WO2023050843A1 - 信息报告、接收方法、设备和存储介质 - Google Patents

信息报告、接收方法、设备和存储介质 Download PDF

Info

Publication number
WO2023050843A1
WO2023050843A1 PCT/CN2022/095287 CN2022095287W WO2023050843A1 WO 2023050843 A1 WO2023050843 A1 WO 2023050843A1 CN 2022095287 W CN2022095287 W CN 2022095287W WO 2023050843 A1 WO2023050843 A1 WO 2023050843A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
vectors
communication node
channel state
reference signal
Prior art date
Application number
PCT/CN2022/095287
Other languages
English (en)
French (fr)
Inventor
李永
吴昊
鲁照华
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to AU2022353555A priority Critical patent/AU2022353555A1/en
Priority to KR1020247007270A priority patent/KR20240041375A/ko
Publication of WO2023050843A1 publication Critical patent/WO2023050843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the communication field, in particular to an information reporting and receiving method, device and storage medium.
  • the base station can determine a data transmission strategy according to the channel state represented by the received channel state information, and perform data transmission according to the data transmission strategy, so as to improve data transmission efficiency. Therefore, how to design the processing mechanism of the channel state information to improve the accuracy of obtaining the channel state, reduce the resource overhead used, and reduce the complexity of the system is still an urgent problem to be solved.
  • An embodiment of the present application provides an information reporting method applied to a first communication node, including:
  • An embodiment of the present application provides an information receiving method applied to a second communication node, including:
  • An embodiment of the present application provides a communication device, including: a communication module, a memory, and one or more processors;
  • the communication module is configured to perform communication interaction between the first communication node and the second communication node;
  • the memory configured to store one or more programs
  • the one or more processors are made to implement the method described in any of the foregoing embodiments.
  • An embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in any one of the foregoing embodiments is implemented.
  • FIG. 1 is a flow chart of an information reporting method provided by an embodiment of the present application
  • FIG. 2 is a flow chart of an information receiving method provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of an information reporting device provided by an embodiment of the present application.
  • FIG. 4 is a structural block diagram of an information receiving device provided in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Wireless communication has developed to the 5th generation of communication technology.
  • LTE Long Term Evolution
  • NR New Radio
  • OFDM Orthogonal Frequency Division Multiplexing
  • the smallest frequency domain unit is a subcarrier, and the smallest time domain unit is an OFDM symbol
  • a resource block (Resource Block, RB) is defined, a resource block definition It is a specific number of continuous subcarriers
  • a bandwidth block (BandWidth Part, BWP) is defined, and a bandwidth block is defined as another specific number of continuous resource blocks on a carrier
  • a time slot (slot) is defined ), a time slot is defined as yet another specific number of consecutive OFDM symbols.
  • the method for obtaining channel state information in a wireless communication system and the method for using the channel state information for data transmission include the following steps: the base station sends a reference signal; the terminal measures the reference signal, determines the channel state information from the base station to the terminal, and reports the channel state information to The base station; the base station receives the channel state information reported by the terminal.
  • the base station determines a strategy for data transmission according to the channel state represented by the received channel state information, and transmits data, thereby improving the efficiency of data transmission.
  • the accuracy of the channel state represented by the channel state information affects the transmission strategy of the base station, thereby affecting the efficiency of data transmission.
  • the base station needs to occupy the overhead of downlink resources for transmitting reference signals, and the terminal needs to occupy the overhead of uplink resources for uploading channel state information.
  • the increase in system complexity will increase the cost of the system and increase energy consumption. Therefore, it is necessary to consider many factors comprehensively in the design.
  • the development of wireless communication technology needs to further design a mechanism for processing channel state information, so as to improve the accuracy of the obtained channel state, reduce the resource overhead used, and reduce the complexity of the system.
  • the reference signal sent by the base station to the terminal is the downlink reference signal;
  • the downlink reference signal used for channel state information reporting in the LTE system includes cell-specific reference signal (Cell-specific Reference Signal, CRS), channel state information reference signal (Channel-State Information Reference Signal, CSI-RS);
  • the downlink reference signal used for channel state information reporting in the NR system includes CSI-RS.
  • the CSI-RS is carried by the channel state information reference signal resource (CSI-RS Resource).
  • the channel state information reference signal resource is composed of CDM groups.
  • a CDM group is composed of radio resource elements.
  • the CSI-RS of a group of CSI-RS ports is in It is multiplexed by means of code division multiplexing.
  • the content of the channel state information transmitted between the base station and the terminal includes: a channel quality indicator (Channel quality indicator, CQI), used to indicate the quality of the channel; or, including a precoding matrix indicator (Precoding Matrix Indicator, PMI), used to to indicate the precoding matrix applied to the base station antenna.
  • CQI Channel quality indicator
  • PMI Precoding Matrix Indicator
  • the reporting format of one type of CQI is wideband CQI reporting (wideband CQI reporting), that is, a channel quality is reported for the channel state information reporting band (CSI reporting band), and the channel quality corresponds to the entire channel state information reporting band; the other type of CQI
  • the report format of CQI is subband CQI reporting (subband CQI reporting), that is, the channel quality is given in units of subbands for the channel state information reporting band (CSI reporting band), and one channel quality corresponds to one subband, which is the channel state
  • Each subband of the information reporting frequency band reports a channel quality.
  • the subband is a frequency domain unit, defined as N consecutive RBs, where N is a positive integer; for ease of description, this application is called a channel quality indicator subband, or a CQI subband, or a subband; where N is called The size (size) of the CQI subband is also called the CQI subband size or the subband size (size).
  • the bandwidth block (BWP, Bandwidth part) is divided into subbands, and the channel state information reporting band (CSI reporting band) is defined by a subset of the subbands of the bandwidth block (BWP, Bandwidth part).
  • a channel state information reporting band (CSI reporting band) is a frequency band on which channel state information needs to be reported.
  • One way to determine the channel quality is to determine according to the strength of the reference signal received by the terminal; another way to determine the channel quality is to determine according to the signal-to-noise ratio of the received reference signal.
  • reporting CQI in the way of wideband CQI report can reduce the resource overhead for CQI reporting; Reporting CQI can increase the accuracy of CQI reporting.
  • the reporting format of one type of PMI is a broadband PMI report, that is, one PMI is reported for a channel state information reporting frequency band, and the PMI corresponds to the entire channel state information reporting frequency band.
  • Another type of PMI report format is sub-band PMI report, that is, one PMI is reported for each sub-band of the channel state information reporting frequency band, or a component part of a PMI is reported for each sub-band of the channel state information reporting frequency band.
  • PMI is composed of X1 and X2.
  • One way to report a PMI component for each subband of the channel state information reporting frequency band is: report one X1 for the entire frequency band, and report one X2 for each subband; another way For: report one X1 and one X2 for each subband.
  • the reporting format of another type of PMI is that the reported PMI indicates R precoding matrices for each subband, where R is a positive integer.
  • R represents the number of precoding matrix subbands included in each subband, or the number of precoding matrix subbands included in each CQI subband.
  • a method for reporting channel state information A terminal receives configuration information (including first configuration information and second configuration information) of a base station. The terminal receives a channel state information reference signal transmitted by the base station according to the configuration information. The terminal receives the configuration information according to the configuration information. Report channel status information;
  • the channel state information includes a precoding matrix indicator, and the precoding matrix is determined by the first group of vectors, or determined by the first group of vectors and the second group of vectors; the first group of vectors includes L vectors, and the second group of vectors Contains M v vectors, wherein L, M v are positive integers; wherein, a vector in the first group of vectors corresponds to a port of the channel state information reference signal; a vector in the second group of vectors is an index number of The DFT vector of ; where, the index number is The elements of the DFT vector are
  • N 3 is the number of precoding matrices.
  • t is the index number of the element in the DFT vector, and the value is 0,1,...,N 3 -1.
  • t may also represent the index number of the precoding matrix.
  • t may also represent an index number of a frequency domain unit, and a value of t corresponds to a frequency domain unit.
  • the precoding matrix with the index t corresponding to the element with the index t of the DFT vector in the second group of vectors is the precoding matrix of the frequency domain unit with the index t.
  • W W 1 W 2 W f , where W represents precoding, W 1 represents the matrix composed of the first set of vectors, and W f represents The matrix formed by the second group of vectors, W 2 represents the coefficients of combining the first group of vectors and the second group of vectors to form a precoding matrix, expressed in a matrix.
  • the terminal reports the number K NZ of the reported coefficients to the base station.
  • a port with sequence number mi is mapped to a map
  • the way is, is a vector containing P/2 elements, where the (m i mod P/2)th element is 1, and the remaining elements are 0; among them, mod represents the modulo operation, m i represents the dividend, and P/2 represents the divisor; the first element is the 0th element.
  • v 2 [0,0,1,0] T ; where T represents transposition.
  • O represents a vector containing P/2 elements, and all elements are 0.
  • W f composed of M v vectors from the second set of vectors
  • W W 1 W 2 , where W represents the precoding matrix; W 1 represents the matrix composed of the first set of vectors, dimension is P ⁇ 2L, that is, the first dimension is P, and the second dimension is 2L; W 2 represents the coefficients of combining the first group of vectors to form the precoding matrix, expressed in a matrix, and the dimension is 2L ⁇ 1, that is, the first dimension is 2L, The second dimension is 1; that is, the number of elements contained in W 2 is 2L, that is, the number of coefficients constituting one layer of the precoding matrix is 2L.
  • the precoding matrix consists of the first group of vectors and the second group of vectors
  • W represents the precoding matrix
  • W 1 represents the The matrix composed of vectors has a dimension of P ⁇ 2L, that is, the first dimension is P, and the second dimension is 2L
  • W f represents the matrix composed of the second group of vectors, and the dimension is M v ⁇ N 3 , that is, the first dimension is M v , the second dimension is N 3
  • W 2 represents the coefficients of combining the first group of vectors and the second group of vectors to form the precoding matrix, expressed in a matrix, and the dimension is 2L ⁇ M v , that is, the first dimension is 2L, and the second dimension is M v ; that is, the number of elements contained in W 2 is 2LM v , that is, the number of coefficients constituting one layer of the precoding matrix is 2LM v .
  • the terminal In order to save the overhead of the terminal reporting the precoding matrix indicator, the terminal only reports a part of the coefficients that make up the precoding matrix; for example, the base station configures the parameter ⁇ to the terminal to determine the parameter K 0 , Wherein ⁇ is a positive number less than or equal to 1; for the coefficients of one layer of the precoding matrix, the number of coefficients reported by the terminal to the base station does not exceed K 0 ; for the coefficients of all layers of the precoding matrix, the number of coefficients reported by the terminal to the base station The number of coefficients does not exceed 2K 0 in total.
  • the terminal In order for the base station to receive the reported coefficients, the terminal also reports the number K NZ of the reported coefficients to the base station, and reports a bitmap (bitmap), indicating which coefficients among the coefficients constituting the precoding matrix are reported with the non-zero bits of the bitmap .
  • bitmap bitmap
  • FIG. 1 is a flowchart of an information reporting method provided in an embodiment of the present application. This embodiment may be executed by the first communications node. Wherein, the first communication node may be a terminal side (for example, user equipment). As shown in Fig. 1, this embodiment includes: S110-S130.
  • S110 Receive first configuration information and second configuration information of the second communication node.
  • the channel state information includes: a precoding matrix indicator; the precoding matrix corresponding to the precoding matrix indicator is determined by the first group of vectors, or determined by the first group of vectors and the second group of vectors Sure;
  • the first set of vectors includes L vectors
  • the second set of vectors includes M v vectors; wherein, L and M v are both positive integers;
  • a vector in the first group of vectors corresponds to a channel state information reference signal port; an element in a vector in the second group of vectors corresponds to a precoding matrix.
  • the first communication node refers to a terminal
  • the second communication node refers to a base station.
  • the first configuration information includes: the identifier of the channel state information reference signal resource, the number of channel state information reference signal resource ports; wherein, the channel state information reference signal resource is used to carry the channel state information reference signal, the channel state information
  • the reference signal port is used to transmit the channel state information reference signal.
  • the channel state information reference signal port is mapped to the channel state information reference signal resource.
  • the number of channel state information reference signal ports is also called the number of channel state information reference signal resource ports.
  • the terminal obtains the channel state information reference signal resource corresponding to the channel state information to be fed back according to the identifier of the channel state information reference signal resource, so as to determine to measure the corresponding channel state information reference signal resource; and according to the channel state information reference signal resource The number of ports completely measures the channel state information reference signal.
  • the second configuration information includes codebook type information, where the codebook type information is used to indicate the type of the precoding matrix reported by the terminal.
  • the codebook type information is used to indicate the precoding matrix type corresponding to the protocol version, that is, to indicate which standard protocol version corresponds to the precoding matrix type; because there are multiple standard protocol versions that have a mechanism for feeding back the precoding matrix , but there are differences in different standard protocol versions.
  • the codebook type information is used to indicate the characteristics of the mechanism for feeding back the precoding matrix, such as directly selecting the spatial domain vector, or linearly combining the spatial domain vector, or linearly combining the spatial domain vector and the frequency domain vector, or selecting an antenna port.
  • the codebook type is used to indicate the precoding matrix for a single antenna panel or the precoding matrix for multiple panels. The terminal may adopt the correct mechanism and method to feed back the precoding matrix according to the codebook type information.
  • the second configuration information includes: a first ratio parameter; the method of determining K1 includes: determining K according to the number P of channel state information reference signal ports and the first ratio parameter 1 .
  • the determining K 1 according to the number P of the channel state information reference signal ports and the first ratio parameter includes: determining the number P of the channel state information reference signal ports and the first proportional parameter. A product value of the proportional parameter; determining a rounded value of the product value between the product value and a predetermined first fixed value; determining K 1 according to the rounded value and a predetermined second fixed value.
  • determining K 1 according to the number P of the channel state information reference signal ports and the first ratio parameter includes: determining an integer value, the integer value being the channel state information reference signal port The number P of the first proportional parameter and the rounded integer value of the product value of the first proportional parameter and the predetermined first fixed value; K 1 is determined according to the rounded integer value and the predetermined second fixed value.
  • the product value between the number P of channel state information reference signal ports, the first proportional parameter and a predetermined first constant value is determined, and the product value is rounded, and the rounded value and the preset
  • the product value of the second fixed value is taken as K 1 . It should be noted that rounding the product value between the number P of channel state information reference signal ports, the first proportional parameter and the predetermined first constant value can also be understood as the number P of channel state information reference signal ports , The value of the product of the first proportional parameter and the reciprocal of the predetermined first fixed value is rounded.
  • the determining K 1 according to the number P of the channel state information reference signal ports and the first ratio parameter includes: according to the number P of the channel state information reference signal ports and the first The product value of the scaling parameters determines K 1 .
  • the second configuration information includes: a first ratio parameter; the method of determining L includes: determining a product value of the number P of channel state information reference signal ports and the first ratio parameter ; Determine L according to the rounded value of the product value between the product value and a predetermined first constant value.
  • the second configuration information includes: a first ratio parameter; the method of determining the L includes: determining the L according to a rounded value, wherein the rounded value is the channel state information reference signal port The number P of , the rounded value of the product value of the first proportional parameter and the predetermined first fixed value.
  • the product value between the number P of channel state information reference signal ports, the first proportional parameter and a predetermined first constant value is determined, and the product value is rounded, and the rounded value and the preset
  • the product value of the second fixed value is taken as L. It should be noted that rounding the product value between the number P of channel state information reference signal ports, the first proportional parameter and the predetermined first constant value can also be understood as the number P of channel state information reference signal ports , The value of the product of the first proportional parameter and the reciprocal of the predetermined third fixed value is rounded.
  • the base station controls the size of the first group of vectors used to combine the precoding matrix by configuring the indicating parameter K 1 or L to the terminal, so as to achieve the purpose of optimizing and reducing the computation load of the terminal and improving feedback performance.
  • a scheme for indicating the parameter K 1 is: the base station configures the first proportional parameter ⁇ for the terminal; the parameter K 1 is equal to the product value of the number P of CSI-RS resource ports and the first proportional parameter ⁇ .
  • the CSI-RS resources correspond to dual-polarized antenna ports, that is, one polarization direction corresponds to half of the CSI-RS resource ports, and the other polarization direction corresponds to the other half of the CSI-RS resource ports.
  • the candidate values of P may include ⁇ 2, 4, 8, 12, 16, 24, 32 ⁇
  • the candidate values of ⁇ may include ⁇ 1/2, 3/4, 1 ⁇ , according to the candidate values of P and ⁇
  • the candidate values of K1 obtained from the candidate values are shown in Table 1 below:
  • the base station configures the first proportional parameter ⁇ for the terminal; wherein, the parameter K 1 is equal to the product of the number P of channel state information reference signal ports and the first proportional parameter ⁇
  • the function value is rounded and then multiplied by 2.
  • the base station configures the first proportional parameter ⁇ for the terminal, wherein the channel state information refers to the product value between the number P of signal ports and the parameter ⁇ , and the product value is multiplied by a constant c or divided by Carry out rounding after a constant c, and then multiply the rounded value by 2 to obtain the parameter K 1 .
  • the base station configures the first proportional parameter ⁇ for the terminal, wherein the parameter K 1 is equal to the product of the number P of channel state information reference signal ports and the first proportional parameter ⁇ , and divides the product value by Round after 2 and multiply the rounded value by 2.
  • the base station configures the first proportional parameter ⁇ for the terminal, wherein, the channel state information refers to the product value between the number P of signal ports and the parameter ⁇ , divides the product value by 2, and takes upward After rounding, the rounded value is multiplied by 2 to obtain the parameter K 1 , namely in Indicates rounding up.
  • the candidate values of P as ⁇ 2, 4, 8, 12, 16, 24, 32 ⁇ and the candidate values of ⁇ as ⁇ 1/2, 3/4, 1 ⁇ as an example, according to The determined candidate values of K1 are shown in Table 2:
  • the candidate values of K1 all meet the requirement of selecting half of the ports from one polarization direction and the other half of the ports from the other polarization direction, that is, the selection of ports based on the same method of polarization is satisfied.
  • the base station configures the first proportional parameter ⁇ for the terminal; wherein, the parameter L is equal to the rounded integer of the function value of the product of the number P of channel state information reference signal ports and the parameter ⁇ .
