WO2023207425A1 - 一种激光雷达和激光扫描方法 - Google Patents

一种激光雷达和激光扫描方法 Download PDF

Info

Publication number
WO2023207425A1
WO2023207425A1 PCT/CN2023/082642 CN2023082642W WO2023207425A1 WO 2023207425 A1 WO2023207425 A1 WO 2023207425A1 CN 2023082642 W CN2023082642 W CN 2023082642W WO 2023207425 A1 WO2023207425 A1 WO 2023207425A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
module
light beam
beam splitting
beams
Prior art date
Application number
PCT/CN2023/082642
Other languages
English (en)
French (fr)
Inventor
吴佳豪
高红彪
曾理
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207425A1 publication Critical patent/WO2023207425A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present application relates to the field of optical transmission, and in particular to a laser radar and laser scanning method.
  • Lidar is a ranging system.
  • the pulsed light signal emitted by the laser is collimated and shaped by a collimator and then illuminated on the MEMS micromirror.
  • the MEMS micromirror scans through rotation to emit light signals to the surrounding detection targets to complete the detection of the surrounding environment.
  • the scanning light is received by the detector through the receiving lens after being reflected by the detection target.
  • lidar At present, the optical turning angle of conventional MEMS micromirror devices is small and cannot meet the large field of view requirement of lidar.
  • some application scenarios of lidar have different requirements for ranging capabilities in different directions. For example, in automotive radar, it is usually required to have long ranging capabilities in the front and short ranging capabilities in other directions.
  • the system performance of current lidar cannot meet the flexible requirements for ranging capabilities, and its applicable scenarios are relatively limited.
  • Embodiments of the present application provide a lidar and a laser scanning method.
  • the lidar can flexibly adjust the measurement distances of different scanning fields of view according to actual needs, expanding the application scenarios of the lidar.
  • a lidar in a first aspect, embodiments of the present application provide a lidar.
  • the lidar includes: N laser transmitting modules, light beam splitting modules, optical components, scanning modules and detection modules.
  • the N laser emitting modules are respectively used to emit N lasers to the optical beam splitting module.
  • the optical beam splitting module is used to split N laser beams to obtain M beams, and adjust the power of the M beams respectively, where M>N.
  • the optical component is used to guide M beams to the scanning module respectively.
  • the scanning module is used to adjust the deflection directions of the M beams respectively, and output the M beams with the deflection directions adjusted.
  • the light beam reflected by the detection object is directed to the detection module through the scanning module and the optical component.
  • the detection module is used to detect the light beam reflected by the detection object.
  • the optical beam splitting module splits the laser light emitted by the laser emission module to obtain multiple beams, and can adjust the power of each beam after splitting. Therefore, the lidar provided by this application can form multiple scanning fields of view, and different scanning fields of view can cover different measurement distances. In other words, the lidar provided by this application can flexibly adjust the measurement distances of different scanning fields of view according to actual needs, expanding the application scenarios of lidar.
  • the optical beam splitting module includes at least M optical beam splitting elements.
  • Each of the N lasers passes through at least one optical beam splitting element.
  • Each optical beam splitting element is used to split the incident light. and adjust the power of each beam after splitting.
  • the M beams include one beam after splitting by each of the M optical beam splitting elements.
  • a specific implementation method of the light beam splitting module is provided. The power of the corresponding beam can be adjusted through each light beam splitting element, and the implementation method is more flexible.
  • the lidar also includes an electronic control unit.
  • the electronic control unit is used to adjust the transmittance and reflectivity of each light splitting element to adjust the power of each beam after splitting.
  • the electronic control unit can control the transmittance and reflectivity of the light splitting element in real time by adjusting the current or voltage loaded on the light splitting element, thereby dynamically adjusting the power ratio of each beam after splitting, which enhances the The feasibility of the plan.
  • the light beam splitting module includes a prism module, and the light beam splitting element is disposed between every two adjacent prisms in the prism module.
  • the light beam splitting element splits the incident light by reflecting and/or transmitting the incident light.
  • a specific implementation of the light beam splitting module is provided, which enhances the practicability of this solution.
  • the N laser emission modules include a first laser emission module and a second laser emission module.
  • the first laser emission module and the second laser emission module are respectively located on both sides of the optical beam splitting module.
  • the optical beam splitting module includes a plurality of first light beam splitting elements and a plurality of second light beam splitting elements.
  • the first laser emitting module is used to emit the first laser to the light beam splitting module, and the first laser is injected into a plurality of first light beam splitting elements in sequence.
  • Each first light beam splitting element is used to split the incident light to obtain multiple first light beams, and guide the multiple first light beams to the optical component.
  • the second laser emitting module is used to emit a second laser to the light beam splitting module, and the second laser passes through a plurality of second light beam splitting elements in sequence.
  • a plurality of second light beam splitting elements are used to change the transmission direction of the second laser light to guide the second laser light to the optical component.
  • the lidar further includes a photosynthetic beam module
  • the N laser emitting modules include a first laser emitting module and a second laser emitting module.
  • the light beam splitting module includes K first light beam splitting elements and K second light beam splitting elements, where K is an integer greater than 1.
  • the first laser emitting module is used to emit the first laser to the light beam splitting module, and the first laser passes through the K first light beam splitting elements in sequence.
  • Each first light beam splitting element is used to split the incident light to obtain K first light beams, and guide the K first light beams to the optical beam combining module.
  • the second laser emitting module is used to emit the second laser to the light beam splitting module, and the second laser passes through the K second light beam splitting elements in sequence.
  • Each second light beam splitting element is used to split the incident light to obtain K second light beams, and guide the K second light beams to the optical beam combining module.
  • the optical beam combining module is used to combine K-channel first beams and K-channel second beams to obtain K-channel combined beams, and guide the K-channel combined beams to the optical component.
  • the power of each output beam can be further flexibly configured through the photosynthetic beam module, so that it can be applied to more scene requirements.
  • the polarization state of the first laser is different from the polarization state of the second laser, or the wavelength of the first laser is different from the wavelength of the second laser.
  • wavelength combining or polarization combining may be adopted, which improves the scalability of this solution.
  • the polarization state of the first laser light and the polarization state of the second laser light are the same, and the light combining module further includes a polarization conversion element.
  • the polarization conversion element is used to convert the polarization state of each first light beam or the polarization state of each second light beam, so that the polarization state of the first light beam is different from the polarization state of the second light beam.
  • the polarization conversion element is provided in the light combining module, two laser emission modules with the same specifications can be used, which has better practicability.
  • the lidar also includes a controller.
  • the controller is used to control the first laser emitting module and the second laser emitting module to emit laser simultaneously.
  • the controller is used to control the first laser emitting module and the second laser emitting module to emit lasers in turn.
  • high power or high repetition frequency mode can be achieved to meet the requirements of lidar for high repetition frequency and high power in different scenarios.
  • the target laser emitted by at least one laser emitting module to the optical beam splitting module includes multiple wavelengths, and the wavelengths of the two beams obtained after splitting the target laser by at least one light beam splitting element are different.
  • the integration of laser emission modules of different wavelengths in the lidar is achieved.
  • the wavelengths of the beams emitted in different directions after splitting can be flexibly selected, which can better adapt to different scenarios. need.
  • At least two of the M beams guided to the scanning module through the optical assembly have overlapping areas on the scanning module, so that at least two of the M beams emitted from the scanning module are scanned.
  • the fields of view have overlapping areas. It should be understood that overlapping multiple scanning fields of view can increase the density of the point cloud, thereby improving the resolution of the lidar.
  • the scanning module includes M scanners, and the M scanners are respectively used to adjust the deflection directions and/or scanning fields of view of the M beams.
  • Multiple scanners can flexibly adjust the deflection directions and/or scanning fields of different beams to adapt to different scene requirements. For example, the point cloud density is increased by overlapping multiple scanning fields of view to improve resolution.
  • the laser emission module includes a fiber laser, a lens support base, a sleeve, a collimating lens, and a housing.
  • the fiber laser is disposed in the housing, the lens support base is installed on the housing, and the lens support base is used to adjust and The position of the collimating lens is fixed.
  • the optical fiber of the fiber laser is coupled to the collimating lens.
  • the sleeve is used to wrap the collimating lens.
  • the collimating lens is used to collimate the laser beam output by the fiber laser.
  • the integrated design of the fiber laser and the collimating lens can prevent the pigtail of the fiber laser from being exposed outside the laser, which reduces the difficulty of system assembly and adjustment of the lidar, improves the integration of the whole machine, and further improves the laser The reliability of the radar machine.
  • the optical component includes M reflective elements, and the M reflective elements are respectively used to reflect M beams to the scanning module, which improves the flexibility of this solution.
  • the types of light splitting elements include light splitting films, liquid crystals, and electrochromic glass, making the implementation of this solution more flexible.
  • the types of scanning modules include Micro-Electro-Mechanical System (MEMS) micromirrors and rotating mirrors, making the implementation of this solution more flexible.
  • MEMS Micro-Electro-Mechanical System
  • embodiments of the present application provide a laser scanning method.
  • This method is used for lidar, which includes: N laser emission modules, light beam splitting modules, optical components, scanning modules and detection modules, where N is an integer greater than or equal to 1.
