WO2023207465A1 - 确定距离的方法和通信装置 - Google Patents

确定距离的方法和通信装置 Download PDF

Info

Publication number
WO2023207465A1
WO2023207465A1 PCT/CN2023/084012 CN2023084012W WO2023207465A1 WO 2023207465 A1 WO2023207465 A1 WO 2023207465A1 CN 2023084012 W CN2023084012 W CN 2023084012W WO 2023207465 A1 WO2023207465 A1 WO 2023207465A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
coordinate system
axis
eci
angle
Prior art date
Application number
PCT/CN2023/084012
Other languages
English (en)
French (fr)
Inventor
周悦
陈莹
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207465A1 publication Critical patent/WO2023207465A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • Embodiments of the present application relate to the field of communications, and, more specifically, to methods and communications devices for determining distance.
  • non-terrestrial networks are introduced into the fifth generation (5th generation, 5G) system, and together with the fifth generation (5th generation, 5G) system form a seamless global coverage of the sea. , land, air, space and ground integrated communication network to meet more business needs.
  • the NTN communication system includes a satellite communication system.
  • the high-speed movement of satellites in the satellite communication system will introduce frequency offsets into the communication between the terminal equipment and the satellite.
  • the long distance between the satellite and the terminal equipment will introduce a relatively large distance into the communication between the terminal equipment and the satellite. Long delay causes time offset. Therefore, in the satellite communication system, in order to complete the time-frequency synchronization with the network, the terminal equipment needs to obtain the frequency offset (Doppler offset) and time offset, and the frequency offset and time offset need to be calculated by the terminal equipment.
  • Get the relative distance and relative speed to the satellite The relative distance and relative speed can be calculated by the terminal device combining its own position and the position of the satellite. The terminal device can determine its own position. Therefore, how the terminal device determines the position of the satellite and thereby determines the distance between the terminal device and the satellite is worth considering. question.
  • Embodiments of the present application provide a method and communication device for determining distance, so that the terminal device can reduce errors when determining the distance between the terminal device and the network device.
  • the first aspect provides a method for determining distance.
  • This method can be executed by a terminal device, or by a component (such as a chip or chip system) configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device receives first ephemeris information, the first ephemeris information is associated with the position of the network device in a first earth inertial ECI coordinate system at a first time, and the first ECI coordinate system is associated with the earth's location at the first time. There is a first relationship in the geocentric ECEF coordinate system; the terminal device determines the distance between the terminal device and the network device based on the first ephemeris information and the first relationship.
  • the terminal device can determine the location information of the network device in the first ECI coordinate system at the first time based on the first ephemeris information, and determine the terminal device and the network based on the first relationship between the first ECI coordinate system and the ECEF coordinate system.
  • the distance between devices For example, the first ephemeris information includes ECI coordinate information, and the terminal device can convert the ECI coordinate information in the first ephemeris information into ECEF coordinate information at the first time according to the first relationship, and the terminal device can obtain its own position corresponding to the first time. ECEF coordinate information, so that the distance between the terminal device and the network device can be determined.
  • the terminal device needs to convert the ECI coordinate information into the ECEF coordinate information at the absolute time based on the absolute time corresponding to the ephemeris information, and there is a certain error when obtaining the absolute time corresponding to the ephemeris information.
  • This solution is There is no need to obtain absolute time when converting coordinate information, so coordinate information can be converted more accurately, thereby reducing errors in the distance between the terminal device and the network device.
  • the terminal device sends first request information, where the first request information is used to request the first ephemeris information.
  • the opposite end when the terminal device requests the first ephemeris information, the opposite end only issues the first ephemeris information, which can save signaling overhead and meet the needs of the terminal device as needed.
  • the terminal device receives first indication information, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the terminal device can be made clear about the type of response information (i.e., the first ephemeris information), and avoid misinterpretation of the ephemeris information that has undergone coordinate conversion (the ephemeris information associated with the first ECI coordinates), causing no problems. Necessary signaling overhead.
  • the first relationship includes a first angle between the first axis of the first ECI coordinate system and the first axis of the ECEF coordinate system, and the first The second angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the third angle between the third axis of the first ECI coordinate system and the third axis of the ECEF coordinate system.
  • the terminal device receives second indication information, the second indication information indicating the first relationship.
  • the values of the first angle, the second angle and the third angle can be changed, making the implementation more flexible.
  • the first indication information and/or the second indication information are carried in radio resource control signaling, media access control layer control unit signaling or downlink control information.
  • the first angle is 0, the second angle is 0, and the third angle is 0.
  • the values of the first angle, the second angle and the third angle are 0, so the terminal device does not need to rotate the coordinate axis when converting the coordinate information, and the implementation is relatively simple.
  • the first request information is carried in radio resource control signaling, media access control layer control unit signaling or uplink control information.
  • the second aspect provides a method for determining distance.
  • This method can be executed by a terminal device, or by a component (such as a chip or chip system) configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device receives second ephemeris information, the second ephemeris information is associated with the position of the network device in the second earth inertial ECI coordinate system at the first time, the terminal device receives third indication information, the third indication The information indicates a second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time; the terminal device determines the distance between the terminal device and the network device based on the second ephemeris information and the second relationship.
  • the terminal device can determine the location information of the network device in the second ECI coordinate system at the first time through the second ephemeris information, and determine the terminal device and the network based on the second relationship between the second ECI coordinate system and the ECEF coordinate system.
  • distance between devices For example, the second ephemeris information includes ECI coordinate information, and the terminal device can convert the ECI coordinate information in the second ephemeris information into ECEF coordinate information at the first time according to the second relationship, and the terminal device can obtain its position corresponding to the first time. ECEF coordinate information, so that the distance between the terminal device and the network device can be determined.
  • the terminal device needs to convert the ECI coordinate information into the ECEF coordinate information at the absolute time based on the absolute time corresponding to the ephemeris information, and there is a certain error when obtaining the absolute time corresponding to the ephemeris information.
  • This solution is There is no need to obtain absolute time when converting coordinate information, so coordinate information can be converted more accurately, thereby reducing errors in the distance between the terminal device and the network device.
  • the second ephemeris information of this solution does not need to be carried in the response information requested by the terminal device, which can save terminal device-specific signaling and the overall signaling overhead of the communication system.
  • the second relationship includes a fourth angle between the first axis of the second ECI coordinate system and the first axis of the ECEF coordinate system, and the second The fifth angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the sixth angle between the third axis of the second ECI coordinate system and the third axis of the ECEF coordinate system.
  • the terminal device sends first request information
  • the first request information is used to request the first ephemeris information
  • the first ephemeris information is related to the network device in the first There is a first relationship between the first ECI coordinate system and the ECEF coordinate system at the first time.
  • the terminal device when the terminal device does not know whether the second ephemeris information is valid, it can send the first request information, and the opposite end can decide by itself whether to send the third indication information or the first ephemeris information.
  • the terminal device sends second request information, and the second request information is used to request the second relationship.
  • the terminal device when the terminal device knows that the second ephemeris information is valid, the terminal device can request the second relationship, which can also save signaling overhead.
  • the terminal device receives fourth indication information, where the fourth indication information indicates that the third indication information is response information to the first request information.
  • the terminal device can be made clear about the type of response information (ie, the third indication information), ensuring correct interpretation of the second ephemeris information and avoiding unnecessary signaling overhead.
  • the terminal device receives fourth indication information, the fourth indication information indicating that the third indication information is response information to the second request information.
  • the terminal device can clearly understand the type of the response information (ie, the third indication information), ensure the correct interpretation of the second ephemeris information, and avoid unnecessary signaling overhead.
  • the second request information is carried in radio resource control signaling, media access control layer control unit or uplink control information.
  • the third aspect provides a method for determining distance.
  • This method can be executed by a network device, or by a component (such as a chip or chip system) configured in the network device, which is not limited in this application.
  • the method includes: the network device sends first ephemeris information, the first ephemeris information is associated with the position of the network device in a first earth inertial ECI coordinate system at a first time, and the first ECI coordinate system is associated with the first time. There is a first relationship in the earth-centered and earth-fixed ECEF coordinate system.
  • the network device can indicate the location information of the network device at the first time in the first ECI coordinate system through the first ephemeris information, so that the opposite end can determine the terminal based on the first relationship between the first ECI coordinate system and the ECEF coordinate system.
  • the distance between the device and network equipment includes ECI coordinate information, and the opposite end can convert the ECI coordinate information in the first ephemeris information into ECEF coordinate information at the first time according to the first relationship, and the opposite end can obtain the position corresponding to itself at the first time.
  • ECEF coordinate information so that the distance between the peer and the network device can be determined.
  • the peer needs to convert the ECI coordinate information to the ECEF coordinate information at the absolute time based on the absolute time corresponding to the ephemeris information, and there is a certain error when obtaining the absolute time corresponding to the ephemeris information.
  • This solution is in progress. There is no need to obtain absolute time when converting coordinate information, so the coordinate information can be converted more accurately, thus enabling To reduce the error in the distance between the peer and the network device.
  • the network device receives first request information, where the first request information is used to request the first ephemeris information.
  • the first ephemeris information is issued only when the network device receives the first request information, which can save signaling overhead and meet the needs of the opposite end as needed.
  • the network device sends first indication information, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the peer end can be made clear about the type of response information (i.e., the first ephemeris information) to avoid misinterpretation of the ephemeris information that has undergone coordinate conversion (ephemeris information associated with the first ECI coordinates), causing errors. Necessary signaling overhead.
  • the first relationship includes a first angle between the first axis of the first ECI coordinate system and the first axis of the ECEF coordinate system, and the first The second angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the third angle between the third axis of the first ECI coordinate system and the third axis of the ECEF coordinate system.
  • the network device sends second indication information, the second indication information indicating the first relationship.
  • the values of the first angle, the second angle and the third angle can be changed, making the implementation more flexible.
  • the first indication information and/or the second indication information are carried in radio resource control signaling, media access control layer control unit signaling or downlink control information.
  • the first angle is 0, the second angle is 0, and the third angle is 0.
  • the values of the first angle, the second angle and the third angle are 0, so the opposite end does not need to rotate the coordinate axis when converting the coordinate information, and the implementation is relatively simple.
  • the first request information is carried in radio resource control signaling, a medium access control layer control unit or uplink control information.
  • the fourth aspect provides a method for determining distance.
  • This method can be executed by a network device, or by a component (such as a chip or chip system) configured in the network device, which is not limited in this application.
  • the method includes: the network device sends second ephemeris information, the second ephemeris information is associated with the position of the network device in the second earth inertial ECI coordinate system at the first time, the network device sends third indication information, the third indication The information indicates a second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time.
  • the network device can indicate the location information of the network device at the first time in the second ECI coordinate system through the second ephemeris information, so that the opposite end can determine the terminal based on the second relationship between the second ECI coordinate system and the ECEF coordinate system.
  • the distance between the device and network equipment includes ECI coordinate information, and the opposite end can convert the ECI coordinate information in the second ephemeris information into ECEF coordinate information at the first time according to the second relationship, and the opposite end can obtain the corresponding position of its own position at the first time. ECEF coordinate information, so that the distance between the peer and the network device can be determined.
  • the peer needs to convert the ECI coordinate information to the ECEF coordinate information at the absolute time based on the absolute time corresponding to the ephemeris information, and there is a certain error when obtaining the absolute time corresponding to the ephemeris information.
  • This solution is in progress. There is no need to obtain absolute time when converting coordinate information, so the coordinate information can be converted more accurately, thereby reducing the error in the distance between the peer and the network device determined by the peer.
  • the The second ephemeris information of the solution does not need to be carried in the response information requested by the terminal device, which can save terminal-specific signaling and the overall signaling overhead of the communication system.
  • the second relationship includes a fourth angle between the first axis of the second ECI coordinate system and the first axis of the ECEF coordinate system, and the second The fifth angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the sixth angle between the third axis of the second ECI coordinate system and the third axis of the ECEF coordinate system.
  • the network device receives first request information, the first request information is used to request the first ephemeris information, the first ephemeris information is the same as the network device in the first The position of the first time in an ECI coordinate system is associated, the first ECI coordinate system has a first relationship with the ECEF coordinate system of the first time, and the network device determines that the second ephemeris information is valid.
  • the requesting party when it does not know whether the second ephemeris information is valid, it can send the first request information, and the network device can determine whether to issue the third instruction information or the first request information based on the validity of the second ephemeris information.
  • Ephemeris information when the requesting party does not know whether the second ephemeris information is valid, it can send the first request information, and the network device can determine whether to issue the third instruction information or the first request information based on the validity of the second ephemeris information. Ephemeris information.
  • the network device receives second request information, the second request information is used to request the second relationship.
  • the requesting party when the requesting party knows that the second ephemeris information is valid, it can directly request the second relationship from the network device, which can also save signaling overhead.
  • the network device sends fourth indication information, where the fourth indication information indicates that the third indication information is response information to the first request information.
  • the opposite end can be made clear about the type of response information (ie, the third indication information), ensuring correct interpretation of the second ephemeris information and avoiding unnecessary signaling overhead.
  • the network device sends fourth indication information, where the fourth indication information indicates that the third indication information is response information to the second request information.
  • the opposite end can be made clear about the type of response information (ie, the third indication information), ensuring correct interpretation of the second ephemeris information and avoiding unnecessary signaling overhead.
  • the second request information is carried in radio resource control signaling, a medium access control layer control unit or uplink control information.
  • a communication device may be a terminal device or a component (such as a chip or chip system) configured in the terminal device, which is not limited in this application.
  • the device includes: a transceiver unit and a processing unit, the transceiver unit is used to receive first ephemeris information, the first ephemeris information is associated with the position of the network device in the first earth inertial ECI coordinate system at the first time, the first There is a first relationship between the ECI coordinate system and the geocentric ECEF coordinate system at the first time, and the processing unit is configured to determine the distance between the terminal device and the network device based on the first ephemeris information and the first relationship.
