WO2023072022A1 - 一种激光雷达系统及电子设备 - Google Patents

一种激光雷达系统及电子设备 Download PDF

Info

Publication number
WO2023072022A1
WO2023072022A1 PCT/CN2022/127219 CN2022127219W WO2023072022A1 WO 2023072022 A1 WO2023072022 A1 WO 2023072022A1 CN 2022127219 W CN2022127219 W CN 2022127219W WO 2023072022 A1 WO2023072022 A1 WO 2023072022A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
wavelength
laser light
beams
Prior art date
Application number
PCT/CN2022/127219
Other languages
English (en)
French (fr)
Inventor
费永浩
曹勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023072022A1 publication Critical patent/WO2023072022A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application relates to the field of electronic equipment, in particular to a laser radar system and electronic equipment.
  • LIDAR Light detection and ranging
  • the field of view (FOV) of the existing lidar is relatively small, and the detection distance is limited.
  • Embodiments of the present application provide a laser radar system, which uses a single light source combined with a diffractive optical beam splitting element to realize multiple optical path outputs of laser light, thereby improving the field of view of the laser radar.
  • the present application provides a laser radar system, including: a laser source for emitting a beam of laser light (i.e. a single light source); a collimation unit for collimating the laser light emitted by the laser source; diffractive optical beam splitting The component is used to split the collimated laser beam according to the set angle to output multiple laser beams at the same time; there are multiple transmissive mirrors corresponding to the multi-beam laser beams after beam splitting, and each transmissive mirror is used for Transmitting a corresponding beam of laser light to form transmitted light; a plurality of first reflectors corresponding to a plurality of transmissive reflectors, each beam of transmitted light is incident on the corresponding first reflector, and the plurality of first reflectors will The respective transmitted light is simultaneously reflected to the same light deflection scanning element; the light deflection scanning element is used to deflect and reflect multiple beams of transmitted light to perform laser scanning on the target object in front; multiple transmissive mirrors correspond one-to-one
  • the laser radar system of the present application uses a single light source beam splitting scheme, and the light deflection scanning element deflects and reflects multiple beams of transmitted light to perform laser scanning on the target object in front, which improves the visibility of the entire laser radar system.
  • the field angle increases the detection range of the lidar system.
  • a beam combiner is further included, and the laser light reflected from the target object is reflected to the same beam combiner by the second mirror, and then reflected to the detector by the beam combiner.
  • the beam combiner is a lens system.
  • a beam of laser light is a dual-wavelength light source formed by combining laser beams of different wavelengths.
  • the laser source includes: a first laser, used to emit laser light with a first wavelength; a second laser, used to emit laser light with a second wavelength;
  • the collimation unit includes: a first collimator The collimator is used to collimate the laser light of the first wavelength emitted by the first laser; the second collimator is used to collimate the laser light of the second wavelength emitted by the second laser; device and the third reflector; the third reflector is used to reflect the laser light of the second wavelength collimated by the second collimator to the dual-wavelength combiner; the dual-wavelength combiner is used to The collimated laser light of the first wavelength and the laser light of the second wavelength combine to form a dual-wavelength light source.
  • the dual-wavelength light source is formed by combining laser beams with a wavelength of 905 nm and a wavelength of 940 nm.
  • the light deflection scanning element is a MEMS rotating mirror.
  • the transmissive mirror is used to fully or partially transmit a corresponding beam of laser light.
  • the multiple laser beams include five laser beams.
  • the detector is an area array detector or a plurality of point detectors.
  • the number of point detectors is, for example, five.
  • the present application further provides an electronic device, including the lidar system described in any one of the above first aspects.
  • the electronic device is a self-driving car.
  • Fig. 1 shows a structural block diagram of a lidar system according to some embodiments of the present application
  • Fig. 2 shows a first schematic diagram of an optical path of a lidar system according to some embodiments of the present application
  • Fig. 3 shows the second schematic diagram of the optical path of the lidar system according to some embodiments of the present application
  • Fig. 4 shows a third schematic diagram of the optical path of the lidar system according to some embodiments of the present application.
  • Fig. 5 shows a schematic structural diagram of a laser source in a lidar system according to some embodiments of the present application
  • Fig. 6 shows a first structural schematic diagram of a diffractive optical beam splitting element in a lidar system according to some embodiments of the present application
  • Fig. 7 shows a schematic diagram of optical path transmission between a beam combiner and a detector in a lidar system according to some embodiments of the present application
  • Fig. 8 shows a schematic structural diagram of a detector in a lidar system according to some embodiments of the present application
  • Fig. 9 shows a schematic diagram of optical path transmission between a laser source and a diffractive optical beam splitting element in a lidar system according to some embodiments of the present application
  • Fig. 10 shows a second structural schematic diagram of a diffractive optical beam splitting element in a lidar system according to some embodiments of the present application
  • Fig. 11 shows a schematic diagram of optical path transmission of a transmissive mirror in a lidar system according to some embodiments of the present application.
  • Lidar is an indispensable technology in electronic equipment such as autonomous driving.
  • the advantage of Lidar over cameras lies in the accurate establishment of 3D models and night driving, which can provide richer and more accurate data and make it easier to build a simulation environment. Helps judge the interaction of surrounding vehicles and objects.
