channel state information according to the second configuration information, thereby improving the accuracy of channel state information feedback.
  • the base station may receive the channel state information reported by the terminal based on the configuration information reporting the channel state information and the measurement report based on the channel state information reference signal.
  • the channel state information reference signal is sent according to the configuration information of the channel state information reference signal, and the configuration information according to the reporting channel state information is received.
  • the channel status information reference signal is measured to report the channel status information, which realizes accurate reporting of the channel status information, reduces the resource occupation of the channel status information transmission, and improves the resource utilization of data transmission.
  • the channel state information includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is greater than the number of antenna ports of the channel state information reference signal, wherein the channel state information There is a corresponding relationship between the antenna port of the reference signal and the antenna port to which the precoding matrix is applied, and the corresponding relationship is indicated by the configuration information.
  • the corresponding relationship indicates a way to generate the indication information of the precoding matrix.
  • the precoding matrix of the received report includes:
  • Receive coefficients of X1 vectors fed back where the number of constituent elements of the vector is the number of antenna ports of the channel state information reference signal, where X1 is an integer greater than or equal to 1, and the X1
  • the coefficients of the vector indicate the precoding matrix.
  • receiving the precoding matrix in the report includes:
  • Receive feedback coefficients of The coefficients of the vector indicate the precoding matrix.
  • the channel state information includes a precoding matrix.
  • the number of antenna ports to which the precoding matrix is applied is equal to the number of antenna ports of the channel state information reference signal.
  • the number is recorded as Nt, Where Nt is an integer greater than or equal to 1.
  • receiving the precoding matrix in the report includes:
  • the method further includes: recovering a precoding matrix suitable for Nt antenna ports based on the channel status of each Np antenna port.
  • receiving feedback on the channel status of the Np antenna ports includes:
  • Receive feedback coefficients of X1 vectors where the number of constituent elements of the vector is Np and X1 is a positive integer.
  • the antenna port of the channel state information reference signal includes two parts.
  • the first part of the antenna port transmits on the channel state information reference signal resource according to non-zero power
  • the second part of the antenna port transmits on the channel state information reference signal resource according to zero power.
  • Information is transmitted on reference signal resources.
  • the antenna port of the channel state information reference signal includes two parts.
  • the first part of the antenna port occupies time-frequency resources on the channel state information reference signal resource, and the second part of the antenna port occupies the channel state information reference signal resource. It does not occupy time and frequency resources.
  • receiving reported channel state information includes:
  • Receive based on the measurement of the channel state information reference signal transmitted from the first part of the antenna port, feedback that the number of applicable antenna ports is equal to the number of antennas of the channel state information reference signal. precoding matrix.
  • the indication of the antenna port includes at least one of the following:
  • the channel state information includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is smaller than the number of antenna ports of the channel state information reference signal.
  • the antenna port to which the precoding matrix is applied is indicated in the antenna port of the channel state information reference signal.
  • the antenna port to which the precoding matrix is applied is indicated by the terminal in the antenna port of the channel state information reference signal.
  • the channel state information includes a precoding matrix, and the precoding matrix is generated by mapping a vector matrix A, wherein the vector matrix A combines the first group of vectors and the second group of vectors by the first coefficient. form.
  • the first group of vectors and the second group of vectors each include at least one vector, the number of component elements of the vector in the first group of vectors is equal and/or the second vector The vectors in have an equal number of elements.
  • the number is determined in at least one of the following ways: indicated by the base station or selected by the terminal.
  • the indicated numbers include:
  • the product of the indicated second coefficient and the number of antenna ports of the channel state information reference signal is the number.
  • the number is indicated by the terminal and includes at least one of the following:
  • the number is a value selected from the candidate values set by the base station according to the terminal instruction; the number is the product of the third coefficient indicated by the terminal and the number of antenna ports of the channel state information reference signal.
  • mapping relationship between the component elements of each vector of the first group of vectors and the antenna ports of the channel state information reference signal, and the mapping relationship is determined by at least one of the following methods :
  • the mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; the mapping relationship is set by the protocol.
  • mapping relationship between the component elements of each vector of the second group of vectors and the index number of the precoding matrix or the frequency domain unit to which the precoding matrix is applicable.
  • the mapping relationship is as follows: At least one of the above methods determines: the mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; and the mapping relationship is set by a protocol.
  • the number of constituent elements of each vector in the first group of vectors is determined by the number of antenna ports of the channel state information reference signal, and the number of constituent elements of each vector in the second group of vectors is determined by The number of precoding matrices is determined.
  • the precoding matrix of the received report includes:
  • the precoding matrix of the received report includes:
  • the first part of the coefficients is indicated by the base station or the terminal in groups, and the indication includes: indicating that the first part of the coefficients correspond to the number of the groups.
  • the first part of the coefficients is indicated by the base station or the terminal in groups, and the indication includes: indicating that the first part of the coefficients correspond to the index number of the group.
  • Figure 3 is a schematic structural diagram of a channel state information reporting device provided by an embodiment of the present application.
  • the device can execute the channel state information reporting method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the device may be implemented by software and/or hardware.
  • the device provided by the embodiment of the present application includes:
  • the configuration receiving module 301 is configured to obtain the configuration information of the channel state information reference signal and the configuration information of the report channel state information.
  • the signal receiving module 302 is configured to receive a channel state information reference signal according to the configuration information of the channel state information reference signal.
  • the status reporting module 303 is configured to report channel status information based on the configuration information for reporting channel status information and measurement based on the channel status information reference signal.
  • the configuration information of the channel state information reference signal and the configuration information of the report channel state information are obtained through the configuration receiving module 301.
  • the signal receiving module 302 receives the channel state information reference signal according to the configuration information of the channel state information reference signal, and the status report Module 303 reports channel state information according to the configuration information of the reported channel state information and the measurement of the channel state information reference signal, realizing accurate reporting of channel state information and reducing the resource occupation of channel state information transmission. It can improve the resource utilization of data transmission.
  • the channel state information in the device includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is greater than the number of antenna ports of the channel state information reference signal, wherein the channel There is a corresponding relationship between the antenna port of the status information reference signal and the antenna port to which the precoding matrix is applied, and the corresponding relationship is indicated by the configuration information.
  • the corresponding relationship in the device indicates a way to generate the indication information of the precoding matrix.
  • the precoding reporting unit in the status reporting module 303 is used to feed back the coefficients of X1 vectors, where the number of constituent elements of the vector is the number of antenna ports of the channel status information reference signal. number, wherein X1 is an integer greater than or equal to 1, and the coefficients of the X1 vectors indicate the precoding matrix.
  • the precoding reporting unit in the status reporting module 303 is used to feed back the coefficients of X2 vectors, where the number of constituent elements of the vector is the number of antenna ports to which the precoding matrix is applied number, wherein X2 is an integer greater than or equal to 1, and the coefficients of the X2 vectors indicate the precoding matrix.
  • the channel state information in the device includes a precoding matrix.
  • the number of antenna ports to which the precoding matrix is applicable is equal to the number of antenna ports of the channel state information reference signal.
  • the number is recorded as Nt, where Nt is an integer greater than or equal to 1.
  • the precoding reporting unit in the status reporting module 303 is used to select Np antenna ports from the Nt antenna ports of the channel state information reference signal, and feed back the Np antenna ports.
  • Channel status where Np is an integer greater than or equal to 1, and Np is less than Nt.
  • the device selects Np antenna ports from the Nt antenna ports of the channel state information reference signal and instructs the base station side to restore the precoding matrix suitable for the Nt antenna ports.
  • the precoding reporting unit in the status reporting module 303 is used to feed back the coefficients of X1 vectors, where the number of constituent elements of the vector is Np and X1 is a positive integer.
  • the antenna port of the channel state information reference signal in the device includes two parts.
  • the first part of the antenna port transmits on the channel state information reference signal resource according to non-zero power
  • the second part of the antenna port transmits on the channel state information reference signal resource according to zero power.
  • Channel state information is transmitted on reference signal resources.
  • the antenna port of the channel state information reference signal in the device includes two parts.
  • the first part of the antenna port occupies the time-frequency resource on the channel state information reference signal resource, and the second part of the antenna port occupies the channel state information reference signal resource.
  • Signal resources do not occupy time-frequency resources.
  • the precoding reporting unit in the status reporting module 303 is used to feedback that the number of applicable antenna ports is equal to the number of applicable antenna ports based on the measurement of the channel state information reference signal transmitted by the first part of the antenna port.
  • the channel state information reference signal is a precoding matrix for the number of antennas.
  • the antenna port in the device is indicated by the base station, and the indication includes at least one of the following:
  • the index number of the first part of the antenna port is indicated by the base station; the index number of the second part of the antenna port is indicated by the base station; the mapping relationship between the first part of the antenna port and the antenna port to which the precoding matrix is applied is indicated by the base station ; The mapping relationship between the second part of the antenna ports and the antenna ports to which the precoding matrix is applied is indicated by the base station.
  • the channel state information in the device includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is smaller than the number of antenna ports for the channel state information reference signal.
  • the antenna port to which the precoding matrix in the device is applied is indicated by the base station in the antenna port of the channel state information reference signal.
  • the antenna port to which the precoding matrix in the device is applicable is indicated by the terminal in the antenna port of the channel state information reference signal.
  • the channel state information in the device includes a precoding matrix, and the precoding matrix is generated by mapping a vector matrix A, wherein the vector matrix A is composed of a first coefficient that combines the first group of vectors and the second Group vector formation.
  • the first group of vectors and the second group of vectors in the device each include at least one vector, the number of constituent elements of the vector in the first group of vectors is equal and/or the The number of constituent elements of the vectors in the two vectors is equal.
  • the number in the device is determined by at least one of the following methods:
  • the number of devices is indicated by the base station, including:
  • the number is the product of the second coefficient indicated by the base station and the number of antenna ports of the channel state information reference signal.
  • the number of devices is indicated by the terminal and includes at least one of the following:
  • the number is a value selected from the candidate values set by the base station according to the terminal instruction; the number is the product of the third coefficient indicated by the terminal and the number of antenna ports of the channel state information reference signal.
  • mapping relationship between the component elements of each vector of a set of vectors in the device and the antenna ports of the channel state information reference signal, and the mapping relationship is determined by at least one of the following methods: Sure:
  • mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; and the mapping relationship is set by the protocol.
  • mapping relationship between the component elements of each vector of the second group of vectors and the index number of the precoding matrix or the frequency domain unit to which the precoding matrix is applicable.
  • the mapping relationship is as follows: determined by at least one of the above methods:
  • mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; and the mapping relationship is set by the protocol.
  • the number of constituent elements of each vector in the first group of vectors is determined by the number of antenna ports of the channel state information reference signal
  • the number of constituent elements of each vector in the second group of vectors is determined by the number of antenna ports of the channel state information reference signal.
  • the number is determined by the number of precoding matrices.
  • the precoding reporting unit in the status reporting module 303 is used to report the first part of the first coefficients, where the first part of the coefficient is related to the first group of vectors or the first set of vectors. There is a corresponding relationship between the two sets of vectors.
  • the precoding reporting unit in the status reporting module 303 is used to report the first part of the first coefficients, where the first coefficients are divided into P groups, and the first part of the coefficients is at least one set of coefficients in the P group, where P is a positive integer.
  • the first part of the coefficients in the device is instructed by the base station or the terminal in groups, and the instruction includes: indicating that the first part of the coefficients correspond to the index number of the group.