  • the base station configures the first proportional parameter ⁇ for the terminal, wherein the product value between the number P of channel state information reference signal ports and the parameter ⁇ is determined, and the product value is multiplied by a constant c or Rounding is performed after division by a constant c, and the rounded value is used as the parameter L.
  • the base station configures the first ratio parameter c for the terminal, wherein the product of the number P of channel state information reference signal ports and the parameter ⁇ is determined, and the product value is divided by 2 and then rounded to an integer.
  • the rounded value is used as parameter L.
  • the base station configures the first proportional parameter c for the terminal, wherein the product of the number P of channel state information reference signal ports and the parameter ⁇ is determined, the product value is divided by 2 and then rounded up, The rounded value is used as parameter L.
  • the base station configures the first proportional parameter ⁇ for the terminal, where the parameter L is equal to the product of the number P of channel state information reference signal ports and the parameter ⁇ divided by 2, and rounded up; that is in Indicates rounding up.
  • the candidate values of P as ⁇ 2, 4, 8, 12, 16, 24, 32 ⁇ and the candidate values of c as ⁇ 1/2, 3/4, 1 ⁇ as an example, according to Candidate values for L were determined as follows:
  • the L candidate values all meet the requirement of selecting L ports from one polarization direction and selecting another L ports from another polarization direction, that is, the selection of ports based on the same method of polarization is satisfied.
  • the second configuration information includes the first proportional parameter ⁇ , where K 1 is equal to the product of the number P of channel state information reference signal ports and the parameter ⁇ , and the candidate value of ⁇ is based on the channel state information reference signal
  • the number P of ports is determined. For example, corresponding to the value of P ⁇ 8, 16, 24, 32 ⁇ , the candidate value of ⁇ is ⁇ 1, 3/4, 1/2 ⁇ ; corresponding to the value of P ⁇ 4, 12 ⁇ , the candidate value of ⁇ is ⁇ 1,1/2 ⁇ ; corresponding to the value of P ⁇ 4,12 ⁇ , the candidate value of ⁇ is ⁇ 1 ⁇ .
  • the second communication node indicates the value of M v and the value of N through the second configuration information; wherein, the value of N indicates N candidate vectors, and the N candidate vectors are consecutive index numbers vector; the M v vectors are determined from N candidate vectors.
  • the base station indicates the candidate vectors and the number of vectors included in the second group of vectors participating in the combined precoding matrix for the terminal through the second configuration information.
  • the base station grasps some information of the downlink channel through the uplink channel and channel reciprocity, determines the candidate vector, and the number of vectors included in the second group of vectors participating in the combined precoding matrix; the second group of vectors of the combined precoding matrix is obtained from the candidate vector Determining in the vector can reduce the calculation amount of the terminal's search and calculation of the vector of the combined precoding matrix under the condition of ensuring the performance of the fed back precoding matrix, thereby reducing the complexity of the terminal.
  • a method for indicating the N candidate vectors is: enumerating the N candidate vectors one by one, or enumerating the index numbers of the N candidate vectors one by one. Another method of indicating the N candidate vectors is to indicate the start vector and the end vector of vectors with consecutive index numbers, or indicate the start index number and end index number of vectors with consecutive index numbers. Yet another method of indicating N candidate vectors is: indicating the start vector or start index number of vectors with consecutive index numbers, and the number N of candidate vectors. Yet another method of indicating N candidate vectors is: indicating the number N of vectors with consecutive index numbers, and the candidate vectors are vectors with index numbers 0 to N ⁇ 1.
  • this method of indicating N candidate vectors is to use this characteristic. Using this indication method reduces the complexity of indicating candidate vectors, and reduces the complexity of determining M v vectors participating in the combined precoding matrix from the candidate vectors.
  • M v vectors are determined from N candidate vectors, that is, the value of M v is correlated with the value of N, and the second configuration information indicates that the value of M v and the value of N should reflect their correlation to ensure the obtained performance of the precoding matrix and reduce the system complexity of determining M v vectors involved in combining the precoding matrix.
  • the second configuration information indicates the value of M v and the value of N, including: the second configuration information includes the value of N, and indicates the value of M v according to the value of N.
  • the second configuration information includes the value of N, corresponding to the value of N being 1, and the value of M v being 1.
  • the second configuration information includes the value of N, corresponding to the value of N being 2, and the value of M v being 2.
  • the value of N is 2, and the value of Mv can be 1, but it is not necessary that the value of Mv can be 1; because of the rotatability of the vector, the base station can determine that the first vector among the candidate vectors is One of the M v vectors, then corresponding to the value of N being 2, the value of M v being 1 becomes meaningless; so corresponding to the value of N being 2, the value of M v is 2 , which can simplify the indication of the value of M v by the system, and simplify the complexity of determining the M v vectors by the terminal.
  • the second configuration information includes the value of N, corresponding to the value of N greater than 2, and the value of M v is 2. Because the base station can transmit channel state information reference signals that deal with frequency domain characteristics, corresponding to the value of N greater than 2, the value of M v greater than 2 will not gain the performance of the system, and increase the complexity of the system; so with the value of N Corresponding to a value greater than 2, the value of M v is 2, which can guarantee system performance and reduce system complexity.
  • the value indicated according to the value of N includes one of the following:
  • the second configuration information indicates the value of Mv and the value of N, including: the second configuration information includes the value of Mv , and indicates the value of N according to the value of Mv .
  • the second configuration information includes the value of Mv , corresponding to the value of Mv being 1, and the value of N being 1.
  • the second configuration information includes the value of Mv , which corresponds to the value of Mv being 2, and the value of N is greater than or equal to 2.
  • the value of N indicated according to the value of Mv includes one of the following:
  • N is equal to or greater than 2;
  • N i is a value in ⁇ 3,4,5 ⁇ .
  • the second configuration information indicates the value of M v and the value of N, including: the second configuration information includes: a combination parameter, and indicates the value of M v and the value of N according to the combination parameter .
  • a combined parameter is used to indicate the value of M v and the value of N, that is, one parameter is used to indicate the value of M v and the value of N.
  • a scheme for indicating the value of M v and the value of N by using a combination parameter is as follows: a candidate value of the combination parameter 1 indicates a value of N and a value of M v . For example, a value of 0 for the combination parameter 1 indicates that N is 0 and Mv is 1. For another example, the value of combination parameter 1 is 1, indicating that N is 2, and Mv is 2. For another example, the value of combination parameter 1 is 2, indicating that N is Ni, and M v is 2; wherein Ni is a value in ⁇ 3, 4, 5 ⁇ . As shown in Table 4.
  • the reporting channel state information according to the channel state information reference signal and the second configuration information includes: determining the first communication node's response to the second group according to the value of M v and the value of N The reporting status of the vectors in the vector; or, determining the reporting status of the vectors in the second group of vectors by the first communication node according to the value of N.
  • the terminal does not report the vectors in the second group of vectors to the base station.
  • the terminal reports the vectors in the second group of vectors to the base station.
  • the terminal does not report the vectors in the second group of vectors to the base station.
  • the terminal does not report the vectors in the second group of vectors to the base station.
  • the terminal does not report the vectors in the second group of vectors to the base station.
  • the terminal does not report the vectors in the second group of vectors to the base station.
  • M v is 2 and N is greater than 2
  • the terminal reports the vectors in the second group of vectors to the base station.
  • the second group of vectors participating in the combined precoding matrix can be determined according to the value of M v and the value of N, without the need for the terminal to report the second group of vectors participating in the combined precoding matrix to the base station, thereby saving the reporting time Resource overhead; in other cases, the second group of vectors participating in the combined precoding matrix cannot be determined only according to the value of Mv and the value of N, and the terminal needs to report the second group of vectors participating in the combined precoding matrix to the base station; therefore according to The value of M v and the value of N determine whether the terminal reports the vectors in the second group of vectors to the base station, which can ensure that the base station knows the second group of vectors participating in the combined precoding matrix, and save resource overhead for reporting.
  • the determining the reporting situation of the vectors in the second group of vectors by the first communication node according to the value of M v and the value of N includes:
  • the first communication node does not report a vector in the second set of vectors to the second communication node;
  • the first communication node reports a vector in the second set of vectors to the second communication node.
  • determining the report status of the first communication node to the vectors in the second group of vectors according to the value of N includes one of the following:
  • the first communication node reports a vector in the second set of vectors to the second communication node;
  • the first communication node does not report the vectors in the second set of vectors to the second communication node; wherein N i is one of ⁇ 3,4,5 ⁇ value;
  • the first communication node reports a vector in the second set of vectors to the second communication node;
  • the first communications node does not report vectors in the second set of vectors to the second communications node.
  • the first communication node reporting the second set of vectors to the second communication node includes: the first communication node reporting the M v vectors to the second communication node corresponds to the space between index numbers.
  • the terminal reports the second group of vectors to the base station, including: reporting intervals between index numbers corresponding to the M v vectors.
  • One solution is that the terminal reports to the base station the interval between the start vectors of the M v vectors and the index numbers of the M v vectors, and then the terminal reports to the base station that the second group of vectors is the starting vector of the N vectors A total of M v vectors with one vector at each interval from the start vector.
  • the vector of N consecutive index numbers is ⁇ vector 2, vector 3, vector 4, vector 5 ⁇ , where N is 4;
  • the first vector among the N vectors reported by the terminal is: the start vector of M v vectors , that is, the starting vector of M v vectors is vector 3, and the interval between the index numbers of M v vectors is 2, that is, the reported M v vectors are ⁇ vector 3, vector 5 ⁇ ; among the N vectors
  • the first vector of is vector 2, and the value of M v is 2.
  • the terminal reports to the base station the interval between the index numbers of the M v vectors, and then the terminal reports to the base station that the second group of vectors is the total of one vector at each interval starting from the first vector among the N vectors M v vectors.
  • M v is 2
  • N is 4
  • the interval between the index numbers of M v vectors reported by the terminal to the base station is T
  • the candidate vectors of N consecutive index numbers are ⁇ vector 0, vector 1, vector 2, vector 3 ⁇
  • the second set of vectors reported is ⁇ vector 0, vector T ⁇ .
  • the interval between the index numbers is the difference between the index numbers.
  • the reporting of the second set of vectors by the first communication node to the second communication node includes: corresponding to M v being 2 and N greater than M v , the first communication node reporting to the second communication node The second communication node reports the index number of one vector, and the index number of the other vector is a predetermined value.
  • the reporting of the second set of vectors by the first communication node to the second communication node includes: using bits to report the second set of vectors.
  • the terminal transmits the Sounding Reference Signal (SRS), the base station receives the sounding reference signal to obtain the uplink channel state information, and the base station schedules the terminal to use the transmitting antenna corresponding to the transmitted sounding reference signal to match the channel state information according to the uplink channel state information
  • SRS Sounding Reference Signal
  • the terminal uses multiple transmitting antennas.
  • the transmitting antenna of the terminal is limited by the number of other transmitting devices that match it, and cannot use all transmitting antennas to transmit signals at the same time; the terminal transmits sounding reference signals by switching to use different transmitting antennas, thereby The base station is enabled to obtain uplink channel state information corresponding to different transmitting antennas.
  • An antenna switching scenario occurs inside the sounding signal resource set: the sounding signal resource set includes multiple sounding signal resources, and different sounding signal resources use different transmit antennas; where there is a guard time interval between different sounding signal resources, To ensure that different antennas can be switched smoothly; the guard time interval is realized by configuring the initial OFDM symbol in the time slot of the sounding signal resource in the configuration set and the number of OFDM symbols occupied by the sounding signal resource.
  • antenna switching occurs between sets of sounding signal resources; antenna switching occurs between sets of sounding signal resources, so a guard interval is required between the resources of the two sets.
  • Antenna switching occurs within the sounding signal resource set, and the resources of the sounding signal resource set are only in the same time slot; while antenna switching occurs between the sounding signal resource sets, and the resources of the two sets are located in different time slots; therefore Guaranteeing a guard interval between two sets is a problem to be solved.
  • this application proposes a method for implementing SRS transmission, which guarantees a guard interval between two sets.
  • a method for transmitting a sounding reference signal includes:
  • the terminal receives configuration information about the uplink reference signal from the base station;
  • the terminal transmits an uplink reference signal according to the configuration information.
  • the configuration information includes the purpose of the sounding signal resource set; wherein, the sounding signal resource set whose purpose is antenna switching is not transmitted on the first N OFDM symbols in the time slot, and the N is determined according to one of the following methods :
  • N is configured by the base station
  • N is specified by the agreement
  • the minimum value of N is determined by the capabilities of the terminal.
  • the configuration information includes the purpose of the sounding signal resource set; wherein, the sounding signal resource set whose purpose is antenna switching is not transmitted on the last N OFDM symbols in the time slot, and the N is determined according to one of the following methods :
  • N is configured by the base station
  • N is specified by the agreement
  • the minimum value of N is determined by the capabilities of the terminal.
  • the configuration information includes the purpose of the sounding signal resource set; wherein, for the sounding signal resource set whose use is antenna switching, no other sounding signal resource sets are transmitted on the subsequent N OFDM symbols, and the N is according to the following method One of the ok:
  • N is configured by the base station
  • N is specified by the agreement
  • the minimum value of N is determined by the capabilities of the terminal.
  • the configuration information includes the use of the sounding signal resource set; wherein, for the sounding signal resource set whose use is antenna switching, no other sounding signal resource sets are transmitted on the first N OFDM symbols, and the N is according to the following method One of the ok:
  • N is configured by the base station
  • N is specified by the agreement
  • the minimum value of N is determined by the capabilities of the terminal.
  • the terminal transmits the SRS, the base station receives the sounding reference signal to obtain uplink channel state information, and the base station schedules the terminal to use the transmitting antenna corresponding to the transmitting sounding reference signal to transmit data in a manner matching the channel state information according to the uplink channel state information , to improve the efficiency of data transmission.
  • the terminal may use one port to transmit the sounding reference signal; in another scenario, the terminal may use multiple ports to transmit the sounding reference signal respectively.
  • one terminal may transmit sounding reference signals; in another scenario, multiple terminals transmit sounding reference signals.
  • different sounding reference signals are mapped to subcarriers with different transmission comb offset values (Comb offset value), on the other hand
  • Different sounding reference signals with the same transmission comb offset value are configured with different phase rotation offsets. That is, increasing the number of transmission combs can support the transmission of more sounding reference signals; at the same time, with the increase of the number of transmission combs, the number of subcarriers used to map sounding reference signals on the same bandwidth becomes smaller, and the number of sounding reference signals that can be mapped The sequence of the reference signal becomes shorter.
  • the transmission technology between the transmission comb number and the sounding reference signal port may include: the transmission comb number is 2, 4, and the sounding reference signal transmission technology supporting 1, 2, 4 ports; the transmission comb number is 8. Support 1-port sounding reference signal transmission technology.
  • the existing sounding reference signal transmission technology is used to realize the transmission comb number of 8, 4 port sounding reference signal transmission, which brings the problem that the port signals are not orthogonal, thereby introducing mutual interference between ports; and on the port The phase rotation offset of the sounding reference signal is not at the preset phase rotation offset position, thus increasing the complexity of the system.
  • a method for transmitting a sounding reference signal includes:
  • the terminal receives configuration information about the uplink reference signal from the base station;
  • the terminal transmits an uplink reference signal according to the configuration information.
  • the configuration information includes: transmission comb number, transmission comb offset value and rotational offset start number, where the rotational offset interval between ports is the quotient of the maximum rotational offset number divided by the number of sounding reference signal resource ports Integer value; determine the rotation offset number on the SRS resource port according to the rotation offset starting number, the rotation offset interval between ports, and the SRS resource port index number.
  • the rotational offset interval between the ports is the rounded value of the quotient of the maximum rotational offset divided by the number of sounding reference signal resource ports.
  • One way is that the rounded value is a rounded-down value; the other way is the rounded up value for the rounded value.
  • the configuration information includes transmission comb number, transmission comb offset value and rotational offset start number, wherein the rotational offset interval between ports is the maximum rotational offset number divided by the number of sounding reference signal resource ports Integer multiples of the integer value of the quotient of ; determine the number of rotation offsets on the SRS resource port according to the rotation offset starting number, the rotation offset interval between ports, and the SRS resource port index number.
  • the rotational offset interval between the ports is the rounded value of the quotient of the maximum rotational offset divided by the number of sounding reference signal resource ports.
  • One way is that the rounded value is a rounded-down value; the other way is the rounded up value for the rounded value.
  • the configuration information includes the number of transmission combs, the value of the transmission comb offset and the initial number of rotation offsets, where the interval of rotation offsets between ports is the downward acquisition of the quotient of the maximum number of rotation offsets divided by the number of sounding reference signal resource ports Integer value; determine the number of rotation offsets on the SRS resource port according to the starting number of rotation offset, the rotation offset interval between ports, and the SRS resource port index number; where the transmission comb of all ports of the SRS resource Comb offset values are the same, and are transmission comb offset values included in the configuration information.
  • the configuration information includes transmission comb number, transmission comb offset value and rotational offset start number, wherein the rotational offset interval between ports is the maximum rotational offset number divided by the number of sounding reference signal resource ports The rounded-down value of the quotient of ; determine the rotation offset number on the SRS resource port according to the rotation offset start number, the rotation offset interval between ports and the SRS resource port index number; where the SRS resource
  • the transmission comb offset value of the first group of ports is the transmission comb offset value included in the configuration information
  • the transmission comb offset value of the second group of ports is different from the transmission comb offset value of the first group of ports Transmits half of the comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1002,1003 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of the other group of ports p i ⁇ ⁇ 1000,1001 ⁇
  • the difference from the transmission comb offset value of p i ⁇ ⁇ 1002,1003 ⁇ is half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1000,1001 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of another group of ports p i ⁇ ⁇ 1002,
  • the transmission comb offset value of 1003 ⁇ and p i ⁇ ⁇ 1000,1001 ⁇ differs by half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1000,1002 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of the other group of ports p i ⁇ ⁇ 1001,1003 ⁇
