WO2023207435A1 - 信令的发送方法、信令的接收方法、通信节点及存储介质 - Google Patents

信令的发送方法、信令的接收方法、通信节点及存储介质 Download PDF

Info

Publication number
WO2023207435A1
WO2023207435A1 PCT/CN2023/082841 CN2023082841W WO2023207435A1 WO 2023207435 A1 WO2023207435 A1 WO 2023207435A1 CN 2023082841 W CN2023082841 W CN 2023082841W WO 2023207435 A1 WO2023207435 A1 WO 2023207435A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
csi
communication node
information
resource
Prior art date
Application number
PCT/CN2023/082841
Other languages
English (en)
French (fr)
Inventor
刘文丰
王瑜新
郑国增
鲁照华
肖华华
李永
李伦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023207435A1 publication Critical patent/WO2023207435A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • This application relates to the field of communication technology, for example, to a signaling sending method, a signaling receiving method, a communication node, and a storage medium.
  • millimeter wave frequency bands will gradually become an important frequency band for future wireless communication systems.
  • Beam management achieves optimal transmission performance by establishing and maintaining a suitable beam pair to align the beam directions of the transmitter and receiver. Beam management is crucial to millimeter wave communication systems, including beam scanning, beam measurement, beam reporting, and beam indication.
  • beam training schemes require exhaustive scanning of all transmit and receive beams in a predetermined simulated beam codebook, resulting in excessive training overhead, measurement power consumption, and processing delays.
  • the embodiment of the present application provides a signaling sending method, which is applied to the first communication node and includes:
  • the first signaling is used to instruct the second communication node to report channel state information CSI information and time stamp information on one or more timestamps; receive the CSI information reported by the second communication node and timestamp information.
  • the embodiment of the present application provides a signaling receiving method, which is applied to the second communication node, including:
  • the first signaling is used to instruct the second communication node to report channel state information CSI information and timestamp information on one or more timestamps; report the CSI information to the first communication node and timestamp information.
  • An embodiment of the present application provides a communication node, including: a processor; the processor is configured to implement the above-mentioned signaling sending method or signaling receiving method when executing a computer program.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the above-mentioned signaling sending method or signaling receiving method is implemented.
  • Figure 1 is a schematic diagram of a P-2 beam management process
  • Figure 2 is a schematic diagram of a P-3 beam management process
  • Figure 3 is a schematic diagram of a network of a wireless communication system provided by an embodiment
  • Figure 4 is a schematic flowchart of a signaling sending method provided by an embodiment
  • Figure 5 is a schematic flowchart of a signaling receiving method provided by an embodiment
  • Figure 6 is a schematic diagram of beam prediction provided by an embodiment
  • Figure 7 is another schematic diagram of beam prediction provided by an embodiment
  • Figure 8 is a schematic diagram of an activation cycle and a deactivation cycle provided by an embodiment
  • Figure 9 is a schematic diagram of another activation cycle and deactivation cycle provided by an embodiment
  • Figure 10 is a schematic diagram of a periodic CSI-RS resource provided by an embodiment
  • Figure 11 is a schematic diagram of CSI-RS resources in the case of spatial beam prediction provided by an embodiment
  • Figure 12 is a schematic diagram of a CSI-RS resource subset in the case of time domain beam prediction provided by an embodiment
  • Figure 13 is a schematic diagram of a CSI-RS resource subset that combines spatial domain beam prediction and time domain beam prediction according to an embodiment
  • Figure 14 is a schematic structural diagram of a signaling sending device provided by an embodiment
  • Figure 15 is a schematic structural diagram of a signaling receiving device provided in an embodiment
  • Figure 16 is a schematic structural diagram of a base station provided in an embodiment
  • Figure 17 is a schematic structural diagram of a UE provided by an embodiment.
  • millimeter-wave frequency band with more spectrum resources and bandwidth will become an important frequency band for future wireless communication systems.
  • the wavelength of the millimeter wave band is shorter, and its propagation conditions are much more stringent than the traditional frequency bands below 6GHz.
  • There are problems such as high path loss and sensitivity to blocking.
  • millimeter wave signals usually need to be beamformed to concentrate the signal energy in a small angular space to form a directed beam with greater gain.
  • Beam management achieves optimal transmission performance by establishing and maintaining a suitable beam pair to align the beam directions of the transmitter and receiver. Beam management is crucial to millimeter wave communication systems, including beam scanning, beam measurement, beam reporting, and beam indication.
  • Beam scanning refers to the process in which a base station or user equipment (User Equipment, UE) sequentially uses different simulated beams to cover a spatial area. During beam scanning, the base station or UE sequentially transmits beams from the entire codebook or a subset of the codebook to find good transceiver beam pairs for data and control channels.
  • the beam scanning process mainly includes the transmitting end beam scanning P-2 process and the receiving end beam scanning P-3 process.
  • Figure 1 shows a schematic diagram of a P-2 beam management process.
  • the base station is a next generation NodeB (gNB)
  • gNB configures a high-level parameter resource set, a non-zero power channel state information reference signal resource set (Non-Zero Power -CSI-RS-ResourceSet, NZP-CSI-RS-ResourceSet), each resource set contains multiple channel state information reference signals (Channel State Information-Reference Signal, CSI-RS) transmitted using different transmit beams or single sideband (Single Side Band, SSB) resources
  • CSI-RS Channel State Information-Reference Signal
  • SSB single Side Band
  • the UE may need to patrol the receiving beam, that is, the CSI-RS resource set used for beam management is repeatedly transmitted multiple times, and the UE uses different receiving beams for reception, thereby achieving Scanning of the receive beam.
  • FIG. 2 shows a schematic diagram of a P-3 beam management process.
  • the base station is gNB
  • gNB configures a high-level parameter resource set NZP-CSI-RS-ResourceSet.
  • Each resource set contains multiple CSI-RS transmitted using the same transmit beam. or SSB resources
  • the UE uses different receiving beams to receive and measure CSI-RS or SSB resources to achieve scanning of receiving beams.
  • the gNB may need to patrol transmit beams, that is, configure multiple CSI-RS resource sets that use different transmit beam transmissions to implement transmit beam scanning.
  • the signaling sending and receiving methods provided by this application can be applied to various wireless communication systems, such as long term evolution (long term evolution, LTE) systems, fourth generation mobile communication technology (4th generation, 4G) systems, fifth generation 5th-generation mobile communication technology (5th-generation, 5G) system, LTE and 5G hybrid architecture system, 5G New Radio (NR) system, and new communication systems emerging in future communication development, such as the sixth-generation mobile communication technology (6th-generation, 6G) system, etc.
  • Figure 3 shows a schematic networking diagram of a wireless communication system provided by an embodiment. As shown in Figure 3, the wireless communication system includes a terminal device 110, an access network device 120 and a core network device 130.
  • the terminal device 110 can be a device with wireless transceiver function, and can be deployed on land (such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.); it can also be deployed on water (such as ships, etc.); it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • Some examples of terminal devices 110 are: UE, mobile phone, mobile station, tablet computer, notebook computer, ultra-mobile personal computer (Ultra-mobile personal computer).
  • UMPC Personal Computer
  • PDA Personal Digital Assistant
  • VR virtual reality
  • AR Augmented Reality
  • industrial Wireless terminals in industrial control wireless terminals in self-driving, wireless terminals in remote medical
  • wireless terminals in smart grid transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • IoT nodes in the Internet of Things or vehicle-mounted communication devices in the Internet of Vehicles, or entertainment and games equipment or systems, or global positioning system equipment, etc.
  • the embodiments of the present application do not limit the technology and device form used by the terminal device 110.
  • the terminal device 110 may be referred to as a terminal.
  • the access network device 120 is an access device through which the terminal device 110 wirelessly accesses the wireless communication system, and may be a base station or an evolved base station (Long Term Evolution Advanced, LTEA). evolved NodeB (eNB or eNodeB), transmission reception point (TRP), base station or gNB in 5G mobile communication system, base station in future mobile communication system or interface in Wireless Fidelity (WiFi) system Entry node, etc.
  • Base stations can include various macro base stations, micro base stations, home base stations, wireless remotes, routers, WIFI equipment, or various network side equipment such as primary cells and secondary cells, location management functions (Location Management Function) , LMF) equipment. It can also be a module or unit that completes some functions of the base station.
  • the access network equipment may be referred to as a base station.
  • the core network device 130 may include an access and mobility management network element and a session management network element.
  • the terminal device 110 can access the core network through the access network device 120 to implement data transmission.