  • the first part of the coefficients in the device is indicated by the base station or the terminal in groups, and the indication includes: indicating that the first part of the coefficients corresponds to the number of the groups.
  • Figure 4 is a schematic structural diagram of a channel state information receiving device provided by an embodiment of the present application.
  • the device can execute the channel state information receiving method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the device may be implemented in software and/or hardware.
  • the device provided by the embodiment of the present application includes:
  • the configuration sending module 401 is configured to send configuration information of the channel state information reference signal and configuration information of the report channel state information.
  • the signal transmitting module 402 is configured to transmit a channel state information reference signal according to the configuration information of the channel state information reference signal.
  • Report receiving module 403 configured to receive configuration information according to the report channel status information and based on
  • the channel state information refers to channel state information of a measurement report of a signal.
  • the configuration sending module 401 sends the configuration information for obtaining the channel state information reference signal and the configuration information for reporting the channel state information.
  • the signal transmitting module 402 sends the channel state information reference signal according to the configuration information of the channel state information reference signal, and reports
  • the receiving module 403 receives a report of channel status information according to the configuration information of the reported channel status information and the measurement of the channel status information reference signal, thereby realizing accurate reporting of channel status information, which can reduce the resource occupation of channel status information transmission and improve data transmission. resource utilization.
  • the channel state information in the device includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is greater than the number of antenna ports of the channel state information reference signal, wherein the channel There is a corresponding relationship between the antenna port of the status information reference signal and the antenna port to which the precoding matrix is applied, and the corresponding relationship is indicated by the configuration information.
  • the corresponding relationship in the device indicates a way to generate the indication information of the precoding matrix.
  • the matrix receiving unit in the report receiving module 403 is used to receive the coefficients of the X1 vectors fed back, where the number of constituent elements of the vector is the antenna port of the channel state information reference signal
  • the number of X1 is an integer greater than or equal to 1, and the coefficients of the X1 vectors indicate the precoding matrix.
  • the matrix receiving unit in the report receiving module 403 is used to: receive the coefficients of X2 vectors fed back, where the number of constituent elements of the vector is the antenna to which the precoding matrix is applied The number of ports, where X2 is an integer greater than or equal to 1, and the coefficients of the X2 vectors indicate the precoding matrix.
  • the channel state information in the device includes a precoding matrix.
  • the number of antenna ports to which the precoding matrix is applicable is equal to the number of antenna ports of the channel state information reference signal.
  • the number is recorded as Nt, where Nt is an integer greater than or equal to 1.
  • the matrix receiving unit in the report receiving module 403 is used to: receive feedback channel status of Np antenna ports, where the Np antenna ports are the channel status information reference signals obtained by the terminal. Nt antenna ports are selected, where Np is an integer greater than or equal to 1, and Np is less than Nt.
  • the device further includes a recovery module, configured to recover a precoding matrix suitable for Nt antenna ports based on the channel status of each Np antenna port.
  • the matrix receiving unit in the report receiving module 403 is used for:
  • Receive feedback coefficients of X1 vectors where the number of constituent elements of the vector is Np and X1 is a positive integer.
  • the antenna port of the channel state information reference signal includes two parts.
  • the first part of the antenna port transmits on the channel state information reference signal resource according to non-zero power
  • the second part of the antenna port transmits on the channel state information reference signal resource according to zero power.
  • Information is transmitted on reference signal resources.
  • the antenna port of the channel state information reference signal includes two parts.
  • the first part of the antenna port occupies time-frequency resources on the channel state information reference signal resource, and the second part of the antenna port occupies the channel state information reference signal resource. It does not occupy time and frequency resources.
  • the matrix receiving unit in the report receiving module 403 is used for:
  • Receive based on the measurement of the channel state information reference signal transmitted from the first part of the antenna port, feedback a precoding matrix for which the number of applicable antenna ports is equal to the number of antennas of the channel state information reference signal.
  • the indication of the antenna port includes at least one of the following:
  • the channel state information includes a precoding matrix, and the number of antenna ports to which the precoding matrix is applicable is smaller than the number of antenna ports of the channel state information reference signal.
  • the antenna port to which the precoding matrix is applied is indicated in the antenna port of the channel state information reference signal.
  • the antenna port to which the precoding matrix is applied is indicated by the terminal in the antenna port of the channel state information reference signal.
  • the channel state information includes a precoding matrix, and the precoding matrix is generated by mapping a vector matrix A, wherein the vector matrix A combines the first group of vectors and the second group of vectors by the first coefficient. form.
  • the first group of vectors and the second group of vectors each include at least one vector, the number of component elements of the vector in the first group of vectors is equal and/or the second vector The vectors in have an equal number of elements.
  • the number is determined in at least one of the following ways: indicated by the base station or selected by the terminal.
  • the indicated numbers include:
  • the product of the indicated second coefficient and the number of antenna ports of the channel state information reference signal is the stated number.
  • the number is indicated by the terminal and includes at least one of the following:
  • the number is a value selected from the candidate values set by the base station according to the terminal instruction; the number is the product of the third coefficient indicated by the terminal and the number of antenna ports of the channel state information reference signal.
  • mapping relationship between the component elements of each vector of the first group of vectors and the antenna ports of the channel state information reference signal, and the mapping relationship is determined by at least one of the following methods :
  • the mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; the mapping relationship is set by the protocol.
  • mapping relationship between the component elements of each vector of the second group of vectors and the index number of the precoding matrix or the frequency domain unit to which the precoding matrix is applicable.
  • the mapping relationship is as follows: At least one of the above methods determines: the mapping relationship is indicated by the base station; the mapping relationship is selected by the terminal; and the mapping relationship is set by a protocol.
  • the number of constituent elements of each vector in the first group of vectors is determined by the number of antenna ports of the channel state information reference signal, and the number of constituent elements of each vector in the second group of vectors is determined by The number of precoding matrices is determined.
  • the matrix receiving unit in the report receiving module 403 is used to: receive the first part of the first coefficients in the report, where the first part of the coefficients is related to the first group of vectors or the There is a corresponding relationship between the second set of vectors.
  • the matrix receiving unit in the report receiving module 403 is used to: receive the first part of the first coefficients in the report, where the first coefficients are divided into P groups, and the first coefficients are divided into P groups.
  • a part of the coefficients is at least one group of coefficients in the P group, where P is a positive integer.
  • the first part of the coefficients is indicated by the base station or the terminal in groups, and the indication includes: indicating that the first part of the coefficients correspond to the number of the groups.
  • the first part of the coefficients is indicated by the base station or the terminal in groups, and the indication includes: indicating that the first part of the coefficients correspond to the index number of the group.
  • Figure 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal includes a processor 50 and a memory 51; the number of processors 50 in the terminal can be one or more.
  • one processor 50 is taken as an example.
  • the processor 50 and the memory 51 in the terminal can be connected through a bus or other means.
  • connection through a bus is taken as an example.
  • the memory 51 can be used to store software programs, computer executable programs and modules, such as the programs corresponding to any channel status information reporting method in the embodiments of the present application.
  • Procedure, modules corresponding to the transmission device in the embodiment of the present application (configuration receiving module 301, signal receiving module 302 and status reporting module 303).
  • the processor 50 executes software programs, instructions and modules stored in the memory 51 to perform various functions and data processing of the electronic device, that is, to implement the above channel state information reporting method.
  • the memory 51 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system and a program required for at least one function; the stored data area may store data created according to the use of the electronic device, etc.
  • the memory 51 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 51 may include memory located remotely relative to processor 50, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the input device 52 may be used to receive input numeric or character information and generate key signal inputs related to user settings and function control of the electronic device.
  • the output device 53 may include a display device such as a display screen.
  • Figure 6 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • the base station includes a processor 60 and a memory 61; the number of processors 60 in the base station may be one or more.
  • one processor 60 is taken as an example.
  • the processor 60 and the memory 61 in the base station can be connected through a bus or other means. In Figure 6, the connection through the bus is taken as an example.
  • the memory 61 can be used to store software programs, computer executable programs and modules, such as the programs corresponding to any channel status information reporting method in the embodiments of the present application, and the transmission device in the embodiments of the present application. Corresponding modules (configuration sending module 401, signal transmitting module 402 and report receiving module 403).
  • the processor 60 executes software programs, instructions and modules stored in the memory 61 to perform various functions and data processing of the electronic device, that is, to implement the above-mentioned channel state information reporting method.
  • the memory 61 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system and a program required for at least one function; the stored data area may store data created according to the use of the electronic device, etc.
  • the memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 61 may include memory located remotely relative to processor 60, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the input device 62 may be used to receive input numeric or character information and generate key signal inputs related to user settings and function control of the electronic device.
  • the output device 63 may include a display device such as a display screen.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to perform a channel state information reporting method when executed by a computer processor.
  • the channel state information reporting method includes: obtaining configuration information of a channel state information reference signal and configuration information of reporting channel state information; receiving a channel state information reference signal according to the configuration information of the channel state information reference signal; and reporting channel state information according to the configuration information of the channel state information reference signal. Configuration information of the information and measurement report channel state information based on the channel state information reference signal.
  • the computer-executable instructions when executed by a computer processor, are used to perform a channel state information receiving method.
  • the channel state information receiving method includes: sending configuration information of a channel state information reference signal and configuration information of a report channel state information; sending a channel state information reference signal according to the configuration information of the channel state information reference signal; receiving a channel state information reference signal according to the report channel Configuration information of the state information and channel state information of the measurement report based on the channel state information reference signal.
  • the technical solution of this application can essentially be embodied in the form of a software product.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer's floppy disk, read-only memory (Read-Only Memory, ROM), random access Memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., includes multiple instructions to cause a computer device (which can be a personal computer, server, or network device, etc.) to execute various embodiments of the present application. method described.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of multiple
  • the physical components execute cooperatively.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Corresponding software can be distributed on computer-readable media, which can include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. sex, removable and Non-removable media.