  • the method includes: respectively emitting N lasers to the optical beam splitting module through the N laser emitting modules.
  • the optical beam splitting module splits the N laser beams to obtain M beams, and adjusts the power of the M beams respectively, wherein the M is greater than the N.
  • the M beams are respectively guided to the scanning module through the optical assembly.
  • the deflection directions of the M beams are respectively adjusted through the scanning module, and the M beams with the adjusted deflection directions are output.
  • the beams reflected by the detection object are guided to the target through the scanning module and the optical component in turn. Described detection module.
  • the light beam reflected by the detection object is detected by the detection module.
  • the light beam splitting module includes at least M light beam splitting elements.
  • Each of the N lasers will pass through at least one light beam splitting element.
  • Each of the light beam splitting elements is After splitting the incident light and adjusting the power of each beam after splitting, the M beams include one beam split by each of the M light beam splitting elements.
  • the lidar further includes an electronic control unit
  • the method further includes: adjusting the transmittance and reflectivity of each of the light beam splitting elements through the electronic control unit to adjust each path after beam splitting. The power of the beam.
  • the lidar further includes a photosynthetic beam module
  • the N laser emission modules include It includes a first laser emitting module and a second laser emitting module
  • the light beam splitting module includes K first light beam splitting elements and K second light beam splitting elements, where K is an integer greater than 1.
  • the method further includes: emitting a first laser to the light beam splitting module through the first laser emitting module, and the first laser passes through the K first light beam splitting elements in sequence.
  • the incident light is split by each of the first light beam splitting elements to obtain K first light beams, and the K first light beams are directed to the optical beam combining module.
  • the second laser is emitted to the light beam splitting module through the second laser emitting module, and the second laser passes through the K second light beam splitting elements in sequence.
  • the incident light is split by each of the second light beam splitting elements to obtain K second light beams, and the K second light beams are guided to the optical beam combining module.
  • the K-channel first beams and the K-channel second beams are combined by the optical beam combining module to obtain K-channel combined beams, and the K-channel combined beams are guided to the optical component.
  • the polarization state of the first laser is different from the polarization state of the second laser, or the wavelength of the first laser is different from the wavelength of the second laser.
  • the polarization state of the first laser light and the polarization state of the second laser light are the same, and the light combining module further includes a polarization conversion element.
  • the method further includes: converting the polarization state of each first light beam or the polarization state of each second light beam through a polarization conversion element, so that the polarization state of the first light beam is different from the polarization state of the second light beam.
  • the lidar further includes a controller
  • the method further includes: controlling the first laser emitting module and the second laser emitting module to emit laser simultaneously through the controller.
  • the controller controls the first laser emitting module and the second laser emitting module to emit lasers in turns.
  • the optical beam splitting module splits the laser light emitted by the laser emission module to obtain multiple beams, and can adjust the power of each beam after splitting. Therefore, the lidar provided by this application can form multiple scanning fields of view, and different scanning fields of view can cover different measurement distances. In other words, the lidar provided by this application can flexibly adjust the measurement distances of different scanning fields of view according to actual needs, expanding the application scenarios of lidar.
  • Figure 1 is a schematic diagram of the system architecture of lidar in the embodiment of the present application.
  • Figure 2 is a schematic diagram of the point cloud density of the overlapping scanning fields of view in the embodiment of the present application
  • Figure 3(a) is a first schematic diagram of the scanning field of view configuration scheme in the embodiment of the present application.
  • Figure 3(b) is a second schematic diagram of the scanning field of view configuration scheme in the embodiment of the present application.
  • Figure 3(c) is a third schematic diagram of the scanning field of view configuration scheme in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the lidar in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the detection module in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an optical component in an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a scanning module in an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a laser emitting module in an embodiment of the present application.
  • Figure 9 is a first structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a light beam splitting element in an embodiment of the present application.
  • Figure 11 is a second structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • Figure 12 is a third structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • Figure 13 is a structural schematic diagram of the optical path folding assembly in the embodiment of the present application.
  • Figure 14 is a fourth structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of the photo-synthetic beam module in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the controller controlling two laser emission modules in the embodiment of the present application.
  • Figure 17 is a schematic diagram of an embodiment of the laser scanning method in this application.
  • This application provides a lidar and a laser scanning method.
  • the lidar can flexibly adjust the measurement distances of different scanning fields of view according to actual needs, expanding the application scenarios of the lidar.
  • this lidar can be used as a car radar, which can flexibly configure the ranging capabilities of the car in different directions.
  • FIG. 1 is a schematic diagram of the system architecture of lidar in an embodiment of the present application.
  • the lidar includes: N laser emission modules 10 , a beam splitting module 20 , an optical component 30 and a scanning module 40 .
  • N is an integer greater than or equal to 1.
  • the N laser emitting modules 10 are respectively used to emit N lasers to the optical beam splitting module 20 .
  • the optical beam splitting module 20 is used to split the laser beam to obtain M beams, and adjust the power of the M beams respectively, where M>N.
  • the optical component 30 is used to guide M beams to the scanning module 40 respectively.
  • the scanning module 40 is used to adjust the deflection directions of the M beams respectively, and output the M beams with the deflection directions adjusted.
  • the M beams output by the lidar can form multiple scanning fields of view, thereby splicing them together to form a large field of view.
  • lidar can flexibly adjust the power of each output beam, different measurement distances can be configured for different scanning fields of view according to actual needs, expanding the application scenarios of lidar.
  • FIG. 2 is a schematic diagram of the point cloud density of the overlapping scanning fields of view in the embodiment of the present application. As shown in Figure 2, in a scene with overlapping scanning fields of view, the point cloud density is higher than that in a scene without overlapping scanning fields of view, and its resolution is also higher than in a scene without overlapping scanning fields of view. resolution.
  • lidar as an example for automotive radar to introduce several possible scanning field of view configuration schemes.
  • FIG 3(a) is a first schematic diagram of the scanning field of view configuration scheme in the embodiment of the present application.
  • the lidar can be installed at the front air intake grille, and its scanning field of view is composed of five groups of sub-scanning fields of view.
  • the central scanning field of view (scanning field of view 3) is a long-distance field of view, which meets the long-distance ranging requirements of lidar, and the remaining fields of view (scanning field of view 1, scanning field of view 2, scanning field of view 4, and scanning field of view 5)
  • It is a short-range field of view, which mainly meets the blind ranging requirements of lidar.
  • Five groups of fields of view are spliced together to form a large field of view, which simultaneously meets the long-distance and large field of view requirements of lidar.
  • FIG 3(b) is a second schematic diagram of the scanning field of view configuration scheme in the embodiment of the present application.
  • two lidars can be installed at the car lights on both sides.
  • the scanning field of view of each lidar is composed of 5 groups of sub-scanning fields.
  • the central scanning field of view (scanning field of view 5 of the left lidar and scanning field of view 1 of the right lidar) is a long-distance field of view, which meets the long-distance ranging requirements of the lidar, and the central scanning field of view has overlapping area, the overlapping area has higher resolution.
  • the remaining fields of view (scanning field of view 1-4) of the two lidars are short-range fields of view, which mainly meet the requirements of lidar blind ranging.
  • 10 groups of field of view splicing jointly form a large field of view. Through field of view splicing, the two groups of lidars on the left and right can simultaneously meet the long-distance and large field of view requirements of lidar, and can also achieve the high-resolution design requirements of the center field of view.
  • Figure 3(c) is a third schematic diagram of the scanning field of view configuration scheme in the embodiment of the present application.
  • the lidar can be installed at the front air intake grille.
  • Its scanning field of view is composed of three sub-scanning fields of view (fields of view 1-3). The three fields of view intersect with each other. Overlay, the resolution of the central overlap area can be 3 times that of a single field of view.
  • FIG 4 is a schematic structural diagram of a laser radar in an embodiment of the present application.
  • the lidar may include two laser transmitting modules 10, and the two laser transmitting modules 10 are placed on both sides of the lidar.
  • the optical beam splitting module 20 is located between the two laser emitting modules 10 , and the lasers emitted by the two laser emitting modules 10 are directed towards the optical beam splitting module 20 .
  • the optical component 30 may include M reflective elements, and the M light beams output by the light beam splitting module 20 are respectively directed to the M reflective elements. Each reflective element is used to reflect the incident light beam to the scanning module 40 .
  • the scanning module 40 emits the input M beams into the space through rotation to form a spliced field of view.
  • the lidar also includes a detection module 50. The light beam emitted by the lidar can be transmitted to the detection module 50 after being reflected by the detection object. The detection module 50 is used to detect the reflected light beam to complete functions such as radar ranging.
  • FIG. 5 is a schematic structural diagram of the detection module in the embodiment of the present application.
  • the light beam emitted by the scanning module 40 hits the detection object, and the light beam 507 reflected back to the scanning module 40 passes through the optical component 30 and returns to the original path.
  • Part of the light beam passes through the reflecting mirror 501, the receiving lens 502, and the receiving lens in sequence.
  • the lens 503 and the filter 504 finally converge on the detection module 50 .