  • the transceiver unit is further configured to send first request information, and the first request information is used to request the first ephemeris information.
  • the transceiver unit is further configured to receive first indication information, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the first relationship includes a first angle between the first axis of the first ECI coordinate system and the first axis of the ECEF coordinate system, and the first The second axis of the ECI coordinate system and the ECEF The second angle between the second axis of the coordinate system, the third angle between the third axis of the first ECI coordinate system and the third axis of the ECEF coordinate system.
  • the transceiver unit is further configured to receive second indication information, the second indication information indicating the first relationship.
  • the first indication information and/or the second indication information are carried in radio resource control signaling, media access control layer control unit signaling or downlink control information.
  • the first angle is 0, the second angle is 0, and the third angle is 0.
  • the first request information is carried in radio resource control signaling, media access control layer control unit signaling or uplink control information.
  • a communication device may be a terminal device or a component (such as a chip or chip system) configured in the terminal device, which is not limited in this application.
  • the device includes: a transceiver unit, the transceiver unit is used to receive second ephemeris information, the second ephemeris information is associated with the position of the network device in the second earth inertial ECI coordinate system at the first time, the transceiver unit is also used to receive Receive third indication information indicating a second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time, and the processing unit is configured to based on the second ephemeris information and the third The second relationship determines the distance between the terminal device and the network device.
  • the second relationship includes a fourth angle between the first axis of the second ECI coordinate system and the first axis of the ECEF coordinate system, and the second The fifth angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the sixth angle between the third axis of the second ECI coordinate system and the third axis of the ECEF coordinate system.
  • the transceiver unit is also used to send first request information, the first request information is used to request the first ephemeris information, and the first ephemeris information is related to the network
  • the position of the device in the first ECI coordinate system at the first time is associated, and there is a first relationship between the first ECI coordinate system and the ECEF coordinate system at the first time.
  • the transceiver unit is further configured to send second request information, and the second request information is used to request the second relationship.
  • the transceiver unit is further configured to receive fourth indication information, where the fourth indication information indicates that the third indication information is response information to the first request information.
  • the transceiver unit is further configured to receive fourth indication information, where the fourth indication information indicates that the third indication information is response information to the second request information.
  • the second request information is carried in radio resource control signaling, a medium access control layer control unit or uplink control information.
  • a communication device may be a network device or a component (such as a chip or chip system) configured in the network device, which is not limited in this application.
  • the device includes a transceiver unit: the transceiver unit is used to send first ephemeris information, the first ephemeris information is associated with the position of the network device at a first time in a first earth inertial ECI coordinate system, and the first ECI coordinate system is associated with There is a first relationship in the geocentric geofixed ECEF coordinate system at this first time.
  • the transceiver unit is further configured to receive first request information, and the first request information is used to request the first ephemeris information.
  • the transceiver unit is further configured to send first indication information, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the first relationship includes a first angle between the first axis of the first ECI coordinate system and the first axis of the ECEF coordinate system, and the first The second angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the third angle between the third axis of the first ECI coordinate system and the third axis of the ECEF coordinate system.
  • the transceiver unit is further configured to send second indication information, the second indication information indicating the first relationship.
  • the first indication information and/or the second indication information are carried in radio resource control signaling, media access control layer control unit signaling or downlink control information.
  • the first angle is 0, the second angle is 0, and the third angle is 0.
  • the first request information is carried in radio resource control signaling, a medium access control layer control unit or uplink control information.
  • a communication device may be a network device or a component (such as a chip or chip system) configured in the network device, which is not limited in this application.
  • the device includes a processing unit and a transceiver unit: the transceiver unit is used to send second ephemeris information, the second ephemeris information is associated with the position of the network device in the second earth inertial ECI coordinate system at the first time, the transceiver unit also Used to send third indication information, the third indication information indicating the second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time.
  • the second relationship includes a fourth angle between the first axis of the second ECI coordinate system and the first axis of the ECEF coordinate system, and the second The fifth angle between the second axis of the ECI coordinate system and the second axis of the ECEF coordinate system, and the sixth angle between the third axis of the second ECI coordinate system and the third axis of the ECEF coordinate system.
  • the transceiver unit is further configured to receive first request information, the first request information is used to request the first ephemeris information, and the first ephemeris information and the The network device is associated with the position of the first time in the first ECI coordinate system.
  • the first ECI coordinate system has a first relationship with the ECEF coordinate system of the first time.
  • the processing unit is used to determine that the second ephemeris information is valid. .
  • the transceiver unit is further configured to receive second request information, and the second request information is used to request the second relationship.
  • the transceiver unit is further configured to send fourth indication information, where the fourth indication information indicates that the third indication information is response information to the first request information.
  • the transceiver unit is further configured to send fourth indication information, where the fourth indication information indicates that the third indication information is response information to the second request information.
  • the second request information is carried in radio resource control signaling, a medium access control layer control unit or uplink control information.
  • a ninth aspect provides a communication device.
  • the device includes a processor, which is coupled to a memory and can be used to execute instructions in the memory to implement any one of the above first to fourth aspects, and the first A method in any possible implementation manner from the aspect to the fourth aspect.
  • the device further includes a memory, and the memory and the processor may be deployed separately or centrally.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a terminal device or a network device, or a chip configured in the terminal device or the network device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be, but is not limited to, received and input by the receiver
  • the signal output by the output circuit may be, but not limited to, output to and transmitted by the transmitter
  • the input circuit and the output circuit may be The same circuit is used as an input circuit and an output circuit at different times.
  • the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
  • a communication device in a tenth aspect, includes a logic circuit and an input/output interface.
  • the logic circuit is coupled to the input/output interface and transmits data through the input/output interface to perform the above-mentioned first aspect to the third aspect. Any one of the four aspects, and a method in any possible implementation manner of the first to fourth aspects.
  • a computer-readable storage medium stores a computer program (which may also be referred to as code, or instructions) that when run on a computer causes the computer to execute the above-mentioned first aspect. to any one of the fourth aspects, and the method in any possible implementation manner of the first to fourth aspects.
  • a computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the above first to fourth aspects. Any one of the aspects, and the method in any possible implementation manner of the first to fourth aspects.
  • Figure 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the ECI coordinate system provided by the embodiment of the present application.
  • Figure 3 is an interactive flow chart of a method for determining distance provided by an embodiment of the present application.
  • Figure 4 is an interactive flow chart of another method for determining distance provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture of the satellite communication system and 5G integration illustrated in Figure 1 includes at least one terminal device, such as terminal device 110, terminal device 111, at least one network device, such as network device 120, network device 121, network device Equipment 122, core network equipment 130.
  • Network equipment can be satellites and gateways, used to provide communication services to terminal devices. Among them, gateway stations can also be called ground stations, gateway stations, etc.
  • the link between the satellite and the terminal equipment is called the service link, and the link between the satellite and the gateway station is the feeder link.
  • ground terminal equipment accesses the network through the 5G new air interface.
  • 5G network equipment is deployed on the satellite and connected to the ground core network equipment through wireless links.
  • wireless links there are wireless links between satellites to complete signaling interaction and user data transmission between network devices.
  • the terminal equipment in the embodiment of the present application may also be called terminal, access terminal, user equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, user Agent or user device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, in 5G network Terminals or terminals in future evolution networks, etc.
  • SIP session initiation protocol
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the network device in the embodiment of the present application can be any communication device with wireless transceiver functions used to communicate with user equipment. It can be a network device deployed on a satellite or a network device deployed on the ground.
  • the network equipment includes, but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station home evolved NodeB, HeNB, or home Node B, HNB
  • gNB may include centralized units (CUs) and DUs.
  • Core network equipment 130 used for user access control, mobility management, session management, user security authentication, and accounting Waiting for business. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane. Each functional entity is not shown in Figure 1.
  • New air interface The wireless link between terminal equipment and network equipment.
  • Xn interface The interface between network equipment and network equipment, mainly used for signaling interactions such as switching.
  • NG interface The interface between network equipment and core network equipment. It mainly exchanges NAS and other signaling of the core network, as well as user business data.
  • the above-mentioned devices may still use their names in the 5G communication system, or may have other names, which are not limited in the embodiments of this application.
  • the functions of the above devices can be completed by an independent device or by several devices together.
  • network elements in the core network may be deployed on the same or different physical devices, which is not limited in the embodiments of this application.
  • Figure 1 is only an example and does not constitute any limitation on the scope of protection of the present application.
  • the communication method provided by the embodiment of the present application may also involve network elements or equipment not shown in Figure 1.
  • the communication method provided by the embodiment of the present application may also only include some of the equipment shown in Figure 1. This embodiment of the present application does not Not limited.
  • the above network architecture applied to the embodiments of the present application is only an example.
  • the network architecture applicable to the embodiments of the present application is not limited to this. Any network architecture that can realize the functions of each of the above devices is applicable to the embodiments of the present application.
  • V2X vehicle-to-everything
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure (V2I), vehicle to pedestrian (V2P), etc., long term evolution-vehicle (LTE-V), Internet of Vehicle
  • Satellite communication systems include transparent transmission satellite architecture and non-transparent transmission satellite architecture.
  • Transparent transmission is also called elbow forwarding transmission, that is, the signal only undergoes frequency conversion, signal amplification and other processes on the satellite.
  • the satellite is transparent to the signal.
  • Non-transparent transmission is also called regenerative (on-board access/processing) transmission.
  • the gateway station has the functions of a base station or part of the functions of a base station.
  • the gateway station can be regarded as a ground base station, or the ground base station can be deployed separately from the gateway station.
  • the satellite When the satellite is working in the regenerative mode, the satellite has data processing capabilities and has the function of a base station or part of the base station function.
  • the satellite can be regarded as a base station.
  • Satellites can communicate wirelessly with terminal equipment through broadcast communication signals and navigation signals, and satellites can communicate wirelessly with ground station equipment.
  • the satellite mentioned in the embodiment of this application may be a satellite base station, may also include an orbiting receiver or repeater for relaying information, or may be a network-side device mounted on the satellite.
  • Satellite communication systems include transparent transmission satellite architecture and non-transparent transmission satellite architecture.
  • Transparent transmission is also called elbow forwarding transmission, that is, the signal only undergoes frequency conversion, signal amplification and other processes on the satellite.
  • the satellite is transparent to the signal, as if it does not exist.
  • Non-transparent transmission is also called regenerative (on-board access/processing) transmission, that is, the satellite has some or all base station functions.
  • the terminal equipment needs to obtain the frequency offset and time offset to complete the time-frequency synchronization with the network, so the terminal equipment needs to determine the distance from the satellite.
  • the network device indicates the ephemeris information of the network device through a system information block (SIB) or dedicated signaling (dedicated signaling), and the ephemeris information is described by orbit parameters.
  • SIB system information block
  • dedicated signaling dedicated signaling
  • the network device may be a satellite, and the ephemeris information indicated by the network device is a parameter in an earth-centered inertial (ECI) coordinate system.
  • ECI coordinates common coordinate axes include: J2000 and M50, which are not limited in this application.
  • the time epoch (epoch time) is the start time of a certain downlink subframe.
  • the subframe is indicated by the system frame number (SFN) and subframe number indicated together with the auxiliary information.
  • the time epoch of the auxiliary information (e.g., ephemeris information and TA parameters of the serving star) is defaulted to include the system message when the NTN specific SIB is transmitted ( system information (SI) window end time.
  • SI system information
  • the time epoch of the auxiliary information (for example, the ephemeris information and TA parameters of the serving star) is the starting moment of a certain downlink subframe, and the subframe passes SFN and subframe number to indicate.
  • the orbital parameters include the parameters shown in Table 1.
  • the terminal device can determine the satellite orbit characteristics based on the first five-dimensional parameters, and combined with the sixth-dimensional parameters, the specific position of the satellite can be obtained.
  • the 6-dimensional parameters in Table 1 are based on the representation of the ECI coordinate system.
  • the 6-dimensional parameters in Figure 2 Represents the three coordinate axes of the ECI coordinate system, represents the relative speed, Represents relative distance.
  • the terminal device can determine the current satellite position and speed based on the above-mentioned 6-dimensional parameters.
  • the disturbance conditions can be combined to calculate the position and speed of the satellite at subsequent moments. Disturbance conditions such as atmospheric drag, solar wind, lunar gravity, uneven gravity of the earth, etc. What specific factors do the disturbance conditions include?
  • the modeling complexity of the elements can depend on the physical constraints.
  • the terminal equipment can determine the average angular velocity of the satellite on the equivalent circular orbit based on the above 6-dimensional parameters. It can determine the phase of the satellite on the equivalent circular orbit at any subsequent moment, and then convert it to the corresponding actual elliptical orbit. (with disturbance) phase (position) and velocity.
  • the position information obtained by the terminal device through the global navigation satellite system (GNSS) or the global positioning system (GPS) is in the earth-centered earth fixed (ECEF) coordinate system. coordinate information. Therefore, if the terminal device wants to calculate the distance between it and the satellite, it needs to know the coordinates of the satellite in the ECEF coordinate system. Therefore, the ephemeris information indicated by the network device needs to be converted into information in the ECEF coordinate system at the same time.
  • GNSS global navigation satellite system
  • GPS global positioning system
  • the network device when the network device indicates the ephemeris information, it indicates that its corresponding epoch time is a relative time and does not involve the transmission time of the ephemeris information during the actual transmission process.
  • the terminal device performs the ephemeris information processing.
  • the terminal equipment has GNSS capabilities, that is, the terminal equipment includes a GNSS module and can have the ability to obtain GNSS satellite timing, thereby obtaining absolute time.
  • Satellites have high-precision atomic clocks on board, and the time is usually very accurate.
  • different terminal equipment is limited by cost, power consumption, size, design and manufacturing technology, etc.