  • Computer storage media includes but is not limited to RAM, ROM, Electrically Erasable Programmable Read Only Memory (EEPROM), flash memory or other memory technologies, and Compact Disc Read Only Memory (CD-ROM). , Digital Video Disc (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质。该信道状态信息报告方法包括:获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;根据所述信道状态信息参考信号的配置信息接收信道状态信息参考信号;根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告信道状态信息。

Description

信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质 技术领域
本申请涉及无线通信技术领域,例如涉及一种信道状态信息报告、接收方法、终端、基站和存储介质。
背景技术
无线通信技术已发展到第5代通信技术,其中,第4代通信技术中的长期演进(Long Term Evolution,LTE)与第5代无线通信技术中的新空口(New Radio,NR)技术均是基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术,在OFDM技术中最小的频域单元为子载波,最小的时域单元为OFDM符号;为了方便使用频域资源,定义了资源块(Resource Block,RB),一个资源块定义为特定数目的连续子载波;又定义了带宽部分(Bandwidth part,BWP),一个带宽部分定义为一个载波上有一特定数目的连续资源块;为了方便使用时域资源,定义了时隙(slot),一个时隙定义为有一特定数目的连续OFDM符号。基于此,无线通信系统中获取信道状态信息并进行利用,信道状态信息获取的效率和精准度直接影响无线通信系统中的传输效率。为提高数据传输效率,无线通信系统中通常使用多天线技术传输数据,在承载参考信号的资源上发送多个天线端口的参考信号,随着发射参考信号的天线端口的数目增多,用于承载参考信号的资源开销增加,从而减少了用于传输数据的资源,导致无线系统的数据传输效率降低。此外,终端需要反馈高精度的信道状态信息,这必然需要大量的上行资源开销,增大了上行资源的负担。无线通信技术的发展需要对获取信道状态信息的方式进行优化,以提高信道状态信息的精准度以及减小信道状态信息获取使用的资源开销。
发明内容
本申请实施例的主要目的在提出一种信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质,以至少解决信道状态信息资源占用率过高的问题,以提高信道状态信息的精准度,降低信道状态信息获取的资源开销,可提高数据传输效率。
本申请实施例提供了一种信道状态信息报告方法,该方法包括:
获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;根据所述信道状态信息参考信号的配置信息接收信道状态信息参考信号;根据 所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告信道状态信息。
本申请实施例还提供了一种信道状态信息接收方法,该方法包括:
发送信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;根据所述信道状态信息参考信号的配置信息发送信道状态信息参考信号;接收根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告的信道状态信息。
本申请实施例还提供了一种终端,该终端包括:
一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述的信道状态信息报告方法。
本申请实施例还提供了一种基站,该基站包括:
一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述的信道状态信息接收方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有一个或多个程序,所述一个或多个程序被一个或多个处理器执行,以实现如本申请实施例中任一所述的信道状态信息报告方法或信道状态信息接收方法。
附图说明
图1是本申请实施例提供的一种信道状态信息报告方法的流程图;
图2是本申请实施例提供的一种信道状态信息接收方法的流程图;
图3是本申请实施例提供的一种信道状态信息报告装置的结构示意图;
图4是本申请实施例提供的一种信道状态信息接收装置的结构示意图;
图5是本申请实施例提供的一种终端的结构示意图;
图6是本申请实施例提供的一种基站的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施仅仅用于解释本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”后缀仅 为了有利于本申请的说明,其本身没有特有的意义,因此,“模块”、“部件”或“单元”可以混合地使用。
无线通信系统中信道状态信息的获取和利用包括如下方式:
基站发送参考信号;终端测量参考信号,确定基站到终端的信道状态信息,并报告信道状态信息给基站;基站接收终端报告的信道状态信息。基站根据所接收的信道状态信息所代表的信道状态确定数据传输的策略,并传输数据,从而提高数据传输的效率。信道状态信息所代表的信道状态的精准程度影响到基站的传输策略,从而影响到数据传输的效率。
基站发送给终端的参考信号为下行参考信号;在LTE系统中用于信道状态信息报告的下行参考信号包括小区特定参考信号(CRS,Cell-specific Reference Signal),信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS);在NR系统中用于信道状态信息报告的下行参考信号包括信道状态信息参考信号。信道状态信息参考信号(CSI-RS)由信道状态信息参考信号资源(CSI-RS Resource)承载,信道状态信息参考信号资源由码分复用组(Code Division Multiplexing group,CDM group)组成,一个CDM group是由无线资源元素组成,一组CSI-RS端口的CSI-RS在其上通过码分复用的方式复用。
基站与终端之间传输的信道状态信息的内容包括信道质量指示符(Channel Quality Indicator,CQI),用以指示信道的质量;或者包括预编码矩阵指示符(Precoding Matrix Indicator,PMI),用以指示应用于基站天线上的预编码矩阵。一类CQI的报告格式为宽带CQI报告(wideband CQI reporting),即为信道状态信息报告频带(CSI reporting band)报告一个信道质量,该信道质量对应整个所述信道状态信息报告频带;另一类CQI的报告格式为子带CQI报告(subband CQI reporting),即对信道状态信息报告频带(CSI reporting band)以子带为单位分别给出信道质量,其中一个信道质量对应一个子带,即为信道状态信息报告频带的每一个子带报告一个信道质量。所述的子带是频域单位,定义为N个连续的资源块(RB,Resource Block),N为正整数;为了便于描述,本申请称为信道质量指示子带,或者CQI子带,或者子带;其中,N称为CQI子带的尺码(size),或者称为CQI子带尺码,或者称为子带尺码(size)。带宽部分(BWP,Bandwidth part)划分为子带,信道状态信息报告频带(CSI reporting band)用带宽部分(BWP,Bandwidth part)的子带的子集进行定义。信道状态信息报告频带(CSI reporting band)是其上的信道状态信息需要被报告的频带。
一种确定信道质量的方式是根据终端接收到参考信号的强度确定;另一种确定信道质量的方式是根据接收到参考信号的信噪比确定。在信道状态信息报告频带上,如果信道质量变化不大,以宽带CQI报告方式报告CQI可以减小用 于CQI报告的资源开销;如果信道质量在频域上差异较大,以子带CQI报告方式报告CQI可以增加CQI报告的精准程度。
一类PMI的报告格式为宽带PMI报告,即为信道状态信息报告频带(CSI reporting band)报告一个PMI,该PMI对应整个所述信道状态信息报告频带。另一类PMI的报告格式为子带PMI报告,即为信道状态信息报告频带的每一个子带报告一个PMI,或者为信道状态信息报告频带的每一个子带报告一个PMI的组成部分。例如,PMI由X1与X2组成,为信道状态信息报告频带的每一个子带报告一个PMI的组成部分的一个方式为,为整个频带报告一个X1,为每一个子带报告一个X2;另一个方式为,为每一个子带报告一个X1与一个X2。
又一类PMI的报告格式为:所报告的PMI为每个子带指示R个预编码矩阵,其中R为正整数。从反馈预编码矩阵的频域颗粒度的意义上讲,R又表示每个子带包括的预编码矩阵子带的数目,或者每个CQI子带包括的预编码矩阵子带的数目。
图1是本申请实施例提供的一种信道状态信息报告方法的流程图,本申请实施例可适用于终端向基站报告信道状态信息的情况,该方法可以由信道状态信息报告装置来执行,该装置一般集成在终端中,参见图1,本申请实施例提供的方法包括:
110、获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息。
信道状态信息参考信号的配置信息可以是用于配置终端对信道状态信息参考信号进行接收的信息,信道状态信息参考信号的配置信息可以包括信道状态信息参考信号占据的时频资源以及信道状态信息参考信号的端口数目等,报告信道状态信息的配置信息可以是配置信道状态信息报告内容的参数,报告信道状态信息的配置信息可以包括信道状态信息质量指示、预编码矩阵、预编码矩阵指示、信道系数、信道系数指示、参考信号的接收功率、预编码矩阵使用的码本等,还可以包括报告预编码矩阵的方式,例如,采用人工智能的方式报告预编码矩阵。
在本申请实施例中,终端可以接收基站发送的用于信道状态信息参考信号接收的配置信息以及报告信道状态信息的配置信息,上述的两种配置信息可以由基站确定。
120、根据信道状态信息参考信号的配置信息接收信道状态信息参考信号。
在本申请实施例中,终端可以按照信道状态信息参考信号配置信号对信道状态信息参考信号进行接收,例如,可以将信道状态信息参考信号的配置信息 记为第一配置信息,终端可以使用第一配置信息为承载信道状态信息参考信号的信道状态信息参考信号资源配置合适的时频资源,又或者,系统可以使用第一配置信息配置恰当的天线端口数目,从而实现信道状态信息参考信号传输资源的节省。而报告信道状态信息的配置信息可以记为第二配置信息,终端可以按照第二配置信息确定报告信道状态信息的内容以及粒度,从而提高信道状态信息反馈的精确度。
130、根据报告信道状态信息的配置信息和基于信道状态信息参考信号的测量报告信道状态信息。
终端可以获取信道状态信息参考信号测量,通过该测量以及报告信道状态信息的配置参数进行信道状态信息报告,可提高信道状态信息反馈的精准度,从而节省信道状态信息传输的资源占用,可提高数据传输的资源利用率。
本申请实施例,通过获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息,按照信道状态信息参考信号的配置信息接收信道状态信息参考信号,按照报告信道状态信息的配置信息以及信道状态信息参考信号的测量进行信道状态信息的报告,实现了信道状态信息的精确报告,可降低信道状态信息传输的资源占用,可提升数据传输的资源利用率。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,预编码矩阵所适用的天线端口的数目大于信道状态信息参考信号的天线端口的数目,其中,信道状态信息参考信号的天线端口与预编码矩阵所应用的天线端口之间具有对应关系,对应关系由配置信息指示。
在本申请实施例中,报告的信道状态信息可以包括预编码矩阵,其中,该预编码矩阵所使用的天线端口的数目可以大于信道状态信息参考信号的天线端口的数目,终端可以根据较小的天线端口数目的信道状态信息参考信号的测量估算出应于较多天线端口的预编码矩阵,无需发射与预编码矩阵的天线端口相同数量的天线端口的信道状态信息参考信号,可减少信道状态信息参考信号发射的资源占用。
示例性的,可以由信道状态信息参考信号的配置信息指示信道状态信息参考信号的天线端口的数目,可以由报告信道状态信息的配置信息指示预编码矩阵所适用的天线端口的数目,信道状态信息参考信号的配置信息指示的天线端口数目可以小于报告信道状态信息的配置信息指示的天线端口数目。预编码矩阵的天线端口数目可以由另外的第三配置信息指示。