  • a signaling sending and receiving method, communication node and storage medium that can be run in the above-mentioned wireless communication system are provided.
  • this application only needs to send or measure part of the time. Beams at other times can be predicted to reduce beam training overhead in the time domain, improve beam alignment accuracy, and achieve ideal beamforming gain and spectral efficiency with smaller beam training overhead.
  • Figure 4 shows a schematic flowchart of a signaling sending method provided by an embodiment.
  • the method provided by this embodiment is applicable to the first communication node.
  • the first communication node (which may also be referred to as the first communication node device) may be a base station
  • the second communication node (which may also be referred to as the second communication node device) may be a base station.
  • the information node device may be a terminal device.
  • the method includes.
  • S110 Send first signaling to the second communication node.
  • the first signaling is used to instruct the second communication node to report channel state information CSI information and time stamp information on one or more timestamps.
  • AI Artificial Intelligence
  • This application implements beam prediction by the first communication node or the second communication node through the transmission of signaling between the first communication node and the second communication node.
  • the CSI information and timestamp information reported by the second communication node are the CSI information and timestamp information measured by the second communication node;
  • the second communication node implements beam prediction, the second communication node
  • the CSI information and timestamp information reported by the communication node are the CSI information and timestamp information predicted by the second communication node.
  • channel state information (Channel state information, CSI) information includes at least one of the following: reference signal receiving power (Reference Signal Receiving Power, RSRP), channel state information reference signal resource indicator (CSI-RS resource indicator), CRI), Reference Signal Receiving Quality (RSRQ), Reference Signal Receiving Signal, Signal to Interference plus Noise Ratio (SINR), Signal-to-noise ratio (SNR).
  • reference signal receiving power Reference Signal Receiving Power, RSRP
  • CSI-RS resource indicator CRI
  • Reference Signal Receiving Quality (RSRQ) Reference Signal Receiving Signal
  • SINR Signal-to-noise ratio
  • the timestamp information includes at least one of the following: slot index or slot number, subframe index or subframe number, symbol index or symbol number.
  • the first signaling is used to indicate that the RSRP reported by the second communication node can be the strongest RSRP on one or more timestamps, or can also be one or more timestamps.
  • the RSRP whose intensity is located in the top K positions, K ⁇ 2, and K is an integer.
  • the first signaling is also used to instruct the second communication node to report the RSRP in the case of a fixed CRI or a fixed transmit beam or a fixed transmit and receive beam pair, so as to track the movement trajectory of the second communication node and assist in AI prediction.
  • the first communication node may also send second signaling to the second communication node, where the second signaling is used to indicate that the receiving beam of the second communication node remains unchanged.
  • the second signaling is used to indicate that the receiving beam of the second communication node remains unchanged. The purpose is that if the receiving beam of the second communication node changes, the CSI information and timestamp information reported by the second communication node may become invalid.
  • the commonality of the above-mentioned embodiments of the present application is that CSI-RS resources do not need to be sent at some times. Therefore, for semi-persistent CSI-RS resources or semi-persistent CSI reporting, the first communication node may also send third signaling to the second communication node, and the third signaling is used to indicate a primary beam prediction process. At least one of the activation period and the deactivation period in .
  • the third signaling can be indicated in any of the following three ways:
  • Method 1 If the activation period and the deactivation period are continuous periods, the third signaling includes at least one of the activation period number M and the deactivation period number N, where N and M are positive integers.
  • Method 2 If the activation period and the deactivation period are non-continuous periods, the third signaling uses a bitmap indication.
  • the third signaling includes configuring at least one of the CSI-RS resource set or the repetition number and bitmap of the CSI-RS resource.
  • this application defines a new channel state information reference signal resource set (CSI-RS resource set) type: aperiodic (aperiodic), periodic (periodic), semi- The attributes of a persistent (semi-persistent) CSI-RS resource set are defined at the resource subset level.
  • CSI-RS resource set aperiodic
  • periodic periodic
  • semi- The attributes of a persistent (semi-persistent) CSI-RS resource set are defined at the resource subset level.
  • Configuration parameters within the resource subset include at least one of the following: repetition number or repetition factor (repetition), offset (offset), and bitmap.
  • Figure 5 shows a schematic flowchart of a signaling receiving method provided by an embodiment.
  • the method provided by this embodiment is applicable to the second communication node.
  • the first communication node (which may also be referred to as a first communication node device) may be a base station
  • the second communication node (which may also be referred to as a second communication node device) may be a terminal device.
  • the method includes.
  • S210 Receive the first signaling sent by the first communication node.
  • the first signaling is used to instruct the second communication node to report channel state information CSI information and time stamp information at one or more timestamps.
  • the solution provided by the embodiment of this application is applied in the AI-based beam management method and involves a complete set of beam scanning, measurement and reporting processes.
  • This application implements beam prediction by the first communication node or the second communication node through the transmission of signaling between the first communication node and the second communication node.
  • the CSI information and timestamp information reported by the second communication node are the CSI information and timestamp information measured by the second communication node;
  • the second communication node implements beam prediction, the second communication node
  • the CSI information and timestamp information reported by the communication node are the CSI information and timestamp information predicted by the second communication node.
  • the CSI information includes at least one of the following: RSRP, CRI, RSRQ, reference signal received signal, SINR, and SNR.
  • the timestamp information includes at least one of the following: slot index or slot number, subframe index or subframe number, symbol index or symbol number.
  • the first signaling is used to indicate that the RSRP reported by the second communication node may be the strongest RSRP on one or more timestamps, or may be one or more The RSRP whose strength on the timestamp is located in the top K bits, K ⁇ 2, and K is an integer.
  • the first signaling is also used to instruct the second communication node to report the RSRP in the case of a fixed CRI or a fixed transmit beam or a fixed transmit and receive beam pair, so as to track the movement trajectory of the second communication node and assist in AI prediction.
  • the second communication node may also receive second signaling sent by the first communication node, where the second signaling is used to indicate that the receiving beam of the second communication node remains unchanged.
  • the second signaling is used to indicate that the receiving beam of the second communication node remains unchanged. The purpose is that if the receiving beam of the second communication node changes, the CSI information and timestamp information reported by the second communication node may become invalid.
  • the commonality of the above-mentioned embodiments of the present application is that CSI-RS resources do not need to be sent at some times. Therefore, for semi-persistent CSI-RS resources or semi-persistent CSI reporting, the second communication node can also receive the third signaling sent by the first communication node.
  • the third signaling is used to indicate the activation period in the primary beam prediction process. and at least one of the deactivation cycles.
  • the third signaling can be indicated in any of the following three ways:
  • Method 1 If the activation period and the deactivation period are continuous periods, the third signaling includes at least one of the activation period number M and the deactivation period number N, where N and M are positive integers.
  • Method 2 If the activation period and the deactivation period are non-continuous periods, the third signaling uses a bitmap indication.
  • the third signaling includes configuring at least one of the CSI-RS resource set or the repetition number and bitmap of the CSI-RS resource.
  • this application defines a new CSI-RS resource set type: the attributes of aperiodic, periodic, and semi-persistent CSI-RS resource sets are defined in resource subsets level.
  • Configuration parameters within the resource subset include at least one of the following: repetition number or repetition factor, offset, and bitmap.
  • the first communication node is denoted as a base station
  • the second communication node is denoted as a UE.
  • the base station sends first signaling to the UE, and the first signaling is used to instruct the UE to report a CSI information and timestamp information on one or more timestamps.
  • the UE reports CSI information and timestamp information to the base station to reduce the number of reports.
  • the CSI information includes at least one of the following: RSRP, CRI, RSRQ, reference signal received signal, SINR, SNR;
  • the timestamp information includes at least one of the following: timeslot index or timeslot number, subframe index or subframe number, Symbol index or symbol number.
  • FIG. 6 shows a schematic diagram of beam prediction provided by an embodiment.
  • the transmission slot index of periodic CSI-RS is 1, 2, 3,... (that is, the period is 1)
  • a CSI-RS resource subset period includes 5 slot indexes, that is, CSI-RS The number of repetitions for the subset period is 5.
  • the base station instructs the UE to report the CSI information on slots 1, 2, and 3, so the UE reports to the base station the CSI information on slot 1 (such as CRI/RSRP) and the corresponding slot index 1 and CSI information on slot 2 (CSI information on time slot 3 (such as CRI/RSRP) and the corresponding time slot index 2, and the CSI information on time slot 3 (such as CRI/RSRP) and the corresponding time slot index 3, so that the base station can predict the optimal beams of time slot index 4 and 5 accordingly.