  • it can be covered by a metal shield 506 .
  • FIG. 6 is a schematic structural diagram of an optical component in an embodiment of the present application.
  • the optical component may be composed of M reflective elements, for example, reflective element 306 - reflective element 310 , a total of 5 reflective elements.
  • the five beams (301-305) split by the light beam splitting module 20 are respectively incident on the five reflective elements (306-310), and are uniformly converged on the scanning module 40 through reflection.
  • the scanning module 40 is specifically a device that can adjust beam deflection, including but not limited to Micro-Electro-Mechanical System (MEMS) micromirrors and rotating mirrors.
  • MEMS Micro-Electro-Mechanical System
  • FIG. 7 is a schematic structural diagram of a scanning module in an embodiment of the present application.
  • the scanning module includes M scanners.
  • the M beams split by the light beam splitting module 20 are respectively incident on M scanners.
  • Multiple scanners can flexibly adjust the deflection directions and/or scanning fields of different beams to adapt to different scene requirements. For example, the point cloud density is increased by overlapping multiple scanning fields of view to improve resolution.
  • FIG 8 is a schematic structural diagram of a laser emitting module in an embodiment of the present application.
  • the laser emission module includes a fiber laser 101, a lens support 102, a sleeve 103, a collimating lens 104 and a housing 105.
  • Fiber laser 101 is disposed within housing 105 .
  • the lens support base 102 is installed on the housing 105.
  • the lens support base 102 is used to adjust and fix the position of the collimating lens, so as to adjust the angle of the light beam emitted from the collimating lens 104.
  • the optical fiber of the fiber laser 101 is coupled to the collimating lens 104, and the sleeve 103 is used to wrap the collimating lens 104.
  • the collimating lens 104 is used to collimate the laser beam output by the fiber laser 101 .
  • the integrated design of fiber laser and collimating lens can make the light
  • the pigtail of the fiber laser will not be exposed outside the laser, which reduces the difficulty of system assembly and adjustment of the laser radar, improves the integration of the entire machine, and further improves the reliability of the entire laser radar machine.
  • FIG. 9 is a first structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • the light beam splitting module 20 includes at least M light beam splitting elements.
  • Each of the N lasers emitted by the N laser emitting modules 10 will pass through at least one optical beam splitting element.
  • Each light beam splitting element is used to split the incident light and adjust the power of each beam after splitting.
  • the M beams output by the optical beam splitting module include one beam split by each of the M optical beam splitting elements.
  • the incident laser will pass through each light beam splitting element in sequence, and it will be split once every time it passes through a light beam splitting element, which is equivalent to a power distribution every time the incident laser passes through a light beam splitting element.
  • the light beam splitting module 20 includes a prism module as shown in FIG. 9 , and the prism module is composed of multiple prisms.
  • the light splitting element is arranged between every two adjacent prisms.
  • the light beam splitting element can reflect and/or transmit the incident light to split the incident light.
  • the light beam reflected by the light beam splitting element is directed to the optical component 30
  • the light beam transmitted by the light beam splitting element is directed to another adjacent light beam splitting element.
  • the light beam splitting element can flexibly adjust the power ratio of the reflected beam and the transmitted beam.
  • some light beam splitting components can also perform total reflection or total transmission of the incident light according to actual needs, and the details are not limited here.
  • FIG. 10 is a schematic structural diagram of a light beam splitting element in an embodiment of the present application.
  • the incident light beam 1201 is incident on the light beam splitting element 1202 , part of the light beam passes through the light beam splitting element 1202 to form a reflected light beam 1203 , and part of the light beam passes through the light beam splitting element 1202 to form a transmitted light beam 1205 .
  • Both ends of the light beam splitting element 1202 may be connected to the electronic control unit 1204.
  • the transmittance and reflectivity of each light beam splitting element can be adjusted through the electronic control unit 1204 to adjust the power of each beam after splitting.
  • the electronic control unit 1204 can adjust the current or voltage loaded on the light beam splitting element 1202 to control the transmittance and reflectivity of the light beam splitting element 1202 in real time, so that the power ratio of the light beam 1203 and the light beam 1205 can be dynamically adjusted.
  • the types of light splitting elements include but are not limited to light splitting films, liquid crystals, electrochromic glass, etc.
  • FIG. 11 is a second structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • the laser light emitted by the laser emission module 10 to the optical beam splitting module 20 includes multiple wavelengths.
  • the light beam splitting elements in the light beam splitting module 20 can also split light of different wavelengths.
  • the laser 1001 input to the light beam splitting module 20 includes two different wavelengths ⁇ 1 and ⁇ 2.
  • the light beam splitting element 901 is used to reflect the light beam 1101 with the wavelength ⁇ 1 and transmit the light beam with the wavelength ⁇ 2 to the light beam splitting element 902 .
  • the following light beam splitting elements (902-905) reflect and transmit light beams (1102-1105) with wavelength ⁇ 2.
  • the laser 1001 may also include five different wavelengths.
  • the laser 1001 passes through the light beam splitting elements 901-905 in sequence.
  • the five light beam splitting elements are respectively used to reflect light of different wavelengths.
  • by adding wavelength splitting the integration of laser emission modules of different wavelengths in the lidar is achieved.
  • the wavelengths of the beams emitted in different directions after splitting can be flexibly selected, which can better adapt to different scenarios. need.
  • FIG. 12 is a third structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • the lidar includes two laser transmitting modules.
  • this application provides a laser radar as shown in Figure 12 Light splitting module.
  • the optical beam splitting module 207 and the optical beam splitting module 209 shown in FIG. 12 can be regarded as two independent optical beam splitting modules, or can also be regarded as an integrated optical beam splitting module.
  • the light beam splitting module 209 includes a plurality of first light beam splitting elements (such as 201-204), and the light beam splitting module 207 includes a plurality of second light beam splitting elements (such as 205 and 206).
  • the laser transmitting modules 10 on both sides of the lidar emit lasers 105 from the left and right sides respectively. and Laser 106.
  • the reflected light beam 301 is guided to the optical component 30, and the transmitted light beam is guided to the first light beam splitting element 202.
  • the first light beam splitting element 202 transmits and reflects incident light, wherein the reflected light beam 302 is directed to the optical component 30 and the transmitted light beam is directed to the first light beam splitting element 203 .
  • the first light beam splitting element 203 transmits and reflects incident light, wherein the reflected light beam 304 is directed to the optical component 30 and the transmitted light beam is directed to the first light beam splitting element 204 .
  • the first light beam splitting element 204 performs total reflection on the incident light to form a light beam 305 guided to the optical component 30 .
  • the laser 106 is incident on the light beam splitting module 207, it is first reflected downwardly through the second light beam splitting element 205 to the second light beam splitting element 206, and then the light beam 303 reflected by the second light beam splitting element 206 is directed to the optical component 30 .
  • the second light beam splitting element 205 and the second light beam splitting element 206 can perform total reflection on the incident light 106, which is equivalent to only changing the transmission direction of the incident light 106, and the outgoing light 303 maintains the incident light 106.
  • the power of light 106 is higher than the power of the other four outgoing lights, which can form a scanning field of view as shown in Figure 3(a) above, that is, the scanning field of view in the middle is a long-distance field of view, and the other scanning fields of view are The field of view is a close field of view.
  • the optical beam splitting module can split the laser beams from different directions and change the optical path, so that the multiple beams output by the optical beam splitting module can be directed to the optical component.
  • Figure 13 is a schematic structural diagram of the optical path folding component in the embodiment of the present application.
  • the position of the second light beam splitting element 206 cannot block the transmission of the light beam 105.
  • the position of the second light beam splitting element 206 can also be adjusted so that the light beam 303 reflected by the second light beam splitting element 206 is on the same horizontal line as the light beam reflected by other light beam splitting elements, thereby reducing the The difficulty of system installation and adjustment.
  • FIG 14 is a fourth structural schematic diagram of the optical beam splitting module in the embodiment of the present application.
  • the lidar includes two laser transmitting modules.
  • the lidar provided by this application also includes a light combining module.
  • the light splitting module first The two laser beams emitted by the laser emitting module are split into beams respectively, and then the optical beam combining module combines the split multiple beams in pairs.
  • the optical beam splitting module is composed of two parts: 701 and 702.
  • the optical beam splitting module 701 is used to split the laser 601 emitted by one of the laser emitting modules, and the optical beam splitting module 702 is used.
  • the optical beam combining module 703 is used to combine the multiple beams split by the laser 601 and the multiple beams split by the laser 602 to obtain multiple combined beams (801-805).
  • the photo beam combining module the power of each output beam can be further flexibly configured, so that it can be applied to more scene requirements.
  • the lasers emitted by the two laser emitting modules have different polarization states or different wavelengths, so that the optical beam combining module 703 can combine two beams of different polarization states or different wavelengths.
  • the two laser emitting modules can also emit lasers with the same polarization state.
  • the photocombining module also includes a polarization conversion element.
  • the polarization conversion element is used to convert the polarization state of the laser emitted by one of the laser emitting modules. , so that the optical beam combining module can combine two beams of different polarization states.