  • the receiving and decoding capabilities of their GNSS modules and the ability to maintain their own internal clocks are different. Therefore, after the terminal equipment is manufactured, the upper limit of the absolute time accuracy that it can obtain under normal working conditions is determined by the design and manufacturing standards. For example, absolute time accuracy can reach second level, millisecond level, microsecond level, picosecond level or nanosecond level, etc.
  • the accuracy of the absolute time that commercial terminal equipment can obtain is limited, and the accuracy of the terminal equipment when converting ephemeris information to ECI and ECEF coordinates cannot be guaranteed.
  • the terminal device can obtain the coordinated universal time (universal time coordinated, UTC), which is the absolute time, through SIB9.
  • UTC universal time coordinated
  • the time granularity indicated by SIB9 is 10ms. This is determined by the number of bits used by SIB9 to indicate UTC time. There is a certain quantization error. Therefore, the terminal device will introduce errors in the process of ECI and ECEF coordinate conversion of ephemeris information. And if the deviation of the wireless network's own clock is taken into account, the absolute time deviation of SIB9 will be further amplified.
  • the position deviation of the satellite is as shown in Table 2 below.
  • this application proposes a method for determining distance, which enables the terminal device to convert the ephemeris information into ECI and ECEF coordinates based on the relationship between the ECI and ECEF coordinate systems at the same time.
  • the timing can therefore reduce errors in determining the distance between the terminal device and the network device.
  • Figure 3 is an interactive flow chart of a method for determining distance provided by an embodiment of the present application.
  • the method 300 shown in Figure 3 includes:
  • the network device sends first ephemeris information to the terminal device.
  • the first ephemeris information is associated with the position of the network device in the first ECI coordinate system at the first time.
  • the first ECI coordinate system is related to the ECEF coordinates at the first time.
  • the system has a first relationship.
  • the terminal device receives the first ephemeris information.
  • the network device may be a satellite
  • the first ephemeris information may be carried in radio resource control (RRC) signaling, media access control control element (MAC CE) signaling or downlink Control information (downlink control information, DCI)
  • RRC radio resource control
  • MAC CE media access control control element
  • DCI downlink control information
  • the first ephemeris information can also be carried in dedicated signaling.
  • the dedicated signaling can be signaling for a certain terminal device or a certain type of terminal device. This application does not do this. limit.
  • the first relationship includes a first angle between the first axis of the first ECI coordinate system and the first axis of the ECEF coordinate system, and the second axis of the first ECI coordinate system and the first angle between the first axis of the first ECI coordinate system and the first axis of the ECEF coordinate system.
  • the first relationship can be predefined or preconfigured at both ends of the network device and the terminal device, or the first relationship can also indicate the terminal device through RRC signaling, MAC CE signaling or DCI. This application does not cover this. Make restrictions. Specifically, the first ECI coordinate system is different from the ECI coordinate system corresponding to the ephemeris information issued in the existing solution (ie, the second ECI coordinate system mentioned below).
  • the coordinate axes of the first ECI coordinate system include the X1 axis, Y1 axis and Z1 axis
  • the coordinate axes of the ECI coordinate system in the existing solution include the X2 axis, Y2 axis and Z2 axis
  • the coordinate axes of the ECEF coordinate system include the X3 axis.
  • the first angle between the X3 axis and the X1 axis is ⁇ 1
  • the second angle between the Y3 axis and the Y1 axis is ⁇ 1
  • the third angle between the Z3 axis and the Z1 axis is ⁇ 1
  • the angle between the X2 axis and the X1 axis is A
  • the angle between the Y2 axis and the Y1 axis is B
  • the angle between the Z2 axis and the Z1 axis is C.
  • the values of ⁇ 1, ⁇ 1 and ⁇ 1 can be predefined, preconfigured or indicated through signaling.
  • the value range of ⁇ 1, ⁇ 1 and ⁇ 1 is [- ⁇ , ⁇ ] or [-180°, 180°] or equivalently [ 0,2 ⁇ ], [0,360°], this application does not limit this.
  • the first ephemeris information is the location information of the network device at the first time obtained based on the first ECI coordinate system. Before determining the first ephemeris information, the network device can adjust the second ECI coordinate system according to the above angles A, B and C. Processed as the first ECI coordinate system.
  • the first angle is 0, the second angle is 0, and the third angle is 0.
  • the values of ⁇ 1, ⁇ 1 and ⁇ 1 are 0, or the values of ⁇ 1, ⁇ 1 and ⁇ 1 can also be other values, which is not limited in this application.
  • method 300 also includes:
  • the terminal device sends first request information to the network device, where the first request information is used to request the first ephemeris information.
  • the network device receives the first request information.
  • the first request information can be carried in RRC signaling, MACCE signaling or uplink control information (UCI), or the first request information can also be carried in other uplink information.
  • RRC signaling MACCE signaling
  • UCI uplink control information
  • the first request information can also be carried in other uplink information. This application does not limit this. .
  • method 300 also includes:
  • S320 The network device sends first indication information to the terminal device, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the terminal device receives the first indication information.
  • the first indication information and the first ephemeris information may be carried in the same message, or the first indication information and the first ephemeris information may be carried in the same message.
  • An ephemeris information can be carried in different messages, and this application does not impose restrictions on this.
  • the network device and the terminal device may agree that the ephemeris information sent through dedicated signaling is the ephemeris information in response to the first request information.
  • method 300 also includes:
  • S330 The network device sends second indication information to the terminal device, where the second indication information is used to indicate the first relationship. Correspondingly, the terminal device receives the second indication information.
  • the second indication information may be carried in RRC signaling, MACCE signaling or DCI, or the second indication information may also be carried in other downlink information.
  • the second indication information, the first indication information and the first ephemeris information may be It can be carried in the same message, or it can be carried in different messages respectively, or two of the second indication information, the first indication information and the first ephemeris information can be carried in the same message. This application does not limit this.
  • the terminal device determines the distance between the terminal device and the network device based on the first ephemeris information and the first relationship.
  • the first ephemeris information includes ECI coordinate information associated with the first ECI coordinate system.
  • the terminal device can obtain the ECEF coordinate information of its own position, and convert the ECI coordinate information according to the first angle, the second angle and the third angle. Convert to ECEF coordinate information, and determine the distance between the terminal device and the network device through the ECEF coordinate information of the terminal device and the ECEF coordinate information of the network device.
  • the terminal device obtains the ECEF coordinate information of its own location, and converts the ECEF coordinate information into ECI coordinate information based on the first angle, the second angle and the third angle.
  • the distance between the terminal device and the network device is determined based on the ECI coordinate information of the terminal device and the ECI coordinate information of the network device.
  • the terminal device after the terminal device obtains the first ephemeris information and the first relationship, it can perform conversion between coordinate information through the first relationship. Therefore, the subsequent terminal device can calculate the distance between the terminal device and the network device based on the converted coordinate information, and then the movement trajectory of the network device at subsequent times can be calculated to calculate the distance and speed of the network device relative to the terminal device at subsequent times, so that Determine the frequency offset and time offset when communicating between terminal equipment and network equipment for time-frequency synchronization.
  • the method 300 can complete the conversion of ECI and ECEF coordinate information without the absolute time corresponding to the ephemeris information when determining the distance between the terminal device and the network device, the accuracy of the conversion of ECI and ECEF coordinate information can be improved. And during the use of method 300, if the first ephemeris information expires (or becomes invalid), different ⁇ 1, ⁇ 1 and ⁇ 1 can be set again, so this method is more flexible.
  • Figure 4 is an interactive flow chart of another method for determining distance provided by an embodiment of the present application.
  • the method 400 shown in Figure 4 includes:
  • the network device sends second ephemeris information to the terminal device, where the second ephemeris information is associated with the position of the network device in the second ECI coordinate system at the first time.
  • the terminal device receives the second ephemeris information.
  • the network device may be a satellite, and the second ephemeris information may be carried in RRC signaling, MACCE signaling or DCI.
  • the second ephemeris information may also be carried in dedicated signaling, and the dedicated signaling may be for a certain terminal device. , or signaling of a certain type of terminal equipment, this application does not limit this.
  • the network device sends third indication information to the terminal device.
  • the third indication information indicates the second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time.
  • the terminal device receives the third indication information.
  • the third indication information can be carried in RRC signaling, MACCE signaling or DCI, or the third indication information can also be carried in other downlink information.
  • the third indication information and the second ephemeris information can be carried in the same message, Or the third indication information and the second ephemeris information can be carried in different messages, which is not limited by this application.
  • the second relationship includes a fourth angle between the first axis of the second ECI coordinate system and the first axis of the ECEF coordinate system, and the second relationship between the second axis of the second ECI coordinate system and the first axis of the ECEF coordinate system.
  • the second relationship can also be predefined or preconfigured at both ends of the network device and the terminal device. This application does not limit this. If it is predefined or preconfigured at both ends of the network device and the terminal device, then S420 is not required.
  • the second ECI coordinate system is the ECI coordinate system corresponding to the ephemeris information issued in the existing solution.
  • the coordinate axes of the second ECI coordinate system include the X2 axis, Y2 axis and Z2 axis
  • the coordinate axes of the ECEF coordinate system include the X3 axis, Y3 axis and Z3 axis
  • the fourth angle between the X3 axis and the X2 axis is ⁇ 2
  • the fifth angle between the Y3 axis and the Y2 axis is ⁇ 2
  • the sixth angle between the Z3 axis and the Z2 axis is ⁇ 2.
  • ⁇ 2, ⁇ 2, and ⁇ 2 may be determined based on the second ECI coordinate system and the ECEF coordinate system at the first time.
  • the values of ⁇ 2, ⁇ 2 and ⁇ 2 can be predefined, preconfigured or indicated through signaling.
  • the value range of ⁇ 2, ⁇ 2 and ⁇ 2 is [- ⁇ , ⁇ ] or [-180°,180°] or equivalently [0,2 ⁇ ], [0,360°], which is not limited in this application.
  • the second ephemeris information is the location information of the network device at the first time obtained based on the second ECI coordinate system.
  • method 400 also includes:
  • the terminal device sends first request information to the network device.
  • the first request information is used to request first ephemeris information.
  • the first ephemeris information is associated with the position of the network device at the first time in the first ECI coordinate system. There is a first relationship between the first ECI coordinate system and the ECEF coordinate system at the first time.
  • the network device receives the first request information.
  • the first request information may be carried in RRC signaling, MACCE signaling or UCI, or the first request information may also be carried in other uplink information, which is not limited in this application.
  • the network device determines that the second ephemeris information is valid.
  • the network device determines that the second ephemeris information has not expired (for example, the time epoch of the second ephemeris information to the time to respond to the first request message does not exceed the valid NTN defined by the cell) duration, the cell can define the NTN validity duration and indicate it to the terminal device), it is still valid.
  • the third indication information can be sent as a response to the first request information, without sending the first ephemeris information to the terminal device, so Can save expenses.
  • the network device finds that the second ephemeris information has expired after receiving the first request information, it can send the first ephemeris information as a response to the first request information. For details, please refer to the description in method 300, which will not be described again here. .
  • the terminal device sends second request information to the network device, where the second request information is used to request the second relationship.
  • the network device receives the second request information.
  • the second request information may be carried in RRC signaling, MACCE signaling or UCI, or the second request information may also be carried in other uplink information, which is not limited in this application.
  • the terminal device finds that the second ephemeris information has not expired, it can send the second request information to the network device, and the second request information can implicitly indicate that the second ephemeris information has not expired, so that the network device receives the third ephemeris information. After requesting information, the third instruction information can be directly sent to the terminal device.
  • S401’ and S401 are two different solutions, and one of them can be used.
  • method 400 also includes:
  • S430 The network device sends fourth indication information to the terminal device, where the fourth indication information indicates that the third indication information is response information to the first request information or the second request information.
  • the terminal device receives the fourth indication information.
  • the fourth indication information may be carried in RRC signaling, MACCE signaling or DCI, or the fourth indication information may also be carried in other downlink information.
  • the fourth indication information, the second ephemeris information and the third indication information may be It can be carried in the same message, or it can be carried in different messages respectively, or two of the fourth indication information, the second ephemeris information and the third indication information can be carried in the same message. This application does not limit this. Or the network device and the terminal device may agree that the third indication information sent through dedicated signaling is the response information of the first request information or the second request information.
  • the terminal device determines the distance between the terminal device and the network device based on the second ephemeris information and the second relationship.
  • the second ephemeris information includes ECI coordinate information associated with the second ECI coordinate system.
  • the terminal device can obtain the ECEF coordinate information of its own position, and convert the ECI coordinate information according to the fourth angle, the fifth angle and the sixth angle. Convert to ECEF coordinate information, and determine the distance between the terminal device and the network device through the ECEF coordinate information of the terminal device and the ECEF coordinate information of the network device.
  • the terminal device obtains the ECEF coordinate information of its own position, and converts the ECEF coordinate information into ECI coordinate information according to the fourth angle, the fifth angle and the sixth angle.
  • the distance between the terminal device and the network device is determined based on the ECI coordinate information of the terminal device and the ECI coordinate information of the network device.
  • the terminal device after the terminal device obtains the second ephemeris information and the second relationship, it can perform conversion between coordinate information through the second relationship. Therefore, the subsequent terminal device can calculate the distance between the terminal device and the network device based on the converted coordinate information, and then the movement trajectory of the network device at subsequent times can be calculated to calculate the distance and speed of the network device relative to the terminal device at subsequent times, so that Determine the frequency offset and time offset when communicating between terminal equipment and network equipment for time-frequency synchronization.
  • the method 400 can complete the conversion of ECI and ECEF coordinate information without the absolute time corresponding to the ephemeris information when determining the distance between the terminal device and the network device, the accuracy of the conversion of ECI and ECEF coordinate information can be improved.
  • existing ephemeris information can be reused, and the ephemeris information does not need to be carried in the response information requested by the terminal device, which can save terminal device-specific signaling and the overall signaling overhead of the communication system.