  • the difference from the transmission comb offset value of p i ⁇ ⁇ 1000,1002 ⁇ is half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1001,1003 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of another group of ports p i ⁇ ⁇ 1000,
  • the transmission comb offset value of 1002 ⁇ and p i ⁇ ⁇ 1001, 1003 ⁇ differs by half of the transmission comb number.
  • the configuration information includes transmission comb number, transmission comb offset value and rotational offset starting number, wherein the rotational offset interval between ports is the maximum rotational offset number divided by the sounding reference signal resource port 2 times the rounded-down value of the quotient of the number; determine the number of rotation offsets on the SRS resource port according to the rotation offset start number, the rotation offset interval between ports, and the SRS resource port index number; where , the transmission comb offset value of the first group of ports of the sounding reference signal resource is the transmission comb offset value included in the configuration information, the transmission comb offset value of the second group of ports is the same as the transmission comb offset value of the first group of ports The offset value differs by half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1002,1003 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of the other group of ports p i ⁇ ⁇ 1000,1001 ⁇
  • the difference from the transmission comb offset value of p i ⁇ ⁇ 1002,1003 ⁇ is half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1000,1001 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of another group of ports p i ⁇ ⁇ 1002,
  • the transmission comb offset value of 1003 ⁇ and p i ⁇ ⁇ 1000,1001 ⁇ differs by half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1000,1002 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of the other group of ports p i ⁇ ⁇ 1001,1003 ⁇
  • the difference from the transmission comb offset value of p i ⁇ ⁇ 1000,1002 ⁇ is half of the transmission comb number.
  • the transmission comb offset value of one group of ports p i ⁇ ⁇ 1001,1003 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of another group of ports p i ⁇ ⁇ 1000,
  • the transmission comb offset value of 1002 ⁇ and p i ⁇ ⁇ 1001, 1003 ⁇ differs by half of the transmission comb number.
  • the configuration information includes transmission comb number, transmission comb offset value and rotational offset starting number, wherein the rotational offset interval between ports is the maximum rotational offset number divided by the sounding reference signal resource port The rounded-down value of the quotient of the number; determine the number of rotation offsets on the SRS resource port according to the rotation offset starting number, the rotation offset interval between ports, and the SRS resource port index number; and use the rotation offset Whether the shift start number is in the set set determines whether the SRS resource ports use the same transmission comb offset value or not.
  • the transmission comb offset value of a group of ports p i ⁇ ⁇ 1000,1002 ⁇ is the transmission comb offset value included in the configuration information, and the transmission comb offset value of another group of ports p i ⁇ ⁇ 1001,1003 ⁇
  • the value differs from the transmission comb offset value of p i ⁇ ⁇ 1000,1002 ⁇ by half the transmission comb number; corresponding to the rotation offset starting number
  • the transmission comb offset value of all ports is the transmission comb offset value included in the configuration information.
  • the configuration information includes the number of transmission combs, the first transmission comb offset value, the second transmission comb offset value, and the initial number of rotation offsets, wherein the rotation offset interval between ports is the largest The rounded-down value of the quotient of the number of rotation offsets divided by the number of SRS resource ports; the SRS resource port is determined according to the starting number of rotation offsets, the rotation offset interval between ports, and the SRS resource port index number The number of rotation offsets above; wherein the transmission comb offset value of the first group of ports of the sounding reference signal resource is the first transmission comb offset value, and the transmission comb offset value of the second group of ports is the second Transmits the comb offset value.
  • the configuration information includes the number of transmission combs, the first transmission comb offset value, the second transmission comb offset value, and the initial number of rotation offsets, wherein the rotation offset interval between ports is the maximum rotation Integer multiple of the rounded-down value of the quotient of the offset number divided by the number of SRS resource ports; the SRS is determined according to the rotation offset start number, the rotation offset interval between ports, and the SRS resource port index number The number of rotation offsets on the resource ports; where the transmission comb offset value of the first group of ports of the sounding reference signal resource is the first transmission comb offset value, and the transmission comb offset value of the second group of ports is The second transmission comb offset value.
  • the configuration information includes the transmission comb number, the first transmission comb offset value, the second transmission comb offset value and the rotation offset start number, wherein the transmission comb offset value of the first group of ports of the sounding reference signal resource is the first transmission comb offset value, the rotation offset interval between the first group of ports is half of the maximum rotation offset number, and the transmission comb offset value of the second group of ports is the second transmission comb offset value, the rotation offset interval between the second group of ports is half of the maximum number of rotation offsets; the SRS resource port is determined according to the rotation offset starting number, the rotation offset interval between ports, and the SRS resource port index number The number of rotation offsets on .
  • FIG. 2 is a flowchart of an information receiving method provided in an embodiment of the present application. This embodiment may be executed by the second communication node. Wherein, the second communication node may be a base station. As shown in Fig. 2, this embodiment includes: S210-S220.
  • S210 Send the first configuration information and the second configuration information to the first communication node, so that the first communication node determines the reported channel state information according to the first configuration information and the second configuration information.
  • S220 Receive channel state information reported by the first communication node.
  • the channel state information includes: a precoding matrix indicator; the precoding matrix corresponding to the precoding matrix indicator is determined by the first group of vectors, or determined by the first group of vectors and the second group of vectors;
  • the first set of vectors includes L vectors
  • the second set of vectors includes M v vectors; wherein, L and M v are both positive integers;
  • a vector in the first group of vectors corresponds to a channel state information reference signal port; an element in a vector in the second group of vectors corresponds to a precoding matrix.
  • the first configuration information includes: the number P of channel state information reference signal ports.
  • the second communication node sends the number P of channel state information reference signal ports to the first communication node.
  • the first communication node first receives channel state information reference signals of the number P of channel state information reference signal ports, so that the first communication node performs measurement on the received channel state information reference signals, and then from P K 1 channel state information reference signal ports are selected from the channel state information reference signal ports.
  • the second configuration information includes: a first ratio parameter; the method of determining K1 includes: determining K according to the number P of channel state information reference signal ports and the first ratio parameter 1 .
  • K 1 is determined according to the number P of channel state information reference signal ports and the first ratio parameter, including:
  • K 1 is determined according to the rounded value and a predetermined second fixed value.
  • determining K 1 according to the number P of the channel state information reference signal ports and the first ratio parameter includes: determining an integer value, the integer value being the channel state information reference signal port The number P of the first proportional parameter and the rounded integer value of the product value of the first proportional parameter and the predetermined first fixed value; K 1 is determined according to the rounded integer value and the predetermined second fixed value.
  • the determining K 1 according to the number P of channel state information reference signal ports and the first ratio parameter includes:
  • K 1 is determined according to a product value of the number P of channel state information reference signal ports and the first proportional parameter.
  • the second configuration information includes: a first ratio parameter; the method of determining L includes:
  • L is determined according to the rounded value of the product value between the product value and a predetermined first fixed value.
  • the second configuration information includes: a first ratio parameter; the method of determining the L includes: determining the L according to a rounded value, wherein the rounded value is the channel state information reference signal port The integer value of the product value P of the number P, the first proportional parameter, and a predetermined first fixed value.
  • the second communication node indicates the value of M v and the value of N through the second configuration information; wherein, the value of N indicates N candidate vectors, and the N candidate vectors are consecutive index numbers vector; the M v vectors are determined from N candidate vectors.
  • the second configuration information indicates the value of M v and the value of N, including:
  • the second configuration information includes the value of N, and indicates the value of M v according to the value of N.
  • the value indicated according to the value of N includes one of the following:
  • the second configuration information indicates the value of M v and the value of N, including:
  • the second configuration information includes the value of Mv , and indicates the value of N according to the value of Mv .
  • the value of N indicated according to the value of Mv includes one of the following:
  • N is equal to or greater than 2;
  • N i is a value in ⁇ 3,4,5 ⁇ .
  • the second configuration information indicates the value of M v and the value of N, including:
  • the second configuration information includes: a combination parameter, and indicates the value of M v and the value of N according to the combination parameter.
  • the first communication node does not report a vector in the second set of vectors to the second communication node;
  • the first communication node reports a vector in the second set of vectors to the second communication node.
  • determining whether the first communication node reports the vectors in the second set of vectors to the second communication node according to the value of N includes one of the following:
  • the first communication node reports a vector in the second set of vectors to the second communication node;
  • the first communication node does not report the vectors in the second set of vectors to the second communication node; wherein N i is one of ⁇ 3,4,5 ⁇ value;
  • the first communication node reports a vector in the second set of vectors to the second communication node;
  • the first communications node does not report vectors in the second set of vectors to the second communications node.
  • the receiving the channel state information reported by the first communication node includes: receiving the second group of vectors reported by the first communication node; wherein, receiving the second group of vectors reported by the first communication node includes : an interval between index numbers corresponding to the M v vectors reported by the first communication node.
  • the second communication node receives the second set of vectors reported by the first communication node, including: corresponding to M v being 2, and N greater than M v , the second communication node receives one vector reported by the first communication node
  • the index number of a vector, and the index number of another vector is a predetermined value.
  • the second communication node receiving the second set of vectors reported by the first communication node includes: receiving the vector used by the first communication node The second set of vectors reported by bits.
  • FIG. 3 is a structural block diagram of an information reporting device provided in an embodiment of the present application. This embodiment is applied to the first communication node. As shown in FIG. 3 , the information reporting device in this embodiment includes: a first receiver 310 , a second receiver 320 and a reporting module 330 .
  • the first receiver 310 is configured to receive the first configuration information and the second configuration information of the second communication node.
  • the second receiver 320 is configured to receive the channel state information reference signal sent by the second communication node according to the first configuration information.
  • the reporting module 330 is configured to report channel state information according to the channel state information reference signal and the second configuration information.
  • the channel state information includes: a precoding matrix indicator; the precoding matrix corresponding to the precoding matrix indicator is determined by the first group of vectors, or determined by the first group of vectors and the second group of vectors Sure;
  • the first set of vectors includes L vectors
  • the second set of vectors includes M v vectors; wherein, L and M v are both positive integers;
  • a vector in the first group of vectors corresponds to a channel state information reference signal port; an element in a vector in the second group of vectors corresponds to a precoding matrix.
  • the first configuration information includes: the number P of channel state information reference signal ports; reporting channel state information includes; selecting K 1 channel states from the P channel state information reference signal ports Information reference signal port;
  • the second configuration information includes: a first ratio parameter; the method of determining K1 includes: determining K according to the number P of channel state information reference signal ports and the first ratio parameter 1 .
  • the determining K 1 according to the number P of channel state information reference signal ports and the first ratio parameter includes:
  • K 1 is determined according to the rounded value and a predetermined second fixed value.
  • K 1 is determined according to the number P of channel state information reference signal ports and the first ratio parameter, including:
  • the rounding value is the rounding value of the number P of the channel state information reference signal port, the product value of the first proportional parameter and a predetermined first fixed value;
  • K 1 is determined according to the rounded value and a predetermined second fixed value.
  • the determining K 1 according to the number P of channel state information reference signal ports and the first ratio parameter includes:
  • K 1 is determined according to a product value of the number P of channel state information reference signal ports and the first proportional parameter.
  • the second configuration information includes: a first ratio parameter; the method of determining L includes:
  • L is determined according to the rounded value of the product value between the product value and a predetermined first fixed value.
  • the second configuration information includes: a first ratio parameter; the method of determining L includes:
  • the L is determined according to an integer value, wherein the integer value is an integer value of a product value of the number P of channel state information reference signal ports, the first proportional parameter and a predetermined first fixed value.
  • the second communication node indicates the value of M v and the value of N through the second configuration information; wherein, the value of N indicates N candidate vectors, and the N candidate vectors are consecutive index numbers vector; the M v vectors are determined from N candidate vectors.
  • the second configuration information indicates the value of M v and the value of N, including:
  • the second configuration information includes the value of N, and indicates the value of M v according to the value of N.
  • the value indicated according to the value of N includes one of the following:
  • the second configuration information indicates the value of M v and the value of N, including:
  • the second configuration information includes the value of Mv , and indicates the value of N according to the value of Mv .
  • the value of N indicated according to the value of Mv includes one of the following:
  • N is equal to or greater than 2;
  • N i is a value in ⁇ 3,4,5 ⁇ .
  • the second configuration information indicates the value of M v and the value of N, including:
  • the second configuration information includes: a combination parameter, and indicates the value of M v and the value of N according to the combination parameter.
  • the reporting module includes:
  • the determining the reporting situation of the vectors in the second group of vectors by the first communication node according to the value of M v and the value of N includes:
  • the first communication node does not report a vector in the second set of vectors to the second communication node;
  • the first communication node reports a vector in the second set of vectors to the second communication node.
  • determining the report status of the first communication node to the vectors in the second group of vectors according to the value of N includes one of the following:
  • the first communication node reports a vector in the second set of vectors to the second communication node;
  • the first communication node does not report the vectors in the second set of vectors to the second communication node; wherein N i is one of ⁇ 3,4,5 ⁇ value;
  • the first communication node reports a vector in the second set of vectors to the second communication node;
  • the first communications node does not report vectors in the second set of vectors to the second communications node.
  • the first communication node reporting the second set of vectors to the second communication node includes: the first communication node reporting the M v vectors to the second communication node corresponds to the space between index numbers.
  • the first communication node reports the second set of vectors to the second communication node, including: corresponding to M v being 2 and N greater than M v , the first communication node reporting to the second communication node
  • the two communication nodes report the index number of 1 vector, and the index number of the other vector is a predetermined value.
  • the first communication node reports the second set of vectors to the second communication node, including: using bits to report the second set of vectors.
  • the information reporting device provided in this embodiment is configured to implement the information reporting method applied to the first communication node in the embodiment shown in FIG. 1 .
  • the implementation principle and technical effect of the information reporting device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 4 is a structural block diagram of an information receiving device provided in an embodiment of the present application. This embodiment may be executed by the second communication node. Wherein, the second communication node may be a base station. As shown in FIG. 4 , this embodiment includes: a transmitter 410 and a third receiver 420 .
  • the transmitter 410 is configured to send the first configuration information and the second configuration information to the first communication node, so that the first communication node determines the reported channel state information according to the first configuration information and the second configuration information .
  • the third receiver 420 is configured to receive the channel state information reported by the first communication node.
  • the information receiving device provided in this embodiment is configured to implement the information receiving method applied to the second communication node in the embodiment shown in FIG. 2 .
  • the implementation principle and technical effect of the information receiving device provided in this embodiment are similar, and will not be repeated here.
  • Fig. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device provided by this application includes: a processor 510 , a memory 520 and a communication module 530 .
  • the number of processors 510 in the device may be one or more, and one processor 510 is taken as an example in FIG. 5 .
  • the number of storage 520 in the device may be one or more, and one storage 520 is taken as an example in FIG. 5 .
  • the processor 510, the memory 520, and the communication module 530 of the device may be connected through a bus or in other ways. In FIG. 5, connection through a bus is taken as an example.
  • the device may be a first communication node, for example, the first communication node may be a terminal side (for example, user equipment).
  • the memory 520 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the equipment in any embodiment of the present application (for example, the first receiver in the information reporting device) device 310, second receiver 320 and reporting module 330).
  • the memory 520 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to usage of the device, and the like.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 520 may further include memory located remotely from the processor 510, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 530 is configured to perform communication interaction between the first communication node and the second communication node.
  • the device provided above may be configured to execute the information reporting method applied to the first communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • the device provided above may be configured to execute the information receiving method applied to the second communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute an information reporting method applied to a first communication node.
  • the method includes: receiving the first communication node Two first configuration information and second configuration information of the communication node; receiving a channel state information reference signal sent by the second communication node according to the first configuration information; reporting according to the channel state information reference signal and the second configuration information Channel state information.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute an information receiving method applied to a second communication node.
  • the method includes: sending to the second communication node A communication node sends the first configuration information and the second configuration information, so that the first communication node determines the reported channel state information according to the first configuration information and the second configuration information; receiving the first communication node Reported channel state information.
  • user equipment covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), Optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices
  • processors based on multi-core processor architectures such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种信息报告、接收方法、设备和存储介质。该应用于第一通信节点的信息报告方法包括:接收第二通信节点的第一配置信息和第二配置信息;按照所述第一配置信息接收第二通信节点发送的信道状态信息参考信号;根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息。