  • FIG. 15 is a schematic structural diagram of a photo beam combining module in an embodiment of the present application. As shown in Figures 14 and 15, the light beams split by the light beam splitting module 701 and the light beam splitting module 702 are incident from the rear side and above of the light beam combining module 703 respectively. A layer of polarization conversion element 704 is installed above the light combining module 703.
  • the polarization conversion element 704 can change the polarization state of the incident light.
  • the laser 601 and the laser 602 respectively emitted by the two laser emission modules are P-polarized light.
  • the split beam of the laser 601 can change its polarization state through the polarization conversion element 704 and become S-polarized light.
  • the polarization beam combining film 706 in the light beam combining module 703 combines the incident P polarized light and S polarized light and outputs the light beam 803.
  • the polarization conversion module is set in the optical beam combining module
  • the components can be replaced, so two laser emitting modules with the same specifications can be used, which is more practical.
  • the lidar may further include a controller, and the controller may control the two laser emitting modules to emit lasers at the same time or to reflect lasers in turn.
  • Figure 16 is a schematic diagram of the controller controlling two laser emission modules in the embodiment of the present application.
  • the laser emitting module 1 includes a laser 1 and a laser driver 1
  • the laser emitting module 2 includes a laser 2 and a laser driver 2 .
  • the controller can control laser driver 1 to drive laser 1 to emit laser 1
  • the controller page can control laser driver 2 to drive laser 2 to emit laser 2.
  • the controller controls laser 1 and laser 2 to emit light at the same time, the emitted light power of the photosynthetic beam module is higher, showing a high-power mode.
  • the lidar can measure farther distances.
  • the controller controls laser 1 and laser 2 to emit light in turns, the output light power of the photosynthetic beam module is low, but the repetition frequency of the two lasers is high, showing a high repetition frequency mode, and the lidar can obtain higher resolution.
  • high power or high repetition frequency mode can be achieved to meet the requirements of lidar for high repetition frequency and high power in different scenarios.
  • this application does not limit the number and distribution positions of laser transmitting modules in the lidar.
  • the structure of two laser transmitting modules distributed on both sides of the light beam splitting module shown in Figure 4 is just an example.
  • the laser emitting modules can also be distributed in other positions such as above or below the light splitting module.
  • the laser radar provided by the embodiment of the present application is introduced above, and the laser scanning method provided by the embodiment of the present application is introduced below.
  • FIG 17 is a schematic diagram of an embodiment of the laser scanning method in this application. It should be noted that this laser scanning method is implemented based on the lidar introduced above. Regarding the structure of the lidar, reference may be made to the relevant descriptions of the above embodiments and will not be described again here. In this example, the laser scanning method includes the following steps.
  • a lidar includes two laser emitting modules arranged on both sides of a light beam splitting module.
  • the specific implementation method of the optical beam splitting module splitting the laser beam and adjusting the power of each beam after splitting can be referred to the relevant introduction of the optical beam splitting module in the above embodiments, and will not be described again here.
  • the specific implementation method of the scanning module adjusting the deflection direction of the incident light beam can refer to the relevant introduction of the scanning module in the above embodiments, and will not be described again here.
  • the multiple beams emitted by the scanning module will be reflected back to the lidar by the detection object.
  • the reflected light beam is guided to the detection module through the scanning module and the optical component in sequence, and the reflected light beam is detected by the detection object to achieve functions such as laser ranging.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请提供了一种激光雷达和激光扫描方法,激光雷达可以根据实际需求灵活调整不同扫描视场的测量距离,扩展了激光雷达的应用场景。该激光雷达包括:N个激光发射模块、光分束模块、光学组件、扫描模块和探测模块。N个激光发射模块分别用于向光分束模块发射N路激光。光分束模块用于对N路激光进行分束得到M路光束,并分别调节M路光束的功率,其中,M>N。光学组件用于将多路光束分别导向扫描模块。扫描模块用于分别调节多路光束的偏转方向,并输出偏转方向调节后的多路光束。其中,经过探测物体反射的光束依次经过扫描模块和光学组件导向探测模块。探测模块用于对探测物体反射的光束进行探测。