  • At least one item (items) refers to one item (items) or multiple items (items)
  • at least two items (items) and “multiple items (items)” refer to two items (items) or Two or more items.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple .
  • execution subject illustrated in Figure 3/4 is only an example.
  • the execution subject can also be a chip, chip system, or processor that supports the execution subject to implement the method shown in Figure 3/4. This application does not No restrictions.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) in the terminal device, and the methods and operations implemented by the network device can also be implemented by the network. Implemented by components (such as chips or circuits) in the device.
  • each network element such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function.
  • each network element such as a transmitting end device or a receiving end device
  • each network element includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • FIG. 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 5 includes a transceiver unit 510 and a processing unit 520.
  • the transceiver unit 510 can communicate with the outside, and the processing unit 520 is used for data processing.
  • the transceiver unit 510 may also be called a communication interface or a communication unit.
  • the transceiver unit 510 may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending operation in the above method embodiment.
  • the receiving unit is used to perform the receiving operation in the above method embodiment.
  • the communication device 500 may include a sending unit but not a receiving unit.
  • the communication device 500 may include a receiving unit instead of a transmitting unit. Specifically, it may depend on whether the above solution executed by the communication device 500 includes a sending action and a receiving action.
  • the communication device 500 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit 520 may read the instructions and/or data in the storage unit.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 520 may read the instructions and/or data in the storage unit.
  • the communication device 500 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 500 can be a terminal device
  • the transceiver unit 510 is used to perform the receiving or sending operation of the terminal device in the above method embodiment
  • the processing unit 520 is used to perform the internal processing of the terminal device in the above method embodiment. operation.
  • the communication device 500 may be a device including a terminal device.
  • the communication device 500 may be a component configured in a terminal device, for example, a chip in the terminal device.
  • the transceiver unit 510 may be an interface circuit, a pin, or the like.
  • the interface circuit may include an input circuit and an output circuit
  • the processing unit 520 may include a processing circuit.
  • the transceiver unit 510 is configured to receive first ephemeris information.
  • the first ephemeris information is associated with the position of the network device at a first time in a first earth inertial ECI coordinate system.
  • the first ECI coordinates There is a first relationship between the system and the geocentric ECEF coordinate system at the first time, and the processing unit 520 is configured to determine the distance between the terminal device and the network device based on the first ephemeris information and the first relationship.
  • the transceiver unit 510 is also configured to send first request information, where the first request information is used to request the first ephemeris information.
  • the transceiver unit 510 is further configured to receive first indication information, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the transceiver unit 510 is also configured to receive second indication information, where the second indication information indicates the first relationship.
  • the transceiver unit 510 is configured to receive second ephemeris information.
  • the second ephemeris information is associated with the position of the network device in the second earth inertial ECI coordinate system at the first time.
  • the transceiver unit 510 The processing unit 520 is also configured to receive third indication information indicating a second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time, and the processing unit 520 is configured to based on the second ephemeris information and the second relationship determines the distance between the terminal device and the network device.
  • the transceiver unit 510 is also used to send first request information.
  • the first request information is used to request first ephemeris information.
  • the first ephemeris information is related to the network device in the first ECI coordinate system. There is a first relationship between the first ECI coordinate system and the ECEF coordinate system at the first time.
  • the transceiver unit 510 is also configured to send second request information, and the second request information is used to request the second relationship.
  • the transceiver unit 510 is further configured to receive fourth indication information, where the fourth indication information indicates that the third indication information is response information to the first request information or the second request information.
  • the communication device 500 shown in Figure 5 can be used to perform the actions performed by the network device in the above method embodiment.
  • the communication device 500 can be a network device.
  • the transceiver unit 510 is used to perform the receiving or sending operations of the network device in the above method embodiment.
  • the processing unit 520 is used to perform the internal processing of the network device in the above method embodiment. operation.
  • the communication device 500 may be a device including a network device.
  • the communication device 500 may be a component configured in a network device, for example, a chip in the network device.
  • the transceiver unit 510 may be an interface circuit, a pin, or the like.
  • the interface circuit may include an input circuit and an output circuit
  • the processing unit 520 may include a processing circuit.
  • the transceiver unit 510 is configured to send first ephemeris information, where the first ephemeris information is associated with the position of the network device at a first time in a first earth inertial ECI coordinate system.
  • the first ECI coordinates The system has a first relationship with the geocentric geofixed ECEF coordinate system at the first time.
  • the transceiver unit 510 is also configured to receive first request information, where the first request information is used to request the first ephemeris information.
  • the transceiver unit 510 is further configured to send first indication information, where the first indication information indicates that the first ephemeris information is response information to the first request information.
  • the transceiver unit 510 is also configured to send second indication information.
  • the second indication information Indicates the first relationship.
  • the transceiver unit 510 is configured to send second ephemeris information, where the second ephemeris information is associated with the position of the network device in the second earth inertial ECI coordinate system at the first time.
  • the transceiver unit 510 It is also used to send third indication information, where the third indication information indicates a second relationship between the second ECI coordinate system and the geocentric ECEF coordinate system at the first time.
  • the transceiver unit 510 is also configured to receive first request information, the first request information is used to request first ephemeris information, and the first ephemeris information is related to the first ECI coordinate of the network device. There is a first relationship between the first ECI coordinate system and the ECEF coordinate system at the first time, and the processing unit 520 is used to determine that the second ephemeris information is valid.
  • the transceiver unit 510 is also configured to receive second request information, where the second request information is used to request the second relationship.
  • the transceiver unit 510 is further configured to send fourth indication information, where the fourth indication information indicates that the third indication information is response information to the first request information or the second request information.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 includes a processor 610.
  • the processor 610 is coupled to a memory 620.
  • the memory 620 is used to store computer programs or instructions and/or data.
  • the processor 610 is used to execute the computer programs or instructions and/or data stored in the memory 620. , so that the method in the above method embodiment is executed.
  • the communication device 600 includes one or more processors 610 .
  • the communication device 600 may further include a memory 620 .
  • the communication device 600 may include one or more memories 620 .
  • the memory 620 may be integrated with the processor 610 or provided separately.
  • the communication device 600 may also include a transceiver 630 and/or a communication interface, and the transceiver 630 and/or the communication interface are used for receiving and/or transmitting signals.
  • the processor 610 is used to control the transceiver 630 and/or the communication interface to receive and/or send signals.
  • the components in the transceiver 630 used to implement the receiving function can be regarded as receiving modules, and the components in the transceiver 630 used to implement the transmitting function can be regarded as the transmitting module, that is, the transceiver 630 includes a receiver and a transmitter.
  • a transceiver may also be called a transceiver, a transceiver module, or a transceiver circuit.
  • the receiver may also be called a receiver, receiving module, or receiving circuit.
  • a transmitter can sometimes be called a transmitter, transmitter, transmit module or transmit circuit.
  • the communication device 600 is used to implement the operations performed by the terminal device in the above method embodiment.
  • the processor 610 is used to implement the operations performed internally by the terminal device in the above method embodiment (such as the operations of S340 and S440), and the transceiver 630 is used to implement the reception or transmission performed by the terminal device in the above method embodiment.
  • Operations such as the operations of S301, S310, S320, S330, S401, S401', S410, S420, S430).
  • the communication device 600 is used to implement the operations performed by the network device in the above method embodiment.
  • the processor 610 is used to implement the operations performed internally by the network device in the above method embodiment
  • the transceiver 630 is used to implement the receiving or sending operations performed by the network device in the above method embodiment (such as S301, S310, S320, S330, S401, S401', S410, S420, S430 operation).
  • An embodiment of the present application also provides a communication device 700.
  • the communication device 700 may be a terminal device or a network device, or may be a chip in a terminal device or a network device.
  • the communication device 700 may be used to perform operations performed by the terminal device or network device in the above method embodiments.
  • Figure 7 shows a schematic structural diagram of a simplified communication device.
  • the communication device 700 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the communication device 700, execute software programs, process data of software programs, etc.
  • Memory is mainly used to store software programs and data.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data. .
  • FIG. 7 only one memory and processor are shown in FIG. 7 . In an actual product, there may be one or more processors and one or more memories. Memory can also be called storage media or storage devices.
  • the memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiver functions can be regarded as the transceiver unit of the communication device 700
  • the processor with the processing function can be regarded as the processing unit of the communication device 700 .
  • the communication device 700 includes a transceiver unit 710 and a processing unit 720 .
  • the transceiver unit 710 may also be called a transceiver, a transceiver, a transceiver device, a transceiver circuit, etc.
  • the processing unit 720 may also be called a processor, a processing board, a processing module, a processing device, etc.
  • the devices used to implement the receiving function in the transceiver unit 710 can be regarded as a receiving unit, and the devices used in the transceiver unit 710 used to implement the transmitting function can be regarded as a sending unit, that is, the transceiver unit 710 includes a receiving unit and a sending unit.
  • the receiving unit may sometimes also be called a receiver, receiver, receiving device or receiving circuit.
  • the sending unit may sometimes also be called a transmitter, transmitter, transmitting device or transmitting circuit.
  • the processing unit 720 and the transceiver unit 710 are used to perform operations on the terminal device side.
  • the transceiving unit 710 is used to perform the transceiving operations in S301, S310, S320, S330, S401, S401', S410, S420, and S430
  • the processing unit 720 is used to perform the processing operations in S340 and S440.
  • processing unit 720 and the transceiver unit 710 are configured to perform operations on the network device side.
  • the transceiver unit 710 is used to perform the transceiver operations in S301, S310, S320, S330, S401, S401', S410, S420, and S430.
  • FIG. 7 is only an example and not a limitation.
  • the above-mentioned communication device 700 including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 7 .
  • the chip When the communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • an embodiment of the present application also provides a communication device 800.
  • the communication device 800 includes a logic circuit 810 and an input/output interface 820.
  • the logic circuit 810 may be a processing circuit in the communication device 800 .
  • the logic circuit 810 can be coupled to the storage unit and call instructions in the storage unit, so that the communication device 800 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 820 may be an input/output circuit in the communication device 800, which outputs information processed by the communication device 800, or inputs data or signaling information to be processed into the communication device 800 for processing.
  • the communication device 800 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the logic circuit 810 is used to implement processing-related operations performed by the terminal device in the above method embodiment, such as the processing operations of the terminal device in S340 and S440.
  • the input/output interface 820 is used to implement the sending and/or receiving related operations performed by the terminal device in the above method embodiment, such as the terminal device in S301, S310, S320, S330, S401, S401', S410, S420, and S430. sending and receiving operations.
  • the operations performed by the logic circuit 810 please refer to the above description of the processing unit 520.
  • the operations performed by the input/output interface 820 please refer to the above description of the transceiver unit 510, which will not be described again here.
  • the communication device 800 is used to implement the operations performed by the network device in each of the above method embodiments.
  • the logic circuit 810 is used to implement the processing-related operations performed by the network device in the above method embodiment, such as the processing-related operations performed by the network device in the method embodiment, and the input/output interface 820 is used to implement the above.
  • the sending and/or receiving related operations performed by the network device in the method embodiment such as the sending and receiving operations of the network device in S301, S310, S320, S330, S401, S401', S410, S420, and S430.
  • the operations performed by the logic circuit 810 please refer to the above description of the processing unit 520.
  • the operations performed by the input/output interface 820 please refer to the above description of the transceiver unit 510, which will not be described again here.
  • the above communication device may be one or more chips.
  • the communication device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit , MCU), it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory.
  • the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. steps.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the steps shown in the method embodiment. method.
  • the computer program when executed by a computer, the computer can implement the method executed by the terminal device in the above method embodiment, or the method executed by the network device.
  • Embodiments of the present application also provide a computer program product containing instructions.
  • the instructions When the instructions are executed by a computer, the computer implements the method executed by the terminal device or the method executed by the network device in the above method embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state drives, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state drives, SSD
  • the terminal equipment and network equipment in the above-mentioned apparatus embodiments correspond to the terminal equipment and network equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units, such as a communication unit (transceiver) that performs receiving or receiving in the method embodiments.
  • the sending step, other steps except sending and receiving, may be executed by the processing unit (processor).