  • the CSI information on slot 1 such as CRI/RSRP
  • CSI information on slot 3 such as CRI/RSRP
  • CSI information on time slot 3 such as CRI/RSRP
  • FIG. 7 shows another beam prediction schematic diagram provided by an embodiment.
  • the transmission slot index of periodic CSI-RS is 1, 2, 3,... (that is, the period is 1), and one CSI-RS period includes 1 slot index.
  • the base station instructs the UE to report the CSI information on slots 1, 3, and 5, so the UE reports to the base station the CSI information on slot 1 (such as CRI/RSRP) and the corresponding slot index 1 and CSI information on slot 3 (such as CRI/RSRP) and corresponding time slot index 3, CSI information on time slot 5 (such as CRI/RSRP) and corresponding time slot index 5, so that the base station can predict the optimal beam of time slot index 6 accordingly.
  • CRI/RSRP such as CRI/RSRP
  • time slot 5 such as CRI/RSRP
  • the base station instructs the UE to report the CSI information on slots 3, 5, and 7, so the UE reports the CSI information (such as CRI/RSRP) on slot 3 and the corresponding slot index 3 and CSI on slot 5 to the base station.
  • Information such as CRI/RSRP
  • CSI information such as CRI/RSRP
  • time slot index 7 on time slot 7, so that the base station can predict the optimal beam of time slot index 8 accordingly. . And so on.
  • the base station instructs the UE to report the CSI information on time slots 4 and 5, so the UE calculates the CSI information based on the CSI information on time slot 1 (such as CRI/RSRP) and the corresponding CSI information on slot index 1 and slot 2 (such as CRI/RSRP) and the corresponding CSI information on slot index 2, slot 3 (such as CRI/RSRP) and the corresponding Slot index 3, predict the optimal beam for slot index 4,5.
  • the UE reports the predicted CSI information (such as CRI/RSRP) on time slot 4 and the corresponding time slot index 4, the CSI information (such as CRI/RSRP) on time slot 5 and the corresponding time slot index 5 to the base station. .
  • the CRI/RSRP reported by the UE may be the strongest CRI/RSRP on one or more timestamps, or it may be the CRI/RSRP whose strength is among the top K on one or more timestamps, K ⁇ 2, and K is an integer.
  • the UE also reports CRI/RSRP in the case of fixed CRI or fixed transmit beam or fixed transmit and receive beam pair to track the UE's movement trajectory and assist AI prediction.
  • the base station instructs the UE through high-level signaling
  • the receive beam remains unchanged. Otherwise, the reported CRI/RSRP may be meaningless.
  • the base station can also send third signaling to the UE.
  • the third signaling is used to indicate at least one of the activation period and the deactivation period in the primary beam prediction process.
  • MAC CE Media Access Control Element
  • the third signaling can be indicated in any of the following three ways:
  • the third signaling includes at least one of the activation period number M and the deactivation period number N, where N and M are positive integers.
  • the third signaling includes at least one of activation cycle number M and deactivation cycle number N, that is, automatic deactivation after activation for M cycles; or automatic reactivation after deactivation for N cycles; or activation of M Automatically deactivate N cycles after N cycles (that is, activate the time domain beam prediction process once).
  • Figure 8 shows a schematic diagram of an activation cycle and a deactivation cycle provided by an embodiment.
  • the transmission slot index of periodic CSI-RS is 1, 2, 3, ... (that is, the period is 1), and one CSI-RS period includes 1 slot index.
  • the third signaling includes activation period 3 and deactivation period 2, that is, in a beam prediction process, 3 CSI-RS resource set periods are activated and then 2 CSI-RS resource set periods are automatically deactivated, which is the period of a beam prediction process. It is 5 CSI-RS resource set periods.
  • the third signaling uses bitmap indication.
  • the third signaling uses bitmap indication, that is, the bitmap indicates the activation/deactivation pattern. For example, 1 in the bitmap indicates activation, and 0 in the bitmap indicates deactivation.
  • Figure 9 shows a schematic diagram of another activation cycle and deactivation cycle provided by an embodiment.
  • the transmission slot index of periodic CSI-RS is 1, 2, 3,... (that is, the period is 1), and one CSI-RS period includes 1 slot index.
  • the bitmap configuration of the third signaling is 10101, that is, in a beam prediction process, the 1st, 3rd and 5th CSI-RS resource set periods are the activation periods, and the 2nd and 4th CSI-RS resources
  • the set period is the deactivation period, and the period of a beam prediction process is 5 CSI-RS resource set periods.
  • the third signaling includes configuring at least one of the CSI-RS resource set or the repetition number and bitmap of the CSI-RS resource.
  • the number of repetitions is 3, and the UE can report CSI information to the base station according to this number of CSI-RS resource sets or CSI-RS resources; or, taking Figure 9 as an example, the number of repetitions is 5.
  • the bitmap is configured as 10101.
  • the UE can combine the repetition number 5 and bitmap 10101 to configure the CSI-RS resource set or CSI-RS resource; or, taking Figure 9 as an example, the repetition number can also be understood as 3, which describes CSI -The number of times the RS resource set or CSI-RS resource is actually sent repeatedly, the bitmap is 10101.
  • this application defines a new CSI-RS resource set type: attribute definition of aperiodic, periodic, and semi-persistent CSI-RS resource set At the resource subset level.
  • FIG. 10 shows a schematic diagram of periodic CSI-RS resources provided by an embodiment
  • FIG. 11 shows a schematic diagram of CSI-RS resources in the case of spatial beam prediction provided by an embodiment
  • Figure 12 shows a schematic diagram of a CSI-RS resource subset in the case of time domain beam prediction provided by an embodiment.
  • the entire resource subset shown in Figure 12 is taken as a whole (ie, the configuration cycle); at the same time, for the entire resource subset shown in Figure 12, the configuration parameters are: repetition number or repetition factor, offset, and bitmap.
  • offset indicates the resource location
  • a bitmap of 0 indicates that the reference signal resource is not sent at this location
  • a bitmap of 1 indicates that the reference signal resource is sent.
  • the 5 beam scanning positions (the first 3 positions are beam scanned, and the last 2 positions are not beam scanned) are taken as a whole, the repetition number is 5, the bitmap is 11100, and the offset parameter is defined in
  • the offset of the configuration in the first CSI-RS resource set is 0
  • the offset of the configuration in the second CSI-RS resource set is 1
  • the offset of the configuration in the second CSI-RS resource set is 1.
  • the offset of the configuration in the three CSI-RS resource sets is 2.
  • FIG 13 shows a schematic diagram of a CSI-RS resource subset that combines spatial domain beam prediction and time domain beam prediction according to an embodiment.
  • a second-level bitmap can be used to indicate the location of the sampling beam (that is, the location of historical beam measurements).
  • the first-level bitmap is 11100.
  • the second-level bitmap is 11111; for the second beam scan, the second-level bitmap is 10101; for the third beam Scan, the second level bitmap is 01110.
  • the aperiodic, periodic, and semi-persistent attributes of CSI reporting are defined. It is defined at the resource subset level, and its principle is similar to the description in the above embodiment. For the sake of simplicity, it will not be described again here.
  • Figure 14 shows a schematic structural diagram of a signaling sending device provided in an embodiment.
  • the device can be configured in the first communication node.
  • the device includes: a sending module 10 and a receiving module 11.
  • the sending module 10 is configured to send the first signaling to the second communication node.
  • the first signaling is used to instruct the second communication node to report the channel state information CSI information and the timestamp information on one or more timestamps;
  • the receiving module 11 configured to receive the CSI information and timestamp information reported by the second communication node.
  • the signaling sending device provided by this embodiment implements the signaling sending method of the embodiment shown in Figure 4.
  • the implementation principles and technical effects of the signaling sending device provided by this embodiment are similar to those of the above embodiment, and will not be discussed here. Repeat.
  • the CSI information includes at least one of the following: reference signal received power RSRP, channel state information reference signal resource indication CRI, reference signal received quality RSRQ, reference signal received signal, signal-to-interference and noise ratio SINR, signal-to-noise ratio SNR .
  • the timestamp information includes at least one of the following: slot index or slot number, subframe index or subframe number, symbol index or symbol number.
  • the first signaling is also used to instruct the second communication node to report the RSRP in the case of fixed CRI or fixed transmit beam or fixed transmit and receive beam pair.
  • the sending module 10 is further configured to send a second signaling to the second communication node before the receiving module 11 receives the CSI information and timestamp information reported by the second communication node.