Description

一种激光雷达和激光扫描方法
本申请要求于2022年4月29日提交中国国家知识产权局、申请号为202210468574.6、申请名称为“一种激光雷达和激光扫描方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光传输领域,尤其涉及一种激光雷达和激光扫描方法。
背景技术
激光雷达一种测距系统,在基于微机电系统(Micro-Electro-Mechanical System,MEMS)微镜的激光雷达中,激光器发出的脉冲光信号经过准直器准直整形后照射在MEMS微镜上,MEMS微镜通过转动进行扫描以将光信号发射到周围的探测目标上,完成对周围环境的探测。扫描光经探测目标反射后通过接收透镜被探测器所接收。
目前常规的MEMS微镜器件的光学转角较小,无法满足激光雷达的大视场角需求。另外,激光雷达某些应用场景中对不同方位的测距能力要求不同,例如,在汽车雷达中,通常要求正前方具有较长的测距能力,其他方位具有短测距能力即可。但是,目前的激光雷达的系统性能无法满足对测距能力的灵活要求,适用的场景较为局限。
发明内容
本申请实施例提供了一种激光雷达和激光扫描方法,激光雷达可以根据实际需求灵活调整不同扫描视场的测量距离,扩展了激光雷达的应用场景。
第一方面,本申请实施例提供了一种激光雷达。该激光雷达包括:N个激光发射模块、光分束模块、光学组件、扫描模块和探测模块。N个激光发射模块分别用于向光分束模块发射N路激光。光分束模块用于对N路激光进行分束得到M路光束,并分别调节M路光束的功率,其中,M>N。光学组件用于将M路光束分别导向扫描模块。扫描模块用于分别调节M路光束的偏转方向,并输出偏转方向调节后的M路光束。其中,经过探测物体反射的光束依次经过扫描模块和光学组件导向探测模块。探测模块用于对探测物体反射的光束进行探测。
在该实施方式中,光分束模块对激光发射模块发射的激光进行分束得到多路光束,并可以调节分束后每路光束的功率。因此,本申请提供的激光雷达可以形成多个扫描视场,并且,不同的扫描视场可以覆盖不同的测量距离。也就是说,本申请提供的激光雷达可以根据实际需求灵活调整不同扫描视场的测量距离,扩展了激光雷达的应用场景。
在一些可能的实施方式中,光分束模块包括至少M个光分束元件,N路激光中每路激光会至少经过一个光分束元件,每个光分束元件用于对入射光进行分束并调节分束后每路光束的功率,M路光束包括M个光分束元件中每个光分束元件进行分束后的一路光束。在该实施方式中,提供了一种光分束模块的具体实现方式,可以通过每个光分束元件调节对应的一路光束的功率,实现方式更为灵活。
在一些可能的实施方式中,激光雷达还包括电控单元。电控单元用于调节每个光分束元件的透过率和反射率,以调节分束后每路光束的功率。电控单元具体可以通过调节光分束元件上加载的电流或电压来实时控制光分束元件的透过率和反射率,从而可以动态调节分束后每路光束的功率配比,增强了本方案的可实现性。
在一些可能的实施方式中,光分束模块包括棱镜模组,光分束元件设置在棱镜模组中每相邻两个棱镜之间。光分束元件通过对入射光进行反射和/或透射以对入射光进行分束。在该实施方式中,提供了一种光分束模块的具体实现方式,增强了本方案的实用性。
在一些可能的实施方式中,N个激光发射模块包括第一激光发射模块和第二激光发射模块,第一激光发射模块和第二激光发射模块分别位于光分束模块的两侧,光分束模块包括多个第一光分束元件和多个第二光分束元件。第一激光发射模块用于向光分束模块发射第一激光,第一激光依次射入多个第一光分束元件。每个第一光分束元件用于对入射光进行分束以得到多路第一光束,并将多路第一光束导向所述光学组件。第二激光发射模块用于向光分束模块发射第二激光,第二激光依次经过多个第二光分束元件。多个第二光分束元件用于改变所述第二激光的传输方向,以将第二激光导向所述光学组件。通过上述方式,光分束模块可以对来自不同方向的激光进行分束并改变光路,以使得光分束模块输出的多路光束都可以导向光学组件,在多个激光发射模块的场景下应用效果更好。
在一些可能的实施方式中,激光雷达还包括光合束模块,N个激光发射模块包括第一激光发射模块和第二激光发射模块。光分束模块包括K个第一光分束元件和K个第二光分束元件,K为大于1的整数。第一激光发射模块用于向光分束模块发射第一激光,第一激光依次经过K个第一光分束元件。每个第一光分束元件用于对入射光进行分束以得到K路第一光束,并将K路第一光束导向所述光合束模块。第二激光发射模块用于向光分束模块发射第二激光,第二激光依次经过K个第二光分束元件。每个第二光分束元件用于对入射光进行分束以得到K路第二光束,并将K路第二光束导向光合束模块。光合束模块用于对K路第一光束和K路第二光束分别进行合束得到K路合束光束,并将K路合束光束导向光学组件。在该实施方式中,通过光合束模块可以进一步对输出的各路光束的功率进行灵活配置,从而可以适用更多的场景需求。
在一些可能的实施方式中,第一激光的偏振态与第二激光的偏振态不同,或者,第一激光的波长与第二激光的波长不同。在该实施方式中,具体可以采用波长合束或偏振合束的方式,提高了本方案的扩展性。
在一些可能的实施方式中,第一激光的偏振态和第二激光的偏振态相同,光合束模块还包括偏振转换元件。偏振转换元件用于转换每路第一光束的偏振态或每路第二光束的偏振态,以使得第一光束的偏振态与第二光束的偏振态不同。在该实施方式中,由于在光合束模块中设置了偏振转换元件,因此可以采用规格相同的两个激光发射模块,实用性更好。
在一些可能的实施方式中,激光雷达还包括控制器。控制器用于控制第一激光发射模块和第二激光发射模块同时发射激光。或者,控制器用于控制第一激光发射模块和第二激光发射模块轮流发射激光。在该实施方式中,通过控制器分别控制两个激光发射模块,可以实现高功率或高重频模式,满足不同场景下激光雷达对高重频和高功率的要求。
在一些可能的实施方式中,至少一个激光发射模块向光分束模块发射的目标激光包括多 个波长,至少一个光分束元件对目标激光进行分束后得到的两路光束的波长不同。在该实施方式中,通过增加波长分束,实现了不同波长的激光发射模块在激光雷达中的融合,可以灵活选择分束后朝不同方向发射的光束的波长,可以更好地适应不同场景的需求。
在一些可能的实施方式中,经过光学组件导向扫描模块的M路光束中至少有两路光束在扫描模块上具有重叠区域,以使得从扫描模块射出的M路光束中至少有两路光束的扫描视场具有重叠区域。应理解,使多个扫描视场相互交叠可以增加点云密度,从而提高了激光雷达的分辨率。
在一些可能的实施方式中,扫描模块包括M个扫描器,M个扫描器分别用于调节M路光束的偏转方向和/或扫描视场。通过多个扫描器可以灵活调节不同光束的偏转方向和/或扫描视场,从而可以适应不同的场景需求。例如,通过多个扫描视场的相互交叠增加点云密度,以提高分辨率。
在一些可能的实施方式中,激光发射模块包括光纤激光器、透镜支撑座、套管、准直透镜和外壳,光纤激光器设置在外壳内,透镜支撑座安装在外壳上,透镜支撑座用于调节并固定准直透镜的位置,光纤激光器的光纤与准直透镜耦合,套管用于包裹准直透镜,准直透镜用于对光纤激光器输出的激光进行光束准直。通过这种方式,光纤激光器与准直透镜进行一体化设计,可以使得光纤激光器的尾纤不会暴露在激光器外侧,降低了激光雷达的系统装调难度,提升整机的集成化,进一步提高激光雷达整机的可靠性。
在一些可能的实施方式中,光学组件包括M个反射元件,M个反射元件分别用于将M路光束反射至扫描模块,提高了本方案的灵活性。
在一些可能的实施方式中,光分束元件的类型包括分光膜、液晶和电致变色玻璃,使得本方案的实现方式更灵活。
在一些可能的实施方式中,扫描模块的类型包括微机电系统(Micro-Electro-Mechanical System,MEMS)微镜和转镜,使得本方案的实现方式更灵活。
第二方面,本申请实施例提供了一种激光扫描方法。该方法用于激光雷达,激光雷达包括:N个激光发射模块、光分束模块、光学组件、扫描模块和探测模块,所述N为大于或等于1的整数。该方法包括:通过所述N个激光发射模块分别向所述光分束模块发射N路激光。通过所述光分束模块对所述N路激光进行分束得到M路光束,并分别调节所述M路光束的功率,其中,所述M大于所述N。通过所述光学组件将所述M路光束分别导向所述扫描模块。通过所述扫描模块分别调节所述M路光束的偏转方向,并输出所述偏转方向调节后的M路光束,其中,经过探测物体反射的光束依次经过所述扫描模块和所述光学组件导向所述探测模块。通过所述探测模块对所述探测物体反射的光束进行探测。
在一些可能的实施方式中,所述光分束模块包括至少M个光分束元件,所述N路激光中每路激光会至少经过一个光分束元件,每个所述光分束元件用于对入射光进行分束并调节分束后每路光束的功率,所述M路光束包括M个光分束元件中每个光分束元件进行分束后的一路光束。
在一些可能的实施方式中,激光雷达还包括电控单元,方法还包括:通过所述电控单元调节每个所述光分束元件的透过率和反射率,以调节分束后每路光束的功率。
在一些可能的实施方式中,所述激光雷达还包括光合束模块,所述N个激光发射模块包 括第一激光发射模块和第二激光发射模块,所述光分束模块包括K个第一光分束元件和K个第二光分束元件,所述K为大于1的整数。方法还包括:通过所述第一激光发射模块向所述光分束模块发射第一激光,所述第一激光依次经过所述K个第一光分束元件。通过每个所述第一光分束元件对入射光进行分束以得到K路第一光束,并将所述K路第一光束导向所述光合束模块。通过所述第二激光发射模块向所述光分束模块发射第二激光,所述第二激光依次经过所述K个第二光分束元件。通过每个所述第二光分束元件对入射光进行分束以得到K路第二光束,并将所述K路第二光束导向所述光合束模块。通过所述光合束模块对所述K路第一光束和所述K路第二光束分别进行合束得到K路合束光束,并将所述K路合束光束导向所述光学组件。
在一些可能的实施方式中,第一激光的偏振态与第二激光的偏振态不同,或者,第一激光的波长与第二激光的波长不同。
在一些可能的实施方式中,第一激光的偏振态和第二激光的偏振态相同,光合束模块还包括偏振转换元件。方法还包括:通过偏振转换元件转换每路第一光束的偏振态或每路第二光束的偏振态,以使得第一光束的偏振态与第二光束的偏振态不同。
在一些可能的实施方式中,激光雷达还包括控制器,方法还包括:通过控制器控制第一激光发射模块和第二激光发射模块同时发射激光。或者,通过控制器控制第一激光发射模块和第二激光发射模块轮流发射激光。