  • processing unit processor
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种确定距离的方法,包括:终端设备(110,111)接收第一星历信息,第一星历信息与网络设备(120,121,122)在第一地球惯性ECI坐标系中第一时间的位置关联,第一ECI坐标系与第一时间的地心地固ECEF坐标系存在第一关系;终端设备(110,111)基于第一星历信息和第一关系确定终端设备(110,111)和网络设备(120,121,122)之间的距离。还公开了一种通信装置、计算机可读存储介质、计算机程序产品和通信系统。能够在终端设备确定终端设备和网络设备之间的距离时,减少误差。

Description

确定距离的方法和通信装置
本申请要求于2022年4月24日提交中国国家知识产权局、申请号为202210454825.5、申请名称为“确定距离的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且,更具体地,涉及确定距离的方法和通信装置。
背景技术
随着信息技术发展,非陆地网络(non-terrestrial networks,NTN)被引入第五代(5th generation,5G)系统中,与第五代(5th generation,5G)系统共同构成全球无缝覆盖的海、陆、空、天、地一体化综合通信网,满足更多的业务需求。
NTN通信系统包括卫星通信系统,卫星通信系统中卫星的高速移动会给终端设备和卫星间的通信引入频率偏移,并且卫星和终端设备的距离远,会给终端设备和卫星间的通信引入较长的时延,造成时间偏移。因此卫星通信系统中,终端设备要完成和网络的时频同步需要获取频率偏移量(多普勒偏移量)和时间偏移量,而频率偏移量和时间偏移量需要终端设备计算出与卫星的相对距离和相对速度。该相对距离和相对速度可由终端设备结合自身的位置和卫星的位置计算,终端设备可以确定自身的位置,因此终端设备如何确定卫星的位置,从而确定终端设备和卫星之间的距离是值得考虑的问题。
发明内容
本申请实施例提供一种确定距离的方法和通信装置,使得终端设备在确定终端设备和网络设备之间的距离时,减少误差。
第一方面,提供了一种确定距离的方法。该方法可以由终端设备执行,或配置在终端设备中的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:终端设备接收第一星历信息,该第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,该第一ECI坐标系与第一时间的地心地固ECEF坐标系存在第一关系;终端设备基于该第一星历信息和该第一关系确定终端设备和网络设备之间的距离。
基于上述方案,终端设备可以根据第一星历信息确定网络设备在第一ECI坐标系中第一时间的位置信息,并根据第一ECI坐标系和ECEF坐标系的第一关系确定终端设备和网络设备之间的距离。例如第一星历信息包括ECI坐标信息,终端设备可以根据第一关系将第一星历信息中的ECI坐标信息转换为第一时间下的ECEF坐标信息,终端设备可以获取第一时间自身位置对应的ECEF坐标信息,从而可以确定终端设备和网络设备之间的距离。而一种方案中终端设备需要根据星历信息对应的绝对时间将ECI坐标信息转换为该绝对时间下的ECEF坐标信息,并且在获取星历信息对应的绝对时间时有一定误差,本方案在 进行坐标信息转换时不需要获取绝对时间,因此能够更加准确的进行坐标信息的转换,从而可以减少终端设备确定的与网络设备之间的距离的误差。
结合第一方面,在第一方面的某些实现方式中,终端设备发送第一请求信息,该第一请求信息用于请求该第一星历信息。
基于上述方案,在终端设备请求第一星历信息时,对端才下发第一星历信息,可以节约信令开销,按需满足终端设备的需求。
结合第一方面,在第一方面的某些实现方式中,终端设备接收第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。
基于上述方案,可以使终端设备明确响应信息(即第一星历信息)的类型,避免将已经进行过坐标转换的星历信息(与第一ECI坐标关联的星历信息)错误解读,引起没必要的信令开销。
结合第一方面,在第一方面的某些实现方式中,该第一关系包括该第一ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第一角度,该第一ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第二角度,该第一ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第三角度。
结合第一方面,在第一方面的某些实现方式中,终端设备接收第二指示信息,该第二指示信息指示第一关系。
基于上述方案,第一角度、第二角度和第三角度的取值可以改变,实现较为灵活。
结合第一方面,在第一方面的某些实现方式中,第一指示信息和/或第二指示信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者下行控制信息。
结合第一方面,在第一方面的某些实现方式中,第一角度为0,第二角度为0,第三角度为0。
基于上述方案,第一角度、第二角度和第三角度的取值为0,则终端设备转换坐标信息时可以不用旋转坐标轴,实现较为简单。
结合第一方面,在第一方面的某些实现方式中,该第一请求信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者上行控制信息。
第二方面,提供了一种确定距离的方法。该方法可以由终端设备执行,或配置在终端设备中的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:终端设备接收第二星历信息,该第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联,终端设备接收第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系;终端设备基于该第二星历信息和该第二关系确定终端设备和网络设备之间的距离。
基于上述方案,终端设备可以通过第二星历信息确定网络设备在第二ECI坐标系中第一时间的位置信息,并根据第二ECI坐标系和ECEF坐标系的第二关系确定终端设备和网络设备之间的距离。例如第二星历信息包括ECI坐标信息,终端设备可以根据第二关系将第二星历信息中的ECI坐标信息转换为第一时间下的ECEF坐标信息,终端设备可以获取第一时间自身位置对应的ECEF坐标信息,从而可以确定终端设备和网络设备之间的距离。而一种方案中终端设备需要根据星历信息对应的绝对时间将ECI坐标信息转换为该绝对时间下的ECEF坐标信息,并且在获取星历信息对应的绝对时间时有一定误差,本方案在 进行坐标信息转换时不需要获取绝对时间,因此能够更加准确的进行坐标信息的转换,从而可以减少终端设备确定的与网络设备之间的距离的误差。并且相对于第一方面中提供的方案,该方案的第二星历信息可以不必承载在终端设备请求的响应信息中,可以节省终端设备专属信令及通信系统的总体信令开销。
结合第二方面,在第二方面的某些实现方式中,该第二关系包括该第二ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第四角度,该第二ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第五角度,该第二ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第六角度。
结合第二方面,在第二方面的某些实现方式中,终端设备发送第一请求信息,该第一请求信息用于请求第一星历信息,该第一星历信息与网络设备在第一ECI坐标系中该第一时间的位置关联,该第一ECI坐标系与该第一时间的ECEF坐标系存在第一关系。
基于上述方案,当终端设备不知道第二星历信息是否有效时,可以发送第一请求信息,对端可以自行判断是下发第三指示信息,还是第一星历信息。
结合第二方面,在第二方面的某些实现方式中,终端设备发送第二请求信息,该第二请求信息用于请求该第二关系。
基于上述方案,当终端设备知道第二星历信息有效时,终端设备可以请求第二关系,这样也可以节约信令开销。
结合第二方面,在第二方面的某些实现方式中,终端设备接收第四指示信息,该第四指示信息指示该第三指示信息为该第一请求信息的响应信息。
基于上述方案,可以使终端设备明确响应信息(即第三指示信息)的类型,保证第二星历信息的正确解读、避免没必要的信令开销。
结合第二方面,在第二方面的某些实现方式中,终端设备接收第四指示信息,该第四指示信息指示该第三指示信息为该第二请求信息的响应信息。
基于上述方案,以使终端设备明确响应信息(即第三指示信息)的类型,保证第二星历信息的正确解读、避免没必要的信令开销。
结合第二方面,在第二方面的某些实现方式中,该第二请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
第三方面,提供了一种确定距离的方法。该方法可以由网络设备执行,或配置在网络设备中的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:网络设备发送第一星历信息,该第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,该第一ECI坐标系与该第一时间的地心地固ECEF坐标系存在第一关系。
基于上述方案,网络设备可以通过第一星历信息指示网络设备在第一ECI坐标系中第一时间的位置信息,使得对端可以根据第一ECI坐标系和ECEF坐标系的第一关系确定终端设备和网络设备之间的距离。例如第一星历信息包括ECI坐标信息,对端可以根据第一关系将第一星历信息中的ECI坐标信息转换为第一时间下的ECEF坐标信息,对端可以获取第一时间自身位置对应的ECEF坐标信息,从而可以确定对端和网络设备之间的距离。而一种方案中对端需要根据星历信息对应的绝对时间将ECI坐标信息转换为该绝对时间下的ECEF坐标信息,并且在获取星历信息对应的绝对时间时有一定误差,本方案在进行坐标信息转换时不需要获取绝对时间,因此能够更加准确的进行坐标信息的转换,从而可 以减少对端确定的与网络设备之间的距离的误差。
结合第三方面,在第三方面的某些实现方式中,网络设备接收第一请求信息,该第一请求信息用于请求该第一星历信息。
基于上述方案,在网络设备接收到第一请求信息时,才下发第一星历信息,可以节约信令开销,按需满足对端需求。
结合第三方面,在第三方面的某些实现方式中,网络设备发送第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。
基于上述方案,可以使对端明确响应信息(即第一星历信息)的类型,避免将已经进行过坐标转换的星历信息(与第一ECI坐标关联的星历信息)错误解读、引起没必要的信令开销。
结合第三方面,在第三方面的某些实现方式中,该第一关系包括该第一ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第一角度,该第一ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第二角度,该第一ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第三角度。
结合第三方面,在第三方面的某些实现方式中,网络设备发送第二指示信息,该第二指示信息指示该第一关系。
基于上述方案,第一角度、第二角度和第三角度的取值可以改变,实现较为灵活。
结合第三方面,在第三方面的某些实现方式中,第一指示信息和/或第二指示信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者下行控制信息。
结合第三方面,在第三方面的某些实现方式中,该第一角度为0,该第二角度为0,该第三角度为0。
基于上述方案,第一角度、第二角度和第三角度的取值为0,则对端转换坐标信息时可以不用旋转坐标轴,实现较为简单。
结合第三方面,在第三方面的某些实现方式中,该第一请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
第四方面,提供了一种确定距离的方法。该方法可以由网络设备执行,或配置在网络设备中的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:网络设备发送第二星历信息,该第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联,网络设备发送第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系。
基于上述方案,网络设备可以通过第二星历信息指示网络设备在第二ECI坐标系中第一时间的位置信息,使得对端可以根据第二ECI坐标系和ECEF坐标系的第二关系确定终端设备和网络设备之间的距离。例如第二星历信息包括ECI坐标信息,对端可以根据第二关系将第二星历信息中的ECI坐标信息转换为第一时间下的ECEF坐标信息,对端可以获取第一时间自身位置对应的ECEF坐标信息,从而可以确定对端和网络设备之间的距离。而一种方案中对端需要根据星历信息对应的绝对时间将ECI坐标信息转换为该绝对时间下的ECEF坐标信息,并且在获取星历信息对应的绝对时间时有一定误差,本方案在进行坐标信息转换时不需要获取绝对时间,因此能够更加准确的进行坐标信息的转换,从而可以减少对端确定的与网络设备之间的距离的误差。并且相对于第一方面中提供的方案,该 方案的第二星历信息可以不必承载在终端设备请求的响应信息中,可以节省终端专属信令及通信系统的总体信令开销。
结合第四方面,在第四方面的某些实现方式中,该第二关系包括该第二ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第四角度,该第二ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第五角度,该第二ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第六角度。
结合第四方面,在第四方面的某些实现方式中,网络设备接收第一请求信息,该第一请求信息用于请求第一星历信息,该第一星历信息与该网络设备在第一ECI坐标系中该第一时间的位置关联,该第一ECI坐标系与该第一时间的ECEF坐标系存在第一关系,网络设备确定该第二星历信息有效。
基于上述方案,当请求方不知道第二星历信息是否有效时,可以发送第一请求信息,网络设备可以根据第二星历信息的有效性自行判断是下发第三指示信息,还是第一星历信息。
结合第四方面,在第四方面的某些实现方式中,网络设备接收第二请求信息,该第二请求信息用于请求该第二关系。
基于上述方案,当请求方知道第二星历信息有效时,可以直接向网络设备请求第二关系,这样也可以节约信令开销。
结合第四方面,在第四方面的某些实现方式中,网络设备发送第四指示信息,该第四指示信息指示该第三指示信息为该第一请求信息的响应信息。
基于上述方案,可以使对端明确响应信息(即第三指示信息)的类型,保证第二星历信息的正确解读、避免没必要的信令开销。
结合第四方面,在第四方面的某些实现方式中,网络设备发送第四指示信息,该第四指示信息指示该第三指示信息为该第二请求信息的响应信息。
基于上述方案,可以使对端明确响应信息(即第三指示信息)的类型,保证第二星历信息的正确解读、避免没必要的信令开销。
结合第四方面,在第四方面的某些实现方式中,该第二请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
第五方面,提供了一种通信装置。该装置可以是终端设备或配置在终端设备中的部件(如芯片或芯片系统等),本申请对此不作限定。该装置包括:收发单元和处理单元,该收发单元用于接收第一星历信息,该第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,该第一ECI坐标系与第一时间的地心地固ECEF坐标系存在第一关系,该处理单元用于基于该第一星历信息和该第一关系确定终端设备和网络设备之间的距离。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于发送第一请求信息,该第一请求信息用于请求该第一星历信息。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于接收第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。
结合第五方面,在第五方面的某些实现方式中,该第一关系包括该第一ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第一角度,该第一ECI坐标系的第二轴和该ECEF 坐标系的第二轴之间的第二角度,该第一ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第三角度。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于接收第二指示信息,该第二指示信息指示第一关系。
结合第五方面,在第五方面的某些实现方式中,第一指示信息和/或第二指示信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者下行控制信息。
结合第五方面,在第五方面的某些实现方式中,第一角度为0,第二角度为0,第三角度为0。
结合第五方面,在第五方面的某些实现方式中,该第一请求信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者上行控制信息。
第六方面,提供了一种通信装置。该装置可以是终端设备或配置在终端设备中的部件(如芯片或芯片系统等),本申请对此不作限定。该装置包括:收发单元,该收发单元用于接收第二星历信息,该第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联,该收发单元还用于接收第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系,该处理单元用于基于该第二星历信息和该第二关系确定终端设备和网络设备之间的距离。