在本申请实施例中,在预编码矩阵所适用的天线端口与信道状态信息参考信号的天线端口之间可以存在对应关系,例如,信道状态参考信息的一个天线 端口可以对应预编码矩阵所适用的一个或多个天线端口。或者,预编码矩阵所应用的天线端口划分为多组,预编码矩阵的每组天线端口可以与信道状态信息参考信号的天线端口一一对应,基站或终端可以指示预编码矩阵的一组天线端口与信道状态信息的一个天线端口对应,信道状态信息参考信号的天线端口也可以划分为多组,该对应可以为预编码矩阵所适用的一组天线端口与信道状态信息参考信号的哪一组天线端口进行对应。该对应关系可以由终端确定,可适应信道场景且随时间变化,从而提高反馈的预编码矩阵的精度。在另一个实施例中,该对应关系可以由协议预先确定,该协议确定的方式可以减少基站与终端协商对应关系的资源开销,可降低系统复杂度。在另外一个实施例中,该对应关系可以由基站配置。
指示对应关系的方式可以包括以比特映射的方式指示,例如,每一个比特位可以对应预编码矩阵所适用的天线端口的一个,每一个比特位可以指示出比特对应信道状态信息参考信号的天线端口中的一个。该比特映射的方式可以包括以非零值的比特作为指示天线端口的比特,或者以零值的比特作为指示天线端口的比特。
在上述申请实施例的基础上,对应关系指示产生所述预编码矩阵的指示信息的方式。
在申请实施例中,产生预编码矩阵的指示信息的方式包括终端产生预编码矩阵的指示信息的推理模型或推理模型参数,不同的映射关系可以使用不同的推理模型或推理模型参数。可以使用不同的对应关系映射推理模型或者推理模型参数,使用机器学习算法,可以由信道状态信息参考信号的测量结果推测预编码矩阵或预编码矩阵的指示信息,但基于不同推理模型或推理模型参数的机器学习算法,推导的结果不相同,或推导的效果不相同;一个推理模型或推理模型参数适用于这个对应关系,另一个推理模型或推理模型参数适用于另一个对应关系,又一个推理模型或推理模型参数适用于又一个对应关系。因此使用对应关系指示推理模型或推理模型参数可以减小系统的复杂度,降低基站与终端相互协商的资源开销。例如,终端使用的推理模型是自编码器的编码模块;对应关系指示终端所选择的自编码器的编码模块。
在上述申请实施例的基础上,报告预编码矩阵包括:
反馈X1个矢量的系数,其中,矢量的构成元素的数目为信道状态信息参考信号的天线端口的数目,其中,所述X1为大于或等于1的整数,所述X1个矢量的系数指示所述预编码矩阵。
预编码矩阵可以由X1个矢量的系数指示,每个矢量中可以存在多个构成元素,每个矢量中构成元素的数目可以为信道状态信息参考信号的天线端口的数 目,也即每个矢量的构成元素均等于信道状态信息参考信号的天线端口的数目,在反馈预编码矩阵时,可以将X1个矢量的系数进行反馈,其中X1为大于或等于1的整数。
在上述申请实施例的基础上,报告所述预编码矩阵,包括:
反馈X2个矢量的系数,其中,所述矢量的构成元素的数目为所述预编码矩阵所适用的天线端口的数目,其中,所述X2为大于或等于1的整数,所述X2个矢量的系数指示所述预编码矩阵。
预编码矩阵可以由X2个矢量的系数指示,每个矢量中可以存在多个构成元素,每个矢量中构成元素的数目可以为预编码矩阵所适用的天线端口的数目,也即每个矢量的构成元素均等于预编码矩阵所适用的天线端口的数目,在反馈预编码矩阵时,可以将X2个矢量的系数进行反馈,其中X2为大于或等于1的整数。
在一个示例性的实施方式中,信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目等于所述信道状态信息参考信号的天线端口的数目,所述数目记为Nt,其中Nt为大于或等于1的整数。
在本申请实施例中,预编码矩阵适用的天线端口的数量可以与信道状态信息参考信号的天线端口的数目相同,该数目可以记为Nt。
在上述申请实施例的基础上,报告所述预编码矩阵,包括:从所述信道状态信息参考信号的Nt个天线端口中选择出Np个天线端口,反馈所述Np个天线端口的信道状态,其中,Np为大于或等于1的整数,且所述Np小于Nt。
可以在天线端口中选择出一部分天线端口用于反馈信道状态,其中,选择出的天线端口的数量小于信道状态信息参考信号的天线端口的数据或预编码矩阵所适用的天线端口的数量,可以减少信道状态信息反馈占用的资源量,基站侧可以基于一部分的天线端口的信道状态恢复出全部天线端口的信道状态信息,可反馈预编码矩阵信息的开销,降低了系统的复杂度,并提高了所述预编码矩阵的精确度。例如,采用插值算法恢复适用于Nt个端口的所述预编码矩阵;再例如,采用拟合算法恢复适用于Nt个端口的所述预编码矩阵;再例如,采用最大似然估计算法恢复适用于Nt个端口的所述预编码矩阵;再例如,采用机器学习算法恢复适用于Nt个端口的所述预编码矩阵。
在上述申请实施例的基础上,所述从所述信道状态信息参考信号的Nt个天线端口中选择出Np个天线端口指示基站侧恢复适用于Nt个天线端口的预编码矩阵的方式。
终端选择的用于反馈信道状态的天线端口的数量少于信道状态信息参考信 号的天线端口的数量时,可以指示基站根据部分的天线端口的信道状态信息恢复全部的天线端口的信道状态信息,该恢复的方式可以包括:基站通过Np个天线端口的信道状态恢复出适用于Nt个端口的所述预编码矩阵,具有多个候选的方式,例如,采用插值算法恢复适用于Nt个端口的所述预编码矩阵;再例如,采用拟合算法恢复适用于Nt个端口的所述预编码矩阵;再例如,采用最大似然估计算法恢复适用于Nt个端口的所述预编码矩阵;再例如,采用机器学习算法恢复适用于Nt个端口的所述预编码矩阵。但采用哪一个方式,由终端进行指示。终端通过从Nt个端口中选择出Np个端口的组合指示基站恢复适用于Nt个端口的所述预编码矩阵的方式,例如第一个Np个端口的组合指示第一个恢复适用于Nt个端口的所述预编码矩阵的方式,第二个Np个端口的组合指示第二个恢复适用于Nt个端口的所述预编码矩阵的方式。再一种情况,有多个候选机器学习算法或模块可用于恢复适用于Nt个端口的所述预编码矩阵,终端以从所述信道状态信息参考信号的Nt个天线端口中选择出的Np个天线端口指示所选择的机器学习算法或模块用于恢复适用于Nt个端口的所述预编码矩阵,或者终端以Np个端口的组合指示所选择的机器学习算法或模块用于恢复适用于Nt个端口的所述预编码矩阵。例如,第一个Np个端口的组合指示第一个恢复适用于Nt个端口的所述预编码矩阵的机器学习算法或模块,第二个Np个端口的组合指示第二个恢复适用于Nt个端口的所述预编码矩阵的机器学习算法或模块。
在上述申请实施例的基础上,反馈所述Np个天线端口的信道状态,包括:
反馈X1个矢量的系数,其中,所述矢量的构成元素的数目为Np,X1为正整数。
在申请实施例中,可以通过反馈X1个矢量系数的方式实现对Np个天线端口的信道状态的反馈,其中,每个矢量的构成元素的个数可以为Np,且X1为正整数。例如,基站侧由X1个矢量的系数恢复适用于Nt个端口的所述预编码矩阵。
在一个示例性的实施方式中,信道状态信息参考信号的天线端口分为两部分,第一部分天线端口按照非零功率在信道状态信息参考信号资源上发射,第二部分天线端口按照零功率在信道状态信息参考信号资源上发射,
信道状态信息参考信号的天线端口分成两部分,其中第一部分天线端口以非零功率在所述信道状态信息参考信号资源上发射,第二部分天线端口以零功率在所述信道状态信息参考信号资源上发射;或者,其中第一部分天线端口在所述信道状态信息参考信号资源上发射信道状态信息参考信号,第二部分天线端口在所述信道状态信息参考信号资源上不发射信道状态信息参考信号。
例如,信道状态信息参考信号的天线端口数目为Nt,其中Np个天线端口 以非零功率在信道状态信息参考信号资源上发射,剩余Nt-Np个天线端口以零功率在信道状态信息参考信号资源上发射;或者Np个天线端口在信道状态信息参考信号资源上发射信道状态信息参考信号,剩余Nt-Np个天线端口在信道状态信息参考信号资源上不发射信道状态信息参考信号。
在一个示例性的实施方式中,信道状态信息参考信号的天线端口包括两部分,第一部分天线端口在信道状态信息参考信号资源上占据时频资源,第二部分天线端口在信道状态信息参考信号资源上不占据时频资源。
信道状态信息参考信号的天线端口数目为Nt,其中Np个天线端口在所述信道状态信息参考信号资源上占据时频资源,剩余Nt-Np个天线端口在所述信道状态信息参考信号资源上不占据时频资源。
在上述申请实施例的基础上,报告信道状态信息,包括:
根据对第一部分天线端口发射的信道状态信息参考信号的测量,反馈所适用的天线端口数目等于信道状态信息参考信号的天线数目的预编码矩阵。
在本申请实施例中,信道状态信息参考信号的天线端口数目为Nt,其中Np个天线端口在所述信道状态信息参考信号资源上占据时频资源,剩余Nt-Np个天线端口在所述信道状态信息参考信号资源上不占据时频资源;终端根据对所述Np天线端口上发射的信道状态信息参考信号的测量,反馈适用于天线端口数目Nt的预编码矩阵。
在上述申请实施例的基础上,天线端口由基站指示,指示包括以下至少之一:
第一部分天线端口的索引号由基站指示;第二部分天线端口的索引号由基站指示;第一部分天线端口与预编码矩阵所适用的天线端口之间的映射关系由基站指示;第二部分天线端口与预编码矩阵所适用的天线端口之间的映射关系由基站指示。
在本申请实施例中,基站指示第一部分天线端口的索引号,或者基站指示第二部分天线端口的索引号,或者基站指示第一部天线端口与预编码矩阵所适用的天线端口之间的映射关系,或者基站指示第二部分天线端口与预编码矩阵所适用的天线端口之间的映射关系。
在一个示例性的实施方式中,信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目小于所述信道状态信息参考信号的天线端口的数目。
信道状态信息参考信号的天线端口数目为Np,预编码矩阵所适用的天线端口数目为Nt,其中Np大于Nt;终端报告所述预编码矩阵。终端报告的预编码 矩阵所适用的天线端口数目小于信道状态信息参考信号的天线端口数目,从而降低上报所使用资源的开销,减小系统的复杂度,并提高所报告预编码矩阵的精确度。
在上述申请实施例的基础上,预编码矩阵所适用的天线端口由基站在所述信道状态信息参考信号的天线端口中指示出。
预编码矩阵所适用的天线端口的数目小于信道状态信息参考信号的天线端口的数目,基站可以在信道状态信息参考信号的天线端口中指示出用于预编码矩阵的天线端口,
例如,信道状态信息参考信号的天线端口数目为Np,预编码矩阵所适用的天线端口数目为Nt,其中Np大于Nt;终端报告所述预编码矩阵;并且基站从信道状态信息参考信号的Np个天线端口中指示出Nt个天线端口,所述Nt个天线端口对应预编码矩阵所适用的Nt天线端口。即基站灵活安排信道状态信息参考信号的Np个端口中的Nt个端口,以对应预编码矩阵,从而提高预编码矩阵的精确度,并降低确定所述Nt个端口的复杂度。
在上述申请实施例的基础上,预编码矩阵所适用的天线端口由所述终端在所述信道状态信息参考信号的天线端口中指示出。
在本申请实施例中,信道状态信息参考信号的天线端口数目为Np,预编码矩阵所适用的天线端口数目为Nt,其中Np大于Nt;终端报告所述预编码矩阵;并且终端从信道状态信息参考信号的Np个天线端口中指示出Nt个天线端口,所述Nt个天线端口对应预编码矩阵所适用的Nt天线端口。即终端根据信道状况灵活选择信道状态信息参考信号的Np个端口中的Nt个端口,以对应预编码矩阵,从而提高预编码矩阵的精确度,并降低确定所述Nt个端口的复杂度。
在一个示例性的实施方式中,信道状态信息包括预编码矩阵,所述预编码矩阵由矢量矩阵A映射生成,其中,所述矢量矩阵A的由第一系数组合第一组矢量与第二组矢量形成。
信道状态信息中可以反馈预编码矩阵,该预编码矩阵可以通过矢量矩阵A映射生成,而矢量矩阵A的系数可以由第一组矢量和第二组矢量进行组合的方式生成。
在上述申请实施例的基础上,第一组矢量和所述第二组矢量分别包括至少一个矢量,所述第一组矢量中所述矢量的组成元素的数目相等和/或所述第二矢量中所述矢量的组成元素的数目相等。
组成矢量矩阵A的第一组矢量或第二组矢量中分别可以由多个矢量组成,对于第一组矢量或第二组矢量而言,所包括的矢量的组成元素的数目相等。例 如,第一组矢量中各矢量的组成元素的数量相同,或第二组矢量中各矢量的组成元素的数量相同,又或者,第一组矢量和第二组矢量中各矢量的组成元素的数量相同。
在上述申请实施例的基础上,数目通过以下方式至少之一确定:由基站指示、由终端选择。
在本申请实施例中,第一组矢量和/或第二组矢量中各矢量的组成元素的数目可以由基站指示或者由终端选择。
例如,第一组矢量包括M1个矢量;第一组矢量中每一个矢量的组成元素的数目相等,为K1;基站指示所述组成元素的数目K1,其中,M1和K1均为大于或等于1的整数。
示例性的,第一组矢量包括矢量0,矢量1,矢量2,...,矢量M1-1;矢量0的组成元素的数目为K1,矢量1的组成元素的数目为K1,矢量2的组成元素的数目为K1,...,矢量M1-1的组成元素的数目为K1;所述组成元素的数目K1由基站指示。其中,基站指示所述组成元素的数目的方式可以是直接指示,例如由配置信息或信令直接给出组成元素的数目K1;也可以间接指示或暗示。其中,M1,K1为正整数。
在另一个实施例中,数目由基站指示,包括:所述数目为所述基站指示的第二系数与所述信道状态信息参考信号的天线端口的数目的乘积。
基站指示第二系数a,其中第一组矢量的所述组成元素的数目K1为信道状态信息参考信号的天线端口的数目与a的乘积;其中a为正数。这样,基站既能调整组成元素的数目,又不需要列举组成元素数目的所有候选值,并且建立组成元素数目与信道状态信息参考信号的天线端口的数目的关系,从而增加了系统的灵活性,降低了系统的复杂度,并提高了系统的性能。
示例性的,第一组矢量包括M1个矢量;第一组矢量中每一个矢量的组成元素的数目相等,为K1,终端选择所述组成元素的数目K1,其中,M1和K1均为大于或等于1的整数。