本申请实施例中,光分束模块对激光发射模块发射的激光进行分束得到多路光束,并可以调节分束后每路光束的功率。因此,本申请提供的激光雷达可以形成多个扫描视场,并且,不同的扫描视场可以覆盖不同的测量距离。也就是说,本申请提供的激光雷达可以根据实际需求灵活调整不同扫描视场的测量距离,扩展了激光雷达的应用场景。
附图说明
图1为本申请实施例中激光雷达的系统架构示意图;
图2为本申请实施例中扫描视场交叠的点云密度示意图;
图3(a)为本申请实施例中扫描视场配置方案的第一种示意图;
图3(b)为本申请实施例中扫描视场配置方案的第二种示意图;
图3(c)为本申请实施例中扫描视场配置方案的第三种示意图;
图4为本申请实施例中激光雷达的一种结构示意图;
图5为本申请实施例中探测模块的一种结构示意图;
图6为本申请实施例中光学组件的一种结构示意图;
图7为本申请实施例中扫描模块的一种结构示意图;
图8为本申请实施例中激光发射模块的一种结构示意图;
图9为本申请实施例中光分束模块的第一种结构示意图;
图10为本申请实施例中光分束元件的一种结构示意图;
图11为本申请实施例中光分束模块的第二种结构示意图;
图12为本申请实施例中光分束模块的第三种结构示意图;
图13为本申请实施例中光路折叠组件的一种结构示意图;
图14为本申请实施例中光分束模块的第四种结构示意图;
图15为本申请实施例中光合束模块的一种结构示意图;
图16为本申请实施例中控制器控制两个激光发射模块的示意图;
图17为本申请中激光扫描方法的一个实施例示意图。
具体实施方式
本申请提供了一种激光雷达和激光扫描方法,激光雷达可以根据实际需求灵活调整不同扫描视场的测量距离,扩展了激光雷达的应用场景。作为一个示例,该激光雷达可以用作汽车雷达,可以灵活配置汽车不同方位的测距能力。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例中激光雷达的系统架构示意图。如图1所示,激光雷达包括:N个激光发射模块10、光分束模块20、光学组件30和扫描模块40。其中,N为大于或等于1的整数。具体地,N个激光发射模块10分别用于向光分束模块20发射N路激光。光分束模块20用于对激光进行分束得到M路光束,并分别调节M路光束的功率,其中,M>N。光学组件30用于将M路光束分别导向扫描模块40。扫描模块40用于分别调节M路光束的偏转方向,并输出偏转方向调节后的M路光束。激光雷达输出的M路光束可以形成多个扫描视场,从而拼接形成一个大视场。此外,由于激光雷达可以灵活调节输出的每路光束的功率,因此可以根据实际需求为不同的扫描视场配置不同的测量距离,扩展了激光雷达的应用场景。
在一些可能的实施方式中,经过光学组件30导向扫描模块40的多路光束中至少有两路光束在所述扫描模块40上具有重叠区域,以使得从扫描模块40射出的多路光束中至少有两路光束的扫描视场具有重叠区域。应理解,使多个扫描视场相互交叠可以增加点云密度,从而提高了激光雷达的分辨率。图2为本申请实施例中扫描视场交叠的点云密度示意图。如图2所示,在有扫描视场交叠的场景下,其点云密度高于无扫描视场交叠场景下的点云密度,其分辨率也高于无扫描视场交叠场景下的分辨率。
下面以激光雷达用作汽车雷达为例介绍几种可能的扫描视场配置方案。
图3(a)为本申请实施例中扫描视场配置方案的第一种示意图。如图3(a)所示,激光雷达可以安装在车头进气格栅处,其扫描视场由5组子扫描视场进行拼接而成。其中,中心扫描视场(扫描视场3)为长距视场,满足激光雷达远距离的测距要求,其余视场(扫描视场1、扫描视场2、扫描视场4、扫描视场5)为近距视场,主要满足激光雷达的补盲测距要求。5组视场拼接共同组成一个大视场,同时满足激光雷达的远距离和大视场的要求。
图3(b)为本申请实施例中扫描视场配置方案的第二种示意图。如图3(b)所示,两个激光雷达可以分别安装在两侧的车灯处,每个激光雷达的扫描视场由5组子扫描视场进行拼接而成。其中,中心扫描视场(左侧激光雷达的扫描视场5和右侧激光雷达的扫描视场1)为长距视场,满足激光雷达远距离的测距要求,并且中心扫描视场具有重叠区域,重叠区域的分辨率较高。两个激光雷达的其余视场(扫描视场1-4)为近距视场,主要满足激光雷达的补盲测距要求。10组视场拼接共同组成一个大视场,左右两组激光雷达通过视场拼接同时满足激光雷达的远距离,大视场要求,同时可以实现中心视场的高分辨的设计要求。
图3(c)为本申请实施例中扫描视场配置方案的第三种示意图。如图3(c)所示,激光雷达可以安装在车头进气格栅处,其扫描视场由3个子扫描视场(视场1-3)进行拼接而成,其中三个视场相互交叠,中心交叠区域的分辨率可以是单个视场的3倍。
图4为本申请实施例中激光雷达的一种结构示意图。如图4所示,激光雷达可以包括两个激光发射模块10,两个激光发射模块10分别放置在激光雷达的两侧。光分束模块20位于两个激光发射模块10之间,两个激光发射模块10发射的激光均指向光分束模块20。光学组件30可以包括M个反射元件,光分束模块20输出的M路光束分别导向M个反射元件。每个反射元件用于将入射的光束反射至扫描模块40。扫描模块40通过转动将输入的M路光束发射到空间中,以形成一个拼接的视场。此外,激光雷达还包括探测模块50,激光雷达发射的光束经探测物反射后可以传输到探测模块50,探测模块50用于对反射的光束进行探测以完成雷达测距等功能。
图5为本申请实施例中探测模块的一种结构示意图。如图5所示,通过扫描模块40发射的光束打到探测物体上,反射回扫描模块40的光束507通过光学组件30后原路返回,其中部分光束依次通过反射镜501、接收透镜502、接收透镜503、滤光片504后最终汇聚到探测模块50上。为了保证探测模块50不被激光雷达内部的电磁信号干扰,可以通过金属屏蔽罩506对其进行覆盖。
图6为本申请实施例中光学组件的一种结构示意图。如图6所示,光学组件可以由M个反射元件组成,例如,反射元件306-反射元件310共5个反射元件。经过光分束模块20分束后的5路光束(301-305)分别入射到5个反射元件(306-310),通过反射统一汇聚到扫描模块40上。扫描模块40具体是可以调节光束偏转的装置,包括但不限于微机电系统(Micro-Electro-Mechanical System,MEMS)微镜和转镜等。
图7为本申请实施例中扫描模块的一种结构示意图。如图7所示,在一些可能的实施方式中,扫描模块包括M个扫描器。经过光分束模块20分束后的M路光束分别入射到M个扫描器上。通过多个扫描器可以灵活调节不同光束的偏转方向和/或扫描视场,从而可以适应不同的场景需求。例如,通过多个扫描视场的相互交叠增加点云密度,以提高分辨率。
图8为本申请实施例中激光发射模块的一种结构示意图。如图8所示,激光发射模块包括光纤激光器101、透镜支撑座102、套管103、准直透镜104和外壳105。光纤激光器101设置在外壳105内。透镜支撑座102安装在外壳105上,透镜支撑座102用于调节并固定准直透镜的位置,以便于调节从准直透镜104射出光束的角度。光纤激光器101的光纤与准直透镜104耦合,套管103用于包裹准直透镜104。准直透镜104用于对光纤激光器101输出的激光进行光束准直。通过这种方式,光纤激光器与准直透镜进行一体化设计,可以使得光 纤激光器的尾纤不会暴露在激光器外侧,降低了激光雷达的系统装调难度,提升整机的集成化,进一步提高激光雷达整机的可靠性。
图9为本申请实施例中光分束模块的第一种结构示意图。如图9所示,光分束模块20包括至少M个光分束元件。N个激光发射模块10发射的N路激光中每路激光会经过至少一个光分束元件。每个光分束元件用于对入射光进行分束并调节分束后每路光束的功率。其中,光分束模块输出的M路光束包括M个光分束元件中每个光分束元件进行分束后的一路光束。以图9为例,入射激光会依次经过每个光分束元件,每经过一个光分束元件就会进行一次分束,相当于入射激光每经过一个光分束元件就会进行一次功率分配。在一种可能的实施方式中,光分束模块20包括如图9所示的棱镜模组,棱镜模块由多个棱镜组成。光分束元件设置在每相邻两个棱镜之间。光分束元件可以对入射光进行反射和/或透射以对入射光进行分束。例如图9所示,经过光分束元件反射的光束导向光学组件30,经过光分束元件透射的光束导向相邻的另一个光分束元件。应理解,光分束元件可以灵活调节反射光束和透射光束的功率配比。在一些可能的场景中,部分光分束元件也可以根据实际需求对入射光进行全反射或全透射,具体此处不做限定。
图10为本申请实施例中光分束元件的一种结构示意图。如图10所示,入射光束1201入射到光分束元件1202上,其中部分光束通过光分束元件1202后形成反射的光束1203,部分光束通过光分束元件1202形成透射的光束1205。光分束元件1202的两端可以连接电控单元1204。通过电控单元1204可以调节每个光分束元件的透过率和反射率,以调节分束后每路光束的功率。作为一个示例,电控单元1204可以调节光分束元件1202上加载的电流或电压来实时控制光分束元件1202的透过率和反射率,从而可以动态调节光束1203和光束1205的功率配比。需要说明的是,光分束元件的类型包括但不限于分光膜、液晶和电致变色玻璃等。
图11为本申请实施例中光分束模块的第二种结构示意图。如图11所示,在一些可能的实施方式中,激光发射模块10向光分束模块20发射的激光包括多个波长。光分束模块20中的光分束元件还可以对不同波长的光进行分光。以图11为例,输入光分束模块20的激光1001包括λ1和λ2两个不同的波长。光分束元件901用于反射波长为λ1的光束1101,并将波长为λ2的光束透射至光分束元件902。后面的光分束元件(902-905)反射和透射的都是波长为λ2的光束(1102-1105)。应理解,本申请不限定波长的具体数值,例如,λ1=905nm,λ2=1550nm。另外,本申请也不限定激光发射模块10发射的激光所包含的波长数量。例如,激光1001也可以包括5个不同的波长,激光1001依次经过光分束元件901-905,5个光分束元件分别用于反射不同波长的光。在该实施方式中,通过增加波长分束,实现了不同波长的激光发射模块在激光雷达中的融合,可以灵活选择分束后朝不同方向发射的光束的波长,可以更好地适应不同场景的需求。
