WO2023207042A1 - 供电控制方法、装置及电源设备 - Google Patents

供电控制方法、装置及电源设备 Download PDF

Info

Publication number
WO2023207042A1
WO2023207042A1 PCT/CN2022/132652 CN2022132652W WO2023207042A1 WO 2023207042 A1 WO2023207042 A1 WO 2023207042A1 CN 2022132652 W CN2022132652 W CN 2022132652W WO 2023207042 A1 WO2023207042 A1 WO 2023207042A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply control
load
period
cycle
Prior art date
Application number
PCT/CN2022/132652
Other languages
English (en)
French (fr)
Inventor
张宸珲
张宏韬
陈熙
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2023207042A1 publication Critical patent/WO2023207042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters

Definitions

  • the present application belongs to the field of power supply technology, and in particular relates to a power supply control method, device and power supply equipment.
  • a power supply is a device used to store electrical energy and supply power to a load when needed.
  • the traditional power supply device will always keep the power supply circuit in the open state after it is turned on.
  • the internal power supply circuit will Switching semiconductors will inevitably produce switching losses, which will cause unnecessary power loss when the power supply equipment is no-load, thereby reducing the power reserve and effective utilization of the power supply equipment.
  • the traditional method is to turn off the active components of the power supply equipment for a fixed period of time and then turn the active components back on when it is detected that the load is not connected to the output terminal of the power supply equipment.
  • this method may cause misjudgment of no-load conditions, making it impossible to provide timely power supply and reducing the applicable scope of the power supply equipment.
  • a power supply control method, device and power supply equipment are provided.
  • inventions of the present application provide a power supply control method, which is applied to power supply equipment.
  • the power supply control method includes:
  • the power supply device In the first power supply control mode, the power supply device is controlled based on multiple consecutive cycles, the power supply circuit of the power supply device is turned on during the on period of each cycle, and all power supply circuits are turned off during the off period of each cycle.
  • the first power supply control mode is exited, the second power supply control mode is entered, and the power supply circuit is controlled to remain open.
  • inventions of the present application provide a power supply control device applied to power supply equipment.
  • the power supply control device includes:
  • the first control unit is configured to perform power supply control on the power supply device based on multiple consecutive cycles in the first power supply control mode, and turn on the power supply circuit of the power supply device during the start period of each cycle.
  • the power supply circuit is turned off during the off period of the cycle; wherein, the sum of the duration of the on period and the off period of each cycle is equal to the cycle duration of each cycle, and the duration of the on period in the latter cycle is the same as that in the previous cycle.
  • the duration of the opening period differs by a preset step;
  • the second control unit is used to exit the first power supply control mode, enter the second power supply control mode, and control the power supply circuit to remain open when the load current is detected during the opening period of any period.
  • inventions of the present application provide a power supply control device.
  • the power supply control device includes a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • the processor executes The computer program implements the power supply control method described in the above first aspect or any optional manner of the first aspect.
  • inventions of the present application provide a power supply device.
  • the power supply device includes one or more processors; a storage device configured to store one or more programs. When the one or more programs are processed by the When executed by or multiple processors, the power supply device implements the power supply control method as described above.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a processor, the computer program implements the above-mentioned first aspect or any of the first aspects.
  • An optional power supply control method When the computer program is executed by a processor, the computer program implements the above-mentioned first aspect or any of the first aspects.
  • An optional power supply control method When the computer program is executed by a processor, the computer program implements the above-mentioned first aspect or any of the first aspects.
  • embodiments of the present application provide a computer program product.
  • the power supply control device executes the method described in the first aspect or any optional method of the first aspect. Power supply control method.
  • FIG. 1 is a schematic architecture diagram of a power supply device provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a power supply control method provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a power supply control method provided by another embodiment of the present application.
  • Figure 4 is a schematic flow chart of a power supply control method provided by yet another embodiment of the present application.
  • Figure 5 is a schematic diagram of the overall control logic of a power supply control method provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a power supply control device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a power supply control device provided by another embodiment of the present application.
  • An embodiment of the present application provides a power supply control method.
  • the execution subject is a power supply control device.
  • the power supply control device can be applied to power supply equipment, such as mobile energy storage equipment.
  • the power supply control device may be disposed inside the power supply device, or may be disposed outside the power supply device and connected to the power supply device.
  • the embodiments of the present application do not place any special restrictions on the arrangement manner of the power supply control device. Taking the power supply control device installed inside the power supply equipment as an example, please refer to FIG. 1 .
  • FIG. 1 is a schematic architecture diagram of a power supply equipment provided by an embodiment of the present application.
  • the power supply device 10 may also include a DC power supply 102, a DC-DC (direct current-direct current, DC-DC) conversion circuit 103 and an alternating current- direct current (AC-DC) conversion circuit 104.
  • the DC-DC conversion circuit 103 is connected between the DC power supply 102 and the AC-DC conversion circuit 104.
  • the DC-DC conversion circuit 103 is used to voltage convert and output the DC power provided by the DC power supply 102.
  • the AC-DC conversion circuit 104 is used to invert the DC power output by the DC-DC conversion circuit 103 and output AC power.
  • the output terminal of the AC-DC conversion circuit 104 can be used to connect a load.
  • the DC-DC conversion circuit 103 may be a resonant conversion circuit.
  • the AC-DC conversion circuit 104 may be a power factor correction (power factor correction, PFC) circuit.
  • PFC power factor correction
  • both the DC-DC conversion circuit 103 and the AC-DC conversion circuit 104 are connected to the power supply control device 101 .
  • the power supply control device 101 can control the power supply of the power supply device 10 by controlling the DC-DC conversion circuit 103 and the AC-DC conversion circuit 104 .
  • the power supply control device can be configured with a target script file, and the target script file describes the power supply control method provided by the embodiment of the present application, so that the power supply control device executes the target script file when it needs to control the power supply of the power supply device. , and then execute each step in the power supply control method provided by the embodiment of the present application.
  • FIG 2 is a schematic flow chart of a power supply control method provided by an embodiment of the present application.
  • the power supply control method may include S210 ⁇ S220, which are detailed as follows:
  • S210 In the first power supply control mode, perform power supply control on the power supply device based on multiple consecutive cycles, turn on the power supply circuit of the power supply device during the on period of each cycle, and turn off the power supply circuit of the power supply device during the off period of each cycle. power supply circuit.
  • the power supply circuit of the power supply device refers to the circuit in the power supply device used to supply power to the load.
  • the power supply circuit of the power supply device may be a power supply circuit composed of a DC power supply 102, a DC-DC conversion circuit 103 and an AC-DC conversion circuit 104.
  • the power supply circuit of the power supply device may also adopt other structures, and the structure of the power supply circuit is not particularly limited here.
  • the first power supply control mode refers to a mode of controlling the power supply circuit of the power supply device to operate intermittently.
  • the power supply control strategy corresponding to the first power supply control mode may be: performing power supply control on the power supply device based on multiple consecutive cycles. Specifically, the power supply circuit of the power supply device is turned on during the start period of each cycle. The above-mentioned power supply circuit is closed during the shutdown period of each cycle.
  • electrical equipment such as refrigerators or air conditioners usually have a silent working mode.
  • the silent working mode the main functional modules of these electrical equipment are turned off, and only the controller and some sensors are in working state.
  • the refrigerator will enter a silent working mode after reaching a certain temperature.
  • the refrigeration module of the refrigerator will shut down, leaving only the controller and thermometer working. Therefore, when the load of the power supply equipment is such electrical equipment with a silent working mode, the power supply control device may be unable to determine whether the power supply equipment is loaded.
  • the power supply control device will not recognize that a refrigerator is connected to the power supply device, and will think that the power supply device is not loaded, resulting in a misjudgment of no load.
  • this application improves the duration of the on period and/or the duration of the off period in multiple consecutive cycles. Specifically, the duration of the on period and the off period of each cycle is improved.
  • the sum of the durations is equal to the cycle duration of each cycle, and the cycle duration of each cycle is the same.
  • the duration of the open period in the latter cycle is the same as that of the previous cycle.
  • the duration of the middle on-period differs by a preset step, that is, the preset step is used to describe the duration difference between the on-period of the next cycle and the on-period of the previous cycle in any two adjacent cycles.
  • duration of each cycle, the preset step size and the duration of the opening period in each cycle can be set according to actual needs.
  • the duration of the above cycle can be 1 second
  • the preset step size can be 0.1 seconds
  • the duration of the start period in the first cycle can be 0.1 seconds.
  • the duration of the off period in the first cycle is 0.9 seconds
  • the duration of the on period in the second cycle is 0.2 seconds
  • the duration of the off period in the second cycle is 0.8 seconds
  • the duration of the on period in the third cycle The duration is 0.3 seconds
  • the duration of the off period in the third cycle is 0.7 seconds, and so on.
  • the above period can be 0.1 seconds
  • the preset step size can be 0.01 seconds
  • the duration of the opening period in the first cycle can be 0.01 seconds.
  • the duration of the off period in the first cycle is 0.09 seconds
  • the duration of the on period in the second cycle is 0.02 seconds
  • the duration of the off period in the second cycle is 0.08 seconds
  • the duration of the on period in the third cycle The duration is 0.03 seconds
  • the duration of the off period in the third cycle is 0.07 seconds, and so on.
  • the timing when the power supply control device enters the first power supply control mode may include but is not limited to: (1) when the power supply equipment is turned on and no load is connected; (2) when the power supply equipment is turned on and there is a load connected, And the energy-saving mode of the power supply device is on and no load current is detected.
  • the power supply control device can also detect the load current during the start period of each cycle, that is, determine whether the load current is detected. In one embodiment of the present application, if the power supply control device detects the load current during the turn-on period of a certain cycle, it means that a load is connected to the power supply equipment during the turn-on period of the cycle, and the actual power demand of the load is not 0, which means that the power supply equipment is in a non-load state. At this time, the power supply control device exits the first power supply control mode, that is, the power supply control device no longer performs the steps of power supply control of the power supply equipment based on multiple consecutive cycles. At the same time, the power supply The control device enters the second power supply control mode.
  • the second power supply control mode refers to a mode that controls the power supply circuit of the power supply device to continue to operate.