协议预先设置组成元素的数目K1的候选值,终端从所述的候选值中选择所述组成元素的数目K1。再例如,基站设置组成元素的数目K1的候选值,终端从所述的候选值中选择所述组成元素的数目K1。再例如,协议或基站可以显示设置组成元素的数目K1的候选值;也可以隐式设置组成元素的数目K1的候选值。例如,协议或基站设置第二系数a的候选值,终端从所述候选值中选择第二系数a,组成元素的数目K1为信道状态信息参考信号的天线端口的数目与所述系数a的乘积;其中a为正数。
在另一个示例性的实施例中,终端选择所述组成元素的数目K1,包括:终端在基站设置候选值中选择所述组成元素的数目K1。
在又一个示例性的实施例中,终端选择所述组成元素的数目K1,包括:终端从第二系数a的候选值中选择所述第二系数a,其中组成元素的数目K1为信道状态信息参考信号的天线端口的数目与所述系数a的乘积;其中a为正数。
第二矢量组中确定各矢量的数目的方式与第一矢量组相同。
在一个实施例中,第二组矢量包括M2个矢量;第二组矢量中每一个矢量的组成元素的数目相等,为K2;基站指示所述组成元素的数目K2。
例如,第二组矢量包括矢量0,矢量1,矢量2,...,矢量M2-1;矢量0的组成元素的数目为K2,矢量1的组成元素的数目为K2,矢量2的组成元素的数目为K2,...,矢量M2-1的组成元素的数目为K2;所述组成元素的数目K2由基站指示。其中,基站指示所述组成元素的数目的方式可以是直接指示,例如由配置信息或信令直接给出组成元素的数目K2;也可以间接指示或暗示。其中,M2,K2为正整数。
在一个实施例中,基站指示第二组矢量的所述组成元素的数目K2,包括:基站指示第三系数b,其中第二组矢量的所述组成元素的数目K2为预编码矩阵的数目与所述系数b的乘积;其中b为正数。
这样,基站既能调整所述组成元素的数目,又不需要列举所述组成元素数目的所有候选值,并且建立组成元素数目与预编码矩阵的数目的关系,从而增加了系统的灵活性,降低了系统的复杂度,并提高了系统的性能。
在一个实施例中,第二组矢量包括M2个矢量;第二组矢量中第二个矢量的组成元素的数目为K2,终端选择所述组成元素的数目K2。
例如,协议预先设置组成元素的数目K2的候选值,终端从所述的候选值中选择所述组成元素的数目K2。再例如,基站设置组成元素的数目K2的候选值,终端从所述的候选值中选择所述组成元素的数目K2。再例如,协议或基站可以显示设置组成元素的数目K2的候选值;也可以隐式设置组成元素的数目K2的候选值。例如,协议或基站设置第三系数b的候选值,终端从所述候选值中选择第三系数b,组成元素的数目K2为预编码矩阵的数目与所述系数b的乘积;其中b为正数。
在一个实施例中,终端选择所述组成元素的数目K2,包括:终端在基站设置候选值中选择所述组成元素的数目K2。
在另一个实施例中,终端选择所述组成元素的数目K2,包括:终端从第三系数b的候选值中选择所述第三系数b,其中组成元素的数目K2为预编码矩阵 的数目与所述系数b的乘积;其中b为正数。
在上述申请实施例的基础上,第一组矢量的每个所述矢量的组成元素与所述信道状态信息参考信号的天线端口之间具有映射关系,所述映射关系由以下方法至少之一确定:
所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在本申请实施例中,第一组矢量包括M1个矢量;第一组矢量中第一矢量的组成元素的数目为K1;所述第一矢量的组成元素与信道状态信息参考信号的天线端口之间具有映射关系,所述映射关系由下述方法之一确定:
1)第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系由基站指示;2)第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系由终端选择;3)第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系由协议设定;
例如,基站配置候选的映射关系,并从候选的映射关系中为终端选择一个第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系,并指示给终端。
例如,协议配置候选的映射关系,并从候选的映射关系中为终端选择一个第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系,并指示给终端。
例如,基站配置候选的映射关系,终端从候选的映射关系中选择一个第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系。
例如,协议配置候选的映射关系,终端从候选的映射关系中选择一个第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系,并指示给基站。
例如,第三配置候选的映射关系,基站从候选的映射关系中为终端选择一个第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系,并指示给终端。
例如,第三配置候选的映射关系,终端从候选的映射关系中选择一个第一矢量的组成元素与信道状态信息参考信号的天线端口之间的映射关系,并指示给基站。
第一组矢量与预编码矩阵的映射关系也可应用于第二组矢量。
在上述申请实施例的基础上,第二组矢量的每个所述矢量的组成元素与预 编码矩阵的索引号或预编码矩阵适用的频域单元之间具有映射关系,所述映射关系由下述方法至少之一确定:所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在本申请实施例中,第二组矢量包括M2个矢量;第二组矢量中第二矢量的组成元素的数目为K2;所述第二矢量的组成元素与预编码矩阵的索引号或预编码矩阵所适用的频域单元之间具有映射关系,所述映射关系由下述方法之一确定:
1)映射关系由基站指示;2)映射关系由终端选择;3)由协议设定。
例如,基站配置候选的映射关系,并从候选的映射关系中为终端选择一个映射关系,并指示给终端。
例如,协议配置候选的映射关系,并从候选的映射关系中为终端选择一个映射关系,并指示给终端。
例如,基站配置候选的映射关系,终端从候选的映射关系中选择一个映射关系。
例如,协议配置候选的映射关系,终端从候选的映射关系中选择一个映射关系,并指示给基站。
例如,第三配置候选的映射关系,基站并从候选的映射关系中为终端选择一个映射关系,并指示给终端。
例如,第三配置候选的映射关系,终端从候选的映射关系中选择一个映射关系,并指示给基站。
在上述申请实施例的基础上,第一组矢量中每个矢量的组成元素的数目由信道状态信息参考信号的天线端口数目确定,所述第二组矢量中每个矢量的组成元素的数目由预编码矩阵的数目确定。
预编码矩阵由矩阵A映射而成;其中,矩阵A由第一系数组合第一组矢量与第二组矢量形成;其中第一组矢量中的矢量的组成元素的数目K1根据信道状态信息参考信号的天线端口的数目确定,第二组矢量中的矢量的组成元素的数目K2根据所述预编码矩阵的数目确定。
在一个示例性的实施方式中,报告所述预编码矩阵,包括:
报告所述第一系数中第一部分系数,其中,所述第一部分系数与所述第一组矢量或所述第二组矢量存在对应关系。
在本申请实施例中,第一系数为示例矩阵A的系数,第一部分系数为第一系数的一部分,该第一部分系数可以与第一组矢量或者第二组矢量存在对应关 系,例如,第一部分系数与第一组矢量的对应关系可以包括如下至少之一:
1)所述第一部分系数为第一组矢量中索引号为奇序号的矢量的系数;2)所述第一部分系数为第一组矢量中索引号为偶序号的矢量的系数;3)所述第一部分系数分成第一组系数与第二组系数,第一组系数是第一组矢量中索引号为奇序号的矢量的系数,第二组系数是第一组矢量中索引号为偶序号的矢量的系数;其中,第一组系数所对应的所述奇序号的索引号大于第二组系数所对应的所述偶序号的索引号;或者第一组系数所对应的所述奇序号的索引号小于第二组系数所对应的所述偶序号的索引号;4)第一部分系数为具有下述特征的系数:按照索引号增序,每N1个索引号中的一个索引号对应的第二组矢量中的矢量的系数;其中N1为大于1的整数;5)基站指示第一部分系数对应的第一组矢量中的矢量的起始索引号;6)终端反馈第一部分系数对应的第一组矢量中的矢量的起始索引号;7)基站确定在第一组矢量中第一部分系数所对应的矢量的数目,终端确定所述对应矢量的起始索引号;8)基站确定在第一组矢量中第一部分系数所对应的矢量的数目,终端确定所述对应矢量的起始索引号与所述对应矢量的相邻索引号的偏移;9)基站确定在第一组矢量中第一部分系数所对应的矢量的数目与所述对应矢量的相邻索引号的偏移,终端确定所述对应矢量的起始索引号;10)基站确定在第一组矢量中第一部分系数所对应的矢量的起始索引号,终端确定所述对应矢量的的数目;11)基站确定在第一组矢量中第一部分系数所对应的矢量的起始索引号,终端确定所述对应矢量的的数目与所述对应矢量的相邻索引号的偏移;12)基站确定在第一组矢量中第一部分系数所对应的矢量的起始索引号与所述对应矢量的相邻索引号的偏移,终端确定所述对应矢量的的数目;13)基站确定在第一组矢量中第一部分系数所对应的矢量的相邻索引号的偏移,终端确定所述对应矢量的起始索引号;14)基站确定在第一组矢量中第一部分系数所对应的矢量的起始索引号,终端确定所述对应矢量的的数目;15)基站确定在第一组矢量中第一部分系数所对应的矢量的数目,终端确定所述对应矢量的相邻索引号的偏移;16)基站确定在第一组矢量中第一部分系数所对应的矢量的相邻索引号的偏移,终端确定所述对应矢量的的数目。
相似的,第一部分系数与第二组矢量的对关系可以包括如下至少之一:
1)所述第一部分系数为第二组矢量中索引号为奇序号的矢量的系数;2)所述第一部分系数为第二组矢量中索引号为偶序号的矢量的系数;3)所述第一部分系数分成第一组系数与第二组系数,第一组系数是第二组矢量中索引号为奇序号的矢量的系数,第二组系数是第二组矢量中索引号为偶序号的矢量的系数;其中,第一组系数所对应的所述奇序号的索引号大于第二组系数所对应的所述偶序号的索引号;或者第一组系数所对应的所述奇序号的索引号小于第二组系数所对应的所述偶序号的索引号;4)第一部分系数为具有下述特征的系数: 按照索引号增序,每N1个索引号中的一个索引号对应的第二组矢量中的矢量的系数;其中N1为大于1的整数;5)基站指示第一部分系数对应的第一组矢量中的矢量的起始索引号;6)终端反馈第一部分系数对应的第一组矢量中的矢量的起始索引号;7)基站确定在第二组矢量中第一部分系数所对应的矢量的数目,终端确定所述对应矢量的起始索引号;8)基站确定在第二组矢量中第一部分系数所对应的矢量的数目,终端确定所述对应矢量的起始索引号与所述对应矢量的相邻索引号的偏移;9)基站确定在第二组矢量中第一部分系数所对应的矢量的数目与所述对应矢量的相邻索引号的偏移,终端确定所述对应矢量的起始索引号;10)基站确定在第二组矢量中第一部分系数所对应的矢量的起始索引号,终端确定所述对应矢量的的数目;11)基站确定在第二组矢量中第一部分系数所对应的矢量的起始索引号,终端确定所述对应矢量的的数目与所述对应矢量的相邻索引号的偏移;12)基站确定在第二组矢量中第一部分系数所对应的矢量的起始索引号与所述对应矢量的相邻索引号的偏移,终端确定所述对应矢量的的数目;13)基站确定在第二组矢量中第一部分系数所对应的矢量的相邻索引号的偏移,终端确定所述对应矢量的起始索引号;14)基站确定在第二组矢量中第一部分系数所对应的矢量的起始索引号,终端确定所述对应矢量的的数目;15)基站确定在第二组矢量中第一部分系数所对应的矢量的数目,终端确定所述对应矢量的相邻索引号的偏移;16)基站确定在第二组矢量中第一部分系数所对应的矢量的相邻索引号的偏移,终端确定所述对应矢量的的数目。
在一个示例性的实施方式中,信道状态信息包括预编码矩阵,相应的,报告所述预编码矩阵,包括:
报告所述第一系数中的第一部分系数,其中,所述第一系数分为P组,所述第一部分系数为所述P组中至少一组系数,其中,P为正整数。
在本申请实施例中,可以报告构成预编码矩阵的第一系数中的第一部分系数,从而实现预编码矩阵的反馈,报告的第一部分系数可以通过将第一系数分为P组,将其中一组或者多组系数作为第一部分系数,可以反馈该第一部分系数,其中,P为正整数。
在上述申请实施例的基础上,第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的索引号。
第一系数可以划分为多组系数,基站或终端可以指示组成第一部分系数的每组系数的索引号,从而确定第一部分系数。
在上述申请实施例的基础上,第一部分系数由基站或者终端按组指示,指示包括:指示所述第一部分系数中所述组的数目。
第一系数划分为多组系数,基站或终端可以指示构成第一部分系数的组的数量,从而确定第一部分系数。
图2是本申请实施例提供的一种信道状态信息接收方法的流程图,本申请实施例可适用于基站接收终端报告的信道状态信息的情况,该方法可以由信道状态信息接收装置来执行,该装置一般集成在基站中,参见图2,本申请实施例提供的方法包括:
210、发送信道状态信息参考信号的配置信息和报告信道状态信息的配置信息。
在本申请实施例中,基站可以发送信道状态信息参考信号配置信息,用于配置终端对信道状态信息参考信号进行接收,基站还可以对接收报告信道状态信息的配置信息进行发送,用于配置终端反馈信道状态信息的内容。
220、根据信道状态信息参考信号的配置信息发送信道状态信息参考信号。