  • the second signaling is used to indicate The receiving beam of the second communication node remains unchanged.
  • the sending module 10 is further configured to send third signaling to the second communication node, and the third signaling is used to Indicates at least one of an activation period and a deactivation period in a beam prediction process.
  • the third signaling is indicated in any of the following ways:
  • the third signaling includes at least one of the activation period number M and the deactivation period number N, where N and M are positive integers; if the activation period and the deactivation period are non-continuous periodic, the third signaling uses a bitmap bitmap indication; if the CSI-RS is aperiodic CSI-RS, the third signaling includes configuring the CSI-RS resource set or the repetition number of the CSI-RS resource and at least one of the bitmap one.
  • aperiodic, periodic, and semi-persistent channels The attributes of the status information reference signal resource set CSI-RS resource set are defined at the resource subset level.
  • the configuration parameters within the resource subset include at least one of the following: repetition number or repetition factor, offset, and bitmap.
  • Figure 15 shows a schematic structural diagram of a signaling receiving device provided in an embodiment.
  • the device can be configured in the second communication node.
  • the device includes: a receiving module 20 and a sending module 21.
  • the receiving module 20 is configured to receive the first signaling sent by the first communication node.
  • the first signaling is used to instruct the second communication node to report the channel state information CSI information and the timestamp information on one or more timestamps; the sending module 21. Set to report CSI information and timestamp information to the first communication node.
  • the signaling receiving device provided by this embodiment implements the signaling receiving method of the embodiment shown in Figure 5.
  • the implementation principles and technical effects of the signaling receiving device provided by this embodiment are similar to those of the above embodiment, and will not be repeated here. Repeat.
  • the CSI information includes at least one of the following: reference signal received power RSRP, channel state information reference signal resource indication CRI, reference signal received quality RSRQ, reference signal received signal, signal-to-interference and noise ratio SINR, signal-to-noise ratio SNR .
  • the timestamp information includes at least one of the following: slot index or slot number, subframe index or subframe number, symbol index or symbol number.
  • the first signaling is also used to instruct the second communication node to report the RSRP in the case of fixed CRI or fixed transmit beam or fixed transmit and receive beam pair.
  • the receiving module 20 is further configured to receive the second signaling sent by the first communication node before the sending module 21 reports the CSI information and timestamp information to the first communication node.
  • the second signaling is used to indicate The receiving beam of the second communication node remains unchanged.
  • the receiving module 20 is further configured to receive the third signaling sent by the first communication node, and the third signaling is used to indicate at least one of the activation period and the deactivation period in the primary beam prediction process.
  • the third signaling is indicated in any of the following ways:
  • the third signaling includes at least one of the activation period number M and the deactivation period number N, where N and M are positive integers; if the activation period and the deactivation period are non-continuous periodic, the third signaling uses a bitmap bitmap indication; if the CSI-RS is aperiodic CSI-RS, the third signaling includes configuring the CSI-RS resource set or the repetition number of the CSI-RS resource and at least one of the bitmap one.
  • aperiodic, periodic, and semi-persistent channels The attributes of the status information reference signal resource set CSI-RS resource set are defined at the resource subset level.
  • the configuration parameters within the resource subset include at least one of the following: repetition number or repetition factor, offset, and bitmap.
  • An embodiment of the present application also provides a communication node, including: a processor, and the processor is configured to implement the method provided by any embodiment of the present application when executing a computer program.
  • the communication node may be an access network device or a terminal device provided in any embodiment of the present application, and this application does not impose any limitation on this.
  • the following embodiments respectively provide a schematic structural diagram in which the communication nodes are a base station and a UE.
  • Figure 16 shows a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 60, a memory 61 and a communication interface 62; the number of processors 60 in the base station may be one or more
  • Figure 16 takes a processor 60 as an example; the processor 60, memory 61, and communication interface 62 in the base station can be connected through a bus or other means.
  • a bus connection is taken as an example.
  • a bus represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • the memory 61 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes software programs, instructions and modules stored in the memory 61 to execute at least one functional application and data processing of the base station, that is, to implement the above method.
  • the memory 61 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created according to the use of the terminal, etc.
  • the memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 61 may include memory located remotely relative to processor 60, and these remote memories may be connected to the base station through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, networks, mobile communication networks and combinations thereof.
  • the communication interface 62 may be configured to receive and send data.
  • FIG 17 shows a schematic structural diagram of a UE provided by an embodiment.
  • the UE can be implemented in various forms.
  • the UE in this application can include but is not limited to mobile phones, smart phones, notebook computers, digital broadcast receivers, etc. , personal digital assistant (Personal Digital Assistant, PDA), tablet computer (Portable Device, PAD), portable multimedia player (Portable Media Player, PMP), navigation device, vehicle-mounted terminal equipment, vehicle-mounted display terminal, vehicle-mounted electronic rearview mirror, etc.
  • Mobile terminal equipment such as digital television (TV), desktop computers, etc., as well as fixed terminal equipment.
  • the UE 50 may include a wireless communication unit 51, an audio/video (A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, and an interface unit. 57. Processor 58 and power supply unit 59 and so on.
  • Figure 17 illustrates a UE that includes a variety of components, but it should be understood that implementation of all illustrated components is not required. More or fewer components may alternatively be implemented.
  • the wireless communication unit 51 allows radio communication between the UE 50 and the base station or network.
  • A/V input unit 52 is arranged to receive audio or video signals.
  • the user input unit 53 may generate key input data according to commands input by the user to control various operations of the UE 50.
  • the sensing unit 54 detects the current state of the UE 50, the position of the UE 50, the presence or absence of the user's touch input to the UE 50, the orientation of the UE 50, the acceleration or deceleration movement and direction of the UE 50, etc., and generates a signal for controlling the UE 50. 50 operation commands or signals.
  • the interface unit 57 serves as an interface through which at least one external device can connect to the UE 50.
  • the output unit 55 is configured to provide an output signal in a visual, audio and/or tactile manner.
  • the memory 56 may store software programs for processing and control operations executed by the processor 58 and the like, or may temporarily store data that has been output or is to be output.
  • Memory 56 may include at least one type of storage medium.
  • UE 50 may cooperate with a network storage device that performs the storage functions of memory 56 over a network connection.
  • Processor 58 generally controls the overall operation of UE 50.
  • the power supply unit 59 receives external power or internal power under the control of the processor 58 and provides appropriate power required to operate various elements and components.