  • the power supply circuit is controlled to remain on. Based on this, after the power supply control device switches from the first power supply control mode to the second power supply control mode, the power supply circuit is controlled to remain on.
  • the power supply in the first power supply control mode, the power supply is controlled based on multiple consecutive cycles, the power supply circuit of the power supply device is turned on during the on period of each cycle, and the power supply is turned off during the off period of each cycle.
  • circuit, and the duration of the on period in the next cycle differs from the duration of the on period in the previous cycle by a preset step, that is, the duration of the on period in different cycles changes step by step based on the preset step, for example, if If the trigger time of the load's silent working mode is accurate to 0.1 seconds, you can set the preset step size to 0.1 seconds. If the trigger time of the load's silent working mode is accurate to 0.01 seconds, you can set the preset step size to 0.1 seconds.
  • the step length is set to 0.01 seconds, so the power supply device can identify the load with a silent working mode during the turn-on period of different cycles, so that when such a load is connected, it can reduce the misjudgment of no-load in the power supply device. , thereby preventing the power supply equipment from being unable to supply power to misjudged loads, ensuring that the power needs of various loads are met, and expanding the scope of application of the power supply equipment.
  • the power supply circuit is only turned on during the on period of each cycle and turned off during the off period of each cycle, the power loss of the power supply equipment can be reduced and the effective utilization rate of the power supply equipment can be improved.
  • the power supply control method may further include the following steps:
  • the power supply device is controlled to shut down.
  • the power supply control device controls the power supply of the power supply device based on multiple consecutive cycles
  • the load current is not detected during the turn-on period of the multiple consecutive cycles
  • the load current is not detected during the turn-on period of the multiple consecutive cycles.
  • There is no load connected to the power supply equipment during this period or it means that there is a load connected to the power supply equipment during these multiple consecutive cycles, but the actual demand power of the load connected to the power supply equipment is low, which means that the power supply equipment is in an no-load state.
  • the power supply control device controls the power supply equipment to shut down.
  • the power supply control device when the power supply control device does not detect the load current in multiple consecutive cycles, it means that the power supply equipment is in an no-load state. At this time, the power supply control device controls the power supply equipment to shut down, which can prevent the power supply equipment from working in the no-load state. status, reducing the no-load loss of the power supply equipment.
  • the power supply control method may also include S320 ⁇ S330, which are detailed as follows:
  • S320 In the first power supply control mode, cyclically execute the steps of controlling the power supply of the power supply device based on multiple consecutive cycles, and record the number of cycles.
  • the number of multiple consecutive cycles is limited, and the number of multiple consecutive cycles can be set according to actual requirements, for example, it can be 9.
  • the power supply control device can cyclically execute the steps of controlling the power supply of the power supply device based on multiple consecutive cycles.
  • the power supply control device When the power supply control device cyclically executes the step of controlling the power supply of the power supply device based on multiple consecutive cycles, the number of cycles of the step can be recorded.
  • the power supply control device when the power supply control device cyclically executes the step of controlling the power supply of the power supply device based on multiple consecutive cycles, it can also detect whether the power supply device is connected to the power supply after each execution of the step. enter. If no electrical equipment is connected, add 1 to the number of consecutive executions of this step, and continue to perform this step for the next time; if there is electrical equipment connected, further determine whether the load current is detected, and If no load current is detected, add 1 to the number of consecutive executions of this step, and continue to execute this step the next time.
  • the power supply control device determines whether the number of cycles of the above steps reaches a preset number threshold. When the number of the above steps reaches the preset number threshold, the power supply device is controlled to shut down.
  • the preset times threshold may be determined based on the preset duration of the first power supply control mode, the number of multiple cycles, and the duration of each cycle. By limiting the duration of the first power supply control mode, it can be avoided that the power supply equipment remains in the first power supply control mode under no-load state, resulting in increased power consumption of the electrical equipment.
  • the duration of the preset first power supply control mode is 15 minutes, the number of multiple cycles is 9, and the duration of each cycle is 1 second, then perform an operation on the power supply device based on multiple consecutive cycles.
  • the step of power supply control takes 9 seconds and can be executed 100 times in 15 minutes. Therefore, the preset times threshold can be 100.
  • the power supply control device can enter the second power supply control mode based on the actual ratio between the actual power demand of the load and the rated output power of the power supply device. Control the power supply of power supply equipment. It should be noted that the specific process of the power supply control device controlling the power supply of the power supply device based on the actual ratio can refer to the relevant descriptions in subsequent embodiments, and will not be described again here.
  • the number of cycles of the above steps can be reset to 0.
  • the above solution sets a preset threshold value and controls the power supply device to shut down when the number of cycles of the step of controlling the power supply of the power supply device based on multiple consecutive cycles reaches the preset threshold value, thereby preventing the power supply device from being idle.
  • the power supply circuit is always turned on intermittently, further reducing the power loss when the power supply device is no-load and improving the effective utilization of the power supply device.
  • the power supply control method may also include S410 ⁇ S430, Details are as follows:
  • the power supply control device can detect whether a load is connected to the power supply equipment after the power supply equipment is turned on.
  • the power supply control device in order to detect the load in time when the load is connected, can detect in real time whether a load is connected to the power supply device after the power supply device is turned on.
  • the power supply control device in order to reduce the power consumption of the power supply equipment, can detect whether a load is connected to the power supply equipment at preset time intervals after the power supply equipment is turned on.
  • the preset time interval can be set according to actual needs, and is not particularly limited here.
  • the power supply device in order to achieve effective detection of the load and reduce the misjudgment rate of load detection, can be provided with an elastic component for detecting whether the load is connected, and the power supply control device can use the elastic component to Trigger status to determine whether there is load access.
  • the elastic component may include but is not limited to elastic pieces, springs or elastic pins.
  • the triggering state of the elastic component may include being triggered or not being triggered.
  • S410 may include the following steps:
  • the power supply control device may determine that the elastic component is triggered when detecting that the elastic component is squeezed; and determine that the elastic component is not triggered when detecting that the elastic component is not squeezed.
  • the power supply device may also be provided with contacts corresponding to the elastic components. Based on this, the power supply control device may determine that the elastic component is triggered when it detects that the elastic component is in contact with the contact point; and determine that the elastic component is not triggered when it detects that the elastic component is not in contact with the contact point.
  • the power supply control device can first enter the second power supply control mode.
  • the power supply control device controls the power supply circuit to turn on and controls the power supply circuit to maintain the bus voltage at the rated voltage value. , that is, the control power supply circuit is in full working condition.
  • the bus voltage of the power supply circuit may refer to the voltage output by the DC-DC conversion circuit in the power supply circuit.
  • the rated voltage value refers to the voltage value corresponding to the rated output power of the power supply equipment.
  • the power supply control device can directly enter the first power supply control mode when detecting that no load is connected to the power supply device.
  • the power supply device when detecting that no load is connected, can continuously detect whether a load is connected. If it is detected that a load is connected within the third preset time period, the power supply control device enters The first power supply mode; if no load is connected within the third preset time period, the power supply control device controls the power supply equipment to shut down.
  • the third preset time period can be set according to actual needs, and is not particularly limited here.
  • the power supply device is pre-configured with an energy-saving mode that can be selected by the user. Based on this, when the load is connected to the power supply device, the user can choose whether to turn on the energy-saving mode according to actual needs. For example, when the load connected to the power supply device is a load that does not have a silent working mode, the user can choose to turn on the energy-saving mode to reduce the power loss of the power supply device.
  • the user can choose to turn on or off the energy-saving mode by operating the mode selection control in the terminal device (such as a mobile phone) connected to the power supply device.
  • the mode selection control is a button in the form of software, and the mode selection control can be set in an application program installed on the terminal device.
  • the user can also choose to turn on or off the energy-saving mode by operating the mode selection button set on the power supply device.
  • the mode selection button is a physical button.
  • the power supply control device can detect whether the energy-saving mode of the power supply device is on when detecting that a load is connected, and determine whether the load current is detected.
  • the power supply control device when a load is connected and the energy-saving mode of the power supply device is on, if the load current is not detected, it is continuously determined whether the load current is detected. If no load current is detected within the second preset time period after the load is connected to the power supply equipment, it means that the power supply equipment is in an no-load state, and at this time, the power supply control device enters the first power supply control mode.
  • the second preset duration can be set according to actual needs, and is not particularly limited here.
  • the second preset time period may be 300 seconds.
  • the power supply control device can execute S440 to S470 in subsequent embodiments.
  • the power supply control device may perform S480 in the subsequent embodiment.
  • the above scheme can improve the accuracy of load connection detection because it is determined based on the triggering state of the elastic component set on the power supply device whether there is load connection; because when there is no load connection, or there is load connection, and the power supply device
  • the energy-saving mode is on and the load current is not detected within the second preset time period after the load is connected, it means that the power supply equipment is in an no-load state.
  • the power supply control device enters the first power supply control mode to control
  • the power supply circuit is turned on intermittently, so it can reduce the power loss when the power supply equipment is no-load, and improve the power reserve and effective utilization rate of the power supply equipment.
  • the power supply control method may also include S440 ⁇ S470, as detailed below:
  • the current value of the load current refers to the value of the current flowing through the load.
  • the power supply device may also be provided with a current collection circuit for collecting the current value of the load current.
  • the circuit acquisition circuit may include a resistor in series with the load loop.
  • the power supply control device can obtain the current value of the load current collected by it from the current collection circuit.
  • S450 Determine the actual power demand of the load based on the current value of the load.
  • the power supply control device after the power supply control device obtains the current value of the load current, it can calculate the actual power demand of the load based on the current value.