基站可以发送配置终端的信道状态信息参考信号的配置信息,使得终端可以按照配置信息对信道状态信息参考信号进行接收,例如,可以将信道状态信息参考信号的配置信息记为第一配置信息,终端可以使用第一配置信息为承载信道状态信息参考信号的信道状态信息参考信号资源配置合适的时频资源,又或者,系统可以使用第一配置信息配置恰当的天线端口数目,从而实现信道状态信息参考信号传输资源的节省。而报告信道状态信息的配置信息可以记为第二配置信息,终端可以按照第二配置信息确定报告信道状态信息的内容以及粒度,从而提高信道状态信息反馈的精确度。
230、接收根据报告信道状态信息的配置信息和基于信道状态信息参考信号的测量报告的信道状态信息。
基站可以接收终端根据报告信道状态信息的配置信息和基于信道状态信息参考信号的测量报告的信道状态信息。
本申请实施例,通过发送获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息,按照信道状态信息参考信号的配置信息发送信道状态信息参考信号,接收按照报告信道状态信息的配置信息以及信道状态信息参考信号的测量进行信道状态信息的报告,实现了信道状态信息的精确报告,可降低信道状态信息传输的资源占用,可提升数据传输的资源利用率。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目大于所述信道状态信息参考信号的天线端口的数目,其中,所述信道状态信息参考信号的天线端口与所述预编码矩阵所应用的天线端口之间具有对应关系,所述对应关系由配置信息指示。
在上述申请实施例的基础上,对应关系指示产生所述预编码矩阵的指示信息的方式。
在上述申请实施例的基础上,接收报告的所述预编码矩阵,包括:
接收反馈的X1个矢量的系数,其中,所述矢量的构成元素的数目为所述信道状态信息参考信号的天线端口的数目,其中,所述X1为大于或等于1的整数,所述X1个矢量的系数指示所述预编码矩阵。
在上述申请实施例的基础上,接收报告所述预编码矩阵,包括:
接收反馈的X2个矢量的系数,其中,所述矢量的构成元素的数目为所述预编码矩阵所适用的天线端口的数目,其中,所述X2为大于或等于1的整数,所述X2个矢量的系数指示所述预编码矩阵。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目等于所述信道状态信息参考信号的天线端口的数目,所述数目记为Nt,其中Nt为大于或等于1的整数。
在上述申请实施例的基础上,接收报告所述预编码矩阵,包括:
接收反馈的Np个天线端口的信道状态,其中,所述Np个天线端口为终端从所述信道状态信息参考信号的Nt个天线端口选择出,其中,Np为大于或等于1的整数,且所述Np小于Nt。
在上述申请实施例的基础上,还包括:基于所述Np各天线端口的信道状态恢复适用于Nt个天线端口的预编码矩阵。
在上述申请实施例的基础上,接收反馈所述Np个天线端口的信道状态,包括:
接收反馈的X1个矢量的系数,其中,所述矢量的构成元素的数目为Np,X1为正整数。
在上述申请实施例的基础上,信道状态信息参考信号的天线端口包括两部分,第一部分天线端口按照非零功率在信道状态信息参考信号资源上发射,第二部分天线端口按照零功率在信道状态信息参考信号资源上发射。
在上述申请实施例的基础上,信道状态信息参考信号的天线端口包括两部分,第一部分天线端口在信道状态信息参考信号资源上占据时频资源,第二部分天线端口在信道状态信息参考信号资源上不占据时频资源。
在上述申请实施例的基础上,接收报告的信道状态信息,包括:
接收根据对所述第一部分天线端口发射的所述信道状态信息参考信号的测量,反馈所适用的天线端口数目等于所述信道状态信息参考信号的天线数目的 预编码矩阵。
在上述申请实施例的基础上,所述天线端口的指示包括以下至少之一:
指示所述第一部分天线端口的索引号;指示所述第二部分天线端口的索引号;指示所述第一部分天线端口与预编码矩阵所适用的天线端口之间的映射关系;指示所述第二部分天线端口与预编码矩阵所适用的天线端口之间的映射关系。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目小于所述信道状态信息参考信号的天线端口的数目。
在上述申请实施例的基础上,在所述信道状态信息参考信号的天线端口中指示预编码矩阵所适用的天线端口。
在上述申请实施例的基础上,预编码矩阵所适用的天线端口由终端在所述信道状态信息参考信号的天线端口中指示。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,所述预编码矩阵由矢量矩阵A映射生成,其中,所述矢量矩阵A由第一系数组合第一组矢量与第二组矢量形成。
在上述申请实施例的基础上,第一组矢量和所述第二组矢量分别包括至少一个矢量,所述第一组矢量中所述矢量的组成元素的数目相等和/或所述第二矢量中所述矢量的组成元素的数目相等。
在上述申请实施例的基础上,数目通过以下方式至少之一确定:由基站指示、由终端选择。
在上述申请实施例的基础上,指示数目,包括:
指示的第二系数与所述信道状态信息参考信号的天线端口的数目的乘积为所述数目。
在上述申请实施例的基础上,数目由终端指示,包括以下至少之一:
所述数目为根据所述终端指示在基站设置的候选值中选择的取值;所述数目为所述终端指示的第三系数与所述信道状态信息参考信号的天线端口的数目的乘积。
在上述申请实施例的基础上,第一组矢量的每个所述矢量的组成元素与所述信道状态信息参考信号的天线端口之间具有映射关系,所述映射关系由以下方法至少之一确定:所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在上述申请实施例的基础上,第二组矢量的每个所述矢量的组成元素与预编码矩阵的索引号或预编码矩阵适用的频域单元之间具有映射关系,所述映射关系由下述方法至少之一确定:所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在上述申请实施例的基础上,第一组矢量中每个矢量的组成元素的数目由信道状态信息参考信号的天线端口数目确定,所述第二组矢量中每个矢量的组成元素的数目由预编码矩阵的数目确定。
在上述申请实施例的基础上,接收报告的所述预编码矩阵,包括:
接收报告的所述第一系数中第一部分系数,其中,所述第一部分系数与所述第一组矢量或所述第二组矢量存在对应关系。
在上述申请实施例的基础上,接收报告的所述预编码矩阵,包括:
接收报告的所述第一系数中的第一部分系数,其中,所述第一系数分为P组,所述第一部分系数为所述P组中至少一组系数,其中,P为正整数。
在上述申请实施例的基础上,第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的数目。
在上述申请实施例的基础上,第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的索引号。
图3是本申请实施例提供的一种信道状态信息报告装置的结构示意图,该装置可执行本申请任意实施例提供的信道状态信息报告方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现。如图3所示,本申请实施例提供的装置包括:
配置接收模块301,用于获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息。
信号接收模块302,用于根据所述信道状态信息参考信号的配置信息接收信道状态信息参考信号。
状态报告模块303,用于根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告信道状态信息。
本申请实施例,通过配置接收模块301获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息,信号接收模块302按照信道状态信息参考信号的配置信息接收信道状态信息参考信号,状态报告模块303按照报告信道状态信息的配置信息以及信道状态信息参考信号的测量进行信道状态信息的报告,实现了信道状态信息的精确报告,可降低信道状态信息传输的资源占用, 可提升数据传输的资源利用率。
在上述申请实施例的基础上,装置中信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目大于所述信道状态信息参考信号的天线端口的数目,其中,所述信道状态信息参考信号的天线端口与所述预编码矩阵所应用的天线端口之间具有对应关系,所述对应关系由配置信息指示。
在上述申请实施例的基础上,装置中对应关系指示产生所述预编码矩阵的指示信息的方式。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于反馈X1个矢量的系数,其中,所述矢量的构成元素的数目为所述信道状态信息参考信号的天线端口的数目,其中,所述X1为大于或等于1的整数,所述X1个矢量的系数指示所述预编码矩阵。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于反馈X2个矢量的系数,其中,所述矢量的构成元素的数目为所述预编码矩阵所适用的天线端口的数目,其中,所述X2为大于或等于1的整数,所述X2个矢量的系数指示所述预编码矩阵。
在上述申请实施例的基础上,装置中信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目等于所述信道状态信息参考信号的天线端口的数目,所述数目记为Nt,其中Nt为大于或等于1的整数。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于从所述信道状态信息参考信号的Nt个天线端口中选择出Np个天线端口,反馈所述Np个天线端口的信道状态,其中,Np为大于或等于1的整数,且所述Np小于Nt。
在上述申请实施例的基础上,装置中从所述信道状态信息参考信号的Nt个天线端口中选择出Np个天线端口指示基站侧恢复适用于Nt个天线端口的预编码矩阵的方式。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于反馈X1个矢量的系数,其中,所述矢量的构成元素的数目为Np,X1为正整数。
在上述申请实施例的基础上,装置中信道状态信息参考信号的天线端口包括两部分,第一部分天线端口按照非零功率在信道状态信息参考信号资源上发射,第二部分天线端口按照零功率在信道状态信息参考信号资源上发射。
在上述申请实施例的基础上,装置中信道状态信息参考信号的天线端口包括两部分,第一部分天线端口在信道状态信息参考信号资源上占据时频资源,第二部分天线端口在信道状态信息参考信号资源上不占据时频资源。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于根据对所述第一部分天线端口发射的所述信道状态信息参考信号的测量,反馈所适用的天线端口数目等于所述信道状态信息参考信号的天线数目的预编码矩阵。
在上述申请实施例的基础上,装置中天线端口由基站指示,所述指示包括以下至少之一:
所述第一部分天线端口的索引号由基站指示;所述第二部分天线端口的索引号由基站指示;所述第一部分天线端口与预编码矩阵所适用的天线端口之间的映射关系由基站指示;所述第二部分天线端口与预编码矩阵所适用的天线端口之间的映射关系由基站指示。
在上述申请实施例的基础上,装置中信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目小于所述信道状态信息参考信号的天线端口的数目。
在上述申请实施例的基础上,装置中预编码矩阵所适用的天线端口由基站在所述信道状态信息参考信号的天线端口中指示出。
在上述申请实施例的基础上,装置中预编码矩阵所适用的天线端口由所述终端在所述信道状态信息参考信号的天线端口中指示出。
在上述申请实施例的基础上,装置中信道状态信息包括预编码矩阵,所述预编码矩阵由矢量矩阵A映射生成,其中,所述矢量矩阵A由第一系数组合第一组矢量与第二组矢量形成。
在上述申请实施例的基础上,装置中第一组矢量和所述第二组矢量分别包括至少一个矢量,所述第一组矢量中所述矢量的组成元素的数目相等和/或所述第二矢量中所述矢量的组成元素的数目相等。
在上述申请实施例的基础上,装置中数目通过以下方式至少之一确定:
由基站指示、由终端选择。
在上述申请实施例的基础上,装置中数目由基站指示,包括:
所述数目为所述基站指示的第二系数与所述信道状态信息参考信号的天线端口的数目的乘积。
在上述申请实施例的基础上,装置中数目由终端指示,包括以下至少之一:
所述数目为根据所述终端指示在基站设置的候选值中选择的取值;所述数目为所述终端指示的第三系数与所述信道状态信息参考信号的天线端口的数目的乘积。
在上述申请实施例的基础上,装置中一组矢量的每个所述矢量的组成元素与所述信道状态信息参考信号的天线端口之间具有映射关系,所述映射关系由以下方法至少之一确定:
所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在上述申请实施例的基础上,第二组矢量的每个所述矢量的组成元素与预编码矩阵的索引号或预编码矩阵适用的频域单元之间具有映射关系,所述映射关系由下述方法至少之一确定:
所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在上述申请实施例的基础上,所述第一组矢量中每个矢量的组成元素的数目由信道状态信息参考信号的天线端口数目确定,所述第二组矢量中每个矢量的组成元素的数目由预编码矩阵的数目确定。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于报告所述第一系数中第一部分系数,其中,所述第一部分系数与所述第一组矢量或所述第二组矢量存在对应关系。