  • the processor 58 executes at least one functional application and data processing by running the program stored in the memory 56, for example, implementing the method provided by the embodiment of the present application.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the method provided by any embodiment of the present application is implemented.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connections having one or more conductors, portable computer disks, hard drives, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), Erasable Programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage devices, Magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, the data signal carrying computer-readable program code. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), and also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type appropriate to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to Read-only memory (ROM), random-access memory (RAM), optical storage devices and systems (digital versatile discs, DVDs or CDs), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Abstract

本申请公开了一种信令的发送方法、信令的接收方法、通信节点及存储介质。信令的发送方法包括:向第二通信节点发送第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息;接收第二通信节点上报的CSI信息以及时间戳信息。

Description

信令的发送方法、信令的接收方法、通信节点及存储介质 技术领域
本申请涉及通信技术领域,例如涉及一种信令的发送方法、信令的接收方法、通信节点及存储介质。
背景技术
随着无线通信技术的迅猛发展,毫米波频段将逐渐成为未来无线通信系统的重要频段。为了克服毫米波频段传播条件苛刻的问题,通常需要对其进行波束赋形,将信号能量集中在一个小的角空间内以形成增益更大的赋性波束。波束管理通过建立和维护一个合适的波束对,实现发送端和接收端波束方向的对齐,从而获得最佳的传输性能。波束管理对毫米波通信系统至关重要,包括波束扫描、波束测量、波束上报和波束指示等。然而,波束训练方案需要对预先确定的模拟波束码本中的所有发射波束和接收波束进行穷尽扫描,会导致过高的训练开销、测量功耗和处理延时。
发明内容
本申请实施例提供一种信令的发送方法,应用于第一通信节点,包括:
向第二通信节点发送第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息;接收第二通信节点上报的CSI信息以及时间戳信息。
本申请实施例提供一种信令的接收方法,应用于第二通信节点,包括:
接收第一通信节点发送的第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息;向第一通信节点上报CSI信息以及时间戳信息。
本申请实施例提供一种通信节点,包括:处理器;处理器用于在执行计算机程序时实现上述的信令的发送方法或信令的接收方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的信令的发送方法或信令的接收方法。
附图说明
图1是一种P-2波束管理过程的示意图;
图2是一种P-3波束管理过程的示意图;
图3是一实施例提供的一种无线通信系统的组网示意图;
图4是一实施例提供的一种信令的发送方法的流程示意图;
图5是一实施例提供的一种信令的接收方法的流程示意图;
图6是一实施例提供的一种波束预测示意图;
图7是一实施例提供的另一种波束预测示意图;
图8是一实施例提供的一种激活周期和去激活周期的示意图;
图9是一实施例提供的另一种激活周期和去激活周期的示意图;
图10是一实施例提供的一种周期性CSI-RS资源的示意图;
图11是一实施例提供的一种空域波束预测情况下的CSI-RS资源的示意图;
图12是一实施例提供的一种时域波束预测情况下的CSI-RS资源子集的示意图;
图13是一实施例提供的一种空域波束预测和时域波束预测相结合的CSI-RS资源子集的示意图;
图14是一实施例提供的一种信令的发送装置的结构示意图;
图15是一实施例提供的一种信令的接收装置的结构示意图;
图16是一实施例提供的一种基站的结构示意图;
图17是一实施例提供的一种UE的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请。下文中将结合附图对本申请的实施例进行详细说明。
随着无线通信技术的迅猛发展,低频段资源日益紧张,而具有更多频谱资源和带宽的毫米波频段将成为未来无线通信系统的重要频段。但是,毫米波频段波长较短,其传播条件比传统的6GHz以下频段要苛刻得多,存在路径损耗高和对阻塞敏感等问题。为此,毫米波信号通常需要进行波束赋型,将信号能量集中在一个小的角空间内以形成增益更大的赋性波束。波束管理通过建立和维护一个合适的波束对,实现发送端和接收端波束方向的对齐,从而获得最佳的传输性能。波束管理对毫米波通信系统至关重要,包括波束扫描、波束测量、波束上报和波束指示等。
波束扫描是指基站或用户设备(User Equipment,UE)依次使用不同的模拟波束覆盖一个空间区域的过程。在波束扫描期间,基站或UE顺序地发送来自整个码本或码本子集的波束,以便为数据和控制通道找到良好的收发波束对。波束扫描过程主要包括发送端波束扫描P-2过程和接收端波束扫描P-3过程。
图1示出了一种P-2波束管理过程的示意图。如图1所示,假设基站为下一代基站(next generation NodeB,gNB),在P-2波束管理过程中,gNB配置高层参数资源集非零功率信道状态信息参考信号资源集(Non-Zero Power-CSI-RS-ResourceSet,NZP-CSI-RS-ResourceSet),每个资源集中包含多个采用不同发送波束传输的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)或单边带(Single Side Band,SSB)资源,UE采用固定接收波束接收和测量CSI-RS或SSB资源,以完成发送端波束测量过程。此外,如果gNB没有提供UE侧接收波束的辅助信息,UE可能需要轮巡接收波束,即用于波束管理的CSI-RS资源集合重复传输多次,UE分别使用不同的接收波束进行接收,从而实现接收波束的扫描。
图2示出了一种P-3波束管理过程的示意图。如图1所示,假设基站为gNB,在P-3波束管理过程中,gNB配置高层参数资源集NZP-CSI-RS-ResourceSet,每个资源集中包含多个采用相同发送波束传输的CSI-RS或SSB资源,UE采用不同接收波束接收和测量CSI-RS或SSB资源,以实现接收波束的扫描。此外,gNB可能需要轮巡发送波束,即配置多个采用不同发送波束传输的CSI-RS资源集合,来实现发送波束的扫描。
由于波束通常是从预先确定的模拟波束码本中选择的,因此,对码本中所有发射波束和接收波束进行穷尽扫描是一种最优的波束训练方案。然而,这可能会导致过高的训练开销、测量功耗和处理延时。
本申请提供的信令的发送、接收方法可以应用于各类无线通信系统中,例如长期演进(long term evolution,LTE)系统、第四代移动通信技术(4th-generation,4G)系统、第五代移动通信技术(5th-generation,5G)系统、LTE与5G混合架构系统、5G新无线电(New Radio,NR)系统、以及未来通信发展中出现的新的通信系统,如第六代移动通信技术(6th-generation,6G)系统等。图3示出了一实施例提供的一种无线通信系统的组网示意图。如图3所示,该无线通信系统包括终端设备110、接入网设备120和核心网设备130。
终端设备110可以是一种具有无线收发功能的设备,可以部署在陆地上(如室内或室外、手持、穿戴或车载等);也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星等)。一些终端设备110的举例为:UE、手机、移动台、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile  Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)等可以联网的用户设备,或虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等,或物联网中的物联网节点,或车联网中的车载通信装置,或娱乐、游戏设备或系统,或全球定位系统设备等。本申请的实施例对终端设备110所采用的技术和设备形态不做限定,另外,终端设备110可以简称终端。
接入网设备120是终端设备110通过无线方式接入到该无线通信系统中的接入设备,可以是基站(base station)、长期演进增强(Long Term Evolution Advanced,LTEA)中的演进型基站(evolved NodeB,eNB或eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的基站或gNB、未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、WIFI设备或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备、定位管理功能(Location Management Function,LMF)设备。也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对接入网设备所采用的技术和设备形态不做限定,另外,接入网设备可以简称基站。
核心网设备130可以包括接入与移动性管理网元和会话管理网元。示例性地,终端设备110可以通过接入网设备120接入核心网,从而实现数据传输。
在本申请实施例中,提供一种可运行于上述无线通信系统的信令的发送、接收方法,通信节点及存储介质,相比于传统的穷尽扫描方法,本申请只需要发送或测量部分时刻的波束,预测其他时刻的波束,从而减小在时域上的波束训练开销、提升波束对齐精度,在更小的波束训练开销情况下获得理想的波束赋形增益和频谱效率。
下面,对信令的发送方法、信令的接收方法,通信节点及其技术效果进行描述。
图4示出了一实施例提供的一种信令的发送方法的流程示意图,如图4所示,本实施例提供的方法适用于第一通信节点。在本示例中,第一通信节点(也可以称为第一通信节点设备)可以是基站,第二通信节点(也可以称为第二通 信节点设备)可以是终端设备。该方法包括。