Description

信息报告、接收方法、设备和存储介质
相关申请的交叉引用
本申请基于申请号为202111154915.4、申请日为2021年9月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,具体涉及一种信息报告、接收方法、设备和存储介质。
背景技术
在无线通信系统中,基站可以根据所接收的信道状态信息所代表的信道状态确定数据传输策略,并按照数据传输策略进行数据传输,以提高数据传输效率。因此,如何设计信道状态信息的处理机制,以提高获得信道状态的精确度,并减少所使用的资源开销,以及降低系统复杂度,仍是一个亟待解决的问题。
发明内容
本申请实施例提供一种信息报告方法,应用于第一通信节点,包括:
接收第二通信节点的第一配置信息和第二配置信息;
按照所述第一配置信息接收第二通信节点发送的信道状态信息参考信号;
根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息。
本申请实施例提供一种信息接收方法,应用于第二通信节点,包括:
向第一通信节点发送所述第一配置信息和所述第二配置信息,以使第一通信节点根据第一配置信息和所述第二配置信息确定报告的信道状态信息;
接收所述第一通信节点报告的信道状态信息。
本申请实施例提供一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
所述通信模块,配置为在第一通信节点和第二通信节点之间进行通信交互;
所述存储器,配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是本申请实施例提供的一种信息报告方法的流程图;
图2是本申请实施例提供的一种信息接收方法的流程图;
图3是本申请实施例提供的一种信息报告装置的结构框图;
图4是本申请实施例提供的一种信息接收装置的结构框图;
图5是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请,并非用于限定本申请的范围。
无线通信发展到第5代通信技术。其中,第4代无线通信技术中的长期演进(Long Term Evolution,LTE)技术与第5代无线通信技术中的新空口(New Radio,NR)技术是基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM);在OFDM技术中,最小的频域单元为子载波,最小的时域单元为OFDM符号;为了方便使用频域资源,定义了资源块(Resource Block,RB),一个资源块定义为特定数目的连续子载波;又定义了带宽块(BandWidth Part,BWP),一个带宽块定义为一个载波上又一特定数目的连续资源块;为了方便使用时域资源,定义了时隙(slot),一个时隙定义为又一特定数目的连续OFDM符号。
无线通信系统中获取信道状态信息的方法,及利用信道状态信息进行数据传输的方法包括如下步骤:基站发送参考信号;终端测量参考信号,确定基站到终端的信道状态信息,并报告信道状态信息给基站;基站接收终端报告的信道状态信息。基站根据所接收的信道状态信息所代表的信道状态确定数据传输的策略,并传输数据,从而提高数据传输的效率。其中,信道状态信息所代表的信道状态的精准程度影响到基站的传输策略,从而影响到数据传输的效率。同时,基站发射参考信号需要占用下行资源的开销,终端上传信道状态信息需要占用上行资源的开销。另一方面,系统复杂度增加会提高系统的成本,增加能量的损耗。因此设计方面需要综合考虑多方因素。
无线通信技术的发展需要进一步设计处理信道状态信息的机制,以提高所获得的信道状态的精确度,并减小所使用的资源开销,降低系统的复杂度。
基站发送给终端的参考信号为下行参考信号;在LTE系统中用于信道状态信息报告的下行参考信号包括小区特定参考信号(Cell-specific Reference Signal,CRS),信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS);在NR系统中用于信道状态信息报告的下行参考信号包括CSI-RS。CSI-RS由信道状态信息参考信号资源(CSI-RS Resource)承载,信道状态信息参考信号资源由CDM group组成,一个CDM group是由无线资源元素组成,一组CSI-RS端口的CSI-RS在其上通过码分复用的方式复用。
基站与终端之间传输的信道状态信息的内容包括:信道质量指示符(Channel quality indicator,CQI),用以指示信道的质量;或者,包括预编码矩阵指示符(Precoding Matrix Indicator,PMI),用以指示应用于基站天线上的预编码矩阵。一类CQI的报告格式为宽带CQI报告(wideband CQI reporting),即为信道状态信息报告频带(CSI reporting band)报告一个信道质量,该信道质量对应整个所述信道状态信息报告频带;另一类CQI的报告格式为子带CQI报告(subband CQI reporting),即对信道状态信息报告频带(CSI reporting band)以子带为单位分别给出信道质量,其中一个信道质量对应一个子带,即为信道状态信息报告 频带的每一个子带报告一个信道质量。所述的子带是频域单位,定义为N个连续RB,N为正整数;为了便于描述,本申请称为信道质量指示子带,或者CQI子带,或者子带;其中,N称为CQI子带的尺码(size),或者称为CQI子带尺码,或者称为子带尺码(size)。带宽块(BWP,Bandwidth part)划分为子带,信道状态信息报告频带(CSI reporting band)用带宽块(BWP,Bandwidth part)的子带的子集进行定义。信道状态信息报告频带(CSI reporting band)是其上的信道状态信息需要被报告的频带。
一种确定信道质量的方式是根据终端接收到参考信号的强度确定;另一种确定信道质量的方式是根据接收到参考信号的信噪比确定。在信道状态信息报告频带上,如果信道质量变化不大,以宽带CQI报告方式报告CQI可以减小用于CQI报告的资源开销;如果信道质量在频域上差异较大,以子带CQI报告方式报告CQI可以增加CQI报告的精准程度。
一类PMI的报告格式为宽带PMI报告,即为信道状态信息报告频带报告一个PMI,该PMI对应整个所述信道状态信息报告频带。另一类PMI的报告格式为子带PMI报告,即为信道状态信息报告频带的每一个子带报告一个PMI,或者为信道状态信息报告频带的每一个子带报告一个PMI的组成部分。例如,PMI由X1与X2组成,为信道状态信息报告频带的每一个子带报告一个PMI的组成部分的一个方式为:为整个频带报告一个X1,为每一个子带报告一个X2;另一个方式为:为每一个子带报告一个X1与一个X2。
又一类PMI的报告格式为,所报告的PMI为每个子带指示R个预编码矩阵,其中R为正整数。从反馈预编码矩阵的频域颗粒度的意义上讲,R又表示每个子带包括的预编码矩阵子带的数目,或者每个CQI子带包括的预编码矩阵子带的数目。
一种报告信道状态信息的方法,终端接收基站的配置信息(包括第一配置信息和第二配置信息),终端根据所述配置信息接收基站发射的信道状态信息参考信号,终端根据所述配置信息报告信道状态信息;
其中,信道状态信息包括预编码矩阵指示符,所述预编码矩阵由第一组矢量确定,或由第一组矢量与第二组矢量确定;第一组矢量包含L个矢量,第二组矢量包含M v个矢量,其中L、M v为正整数;其中,第一组矢量中的一个矢量对应信道状态信息参考信号的一个端口;第二组矢量中的一个矢量为索引号为
Figure PCTCN2022095287-appb-000001
的DFT矢量;其中,索引号为
Figure PCTCN2022095287-appb-000002
的DFT矢量的元素为
Figure PCTCN2022095287-appb-000003
其中t={0,1,...,N 3-1},N 3是预编码矩阵的数量。
t是DFT矢量中元素的索引号,取值为0,1,...,N 3-1。t也可以代表预编码矩阵的索引号。t也可以代表频域单元的索引号,t的一个取值与一个频域单元相对应。例如,第二组矢量中的DFT矢量的索引号为t的元素对应的索引号为t的预编码矩阵是索引号为t的频域单元的预编码矩阵。
预编码矩阵可以仅由第一组矢量组成,也可以由第一组矢量与第二组矢量组成。预编码仅由第一组矢量组成,其中一层示例:W=W 1W 2,其中,W表示预编码矩阵,W 1表示由第一组矢量构成的矩阵,W 2表示组合第一组矢量构成预编码矩阵的系数,以矩阵表示。预编 码由第一组矢量与第二组矢量组成,其中一层示例:W=W 1W 2W f,其中,W表示预编码,W 1表示由第一组矢量构成的矩阵,W f表示第二组矢量构成的矩阵,W 2表示组合第一组矢量与第二组矢量构成预编码矩阵的系数,以矩阵表示。
为了终端报告CSI,基站向终端CSI-RS资源,其中CSI-RS资源的端口数目为P;终端从所述P个CSI-RS端口中选择出K 1个端口,其中在每个极化方向选择出L个端口,K 1=2L;所述L个端口中的每个端口映射到第一组矢量中的一个矢量;终端所报告组成预编码矩阵的一层的系数的数目不超过K 0,所报告组成预编码矩阵的所有层的系数总计的数目不超过2K 0;其中
Figure PCTCN2022095287-appb-000004
β是基站向终端配置的参数。终端向基站报告所报告的系数的数目K NZ
一个序号为m i的端口映射到一个映量
Figure PCTCN2022095287-appb-000005
的方式为,
Figure PCTCN2022095287-appb-000006
是包含P/2个元素的矢量,其中第(m i mod P/2)个元素为1,其余元素为0;其中,mod表示模运算,m i表示被除数,P/2表示除数;首个元素是第0个元素。以P为8,m i为2进行举例,v 2=[0,0,1,0] T;其中T表示转置。
由L个矢量组成W 1的一个例子,
Figure PCTCN2022095287-appb-000007
其中,O表示包含P/2个元素,且所有元素为0的矢量。
记第二组矢量中的矢量为y (f),其中f=0,1,…,M v-1;例如,第二组矢量中的M v个矢量为y (0),y (1),…,y (Mv-1),为行矢量。由第二组矢量中M v个矢量组成W f的一个例子,
Figure PCTCN2022095287-appb-000008
在预编码矩阵仅由第一组矢量组成的情况下,预编码矩阵的一层示例:W=W 1W 2,其中W表示预编码矩阵;W 1表示由第一组矢量构成的矩阵,维度为P×2L,即第一维度为P,第二维度为2L;W 2表示组合第一组矢量构成预编码矩阵的系数,以矩阵表示,维度为2L×1,即第一维度为2L,第二维度为1;即W 2所包含的元素的数目为2L,也就是组成预编码矩阵的一层的系数的数目为2L。
在预编码矩阵由第一组矢量与第二组矢量组成的情况下,预编码矩阵的一层示例:W=W 1W 2W f,其中W表示预编码矩阵;W 1表示由第一组矢量构成的矩阵,维度为P×2L,即第一维度为P,第二维度为2L;W f表示第二组矢量构成的矩阵,维度为M v×N 3,即第一维度为M v,第二维度为N 3;W 2表示组合第一组矢量与第二组矢量构成预编码矩阵的系数,以矩阵表示,维度为2L×M v,即第一维度为2L,第二维度为M v;即W 2所包含的元素的数目为2LM v,也就是组成预编码矩阵的一层的系数的数目为2LM v
为了节省终端报告预编码矩阵指示符的开销,终端仅报告组成预编码矩阵的系数的一部分;例如,基站向终端配置参数β,确定参数K 0
Figure PCTCN2022095287-appb-000009
其中β是小于等于1的正数;对于组成预编码矩阵的一层的系数,终端向基站报告的系数的数目不超过K 0;对于组成预编码矩阵的所有层的系数,终端向基站报告的系数的数目总计不超过2K 0。为了让基站能够接收所报告的系数,终端还向基站报告所报告系数的数目K NZ,并且报告比特映射(bitmap),以比特映射的非零比特指示组成预编码矩阵的系数中哪些系数被报告。
在一实施例中,图1是本申请实施例提供的一种信息报告方法的流程图。本实施例可以由第一通信节点执行。其中,第一通信节点可以为终端侧(比如,用户设备)。如图1所示,本实施例包括:S110-S130。
S110、接收第二通信节点的第一配置信息和第二配置信息。
S120、按照第一配置信息接收第二通信节点发送的信道状态信息参考信号。
S130、根据信道状态信息参考信号与第二配置信息报告信道状态信息。
在一实施例中,所述信道状态信息包括:预编码矩阵指示符;所述预编码矩阵指示符对应的预编码矩阵由第一组矢量确定,或者,由第一组矢量和第二组矢量确定;
其中,所述第一组矢量包括L个矢量,所述第二组矢量包括M v个矢量;其中,L和M v均为正整数;
所述第一组矢量中的一个矢量对应一个信道状态信息参考信号端口;所述第二组矢量中一个矢量中的一个元素对应一个预编码矩阵。
在实施例中,第一通信节点指的是终端,第二通信节点指的是基站。在实施例中,第一配置信息包括:信道状态信息参考信号资源的标识,信道状态信息参考信号资源端口的数目;其中,信道状态信息参考信号资源用于承载信道状态信息参考信号,信道状态信息参考信号端口用于发射信道状态信息参考信号,信道状态信息参考信号端口映射到信道状态信息参考信号资源,信道状态信息参考信号端口的数目也称为信道状态信息参考信号资源端口的数目。终端根据信道状态信息参考信号资源的标识获知与所要反馈的信道状态信息所对应的信道状态信息参考信号资源,从而确定针对对应的信道状态信息参考信号资源进行测量;并根据信道状态信息参考信号资源端口的数目完整地测量信道状态信息参考信号。在实施例中,第二配置信息包括码本类型信息,其中,码本类型信息用于指示终端所报告的预编码矩阵的类型。例如,码本类型信息用于指示协议版本所对应的预编码矩阵类型,即指示哪一个标准协议版本所对应的预编码矩阵类型;因为存在多个的标准协议版本均有反馈预编码矩阵的机制,但不同的标准协议版本存在着差异。再例如,码本类型信息用于指示反馈预编码矩阵的机制的特征,例如直接选择空域矢量,还是线性组合空域矢量,还是线性组合空域矢量与频域矢量,还是对天线端口的选择。再例如,码本类型用于指示针对单个天线面板的预编码矩阵,还是针对多个面板的预编码矩阵。终端可能根据码本类型信息采用正确的机制与方法反馈预编码矩阵。
在一实施例中,所述第一配置信息包括:信道状态信息参考信号端口的数目P;所述报告信道状态信息包括:从所述P个信道状态信息参考信号端口中选择出K 1个信道状态信息参考信号端口;其中,每个极化方向均选择出L个信道状态信息参考信号端口,K 1=2L;其中,所述L个信道状态信息参考信号端口中的每个信道状态信息参考信号端口映射到所述第一组矢量中的一个矢量。
在一实施例中,所述第二配置信息包括:第一比例参数;所述K 1的确定方式,包括:根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1
在一实施例中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;确定所述乘积值与预定的第一定值之间乘积值的取整值;根据所述取整值和预定的第二定值确定K 1
在一实施例中,根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:确定取整值,所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值;根据所述取整值和预定的第二定值确定K 1
在实施例中,确定信道状态信息参考信号端口的数目P、第一比例参数与预定的第一定值之间的乘积值,并对该乘积值进行取整,将取整值和预先设定的第二定值的乘积值作为K 1。需要说明的是,对信道状态信息参考信号端口的数目P、第一比例参数与预定的第一定值之间的乘积值进行取整,也可以理解为对信道状态信息参考信号端口的数目P、第一比例参数与预定的第一定值的倒数的乘积值进行取整。
在一实施例中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:根据所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值确定K 1
在一实施例中,所述第二配置信息包括:第一比例参数;所述L的确定方式,包括:确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;根据所述乘积值与预定的第一定值之间乘积值的取整值确定L。
在一实施例中,第二配置信息包括:第一比例参数;所述L的确定方式,包括:根据取整值确定所述L,其中所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值。
在实施例中,确定信道状态信息参考信号端口的数目P、第一比例参数与预定的第一定值之间的乘积值,并对该乘积值进行取整,将取整值和预先设定的第二定值的乘积值作为L。需要说明的是,对信道状态信息参考信号端口的数目P、第一比例参数与预定的第一定值之间的乘积值进行取整,也可以理解为对信道状态信息参考信号端口的数目P、第一比例参数与预定的第三定值的倒数的乘积值进行取整。
在实施例中,基站通过向终端配置指示参数K 1或者L,控制用于组合预编码矩阵的第一组矢量的规模,以达到优化降低终端的运算量与提高反馈性能的目的。一个指示参数K 1的方案是:基站为终端配置第一比例参数α;参数K 1等于CSI-RS资源端口的数目P与第一比例参数α的乘积值。使用双极化天线端口发射信号,可以减小天线阵列占用的空间大小,并增强所发射信号的稳定性。CSI-RS资源对应双极化天线端口,即一个极化方向对应一半的CSI-RS资源的端口,另一个极化方向对应另一半的CSI-RS资源的端口。从P个CSI-RS资源端口中选择出K 1个端口,要求基于极化相同(polar common based)方式选择;即从一个极化方向选择出L个CSI-RS天线端口,并对应着从另一个极化方向选择出对应的L个CSI-RS天线端口,K 1=2L;以使所反馈的预编码矩阵匹配双极化天线端口。因此,上述配置参数K 1的方案存在不能满足基于极化相同方式选择CSI-RS资源端口的风险。例如,P的候选值可以包括{2,4,8,12,16,24,32},α的候选值可以包括{1/2,3/4,1},根据P的候选值与α的候选值得到的K 1的候选值如下表1所示:
表1 K 1的候选值的示意表
Figure PCTCN2022095287-appb-000010
在表1中,K 1的候选值中的{1,3/2,3,9}显然不能满足从一个极化方向选择一半的端口, 从另一个极化方向选择另一半的端口,即不满足基于极化相同方式选择端口。
另一个指示参数K 1的方案,在第二配置信息中,基站给终端配置第一比例参数α;其中,参数K 1等于信道状态信息参考信号端口的数目P与第一比例参数α之积的函数值取整后再乘以2。例如,在第二配置信息中,基站给终端配置第一比例参数α,其中,信道状态信息参考信号端口的数目P与参数α之间的乘积值,将该乘积值乘以一个常数c或除以一个常数c之后进行取整,然后将该取整值乘以2,得到参数K 1。例如,在第二配置信息中,基站给终端配置第一比例参数α,其中,参数K 1等于信道状态信息参考信号端口的数目P与第一比例参数α之积,并将该乘积值除以2之后进行取整,并将取整值乘以2。例如,在第二配置信息中,基站给终端配置第一比例参数α,其中,信道状态信息参考信号端口的数目P与参数α之间的乘积值,将该乘积值除以2之后,向上取整后,再将取整值乘以2,得到参数K 1,即
Figure PCTCN2022095287-appb-000011
其中
Figure PCTCN2022095287-appb-000012
表示向上取整。以P的候选值为{2,4,8,12,16,24,32},α的候选值为{1/2,3/4,1}为例,根据
Figure PCTCN2022095287-appb-000013
确定的K 1的候选值如表2所示:
表2 K 1的候选值的示意表
Figure PCTCN2022095287-appb-000014
如表2所示,K 1候选值均满足从一个极化方向选择一半的端口,从另一个极化方向选择另一半的端口,即满足基于极化相同方式选择端口。