在上述申请实施例的基础上,状态报告模块303中预编码报告单元,用于报告所述第一系数中的第一部分系数,其中,所述第一系数分为P组,所述第一部分系数为所述P组中至少一组系数,其中,P为正整数。
在上述申请实施例的基础上,装置中第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的索引号。
在上述申请实施例的基础上,装置中第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的数目。
图4是本申请实施例提供的一种信道状态信息接收装置的结构示意图,该装置可执行本申请任意实施例提供的信道状态信息接收方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现。如图4所示,本申请实施例提供的装置包括:
配置发送模块401,用于发送信道状态信息参考信号的配置信息和报告信道状态信息的配置信息。
信号发射模块402,用于根据所述信道状态信息参考信号的配置信息发送信道状态信息参考信号。
报告接收模块403,用于接收根据所述报告信道状态信息的配置信息和基于 所述信道状态信息参考信号的测量报告的信道状态信息。
本申请实施例,通过配置发送模块401发送获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息,信号发射模块402按照信道状态信息参考信号的配置信息发送信道状态信息参考信号,报告接收模块403接收按照报告信道状态信息的配置信息以及信道状态信息参考信号的测量进行信道状态信息的报告,实现了信道状态信息的精确报告,可降低信道状态信息传输的资源占用,可提升数据传输的资源利用率。
在上述申请实施例的基础上,装置中信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目大于所述信道状态信息参考信号的天线端口的数目,其中,所述信道状态信息参考信号的天线端口与所述预编码矩阵所应用的天线端口之间具有对应关系,所述对应关系由配置信息指示。
在上述申请实施例的基础上,装置中对应关系指示产生所述预编码矩阵的指示信息的方式。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于接收反馈的X1个矢量的系数,其中,所述矢量的构成元素的数目为所述信道状态信息参考信号的天线端口的数目,其中,所述X1为大于或等于1的整数,所述X1个矢量的系数指示所述预编码矩阵。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于:接收反馈的X2个矢量的系数,其中,所述矢量的构成元素的数目为所述预编码矩阵所适用的天线端口的数目,其中,所述X2为大于或等于1的整数,所述X2个矢量的系数指示所述预编码矩阵。
在上述申请实施例的基础上,装置中信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目等于所述信道状态信息参考信号的天线端口的数目,所述数目记为Nt,其中Nt为大于或等于1的整数。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于:接收反馈的Np个天线端口的信道状态,其中,所述Np个天线端口为终端从所述信道状态信息参考信号的Nt个天线端口选择出,其中,Np为大于或等于1的整数,且所述Np小于Nt。
在上述申请实施例的基础上,装置还包括恢复模块,用于:基于所述Np各天线端口的信道状态恢复适用于Nt个天线端口的预编码矩阵。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于:
接收反馈的X1个矢量的系数,其中,所述矢量的构成元素的数目为Np,X1为正整数。
在上述申请实施例的基础上,信道状态信息参考信号的天线端口包括两部分,第一部分天线端口按照非零功率在信道状态信息参考信号资源上发射,第二部分天线端口按照零功率在信道状态信息参考信号资源上发射。
在上述申请实施例的基础上,信道状态信息参考信号的天线端口包括两部分,第一部分天线端口在信道状态信息参考信号资源上占据时频资源,第二部分天线端口在信道状态信息参考信号资源上不占据时频资源。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于:
接收根据对所述第一部分天线端口发射的所述信道状态信息参考信号的测量,反馈所适用的天线端口数目等于所述信道状态信息参考信号的天线数目的预编码矩阵。
在上述申请实施例的基础上,所述天线端口的指示包括以下至少之一:
指示所述第一部分天线端口的索引号;指示所述第二部分天线端口的索引号;指示所述第一部分天线端口与预编码矩阵所适用的天线端口之间的映射关系;指示所述第二部分天线端口与预编码矩阵所适用的天线端口之间的映射关系。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目小于所述信道状态信息参考信号的天线端口的数目。
在上述申请实施例的基础上,在所述信道状态信息参考信号的天线端口中指示预编码矩阵所适用的天线端口。
在上述申请实施例的基础上,预编码矩阵所适用的天线端口由终端在所述信道状态信息参考信号的天线端口中指示。
在上述申请实施例的基础上,信道状态信息包括预编码矩阵,所述预编码矩阵由矢量矩阵A映射生成,其中,所述矢量矩阵A由第一系数组合第一组矢量与第二组矢量形成。
在上述申请实施例的基础上,第一组矢量和所述第二组矢量分别包括至少一个矢量,所述第一组矢量中所述矢量的组成元素的数目相等和/或所述第二矢量中所述矢量的组成元素的数目相等。
在上述申请实施例的基础上,数目通过以下方式至少之一确定:由基站指示、由终端选择。
在上述申请实施例的基础上,指示数目,包括:
指示的第二系数与所述信道状态信息参考信号的天线端口的数目的乘积为 所述数目。
在上述申请实施例的基础上,数目由终端指示,包括以下至少之一:
所述数目为根据所述终端指示在基站设置的候选值中选择的取值;所述数目为所述终端指示的第三系数与所述信道状态信息参考信号的天线端口的数目的乘积。
在上述申请实施例的基础上,第一组矢量的每个所述矢量的组成元素与所述信道状态信息参考信号的天线端口之间具有映射关系,所述映射关系由以下方法至少之一确定:所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在上述申请实施例的基础上,第二组矢量的每个所述矢量的组成元素与预编码矩阵的索引号或预编码矩阵适用的频域单元之间具有映射关系,所述映射关系由下述方法至少之一确定:所述映射关系由基站指示;所述映射关系由终端选择;所述映射关系由协议设定。
在上述申请实施例的基础上,第一组矢量中每个矢量的组成元素的数目由信道状态信息参考信号的天线端口数目确定,所述第二组矢量中每个矢量的组成元素的数目由预编码矩阵的数目确定。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于:接收报告的所述第一系数中第一部分系数,其中,所述第一部分系数与所述第一组矢量或所述第二组矢量存在对应关系。
在上述申请实施例的基础上,报告接收模块403中矩阵接收单元,用于:接收报告的所述第一系数中的第一部分系数,其中,所述第一系数分为P组,所述第一部分系数为所述P组中至少一组系数,其中,P为正整数。
在上述申请实施例的基础上,第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的数目。
在上述申请实施例的基础上,第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的索引号。
图5是本申请实施例提供的一种终端的结构示意图,该终端包括处理器50、存储器51;终端中处理器50的数量可以是一个或多个,图5中以一个处理器50为例;终端中处理器50、存储器51可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的任一信道状态信息报告方法对应的程 序、本申请实施例中的传输装置对应的模块(配置接收模块301、信号接收模块302和状态报告模块303)。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行电子设备的各种功能以及数据处理,即实现上述的信道状态信息报告方法。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置52可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置53可包括显示屏等显示设备。
图6是本申请实施例提供的一种基站的结构示意图,该基站包括处理器60、存储器61;基站中处理器60的数量可以是一个或多个,图6中以一个处理器60为例;基站中处理器60、存储器61可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的任一信道状态信息报告方法对应的程序、本申请实施例中的传输装置对应的模块(配置发送模块401、信号发射模块402和报告接收模块403)。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行电子设备的各种功能以及数据处理,即实现上述的信道状态信息报告方法。
存储器61可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置62可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置63可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,在一种实施方式中,所述计算机可执行指令在由计算机处理器执行时用于执行一种信道状态信息报告方法。该信道状态信息报告方法包括:获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;根据所述信道状态信息参考信号的配置信息接收信道状态信息参考信号;根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告信道状态信息。
在一种实施方式中,所述计算机可执行指令在由计算机处理器执行时用于执行一种信道状态信息接收方法。该信道状态信息接收方法包括:发送信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;根据所述信道状态信息参考信号的配置信息发送信道状态信息参考信号;接收根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告的信道状态信息。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现。本申请的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或一些步骤、装置、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。相应的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和 不可移除介质。计算机存储介质包括但不限于RAM、ROM、带电可擦可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、闪存或其他存储器技术、只读光盘(Compact Disc Read Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (32)

  1. 一种信道状态信息报告方法,应用于终端,包括:
    获取信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;
    根据所述信道状态信息参考信号的配置信息接收信道状态信息参考信号;
    根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告信道状态信息。
  2. 根据权利要求1所述方法,其中,所述信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目大于所述信道状态信息参考信号的天线端口的数目,其中,所述信道状态信息参考信号的天线端口与所述预编码矩阵所应用的天线端口之间具有对应关系,所述对应关系由配置信息指示。
  3. 根据权利要求2所述方法,其中,所述对应关系指示产生所述预编码矩阵的指示信息的方式。
  4. 根据权利要求2所述方法,其中,报告所述预编码矩阵,包括:
    反馈X1个矢量的系数,其中,所述矢量的构成元素的数目为所述信道状态信息参考信号的天线端口的数目,X1为大于或等于1的整数,所述X1个矢量的系数指示所述预编码矩阵。
  5. 根据权利要求2所述方法,其中,报告所述预编码矩阵,包括:
    反馈X2个矢量的系数,其中,所述矢量的构成元素的数目为所述预编码矩阵所适用的天线端口的数目,X2为大于或等于1的整数,所述X2个矢量的系数指示所述预编码矩阵。
  6. 根据权利要求1所述方法,其中,所述信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目等于所述信道状态信息参考信号的天线端口的数目,所述数目记为Nt,Nt为大于或等于1的整数。