S110、向第二通信节点发送第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息。
本申请实施例提供的方案应用在基于人工智能(Artificial Intelligence,AI)的波束管理方法中,涉及一套完整的波束扫描、测量和上报流程。
本申请通过第一通信节点和第二通信节点之间信令的传输,由第一通信节点或第二通信节点实现波束预测。在由第一通信节点实现波束预测时,第二通信节点上报的CSI信息以及时间戳信息为第二通信节点测量的CSI信息以及时间戳信息;在由第二通信节点实现波束预测时,第二通信节点上报的CSI信息以及时间戳信息为第二通信节点预测的CSI信息以及时间戳信息。
在一实施例中,信道状态信息(Channel state information,CSI)信息包括以下至少之一:参考信号接收功率(Reference Signal Receiving Power,RSRP)、信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、参考信号接收信号、信干噪比(Signal to Interference plus Noise Ratio,SINR)、信噪比(signal-to-noise ratio,SNR)。
在一实施例中,时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
以CSI信息包括RSRP为例,在本申请中,第一信令用于指示第二通信节点上报的RSRP可以为一个或多个时间戳上的最强RSRP,也可以为一个或多个时间戳上的强度位于前K位的RSRP,K≥2、且K为整数。
另外,第一信令还用于指示第二通信节点上报固定CRI或固定发送波束或固定发送接收波束对情况下的RSRP,以跟踪第二通信节点的移动轨迹,辅助AI预测。
S120、接收第二通信节点上报的CSI信息以及时间戳信息。
在一实施例中,在S120执行之前,第一通信节点还可以向第二通信节点发送第二信令,第二信令用于指示第二通信节点的接收波束保持不变。其目的在于:如果第二通信节点的接收波束发生改变,可能会导致第二通信节点上报的CSI信息以及时间戳信息失效。
在一实施例中,本申请上述实施例的共性在于一些时刻不需要发送CSI-RS资源。因此,对于半持续的(semi-persistent)CSI-RS资源或半持续的CSI上报,第一通信节点还可以向第二通信节点发送第三信令,第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一。
第三信令可以采用如下三种方式中的任一方式指示:
方式一:若激活周期和去激活周期为连续周期,则第三信令包括激活周期数M和去激活周期数N中的至少之一,N,M为正整数。
方式二:若激活周期和去激活周期为非连续周期,则第三信令采用位图(bitmap)指示。
方式三:若CSI-RS为非周期CSI-RS,则第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
在一实施例中,对于时域波束预测,本申请定义了一种新的信道状态信息参考信号资源集(CSI-RS resource set)类型:非周期性(aperiodic)、周期性(periodic)、半持久性(semi-persistent)的CSI-RS resource set的属性定义在资源子集层次。
资源子集内的配置参数包括以下至少之一:重复数量或重复因子(repetition)、偏置(offset)、bitmap。
图5示出了一实施例提供的一种信令的接收方法的流程示意图,如图5所示,本实施例提供的方法适用于第二通信节点。在本示例中,第一通信节点(也可以称为第一通信节点设备)可以是基站,第二通信节点(也可以称为第二通信节点设备)可以是终端设备。该方法包括。
S210、接收第一通信节点发送的第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息。
本申请实施例提供的方案应用在基于AI的波束管理方法中,涉及一套完整的波束扫描、测量和上报流程。
本申请通过第一通信节点和第二通信节点之间信令的传输,由第一通信节点或第二通信节点实现波束预测。在由第一通信节点实现波束预测时,第二通信节点上报的CSI信息以及时间戳信息为第二通信节点测量的CSI信息以及时间戳信息;在由第二通信节点实现波束预测时,第二通信节点上报的CSI信息以及时间戳信息为第二通信节点预测的CSI信息以及时间戳信息。
在一实施例中,CSI信息包括以下至少之一:RSRP、CRI、RSRQ、参考信号接收信号、SINR、SNR。
在一实施例中,时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
以CSI信息包括RSRP为例,在本申请中,第一信令用于指示第二通信节点上报的RSRP可以为一个或多个时间戳上的最强RSRP,也可以为一个或多个 时间戳上的强度位于前K位的RSRP,K≥2、且K为整数。
另外,第一信令还用于指示第二通信节点上报固定CRI或固定发送波束或固定发送接收波束对情况下的RSRP,以跟踪第二通信节点的移动轨迹,辅助AI预测。
S220、向第一通信节点上报CSI信息以及时间戳信息。
在一实施例中,在S220执行之前,第二通信节点还可以接收第一通信节点发送的第二信令,第二信令用于指示第二通信节点的接收波束保持不变。其目的在于:如果第二通信节点的接收波束发生改变,可能会导致第二通信节点上报的CSI信息以及时间戳信息失效。
在一实施例中,本申请上述实施例的共性在于一些时刻不需要发送CSI-RS资源。因此,对于半持续的CSI-RS资源或半持续的CSI上报,第二通信节点还可以接收第一通信节点发送的第三信令,第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一。
第三信令可以采用如下三种方式中的任一方式指示:
方式一:若激活周期和去激活周期为连续周期,则第三信令包括激活周期数M和去激活周期数N中的至少之一,N,M为正整数。
方式二:若激活周期和去激活周期为非连续周期,则第三信令采用位图(bitmap)指示。
方式三:若CSI-RS为非周期CSI-RS,则第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
在一实施例中,对于时域波束预测,本申请定义了一种新的CSI-RS resource set类型:非周期性、周期性、半持久性的CSI-RS resource set的属性定义在资源子集层次。
资源子集内的配置参数包括以下至少之一:重复数量或重复因子、offset、bitmap。
下面,罗列一些示例性实施方式,用于解释说明本申请上述实施例信令的发送方法、信令的接收方法,下述示例性实施方式可以单一执行,也可以组合执行。在下述示例性实施方式中,第一通信节点记为基站,第二通信节点记为UE。
在第一个示例性实施方式中,假设由基站实现基于AI的波束预测,对于CSI reporting setting,基站向UE发送第一信令,第一信令用于指示UE上报一 个或多个时间戳上的CSI信息以及时间戳信息。UE根据第一指令,向基站上报CSI信息以及时间戳信息,以减少上报次数。其中,CSI信息包括以下至少之一:RSRP、CRI、RSRQ、参考信号接收信号、SINR、SNR;时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
例如,图6示出了一实施例提供的一种波束预测示意图。如图6所示,假设周期CSI-RS的发送时隙索引为1,2,3,…(即周期为1),一个CSI-RS资源子集周期包括5个时隙索引,即CSI-RS子集周期的重复数量为5。基站指示UE上报时隙1,2,3上的CSI信息,故而UE向基站上报时隙1上的CSI信息(如CRI/RSRP)以及对应的时隙索引1、时隙2上的CSI信息(如CRI/RSRP)以及对应的时隙索引2,时隙3上的CSI信息(如CRI/RSRP)以及对应的时隙索引3,以使得基站据此预测时隙索引4,5的最优波束。
又例如,图7示出了一实施例提供的另一种波束预测示意图。如图7所示,假设周期CSI-RS的发送时隙索引为1,2,3,…(即周期为1),一个CSI-RS周期包括1个时隙索引。基站指示UE上报时隙1,3,5上的CSI信息,故而UE向基站上报时隙1上的CSI信息(如CRI/RSRP)以及对应的时隙索引1、时隙3上的CSI信息(如CRI/RSRP)以及对应的时隙索引3,时隙5上的CSI信息(如CRI/RSRP)以及对应的时隙索引5,以使得基站据此预测时隙索引6的最优波束。
或者,基站指示UE上报时隙3,5,7上的CSI信息,故而UE向基站上报时隙3上的CSI信息(如CRI/RSRP)以及对应的时隙索引3、时隙5上的CSI信息(如CRI/RSRP)以及对应的时隙索引5,时隙7上的CSI信息(如CRI/RSRP)以及对应的时隙索引7,以使得基站据此预测时隙索引8的最优波束。以此类推。
同理,假设由UE实现基于AI的波束预测,以图6所示的波束预测示意图为例,基站指示UE上报时隙4,5上的CSI信息,故而UE根据时隙1上的CSI信息(如CRI/RSRP)以及对应的时隙索引1、时隙2上的CSI信息(如CRI/RSRP)以及对应的时隙索引2,时隙3上的CSI信息(如CRI/RSRP)以及对应的时隙索引3,预测时隙索引4,5的最优波束。随后UE将预测得到的时隙4上的CSI信息(如CRI/RSRP)以及对应的时隙索引4、时隙5上的CSI信息(如CRI/RSRP)以及对应的时隙索引5上报给基站。
在一实施例中,UE上报的CRI/RSRP可以为一个或多个时间戳上的最强CRI/RSRP,也可以为一个或多个时间戳上的强度位于前K位的CRI/RSRP,K≥2、且K为整数。此外,UE还上报固定CRI或固定发送波束或固定发送接收波束对情况下的CRI/RSRP,以跟踪UE的移动轨迹,辅助AI预测。
在整个时域波束预测过程(多个测量周期)中,基站通过高层信令指示UE 接收波束保持不变。否则,可能导致上报的CRI/RSRP没有意义。
在第二个示例性实施方式中,结合第一个示例性实施方式可知,上述实施例的共性在于一些时刻不需要发送CSI-RS资源。由于基于循环神经网络(Recurrent Neural Network,RNN)的AI模型具有确定长度的输入输出,假设定义AI模型的输入为M个周期的最优波束索引,输出为未来N个周期的最优波束索引。因此,对于半持续的CSI-RS资源或半持续的CSI上报,基站还可以向UE发送第三信令,第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一,即指定媒体控制-控制单元(Media Access Control control element,MAC CE)激活周期和去激活周期中的至少之一。
第三信令可以采用如下三种方式中的任一方式指示:
1)若激活周期和去激活周期为连续周期,则第三信令包括激活周期数M和去激活周期数N中的至少之一,N,M为正整数。
在该方式中,第三信令包括激活周期数M和去激活周期数N中的至少之一,即激活M个周期后自动去激活;或者去激活N个周期后自动重新激活;或者激活M个周期后自动去激活N个周期(即激活一次时域波束预测过程)。
图8示出了一实施例提供的一种激活周期和去激活周期的示意图。如图8所示,假设周期CSI-RS的发送时隙索引为1,2,3,…(即周期为1),一个CSI-RS周期包括1个时隙索引。第三信令包括激活周期3和去激活周期2,即在一次波束预测过程中,激活3个CSI-RS资源集周期后自动去激活2个CSI-RS资源集周期,一次波束预测过程的周期为5个CSI-RS资源集周期。
2)若激活周期和去激活周期为非连续周期,则第三信令采用bitmap指示。
在该方式中,第三信令采用bitmap指示,即通过bitmap指示激活/去激活的pattern。示例性的,bitmap中的1表示激活,bitmap中的0表示去激活。