图12为本申请实施例中光分束模块的第三种结构示意图。在一些可能的实施方式中,以上述图4所示的激光雷达为例,该激光雷达包括两个激光发射模块,基于这种结构的激光雷达,本申请提供了一种如图12所示的光分束模块。图12所示的光分束模块207和光分束模块209可以视为两个相互独立的光分束模块,也可以视为一个一体化的光分束模块。其中,光分束模块209包括多个第一光分束元件(如201-204),光分束模块207包括多个第二光分束元件(如205和206)。在激光雷达两侧的激光发射模块10从左右两侧分别发射激光105 和激光106。激光105入射到光分束模块209后,通过第一光分束元件201进行透射和反射,其中,反射的光束301导向光学组件30,透射的光束导向第一光分束元件202。第一光分束元件202对入射光进行透射和反射,其中,反射的光束302导向光学组件30,透射的光束导向第一光分束元件203。第一光分束元件203对入射光进行透射和反射,其中,反射的光束304导向光学组件30,透射的光束导向第一光分束元件204。第一光分束元件204对入射光进行全反射,形成导向光学组件30的光束305。激光106入射到光分束模块207后,先经过第二光分束元件205向下反射至第二光分束元件206,再经过第二光分束元件206反射后的光束303导向光学组件30。应理解,在实际应用中,第二光分束元件205和第二光分束元件206可以对入射光106进行全反射,相当于只改变了入射光106的传输方向,出射光303维持了入射光106的功率。这样一来,出射光303的功率高于其他4路出射光的功率,可以形成如上述图3(a)所示的扫描视场,即位于中间的扫描视场为长距视场,其他扫描视场为近距视场。通过上述方式,光分束模块可以对来自不同方向的激光进行分束并改变光路,以使得光分束模块输出的多路光束都可以导向光学组件。
图13为本申请实施例中光路折叠组件的一种结构示意图。如图13所示,以图12所示的光分束模块为例,为了使得光束105在经过光分束模块207时无功率损失,第二光分束元件206的位置不能阻挡光束105的传输。在一些可能的实施方式中,还可以通过调节第二光分束元件206的位置使得经第二光分束元件206反射的光束303与其他光分束元件反射的光束在同一水平线上,降低了系统的装调难度。
图14为本申请实施例中光分束模块的第四种结构示意图。以上述图4所示的激光雷达为例,该激光雷达包括两个激光发射模块,基于这种结构的激光雷达,本申请提供的激光雷达还包括光合束模块,光分束模块首先对两个激光发射模块发射的两路激光分别进行分束,进而光合束模块再对分束后的多路光束两两进行合束。具体地,如图14所示,光分束模块由701和702两部分组成,其中,光分束模块701用于对其中一个激光发射模块发射的激光601进行分束,光分束模块702用于对其中另一个激光发射模块发射的激光602进行分束。光合束模块703用于将激光601分束后的多路光束与激光602分束后的多路光束两两之间分别进行合束得到多路合束光束(801-805)。通过光合束模块可以进一步对输出的各路光束的功率进行灵活配置,从而可以适用更多的场景需求。
在一种可能的实施方式中,两个激光发射模块发射的激光的偏振态不同或波长不同,从而使得光合束模块703可以对不同偏振态或不同波长的两路光束进行合束。
在另一种可能的实施方式中,两个激光发射模块也可以发射相同偏振态的激光,光合束模块还包括偏振转换元件,偏振转换元件用于转换其中一个激光发射模块发射的激光的偏振态,以使得光合束模块可以对不同偏振态的两路光束进行合束。图15为本申请实施例中光合束模块的一种结构示意图。如图14和15所示,经过光分束模块701和光分束模块702分束后的光束分别从光合束模块703的后侧及上方入射。光合束模块703的上方装配有一层偏振转换元件704,偏振转换元件704可以改变入射光的偏振态。例如:两个激光发射模块分别发射的激光601和激光602均为P偏振光。激光601经过分束后的光束通过偏振转换元件704可以改变其偏振态,变为S偏振光。光合束模块703中的偏振合束膜706对入射的P偏振光和S偏振光进行合束后输出光束803。在该实施方式中,由于在光合束模块中设置了偏振转 换元件,因此可以采用规格相同的两个激光发射模块,实用性更好。
在又一种可能的实施方式中,该激光雷达还可以包括控制器,控制器可以控制两个激光发射模块同时发射激光或轮流反射激光。图16为本申请实施例中控制器控制两个激光发射模块的示意图。具体地,激光发射模块1包括激光器1和激光器驱动器1,激光发射模块2包括激光器2和激光器驱动器2。控制器可以控制激光器驱动器1驱动激光器1发射激光1,控制器页可以控制激光器驱动器2驱动激光器2发射激光2。当控制器控制激光器1和激光器2同时发光时,光合束模块的出射光功率较高,表现为高功率模式,此次激光雷达可以测量更远的距离。当控制器控制激光器1和激光器2轮流发光时,光合束模块的出射光功率较低,但两个激光器的重复频率高,表现为高重频模式,激光雷达可以获得更高的分辨率。在该实施方式中,通过控制器分别控制两个激光发射模块,可以实现高功率或高重频模式,满足不同场景下激光雷达对高重频和高功率的要求。
需要说明的是,本申请不限定激光雷达中激光发射模块的数量以及分布的位置,上述图4所示两个激光发射模块分布在光分束模块两侧的结构只是一个示例。在一些可能的实施方式中,激光发射模块也可以分布在光分束模块的上方或下方等其他位置,这些通过简单的位置变换所得到的结构均在本申请的保护范围内。
上面对本申请实施例提供的激光雷达进行了介绍,下面对本申请实施例提供的激光扫描方法进行介绍。
图17为本申请中激光扫描方法的一个实施例示意图。需要说明的是,该激光扫描方法是基于上述介绍的激光雷达实现的。关于激光雷达的结构可以参考上述各实施例的相关描述,此处不再赘述。在该示例中,激光扫描方法包括如下步骤。
1701、通过N个激光发射模块分别向光分束模块发射N路激光。
需要说明的是,本申请不限定激光雷达中激光发射模块的数量。作为一个示例,如图4所示,激光雷达包括设置在光分束模块两侧的两个激光发射模块。
1702、通过光分束模块对N路激光进行分束得到M路光束,并分别调节M路光束的功率。
本实施例中,光分束模块对激光进行分束并调节分束后每路光束的功率的具体实现方式可以参考上述各实施例中对光分束模块的相关介绍,此处不再赘述。
1703、通过光学组件将M路光束分别导向扫描模块。
1704、通过扫描模块分别调节M路光束的偏转方向,并输出偏转方向调节后的M路光束。
本实施例中,扫描模块调节入射光束偏转方向的具体实现方式可以参考上述各实施例中对扫描模块的相关介绍,此处不再赘述。
1705、通过探测模块对探测物体反射的光束进行探测。
通过扫描模块射出的多路光束会经过探测物体反射回激光雷达。具体地,反射的光束依次经过扫描模块和光学组件导向探测模块,并由探测物体对反射的光束进行探测,以实现激光测距等功能。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种激光雷达,其特征在于,包括:N个激光发射模块、光分束模块、光学组件、扫描模块和探测模块,所述N为大于或等于1的整数;
    所述N个激光发射模块分别用于向所述光分束模块发射N路激光;
    所述光分束模块用于对所述N路激光进行分束得到M路光束,并分别调节所述M路光束的功率,其中,所述M大于所述N;
    所述光学组件用于将所述M路光束分别导向所述扫描模块;
    所述扫描模块用于分别调节所述M路光束的偏转方向,并输出所述偏转方向调节后的M路光束,其中,经过探测物体反射的光束依次经过所述扫描模块和所述光学组件导向所述探测模块;
    所述探测模块用于对所述探测物体反射的光束进行探测。
  2. 根据权利要求1所述的激光雷达,其特征在于,所述光分束模块包括至少M个光分束元件,所述N路激光中每路激光会至少经过一个光分束元件,每个所述光分束元件用于对入射光进行分束并调节分束后每路光束的功率,所述M路光束包括M个光分束元件中每个光分束元件进行分束后的一路光束。
  3. 根据权利要求2所述的激光雷达,其特征在于,所述激光雷达还包括电控单元;
    所述电控单元用于调节每个所述光分束元件的透过率和反射率,以调节分束后每路光束的功率。
  4. 根据权利要求2或3所述的激光雷达,其特征在于,所述光分束模块包括棱镜模组,所述光分束元件设置在所述棱镜模组中每相邻两个棱镜之间,所述光分束元件通过对入射光进行反射和/或透射以对入射光进行分束。
  5. 根据权利要求2至4中任一项所述的激光雷达,其特征在于,所述N个激光发射模块包括第一激光发射模块和第二激光发射模块,所述第一激光发射模块和所述第二激光发射模块分别位于所述光分束模块的两侧,所述光分束模块包括多个第一光分束元件和多个第二光分束元件;
    所述第一激光发射模块用于向所述光分束模块发射第一激光,所述第一激光依次经过所述多个第一光分束元件;
    每个所述第一光分束元件用于对入射光进行分束以得到多路第一光束,并将所述多路第一光束导向所述光学组件;
    所述第二激光发射模块用于向所述光分束模块发射第二激光,所述第二激光依次经过所述多个第二光分束元件;
    所述多个第二光分束元件用于改变所述第二激光的传输方向,以将所述第二激光导向所述光学组件。
  6. 根据权利要求2至4中任一项所述的激光雷达,其特征在于,所述激光雷达还包括光合束模块,所述N个激光发射模块包括第一激光发射模块和第二激光发射模块,所述光分束模块包括K个第一光分束元件和K个第二光分束元件,所述K为大于1的整数;
    所述第一激光发射模块用于向所述光分束模块发射第一激光,所述第一激光依次经过所述K个第一光分束元件;
    每个所述第一光分束元件用于对入射光进行分束以得到K路第一光束,并将所述K路第一光束导向所述光合束模块;
    所述第二激光发射模块用于向所述光分束模块发射第二激光,所述第二激光依次经过所述K个第二光分束元件;
    每个所述第二光分束元件用于对入射光进行分束以得到K路第二光束,并将所述K路第二光束导向所述光合束模块;
    所述光合束模块用于对所述K路第一光束和所述K路第二光束分别进行合束得到K路合束光束,并将所述K路合束光束导向所述光学组件。
  7. 根据权利要求6所述的激光雷达,其特征在于,所述第一激光的偏振态与所述第二激光的偏振态不同,或者,所述第一激光的波长与所述第二激光的波长不同。
  8. 根据权利要求6所述的激光雷达,其特征在于,所述第一激光的偏振态和所述第二激光的偏振态相同,所述光合束模块还包括偏振转换元件;
    所述偏振转换元件用于转换每路所述第一光束的偏振态或每路所述第二光束的偏振态,以使得所述第一光束的偏振态与所述第二光束的偏振态不同。
  9. 根据权利要求6至8中任一项所述的激光雷达,其特征在于,所述激光雷达还包括控制器;
    所述控制器用于控制所述第一激光发射模块和所述第二激光发射模块同时发射激光;
    或者,
    所述控制器用于控制所述第一激光发射模块和所述第二激光发射模块轮流发射激光。
  10. 根据权利要求2至9中任一项所述的激光雷达,其特征在于,至少一个所述激光发射模块向所述光分束模块发射的目标激光包括多个波长,至少一个所述光分束元件对所述目标激光进行分束后得到的两路光束的波长不同。
  11. 根据权利要求1至10中任一项所述的激光雷达,其特征在于,经过所述光学组件导向所述扫描模块的M路光束中至少有两路光束在所述扫描模块上具有重叠区域,以使得从所述扫描模块射出的M路光束中至少有两路光束的扫描视场具有重叠区域。