  7. 根据权利要求6所述方法,其中,报告所述预编码矩阵,包括:
    从所述信道状态信息参考信号的Nt个天线端口中选择出Np个天线端口,反馈所述Np个天线端口的信道状态,其中,Np为大于或等于1的整数,且Np小于Nt。
  8. 根据权利要求7所述方法,其中,所述从所述信道状态信息参考信号的Nt个天线端口中选择出Np个天线端口指示基站侧恢复适用于Nt个天线端口的预编码矩阵的方式。
  9. 根据权利要求7所述方法,其中,所述反馈所述Np个天线端口的信道状态,包括:
    反馈X1个矢量的系数,其中,所述矢量的构成元素的数目为Np,X1为正整数。
  10. 根据权利要求1所述方法,其中,所述信道状态信息参考信号的天线端口包括两部分,第一部分天线端口按照非零功率在信道状态信息参考信号资源上发射,第二部分天线端口按照零功率在所述信道状态信息参考信号资源上发射。
  11. 根据权利要求1所述方法,其中,所述信道状态信息参考信号的天线端口包括两部分,第一部分天线端口在信道状态信息参考信号资源上占据时频资源,第二部分天线端口在所述信道状态信息参考信号资源上不占据时频资源。
  12. 根据权利要求10或11所述方法,其中,所述报告信道状态信息,包括:
    根据对所述第一部分天线端口发射的所述信道状态信息参考信号的测量,反馈所适用的天线端口数目等于所述信道状态信息参考信号的天线数目的预编码矩阵。
  13. 根据权利要求10或11所述方法,其中,所述天线端口由基站指示,所述指示包括以下至少之一:
    所述第一部分天线端口的索引号由基站指示;
    所述第二部分天线端口的索引号由基站指示;
    所述第一部分天线端口与预编码矩阵所适用的天线端口之间的映射关系由基站指示;
    所述第二部分天线端口与预编码矩阵所适用的天线端口之间的映射关系由基站指示。
  14. 根据权利要求1所述方法,其中,所述信道状态信息包括预编码矩阵,所述预编码矩阵所适用的天线端口的数目小于所述信道状态信息参考信号的天线端口的数目。
  15. 根据权利要求14所述方法,其中,所述预编码矩阵所适用的天线端口由基站在所述信道状态信息参考信号的天线端口中指示出。
  16. 根据权利要求14所述方法,其中,所述预编码矩阵所适用的天线端口由所述终端在所述信道状态信息参考信号的天线端口中指示出。
  17. 根据权利要求1所述方法,其中,所述信道状态信息包括预编码矩阵,所述预编码矩阵由矢量矩阵A映射生成,其中,所述矢量矩阵A由第一系数组 合第一组矢量与第二组矢量形成。
  18. 根据权利要求17所述方法,其中,所述第一组矢量和所述第二组矢量均包括至少一个矢量,且满足以下至少之一:所述第一组矢量中所述矢量的组成元素的数目相等、所述第二矢量中所述矢量的组成元素的数目相等。
  19. 根据权利要求18所述方法,其中,所述数目通过以下方式至少之一确定:
    由基站指示、由终端选择。
  20. 根据权利要求19所述方法,其中,所述数目由基站指示,包括:
    所述数目为所述基站指示的第二系数与所述信道状态信息参考信号的天线端口的数目的乘积。
  21. 根据权利要求19所述方法,其中,所述数目由终端指示,包括以下至少之一:
    所述数目为根据所述终端指示在基站设置的候选值中选择的取值;
    所述数目为所述终端指示的第三系数与所述信道状态信息参考信号的天线端口的数目的乘积。
  22. 根据权利要求17所述方法,其中,所述第一组矢量的每个矢量的组成元素与所述信道状态信息参考信号的天线端口之间具有映射关系,所述映射关系由以下方法至少之一确定:
    所述映射关系由基站指示;
    所述映射关系由终端选择;
    所述映射关系由协议设定。
  23. 根据权利要求17所述方法,其中,所述第二组矢量的每个矢量的组成元素与预编码矩阵的索引号或预编码矩阵适用的频域单元之间具有映射关系,所述映射关系由下述方法至少之一确定:
    所述映射关系由基站指示;
    所述映射关系由终端选择;
    所述映射关系由协议设定。
  24. 根据权利要求17所述方法,其中,所述第一组矢量中每个矢量的组成元素的数目由所述信道状态信息参考信号的天线端口数目确定,所述第二组矢量中每个矢量的组成元素的数目由所述预编码矩阵的数目确定。
  25. 根据权利要求17所述方法,其中,报告所述预编码矩阵,包括:
    报告所述第一系数中第一部分系数,其中,所述第一部分系数与所述第一组矢量或所述第二组矢量存在对应关系。
  26. 根据权利要求17所述方法,其中,所述信道状态信息包括预编码矩阵,报告所述预编码矩阵,包括:
    报告所述第一系数中的第一部分系数,其中,所述第一系数分为P组,所述第一部分系数为所述P组中至少一组系数,其中,P为正整数。
  27. 根据权利要求26所述方法,其中,所述第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的索引号。
  28. 根据权利要求26所述方法,其中,所述第一部分系数由基站或终端按组指示,所述指示包括:指示所述第一部分系数对应所述组的数目。
  29. 一种信道状态信息接收方法,应用于基站,包括:
    发送信道状态信息参考信号的配置信息和报告信道状态信息的配置信息;
    根据所述信道状态信息参考信号的配置信息发送信道状态信息参考信号;
    接收根据所述报告信道状态信息的配置信息和基于所述信道状态信息参考信号的测量报告的信道状态信息。
  30. 一种终端,包括:
    至少一个处理器;
    存储器,用于存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-28中任一所述的信道状态信息报告方法。
  31. 一种基站,包括:
    至少一个处理器;
    存储器,用于存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求29中所述的信道状态信息接收方法。
  32. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序被至少一个处理器执行,以实现如权利要求1-29中任一所述的方法。
PCT/CN2023/085711 2022-04-28 2023-03-31 信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质 WO2023207518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210470675.7A CN117014941A (zh) 2022-04-28 2022-04-28 信道状态信息报告、接收方法、终端、基站和存储介质
CN202210470675.7 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207518A1 true WO2023207518A1 (zh) 2023-11-02

Family

ID=88517352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085711 WO2023207518A1 (zh) 2022-04-28 2023-03-31 信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质

Country Status (2)

Country Link
CN (1) CN117014941A (zh)
WO (1) WO2023207518A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370266A (zh) * 2015-11-18 2018-08-03 三星电子株式会社 在使用多天线的无线通信系统中发送和接收信道状态信息的方法和设备
CN111901080A (zh) * 2020-01-07 2020-11-06 中兴通讯股份有限公司 一种信息获取方法、装置、设备和存储介质
CN112312463A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 上报信道状态信息的方法和装置
CN112865843A (zh) * 2021-01-14 2021-05-28 中兴通讯股份有限公司 信道状态信息传输方法、装置、电子设备和存储介质
EP3855635A1 (en) * 2020-01-24 2021-07-28 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Csi reporting based on linear combination port-selection codebook

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370266A (zh) * 2015-11-18 2018-08-03 三星电子株式会社 在使用多天线的无线通信系统中发送和接收信道状态信息的方法和设备
CN112312463A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 上报信道状态信息的方法和装置
CN111901080A (zh) * 2020-01-07 2020-11-06 中兴通讯股份有限公司 一种信息获取方法、装置、设备和存储介质
EP3855635A1 (en) * 2020-01-24 2021-07-28 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Csi reporting based on linear combination port-selection codebook
CN112865843A (zh) * 2021-01-14 2021-05-28 中兴通讯股份有限公司 信道状态信息传输方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN117014941A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US20220200668A1 (en) Communications method and device
US11736170B2 (en) Data transmission method, terminal device, and network device
CN107342852B (zh) 信令发送、接收方法及装置、网络侧设备、终端
CN105934910B (zh) 叠加编码的资源分配方法及其基站
WO2017185931A1 (zh) 一种生成传输块的方法和装置
CN107370591B (zh) 信令传输方法、装置及系统
CN111817798B (zh) 一种信道测量方法和通信装置
EP4280469A1 (en) Channel state information transmission method and apparatus, electronic device, and storage medium
JP6278325B2 (ja) チャネル状態情報フィードバック方法および装置
WO2018028467A1 (zh) 传输块的发送方法和装置、接收方法和装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
CN107733560B (zh) 数据分割方法、装置及终端
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
CN110535603A (zh) 数据传输和数据接收方法、装置及存储介质
CN103368697B (zh) 协作cqi和/或节点间的pci的反馈方法及装置
CN112671442B (zh) 通信方法和通信装置
WO2023207518A1 (zh) 信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质
CN111901273A (zh) 一种调制编码方法、装置、设备和存储介质
WO2017186064A1 (zh) 一种信道状态信息反馈和接收方法、装置
WO2022139872A1 (en) Apparatus and method for channel state information reference signal in wireless communication systems
WO2023050843A1 (zh) 信息报告、接收方法、设备和存储介质
WO2023078176A1 (zh) 信息传输方法、设备和存储介质
WO2023078177A1 (zh) 信息传输方法、设备和存储介质
WO2024094048A1 (zh) 一种通信方法、装置、设备和存储介质
WO2022242444A1 (zh) 信道状态信息传输方法、装置、通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794953

Country of ref document: EP

Kind code of ref document: A1