结合第六方面,在第六方面的某些实现方式中,该第二关系包括该第二ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第四角度,该第二ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第五角度,该第二ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第六角度。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于发送第一请求信息,该第一请求信息用于请求第一星历信息,该第一星历信息与网络设备在第一ECI坐标系中该第一时间的位置关联,该第一ECI坐标系与该第一时间的ECEF坐标系存在第一关系。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于发送第二请求信息,该第二请求信息用于请求该第二关系。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于接收第四指示信息,该第四指示信息指示该第三指示信息为该第一请求信息的响应信息。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于接收第四指示信息,该第四指示信息指示该第三指示信息为该第二请求信息的响应信息。
结合第六方面,在第六方面的某些实现方式中,该第二请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
第七方面,提供了一种通信装置。该装置可以是网络设备或配置在网络设备中的部件(如芯片或芯片系统等),本申请对此不作限定。该装置包括收发单元:该收发单元用于发送第一星历信息,该第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,该第一ECI坐标系与该第一时间的地心地固ECEF坐标系存在第一关系。
结合第七方面,在第七方面的某些实现方式中,该收发单元还用于接收第一请求信息,该第一请求信息用于请求该第一星历信息。
结合第七方面,在第七方面的某些实现方式中,该收发单元还用于发送第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。
结合第七方面,在第七方面的某些实现方式中,该第一关系包括该第一ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第一角度,该第一ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第二角度,该第一ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第三角度。
结合第七方面,在第七方面的某些实现方式中,该收发单元还用于发送第二指示信息,该第二指示信息指示该第一关系。
结合第七方面,在第七方面的某些实现方式中,第一指示信息和/或第二指示信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者下行控制信息。
结合第七方面,在第七方面的某些实现方式中,该第一角度为0,该第二角度为0,该第三角度为0。
结合第七方面,在第七方面的某些实现方式中,该第一请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
第八方面,提供了一种通信装置。该装置可以是网络设备或配置在网络设备中的部件(如芯片或芯片系统等),本申请对此不作限定。该装置包括处理单元和收发单元:该收发单元用于发送第二星历信息,该第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联,该收发单元还用于发送第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系。
结合第八方面,在第八方面的某些实现方式中,该第二关系包括该第二ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第四角度,该第二ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第五角度,该第二ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第六角度。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于接收第一请求信息,该第一请求信息用于请求第一星历信息,该第一星历信息与该网络设备在第一ECI坐标系中该第一时间的位置关联,该第一ECI坐标系与该第一时间的ECEF坐标系存在第一关系,该处理单元用于确定该第二星历信息有效。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于接收第二请求信息,该第二请求信息用于请求该第二关系。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于发送第四指示信息,该第四指示信息指示该第三指示信息为该第一请求信息的响应信息。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于发送第四指示信息,该第四指示信息指示该第三指示信息为该第二请求信息的响应信息。
结合第八方面,在第八方面的某些实现方式中,该第二请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
第九方面,提供一种通信装置,该装置包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面中的任一方面,以及第一方面至第四方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,该存储器与处理器可能是分离部署的,也可能是集中部署的。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为终端设备或网络设备,或配置于终端设备或网络设备中的芯片。当该装置为芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
可选地,该收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是但不限于接收器接收并输入的,输出电路所输出的信号可以是但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供一种通信装置,该装置包括逻辑电路和输入/输出接口,该逻辑电路用于与输入/输出接口耦合,通过该输入/输出接口传输数据,以执行上述第一方面至第四方面中的任一方面,以及第一方面至第四方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面,以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第四方面中的任一方面,以及第一方面至第四方面中任一种可能实现方式中的方法。
上述第五方面至第十二方面带来的有益效果具体可以参考第一方面至第四方面中有益效果的描述,此处不再赘述。
附图说明
图1是本申请实施例提供的一种网络架构的示意图。
图2是本申请实施例提供的ECI坐标系的示意图。
图3是本申请实施例提供的一种确定距离的方法的交互流程图。
图4是本申请实施例提供的另一种确定距离的方法的交互流程图。
图5是本申请实施例提供的一种通信装置的示意图。
图6是本申请实施例提供的一种通信装置的结构示意图。
图7是本申请实施例提供的另一种通信装置的结构示意图。
图8是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例提供的一种网络架构的示意图。
图1示例的卫星通信系统与5G融合的网络架构,包括至少一个终端设备,例如终端设备110、终端设备111,至少一个网络设备,例如网络设备120、网络设备121、网络设 备122,核心网设备130。网络设备可以是卫星和关口站(gateway),用于为终端设备提供通信服务。其中,关口站还可以称作地面站、信关站等。卫星与终端设备之间的链路称为服务链路(service link),卫星与关口站之间的链路为馈电链路(feeder link)。
在5G通信系统中,地面终端设备通过5G新空口接入网络,5G网络设备部署在卫星上,并通过无线链路与地面的核心网设备相连。同时,在卫星之间存在无线链路,完成网络设备与网络设备之间的信令交互和用户数据传输。图1中的各个网络节点以及个网络节点间的接口说明如下。
本申请实施例中的终端设备也可以称为终端、接入终端、用户设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中的网络设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备,可以是部署在卫星上的网络设备,也可以是部署在地面上的网络设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或分布式单元(distributed unit,DU)等。在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。
核心网设备130,用于用户接入控制,移动性管理,会话管理,用户安全认证,计费 等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体,在图1中未示出各功能实体。
新空口:终端设备和网络设备之间的无线链路。
Xn接口:网络设备和网络设备之间的接口,主要用于切换等信令交互。
NG接口:网络设备和核心网设备之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
在6G以及未来的通信系统中,上述设备仍可以使用其在5G通信系统中的名称,或者也可以有其它名称,本申请实施例对此不作限定。上述设备的功能可以由一个独立设备完成,也可以由若干个设备共同完成。在实际部署中,核心网中的网元可以部署在相同或者不同的物理设备上,本申请实施例对此不作限定。图1只是一种示例,对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元或设备,当然本申请实施例提供的通信方法也可以只包括图1示出的部分设备,本申请实施例对此不作限定。
上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个设备的功能的网络架构都适用于本申请实施例。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、高空平台(high altitude platform station,HAPS)通信、无人机等非地面网络(non-terrestrial network,NTN)系统,通信、导航一体化(integrated communication and navigation,IcaN)系统、全球导航卫星系统(global navigation satellite system,GNSS)和超密低轨卫星通信系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或5G之后演进的通信系统,车辆外联(vehicle-to-everything,V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M)等。
卫星通信系统包括透传卫星架构与非透传卫星架构。透传也称为弯管转发传输,即信号在卫星上只进行了频率的转换,信号的放大等过程,卫星对于信号而言是透明的。非透传也称为再生(星上接入/处理)传输。
当卫星工作在透传(transparent)模式时,卫星具有中继转发的功能。关口站具有基站的功能或部分基站功能。可选的,可以将关口站看作地面基站,或者,地面基站可以与关口站分开部署。
当卫星工作在再生(regenerative)模式时,卫星具有数据处理能力、具有基站的功能或部分基站功能,可以将卫星看作基站。
卫星可以通过广播通信信号和导航信号等与终端设备进行无线通信,卫星可与地面站设备进行无线通信。本申请实施例中提及的卫星,可以为卫星基站,也可包括用于对信息进行中继的轨道接收机或中继器,或者为搭载在卫星上的网络侧设备。
卫星通信系统包括透传卫星架构与非透传卫星架构。透传也称为弯管转发传输,即信号在卫星上只进行了频率的转换,信号的放大等过程,卫星对于信号而言是透明的,仿佛不存在一样。非透传也称为再生(星上接入/处理)传输,即卫星具有部分或全部基站功能。
前文介绍到在卫星通信系统中,终端设备要完成和网络的时频同步需要获取频率偏移量和时间偏移量,因此终端设备需要确定与卫星之间的距离。
一种可能的实施方式,网络设备通过系统消息块(system information block,SIB)或专用信令(dedicated signaling)指示网络设备的星历信息,该星历信息通过轨道参数描述。
示例地,网络设备可以是卫星,网络设备指示的星历信息是地球惯性(earth centered inertial,ECI)坐标系下的参数。对于ECI坐标而言,常见坐标轴包括:J2000和M50,本申请对此不作限制。
可选地,当网络设备通过SIB显式指示时间历元(epoch time)时,辅助信息(例如,服务星的星历信息和公共时间提前量(timing advance,TA)参数)的时间历元(epoch time)为某个下行子帧的开始时刻,该子帧通过和辅助信息一起指示的系统帧号(system frame number(SFN)及子帧号来进行指示。
可选地,当网络设备通过SIB隐式指示时间历元时,辅助信息(例如,服务星的星历信息和TA参数)的时间历元被默认为是包含NTN特定SIB传输时的系统消息(system information,SI)窗口的结束时刻。
可选地,当网络设备通过专用信令指示时间历元时,辅助信息(例如,服务星的星历信息和TA参数)的时间历元为某个下行子帧的开始时刻,该子帧通过SFN及子帧号来进行指示。
示例地,轨道参数包括表1所示的参数,结合图2终端设备可根据前5维参数确定卫星轨道特征,结合第6维参数则可以获得卫星的具体位置。
表1
表1中的6维参数是基于ECI坐标系的表征,图2中的表示ECI坐标系的三个坐标轴,表示相对速度,表示相对距离。终端设备可以结合上述6维参数确定当前卫星的位置及速度。接下来可以结合扰动条件,推算卫星后续时刻的位置和速度。扰动条件例如大气阻力、太阳风、月球引力、地球引力的不均匀性等,扰动条件具体包括哪些因 素可以取决于物理约束条件的建模复杂程度。
在理想条件下,终端设备可以根据上述6维参数确定卫星在等效圆轨道上的平均角速度,即可确定在后续任意时刻卫星在等效圆轨道上的相位,然后折算成对应实际椭圆轨道上(有扰动)的相位(位置)和速度。
应理解,终端设备通过全球导航卫星系统(global navigation satellite system,GNSS)或全球卫星定位系统(global positioning system,GPS)获取的自身位置信息是地心地固(earth centered earth fixed,ECEF)坐标系下的坐标信息。因此终端设备如果要计算其与卫星之间的距离,需要知道卫星在ECEF坐标系下的坐标,因此需要将网络设备指示的星历信息转换为同一时间ECEF坐标系下的信息。
上述介绍的方案中网络设备指示星历信息时指示其对应的时间历元(epoch time)是相对时间,不涉及星历信息在实际传输过程中的传输时间,而终端设备在对星历信息进行ECI坐标和ECEF坐标转换时需要知道星历信息对应的绝对时间,才能确定在时间历元ECI坐标系的坐标轴指向与此时ECEF坐标系的坐标轴指向的关系,从而完成星历信息在ECI坐标下和ECEF坐标下的转换。
一种可能的实施方式,在NR NTN场景中,终端设备具有GNSS能力,即终端设备包括GNSS模块,可以具有获得GNSS卫星授时的能力,从而获取绝对时间。
卫星上具有高精度的原子钟,该时间通常具有高精度。但是不同的终端设备受限于成本、功耗、体积及设计制造技术等,其GNSS模块的接收、译码能力,自身内部时钟的保持能力都是不同的。因此,在终端设备制造好后,其自身在正常工作状态下能够获得的绝对时间的精度上限是由设计制造标准决定的。例如,绝对时间精确能力可以达到秒级,毫秒级、微秒级、皮秒级或纳秒级等。通常商用终端设备能获取的绝对时间的精度有限,不能保证终端设备在对星历信息进行ECI和ECEF坐标转换时的精度。
另一种可能的实施方式,在无线网络中,终端设备可以通过SIB9获得协调世界时(universal time coordinated,UTC),也就是绝对时间。
但是SIB9指示的时间颗粒度是10ms,这个是由SIB9指示UTC时间的比特数决定的,存在一定的量化误差,因此终端设备在对星历信息进行ECI和ECEF坐标转换的过程中会引入误差。并且如果考虑无线网络自身时钟的偏差,那么SIB9的绝对时间偏差还会再放大。
上述实施方式中,终端设备在确定绝对时间时存在偏差,因此接下来的星历信息运用(例如用于时频同步)都会存在误差。
示例地,某个轨道参数下的卫星在绝对时间偏差为表2所示的量级时,其卫星的位置偏差如下表2所示。
表2
由此可见,通过获取绝对时间进行ECI和ECEF坐标的转换的方式不可避免会存在误差,难以准确确定卫星与终端设备之间的距离。
鉴于此,本申请提出一种确定距离的方法,能够使得终端设备根据同一时间ECI和ECEF坐标系的关系,对星历信息进行ECI和ECEF坐标的转换,在此过程中不用获取绝 对时间因此可以减少确定终端设备和网络设备之间的距离的误差。
图3是本申请实施例提供的一种确定距离的方法的交互流程图。图3所示的方法300包括:
S310,网络设备向终端设备发送第一星历信息,该第一星历信息与网络设备在第一ECI坐标系中第一时间的位置关联,该第一ECI坐标系与第一时间的ECEF坐标系存在第一关系。对应的,终端设备接收该第一星历信息。
示例地,网络设备可以是卫星,第一星历信息可以承载于无线资源控制(radio resource control,RRC)信令、媒体接入控制控制元素(media access control control element,MAC CE)信令或下行控制信息(downlink control information,DCI),第一星历信息也可以承载于专用信令,专用信令可以是针对某一个终端设备,或者某一类终端设备的信令,本申请对此不做限制。
一种可能的实施方式,该第一关系包括该第一ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第一角度,该第一ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第二角度,该第一ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第三角度。