  • the existing method can be used to calculate the actual power demand of the load according to the current value of the load, which will not be described in detail here.
  • the power supply control device may determine the ratio between the actual power demand of the load and the rated output power of the power supply device as the actual ratio.
  • S470 Turn on the power supply circuit, and control the bus voltage of the power supply circuit based on the relationship between the actual ratio and the preset ratio.
  • the power supply control device can turn on the power supply circuit when detecting the load current.
  • the power supply control device can obtain the current value of the load current while turning on the power supply circuit, and determine the above-mentioned actual ratio; or, the power supply control device can obtain the current value of the load current after turning on the power supply circuit, and determine The actual ratio above.
  • the power supply control device when detecting the load current, can first obtain the current value of the load current, and then turn on the power supply circuit after determining the above-mentioned actual ratio based on the current value of the load current. This embodiment does not specifically limit the timing of turning on the power supply circuit.
  • the power supply control device after the power supply control device obtains the actual ratio, it can compare the actual ratio with the preset ratio to determine the relationship between the actual ratio and the preset ratio, and calculate the bus voltage of the power supply circuit based on the relationship. Take control.
  • the preset ratio is used to distinguish whether the power supply equipment is in an ultra-light load state or a normal load state.
  • the preset ratio may vary according to different application scenarios of the power supply device. For example, the preset ratio may be 5%. Based on this, if the actual ratio is 4.65%, since 4.65% is less than 5%, the power supply control device can control the power supply circuit to reduce its bus voltage; if the actual ratio is 15%, since 15% is greater than 5%, therefore, the power supply control device The device can enter the second power supply control mode. In the second power supply control mode, the power supply circuit is controlled to remain on, and the power supply circuit is controlled to maintain its bus voltage at a rated voltage value.
  • the above-mentioned actual ratio when the above-mentioned actual ratio is less than the preset ratio, it means that the actual power demand of the load is low, that is, it means that the power supply device is in an ultra-light load state; when the above-mentioned actual ratio is greater than or equal to the preset ratio, it means that the actual power demand of the load is normal. , indicating that the power supply equipment is in normal load status.
  • the steps of controlling the bus voltage of the power supply circuit based on the relationship between the actual ratio and the preset ratio may specifically include:
  • the power supply circuit is controlled to reduce the bus voltage to the first preset voltage value
  • the second power supply control mode is entered and the power supply circuit is controlled to remain on.
  • the first preset voltage value is smaller than the rated voltage value corresponding to the above-mentioned rated output power. That is, when the actual ratio is less than the preset ratio, the power supply control device can control the power supply circuit to reduce the voltage value output by the DC-DC conversion circuit to the first preset voltage value.
  • the application may continue to enter S410 in a loop to detect the connection of the load.
  • the power supply control device after the power supply control device enters the second power supply control mode, while controlling the power supply circuit to remain on, it also controls the power supply circuit to maintain the bus voltage at the above rated voltage value, that is, the power supply circuit is controlled to be fully operational. state.
  • the power supply control device in the second power supply control mode, can continuously enter S410 in a loop to detect the load access situation.
  • the above solution can reduce the power loss of part of the power supply equipment in the ultra-light load state by reducing the bus voltage value when the power supply equipment is in the ultra-light load state, and improve the effective utilization of the power supply equipment.
  • the power supply control method may also include S480, as detailed below:
  • the power supply control device when a load is connected and the energy-saving mode of the power supply device is turned off, the power supply control device enters the second power supply control mode.
  • the second power supply control mode is entered to control the power supply circuit to remain on, so that the power supply circuit is in full working condition, thereby ensuring that the power supply circuit can The load is powered normally.
  • the power supply control device enters S501.
  • S501 Enter the second power supply control mode, control the power supply circuit of the power supply device to turn on, and control the power supply circuit to maintain its bus voltage at the rated voltage value. After that, the power supply control device proceeds to S502.
  • S503 Determine whether the energy-saving mode of the power supply device is on.
  • S505 Determine whether the actual ratio is greater than or equal to the preset ratio.
  • S506 Turn on the power supply circuit and control the power supply circuit to reduce the bus voltage to the first preset voltage value. After that, return to S502.
  • S509 Start timing from 0. After that, enter S510.
  • S515 Determine whether counter1 is greater than the number of multiple consecutive periods.
  • S518 Control the power supply of the power supply device based on multiple consecutive cycles. After that, enter S519.
  • S521 Determine whether counter2 is greater than the preset times threshold.
  • sequence number of each step in the above embodiment does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any influence on the implementation process of the embodiment of the present application. limited.
  • the embodiment of the present invention further provides an embodiment of a power supply control device that implements the above method embodiment.
  • FIG. 6 is a schematic structural diagram of a power supply control device provided by an embodiment of the present application. For convenience of explanation, only parts related to this embodiment are shown.
  • the power supply control device 60 may include a first control unit 601 and a second control unit 602 . in:
  • the first control unit 601 is configured to control the power supply of the power supply device based on multiple consecutive cycles in the first power supply control mode, turn on the power supply circuit of the power supply device during the on period of each cycle, and turn on the power supply circuit of the power supply device during the off period of each cycle.
  • the power supply circuit is turned off within a period; wherein, the sum of the duration of the on period and the off period of each cycle is equal to the cycle duration of each cycle, and the duration of the on period in the next cycle differs from the duration of the on period in the previous cycle by a preset step.
  • the second control unit 602 is used to exit the first power supply control mode, enter the second power supply control mode, and control the power supply circuit to remain on when the load current is detected during the on period of any period.
  • the first control unit 601 is also configured to control the power supply device to shut down if no load current is detected during the on-period of multiple consecutive cycles.
  • the first control unit 601 is also used for:
  • the power supply device is controlled to shut down.
  • the power supply control device 60 also includes a load detection unit.
  • the load detection unit is used to detect whether a load is connected.
  • the first control unit 601 is specifically configured to enter the first power supply control mode if load access is not detected;
  • the first control unit 601 is also configured to enter the first power supply control if it is detected that the load is connected, the energy-saving mode of the power supply device is on, and the load current is not detected within the second preset time period after the load is connected. model.
  • the power supply device includes an elastic component for detecting whether the load is connected; the load detection unit is specifically used for:
  • the power supply control device 60 also includes a current value acquisition unit, a power calculation unit and a ratio determination unit. in:
  • the current value acquisition unit is used to acquire the current value of the load current when it is detected that the load is connected, the energy-saving mode of the power supply device is on, and the load current is detected.
  • the power calculation unit is used to determine the actual power demand of the load based on the current value.
  • the ratio determination unit is used to calculate the actual ratio between the actual demand power of the load and the rated output power of the power supply device.
  • the second control unit 602 is specifically used to turn on the power supply circuit, and control the bus voltage of the power supply circuit according to the relationship between the actual ratio and the preset ratio.
  • the second control unit 602 is specifically used for:
  • the power supply circuit is controlled to reduce the bus voltage to the first preset voltage value; the first preset voltage value is less than the rated voltage value corresponding to the rated output power;
  • the second power supply control mode is entered and the power supply circuit is controlled to remain on.
  • the second control unit 601 is also configured to enter the second power supply control mode and control the power supply circuit to remain on if it is detected that the load is connected and the energy-saving mode of the power supply device is in a closed state.
  • each functional unit in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware.
  • the specific names of each functional unit are only for the convenience of distinguishing each other and are not used to limit the protection scope of the present application.
  • FIG. 7 is a schematic structural diagram of a power supply control device according to an embodiment of the present application.
  • the power supply control device 7 may include: a processor 70, a memory 71, and a computer program 72 stored in the memory 71 and runable on the processor 70, such as a program corresponding to a power supply control method. .
  • the processor 70 executes the computer program 72, the steps in the above embodiment of the power supply control method are implemented, such as the steps in Figures 2 to 5.
  • the processor 70 executes the computer program 72, it implements the functions of each module/unit in the above embodiment of the power supply control device, such as the functions of the units 601 and 602 shown in FIG. 6 .
  • the computer program 72 may be divided into one or more modules/units, and one or more modules/units are stored in the memory 71 and executed by the processor 70 to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of completing specific functions. The instruction segments are used to describe the execution process of the computer program 72 in the power supply control device 7 .
  • the computer program 72 can be divided into a first control unit and a second control unit. For the specific functions of each unit, please refer to the relevant description in the corresponding embodiment of FIG. 6 and will not be described again here.
  • FIG. 7 is only an example of the power supply control device 7 and does not constitute a limitation on the power supply control device 7. It may include more or less components than shown in the figure, or some components may be combined or different. parts.
  • the processor 70 may be a central processing unit (CPU), or other general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf processor.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field-programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 71 may be an internal storage unit of the power supply control device 7 , such as a hard disk or memory of the power supply control device 7 .
  • the memory 71 can also be an external storage device of the power supply control device 7, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card or a flash memory card equipped on the power supply control device 7 (flash card) etc.
  • the memory 71 may also include both an internal storage unit of the power supply control device 7 and an external storage device.
  • the memory 71 is used to store computer programs and other programs and data required by the power supply control device.
  • the memory 71 may also be used to temporarily store data that has been output or is to be output.
  • a power supply device including: one or more processors; a storage device used to store one or more programs. When the one or more programs are executed by one or more processors, the power supply device implements power supply control. method.
  • the processor here may be the processor 70 as shown in Figure 7; the storage device here may be the memory 71 as shown in Figure 7.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program. When executed by a processor, the computer program can implement the steps in each of the above method embodiments.
  • Embodiments of the present application provide a computer program product.
  • the steps in each of the above method embodiments can be implemented when the power supply control device is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种供电控制方法,包括:在第一供电控制模式下,基于多个连续的周期对电源设备进行供电控制,在每个周期的开启时段内开启电源设备的供电电路,在每个周期的关闭时段内关闭供电电路;其中,后一个周期中开启时段的时长与前一个周期中开启时段的时长相差预设步长;在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制电源设备的供电电路保持开启。