  • lidar is also a key component in the current system of electronic equipment such as traffic sign recognition, adaptive cruise control (ACC), blind spot detection, collision avoidance system and lane departure warning.
  • LiDAR is classified according to scanning technology, mainly including mechanical scanning and solid-state scanning.
  • the scanning speed of mechanical scanning is fast, but the structure is cumbersome, the cost is high, and the process is cumbersome.
  • MEMS Micro-Electro-Mechanical System, micro-mechanical system
  • MEMS lidar is small in size and simple in process. The lidar system described later in this application will be described using MEMS lidar as an example.
  • the field of view (FOV) of the existing lidar is relatively small, and the relatively large field of view (FOV) is usually achieved by stacking multiple light sources, which has a complex structure, high cost, and small size, making it difficult to compete Achieve a balance between performance and cost. That is, the existing laser radar adopts a single light source solution, and the FOV is limited, which cannot meet the needs of the laser radar. However, the existing laser radar adopts a multi-light source solution, and the FOV can meet the requirements. However, the use of multiple light sources is costly and bulky, which is not conducive to the miniaturization of the laser radar.
  • this application provides a laser radar system, through the combination of a single light source and diffractive optical elements (Diffractive Optical Elements, referred to as DOE), realize the multi-channel output of laser, improve the field of view angle of the laser radar system, and realize The miniaturization of lidar.
  • DOE diffractive Optical Elements
  • the laser radar system 1 (for example MEMS laser radar) of the present application comprises interconnected processor 11, light emitting system 12 (also referred to as transmitting end), light scanning device 13 and light receiving system 14 (also referred to as receiving end).
  • the processor 11 controls the light emitting system 12 to emit laser light
  • the laser light emitted by the light emitting system 12 reaches the light scanning device 13 (for example, comprising a MEMS rotating mirror), and the target object is scanned by the light scanning device 13, and the laser light is reflected back after reaching the target object.
  • the light receiving system 14 performs data processing through the processor 11 to realize the detection of the target object.
  • the lidar system 1 detects the presence of a target object 200 meters away.
  • the light emitting system 12 , the light scanning device 13 and the light receiving system 14 of the laser radar system 1 of the present application will be described in detail below with reference to the accompanying drawings.
  • the light emission system 12 of the laser radar system 1 of the present application includes: a laser source 10, a collimation unit 20, a diffractive optical beam splitting element 30, a plurality of transmissive mirrors 40, and a plurality of first reflectors 50 ;
  • the light scanning device 13 includes a light deflection scanning element 60 ;
  • the light receiving system 14 includes: a plurality of second mirrors 80 and a detector 100 .
  • the laser source 10 is used to emit a beam of laser (shown by the dotted arrow in FIG. 3 ), that is, the laser source 10 emits a single light source.
  • the collimating unit 20 is used for collimating the laser light emitted by the laser source 10 .
  • the collimation unit 20 adopts a lens system.
  • a beam of laser light emitted by the laser source 10 becomes collimated light through the lens system (collimation unit 20), and then reaches the diffractive optical beam splitting element 30, which is composed of a DOE (Diffractive Optical Elements, referred to as DOE) structure.
  • DOE diffractive Optical Elements
  • the diffractive optical beam splitting element 30 is used to divide the collimated laser light into multiple equal parts, and the angle can be set according to the scanning requirements of the laser radar. That is, the diffractive optical beam splitting element 30 is used to split the collimated laser light according to a set angle (shown by ⁇ in FIG. 3 ), so as to simultaneously output multiple laser beams.
  • a set angle shown by ⁇ in FIG. 3
  • the aforementioned setting angle ⁇ is between 20° and 25°.
  • FIG. 2 and FIG. 3 show that the diffractive optical beam splitting element 30 outputs five laser beams, and the present application uses the output of five laser beams as an example for illustration.
  • the number of transmissive mirrors 40 , first mirrors 50 and second mirrors 80 described later is five accordingly. But the present application is not limited thereto. In some possible implementations, other numbers of lasers can be output according to the scanning requirements of the lidar, for example, the diffractive optical beam splitting element 30 outputs four laser beams or six laser beams, etc.
  • the above-mentioned multi-beam laser beams split by the diffractive optical beam splitting element 30 are in one-to-one correspondence with a plurality of transmissive mirrors 40, and each laser beam after splitting reaches the corresponding transmissive mirror 40, and each transmissive mirror 40 is used for A corresponding beam of laser light is transmitted to form transmitted light.
  • the plurality of first reflectors 50 correspond one-to-one to the plurality of transmissive reflectors 40, each beam of transmitted light is incident on the corresponding first reflector 50, and the plurality of first reflectors 50 simultaneously reflect the respective transmitted light to the same A light deflecting scanning element 60 .
  • the five beams of transmitted light respectively pass through the corresponding first reflector 50 , and after changing the angle of the light path, they are simultaneously reflected to the same light deflection scanning element 60 .
  • the light deflection scanning element 60 is a MEMS rotating mirror or other rotating mirror structures.
  • the MEMS rotating mirror is a 2D MEMS structure.
  • the light deflecting scanning element 60 is used for deflecting and reflecting the five beams of transmitted light, and then transmitting the light to perform laser scanning on the target object 70 ahead.
  • the plurality of second reflectors 80 correspond one-to-one to the plurality of transmissive mirrors 40 , and the light deflection scanning element 60 deflects and reflects the five beams of transmitted light, and reflects them back after encountering the target object 70 .