另一个指示参数L的方案,在第二配置信息中,基站给终端配置第一比例参数α;其中,参数L等于信道状态信息参考信号端口的数目P与参数α之积的函数值取整。例如,在第二配置信息中,基站给终端配置第一比例参数α,其中,确定信道状态信息参考信号端口的数目P与参数α之间的乘积值,并该乘积值乘以一个常数c或除以一个常数c之后进行取整,将该取整值作为参数L。例如,在第二配置信息中,基站给终端配置第一比例参数c,其中,确定信道状态信息参考信号端口的数目P与参数α之积,将该乘积值除以2之后进行取整,将该取整值作为参数L。例如,在第二配置信息中,基站给终端配置第一比例参数c,其中,确定信道状态信息参考信号端口的数目P与参数α之积,将该乘积值除以2之后进行向上取整,将该取整值作为参数L。例如,在第二配置信息中,基站给终端配置第一比例参数α,其中参数L等于信道状态信息参考信号端口的数目P与参数α之积除以2之后,向上取整;即
Figure PCTCN2022095287-appb-000015
其中
Figure PCTCN2022095287-appb-000016
表示向上取整。以P的候选值为{2,4,8,12,16,24,32},c的候选值为{1/2,3/4,1}为例,根据
Figure PCTCN2022095287-appb-000017
确定的L的候选值如下:
表3 L的候选值的示意表
Figure PCTCN2022095287-appb-000018
如表3所示,L候选值均满足从一个极化方向选择L个端口,从另一个极化方向选择另L个端口,即满足基于极化相同方式选择端口。
另一个指示参数K 1的方案,第二配置信息包括第一比例参数α,其中,K 1等于信道状态信息参考信号端口的数目P与参数α之积,α的候选值根据信道状态信息参考信号端口的 数目P确定。例如,与P的取值为{8,16,24,32}相对应,α的候选值为{1,3/4,1/2};与P的取值为{4,12}相对应,α的候选值为{1,1/2};与P的取值为{4,12}相对应,α的候选值为{1}。
在一实施例中,所述第二通信节点通过第二配置信息指示M v的值与N的值;其中,通过N的值指示N个候选矢量,所述N个候选矢量是连续索引号的矢量;所述M v个矢量从N个候选矢量中确定。
在实施例中,基站通过第二配置信息为终端指示候选矢量,以及参与组合预编码矩阵的第二组矢量所包含矢量的数目。基站通过上行的信道及信道的互易性掌握下行信道的一些信息,确定候选矢量,及参与组合预编码矩阵的第二组矢量所包含矢量的数目;组合预编码矩阵的第二组矢量从候选矢量中确定,可以在保障所反馈预编码矩阵性能的情况下减小终端的搜索计算组合预编码矩阵的矢量的运算量,从而降低终端的复杂度。一个指示N个候选矢量的方法是:一一列举N个候选矢量,或者,一一列举N个候选矢量的索引号。另一个指示N个候选矢量的方法是:指示连续索引号的矢量的起始矢量与终止矢量,或者指示连续索引号的矢量的起始索引号与终止索引号。再一个指示N个候选矢量的方法是:指示连续索引号的矢量的起始矢量或起始索引号,与候选矢量的数量N。再一个指示N个候选矢量的方法是:指示连续索引号的矢量的数量N,候选的矢量是索引号0到N-1的矢量。因为候选矢量是信道时延的映射,信道时延按照波束相对集中,从而体现在候选矢量上就是连续索引号,再加上矢量的可旋转性,从而候选矢量具有从索引号0开始的连续索引号的特性,此指示N个候选矢量的方法就是利用这个特性。使用此指示方法,减小指示候选矢量的复杂度,并降低从候选矢量中确定参与组合预编码矩阵的M v个矢量的复杂度。M v个矢量从N个候选矢量中确定,即M v的值与N的值具有关联性,第二配置信息指示M v的值与N的值应当体现出它们的关联性以保障所获得的预编码矩阵的性能并降低系统确定M v个参与组合预编码矩阵的矢量的复杂度。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:所述第二配置信息包括N的值,并按照N的值指示M v的值。
例如,第二配置信息包括N的值,与N的值为1相对应,M v的值为1。再例如,第二配置信息包括N的值,与N的值为2相对应,M v的值为2。需要说明的是,N的值为2,M v的值可以取1,但M v的值可以取1是没有必要的;因为矢量的可旋转性,基站可以确定候选矢量中的首个矢量为M v个矢量中的一个矢量,那么与N的取值为2相对应,M v取值为1就变得没有意义了;所以与N的取值为2相对应,M v的值为2,可以简化系统对M v的值的指示,并简化终端确定M v个矢量的复杂度。再例如,第二配置信息包括N的值,与N的值大于2相对应,M v的值为2。因为基站可以发射处理频域特性的信道状态信息参考信号,所以与N的值大于2相对应,M v的值大于2对于系统的性能不有增益,并且增加系统的复杂度;所以与N的值大于2相对应,M v的值为2,可以保障系统性能,并且可以降低系统的复杂度。
在一实施例中,所述按照N的值指示M v的值,包括下述之一:
与N的值为1相对应,M v的值为1;
与N的值为2相对应,M v的值为2;
与N的值大于2相对应,M v的值为2。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:所述第二配置信息包括M v的值,并按照M v的值指示N的值。
例如,第二配置信息包括M v的值,与M v的值为1相对应,N的值为1。再例如,第二配置信息包括M v的值,与M v的值为2相对应,N的值大于或等2。
在一实施例中,所述按照M v的值指示N的值,包括下述之一:
与M v的值为1相对应,N的值为1;
与M v的值为2相对应,N的值等于或大于2;
与M v的值为2相对应,从{2,N i}中选样一个值作为N的值;其中,N i为{3,4,5}中的一个值。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:所述第二配置信息包括:组合参数,并按照所述组合参数指示M v的值与N的值。
在实施例中,使用组合参数指示M v的值与N的值,即使用一个参数指示出M v的值与N的值。
一个使用组合参数指示M v的值与N的值的方案为:组合参数1的一个候选值指示N的一个值与M v的一个值。例如,组合参数1的值为0,指示N为0,以及M v为1。再例如,组合参数1的值为1,指示N为2,以及M v为2。再例如,组合参数1的值为2,指示N为Ni,以及M v为2;其中Ni为{3,4,5}中的一个值。如表4所示。
表4 组合参数1与N以及M v之间的映射关系表
组合参数1 N M v
0 1 1
1 2 2
2 Ni 2
另一个使用组合参数指示M v的值与N的值的方案为:组合参数2的一个值指示α的一个值,M v的一个值,β的一个值,N的一个值;其中,所述第一配置信息包括信道状态信息参考信号端口的数目P,终端从所述P个信道状态信息参考信号端口中选择出K 1个端口,其中在每个极化方向选择出L个端口,K 1=2L;所述L个端口中的每个端口映射到第一组矢量中的一个矢量;第二配置信息包括参数α,其中K 1等于信道状态信息参考信号端口的数目P与参数α之积。如表5所示。
组合参数2 α M v β N
0 1/2 1 1/2 1
1 1/2 1 3/4 1
2 1/2 1 1 1
3 3/4 1 1/2 1
4 3/4 1 3/4 1
5 3/4 1 1 1
6 1 1 1/2 1
7 1 1 3/4 1
8 1 1 1 1
9 1/2 2 1/2 2
10 1/2 2 3/4 2
11 1/2 2 1 2
12 3/4 2 1/2 2
13 3/4 2 3/4 2
14 3/4 2 1 2
15 1 2 1/2 2
16 1 2 3/4 2
17 1 2 1 2
18 1/2 2 1/2 Ni
19 1/2 2 3/4 Ni
20 1/2 2 1 Ni
21 3/4 2 1/2 Ni
22 3/4 2 3/4 Ni
23 3/4 2 1 Ni
24 1 2 1/2 Ni
25 1 2 3/4 Ni
26 1 2 1 Ni
在一实施例中,所述根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息,包括:根据M v的值与N的值确定第一通信节点对所述第二组矢量中矢量的报告情况;或者,根据N的值确定第一通信节点对所述第二组矢量中矢量的报告情况。
在实施例中,根据M v的值与N的值确定终端是否向基站报告所述第二组矢量中的矢量。
例如,与M v等于N相对应,终端不向基站报告所述第二组矢量中的矢量。例如,与M v不等于N相对应,终端向基站报告所述第二组矢量中的矢量。例如,与M v为1,N为1相对应,终端不向基站报告所述第二组矢量中的矢量。例如,与M v为2,N为2相对应,终端不向基站报告所述第二组矢量中的矢量。例如,与M v为2,N大于2的值,终端向基站报告所述第二组矢量中的矢量。
在一些情况下,根据M v的值与N的值即可确定参与组合预编码矩阵的第二组矢量,而不需要终端向基站报告参与组合预编码矩阵的第二组矢量,从而节省报告的资源开销;在另一些情况下仅根据M v的值与N的值还不能确定参与组合预编码矩阵的第二组矢量,需要终端向基站报告参与组合预编码矩阵的第二组矢量;因此根据M v的值与N的值确定终端是否向基站报告所述第二组矢量中的矢量,可以确保基站知道参与组合预编码矩阵的第二组矢量,并又节省用于报告的资源开销。
在一实施例中,所述根据M v的值与N的值确定第一通信节点对所述第二组矢量中矢量的报告情况,包括:
与M v等于N相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;
与M v不等于N相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量。
在一实施例中,根据N的值确定第一通信节点对所述第二组矢量中矢量的报告情况,包括下述之一:
与N的值为N i相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
与N的值小于N i相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;其中,N i为{3,4,5}中的一个值;
与N的值大于2相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
与N的值小于或等于2相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量。
在一实施例中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:所述第一通信节点向所述第二通信节点报告所述M v个矢量所对应索引号之间的间隔。
在实施例中,终端向基站报告第二组矢量,包括:报告M v个矢量所对应索引号之间的间隔。
一个方案是,终端向基站报告在M v个矢量的起始矢量及M v个矢量的索引号之间的间隔,则终端向基站报告所述第二组矢量为N个矢量中从所述起始矢量开始每所述间隔一个矢量的共计M v个矢量。例如,N个连续索引号的矢量为{矢量2,矢量3,矢量4,矢量5},其中N为4;终端报告N个矢量中的第1个矢量为:M v个矢量的起始矢量,即M v个矢量的起始矢量为矢量3,M v个矢量的索引号之间的间隔为2,即所报告的M v个矢量为{矢量3,矢量5};其中N个矢量中的首个矢量为矢量2,M v的值为2。
一个方案是,终端向基站报告M v个矢量的索引号之间的间隔,则终端向基站报告所述第二组矢量为N个矢量中从首个矢量开始的每所述间隔一个矢量的共计M v个矢量。例如,M v为2,N为4,终端向基站报告M v个矢量的索引号之间的间隔为T,N个连续索引号的候选矢量为{矢量0,矢量1,矢量2,矢量3},则所报告的第二组矢量为{矢量0,矢量T}。其中索引号之间的间隔为索引号之差。
在一实施例中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:与M v为2,N大于M v相对应,所述第一通信节点向所述第二通信节点报告1个矢量的索引号,并且另一个矢量的索引号为预定值。
在一实施例中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:使用
Figure PCTCN2022095287-appb-000019
个比特报告所述第二组矢量。
终端发射探测参考信号(Sounding Reference Signal,SRS),基站接收探测参考信号以获得上行信道状态信息,基站根据上行信道状态信息调度终端使用与发射探测参考信号对应的发射天线以与信道状态信息相匹配的方式传输数据,以提高数据传输的效率。为了提高数据传输的稳定性,及提高数据传输的效率,终端使用多个发射天线。在一些场景下,终端的发射天线受限于与之匹配的其它发射器件的允许使用数量的限制,不能同时使用所有的发射天线发射信号;终端通过切换使用不同的发射天线发射探测参考信号,从而使基站获得不同发射天线所对应的上行信道状态信息。一种天线切换的场景发生在探测信号资源集内部:探测信号资源集包括多个探测信号资源,不同的探测信号资源使用不同的发射天线;其中,不同的探测信号资源之间具有保护时间间隔,以保障不同的天线可以顺利切换;保护时间间隔通过配置集合中探测信号资源的在时隙中的起始OFDM符号及探测信号资源占用的OFDM符号 数量实现。为了灵活进行天线切换以提高资源的使用效率,还需要天线切换发生在探测信号资源集合之间场景;天线切换发生在探测信号资源集合之间,因此两个集合的资源之间需要保护间隔。天线切换发生在探测信号资源集内部,探测信号资源集的资源仅在同一个时隙内;而天线切换发生在探测信号资源集之间,两个集合的资源分别位于不同的时隙内;因此保障两个集合之间的保护间隔是一个需要解决的问题。
有鉴于此,本申请中提出一种发射SRS的实现方法,保障了两个集合之间的保护间隔。
在一实施例中,一种发射探测参考信号的实现方法,包括:
终端接收基站关于上行参考信号的配置信息;
终端根据所述配置信息发射上行参考信号。
在一实施例中,配置信息包括探测信号资源集的用途;其中,对于用途为天线切换的探测信号资源集不在时隙内的最前N个OFDM符号上发射,所述N根据以下方式之一确定:
N由基站配置;
N由协议规定;
N的最小值由协议规定;
N的最小值由终端的能力确定。
在一实施例中,配置信息包括探测信号资源集的用途;其中,对于用途为天线切换的探测信号资源集不在时隙内的最后N个OFDM符号上发射,所述N根据以下方式之一确定:
N由基站配置;
N由协议规定;
N的最小值由协议规定;
N的最小值由终端的能力确定。
在一实施例中,配置信息包括探测信号资源集的用途;其中,对于用途为天线切换的探测信号资源集,其后N个OFDM符号上不发射其它探测信号资源集,所述N根据以下方式之一确定:
N由基站配置;
N由协议规定;
N的最小值由协议规定;
N的最小值由终端的能力确定。
在一实施例中,配置信息包括探测信号资源集的用途;其中,对于用途为天线切换的探测信号资源集,其前N个OFDM符号上不发射其它探测信号资源集,所述N根据以下方式之一确定:
N由基站配置;
N由协议规定;
N的最小值由协议规定;
N的最小值由终端的能力确定。
在实施例中,终端发射SRS,基站接收探测参考信号以获得上行信道状态信息,基站根据上行信道状态信息调度终端使用与发射探测参考信号对应的发射天线以与信道状态信息相匹配的方式传输数据,以提高数据传输的效率。在一个场景下,终端可以使用一个端口发射探测参考信号;在另一场景下,终端可以使用多个端口分别发射探测参考信号。在一个场 景下,一个终端可以发射探测参考信号;在另一场景下,多个终端发射探测参考信号。为了映射多个探测参考信号,并避免多个探测参考信号之间的干扰,一方面将不同的探测参考信号映射到不同传输梳状偏移值(Comb offset value)的子载波上,另一方面具有同一传输梳状偏移值的不同探测参考信号被配置不同的相位旋转偏置。即提高传输梳状数,可以支持更多的探测参考信号的发射;同时,随着传输梳状数的增大,相同带宽上用于映射探测参考信号的子载波数量变小,能映射的探测参考信号的序列变短。示例性地,传输梳状数与探测参考信号的端口之间的发射技术可以包括:传输梳状数为2,4,支持1,2,4端口的探测参考信号发射技术;传输梳状数为8,支持1端口的探测参考信号发射技术。但是将现有的探测参考信号发射技术用于实现传输梳状数为8,4端口的探测参考信号发射,带来端口信号不正交的问题,从而引入端口之间的相互干扰;并且端口上的探测参考信号的相位旋转偏移不在预设的相位旋转偏移位置,从而增加了系统的复杂度。
在一实施例中,一种发射探测参考信号的实现方法,包括:
终端接收基站关于上行参考信号的配置信息;
终端根据所述配置信息发射上行参考信号。
在一实施例中,
配置信息包括:传输梳状数、传输梳状偏移值和旋转偏移起始数,其中,端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值;根据旋转偏移起始数、端口之间旋转偏移间隔与探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数。
所述端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,一种方式为所述取整值为向下取整值;另一种方式为所述取整值为向上取整值。
示例性地:
Figure PCTCN2022095287-appb-000020
其中,
Figure PCTCN2022095287-appb-000021
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000022
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000023
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000024
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,其中,所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000025
表示探测参考信号资源端口上的旋转偏移数。其中,所述的向下取整值,可以使传输梳状数为8、最大旋转偏移数为6以及探测参考信号资源端口数目为4的情况下,各参考信号资源端口上的旋转偏移数不重叠。
示例性地:
Figure PCTCN2022095287-appb-000026
其中,
Figure PCTCN2022095287-appb-000027
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000028
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000029
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000030
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,其中,所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000031
表示探测参考信号资源端口上的旋转偏移数。其中,所述的向上取整值,可以使传输梳状数为8、最大旋转偏移数为6和探测参考信号资源端口数目为4的情况下,各参考信号资源端口上的旋转偏移数之间隔增大。
在一实施例中,配置信息包括传输梳状数、传输梳状偏移值和旋转偏移起始数,其中端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值的整数倍;根据旋转偏移起始数、端口之间旋转偏移间隔和探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数。
所述端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,一种方式为所述取整值为向下取整值;另一种方式为所述取整值为向上取整值。
示例性地:
Figure PCTCN2022095287-appb-000032
其中,
Figure PCTCN2022095287-appb-000033
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000034
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000035
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000036