示例地,该第一关系可以预定义,或预配置在网络设备和终端设备两端,或者该第一关系也可以通过RRC信令,MAC CE信令或者DCI指示终端设备,本申请对此不做限制。具体地,该第一ECI坐标系与现有方案中下发的星历信息对应的ECI坐标系(即后文涉及的第二ECI坐标系)不同。假设,第一ECI坐标系的坐标轴包括X1轴、Y1轴和Z1轴,现有方案中的ECI坐标系的坐标轴包括X2轴、Y2轴和Z2轴,ECEF坐标系的坐标轴包括X3轴、Y3轴和Z3轴,则X3轴和X1轴之间的第一角度为θ1,Y3轴和Y1轴之间的第二角度为β1,Z3轴和Z1轴之间的第三角度为γ1;X2轴和X1轴之间的角度为A,Y2轴和Y1轴之间的角度为B,Z2轴和Z1轴之间的角度为C。θ1、β1和γ1的取值可以预定义、预配置或通过信令指示,θ1、β1和γ1的取值范围为[-π,π]或[-180°,180°]或等效的[0,2π],[0,360°],本申请对此不作限制。第一星历信息是基于第一ECI坐标系得到的网络设备在第一时间的位置信息,网络设备在确定第一星历信息前,可以将第二ECI坐标系根据上述角度A、B和C处理为第一ECI坐标系。
一种可能的实施方式,第一角度为0,第二角度为0,第三角度为0。
示例地,θ1、β1和γ1取值为0,或者θ1、β1和γ1还可以取值为其他,本申请对此不做限制。
可选地,方法300还包括:
S301,终端设备向网络设备发送第一请求信息,该第一请求信息用于请求该第一星历信息。对应的,网络设备接收该第一请求信息。
示例地,第一请求信息可以承载于RRC信令,MACCE信令或者上行控制信息(uplink control information,UCI),或者第一请求信息还可以承载于其他的上行信息,本申请对此不做限制。
可选地,方法300还包括:
S320,网络设备向终端设备发送第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。对应的,终端设备接收该第一指示信息。
示例地,第一指示信息和第一星历信息可以承载于同一消息,或者第一指示信息和第 一星历信息可以承载于不同的消息,本申请对此不做限制。或者网络设备和终端设备可以约定,通过专用信令发送的星历信息即为响应第一请求信息的星历信息。
可选地,方法300还包括:
S330,网络设备向终端设备发送第二指示信息,该第二指示信息用于指示该第一关系。对应的,终端设备接收该第二指示信息。
示例地,第二指示信息可以承载于RRC信令,MACCE信令或者DCI,或者第二指示信息还可以承载于其他的下行信息,第二指示信息、第一指示信息和第一星历信息可以承载于同一消息,或者可以分别承载于不同的消息,或者第二指示信息、第一指示信息和第一星历信息中的两个可以承载于同一消息,本申请对此不做限制。
S340,终端设备基于该第一星历信息和该第一关系确定终端设备和网络设备之间的距离。
示例地,第一星历信息包括与第一ECI坐标系关联的ECI坐标信息,终端设备可以获取自身位置的ECEF坐标信息,并且根据第一角度,第二角度和第三角度将该ECI坐标信息转换为ECEF坐标信息,通过终端设备的ECEF坐标信息和网络设备的ECEF坐标信息确定终端设备和网络设备之间的距离。
或者终端设备获取自身位置的ECEF坐标信息,并根据第一角度,第二角度和第三角度将该ECEF坐标信息转换为ECI坐标信息。通过终端设备的ECI坐标信息和网络设备的ECI坐标信息确定终端设备和网络设备之间的距离。
方法300中,终端设备获取了第一星历信息和第一关系后,可以通过第一关系进行坐标信息之间的转换。因此后续终端设备可以根据转换后的坐标信息计算终端设备和网络设备之间的距离,进而可以推算后续时间网络设备的运动轨迹,以计算后续时间网络设备相对于终端设备的距离和速度,从而可以确定终端设备和网络设备通信时的频率偏移和时间偏移,用以时频同步。
因方法300可以在确定终端设备和网络设备之间的距离时,可以不需要星历信息对应的绝对时间来完成ECI和ECEF坐标信息的转换,可以提高ECI和ECEF坐标信息转换的准确性。并且使用方法300的过程中,如果第一星历信息过期(或失效),可以再次设置不同的θ1、β1和γ1,因此该方法较为灵活。
图4是本申请实施例提供的另一种确定距离的方法的交互流程图。图4所示的方法400包括:
S410,网络设备向终端设备发送第二星历信息,该第二星历信息与网络设备在第二ECI坐标系中第一时间的位置关联。对应的,终端设备接收该第二星历信息。
示例地,网络设备可以是卫星,第二星历信息可以承载于RRC信令,MACCE信令或者DCI,第二星历信息也可以承载于专用信令,专用信令可以是针对某一个终端设备,或者某一类终端设备的信令,本申请对此不做限制。
S420,网络设备向终端设备发送第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系。对应的,终端设备接收该第三指示信息。
示例地,第三指示信息可以承载于RRC信令,MACCE信令或者DCI,或者第三指示信息还可以承载于其他的下行信息,第三指示信息和第二星历信息可以承载于同一消息, 或者第三指示信息和第二星历信息可以承载于不同的消息,本申请对此不做限制。
一种可能的实施方式,该第二关系包括该第二ECI坐标系的第一轴和该ECEF坐标系的第一轴之间的第四角度,该第二ECI坐标系的第二轴和该ECEF坐标系的第二轴之间的第五角度,该第二ECI坐标系的第三轴和该ECEF坐标系的第三轴之间的第六角度。
示例地,该第二关系还可以预定义,或预配置在网络设备和终端设备两端,本申请对此不做限制,如果是预定义,或预配置在网络设备和终端设备两端,则可以不需要S420。
具体地,该第二ECI坐标系即现有方案中下发的星历信息对应的ECI坐标系。假设,第二ECI坐标系的坐标轴包括X2轴、Y2轴和Z2轴,ECEF坐标系的坐标轴包括X3轴、Y3轴和Z3轴,则X3轴和X2轴之间的第四角度为θ2,Y3轴和Y2轴之间的第五角度为β2,Z3轴和Z2轴之间的第六角度为γ2。θ2、β2和γ2可以基于第二ECI坐标系和第一时间的ECEF坐标系确定。θ2、β2和γ2的取值可以预定义、预配置或通过信令指示。θ2、β2和γ2的取值范围为[-π,π]或[-180°,180°]或等效的[0,2π],[0,360°],本申请对此不作限制。第二星历信息是基于第二ECI坐标系得到的网络设备在第一时间的位置信息。
可选地,方法400还包括:
S401,终端设备向网络设备发送第一请求信息,该第一请求信息用于请求第一星历信息,第一星历信息与该网络设备在第一ECI坐标系中第一时间的位置关联,第一ECI坐标系与第一时间的ECEF坐标系存在第一关系。对应的,网络设备接收该第一请求信息。
具体地,关于第一星历信息,第一关系和第一ECI坐标系的内容可参考方法300中的描述,在此不做赘述。
示例地,第一请求信息可以承载于RRC信令,MACCE信令或者UCI,或者第一请求信息还可以承载于其他的上行信息,本申请对此不做限制。
可选地,网络设备确定第二星历信息有效。
应理解,如果网络设备接收到第一请求信息后,确定第二星历信息还没有过期(例如第二星历信息的时间历元到响应该第一请求消息的时间没有超过小区定义的NTN有效时长,小区可以定义NTN有效时长并将其指示给终端设备),仍然是有效的,此时可以发送第三指示信息作为第一请求信息的响应,无需向终端设备发送第一星历信息,这样可以节约开销。如果网络设备接收到第一请求信息后,发现第二星历信息已过期,则可以发送第一星历信息作为第一请求信息的响应,具体可参考方法300中的描述,在此不再赘述。
或者S401’,终端设备向网络设备发送第二请求信息,该第二请求信息用于请求该第二关系。对应的,网络设备接收该第二请求信息。
示例地,第二请求信息可以承载于RRC信令,MACCE信令或者UCI,或者第二请求信息还可以承载于其他的上行信息,本申请对此不做限制。
应理解,终端设备如果发现第二星历信息还没有过期,则可以向网络设备发送第二请求信息,该第二请求信息可以隐式指示第二星历信息未过期,这样网络设备接收到第二请求信息后,可以直接向终端设备发送第三指示信息。
应理解,S401’和S401是两种不同的方案,可以择其一使用。
可选地,方法400还包括:
S430,网络设备向终端设备发送第四指示信息,该第四指示信息指示第三指示信息为该第一请求信息或第二请求信息的响应信息。对应的,终端设备接收该第四指示信息。
示例地,第四指示信息可以承载于RRC信令,MACCE信令或者DCI,或者第四指示信息还可以承载于其他的下行信息,第四指示信息、第二星历信息和第三指示信息可以承载于同一消息,或者可以分别承载于不同的消息,或者第四指示信息、第二星历信息和第三指示信息中的两个可以承载于同一消息,本申请对此不做限制。或者网络设备和终端设备可以约定,通过专用信令发送的第三指示信息即为第一请求信息或第二请求信息的响应信息。
S440,终端设备基于该第二星历信息和该第二关系确定终端设备和网络设备之间的距离。
示例地,第二星历信息包括与第二ECI坐标系关联的ECI坐标信息,终端设备可以获取自身位置的ECEF坐标信息,并且根据第四角度,第五角度和第六角度将该ECI坐标信息转换为ECEF坐标信息,通过终端设备的ECEF坐标信息和网络设备的ECEF坐标信息确定终端设备和网络设备之间的距离。
或者终端设备获取自身位置的ECEF坐标信息,并根据第四角度,第五角度和第六角度将该ECEF坐标信息转换为ECI坐标信息。通过终端设备的ECI坐标信息和网络设备的ECI坐标信息确定终端设备和网络设备之间的距离。
方法400中,终端设备获取了第二星历信息和第二关系后,可以通过第二关系进行坐标信息之间的转换。因此后续终端设备可以根据转换后的坐标信息计算终端设备和网络设备之间的距离,进而可以推算后续时间网络设备的运动轨迹,以计算后续时间网络设备相对于终端设备的距离和速度,从而可以确定终端设备和网络设备通信时的频率偏移和时间偏移,用以时频同步。
因方法400可以在确定终端设备和网络设备之间的距离时,可以不需要星历信息对应的绝对时间来完成ECI和ECEF坐标信息的转换,可以提高ECI和ECEF坐标信息转换的准确性。并且使用方法400的过程中,可以复用现有的星历信息,该星历信息可以不必承载在终端设备请求的响应信息中,可以节省终端设备专属信令及通信系统的总体信令开销。
上述流程图中虚线步骤为可选地步骤,且各步骤的先后顺序依照方法的内在逻辑确定,上述流程图中所示的序号仅为示例,不对本申请步骤的先后顺序造成限制。
还应理解,本申请实施例提供的方法可以单独使用,也可以结合使用,本申请对此不做限制。本申请实施例提供的各种实施方式可以单独使用,也可以结合使用,本申请对此不做限制。
应理解,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个项(个)“是指一项(个)或者多项(个),“至少两项(个)“以及“多项(个)”是指两项(个)或两项(个)以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
需注意的是,图3/4中示意的执行主体仅为示例,该执行主体也可以是支持该执行主体实现图3/4所示方法的芯片、芯片系统、或处理器,本申请对此不作限制。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。可以理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由终端设备中的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由网络设备中的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图5是本申请实施例提供的通信装置的示意性框图。图5所示的通信装置500包括收发单元510和处理单元520。收发单元510可以与外部进行通信,处理单元520用于进行数据处理。收发单元510还可以称为通信接口或通信单元。
可选的,收发单元510可以包括发送单元和接收单元。发送单元用于执行上述方法实施例中的发送操作。接收单元用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置500可以包括发送单元,而不包括接收单元。或者,通信装置500可以包括接收单元,而不包括发送单元。具体可以视通信装置500执行的上述方案中是否包括发送动作和接收动作。
可选地,该通信装置500还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元520可以读取存储单元中的指令或者和/或数据。
在一种设计中,通信装置500可以用于执行上文方法实施例中终端设备所执行的动作。
可选地,该通信装置500可以为终端设备,收发单元510用于执行上文方法实施例中终端设备的接收或发送的操作,处理单元520用于执行上文方法实施例中终端设备内部处理的操作。
可选地,该通信装置500可以为包括终端设备的设备。或者,该通信装置500可以为配置在终端设备中的部件,例如,终端设备中的芯片。这种情况下,收发单元510可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,处理单元520可以包括处理电路。
一种可能的实现方式中,收发单元510用于接收第一星历信息,该第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,该第一ECI坐标系与第一时间的地心地固ECEF坐标系存在第一关系,处理单元520用于基于该第一星历信息和该第一关系确定终端设备和网络设备之间的距离。
一种可能的实现方式中,该收发单元510还用于发送第一请求信息,该第一请求信息用于请求该第一星历信息。
一种可能的实现方式中,该收发单元510还用于接收第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。
一种可能的实现方式中,该收发单元510还用于接收第二指示信息,该第二指示信息指示第一关系。
一种可能的实现方式中,该收发单元510用于接收第二星历信息,该第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联,该收发单元510还用于接收第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系,处理单元520用于基于该第二星历信息和该第二关系确定终端设备和网络设备之间的距离。
一种可能的实现方式中,该收发单元510还用于发送第一请求信息,该第一请求信息用于请求第一星历信息,该第一星历信息与网络设备在第一ECI坐标系中该第一时间的位置关联,该第一ECI坐标系与该第一时间的ECEF坐标系存在第一关系。
一种可能的实现方式中,该收发单元510还用于发送第二请求信息,该第二请求信息用于请求该第二关系。
一种可能的实现方式中,该收发单元510还用于接收第四指示信息,该第四指示信息指示该第三指示信息为该第一请求信息或第二请求信息的响应信息。
在另一种设计中,图5所示的通信装置500可以用于执行上文方法实施例中网络设备所执行的动作。
可选地,该通信装置500可以为网络设备,收发单元510用于执行上文方法实施例中网络设备的接收或发送的操作,处理单元520用于执行上文方法实施例中网络设备内部处理的操作。
可选地,该通信装置500可以为包括网络设备的设备。或者,该通信装置500可以为配置在网络设备中的部件,例如,网络设备中的芯片。这种情况下,收发单元510可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,处理单元520可以包括处理电路。
一种可能的实现方式中,收发单元510用于发送第一星历信息,该第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,该第一ECI坐标系与该第一时间的地心地固ECEF坐标系存在第一关系。
一种可能的实现方式中,该收发单元510还用于接收第一请求信息,该第一请求信息用于请求该第一星历信息。
一种可能的实现方式中,该收发单元510还用于发送第一指示信息,该第一指示信息指示该第一星历信息为该第一请求信息的响应信息。
一种可能的实现方式中,该收发单元510还用于发送第二指示信息,该第二指示信息 指示该第一关系。
一种可能的实现方式中,该收发单元510用于发送第二星历信息,该第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联,该收发单元510还用于发送第三指示信息,该第三指示信息指示该第二ECI坐标系和该第一时间的地心地固ECEF坐标系的第二关系。
一种可能的实现方式中,该收发单元510还用于接收第一请求信息,该第一请求信息用于请求第一星历信息,该第一星历信息与该网络设备在第一ECI坐标系中该第一时间的位置关联,该第一ECI坐标系与该第一时间的ECEF坐标系存在第一关系,该处理单元520用于确定该第二星历信息有效。
一种可能的实现方式中,该收发单元510还用于接收第二请求信息,该第二请求信息用于请求该第二关系。
一种可能的实现方式中,该收发单元510还用于发送第四指示信息,该第四指示信息指示该第三指示信息为该第一请求信息或第二请求信息的响应信息。
如图6所示,本申请实施例还提供一种通信装置600。该通信装置600包括处理器610,处理器610与存储器620耦合,存储器620用于存储计算机程序或指令或者和/或数据,处理器610用于执行存储器620存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置600包括的处理器610为一个或多个。
可选地,如图6所示,该通信装置600还可以包括存储器620。
可选地,该通信装置600包括的存储器620可以为一个或多个。
可选地,该存储器620可以与该处理器610集成在一起,或者分离设置。
可选地,如图6所示,该通信装置600还可以包括收发器630和/或通信接口,收发器630和/或通信接口用于信号的接收和/或发送。例如,处理器610用于控制收发器630和/或通信接口进行信号的接收和/或发送。
可选地,可以将收发器630中用于实现接收功能的器件视为接收模块,将收发器630中用于实现发送功能的器件视为发送模块,即收发器630包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射器、发射模块或者发射电路等。
作为一种方案,该通信装置600用于实现上文方法实施例中由终端设备执行的操作。例如,处理器610用于实现上文方法实施例中由终端设备内部执行的操作(例如S340、S440的操作),收发器630用于实现上文方法实施例中由终端设备执行的接收或发送的操作(例如S301、S310、S320、S330、S401、S401’、S410、S420、S430的操作)。