  • the laser light reflected from the target object 70 (indicated by the solid arrow in FIG. 3 ) is reflected back to the light deflecting scanning element 60 , the corresponding first mirror 50 and the corresponding transmissive mirror 40 in turn. That is, the five laser beams reflected from the target object 70 return to the corresponding transmissive mirror 40 in the same way. It is reflected by the corresponding transmissive mirror 40 to the corresponding second reflector 80 , and then reflected to the detector 100 by the second reflector 80 , so as to realize the detection of the target object 70 .
  • the laser source 10 emits a beam of laser light through the collimation unit 20, the diffractive optical beam splitting element 30, the corresponding transmissive mirror 40, the corresponding first mirror 50, and the light deflection scanning element 60 to reach the target object 70 ahead, When encountering the target object 70, it is reflected back to the light deflection scanning element 60, the corresponding first reflector 50, and the corresponding transmissive reflector 40, and then reflected to the corresponding second reflector 80 by the corresponding transmissive reflector 40, and then reflected to the corresponding second reflector 80.
  • Detector 100 Therefore, the field angle of the entire lidar system 1 is improved through the beam splitting scheme of the single light source (as shown by ⁇ in FIG. 3 ), and the detection distance is increased.
  • the angle between the five laser beams output by the DOE beam splitting is determined by the requirements of the lidar, for example, the angle is between 20° and 25°.
  • the lidar system 1 of the present application also includes a beam combiner 90, and the laser light reflected back from the target object 70 is reflected to the same beam combiner 90 by the second reflector 80, and then passed through The beam combiner 90 is reflected to the detector 100 . That is, the five laser beams reflected from the target object 70 are reflected by the second mirror 80 to the same beam combiner 90 , and then the five laser beams are reflected to the detector 100 .
  • the beam combiner 90 is a lens system.
  • the multiple laser beams are modulated and converged by the lens system at the beam combiner 90 , and finally reach the detector 100 to realize the detection of the target object 70 ahead.
  • the reflection angles of each of the above-mentioned second mirrors 80 are different.
  • the position of the beam combiner 90 can be adjusted, thereby realizing the modulation of the angle of the receiving end, and the large The angle is changed to a small angle, thereby reducing the difficulty of receiving the lens.
  • the receiving end adopts an optical path extension architecture, which can reduce the field of view angle of the receiving end, realize multi-viewpoint detection of conventional lenses, and reduce the complexity of the lidar system 1 .
  • the beam combiner 90 includes a lens 91 .
  • the beam combiner 90 includes a lens 91 corresponding to the second mirror 80 one-to-one, and a collimating unit 92 corresponding to the lens 91 one-to-one.
  • Five lenses 91 and five collimating units 92 are shown in FIG. 4 .
  • the laser light reflected from the target object 70 is reflected by the corresponding second mirror 80 to the corresponding lens 91, and then converged to the detector 100 through the corresponding collimation unit 20. Therefore, each light path has a collimation unit 92, so the receiving end is composed of multiple collimated light paths.
  • Each path of laser light reflected from each second mirror 80 is a separate receiving optical path, with a small field of view and a simple optical path, which can be realized by a single lens, and the crosstalk between the optical paths will be further reduced, improving the system SNR (SIGNAL-NOISE RATIO, signal-to-noise ratio).
  • the laser light emitted by the above-mentioned laser source 10 may be a single light source, or may be composed of multiple light sources (with the same wavelength).
  • Two light sources are shown in Fig. 5, because the laser light source is a single polarization state, two laser light sources 101 first pass through the double microlens array 102, and the two-way laser light sources are initially collimated, and then pass through the PCS (Polarizing conversion system, polarization conversion Device) 103 realizes the beam combination of the two optical paths.
  • the output light intensity is the superposition of two laser light sources, and the divergence angle is based on a single light source, which can realize the output beam with a small divergence angle.
  • the outgoing light beams are superimposed by two polarization states perpendicular to each other, which eliminates the single polarization state and has a better general lighting effect.
  • the above-mentioned diffractive optical beam splitting element 30 is composed of a DOE, and through non-periodic grating modulation, uniform insertion loss splitting of light beams can be realized.
  • the DOE structure shown in Figure 6 (a) is realized by aperiodic duty cycle and period
  • the DOE structure shown in Figure 6 (b) is achieved by adding two gratings on the premise of aperiodic The height can further increase the degree of freedom of modulation, thereby achieving better beam splitting modulation.
  • the above-mentioned relationship between the lens system (beam combiner 90) and the detector 100 can be adjusted to the lens of the beam combiner 90 according to the type of the detector 100. design.
  • the detector 100 is a surface array detector
  • the lens of the beam combiner 90 can be a coaxial spherical surface or a combination of an aspheric surface and a cylindrical lens, so that the detector 100 is a line light source detection (as shown in Fig. As shown in (a) in Figure 8), the saturation of the detection is increased, and the black circle shown in Figure 8 (a) represents the light spot.
  • the detector 100 is a discrete APD (avalanche photodetector), and the lens of the beam combiner 90 can be realized with coaxial spherical and aspheric surfaces, so that the detector 100 is a point light source detection (as shown in (b) in FIG. 8 ), the black circle shown in (b) in FIG. 8 represents the light spot.
  • APD active photodetector
  • the detector 100 uses an area array detector for detection, and each light spot covers multiple pixels (as shown in (c) in Figure 8 (shown), the black circle shown in (c) in Figure 8 represents the light spot, and a higher-precision test can be achieved through the data on each pixel.