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值的2倍,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000037
表示探测参考信号资源端口上的旋转偏移数。
示例性地:
Figure PCTCN2022095287-appb-000038
其中,
Figure PCTCN2022095287-appb-000039
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000040
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000041
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000042
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值的2倍,其中所述取整值为向上取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000043
表示探测参考信号资源端口上的旋转偏移数。
在一实施例中,
配置信息包括传输梳状数、传输梳状偏移值和旋转偏移起始数,其中端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的向下取整值;根据旋转偏移起始数、端口之间旋转偏移间隔、探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数;其中探测参考信号资源的所有端口的传输梳状偏移值均相同,并且为所述配置信息包括的传输梳状偏移值。
示例性地:
Figure PCTCN2022095287-appb-000044
Figure PCTCN2022095287-appb-000045
其中,
Figure PCTCN2022095287-appb-000046
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000047
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000048
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000049
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000050
表示探测参考信号资源端口上的旋转偏移数;
Figure PCTCN2022095287-appb-000051
表示其中配置信息包括的传输梳状偏移值,
Figure PCTCN2022095287-appb-000052
表示探测参考信号资源的端口的传输梳状偏移值,所述的向下取整值,可以使传输梳状数为8、最大旋转偏移数为6和探测参考信号资源端口数目为4的情况下,各参考信号资源端口上的旋转偏移数不重叠。
在一实施例中,配置信息包括传输梳状数、传输梳状偏移值和旋转偏移起始数,其中端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的向下取整值;根据旋转偏移起始数、端口之间旋转偏移间隔和探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数;其中探测参考信号资源的第一组端口的传输梳状偏移值为所述配置信息包括的传输梳状偏移值,第二组端口的传输梳状偏移值与第一组端口的传输梳状偏移值相差传输梳状数的一半。
示例性地:
Figure PCTCN2022095287-appb-000053
Figure PCTCN2022095287-appb-000054
其中,
Figure PCTCN2022095287-appb-000055
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000056
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000057
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000058
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000059
表示探测参考信号资源端口上的旋转偏移数;
Figure PCTCN2022095287-appb-000060
表示其中配置信息包括的传输梳状偏移值,
Figure PCTCN2022095287-appb-000061
表示探测参考信号资源的端口的传输梳状偏移值。其中一组端口p i∈{1002,1003}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口p i∈{1000,1001}的传输梳状偏移值与p i∈{1002,1003}的传输梳状偏移值相差传输梳状数的一半。或者,其中一组端口p i∈{1000,1001}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口的传输梳状偏移值p i∈{1002,1003}与p i∈{1000,1001}的传输梳状偏移值相差传输梳状数的一半。
示例性地:
Figure PCTCN2022095287-appb-000062
Figure PCTCN2022095287-appb-000063
其中,
Figure PCTCN2022095287-appb-000064
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000065
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000066
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000067
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000068
表示探测参考信号资源端口上的旋转偏移数;
Figure PCTCN2022095287-appb-000069
表示其中配置信息包括的传输梳状偏移值,
Figure PCTCN2022095287-appb-000070
表示探测参考信号资源的端口的传输梳状偏移值。其中一组端口p i∈{1000,1002}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口p i∈{1001,1003}的传输梳状偏移值与p i∈{1000,1002}的传输梳状偏移值相差传输梳状数的一 半。或者,其中一组端口p i∈{1001,1003}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口的传输梳状偏移值p i∈{1000,1002}与p i∈{1001,1003}的传输梳状偏移值相差传输梳状数的一半。
在一实施例中,配置信息包括传输梳状数、传输梳状偏移值和旋转偏移起始数,其中,端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的向下取整值的2倍;根据旋转偏移起始数、端口之间旋转偏移间隔和探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数;其中,探测参考信号资源的第一组端口的传输梳状偏移值为所述配置信息包括的传输梳状偏移值,第二组端口的传输梳状偏移值与第一组端口的传输梳状偏移值相差传输梳状数的一半。
示例性地:
Figure PCTCN2022095287-appb-000071
Figure PCTCN2022095287-appb-000072
其中,
Figure PCTCN2022095287-appb-000073
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000074
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000075
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000076
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值的2倍,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000077
表示探测参考信号资源端口上的旋转偏移数;
Figure PCTCN2022095287-appb-000078
表示其中配置信息包括的传输梳状偏移值,
Figure PCTCN2022095287-appb-000079
表示探测参考信号资源的端口的传输梳状偏移值。其中一组端口p i∈{1002,1003}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口p i∈{1000,1001}的传输梳状偏移值与p i∈{1002,1003}的传输梳状偏移值相差传输梳状数的一半。或者,其中一组端口p i∈{1000,1001}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口的传输梳状偏移值p i∈{1002,1003}与p i∈{1000,1001}的传输梳状偏移值相差传输梳状数的一半。
示例性地:
Figure PCTCN2022095287-appb-000080
Figure PCTCN2022095287-appb-000081
其中,
Figure PCTCN2022095287-appb-000082
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000083
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000084
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000085
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值的2倍,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000086
表示探测参考信号资源端口上的旋转偏移数;
Figure PCTCN2022095287-appb-000087
表示其中配置信息包 括的传输梳状偏移值,
Figure PCTCN2022095287-appb-000088
表示探测参考信号资源的端口的传输梳状偏移值。其中一组端口p i∈{1000,1002}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口p i∈{1001,1003}的传输梳状偏移值与p i∈{1000,1002}的传输梳状偏移值相差传输梳状数的一半。或者,其中一组端口p i∈{1001,1003}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口的传输梳状偏移值p i∈{1000,1002}与p i∈{1001,1003}的传输梳状偏移值相差传输梳状数的一半。
在一实施例中,配置信息包括传输梳状数、传输梳状偏移值和旋转偏移起始数,其中,端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的向下取整值;根据旋转偏移起始数、端口之间旋转偏移间隔、探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数;并使用旋转偏移起始数是否位于设定的集合确定探测参考信号资源端口使用相同的传输梳状偏移值与否。
示例性地:
Figure PCTCN2022095287-appb-000089
Figure PCTCN2022095287-appb-000090
其中,
Figure PCTCN2022095287-appb-000091
表示旋转偏移起始数,
Figure PCTCN2022095287-appb-000092
表示最大旋转偏移数,
Figure PCTCN2022095287-appb-000093
表示探测参考信号资源端口数目,
Figure PCTCN2022095287-appb-000094
表示端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的取整值,其中所述取整值为向下取整值;p i表示探测参考信号资源端口索引号,
Figure PCTCN2022095287-appb-000095
表示探测参考信号资源端口上的旋转偏移数;
Figure PCTCN2022095287-appb-000096
表示其中配置信息包括的传输梳状偏移值,
Figure PCTCN2022095287-appb-000097
表示探测参考信号资源的端口的传输梳状偏移值;对应于旋转偏移起始数
Figure PCTCN2022095287-appb-000098
其中,一组端口p i∈{1000,1002}的传输梳状偏移值为配置信息包括的传输梳状偏移值,另一组端口p i∈{1001,1003}的传输梳状偏移值与p i∈{1000,1002}的传输梳状偏移值相差传输梳状数的一半;对应于旋转偏移起始数
Figure PCTCN2022095287-appb-000099
所有端口传输梳状偏移值为配置信息包括的传输梳状偏移值。
Figure PCTCN2022095287-appb-000100
在一实施例中,配置信息包括传输梳状数、第一传输梳状偏移值、第二传输梳状偏移值和旋转偏移起始数,其中,端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的向下取整值;根据旋转偏移起始数、端口之间旋转偏移间隔和探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数;其中探测参考信号资源的第一组端口的传输梳状偏移值为所述第一传输梳状偏移值,第二组端口的传输梳状偏移值为第二传输梳状偏移值。
在一实施例中,配置信息包括传输梳状数、第一传输梳状偏移值、第二传输梳状偏移值和旋转偏移起始数,其中端口之间旋转偏移间隔为最大旋转偏移数除以探测参考信号资源端口数目的商的向下取整值的整数倍;根据旋转偏移起始数、端口之间旋转偏移间隔和探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数;其中探测参考信号资源的第一组端口的传输梳状偏移值为所述第一传输梳状偏移值,第二组端口的传输梳状偏移值为第二传输梳状偏移值。
在一实施例中,
配置信息包括传输梳状数、第一传输梳状偏移值、第二传输梳状偏移值和旋转偏移起始数,其中探测参考信号资源的第一组端口的传输梳状偏移值为所述第一传输梳状偏移值,第一组端口之间旋转偏移间隔为最大旋转偏移数的一半,第二组端口的传输梳状偏移值为第二传输梳状偏移值,第二组端口之间旋转偏移间隔为最大旋转偏移数的一半;根据旋转偏移起始数、端口之间旋转偏移间隔和探测参考信号资源端口索引号确定探测参考信号资源端口上的旋转偏移数。
在一实施例中,图2是本申请实施例提供的一种信息接收方法的流程图。本实施例可以由第二通信节点执行。其中,第二通信节点可以为基站。如图2所示,本实施例包括:S210-S220。
S210、向第一通信节点发送第一配置信息和第二配置信息,以使第一通信节点根据第一配置信息和第二配置信息确定报告的信道状态信息。
S220、接收第一通信节点报告的信道状态信息。
在一实施例中,信道状态信息包括:预编码矩阵指示符;所述预编码矩阵指示符对应的预编码矩阵由第一组矢量确定,或者,由第一组矢量和第二组矢量确定;
其中,所述第一组矢量包括L个矢量,所述第二组矢量包括M v个矢量;其中,L和M v均为正整数;
所述第一组矢量中的一个矢量对应一个信道状态信息参考信号端口;所述第二组矢量中一个矢量中的一个元素对应一个预编码矩阵。
在一实施例中,所述第一配置信息包括:信道状态信息参考信号端口的数目P。第二通信节点向第一通信节点发送信道状态信息参考信号端口的数目P。在实施例中,第一通信节点首先接收信道状态信息参考信号端口的数目P的信道状态信息参考信号,以使第一通信节点根据对接收到的的信道状态信息参考信号进行测量,再从P个信道状态信息参考信号端口中选择出K 1个信道状态信息参考信号端口。其中,每个极化方向均选择出L个信道状态信息参考信号端口,K 1=2L;其中,所述L个信道状态信息参考信号端口中的每个信道状态信息参考信号端口映射到所述第一组矢量中的一个矢量。
在一实施例中,所述第二配置信息包括:第一比例参数;所述K 1的确定方式,包括:根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1
在一实施例中,根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;
确定所述乘积值与预定的第一定值之间乘积值的取整值;
根据所述取整值和预定的第二定值确定K 1
在一实施例中,根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:确定取整值,所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值;根据所述取整值和预定的第二定值确定K 1
在一实施例中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
根据所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值确定K 1
在一实施例中,所述第二配置信息包括:第一比例参数;所述L的确定方式,包括:
确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;
根据所述乘积值与预定的第一定值之间乘积值的取整值确定L。
在一实施例中,第二配置信息包括:第一比例参数;所述L的确定方式,包括:根据取整值确定所述L,其中所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数、与预定的第一定值的乘积值的取整值。
在一实施例中,所述第二通信节点通过第二配置信息指示M v的值与N的值;其中,通过N的值指示N个候选矢量,所述N个候选矢量是连续索引号的矢量;所述M v个矢量从N个候选矢量中确定。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:
所述第二配置信息包括N的值,并按照N的值指示M v的值。
在一实施例中,所述按照N的值指示M v的值,包括下述之一:
与N的值为1相对应,M v的值为1;
与N的值为2相对应,M v的值为2;
与N的值大于2相对应,M v的值为2。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:
所述第二配置信息包括M v的值,并按照M v的值指示N的值。
在一实施例中,所述按照M v的值指示N的值,包括下述之一:
与M v的值为1相对应,N的值为1;
与M v的值为2相对应,N的值等于或大于2;
与M v的值为2相对应,从{2,N i}中选样一个值作为N的值;其中,N i为{3,4,5}中的一个值。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:
所述第二配置信息包括:组合参数,并按照所述组合参数指示M v的值与N的值。
在一实施例中,根据M v的值与N的值确定第一通信节点是否向第二通信节点报告所述第二组矢量中的矢量;或者,根据N的值确定第一通信节点是否向第二通信节点报告第二组矢量中的矢量。
在一实施例中,根据M v的值与N的值确定终端是否向基站报告所述第二组矢量中的矢量:
与M v等于N相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;
与M v不等于N相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量。