图9示出了一实施例提供的另一种激活周期和去激活周期的示意图。如图9所示,假设周期CSI-RS的发送时隙索引为1,2,3,…(即周期为1),一个CSI-RS周期包括1个时隙索引。第三信令的bitmap配置为10101,即在一次波束预测过程中,第1个、第3个和第5个CSI-RS资源集周期为激活周期,第2个和第4个CSI-RS资源集周期为去激活周期,一次波束预测过程的周期为5个CSI-RS资源集周期。
3)若CSI-RS为非周期CSI-RS,则第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
在该方式中,以图8为例,重复数量为3,UE可以根据此数量的CSI-RS资源集或CSI-RS资源,向基站上报CSI信息;或者,以图9为例,重复数量为5,bitmap配置为10101,UE可以结合重复数量5和bitmap 10101来配置CSI-RS资源集或CSI-RS资源;或者,以图9为例,重复数量也可以理解为3,即描述的是CSI-RS资源集或CSI-RS资源实际重复发送的次数,bitmap为10101。
在第三个示例性实施方式中,对于时域波束预测,本申请定义了一种新的CSI-RS resource set类型:非周期性、周期性、半持久性的CSI-RS resource set的属性定义在资源子集层次。
图10示出了一实施例提供的一种周期性CSI-RS资源的示意图,图11示出了一实施例提供的一种空域波束预测情况下的CSI-RS资源的示意图。结合图10和图11可知,与周期性CSI-RS资源相比,在空域波束预测情况下,可以根据每个时隙内测量的波束,预测该时隙内的空域波束。
对于时域波束预测情况下的CSI-RS资源:将ZP CSI-RS的非周期性、周期性、半持久性的属性定义在资源子集(resource subset)层次。图12示出了一实施例提供的一种时域波束预测情况下的CSI-RS资源子集的示意图。示例性的,以图12所示整个资源子集作为一个整体(即配置周期);同时,针对图12所示的整个资源子集合,配置参数:重复数量或重复因子、offset和bitmap。其中,offset指示了资源位置,bitmap为0表示该位置未发送参考信号资源,bitmap为1表示发送了参考信号资源。
例如,图12中将5个波束扫描的位置(前3个位置进行波束扫描,后2个位置不进行波束扫描)作为一个整体,repetition number为5,bitmap为11100,而offset参数则被定义在resource set层次,假定5个波束扫描的位置为连续的时隙,第1个CSI-RS resource set中的配置的offset为0,第2个CSI-RS resource set中的配置的offset为1,第3个CSI-RS resource set中的配置的offset为2。
在本申请中,还可以将空域波束预测和时域波束预测相结合,只在一些时刻发送采样波束以降低开销。图13示出了一实施例提供的一种空域波束预测和时域波束预测相结合的CSI-RS资源子集的示意图。在空域波束预测和时域波束预测相结合的情况下,可以采用第二级bitmap指示采样波束的位置(即历史波束测量的位置)。如图13所示,第一级bitmap为11100,对于图13中的第一次波束扫描,第二级bitmap为11111;对于第二次波束扫描,第二级bitmap为10101;对于第三次波束扫描,第二级bitmap为01110。
另外,对于CSI上报,将CSI上报的非周期性、周期性、半持久性属性定 义在resource subset层次,其原理与上述实施例中的描述类似,为了简洁,此处不再赘述。
图14示出了一实施例提供的一种信令的发送装置的结构示意图,该装置可以配置于第一通信节点中,如图14所示,该装置包括:发送模块10和接收模块11。
发送模块10,设置为向第二通信节点发送第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息;接收模块11,设置为接收第二通信节点上报的CSI信息以及时间戳信息。
本实施例提供的信令的发送装置为实现图4所示实施例的信令的发送方法,本实施例提供的信令的发送装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,CSI信息包括以下至少之一:参考信号接收功率RSRP、信道状态信息参考信号资源指示CRI、参考信号接收质量RSRQ、参考信号接收信号、信干噪比SINR、信噪比SNR。
在一实施例中,时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
在一实施例中,第一信令还用于指示第二通信节点上报固定CRI或固定发送波束或固定发送接收波束对情况下的RSRP。
在一实施例中,发送模块10,还设置为在接收模块11接收第二通信节点上报的CSI信息以及时间戳信息之前,向第二通信节点发送第二信令,第二信令用于指示第二通信节点的接收波束保持不变。
在一实施例中,对于半持续的信道状态信息参考信号CSI-RS资源或半持续的CSI上报,发送模块10,还设置为向第二通信节点发送第三信令,第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一。
在一实施例中,第三信令采用如下任一方式指示:
若激活周期和去激活周期为连续周期,则第三信令包括激活周期数M和去激活周期数N中的至少之一,N,M为正整数;若激活周期和去激活周期为非连续周期,则第三信令采用位图bitmap指示;若CSI-RS为非周期CSI-RS,则第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
在一实施例中,对于时域波束预测,非周期性、周期性、半持久性的信道 状态信息参考信号资源集CSI-RS resource set的属性定义在资源子集层次。
在一实施例中,资源子集内的配置参数,包括以下至少之一:重复数量或重复因子、偏置offset、bitmap。
图15示出了一实施例提供的一种信令的接收装置的结构示意图,该装置可以配置于第二通信节点中,如图15所示,该装置包括:接收模块20和发送模块21。
接收模块20,设置为接收第一通信节点发送的第一信令,第一信令用于指示第二通信节点上报一个或多个时间戳上的信道状态信息CSI信息以及时间戳信息;发送模块21,设置为向第一通信节点上报CSI信息以及时间戳信息。
本实施例提供的信令的接收装置为实现图5所示实施例的信令的接收方法,本实施例提供的信令的接收装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,CSI信息包括以下至少之一:参考信号接收功率RSRP、信道状态信息参考信号资源指示CRI、参考信号接收质量RSRQ、参考信号接收信号、信干噪比SINR、信噪比SNR。
在一实施例中,时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
在一实施例中,第一信令还用于指示第二通信节点上报固定CRI或固定发送波束或固定发送接收波束对情况下的RSRP。
在一实施例中,接收模块20,还设置为在发送模块21向第一通信节点上报CSI信息以及时间戳信息之前,接收第一通信节点发送的第二信令,第二信令用于指示第二通信节点的接收波束保持不变。
在一实施例中,对于半持续的信道状态信息参考信号CSI-RS资源或半持续的CSI上报,接收模块20,还设置为接收第一通信节点发送的第三信令,第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一。
在一实施例中,第三信令采用如下任一方式指示:
若激活周期和去激活周期为连续周期,则第三信令包括激活周期数M和去激活周期数N中的至少之一,N,M为正整数;若激活周期和去激活周期为非连续周期,则第三信令采用位图bitmap指示;若CSI-RS为非周期CSI-RS,则第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
在一实施例中,对于时域波束预测,非周期性、周期性、半持久性的信道 状态信息参考信号资源集CSI-RS resource set的属性定义在资源子集层次。
在一实施例中,资源子集内的配置参数,包括以下至少之一:重复数量或重复因子、偏置offset、bitmap。
本申请实施例还提供了一种通信节点,包括:处理器,处理器用于在执行计算机程序时实现如本申请任意实施例所提供的方法。通信节点可以为本申请任意实施例所提供的接入网设备或者终端设备,本申请对此不作限制。
示例性的,下述实施例分别提供一种通信节点为基站和UE的结构示意图。
图16示出了一实施例提供的一种基站的结构示意图,如图16所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是一个或多个,图16中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图16中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、网络、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
图17示出了一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置、车载终端设备、车载显示终端、车载电子后视镜等等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等等的固定终端设备。
如图17所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等等。图17示出了包括多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。
本实施例中,无线通信单元51允许UE 50与基站或网络之间的无线电通信。A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等等,并且生成用于控制UE 50的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视觉、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于 只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (20)

  1. 一种信令的发送方法,应用于第一通信节点,包括:
    向第二通信节点发送第一信令,所述第一信令用于指示所述第二通信节点上报至少一个时间戳上的信道状态信息CSI信息以及时间戳信息;
    接收所述第二通信节点上报的所述CSI信息以及所述时间戳信息。
  2. 根据权利要求1所述的方法,其中,所述CSI信息包括以下至少之一:参考信号接收功率RSRP、信道状态信息参考信号资源指示CRI、参考信号接收质量RSRQ、参考信号接收信号、信干噪比SINR、信噪比SNR。
  3. 根据权利要求1所述的方法,其中,所述时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
  4. 根据权利要求1所述的方法,其中,所述第一信令还用于指示所述第二通信节点上报固定CRI或固定发送波束或固定发送接收波束对情况下的RSRP。
  5. 根据权利要求1所述的方法,在所述接收所述第二通信节点上报的所述CSI信息以及所述时间戳信息之前,还包括:
    向所述第二通信节点发送第二信令,所述第二信令用于指示所述第二通信节点的接收波束保持不变。
  6. 根据权利要求1所述的方法,对于半持续的信道状态信息参考信号CSI-RS资源或半持续的CSI上报,所述方法还包括:
    向所述第二通信节点发送第三信令,所述第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一。