  • the divergence angle of the sending end laser source 10
  • each light spot at the receiving end can be designed as 8 ⁇ 8 pixels, and each pixel corresponds to an angular resolution of 0.1° , the detector 100 realizes a higher precision test.
  • the above-mentioned detectors 100 are point detectors, and the number of point detectors is, for example, five.
  • a beam of laser light in this application is a dual-wavelength light source formed by combining laser beams of different wavelengths. That is, the transmitting end of the laser radar system 1 adopts dual wavelengths.
  • the dual-wavelength light source is formed by combining laser beams with a wavelength of 905 nm and a wavelength of 940 nm.
  • the present application does not limit this, and other laser beams with different wavelengths may be combined to form.
  • the laser source 10 includes: a first laser 104, which is used to emit laser light of a first wavelength ⁇ 1 (for example, 905nm) (shown by a solid arrow in FIG. 9 ); a second laser 105, which is used to emit a second wavelength ⁇ 2 (for example, 940nm) laser (shown by the dotted arrow in FIG. 9 ).
  • the above-mentioned collimation unit 20 includes: a first collimator 201 for collimating the laser light of the first wavelength ⁇ 1 emitted by the first laser 104; a second collimator 202 for collimating the laser light emitted by the second laser 105 The laser light of the second wavelength ⁇ 2 is collimated.
  • the aforementioned lidar system 1 further includes a dual-wavelength multiplexer 108 and a third mirror 109 .
  • the laser light of the first wavelength ⁇ 1 is reflected to the dual-wavelength multiplexer 108 after being collimated, and the laser light of the second wavelength ⁇ 2 collimated by the second collimator 202 is reflected to the third reflector 109, and the third reflector 109 again The laser light of the second wavelength ⁇ 2 collimated by the second collimator 202 is reflected to the dual-wavelength multiplexer 108 .
  • the dual-wavelength multiplexer 108 collimates the laser with the first wavelength ⁇ 1 and the second wavelength
  • the ⁇ 2 laser beams are combined to form a dual-wavelength light source.
  • the dual-wavelength light source formed by the dual-wavelength combiner 108 reaches the DOE (diffractive optical beam-splitting element 30) beam splitter 2015, wherein the DOE separates the laser light of the first wavelength ⁇ 1 and the laser light of the second wavelength ⁇ 2 according to Set the angle to split the beam to form multiple laser beams output.
  • the laser beam of the first DOE wavelength ⁇ 1 is split into two laser beams
  • the laser beam of the DOE second wavelength ⁇ 2 is split into three laser beams.
  • the angles between the five laser beams output by DOE beam splitting are determined by the requirements of the laser radar.
  • the five beams of light pass through the above-mentioned transmissive mirror 40 and the above-mentioned first mirror 50 and then arrive at the above-mentioned light deflection scanning element 60.
  • the scanning of the front target object 70 is realized.
  • a dual-wavelength light source is used for emission, and a wavelength filter is added at the receiving end to reduce stray light in the optical path at the receiving end. Moreover, the dual-wavelength beam splitting optical path reduces the crosstalk between adjacent optical path channels while ensuring a small volume.
  • the above-mentioned DOE includes two separate domain structures.
  • the above-mentioned DOE includes a single region. Both of the above two DOE structures can split the above-mentioned dual-wavelength light source into multiple laser beams for output.
  • the above-mentioned transmissive mirror 40 is used to fully or partially transmit a corresponding beam of laser light.
  • each split laser beam reaches the corresponding transmissive mirror 40 , part of it is transmitted and the other part is reflected.
  • the transmitted laser light will reach the corresponding first reflector 50; the reflected laser light will be absorbed by structural parts or other structures, preventing this part of light from becoming noise.
  • 50% of the laser beam is transmitted and the other 50% of the laser beam is reflected.
  • this application does not limit the ratio of transmission, and the needs of lidar should be set accordingly.
  • the laser light reflected back from the target object 70 is reflected back to the corresponding first reflector 50, and after being reflected by the first reflector 50 to the corresponding transmissive reflector 40, part of it is transmitted, and the other part reflection.
  • the reflected laser light will reach the corresponding second reflector 80; the transmitted laser light will be absorbed by structural parts or other structures, preventing this part of light from becoming noise.
  • 50% of the laser light is transmitted and the other 50% of the laser light is reflected.
  • the transmissive mirror 40 adopts a perforation scheme, and each laser beam after beam splitting reaches the corresponding transmissive mirror 40 and is completely transmitted. Wherein, the transmitted laser light will reach the corresponding first reflector 50 .
  • the laser light reflected back from the target object 70 is reflected back to the corresponding first reflector 50, and after being reflected by the first reflector 50 to the corresponding transmissive reflector 40, part of it is transmitted, and the other part reflection.
  • the reflected laser light will reach the corresponding second reflector 80; the transmitted laser light will be absorbed by structural parts or other structures, preventing this part of light from becoming noise.
  • 50% of the laser light is transmitted and the other 50% of the laser light is reflected.
  • the laser radar system of the present application realizes the multi-channel output of the laser through the combination of a single light source and a diffractive optical beam splitting element, improves the field of view of the laser radar system, realizes the miniaturization of the laser radar, and improves the laser radar detection distance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达系统及电子设备,涉及电子设备领域,激光雷达系统包括:激光源(10),用于发射一束激光;准直单元(20),用于对激光源(10)发射的激光进行准直;衍射光学分束元件(30),用于将准直后的激光按设定角度进行分束,以同时输出多束激光;分束后的多束激光一一对应的多个透射反射镜(40),每一个透射反射镜(40)用于对相应的一束激光进行透射形成透射光;与多个透射反射镜(40)一一对应的多个第一反射镜(50),每一束透射光入射到对应的第一反射镜(50),多个第一反射镜(50)将各自的透射光同时反射到同一个光线偏转扫描元件(60);光线偏转扫描元件(60)用于对多束透射光进行偏转反射;与多个透射反射镜(40)一一对应的多个第二反射镜(80)。激光雷达系统的视场角可以得到提升。