Description

供电控制方法、装置及电源设备
相关申请的交叉引用
本申请要求于2022年04月29日提交中国专利局、申请号为202210468513.X、发明名称为“供电控制方法、装置及电源设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电源技术领域,尤其涉及一种供电控制方法、装置及电源设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
电源设备是一种用于存储电能并在需要时为负载供电的装置。为了使电源设备能够在负载接入后的第一时间检测到负载并为之供电,传统的电源设备在开机后会一直保持供电电路处于开启状态,而供电电路处于开启状态时,供电电路内部的开关半导体会不可避免的产生开关损耗,因此会导致电源设备在空载时产生不必要的电能损耗,从而降低电源设备的电量储备和有效利用率。
为了降低电源设备空载时的电能损耗,传统方式是在检测到负载未连接至电源设备的输出端子时,将电源设备的有源部件关闭固定时间后再重新开启有源部件。然而,该方式会出现空载误判情况,从而无法实现及时供电,缩小了电源设备的适用范围。
发明内容
根据本申请的各种实施例,提供了一种供电控制方法、装置及电源设备。
第一方面,本申请实施例提供一种供电控制方法,应用于电源设备,所述供电控制方法,包括:
在第一供电控制模式下,基于多个连续的周期对所述电源设备进行供电控制,在每个周期的开启时段内开启所述电源设备的供电电路,在每个周期的关闭时段内关闭所述供电电路;其中,每个周期开启时段和关闭时段的时长之和 等于每个周期的周期时长,后一个周期中开启时段的时长与前一个周期中开启时段的时长相差预设步长;
在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制所述供电电路保持开启。
第二方面,本申请实施例提供一种供电控制装置,应用于电源设备,所述供电控制装置包括:
第一控制单元,用于在第一供电控制模式下,基于多个连续的周期对所述电源设备进行供电控制,在每个周期的开启时段内开启所述电源设备的供电电路,在每个周期的关闭时段内关闭所述供电电路;其中,每个周期开启时段和关闭时段的时长之和等于每个周期的周期时长,后一个所述周期中开启时段的时长与前一个所述周期中开启时段的时长相差预设步长;
第二控制单元,用于在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制所述供电电路保持开启。
第三方面,本申请实施例提供一种供电控制装置,所述供电控制装置包括处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面或第一方面的任一可选方式所述的供电控制方法。
第四方面,本申请实施例提供一种电源设备,所述电源设备包括一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述电源设备实现如上所述的供电控制方法。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面或第一方面的任一可选方式所述的供电控制方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在供电控制装置上运行时,使得供电控制装置执行如上述第一方面或第一方面的任一可选方式所述的供电控制方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电源设备的示意性架构图。
图2为本申请实施例提供的一种供电控制方法的示意性流程图。
图3为本申请另一实施例提供的一种供电控制方法的示意性流程图。
图4为本申请又一实施例提供的一种供电控制方法的示意性流程图。
图5为本申请实施例提供的一种供电控制方法的整体控制逻辑示意图。
图6为本申请实施例提供的一种供电控制装置的结构示意图。
图7为本申请另一实施例提供的一种供电控制装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的一种供电控制方法,执行主体为供电控制装置,该供电控制装置可以应用于电源设备,例如,移动储能设备。在具体应用中,供电控制装置可以设置在电源设备内部,也可以设置在电源设备外部并与电源设备连接,本申请实施例对供电控制装置的设置方式不做特别限制。以供电控制装置设置在电源设备内部为例,请参阅图1,图1为本申请实施例提供的一种电源设备的示意性架构图。如图1所示,电源设备10除了包括供电控制装置101之外,还可以包括直流电源102、直流-直流(direct current-direct current,DC-DC)转换电路103及交流-直流(alternating current-direct current,AC-DC)转换电路104。其中,DC-DC转换电路103连接在直流电源102与AC-DC转换电路104之间,DC-DC转换电路103用于对直流电源102提供的直流电进行电压转换并输出。AC-DC转换电路104用于对DC-DC转换电路103输出的直流电进行逆变并输出交流电。AC-DC转换电路104的输出端可以用于连接负载。
作为示例而非限定,DC-DC转换电路103可以为谐振变换电路。AC-DC转换电路104可以为功率因数校正(power factor correction,PFC)电路。DC-DC转换电路103和AC-DC转换电路104的具体结构可以根据实际需求设置,此 处对其不做特别限定。
本申请实施例中,DC-DC转换电路103和AC-DC转换电路104均与供电控制装置101连接。供电控制装置101可以通过对DC-DC转换电路103和AC-DC转换电路104进行控制,进而实现对电源设备10的供电控制。
在具体应用中,可以通过对供电控制装置配置目标脚本文件,由该目标脚本文件描述本申请实施例提供的供电控制方法,令供电控制装置在需要对电源设备进行供电控制时执行该目标脚本文件,进而执行本申请实施例提供的供电控制方法中的各步骤。
请参阅图2,为本申请实施例提供的一种供电控制方法的示意性流程图。如图2示,该供电控制方法可以包括S210~S220,详述如下:
S210:在第一供电控制模式下,基于多个连续的周期对电源设备进行供电控制,在每个周期的开启时段内开启电源设备的供电电路,在每个周期的关闭时段内关闭电源设备的供电电路。
其中,电源设备的供电电路指电源设备中用于向负载供电的电路。以图1所示的电源设备为例,电源设备的供电电路可以为由直流电源102、DC-DC转换电路103及AC-DC转换电路104组成的供电电路。在其他实施例中,电源设备的供电电路也可以采用其他结构,此处对供电电路的结构不做特别限定。
第一供电控制模式指控制电源设备的供电电路间断性工作的模式。基于此,第一供电控制模式对应的供电控制策略具体可以为:基于多个连续的周期对电源设备进行供电控制,具体地,在每个周期的开启时段内开启电源设备的供电电路,在每个周期的关闭时段内关闭上述供电电路。
在实际应用中,冰箱或空调等用电设备通常都具有静默工作模式,在静默工作模式下,这些用电设备的主功能模块会关闭,仅有控制器和一些传感器等处于工作状态,例如,冰箱在达到特定温度后会进入静默工作模式,在静默工作模式下,冰箱的制冷模块会关闭,仅保持控制器和温度计工作。因此,当电源设备的负载为此类具有静默工作模式的用电设备时,会导致供电控制装置有概率无法判断出电源设备是否带载,例如,如果冰箱刚好在每个周期的开启时段内进入静默工作模式,在每个周期的关闭时段内恢复正常工作模式,那么供电控制装置便识别不出有冰箱接入电源设备,即会认为电源设备未带载,从而造成空载误判的情况。
因此,为了能准确识别出具有静默工作模式的负载,本申请对多个连续的 周期中开启时段的时长和/或关闭时段的时长进行了改进,具体地,每个周期开启时段和关闭时段的时长之和等于每个周期的周期时长,而且,每个周期的周期时长是相同的,对于多个连续的周期中任意相邻的两个周期,后一个周期中开启时段的时长与前一个周期中开启时段的时长相差预设步长,即,预设步长用于描述任意相邻两个周期中,后一个周期的开启时段与前一个周期的开启时段之间的时长差。
需要说明的是,上述每个周期的时长、预设步长以及各个周期中开启时段的时长均可以根据实际需求设置。
示例性的,对于时间精度要求不高的负载,上述周期的时长可以为1秒,预设步长可以为0.1秒,第一个周期中开启时段的时长可以为0.1秒。基于此,第一个周期中关闭时段的时长为0.9秒;第二个周期中开启时段的时长为0.2秒,第二个周期中关闭时段的时长为0.8秒;第三个周期中开启时段的时长为0.3秒,第三个周期中关闭时段的时长为0.7秒,以此类推。
对于时间精度要求较高的负载,上述周期可以为0.1秒,预设步长可以为0.01秒,第一个周期中开启时段的时长可以为0.01秒。基于此,第一个周期中关闭时段的时长为0.09秒;第二个周期中开启时段的时长为0.02秒,第二个周期中关闭时段的时长为0.08秒;第三个周期中开启时段的时长为0.03秒,第三个周期中关闭时段的时长为0.07秒,以此类推。
本申请实施例中,供电控制装置进入第一供电控制模式的时机可以包括但不限于:(1)电源设备开机,且没有负载接入时;(2)电源设备开机,且有负载接入,且电源设备的节能模式处于开启状态,且未检测到负载电流时。