在一实施例中,根据N的值确定第一通信节点是否向第二通信节点报告第二组矢量中的矢量,包括下述之一:
与N的值为N i相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
与N的值小于N i相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;其中,N i为{3,4,5}中的一个值;
与N的值大于2相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
与N的值小于或等于2相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量。
在一实施例中,所述接收所述第一通信节点报告的信道状态信息,包括:接收第一通信节点报告的第二组矢量;其中,接收第一通信节点报告的第二组矢量,包括:接收第一通信节点报告的所述M v个矢量所对应索引号之间的间隔。
在一实施例中,第二通信节点接收第一通信节点报告的第二组矢量,包括:与M v为2,N大于M v相对应,第二通信节点接收第一通信节点报告的1个矢量的索引号,并且另一个矢量的索引号为预定值。
在一实施例中,所述第二通信节点接收第一通信节点报告的第二组矢量,包括:接收第一通信节点使用
Figure PCTCN2022095287-appb-000101
个比特报告的第二组矢量。
在实施例中,对第一配置信息、第二配置信息以及信道状态信息的解释见上述实施例的描述,在此不再一一赘述。
在一实施例中,图3是本申请实施例提供的一种信息报告装置的结构框图。本实施例应用于第一通信节点。如图3所示,本实施例中的信息报告装置包括:第一接收器310、第二接收器320和报告模块330。
其中,第一接收器310,配置为接收第二通信节点的第一配置信息和第二配置信息。
第二接收器320,配置为按照所述第一配置信息接收第二通信节点发送的信道状态信息参考信号。
报告模块330,配置为根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息。
在一实施例中,所述信道状态信息包括:预编码矩阵指示符;所述预编码矩阵指示符对应的预编码矩阵由第一组矢量确定,或者,由第一组矢量和第二组矢量确定;
其中,所述第一组矢量包括L个矢量,所述第二组矢量包括M v个矢量;其中,L和M v均为正整数;
所述第一组矢量中的一个矢量对应一个信道状态信息参考信号端口;所述第二组矢量中一个矢量中的一个元素对应一个预编码矩阵。
在一实施例中,所述第一配置信息包括:信道状态信息参考信号端口的数目P;报告信道状态信息,包括;从所述P个信道状态信息参考信号端口中选择出K 1个信道状态信息参考信号端口;
其中,每个极化方向均选择出L个信道状态信息参考信号端口,K 1=2L;其中,所述L 个信道状态信息参考信号端口中的每个信道状态信息参考信号端口映射到所述第一组矢量中的一个矢量。
在一实施例中,所述第二配置信息包括:第一比例参数;所述K 1的确定方式,包括:根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1
在一实施例中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;
确定所述乘积值与预定的第一定值之间乘积值的取整值;
根据所述取整值和预定的第二定值确定K 1
在一实施例中,根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
确定取整值,所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值;
根据所述取整值和预定的第二定值确定K 1
在一实施例中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
根据所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值确定K 1
在一实施例中,所述第二配置信息包括:第一比例参数;所述L的确定方式,包括:
确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;
根据所述乘积值与预定的第一定值之间乘积值的取整值确定L。
在一实施例中,第二配置信息包括:第一比例参数;所述L的确定方式,包括:
根据取整值确定所述L,其中所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值。
在一实施例中,所述第二通信节点通过第二配置信息指示M v的值与N的值;其中,通过N的值指示N个候选矢量,所述N个候选矢量是连续索引号的矢量;所述M v个矢量从N个候选矢量中确定。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:
所述第二配置信息包括N的值,并按照N的值指示M v的值。
在一实施例中,所述按照N的值指示M v的值,包括下述之一:
与N的值为1相对应,M v的值为1;
与N的值为2相对应,M v的值为2;
与N的值大于2相对应,M v的值为2。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:
所述第二配置信息包括M v的值,并按照M v的值指示N的值。
在一实施例中,所述按照M v的值指示N的值,包括下述之一:
与M v的值为1相对应,N的值为1;
与M v的值为2相对应,N的值等于或大于2;
与M v的值为2相对应,从{2,N i}中选样一个值作为N的值;其中,N i为{3,4,5}中的一个值。
在一实施例中,所述第二配置信息指示M v的值与N的值,包括:
所述第二配置信息包括:组合参数,并按照所述组合参数指示M v的值与N的值。
在一实施例中,所述报告模块,包括:
根据M v的值与N的值确定第一通信节点对所述第二组矢量中矢量的报告情况;
或者,根据N的值确定第一通信节点对所述第二组矢量中矢量的报告情况。
在一实施例中,所述根据M v的值与N的值确定第一通信节点对所述第二组矢量中矢量的报告情况,包括:
与M v等于N相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;
与M v不等于N相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量。
在一实施例中,根据N的值确定第一通信节点对所述第二组矢量中矢量的报告情况,包括下述之一:
与N的值为N i相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
与N的值小于N i相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;其中,N i为{3,4,5}中的一个值;
与N的值大于2相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
与N的值小于或等于2相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量。
在一实施例中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:所述第一通信节点向所述第二通信节点报告所述M v个矢量所对应索引号之间的间隔。
在一实施例中,第一通信节点向所述第二通信节点报告所述第二组矢量,包括:与M v为2,N大于M v相对应,所述第一通信节点向所述第二通信节点报告1个矢量的索引号,并且另一个矢量的索引号为预定值。
在一实施例中,第一通信节点向所述第二通信节点报告所述第二组矢量,包括:使用
Figure PCTCN2022095287-appb-000102
个比特报告所述第二组矢量。
本实施例提供的信息报告装置设置为实现图1所示实施例的应用于第一通信节点的信息报告方法,本实施例提供的信息报告装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图4是本申请实施例提供的一种信息接收装置的结构框图。本实施例可以由第二通信节点执行。其中,第二通信节点可以为基站。如图4所示,本实施例包括:发送器410和第三接收器420。
发送器410,配置为向第一通信节点发送所述第一配置信息和所述第二配置信息,以使第一通信节点根据第一配置信息和所述第二配置信息确定报告的信道状态信息。
第三接收器420,配置为接收所述第一通信节点报告的信道状态信息。
本实施例提供的信息接收装置设置为实现图2所示实施例的应用于第二通信节点的信息接收方法,本实施例提供的信息接收装置实现原理和技术效果类似,此处不再赘述。
图5是本申请实施例提供的一种通信设备的结构示意图。如图5所示,本申请提供的通信设备,包括:处理器510、存储器520和通信模块530。该设备中处理器510的数量可以是一个或者多个,图5中以一个处理器510为例。该设备中存储器520的数量可以是一个或者多个,图5中以一个存储器520为例。该设备的处理器510、存储器520和通信模块530可以通过总线或者其他方式连接,图5中以通过总线连接为例。在该实施例中,该设备为可以为第一通信节点,比如,第一通信节点可以为终端侧(比如,用户设备)。
存储器520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,信息报告装置中的第一接收器310、第二接收器320和报告模块330)。存储器520可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块530,配置为在第一通信节点和第二通信节点之间进行通信交互。
在通信设备为第一通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的信息报告方法,具备相应的功能和效果。
在通信设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的信息接收方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的信息报告方法,该方法包括:接收第二通信节点的第一配置信息和第二配置信息;按照所述第一配置信息接收第二通信节点发送的信道状态信息参考信号;根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的信息接收方法,该方法包括:向第一通信节点发送所述第一配置信息和所述第二配置信息,以使第一通信节点根据第一配置信息和所述第二配置信息确定报告的信道状态信息;接收所述第一通信节点报告的信道状态信息。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微 代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
以上仅为本申请的若干实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种信息报告方法,应用于第一通信节点,包括:
    接收第二通信节点的第一配置信息和第二配置信息;
    按照所述第一配置信息接收第二通信节点发送的信道状态信息参考信号;
    根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息。
  2. 根据权利要求1所述的方法,其中,所述信道状态信息包括:预编码矩阵指示符;所述预编码矩阵指示符对应的预编码矩阵由第一组矢量确定,或者,由第一组矢量和第二组矢量确定;
    其中,所述第一组矢量包括L个矢量,所述第二组矢量包括M v个矢量;其中,L和M v均为正整数;
    所述第一组矢量中的一个矢量对应一个信道状态信息参考信号端口;所述第二组矢量中一个矢量中的一个元素对应一个预编码矩阵。
  3. 根据权利要求1或2所述的方法,其中,所述第一配置信息包括:信道状态信息参考信号端口的数目P;所述报告信道状态信息包括:
    从所述P个信道状态信息参考信号端口中选择出K 1个信道状态信息参考信号端口;
    其中,每个极化方向均选择出L个信道状态信息参考信号端口,K 1=2L;其中,所述L个信道状态信息参考信号端口中的每个信道状态信息参考信号端口映射到所述第一组矢量中的一个矢量。
  4. 根据权利要求3所述的方法,其中,所述第二配置信息包括:第一比例参数;所述K 1的确定方式,包括:根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1
  5. 根据权利要求4所述的方法,其中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
    确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;
    确定所述乘积值与预定的第一定值之间乘积值的取整值;
    根据所述取整值和预定的第二定值确定K 1
  6. 根据权利要求4所述的方法,其中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
    确定取整值,所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值;
    根据所述取整值和预定的第二定值确定K 1
  7. 根据权利要求4所述的方法,其中,所述根据所述信道状态信息参考信号端口的数目P与所述第一比例参数确定K 1,包括:
    根据所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值确定K 1
  8. 根据权利要求3所述的方法,其中,所述第二配置信息包括:第一比例参数;所述L的确定方式,包括:
    确定所述信道状态信息参考信号端口的数目P与所述第一比例参数的乘积值;
    根据所述乘积值与预定的第一定值之间乘积值的取整值确定L。
  9. 根据权利要求3所述的方法,其中,所述第二配置信息包括:第一比例参数;所述L的确定方式,包括:
    根据取整值确定所述L,其中所述取整值为所述信道状态信息参考信号端口的数目P、所述第一比例参数与预定的第一定值的乘积值的取整值。
  10. 根据权利要求2所述的方法,其中,所述第二通信节点通过第二配置信息指示M v的值与N的值;其中,通过N的值指示N个候选矢量,所述N个候选矢量是连续索引号的矢量;所述M v个矢量从N个候选矢量中确定。
  11. 根据权利要求10所述的方法,其中,所述第二配置信息指示M v的值与N的值,包括:
    所述第二配置信息包括N的值,并按照N的值指示M v的值。
  12. 根据权利要求11所述的方法,其中,所述按照N的值指示M v的值,包括下述之一:
    与N的值为1相对应,M v的值为1;
    与N的值为2相对应,M v的值为2;
    与N的值大于2相对应,M v的值为2。
  13. 根据权利要求10所述的方法,其中,所述第二配置信息指示M v的值与N的值,包括:
    所述第二配置信息包括M v的值,并按照M v的值指示N的值。
  14. 根据权利要求13所述的方法,其中,所述按照M v的值指示N的值,包括下述之一:
    与M v的值为1相对应,N的值为1;
    与M v的值为2相对应,N的值等于或大于2;
    与M v的值为2相对应,从{2,N i}中选样一个值作为N的值;其中,N i为{3,4,5}中的一个值。
  15. 根据权利要求10所述的方法,其中,所述第二配置信息指示M v的值与N的值,包括:
    所述第二配置信息包括:组合参数,并按照所述组合参数指示M v的值与N的值。
  16. 根据权利要求10所述的方法,其中,所述根据所述信道状态信息参考信号与所述第二配置信息报告信道状态信息,包括:
    根据M v的值与N的值确定第一通信节点对所述第二组矢量中矢量的报告情况;
    或者,根据N的值确定第一通信节点对所述第二组矢量中矢量的报告情况。
  17. 根据权利要求16所述的方法,其中,所述根据M v的值与N的值确定第一通信节点对所述第二组矢量中矢量的报告情况,包括:
    与M v等于N相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;
    与M v不等于N相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量。
  18. 根据权利要求16所述的方法,其中,所述根据N的值确定第一通信节点对所述第二组矢量中矢量的报告情况,包括下述之一:
    与N的值为N i相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
    与N的值小于N i相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量;其中,N i为{3,4,5}中的一个值;
    与N的值大于2相对应,所述第一通信节点向所述第二通信节点报告所述第二组矢量中的矢量;
    与N的值小于或等于2相对应,所述第一通信节点不向所述第二通信节点报告所述第二组矢量中的矢量。
  19. 根据权利要求10所述的方法,其中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:所述第一通信节点向所述第二通信节点报告所述M v个矢量所对应索引号之间的间隔。
  20. 根据权利要求10所述的方法,其中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:与M v为2,N大于M v相对应,所述第一通信节点向所述第二通信节点报告1个矢量的索引号,并且另一个矢量的索引号为预定值。
  21. 根据权利要求10所述的方法,其中,所述第一通信节点向所述第二通信节点报告所述第二组矢量,包括:使用
    Figure PCTCN2022095287-appb-100001
    个比特报告所述第二组矢量。
  22. 一种信息接收方法,应用于第二通信节点,包括:
    向第一通信节点发送所述第一配置信息和所述第二配置信息,以使第一通信节点根据第一配置信息和所述第二配置信息确定报告的信道状态信息;
    接收所述第一通信节点报告的信道状态信息。
  23. 一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
    所述通信模块,配置为在第一通信节点和第二通信节点之间进行通信交互;
    所述存储器,配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述权利要求1-21或22中任一项所述的方法。
  24. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-21或22中任一项所述的方法。
PCT/CN2022/095287 2021-09-29 2022-05-26 信息报告、接收方法、设备和存储介质 WO2023050843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022353555A AU2022353555A1 (en) 2021-09-29 2022-05-26 Information reporting method, information receiving method, device, and storage medium
KR1020247007270A KR20240041375A (ko) 2021-09-29 2022-05-26 정보 보고 방법, 정보 수신 방법, 기기 및 기록 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111154915.4A CN115915458A (zh) 2021-09-29 2021-09-29 信息报告、接收方法、设备和存储介质
CN202111154915.4 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023050843A1 true WO2023050843A1 (zh) 2023-04-06