Description

一种激光雷达系统及电子设备
本申请要求于2021年10月29日提交中国专利局、申请号为202111268665.7、申请名称为“一种激光雷达系统及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,特别涉及一种激光雷达系统及电子设备。
背景技术
随着物联网和5G的发展,自动驾驶成为了未来的发展趋势,现阶段自动驾驶主要分为辅助驾驶、半自动驾驶和全自动驾驶。其中,长距扫描激光雷达(Light detection and ranging,简称LIDAR)是实现半自动驾驶和全自动驾驶的必要手段。激光雷达的测试距离可以达到200米以上,且精度很高。
但现有的激光雷达的视场角(Field of view,简称FOV)偏小,探测距离有限。
发明内容
本申请的实施例提供一种激光雷达系统,采用单一光源结合衍射光学分束元件,实现激光的多光路输出,提升了激光雷达的视场角。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种激光雷达系统,包括:激光源,用于发射一束激光(即单一光源);准直单元,用于对激光源发射的激光进行准直;衍射光学分束元件,用于将准直后的激光按设定角度进行分束,以同时输出多束激光;与分束后的多束激光一一对应的多个透射反射镜,每一个透射反射镜用于对相应的一束激光进行透射形成透射光;与多个透射反射镜一一对应的多个第一反射镜,每一束透射光入射到对应的第一反射镜,多个第一反射镜将各自的透射光同时反射到同一个光线偏转扫描元件;光线偏转扫描元件用于对多束透射光进行偏转反射,以对前方目标物体进行激光扫描;与多个透射反射镜一一对应的多个第二反射镜,从目标物体反射回的激光依次反射回光线偏转扫描元件、相应的第一反射镜和相应的透射反射镜,并经相应的透射反射镜反射到相应的第二反射镜,再经第二反射镜反射到探测器,以实现对目标物体的探测。
根据本申请的实施方式,本申请的激光雷达系统使用单一光源分束方案,光线偏转扫描元件对多束透射光进行偏转反射,以对前方目标物体进行激光扫描,提升了整个激光雷达系统的视场角,使得激光雷达系统的探测距离提高。
在上述第一方面的一种可能实现中,还包括合束器,从目标物体反射回的激光经第二反射镜反射到同一个合束器,再经合束器反射到探测器。
在上述第一方面的一种可能实现中,合束器为透镜系统。
在上述第一方面的一种可能实现中,一束激光是通过将不同波长的激光合束形成 的双波长光源。
在上述第一方面的一种可能实现中,激光源包括:第一激光器,用于发射第一波长的激光;第二激光器,用于发射第二波长的激光;准直单元包括:第一准直器,用于对第一激光器发射的第一波长的激光进行准直;第二准直器,用于对第二激光器发射的第二波长的激光进行准直;还包括,双波长合波器和第三反射镜;第三反射镜用于将经第二准直器准直后的第二波长的激光反射到双波长合波器;双波长合波器用于将经第一准直器准直后的第一波长的激光和第二波长的激光合束形成双波长光源。
在上述第一方面的一种可能实现中,双波长光源由905nm波长和940nm波长的激光合束形成。
在上述第一方面的一种可能实现中,光线偏转扫描元件为MEMS转镜。
在上述第一方面的一种可能实现中,透射反射镜用于对相应的一束激光进行全部或部分透射。
在上述第一方面的一种可能实现中,多束激光包括五束激光。
在上述第一方面的一种可能实现中,探测器为面阵列探测器或多个点探测器。多个点探测器的数量例如是五个。
第二方面,本申请还提供一种电子设备,包括上述第一方面任一项所描述的激光雷达系统。示例性地,电子设备为自动驾驶汽车。
附图说明
图1根据本申请的一些实施例,示出了激光雷达系统的结构框图;
图2根据本申请的一些实施例,示出了激光雷达系统的光路示意图一;
图3根据本申请的一些实施例,示出了激光雷达系统的光路示意图二;
图4根据本申请的一些实施例,示出了激光雷达系统的光路示意图三;
图5根据本申请的一些实施例,示出了激光雷达系统中激光源的结构示意图;
图6根据本申请的一些实施例,示出了激光雷达系统中衍射光学分束元件的结构示意图一;
图7根据本申请的一些实施例,示出了激光雷达系统中合束器与探测器光路传输示意图;
图8根据本申请的一些实施例,示出了激光雷达系统中探测器的结构示意图;
图9根据本申请的一些实施例,示出了激光雷达系统中激光源与衍射光学分束元件的光路传输示意图;
图10根据本申请的一些实施例,示出了激光雷达系统中衍射光学分束元件的结构示意图二;
图11根据本申请的一些实施例,示出了激光雷达系统中透射反射镜的光路传输示意图。
具体实施方式
以下将参考附图详细说明本申请的具体实施方式。
激光雷达是自动驾驶等电子设备中不可缺少的技术,激光雷达相对于摄像头的优 势在于3D模型的准确建立及夜间行驶,可提供更丰富且准确的数据,更轻松建造模拟环境。帮助判断周围车辆及物体的互动。同时,激光雷达也是当前交通标志识别、自适应巡航控制(ACC)、盲点检测、防撞系统和车道偏离警告等电子设备的系统中的关键组件。
激光雷达根据扫描技术进行分类,主要包括机械扫描和固态扫描。机械扫描扫描速度快,但结构笨重,成本高,工艺繁琐。而固态扫描中使用MEMS(Micro-Electro-Mechanical System,微机械系统)。MEMS激光雷达尺寸小、工艺简单。本申请后述的激光雷达系统以MEMS激光雷达为示例说明。
现有的激光雷达的视场角(FOV)相对较小,而相对大的视场角(FOV)通常是用多个光源堆叠实现,结构复杂,成本高,尺寸打,在竞争力上很难做到性能与成本的平衡。即,现有的激光雷达采用单一光源的方案,FOV受限,无法满足激光雷达的需求。而现有激光雷达采用多光源的方案,FOV可以满足要求,但是采用多路光源,成本高,体积大,不利于激光雷达的小型化。
因此,本申请提供一种激光雷达系统,通过单一光源和衍射光学分束元件(Diffractive Optical Elements,简称DOE)的结合,实现激光的多路输出,提升了激光雷达系统的视场角,也实现了激光雷达的小型化。
