WO2023206822A1 - Self-adaptive dynamic adjustment method for angle of photovoltaic power generation array - Google Patents

Self-adaptive dynamic adjustment method for angle of photovoltaic power generation array Download PDF

Info

Publication number
WO2023206822A1
WO2023206822A1 PCT/CN2022/105427 CN2022105427W WO2023206822A1 WO 2023206822 A1 WO2023206822 A1 WO 2023206822A1 CN 2022105427 W CN2022105427 W CN 2022105427W WO 2023206822 A1 WO2023206822 A1 WO 2023206822A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
photovoltaic power
angle
generation array
array
Prior art date
Application number
PCT/CN2022/105427
Other languages
French (fr)
Chinese (zh)
Inventor
马列生
Original Assignee
杭州伯资企业管理合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州伯资企业管理合伙企业(有限合伙) filed Critical 杭州伯资企业管理合伙企业(有限合伙)
Publication of WO2023206822A1 publication Critical patent/WO2023206822A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A self-adaptive dynamic adjustment method for an angle of a photovoltaic power generation array, in which the following steps are executed at regular intervals: (1) acquiring configuration information of each photovoltaic power generation array (#1, #2, #3, #4), including the length, width, installation height, and central axis position coordinates of each photovoltaic power generation array (#1, #2, #3, #4); (2) selecting, from all the photovoltaic power generation arrays (#1, #2, #3, #4), photovoltaic power generation arrays (#1, #4) that need to be controlled; (3) constructing an angle optimization problem for the photovoltaic power generation arrays (#1, #4) that need to be controlled; and (4) solving the angle optimization problem, so as to obtain rotation angles of the photovoltaic power generation arrays (#1, #4) that need to be controlled. By means of the self-adaptive dynamic adjustment method for an angle of a photovoltaic power generation array, power generation arrays (#1 and #4) that need to be optimized can be automatically selected, and it is ensured that no shadow overlapping occurs between the optimized power generation arrays (#1, #4). In addition, the shining direction of the sun is tracked to the maximum extent.