S220:在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制供电电路保持开启。
本申请实施例中,供电控制装置在基于多个连续的周期对电源设备进行供电控制的同时,还可以在每个周期的开启时段内对负载电流进行检测,即判断是否检测到负载电流。在本申请的一个实施例中,供电控制装置若在某个周期的开启时段内检测到负载电流,则说明该周期的开启时段内有负载接入电源设备,且该负载的实际需求功率不为0,即说明电源设备处于非空载状态,此时,供电控制装置退出第一供电控制模式,即供电控制装置不再执行基于多个连续的周期对电源设备进行供电控制的步骤,同时,供电控制装置进入第二供电控制模式。
其中,第二供电控制模式指控制电源设备的供电电路持续工作的模式,在第二供电控制模式下会控制供电电路保持开启。基于此,供电控制装置从第一供电控制模式切换为第二供电控制模式后,控制供电电路保持开启。
以上方案,由于在第一供电控制模式下,基于多个连续的周期对电源设备进行供电控制,在每个周期的开启时段内开启电源设备的供电电路,在每个周期的关闭时段内关闭供电电路,且后一个周期中开启时段的时长与前一个周期中开启时段的时长相差预设步长,即不同周期中的开启时段的时长是基于预设步长步进式变化的,例如,若负载的静默工作模式的触发时间是以0.1秒为精度的,则可以将预设步长设置为0.1秒,若负载的静默工作模式的触发时间是以0.01秒为精度的,则可以将预设步长设置为0.01秒,因此可以实现电源设备在不同周期的开启时段内识别出具有静默工作模式的负载,使得在此类负载接入的情况下,能够减少电源设备出现空载误判的情况,从而避免电源设备无法对误判的负载供电,确保满足各类负载的用电需求,扩大电源设备的适用范围。此外,由于仅在每个周期的开启时段内开启供电电路,在每个周期的关闭时段内关闭供电电路,因此可以降低电源设备的电能损耗,提高电源设备的有效利用率。
在本申请的另一个实施例中,供电控制方法还可以包括以下步骤:
在多个连续的周期的开启时段内,若均未检测到负载电流,则控制电源设备关机。
本实施例中,供电控制装置在基于多个连续的周期对电源设备进行供电控制时,若在多个连续的周期的开启时段内均未检测到负载电流,则说明在该多个连续的周期内均无负载接入电源设备,或者说明在该多个连续的周期内有负载接入电源设备,但接入电源设备的负载的实际需求功率较低,即说明电源设备处于空载状态,此时,供电控制装置控制电源设备关机。
以上方案,供电控制装置在多个连续的周期内均没有检测到负载电流时,说明电源设备处于空载状态,此时供电控制装置控制电源设备关机,可以避免电源设备在空载状态下处于工作状态,降低了电源设备的空载损耗。
请参阅图3,在本申请的又一个实施例中,供电控制方法还可以包括S320~S330,详述如下:
S320:在第一供电控制模式下,循环执行基于多个连续的周期对电源设备进行供电控制的步骤,并记录循环次数。
本实施例中,多个连续的周期的数量是有限的,多个连续的周期的数量可以根据实际需求设置,例如,可以为9。
因此,在第一供电控制模式下,供电控制装置基于多个连续的周期对电源设备进行完一次供电控制后,可以继续基于多个连续的周期对电源设备进行下一次供电控制,即,在第一供电控制模式下,供电控制装置可以循环执行基于多个连续的周期对电源设备进行供电控制的步骤。
供电控制装置循环执行基于多个连续的周期对电源设备进行供电控制的步骤时,可以记录该步骤的循环次数。
在一种可能的实现方式中,供电控制装置在循环执行基于多个连续的周期对电源设备进行供电控制的步骤时,还可以在每执行完一次该步骤后,检测一次是否有用电设备接入。在没有用电设备接入的情况下,将该步骤的连续循环执行次数加1,并继续执行下一次该步骤;在有用电设备接入的情况下,进一步确定是否检测到负载电流,在未检测到负载电流的情况下,将该步骤的连续循环执行次数加1,并继续执行下一次该步骤。
S330:在多个连续的周期的开启时段内,若均未检测到负载电流,且上述循环次数达到预设次数阈值,则控制电源设备关机。
本实施例中,若在多个连续的的周期的开启时段内均未检测到负载电流,则供电控制装置还判断上述步骤的循环次数是否达到预设次数阈值。在上述步骤的次数达到预设次数阈值的情况下,控制电源设备关机。
其中,预设次数阈值可以根据预先设置的第一供电控制模式的持续时长、多个周期的数量以及每个周期的时长确定。通过对第一供电控制模式的持续时长进行限定,可以避免电源设备在空载状态下一直处于第一供电控制模式,导致增加用电设备电能损耗。
示例性的,若预先设置的第一供电控制模式的持续时长为15分,多个周期的数量为9,每个周期的时长为1秒,那么执行一次基于多个连续的周期对电源设备进行供电控制的步骤需要9秒,15分可以循环执行100次该步骤,因此,预设次数阈值可以为100。
在其他实施例中,供电控制装置若在任一周期的开启时段内检测到负载电流,则可以进入第二供电控制模式,并基于负载的实际需求功率与电源设备的额定输出功率之间的实际比值对电源设备进行供电控制。需要说明的是,供电控制装置基于该实际比值对电源设备进行供电控制的具体过程可以参考后续实 施例中的相关描述,此处不进行赘述。
本实施例中,供电控制装置进入第二供电控制模式后,可以将上述步骤的循环次数重置为0。
以上方案,通过设置预设次数阈值,并在基于多个连续的周期对电源设备进行供电控制的步骤的循环次数达到该预设次数阈值时,控制电源设备关机,从而可以避免电源设备处于空载状态时,供电电路一直被间断性开启,进一步降低电源设空载时的电能损耗,提高电源设备的有效利用率。
请参阅图4,在本申请的又一个实施例中,在图2对应的实施例中的S210之前,或者在图3对应的实施例中的S320之前,供电控制方法还可以包括S410~S430,详述如下:
S410:检测是否有负载接入。
供电控制装置可以在电源设备开机后,检测是否有负载接入电源设备。
在一种可能的实现方式中,为了在负载接入时能够及时检测到负载,供电控制装置可以在电源设备开机后,实时检测是否有负载接入电源设备。
在另一种可能的实现方式中,为了降低电源设备的功耗,供电控制装置可以在电源设备开机后,每隔预设时间间隔检测一次是否有负载接入电源设备。其中,预设时间间隔可以根据实际需求设置,此处对其不做特别限定。
在又一种可能的实现方式中,为了实现对负载的有效检测,降低负载检测的误判率,电源设备上可以设置有用于检测负载是否接入的弹性部件,供电控制装置可以通过弹性部件的触发状态来判断是否有负载接入。
其中,弹性部件可以包括但不限于弹片、弹簧或弹针等。弹性部件的触发状态可以包括被触发和未被触发。
基于此,S410可以包括以下步骤:
检测弹性部件的触发状态;
若弹性部件被触发,则确定有负载接入;
若弹性部件未被触发,则确定无负载接入。
在一个实施例中,供电控制装置可以在检测到弹性部件被挤压时,确定弹性部件被触发;在检测到弹性部件未被挤压时,确定弹性部件未被触发。
在另一个实施例中,电源设备上还可以设置有与弹性部件相对应的触点。基于此,供电控制装置可以在检测到弹性部件与触点接触时,确定弹性部件被触发;在检测到弹性部件未与触点接触时,确定弹性部件未被触发。
需要说明的是,在电源设备开机后,供电控制装置可以先进入第二供电控制模式,在第二供电控制模式下,供电控制装置控制供电电路开启,控制供电电路将母线电压维持在额定电压值,即控制供电电路处于完全工作状态。其中,供电电路的母线电压可以指供电电路中的DC-DC转换电路输出的电压。额定电压值指电源设备的额定输出功率对应的电压值。
S420:若未检测到负载接入,则进入第一供电控制模式。
在一种可能的实现方式中,供电控制装置可以在检测到无负载接入电源设备时直接进入第一供电控制模式。
在另一种可能的实现方式中,供电装置在检测到无负载接入时,可以持续检测是否有负载接入,若在第三预设时长内检测到有负载接入,则供电控制装置进入第一供电模式;若在第三预设时长内均无负载接入,则供电控制装置控制电源设备关机。其中,第三预设时长可以根据实际需求设置,此处对其不做特别限定。
S430:若检测到负载接入,且电源设备的节能模式处于开启状态,且在负载接入后的第二预设时长内未检测到负载电流,则进入第一供电控制模式。
本实施例中,电源设备中预先配置有可供用户选择的节能模式。基于此,在负载接入电源设备的情况下,用户可以根据实际需求选择是否开启该节能模式。例如,用户可以在接入电源设备的负载为不具有静默工作模式的负载时,选择开启该节能模式,以降低电源设备的电能损耗。
可选的,用户可以通过操作与电源设备连接的终端设备(如,手机)中的模式选择控件来选择开启或关闭该节能模式。其中,模式选择控件为软件形式的按键,模式选择控件可以设置在终端设备安装的应用程序中。
可选的,用户还可以通过操作电源设备上设置的模式选择按钮来选择开启或关闭该节能模式。其中,该模式选择按钮为物理形式的按键。
基于此,供电控制装置可以在检测到有负载接入时,检测电源设备的节能模式是否处于开启状态,并确定是否检测到负载电流。
在一种可能的实现方式中,在有负载接入,且电源设备的节能模式处于开启状态时,若未检测到负载电流,则持续确定是否检测到负载电流。若在负载接入电源设备后的第二预设时长内均未检测到负载电流,则说明电源设备处于空载状态,此时供电控制装置进入第一供电控制模式。
其中,第二预设时长可以根据实际需求设置,此处对其不做特别限定。示 例性的,第二预设时长可以为300秒。