参考图1,本申请的激光雷达系统1(例如MEMS激光雷达)包括相互连接的处理器11、光发射系统12(也称为发射端)、光扫描器件13和光接收系统14(也称为接收端)。其中,处理器11控制光发射系统12发出激光,光发射系统12发出的激光到达光扫描器件13(例如包括MEMS转镜),通过光扫描器件13扫描目标物体,激光到达目标物体后被反射回光接收系统14,再通过处理器11进行数据处理,实现对目标物体的探测。例如,激光雷达系统1探测到200米外存在一个目标物体。
下面结合附图详细介绍本申请的激光雷达系统1的光发射系统12、光扫描器件13和光接收系统14。
参考图1至图3,本申请的激光雷达系统1的光发射系统12包括:激光源10、准直单元20、衍射光学分束元件30、多个透射反射镜40、多个第一反射镜50;光扫描器件13包括光线偏转扫描元件60;光接收系统14包括:多个第二反射镜80和探测器100。
其中,激光源10用于发射一束激光(图3中虚线箭头所示),即激光源10发射的是单一光源。准直单元20用于对激光源10发射的激光进行准直。示例性地,准直单元20采用透镜系统。激光源10发射的一束激光经过透镜系统(准直单元20)变为准直光,然后到达衍射光学分束元件30,该分束元件采用DOE(Diffractive Optical Elements,简称DOE)结构构成。衍射光学分束元件30用于将准直后的激光分为多等份,且角度可以按照激光雷达的扫描需求设置。即,衍射光学分束元件30用于将准直后的激光按设定角度(图3中α所示)进行分束,以同时输出多束激光。示例性地,上述的设定角度α在20°至25°之间。
示例性地,图2和图3中示出衍射光学分束元件30输出五束激光,本申请以输出五束激光为示例说明。后述的透射反射镜40、第一反射镜50和第二反射镜80的数量相应地为五个。但本申请不限于此,在一些可能的实施方式中,可以根据激光雷达的 扫描需求,输出其它数量的激光,例如衍射光学分束元件30输出四束激光或六束激光等。
上述经衍射光学分束元件30分束后的多束激光与多个透射反射镜40一一对应,分束后的每一束激光到达相应的透射反射镜40,每一个透射反射镜40用于对相应的一束激光进行透射形成透射光。上述多个第一反射镜50与多个透射反射镜40一一对应,每一束透射光入射到对应的第一反射镜50,多个第一反射镜50将各自的透射光同时反射到同一个光线偏转扫描元件60。即五束透射光分别经相应的第一反射镜50,改变光路角度后,同时反射到同一个光线偏转扫描元件60。示例性地,光线偏转扫描元件60为MEMS转镜或者其它转镜结构。示例性地,MEMS转镜为2D MEMS结构。光线偏转扫描元件60用于对五束透射光进行偏转反射,然后将光线传输出去,以对前方目标物体70进行激光扫描。
上述的多个第二反射镜80与多个透射反射镜40一一对应,上述光线偏转扫描元件60将五束透射光偏转反射出去,遇到目标物体70之后反射回来。从目标物体70反射回的激光(图3中实线箭头所示)依次反射回光线偏转扫描元件60、相应的第一反射镜50和相应的透射反射镜40。即,从目标物体70反射回的五束激光原路返回到相应的透射反射镜40。并经相应的透射反射镜40反射到相应的第二反射镜80,再经第二反射镜80反射到探测器100,以实现对目标物体70的探测。
即,激光源10发射一束激光依次经过准直单元20、衍射光学分束元件30、相应的透射反射镜40、相应的第一反射镜50、光线偏转扫描元件60达到前方的目标物体70,遇到目标物体70再反射回光线偏转扫描元件60、相应的第一反射镜50、相应的透射反射镜40,再经相应的透射反射镜40反射到相应的第二反射镜80后,反射到探测器100。从而,通过单一光源分束方案提升了整个激光雷达系统1的视场角(如图3中β所示),探测距离提高。经DOE分束输出的五束激光之间的角度由激光雷达的需求决定,示例性地,该角度在20°至25°之间。
继续参考图2和图3和图7,本申请的激光雷达系统1还包括合束器90,从目标物体70反射回的激光经第二反射镜80反射到同一个合束器90,再经合束器90反射到探测器100。即,从目标物体70反射回的五束激光经第二反射镜80反射到同一个合束器90,五束激光再反射到探测器100。示例性地,合束器90为透镜系统。
多束激光在合束器90处通过透镜系统进行调制和汇聚,最终达探测器100,实现前方目标物体70的探测。示例性地,上述的每一个第二反射镜80的反射角度均不同,通过控制第二反射镜80的反射角度可以调整合束器90的位置,进而实现接收端的角度的调制,将发射端的大角度改变为小角度,进而减小接受端镜头的难度。这属于光路延展架构。接收端采用光路延展架构,可以减小接收端的视场角,可以实现常规镜头的多视点探测,减小了激光雷达系统1的复杂度。
也即,通过采用接收端同轴光路,且通过光路延展的方式,可以实现大视场角发射,小角度接收的架构,减小了接收端光路的复杂度。
如图3所示,合束器90包括一个透镜91。在一些可能的实施方式中,参考图4,合束器90包括与第二反射镜80一一对应的透镜91,以及与透镜91一一对应的准直单元92。图4中示出五个透镜91和五个准直单元92。从目标物体70反射回的激光经 相应的第二反射镜80反射到相应的透镜91,再经相应的准直单元20汇聚到探测器100。从而,每一路光都有一个准直单元92,所以接收端是由多个准直光路构成的。从每一个第二反射镜80反射的每一路激光都是单独的接收光路,视场角小,光路简单,可以通过单透镜实现,光路之间的串扰会进一步降低,改善系统SNR(SIGNAL-NOISE RATIO,信噪比)。