  12. 根据权利要求1至11中任一项所述的激光雷达,其特征在于,所述扫描模块包括M个扫描器,所述M个扫描器分别用于调节所述M路光束的偏转方向和/或扫描视场。
  13. 根据权利要求1至12中任一项所述的激光雷达,其特征在于,所述激光发射模块包括光纤激光器、透镜支撑座、套管、准直透镜和外壳,所述光纤激光器设置在所述外壳内,所述透镜支撑座安装在所述外壳上,所述透镜支撑座用于调节并固定所述准直透镜的位置,所述光纤激光器的光纤与所述准直透镜耦合,所述套管用于包裹所述准直透镜,所述准直透镜用于对所述光纤激光器输出的激光进行光束准直。
  14. 根据权利要求1至13中任一项所述的激光雷达,其特征在于,所述光学组件包括M个反射元件,所述M个反射元件分别用于将所述M路光束反射至所述扫描模块。
  15. 一种激光扫描方法,其特征在于,所述方法应用于激光雷达,所述激光雷达包括:N个激光发射模块、光分束模块、光学组件、扫描模块和探测模块,所述N为大于或等于1的整数,所述方法包括:
    通过所述N个激光发射模块分别向所述光分束模块发射N路激光;
    通过所述光分束模块对所述N路激光进行分束得到M路光束,并分别调节所述M路光束的功率,其中,所述M大于所述N;
    通过所述光学组件将所述M路光束分别导向所述扫描模块;
    通过所述扫描模块分别调节所述M路光束的偏转方向,并输出所述偏转方向调节后的M路光束,其中,经过探测物体反射的光束依次经过所述扫描模块和所述光学组件导向所述探测模块;
    通过所述探测模块对所述探测物体反射的光束进行探测。
  16. 根据权利要求15所述的方法,其特征在于,所述光分束模块包括至少M个光分束元件,所述N路激光中每路激光会至少经过一个光分束元件,每个所述光分束元件用于对入射光进行分束并调节分束后每路光束的功率,所述M路光束包括M个光分束元件中每个光分束元件进行分束后的一路光束。
  17. 根据权利要求16所述的方法,其特征在于,所述激光雷达还包括电控单元,所述方法还包括:
    通过所述电控单元调节每个所述光分束元件的透过率和反射率,以调节分束后每路光束的功率。
  18. 根据权利要求16或17所述的方法,其特征在于,所述激光雷达还包括光合束模块,所述N个激光发射模块包括第一激光发射模块和第二激光发射模块,所述光分束模块包括K个第一光分束元件和K个第二光分束元件,所述K为大于1的整数,所述方法还包括:
    通过所述第一激光发射模块向所述光分束模块发射第一激光,所述第一激光依次经过所述K个第一光分束元件;
    通过每个所述第一光分束元件对入射光进行分束以得到K路第一光束,并将所述K路第一光束导向所述光合束模块;
    通过所述第二激光发射模块向所述光分束模块发射第二激光,所述第二激光依次经过所述K个第二光分束元件;
    通过每个所述第二光分束元件对入射光进行分束以得到K路第二光束,并将所述K路第二光束导向所述光合束模块;
    通过所述光合束模块对所述K路第一光束和所述K路第二光束分别进行合束得到K路合束光束,并将所述K路合束光束导向所述光学组件。
  19. 根据权利要求18所述的方法,其特征在于,所述第一激光的偏振态与所述第二激光的偏振态不同,或者,所述第一激光的波长与所述第二激光的波长不同。
  20. 根据权利要求18所述的方法,其特征在于,所述第一激光的偏振态和所述第二激光的偏振态相同,所述光合束模块还包括偏振转换元件,所述方法还包括:
    通过所述偏振转换元件转换每路所述第一光束的偏振态或每路所述第二光束的偏振态,以使得所述第一光束的偏振态与所述第二光束的偏振态不同。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述激光雷达还包括控制器,所述方法还包括:
    通过所述控制器控制所述第一激光发射模块和所述第二激光发射模块同时发射激光;
    或者,
    通过所述控制器控制所述第一激光发射模块和所述第二激光发射模块轮流发射激光。
PCT/CN2023/082642 2022-04-29 2023-03-21 一种激光雷达和激光扫描方法 WO2023207425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210468574.6A CN117008140A (zh) 2022-04-29 2022-04-29 一种激光雷达和激光扫描方法
CN202210468574.6 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207425A1 true WO2023207425A1 (zh) 2023-11-02

Family

ID=88517297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082642 WO2023207425A1 (zh) 2022-04-29 2023-03-21 一种激光雷达和激光扫描方法

Country Status (2)

Country Link
CN (1) CN117008140A (zh)
WO (1) WO2023207425A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814086A (zh) * 2019-01-07 2019-05-28 上海禾赛光电科技有限公司 一种激光雷达
US20190257922A1 (en) * 2018-02-16 2019-08-22 Cepton Technologies, Inc. Systems for incorporating lidar sensors in a headlamp module of a vehicle
CN110174663A (zh) * 2019-05-31 2019-08-27 昂纳信息技术(深圳)有限公司 一种激光雷达的光功率分配方法及光功率分配装置和系统
CN110398752A (zh) * 2019-08-05 2019-11-01 昂纳信息技术(深圳)有限公司 一种多视场的激光雷达系统
CN111487603A (zh) * 2020-04-20 2020-08-04 深圳奥锐达科技有限公司 一种激光发射单元及其制造方法
CN114236551A (zh) * 2021-12-13 2022-03-25 上海浙江大学高等研究院 基于单一激光光源的多激光雷达探测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190257922A1 (en) * 2018-02-16 2019-08-22 Cepton Technologies, Inc. Systems for incorporating lidar sensors in a headlamp module of a vehicle
CN109814086A (zh) * 2019-01-07 2019-05-28 上海禾赛光电科技有限公司 一种激光雷达
CN110174663A (zh) * 2019-05-31 2019-08-27 昂纳信息技术(深圳)有限公司 一种激光雷达的光功率分配方法及光功率分配装置和系统
CN110398752A (zh) * 2019-08-05 2019-11-01 昂纳信息技术(深圳)有限公司 一种多视场的激光雷达系统
CN111487603A (zh) * 2020-04-20 2020-08-04 深圳奥锐达科技有限公司 一种激光发射单元及其制造方法
CN114236551A (zh) * 2021-12-13 2022-03-25 上海浙江大学高等研究院 基于单一激光光源的多激光雷达探测系统

Also Published As

Publication number Publication date
CN117008140A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US11486986B2 (en) LIDAR system with solid state spectral scanning
US20190113622A1 (en) Lidar system and method
EP4191282A1 (en) Optical system of laser radar and laser radar system
US11754681B2 (en) LIDAR system with a multi-mode waveguide photodetector
CN115685147B (zh) 调频连续波激光雷达及自动驾驶设备
CA3124640C (en) Laser measurement module and laser radar
US11726182B2 (en) Multiple beam, single MEMS lidar
JP7372331B2 (ja) 偏光エンコードされたビーム送出及び収集
CN114460601A (zh) 一种激光雷达系统
CA3079611A1 (en) Optical circulator
US20200200880A1 (en) Component assembly for a lidar sensor, and lidar sensor
CN114879164A (zh) 一种收发同轴激光雷达系统
US20220123052A1 (en) Techniques for fiber tip re-imaging in lidar systems
WO2023207425A1 (zh) 一种激光雷达和激光扫描方法
CN111458724A (zh) 一种适用于自动驾驶的激光雷达点云成像装置和方法
CN210690805U (zh) 多线激光雷达
WO2023072022A1 (zh) 一种激光雷达系统及电子设备
US11914076B2 (en) Solid state pulse steering in LiDAR systems
EP2975448A1 (en) Electronic appliance, and method for combining together laser light
CN117289239A (zh) 一种探测光学系统
CN111610509A (zh) 多线激光雷达
JPH10142533A (ja) 描画光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794860

Country of ref document: EP

Kind code of ref document: A1