  7. 根据权利要求6所述的方法,其中,所述第三信令采用如下一方式指示:
    在所述激活周期和所述去激活周期为连续周期的情况下,所述第三信令包括激活周期数M和去激活周期数N中的至少之一,N和M为正整数;
    在所述激活周期和所述去激活周期为非连续周期的情况下,所述第三信令采用bitmap指示;
    在CSI-RS为非周期CSI-RS的情况下,所述第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
  8. 根据权利要求1所述的方法,其中,对于时域波束预测,非周期性、周期性、半持久性的CSI-RS resource set的属性定义在资源子集层次。
  9. 根据权利要求8所述的方法,其中,所述资源子集内的配置参数,包括以下至少之一:重复数量或重复因子、offset、bitmap。
  10. 一种信令的接收方法,应用于第二通信节点,包括:
    接收第一通信节点发送的第一信令,所述第一信令用于指示所述第二通信节点上报至少一个时间戳上的信道状态信息CSI信息以及时间戳信息;
    向所述第一通信节点上报所述CSI信息以及所述时间戳信息。
  11. 根据权利要求10所述的方法,其中,所述CSI信息包括以下至少之一:参考信号接收功率RSRP、信道状态信息参考信号资源指示CRI、参考信号接收质量RSRQ、参考信号接收信号、信干噪比SINR、信噪比SNR。
  12. 根据权利要求10所述的方法,其中,所述时间戳信息包括以下至少之一:时隙索引或时隙编号、子帧索引或子帧编号、符号索引或符号编号。
  13. 根据权利要求10所述的方法,其中,所述第一信令还用于指示所述第二通信节点上报固定CRI或固定发送波束或固定发送接收波束对情况下的RSRP。
  14. 根据权利要求10所述的方法,在所述向所述第一通信节点上报所述CSI信息以及所述时间戳信息之前,还包括:
    接收所述第一通信节点发送的第二信令,所述第二信令用于指示所述第二通信节点的接收波束保持不变。
  15. 根据权利要求10所述的方法,对于半持续的信道状态信息参考信号CSI-RS资源或半持续的CSI上报,所述方法还包括:
    接收所述第一通信节点发送的第三信令,所述第三信令用于指示一次波束预测过程中的激活周期和去激活周期中的至少之一。
  16. 根据权利要求15所述的方法,其中,所述第三信令采用如下一方式指示:
    在所述激活周期和所述去激活周期为连续周期的情况下,所述第三信令包括激活周期数M和去激活周期数N中的至少之一,N和M为正整数;
    在所述激活周期和所述去激活周期为非连续周期的情况下,所述第三信令采用bitmap指示;
    在CSI-RS为非周期CSI-RS的情况下,所述第三信令包括配置CSI-RS资源集或CSI-RS资源的重复数量和bitmap中的至少之一。
  17. 根据权利要求10所述的方法,其中,对于时域波束预测,非周期性、周期性、半持久性的CSI-RS resource set的属性定义在资源子集层次。
  18. 根据权利要求17所述的方法,其中,所述资源子集内的配置参数,包 括以下至少之一:重复数量或重复因子、offset、bitmap。
  19. 一种通信节点,包括:处理器;所述处理器设置为在执行计算机程序时实现如权利要求1-9中任一所述的信令的发送方法;或者实现如权利要求10-18中任一所述的信令的接收方法。
  20. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-9中任一所述的信令的发送方法;或者实现如权利要求10-18中任一所述的信令的接收方法。
PCT/CN2023/082841 2022-04-28 2023-03-21 信令的发送方法、信令的接收方法、通信节点及存储介质 WO2023207435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210471316.3A CN117042133A (zh) 2022-04-28 2022-04-28 一种信令的发送、接收方法,通信节点及存储介质
CN202210471316.3 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207435A1 true WO2023207435A1 (zh) 2023-11-02

Family

ID=88517303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082841 WO2023207435A1 (zh) 2022-04-28 2023-03-21 信令的发送方法、信令的接收方法、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN117042133A (zh)
WO (1) WO2023207435A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155672A (zh) * 2010-10-05 2013-06-12 诺基亚西门子网络公司 信道状态信息测量和报告
CN104519515A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 上下行配置信息通知、获取方法,基站和用户设备
WO2017084235A1 (en) * 2015-11-16 2017-05-26 Intel IP Corporation Beamformed csi‐rs based measurement framework
US20180288715A1 (en) * 2015-10-26 2018-10-04 Intel IP Corporation Distinguishing subframes in a downlink transmission burst
CN109845311A (zh) * 2016-09-30 2019-06-04 高通股份有限公司 针对动态mimo传输的信道状态信息(csi)捕获
CN109906661A (zh) * 2016-09-23 2019-06-18 三星电子株式会社 用于无线系统中的随机接入的方法和装置
US20200313831A1 (en) * 2019-03-29 2020-10-01 Samsung Electronics Co., Ltd. Method and apparatus for measuring and reporting channel state in wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155672A (zh) * 2010-10-05 2013-06-12 诺基亚西门子网络公司 信道状态信息测量和报告
CN104519515A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 上下行配置信息通知、获取方法,基站和用户设备
US20180288715A1 (en) * 2015-10-26 2018-10-04 Intel IP Corporation Distinguishing subframes in a downlink transmission burst
WO2017084235A1 (en) * 2015-11-16 2017-05-26 Intel IP Corporation Beamformed csi‐rs based measurement framework
CN109906661A (zh) * 2016-09-23 2019-06-18 三星电子株式会社 用于无线系统中的随机接入的方法和装置
CN109845311A (zh) * 2016-09-30 2019-06-04 高通股份有限公司 针对动态mimo传输的信道状态信息(csi)捕获
US20200313831A1 (en) * 2019-03-29 2020-10-01 Samsung Electronics Co., Ltd. Method and apparatus for measuring and reporting channel state in wireless communication system

Also Published As

Publication number Publication date
CN117042133A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
TW202025811A (zh) 層一參考訊號接收功率測量方法及其使用者設備
CN113545119B (zh) 具有功率节省功能的波束管理电子设备和方法
EP3970277A1 (en) Managing multiple antenna panels for user equipment within wireless networks
CN108347766B (zh) 一种上行移动性下的寻呼传输方法、通信站点及通信节点
US20230354117A1 (en) Cell handover method and apparatus
US20230180280A1 (en) Link switching method in sidelink communication and apparatus
WO2023197226A1 (zh) 波束选择方法和装置
US20240030994A1 (en) Beam switching method and apparatus
WO2021146966A1 (zh) 通信方法及装置
US20220124669A1 (en) Communication method and apparatus, device, system, and storage medium
WO2022077387A1 (zh) 一种通信方法及通信装置
EP4002912A1 (en) Beam failure recovery method and device
WO2024001713A1 (zh) 信息发送方法,通信节点及存储介质
WO2023207435A1 (zh) 信令的发送方法、信令的接收方法、通信节点及存储介质
WO2017041718A1 (zh) 一种数据传输方法、设备和系统
WO2023116335A1 (zh) 一种通信方法及装置
US20220361121A1 (en) Method for Beam Scanning
WO2023133761A1 (zh) Csi报告的发送方法、接收方法、装置、设备及介质
JP2023502560A (ja) チャネル品質測定に用いられる方法、及びデバイス
WO2024011469A1 (en) Methods for communication, terminal device, network device and computer readable medium
WO2023207822A1 (zh) 通信方法、设备和存储介质
WO2024027473A1 (zh) 信息上报方法、装置、通信节点及存储介质
WO2024041362A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
US20220337971A1 (en) Signalling for positioning latency control
JP2019531635A (ja) ビームをトレーニングする方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794870

Country of ref document: EP

Kind code of ref document: A1