在一些可能的实施方式中,参考图5,上述激光源10发射的激光可以是单一光源,也可以是由多个光源(波长一样)组成的。图5中示出两个光源,由于激光光源是单偏振状态,两个激光光源101,先经过双微透镜阵列102,将两路激光光源进行初步准直,然后通过PCS(Polarizing conversionsystem,偏振转换器)103实现双光路的合束,此时输出光强是两个激光光源的叠加,且发散角是基于单个光源的,可以实现小发散角的出射光束。并且出射光束为互相垂直的两个偏振状态叠加,消除了单偏振状态,具有更好的通用性照明效果。
在一些可能的实施方式中,参考图6,上述的衍射光学分束元件30由DOE构成,通过非周期性的光栅调制,可以实现光束的均匀地插损分束。其中,图6中(a)所示的DOE结构是通过非周期性的占空比和周期实现,图6中(b)所示的DOE结构是通过在非周期的前提下增加了两个光栅高度,可以进一步增加调制的自由度,进而实现更好分束调制。
在一些可能的实施方式中,参考图7和图8,上述的透镜系统(合束器90)与探测器100之间的关系,可以根据探测器100的类型,可以对合束器90的镜头进行设计。
在一些可能的实施方式中,探测器100为面阵列探测器,可以将合束器90的镜头采用共轴球面或非球面和柱透镜的组合,进而使探测器100是线光源探测(如图8中(a)所示),提升探测的饱和度,图8中(a)所示黑色圆圈代表光斑。
在一些可能的实施方式中,探测器100为是分立的APD(雪崩光电探测器),则合束器90的镜头可以用共轴的球面和非球面实现,进而使探测器100是点光源探测(如图8中(b)所示),图8中(b)所示黑色圆圈代表光斑。
在一些可能的实施方式中,当发射端是带有一定发散角的光斑出射时,则探测器100采用面阵列探测器探测,每个光斑覆盖多个像素点(如图8中(c)所示),图8中(c)所示黑色圆圈代表光斑,则可以通过每个像素点上的数据实现更高精度的测试。例如,发端端(激光源10)的发散角是±0.4°,则接收端(探测器100)每个光斑可以设计为8×8个像素点,则每个像素点对应0.1°的角分辨率,探测器100实现了更高精度的测试。
在一些可能的实施方式中,上述的探测器100是点探测器,点探测器的数量例如是五个。
在一些可能的实施方式中,参考图9,本申请的一束激光是通过将不同波长的激光合束形成的双波长光源。即,激光雷达系统1的发射端采用了双波长。示例性地,双波长光源由905nm波长和940nm波长的激光合束形成。但本申请对此不做限制,可以是其它不同波长的激光束合束形成。示例性地,激光源10包括:第一激光器104,用于发射第一波长λ1(例如是905nm)的激光(图9中实线箭头所示);第二激光器105,用于发射第二波长λ2(例如是940nm)的激光(图9中虚线箭头所示)。
上述的准直单元20包括:第一准直器201,用于对第一激光器104发射的第一波长λ1的激光进行准直;第二准直器202,用于对第二激光器105发射的第二波长λ2的激光进行准直。上述的激光雷达系统1还包括,双波长合波器108和第三反射镜109。第一波长λ1的激光经准直后反射到双波长合波器108,经第二准直器202准直后的第二波长λ2的激光反射到第三反射镜109,第三反射镜109再将经第二准直器202准直后的第二波长λ2的激光反射到双波长合波器108。
第一波长λ1的激光和第二波长λ2的激光到达双波长合波器108后,双波长合波器108将经第一准直器201准直后的第一波长λ1的激光和第二波长λ2的激光合束形成双波长光源。
经双波长合波器108合束形成的双波长光源之后到达DOE(衍射光学分束元件30)分束器2015,其中,DOE将分别第一波长λ1的激光和第二波长λ2的激光分别按设定角度分束形成多束激光输出。示例性地,参考图9,DOE第一波长λ1的激光分束成两束激光,DOE第二波长λ2的激光分束成三束激光。经DOE分束输出的五束激光之间的角度由激光雷达的需求决定,最终五束光经过上述的透射反射镜40、上述的第一反射镜50之后到达上述的光线偏转扫描元件60上,实现对前方目标物体70的扫描。
采用双波长光源发射,接收端增加波长滤波片,可以减小接收端光路的杂散光。而且,双波长分束光路,在保证小体积的同时,减小了相邻光路通道之间的串扰。
示例性地,如图10中(a)所示,上述的DOE包括两个分立区域结构。示例性地,如图10中(b)所示,上述的DOE包括单一区域。上述两种DOE结构都可以实现将上述的双波长光源分束呈多束激光输出。
参考图11,上述的透射反射镜40用于对相应的一束激光进行全部或部分透射。
如图11中(a)所示,分束后的每一束激光到达相应的透射反射镜40后,部分透射,另一部分反射。其中,透射激光会到达相应的第一反射镜50;反射激光会被结构件或者其他结构吸收,防止该部分光变为噪声。示例性地,分束后的每一束激光到达相应的透射反射镜40后,其中50%的激光透射,另外50%的激光反射。但本申请对透射的比例不作限制,激光雷达的需求做相应的设置。
如图11中(b)所示,从目标物体70反射回的激光反射回相应的第一反射镜50,并经第一反射镜50反射到相应的透射反射镜40后,部分透射,另一部分反射。其中,反射激光会到达相应的第二反射镜80;透射激光会被结构件或者其他结构吸收,防止该部分光变为噪声。示例性地,激光经第一反射镜50反射到相应的透射反射镜40后,其中50%的激光透射,另外50%的激光反射。
如图11中(c)所示,透射反射镜40上采用开孔方案,分束后的每一束激光到达相应的透射反射镜40后,全部透射。其中,透射激光会到达相应的第一反射镜50。
如图11中(d)所示,从目标物体70反射回的激光反射回相应的第一反射镜50,并经第一反射镜50反射到相应的透射反射镜40后,部分透射,另一部分反射。其中,反射激光会到达相应的第二反射镜80;透射激光会被结构件或者其他结构吸收,防止该部分光变为噪声。示例性地,激光经第一反射镜50反射到相应的透射反射镜40后,其中50%的激光透射,另外50%的激光反射。
综上,本申请的激光雷达系统通过单一光源和衍射光学分束元件的结合,实现激 光的多路输出,提升了激光雷达系统的视场角,实现了激光雷达的小型化,提升了激光雷达的探测距离。