在另一种可能的实现方式中,在有负载接入,且电源设备的节能模式处于开启状态时,若检测到负载电流,则说明电源设备处于非空载状态,此时供电控制装置可以执行后续实施例中的S440~S470。
在又一种可能的实现方式中,在检测到负载接入,且电源设备的节能模式处于关闭状态的情况下,供电控制装置可以执行后续实施例中的S480。
以上方案,由于基于电源设备上设置的弹性部件的触发状态来确定是否有负载接入,因此可以提高负载接入检测的准确性;由于在无负载接入,或者有负载接入,且电源设备的节能模式处于开启状态,且在负载接入后的第二预设时长内未检测到负载电流时,说明电源设备处于空载状态,此时,供电控制装置进入第一供电控制模式,以控制供电电路间断性开启,因此可以降低电源设备空载时的电能损耗,提高电源设备的电量储备和有效利用率。
请继续参阅图4,在本申请的又一个实施例中,在S410之后,供电控制方法还可以包括S440~S470,详述如下:
S440:若检测到负载接入,且电源设备的节能模式处于开启状态,且检测到负载电流时,获取负载电流的电流值。
本实施例中,负载电流的电流值指流经负载的电流的值。
在一种可能的实现方式中,电源设备中还可以设置有用于采集负载电流的电流值的电流采集电路。作为示例而非限定,电路采集电路可以包括串联在负载回路中的电阻。
基于此,在有负载接入,且电源设备的节能模式处于开启状态,且检测到负载电流的情况下,供电控制装置可以从电流采集电路处获取其采集到的负载电流的电流值。
S450:根据负载的电流值确定负载的实际需求功率。
本实施例中,供电控制装置获取到负载电流的电流值后,可以根据该电流值计算负载的实际需求功率。其中,根据负载的电流值计算负载的实际需求功率的方式可以采用现有方式,此处不对其进行赘述。
S460:计算负载的实际需求功率与额定输出功率之间的实际比值。
本实施例中,供电控制装置可以将负载的实际需求功率与电源设备的额定输出功率的比值,确定为实际比值。
示例性的,假如负载的实际需求功率为9.3瓦特,电源设备的额定输出功 率为200瓦特,那么,供电控制装置将9.3/200=4.65%确定为实际比值。如负载的实际需求功率为30瓦特,电源设备的额定输出功率为200瓦特,那么,供电控制装置将30/200=15%确定为实际比值。
S470:开启供电电路,并根据实际比值与预设比值的大小关系,对供电电路的母线电压进行控制。
在一种可能的实现方式中,供电控制装置可以在检测到负载电流时便开启供电电路。该实现方式中,供电控制装置可以在开启供电电路的同时,获取负载电流的电流值,并确定上述实际比值;或者,供电控制装置可以在开启供电电路之后,获取负载电流的电流值,并确定上述实际比值。
在另一种可能的实现方式中,供电控制装置在检测到负载电流时,可以先获取负载电流的电流值,在基于负载电流的电流值确定出上述实际比值之后,再开启供电电路。本实施例对供电电路的开启时机不做特别限定。
本实施例中,供电控制装置得到实际比值后,可以将该实际比值与预设比值进行比较,以确定实际比值与预设比值之间的大小关系,并基于该大小关系对供电电路的母线电压进行控制。
其中,预设比值用于区分电源设备处于超轻载状态还是正常载量状态。在具体应用中,预设比值可以根据电源设备的应用场景的不同而不同。示例性的,预设比值可以为5%。基于此,假如实际比值为4.65%,由于4.65%小于5%,因此,供电控制装置可以控制供电电路将其母线电压降低;假如实际比值为15%,由于15%大于5%,因此,供电控制装置可以进入第二供电控制模式,在第二供电控制模式下,控制供电电路保持开启,控制供电电路将其母线电压维持在额定电压值。
具体地,当上述实际比值小于预设比值时,说明负载的实际需求功率较低,即说明电源设备处于超轻载状态;当上述实际比值大于或等于预设比值,说明负载的实际需求功率正常,即说明电源设备处于正常载量状态。
基于此,在一种可能的实现方式中,根据实际比值与预设比值的大小关系,对供电电路的母线电压进行控制的步骤,具体可以包括:
若实际比值小于预设比值,则控制供电电路将母线电压降低至第一预设电压值;
若实际比值大于或等于预设比值,则进入第二供电控制模式,控制供电电路保持开启。
其中,第一预设电压值小于上述额定输出功率对应的额定电压值。即在实际比值小于预设比值时,供电控制装置可以控制供电电路将DC-DC转换电路输出的电压值降低为第一预设电压值。
在本实施例中,在控制供电电路将DC-DC转换电路输出的电压值降低为第一预设电压值之后,本申请可以持续循环的进入S410,以检测负载的接入情况。
在本申请的所有实施例中,供电控制装置进入第二供电控制模式后,在控制供电电路保持开启的同时,还控制供电电路将母线电压维持在上述额定电压值,即控制供电电路处于完全工作状态。
本实施例中,供电控制装置在第二供电控制模式下,可以持续循环的进入S410,以检测负载的接入情况。
以上方案,在电源设备处于超轻载状态时,通过降低母线电压的电压值,从而可以降低一部分电源设备在超轻载状态下的电能损耗,提高电源设备的有效利用率。
请继续参阅图4,在本申请的又一个实施例中,在S410之后,供电控制方法还可以包括S480,详述如下:
S480:若检测到负载接入,且电源设备的节能模式处于关闭状态,则进入第二供电控制模式,控制供电电路保持开启。
本实施例中,在有负载接入,且电源设备的节能模式处于关闭状态的情况下,供电控制装置进入第二供电控制模式。
以上方案,由于在有负载接入,但电源设备的节能模式处于关闭状态时此时,进入第二供电控制模式,控制供电电路保持开启,使供电电路处于完全工作状态,从而确保供电电路可以为负载正常供电。
以下结合上述各个方法实施例以及图5,对本申请实施例提供的供电控制方法的整体控制逻辑进行详细说明:
如图5所示,电源设备开机后,供电控制装置进入S501。
S501:进入第二供电控制模式,控制电源设备的供电电路开启,控制供电电路将其母线电压维持在额定电压值。之后,供电控制装置进入S502。
S502:通过弹性部件检测是否有负载接入。
若是,则进入S503;若否,则进入S507。
S503:判断电源设备的节能模式是否处于开启状态。
若是,则进入S504;若否,则进入S508。
S504:判断是否检测到负载电流。
若是,则进入S505;若否,则进入S509。
S505:判断实际比值是否大于或等于预设比值。
若是,则返回S501;若否,则进入S506。
S506:开启供电电路,控制供电电路将母线电压降低至第一预设电压值。之后,返回S502。
S507:进入第一供电控制模式。之后,进入S513。
S508:停留在第二供电控制模式。
S509:从0开始计时。之后,进入S510。
S510:判断计时时间是否达到第二预设时长。
若是,则返回S507;若否,则进入S511。
S511:计时时间加1。之后,进入S512。
S512:判断是否检测到负载电流。
若是,则返回S505;若否,则返回S510。
S513:设置周期数counter1=0,设置循环次数counter2=0。之后,进入S514。
S514:counter1=counter1+1。之后,进入S515。
S515:判断counter1是否大于多个连续的周期的数量。
若是,则进入S516;若否,则返回S514。
S516:counter1=0。之后,进入S517。
S517:counter2=counter2+1。之后,进入S518。
S518:基于多个连续的周期对电源设备进行供电控制。之后,进入S519。
S519:通过弹性部件检测是否有负载接入。
若是,则进入S520;若否,则进入S521。
S520:判断是否检测到负载电流。
若是,则返回S505;若否,则进入S521。
S521:判断counter2是否大于预设次数阈值。
若是,则进入S522;若否,则返回S514。
S522:控制电源设备关机。
可以理解的是,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例 的实施过程构成任何限定。
基于上述实施例所提供的供电控制方法,本发明实施例进一步给出实现上述方法实施例的供电控制装置的实施例。请参阅图6,为本申请实施例提供的一种供电控制装置的结构示意图。为了便于说明,仅示出了与本实施例相关的部分。如图6所示,供电控制装置60可以包括第一控制单元601和第二控制单元602。其中:
第一控制单元601用于在第一供电控制模式下,基于多个连续的周期对电源设备进行供电控制,在每个周期的开启时段内开启电源设备的供电电路,在每个周期的关闭时段内关闭供电电路;其中,每个周期开启时段和关闭时段的时长之和等于每个周期的周期时长,后一个周期中开启时段的时长与前一个周期中开启时段的时长相差预设步长。
第二控制单元602用于在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制供电电路保持开启。
可选的,第一控制单元601还用于在多个连续的周期的开启时段内,若均未检测到负载电流,则控制电源设备关机。
可选的,第一控制单元601还用于:
循环执行基于多个连续的周期对电源设备进行供电控制的步骤,并记录循环次数;
在多个连续的周期的开启时间内,若均未检测到负载电流,且循环次数达到预设次数阈值,则控制电源设备关机。
可选的,供电控制装置60还包括负载检测单元。
负载检测单元用于检测是否有负载接入。
第一控制单元601具体用于若未检测到负载接入,则进入第一供电控制模式;