Family

ID=85737607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095287 WO2023050843A1 (zh) 2021-09-29 2022-05-26 信息报告、接收方法、设备和存储介质

Country Status (4)

Country Link
KR (1) KR20240041375A (zh)
CN (1) CN115915458A (zh)
AU (1) AU2022353555A1 (zh)
WO (1) WO2023050843A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352882A (zh) * 2015-11-05 2018-07-31 瑞典爱立信有限公司 用于csi报告的csi-rs端口选择的方法和系统
CN111901080A (zh) * 2020-01-07 2020-11-06 中兴通讯股份有限公司 一种信息获取方法、装置、设备和存储介质
CN112312463A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 上报信道状态信息的方法和装置
WO2021071337A1 (ko) * 2019-10-10 2021-04-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
CN112865843A (zh) * 2021-01-14 2021-05-28 中兴通讯股份有限公司 信道状态信息传输方法、装置、电子设备和存储介质
US20210175937A1 (en) * 2018-06-28 2021-06-10 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352882A (zh) * 2015-11-05 2018-07-31 瑞典爱立信有限公司 用于csi报告的csi-rs端口选择的方法和系统
US20210175937A1 (en) * 2018-06-28 2021-06-10 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method
CN112312463A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 上报信道状态信息的方法和装置
WO2021071337A1 (ko) * 2019-10-10 2021-04-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
CN111901080A (zh) * 2020-01-07 2020-11-06 中兴通讯股份有限公司 一种信息获取方法、装置、设备和存储介质
CN112865843A (zh) * 2021-01-14 2021-05-28 中兴通讯股份有限公司 信道状态信息传输方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
AU2022353555A1 (en) 2024-03-07
CN115915458A (zh) 2023-04-04
KR20240041375A (ko) 2024-03-29

Similar Documents

Publication Publication Date Title
JP6977920B2 (ja) チャネル状態情報報告バンドの設定方法及び通信装置
CN111769857B (zh) 一种上报终端设备能力的方法和通信装置
JP2020501395A (ja) 復調用参照信号の密度を適応させるための方法
WO2017152785A1 (zh) 一种csi反馈方法、预编码方法及装置
CN111817798B (zh) 一种信道测量方法和通信装置
US20240080078A1 (en) Channel state information transmission method and apparatus, electronic device, and storage medium
CN111201722B (zh) 用于子带信道状态信息报告的频域省略的方法和装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
WO2019072073A1 (zh) 一种信道测量方法及装置
CN112671442B (zh) 通信方法和通信装置
WO2023050843A1 (zh) 信息报告、接收方法、设备和存储介质
CN112751590B (zh) 信道信息反馈的方法和设备
WO2023078176A1 (zh) 信息传输方法、设备和存储介质
WO2023078177A1 (zh) 信息传输方法、设备和存储介质
WO2023207518A1 (zh) 信道状态信息报告方法、信道状态信息接收方法、终端、基站和存储介质
WO2022242444A1 (zh) 信道状态信息传输方法、装置、通信节点及存储介质
WO2023206287A1 (en) Indication of demodulation reference signal (dmrs) and phase tracking reference signal (ptrs) association
WO2023000816A1 (zh) 一种信道状态信息的传输方法、通信节点及存储介质
CN115118377A (zh) 信道状态信息报告、接收方法、通信节点及存储介质
CN117811621A (zh) 一种多站协作的信道状态信息指示方法和通信装置
CA3223207A1 (en) Channel state information reporting method, channel state information receiving method, communication node, and storage medium
CN114158120A (zh) 一种传输上行信号的方法及装置
CN112398511A (zh) 一种数据发送方法、数据接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022353555

Country of ref document: AU

Ref document number: AU2022353555

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20247007270

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022353555

Country of ref document: AU

Date of ref document: 20220526

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022874241

Country of ref document: EP

Effective date: 20240429