作为一种方案,该通信装置600用于实现上文方法实施例中由网络设备执行的操作。例如,处理器610用于实现上文方法实施例中由网络设备内部执行的操作,收发器630用于实现上文方法实施例中由网络设备执行的接收或发送的操作(例如S301、S310、S320、S330、S401、S401’、S410、S420、S430的操作)。
本申请实施例还提供一种通信装置700,该通信装置700可以是终端设备或网络设备,也可以是终端设备或网络设备中的芯片。该通信装置700可以用于执行上述方法实施例中由终端设备或网络设备所执行的操作。
图7示出了一种简化的通信装置的结构示意图。如图7所示,该通信装置700包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对通信装置700进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置700时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器,在实际的产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该通信装置700的收发单元,将具有处理功能的处理器视为通信装置700的处理单元。
如图7所示,该通信装置700包括收发单元710和处理单元720。收发单元710也可以称为收发器、收发机、收发装置或收发电路等。处理单元720也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、接收装置或接收电路等。发送单元有时也可以称为发射机、发射器、发射装置或发射电路等。
一种实现方式中,处理单元720和收发单元710用于执行终端设备侧的操作。
示例地,收发单元710用于执行S301、S310、S320、S330、S401、S401’、S410、S420、S430中的收发操作,处理单元720用于执行S340、S440中的处理操作。
另一种实现方式中,处理单元720和收发单元710用于执行网络设备侧的操作。
示例地,收发单元710用于执行S301、S310、S320、S330、S401、S401’、S410、S420、S430中的收发操作。
应理解,图7仅为示例而非限定,上述包括收发单元和处理单元的通信装置700可以不依赖于图7所示的结构。
当该通信装置700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
如图8,本申请实施例还提供了一种通信装置800。该通信装置800包括逻辑电路810以及输入/输出接口(input/output interface)820。
其中,逻辑电路810可以为通信装置800中的处理电路。逻辑电路810可以耦合连接存储单元,调用存储单元中的指令,使得通信装置800可以实现本申请各实施例的方法和功能。输入/输出接口820,可以为通信装置800中的输入输出电路,将通信装置800处理好的信息输出,或将待处理的数据或信令信息输入通信装置800进行处理。
作为一种方案,该通信装置800用于实现上文各个方法实施例中由终端设备执行的操作。
例如,逻辑电路810用于实现上文方法实施例中由终端设备执行的处理相关的操作,如S340、S440中终端设备的处理操作。输入/输出接口820用于实现上文方法实施例中由终端设备执行的发送和/或接收相关的操作,如S301、S310、S320、S330、S401、S401’、S410、S420、S430中终端设备的收发操作。逻辑电路810执行的操作具体可以参见上文对处理单元520的说明,输入/输出接口820执行的操作可以参见上文对收发单元510的说明,这里不再赘述。
作为另一种方案,该通信装置800用于实现上文各个方法实施例中由网络设备执行的操作。
例如,逻辑电路810用于实现上文方法实施例中由网络设备执行的处理相关的操作,如,方法实施例中的网络设备执行的处理相关的操作,输入/输出接口820用于实现上文方法实施例中由网络设备执行的发送和/或接收相关的操作,如,S301、S310、S320、S330、S401、S401’、S410、S420、S430中网络设备的收发操作。逻辑电路810执行的操作具体可以参见上文对处理单元520的说明,输入/输出接口820执行的操作可以参见上文对收发单元510的说明,这里不再赘述。
应理解,上述通信装置可以是一个或多个芯片。例如,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步 骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法实施例所示的方法。例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drive,SSD))等。
上述各个装置实施例中的终端设备,网络设备与方法实施例中的终端设备,网络设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实 体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种确定距离的方法,其特征在于,包括:
    第一通信装置接收第一星历信息,所述第一星历信息与网络设备在第一地球惯性ECI坐标系中第一时间的位置关联,所述第一ECI坐标系与所述第一时间的地心地固ECEF坐标系存在第一关系;
    所述第一通信装置基于所述第一星历信息和所述第一关系确定所述第一通信装置和所述网络设备之间的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送第一请求信息,所述第一请求信息用于请求所述第一星历信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收第一指示信息,所述第一指示信息指示所述第一星历信息为所述第一请求信息的响应信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一关系包括所述第一ECI坐标系的第一轴和所述ECEF坐标系的第一轴之间的第一角度,所述第一ECI坐标系的第二轴和所述ECEF坐标系的第二轴之间的第二角度,所述第一ECI坐标系的第三轴和所述ECEF坐标系的第三轴之间的第三角度。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收第二指示信息,所述第二指示信息指示所述第一关系。
  6. 根据权利要求4所述的方法,其特征在于,所述第一角度为0,所述第二角度为0,所述第三角度为0。
  7. 根据权利要求2或3所述的方法,其特征在于,所述第一请求信息承载于无线资源控制信令,媒体接入控制层控制单元信令或者上行控制信息。
  8. 一种确定距离的方法,其特征在于,包括:
    第一通信装置接收第二星历信息,所述第二星历信息与网络设备在第二地球惯性ECI坐标系中第一时间的位置关联;
    所述第一通信装置接收第三指示信息,所述第三指示信息指示所述第二ECI坐标系和所述第一时间的地心地固ECEF坐标系的第二关系;
    所述第一通信装置基于所述第二星历信息和所述第二关系确定所述第一通信装置和所述网络设备之间的距离。
  9. 根据权利要求8所述的方法,其特征在于,所述第二关系包括所述第二ECI坐标系的第一轴和所述ECEF坐标系的第一轴之间的第四角度,所述第二ECI坐标系的第二轴和所述ECEF坐标系的第二轴之间的第五角度,所述第二ECI坐标系的第三轴和所述ECEF坐标系的第三轴之间的第六角度。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送第二请求信息,所述第二请求信息用于请求所述第二关系。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收第四指示信息,所述第四指示信息指示所述第三指示信息为所 述第二请求信息的响应信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
  13. 一种确定距离的方法,其特征在于,包括:
    第二通信装置发送第一星历信息,所述第一星历信息与所述第二通信装置在第一地球惯性ECI坐标系中第一时间的位置关联,所述第一ECI坐标系与所述第一时间的地心地固ECEF坐标系存在第一关系。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收第一请求信息,所述第一请求信息用于请求所述第一星历信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送第一指示信息,所述第一指示信息指示所述第一星历信息为所述第一请求信息的响应信息。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一关系包括所述第一ECI坐标系的第一轴和所述ECEF坐标系的第一轴之间的第一角度,所述第一ECI坐标系的第二轴和所述ECEF坐标系的第二轴之间的第二角度,所述第一ECI坐标系的第三轴和所述ECEF坐标系的第三轴之间的第三角度。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送第二指示信息,所述第二指示信息指示所述第一关系。
  18. 根据权利要求16所述的方法,其特征在于,所述第一角度为0,所述第二角度为0,所述第三角度为0。
  19. 根据权利要求14或15所述的方法,其特征在于,所述第一请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
  20. 一种确定距离的方法,其特征在于,包括:
    第二通信装置发送第二星历信息,所述第二星历信息与所述第二通信装置在第二地球惯性ECI坐标系中第一时间的位置关联;
    所述第二通信装置发送第三指示信息,所述第三指示信息指示所述第二ECI坐标系和所述第一时间的地心地固ECEF坐标系的第二关系。
  21. 根据权利要求20所述的方法,其特征在于,所述第二关系包括所述第二ECI坐标系的第一轴和所述ECEF坐标系的第一轴之间的第四角度,所述第二ECI坐标系的第二轴和所述ECEF坐标系的第二轴之间的第五角度,所述第二ECI坐标系的第三轴和所述ECEF坐标系的第三轴之间的第六角度。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收第二请求信息,所述第二请求信息用于请求所述第二关系。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送第四指示信息,所述第四指示信息指示所述第三指示信息为所述第二请求信息的响应信息。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第二请求信息承载于无线资源控制信令,媒体接入控制层控制单元或者上行控制信息。
  25. 一种通信装置,其特征在于,所述装置包括用于执行如权利要求1至12中任一 项所述方法的单元,或所述装置包括用于执行如权利要求13至24中任一项所述方法的单元。
  26. 一种通信装置,其特征在于,所述装置包括处理器,所述处理器与存储器耦合,所述存储器存储有指令,所述指令被所述处理器运行时,
    使得所述处理器执行如权利要求1至12中任意一项所述的方法,或者
    使得所述处理器执行如权利要求13至24中任意一项所述的方法。
  27. 一种通信装置,其特征在于,所述装置包括逻辑电路,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行如权利要求1至12中任一项所述的方法,或者,以执行如权利要求13至24中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法,或使得所述计算机执行如权利要求13至24中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至12中任一项所述的方法,或实现如权利要求13至24中任一项所述的方法。
  30. 一种通信系统,其特征在于,包括终端设备和/或网络设备,所述终端设备用于实现如权利要求1至12中任一项所述的方法,所述网络设备用于实现如权利要求13至24中任一项所述的方法。
PCT/CN2023/084012 2022-04-24 2023-03-27 确定距离的方法和通信装置 WO2023207465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210454825.5 2022-04-24
CN202210454825.5A CN116972740A (zh) 2022-04-24 2022-04-24 确定距离的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023207465A1 true WO2023207465A1 (zh) 2023-11-02

Family

ID=88481907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084012 WO2023207465A1 (zh) 2022-04-24 2023-03-27 确定距离的方法和通信装置

Country Status (2)

Country Link
CN (1) CN116972740A (zh)
WO (1) WO2023207465A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181872A (ja) * 2012-03-02 2013-09-12 Advanced Telecommunication Research Institute International 相対測位装置、相対測位方法、およびプログラム
CN104471439A (zh) * 2012-07-31 2015-03-25 精工爱普生株式会社 位置计算方法以及位置计算装置
CN105223597A (zh) * 2014-04-04 2016-01-06 马维尔国际有限公司 基于卫星确定通信设备位置的方法和设备
CN108896038A (zh) * 2018-05-15 2018-11-27 中国科学院遥感与数字地球研究所 月基光学传感器成像方法
CN113568013A (zh) * 2021-01-20 2021-10-29 腾讯科技(深圳)有限公司 终端定位方法、装置、电子设备及计算机可读存储介质
WO2022028552A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181872A (ja) * 2012-03-02 2013-09-12 Advanced Telecommunication Research Institute International 相対測位装置、相対測位方法、およびプログラム
CN104471439A (zh) * 2012-07-31 2015-03-25 精工爱普生株式会社 位置计算方法以及位置计算装置
CN105223597A (zh) * 2014-04-04 2016-01-06 马维尔国际有限公司 基于卫星确定通信设备位置的方法和设备
CN108896038A (zh) * 2018-05-15 2018-11-27 中国科学院遥感与数字地球研究所 月基光学传感器成像方法
WO2022028552A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种通信方法及装置
CN113568013A (zh) * 2021-01-20 2021-10-29 腾讯科技(深圳)有限公司 终端定位方法、装置、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN116972740A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2023108656A1 (zh) 一种全球卫星导航系统gnss的测量方法及其装置
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
WO2021027346A1 (zh) 公共定时提前的指示方法、装置、设备及存储介质
JP2017506325A (ja) モバイルデバイスの位置を推定する装置、システム及び方法
US20180310127A1 (en) System and Method for Collaborative Position Determination
US20170223768A1 (en) Dynamic adjustment of transmission timeout interval in communication protocols
WO2018227727A1 (zh) 一种定位方法、设备及系统
WO2022078376A1 (zh) 一种更新参数的方法以及相关装置
WO2021204016A1 (zh) 通信方法以及通信装置
EP4311320A1 (en) Information transmission method, terminal device, and network device
WO2023169131A1 (zh) 一种定位方法、装置及计算机可读存储介质
WO2022000481A1 (zh) 无线通信方法和通信装置
WO2021237525A1 (zh) 无线通信的方法和设备
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
WO2023207465A1 (zh) 确定距离的方法和通信装置
WO2022160298A1 (zh) 时间同步方法、装置和系统
WO2021204248A1 (zh) 无线通信方法和通信装置
WO2022095046A1 (zh) 确定上行传输时域资源的方法、终端设备及网络设备
WO2023143139A1 (zh) 小区移动性管理的方法和装置
WO2024109342A1 (zh) 定位方法、通信方法及相关装置、系统
WO2024037323A1 (zh) 一种授时的方法和装置
WO2023020352A1 (zh) 一种数据传输方法及相关装置
WO2023130448A1 (zh) 通信方法及通信装置
WO2022236628A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023185456A1 (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794900

Country of ref document: EP

Kind code of ref document: A1