第一控制单元601还用于若检测到负载接入,且电源设备的节能模式处于开启状态,且在负载接入后的第二预设时长内未检测到负载电流,则进入第一供电控制模式。
可选的,电源设备包括用于检测负载是否接入的弹性部件;负载检测单元具体用于:
检测弹性部件的触发状态;
若弹性部件被触发,则确定有负载接入;
若弹性部件未被触发,则确定无负载接入。
可选的,供电控制装置60还包括电流值获取单元、功率计算单元及比值确定单元。其中:
电流值获取单元用于若检测到负载接入,且电源设备的节能模式处于开启状态,且检测到负载电流时,获取负载电流的电流值。
功率计算单元用于根据该电流值确定负载的实际需求功率。
比值确定单元用于计算负载的实际需求功率与电源设备的额定输出功率之间的实际比值。
第二控制单元602具体用于开启供电电路,并根据实际比值与预设比值的大小关系,对供电电路的母线电压进行控制。
可选的,第二控制单元602具体用于:
若实际比值小于预设比值,则控制供电电路将母线电压降低至第一预设电压值;第一预设电压值小于额定输出功率对应的额定电压值;
若实际比值大于或等于预设比值,则进入第二供电控制模式,控制供电电路保持开启。
可选的,第二控制单元601还用于若检测到负载接入,且电源设备的节能模式处于关闭状态,则进入第二供电控制模式,控制供电电路保持开启。
需要说明的是,上述单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参照方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将供电控制装置的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
请参阅图7,图7为本申请实施例提供的一种供电控制装置的结构示意图。 如图7所示,本实施例提供的供电控制装置7可以包括:处理器70、存储器71以及存储在存储器71中并可在处理器70上运行的计算机程序72,例如供电控制方法对应的程序。处理器70执行计算机程序72时实现上述供电控制方法实施例中的步骤,例如图2~图5中的各步骤。或者,处理器70执行计算机程序72时实现上述供电控制装置实施例中各模块/单元的功能,例如图6所示的单元601和602的功能。
示例性的,计算机程序72可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器71中,并由处理器70执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序72在供电控制装置7中的执行过程。例如,计算机程序72可以被分割成第一控制单元和第二控制单元,各单元的具体功能请参阅图6对应的实施例中的相关描述,此处不赘述。
本领域技术人员可以理解,图7仅仅是供电控制装置7的示例,并不构成对供电控制装置7的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件。
处理器70可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器71可以是供电控制装置7的内部存储单元,例如供电控制装置7的硬盘或内存。存储器71也可以是供电控制装置7的外部存储设备,例如供电控制装置7上配备的插接式硬盘、智能存储卡(smart media card,SMC)、安全数字(secure digital,SD)卡或闪存卡(flash card)等。进一步地,存储器71还可以既包括供电控制装置7的内部存储单元也包括外部存储设备。存储器71用于存储计算机程序以及供电控制装置所需的其他程序和数据。存储器71还可以用于暂时地存储已经输出或者将要输出的数据。
一种电源设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使得电源设备实现上的供电控制方法。其中,此处的处理器可以是如图7所示的处理器70;此处的 存储装置可以是如图7所示的存储器71。本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序被处理器执行时可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在供电控制装置上运行时,使得供电控制装置执行时实现可实现上述各个方法实施例中的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参照其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种供电控制方法,应用于电源设备,所述供电控制方法包括:
    在第一供电控制模式下,基于多个连续的周期对所述电源设备进行供电控制,在每个周期的开启时段内开启所述电源设备的供电电路,在每个周期的关闭时段内关闭所述供电电路;其中,每个周期开启时段和关闭时段的时长之和等于每个周期的周期时长,后一个周期中开启时段的时长与前一个周期中开启时段的时长相差预设步长;
    在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制所述供电电路保持开启。
  2. 根据权利要求1所述的供电控制方法,其特征在于,还包括:
    在所述多个连续的周期的开启时段内,若均未检测到负载电流,则控制所述电源设备关机。
  3. 根据权利要求1所述的供电控制方法,其特征在于,还包括:
    在第一供电控制模式下,循环执行基于多个连续的周期对所述电源设备进行供电控制的步骤,并记录循环次数;
    在所述多个连续的周期的开启时段内,若均未检测到负载电流,且所述循环次数达到预设次数阈值,则控制所述电源设备关机。
  4. 根据权利要求1至3任一项所述的供电控制方法,其特征在于,在进入所述第一供电控制模式之前,所述供电控制方法还包括:
    检测是否有负载接入;
    若未检测到负载接入,则进入第一供电控制模式;
    若检测到负载接入,且所述电源设备的节能模式处于开启状态,且在所述负载接入后的第二预设时长内未检测到负载电流,则进入第一供电控制模式。
  5. 根据权利要求4所述的供电控制方法,其特征在于,所述电源设备包括被配置为检测负载是否接入的弹性部件;所述检测是否有负载接入,包括:
    检测所述弹性部件的触发状态;
    若所述弹性部件被触发,则确定有负载接入;
    若所述弹性部件未被触发,则确定无负载接入。
  6. 根据权利要求4所述的供电控制方法,其特征在于,在所述检测是否有负载接入之后,所述供电控制方法还包括:
    若检测到负载接入,且所述电源设备的节能模式处于开启状态,且检测到所述负载电流,则获取所述负载电流的电流值;
    根据所述电流值确定所述负载的实际需求功率;
    计算所述负载的实际需求功率与额定输出功率之间的实际比值;
    开启所述供电电路,并根据所述实际比值与预设比值的大小关系,对所述供电电路的母线电压进行控制。
  7. 根据权利要求6所述的供电控制方法,其特征在于,所述根据所述实际比值与预设比值的大小关系,对所述供电电路的母线电压进行控制,包括:
    若所述实际比值小于所述预设比值,则控制所述供电电路将母线电压降低至第一预设电压值;所述第一预设电压值小于所述额定输出功率对应的额定电压值;
    若所述实际比值大于或等于所述预设比值,则进入第二供电控制模式,控制所述供电电路保持开启。
  8. 根据权利要求4所述的供电控制方法,其特征在于,在所述检测是否有负载接入之后,所述供电控制方法还包括:
    若检测到负载接入,且所述电源设备的节能模式处于关闭状态,则进入第二供电控制模式,控制所述供电电路保持开启。
  9. 一种供电控制装置,应用于电源设备,所述供电控制装置包括:
    第一控制单元,被配置为在第一供电控制模式下,基于多个连续的周期对所述电源设备进行供电控制,在每个周期的开启时段内开启所述电源设备的供电电路,在每个周期的关闭时段内关闭所述供电电路;其中,每个周期开启时段和关闭时段的时长之和等于每个周期的周期时长,后一个所述周期中开启时段的时长与前一个所述周期中开启时段的时长相差预设步长;
    第二控制单元,被配置为在任意周期的开启时段内,在检测到负载电流的情况下,退出第一供电控制模式,进入第二供电控制模式,控制所述供电电路保持开启。
  10. 一种电源设备,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述电源设备实现如权利要求1~8任意一项所述的供电控制方法。
PCT/CN2022/132652 2022-04-29 2022-11-17 供电控制方法、装置及电源设备 WO2023207042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210468513.XA CN114696426A (zh) 2022-04-29 2022-04-29 供电控制方法、装置及电源设备
CN202210468513.X 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207042A1 true WO2023207042A1 (zh) 2023-11-02