Claims (11)

  1. 一种激光雷达系统,其特征在于,包括:
    激光源,用于发射一束激光;
    准直单元,用于对所述激光源发射的激光进行准直;
    衍射光学分束元件,用于将准直后的所述激光按设定角度进行分束,以同时输出多束激光;
    与分束后的多束激光一一对应的多个透射反射镜,每一个所述透射反射镜用于对相应的一束激光进行透射形成透射光;
    与所述多个透射反射镜一一对应的多个第一反射镜,每一束所述透射光入射到对应的所述第一反射镜,所述多个第一反射镜将各自的透射光同时反射到同一个光线偏转扫描元件;
    所述光线偏转扫描元件用于对多束透射光进行偏转反射,以对前方目标物体进行激光扫描;
    与所述多个透射反射镜一一对应的多个第二反射镜,从所述目标物体反射回的激光依次反射回所述光线偏转扫描元件、相应的所述第一反射镜和相应的所述透射反射镜,并经相应的所述透射反射镜反射到相应的所述第二反射镜,再经所述第二反射镜反射到探测器,以实现对所述目标物体的探测。
  2. 如权利要求1所述的激光雷达系统,其特征在于,还包括合束器,从所述目标物体反射回的激光经所述第二反射镜反射到同一个所述合束器,再经所述合束器反射到所述探测器。
  3. 如权利要求2所述的激光雷达系统,其特征在于,所述合束器为透镜系统。
  4. 如权利要求1至3任一项所述的激光雷达系统,其特征在于,所述一束激光是通过将不同波长的激光合束形成的双波长光源。
  5. 如权利要求4所述的激光雷达系统,其特征在于,
    所述激光源包括:
    第一激光器,用于发射第一波长的激光;
    第二激光器,用于发射第二波长的激光;
    所述准直单元包括:
    第一准直器,用于对所述第一激光器发射的第一波长的激光进行准直;
    第二准直器,用于对所述第二激光器发射的第二波长的激光进行准直;
    还包括,双波长合波器和第三反射镜;
    所述第三反射镜用于将经所述第二准直器准直后的第二波长的激光反射到所述双波长合波器;
    所述双波长合波器用于将经所述第一准直器准直后的第一波长的激光和第二波长的激光合束形成所述双波长光源。
  6. 如权利要求4或5所述的激光雷达系统,其特征在于,所述双波长光源由905nm波长和940nm波长的激光合束形成。
  7. 如权利要求1至6任一项所述的激光雷达系统,其特征在于,所述光线偏转扫描元件为MEMS转镜。
  8. 如权利要求1至7任一项所述的激光雷达系统,其特征在于,所述透射反射镜用于对相应的一束激光进行全部或部分透射。
  9. 如权利要求1至8任一项所述的激光雷达系统,其特征在于,所述多束激光包括五束激光。
  10. 如权利要求1至9任一项所述的激光雷达系统,其特征在于,所述探测器为面阵列探测器或多个点探测器。
  11. 一种电子设备,其特征在于,包括权利要求1至10任一项所述的激光雷达系统。
PCT/CN2022/127219 2021-10-29 2022-10-25 一种激光雷达系统及电子设备 WO2023072022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111268665.7A CN116068579A (zh) 2021-10-29 2021-10-29 一种激光雷达系统及电子设备
CN202111268665.7 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023072022A1 true WO2023072022A1 (zh) 2023-05-04

Family

ID=86160467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127219 WO2023072022A1 (zh) 2021-10-29 2022-10-25 一种激光雷达系统及电子设备

Country Status (2)

Country Link
CN (1) CN116068579A (zh)
WO (1) WO2023072022A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209014727U (zh) * 2018-10-15 2019-06-21 北京一径科技有限公司 一种激光雷达系统
CN110658509A (zh) * 2018-06-28 2020-01-07 探维科技(北京)有限公司 基于一维衍射光学元件doe的激光雷达系统
CN111650602A (zh) * 2020-06-22 2020-09-11 西南技术物理研究所 基于衍射光学元件与光纤阵列的多波长激光雷达
US20210157008A1 (en) * 2017-05-12 2021-05-27 Robert Bosch Gmbh Transmitter optics for a lidar system, optical arrangement for a lidar system, lidar system and working device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210157008A1 (en) * 2017-05-12 2021-05-27 Robert Bosch Gmbh Transmitter optics for a lidar system, optical arrangement for a lidar system, lidar system and working device
CN110658509A (zh) * 2018-06-28 2020-01-07 探维科技(北京)有限公司 基于一维衍射光学元件doe的激光雷达系统
CN209014727U (zh) * 2018-10-15 2019-06-21 北京一径科技有限公司 一种激光雷达系统
CN111650602A (zh) * 2020-06-22 2020-09-11 西南技术物理研究所 基于衍射光学元件与光纤阵列的多波长激光雷达

Also Published As

Publication number Publication date
CN116068579A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
EP3992663A1 (en) Prism and multi-layer laser radar
US11709240B2 (en) Descan compensation in scanning LIDAR
US11573298B2 (en) OPA-based laser radar transceiver antenna and distance measurement method
CN110161517B (zh) 激光雷达系统和激光扫描控制方法
WO2022028496A1 (zh) 激光雷达的光学系统和激光雷达系统
CN211426799U (zh) 一种二维扫描激光雷达装置及电子设备
JP7372331B2 (ja) 偏光エンコードされたビーム送出及び収集
CN104849843A (zh) 激光合成光学装置
EP4332617A1 (en) Optical detection device, driving vehicle, laser radar and detection method
CN113156401B (zh) 一种收发分置激光雷达光学系统
CN113030911A (zh) 一种激光雷达系统
US20240053444A1 (en) Laser radar
CN212321852U (zh) 一种适用于自动驾驶的激光雷达点云成像装置
WO2023072022A1 (zh) 一种激光雷达系统及电子设备
CN117859070A (zh) 使用衍射波导的同轴激光雷达系统
CN211741559U (zh) 一种双波长多线激光雷达装置
CN115047428A (zh) 激光雷达
WO2023207425A1 (zh) 一种激光雷达和激光扫描方法
US20240159905A1 (en) Fmcw lidar system with integrated receiving optics for multiple channels
CN218158327U (zh) 多波长的扫描装置、发射模块和激光雷达
CN109991614B (zh) 激光雷达测距装置
CN219302659U (zh) 发射模组及激光雷达
CN218675291U (zh) 一种多线激光雷达系统
WO2020119751A1 (zh) 激光雷达
CN117665764A (zh) 多波长的扫描装置、发射模块和激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885899

Country of ref document: EP

Kind code of ref document: A1