Family

ID=82145032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132652 WO2023207042A1 (zh) 2022-04-29 2022-11-17 供电控制方法、装置及电源设备

Country Status (2)

Country Link
CN (1) CN114696426A (zh)
WO (1) WO2023207042A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696426A (zh) * 2022-04-29 2022-07-01 深圳市正浩创新科技股份有限公司 供电控制方法、装置及电源设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333862B1 (en) * 1998-08-11 2001-12-25 Lg Electronics Inc. Switched mode power supply and controlling method thereof
US20050041360A1 (en) * 2003-08-20 2005-02-24 E.G.O. North America, Inc. Systems and methods for achieving low power standby through interaction between a microcontroller and a switching mode power supply
CN101895209A (zh) * 2009-05-19 2010-11-24 联咏科技股份有限公司 电源供应电路与其方法
CN114696426A (zh) * 2022-04-29 2022-07-01 深圳市正浩创新科技股份有限公司 供电控制方法、装置及电源设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333862B1 (en) * 1998-08-11 2001-12-25 Lg Electronics Inc. Switched mode power supply and controlling method thereof
US20050041360A1 (en) * 2003-08-20 2005-02-24 E.G.O. North America, Inc. Systems and methods for achieving low power standby through interaction between a microcontroller and a switching mode power supply
CN101895209A (zh) * 2009-05-19 2010-11-24 联咏科技股份有限公司 电源供应电路与其方法
CN114696426A (zh) * 2022-04-29 2022-07-01 深圳市正浩创新科技股份有限公司 供电控制方法、装置及电源设备

Also Published As

Publication number Publication date
CN114696426A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US10651722B2 (en) Advanced constant off-time control for four-switch buck-boost converter
JP6231673B2 (ja) トーテムポールブリッジレス力率補正ソフトスイッチ制御装置及び方法
CN104424031B (zh) 一种处理器工作频率的控制方法及装置
US8499181B2 (en) Method for controlling voltages supplied to a processor
WO2023207042A1 (zh) 供电控制方法、装置及电源设备
US10466765B2 (en) Systems and methods for managing power consumed by a microcontroller in an inactive mode
US10250142B1 (en) Advanced constant off-time control for four-switch buckboost converter
CN101495958A (zh) 用于控制处理器低功率状态的系统和方法
US11682973B2 (en) Advanced constant off-time control for four-switch buck-boost converter
US20150286271A1 (en) System and method for predicting a central processing unit idle pattern for power saving in a modem system on chip
CN202522610U (zh) 一种直流电源掉电监测器件
CN204465030U (zh) 移动电源及其充放电系统
TWI517033B (zh) 用於降低功耗之轉換方法與其運算裝置
CN114257474A (zh) 智能网关的用电控制方法、装置、计算机设备和存储介质
TW201413434A (zh) 電源供應系統
CN111308192A (zh) 基于防复位装置的掉零线防窃电计量装置
CN112649724A (zh) 一种掉电检测电路、方法及mcu芯片
WO2018107947A1 (zh) 一种充电方法、装置及存储介质
CN109450274A (zh) 一种控制方法、装置及电子设备
WO2017148238A1 (zh) 一种电源并机系统的输出过压保护方法、装置及存储介质
CN110797930A (zh) 一种设备控制方法、装置、系统及计算机存储介质
CN211979044U (zh) 基于防复位装置的掉零线防窃电计量装置
CN112944565A (zh) 室外机唤醒方法、装置以及多联机空调系统
TWI715098B (zh) 電子系統及其操作方法和電子電路
TWI723943B (zh) 具備用電源之無線感測系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939857

Country of ref document: EP

Kind code of ref document: A1