Description

一种光伏发电阵列角度自适应动态调整方法An adaptive dynamic adjustment method for the angle of photovoltaic power generation array 技术领域Technical field
本发明属于光伏发电领域,尤其是涉及一种光伏发电阵列角度自适应动态调整方法。The invention belongs to the field of photovoltaic power generation, and in particular relates to a method for adaptive dynamic adjustment of the angle of a photovoltaic power generation array.
背景技术Background technique
现阶段,光伏发电的需求越来越高,如何在有限的光伏发电场地中,尽可能提高发电效率对于提高光伏发电站整体效益具有重要意义。At this stage, the demand for photovoltaic power generation is getting higher and higher. How to maximize the power generation efficiency in limited photovoltaic power generation sites is of great significance to improving the overall benefits of photovoltaic power stations.
目前光伏发电的主要方式为使用可旋转支架控制光伏发电阵列的角度,使其尽量朝向太阳照射方向,以获取最大的发电效率。At present, the main method of photovoltaic power generation is to use a rotatable bracket to control the angle of the photovoltaic power generation array so that it faces the direction of the sun as much as possible to obtain maximum power generation efficiency.
如公开号为CN108270395A的中国专利文献公开了一种新型光伏发电支架,包括光伏发电支架本体,所述光伏发电支架本体与角度变换控制系统连接,所述角度变换控制系统与计算机控制系统连接,所述计算机控制系统与计时装置连接。该新型光伏发电支架可调节角度,实时跟踪太阳的照射,提高太阳光的吸收率,提高发电量。For example, the Chinese patent document with publication number CN108270395A discloses a new type of photovoltaic power generation bracket, which includes a photovoltaic power generation bracket body. The photovoltaic power generation bracket body is connected to an angle conversion control system, and the angle conversion control system is connected to a computer control system. The computer control system is connected with the timing device. This new type of photovoltaic power generation bracket can adjust the angle, track the sun's irradiation in real time, improve the absorption rate of sunlight, and increase power generation.
公开号为CN105207599A的中国专利文献公开了一种光伏发电装置及工作方法,包括:太阳能板,至少由四块发电晶片构成一方形阵列;光学组件,且呈平板状,设于太阳能板的受光面的正前方且与太阳能板平行,当阳光垂直于所述受光面时,光学组件用于将阳光汇聚并在所述受光面上产生一方形光斑,且该光斑的形状、面积与所述受光面的形状、面积一致;功率检测单元,用于检测各发电晶片的输出功率;驱动机构,用于控制所述太阳能板随太阳转动角度;处理器单元,与所述功率检测单元、驱动机 构相连,用于根据接收到的各发电晶片的输出功率值,产生相应角度控制信号,控制所述驱动机构带动所述太阳能板转动相应角度,以使阳光垂直于所述受光面。The Chinese patent document with publication number CN105207599A discloses a photovoltaic power generation device and a working method, including: a solar panel, which is composed of at least four power generation chips forming a square array; and an optical component, which is flat-shaped and is located on the light-receiving surface of the solar panel. Directly in front of and parallel to the solar panel, when the sunlight is perpendicular to the light-receiving surface, the optical component is used to focus the sunlight and produce a square light spot on the light-receiving surface, and the shape and area of the light spot are consistent with the light-receiving surface. The shapes and areas are consistent; the power detection unit is used to detect the output power of each power generation chip; the driving mechanism is used to control the rotation angle of the solar panel with the sun; the processor unit is connected to the power detection unit and the driving mechanism, It is used to generate a corresponding angle control signal according to the received output power value of each power generation chip, and control the driving mechanism to drive the solar panel to rotate at a corresponding angle so that the sunlight is perpendicular to the light-receiving surface.
但是,由于光伏发电阵列安装角度、密集程度等影响,难免出现光伏发电阵列间相互阻挡的情况,这会严重影响光伏发电阵列的发电效率和使用寿命。因此如何避免发电阵列间发生阴影遮挡具有重要的实际意义。However, due to the installation angle and density of photovoltaic power generation arrays, it is inevitable that photovoltaic power generation arrays will block each other, which will seriously affect the power generation efficiency and service life of photovoltaic power generation arrays. Therefore, how to avoid shadow occlusion between power generation arrays has important practical significance.
发明内容Contents of the invention
为了解决上述问题,本发明提供了一种光伏发电阵列角度自适应动态调整方法,能够自动选择需要优化的发电阵列,并保证被优化的发电阵列之间不发生阴影重叠,同时最大程度跟踪太阳照射方向。In order to solve the above problems, the present invention provides an adaptive dynamic adjustment method for the angle of photovoltaic power generation arrays, which can automatically select the power generation arrays that need to be optimized, ensure that no shadow overlap occurs between the optimized power generation arrays, and at the same time track the sun's irradiation to the greatest extent. direction.
一种光伏发电阵列角度自适应动态调整方法,每隔一定周期(1-30分钟),执行以下步骤:A method of adaptive dynamic adjustment of the angle of photovoltaic power generation array, which performs the following steps every certain period (1-30 minutes):
(1)获取各个光伏发电阵列的配置信息,包括光伏发电阵列长度、宽度、安装高度和中轴位置坐标;(1) Obtain the configuration information of each photovoltaic power generation array, including the photovoltaic power generation array length, width, installation height and central axis position coordinates;
(2)从各个光伏发电阵列中选取出需要控制的光伏发电阵列;(2) Select the photovoltaic power generation array that needs to be controlled from each photovoltaic power generation array;
(3)对需要控制的光伏发电阵列构建角度优化问题;(3) The problem of optimizing the construction angle of the photovoltaic power generation array that needs to be controlled;
(4)求解角度优化问题,得到需要控制的光伏发电阵列的旋转角度。(4) Solve the angle optimization problem and obtain the rotation angle of the photovoltaic power generation array that needs to be controlled.
步骤(2)中,选取方法为:In step (2), the selection method is:
(2-1)检测每个光伏发电阵列信号通路是否正常,如果通信异常,则认为该发电阵列无法控制;(2-1) Check whether the signal path of each photovoltaic power generation array is normal. If the communication is abnormal, the power generation array is considered uncontrollable;
(2-2)计算每个光伏发电阵列角度与太阳位置夹角,若小于夹角阈值,则认为该发电阵列不需要控制;(2-2) Calculate the angle between the angle of each photovoltaic power generation array and the position of the sun. If it is less than the angle threshold, it is considered that the power generation array does not need to be controlled;
(2-3)排除无法控制和不需要控制的光伏发电阵列,剩余的作为需要控制的光伏发电阵列。(2-3) Exclude photovoltaic power generation arrays that cannot be controlled and do not need to be controlled, and the remaining ones are regarded as photovoltaic power generation arrays that need to be controlled.
步骤(2-2)中的判断公式为:The judgment formula in step (2-2) is:
Figure PCTCN2022105427-appb-000001
Figure PCTCN2022105427-appb-000001
其中,
Figure PCTCN2022105427-appb-000002
表示光伏发电阵列平面的法向量,
Figure PCTCN2022105427-appb-000003
表示指向太阳位置的向量;ε表示夹角阈值,||表示向量的模;夹角阈值ε为0.001。
in,
Figure PCTCN2022105427-appb-000002
Represents the normal vector of the photovoltaic power generation array plane,
Figure PCTCN2022105427-appb-000003
Represents the vector pointing to the position of the sun; ε represents the angle threshold, || represents the module of the vector; the angle threshold ε is 0.001.
Figure PCTCN2022105427-appb-000004
中三个元素的计算方法为:
Figure PCTCN2022105427-appb-000004
The calculation method for the three elements in is:
Figure PCTCN2022105427-appb-000005
Figure PCTCN2022105427-appb-000005
Figure PCTCN2022105427-appb-000006
Figure PCTCN2022105427-appb-000006
Figure PCTCN2022105427-appb-000007
Figure PCTCN2022105427-appb-000007
其中,θ表示发电阵列上一周期的转动角度,γ表示发电阵列的中轴倾斜角度;Among them, θ represents the rotation angle of the power generation array in the previous cycle, and γ represents the tilt angle of the central axis of the power generation array;
Figure PCTCN2022105427-appb-000008
中三个元素的计算方法为:
Figure PCTCN2022105427-appb-000008
The calculation method for the three elements in is:
Figure PCTCN2022105427-appb-000009
Figure PCTCN2022105427-appb-000009
Figure PCTCN2022105427-appb-000010
Figure PCTCN2022105427-appb-000010
Figure PCTCN2022105427-appb-000011
Figure PCTCN2022105427-appb-000011
其中,z表示太阳的高度角,a表示太阳的方位角。Among them, z represents the altitude angle of the sun, and a represents the azimuth angle of the sun.
步骤(3)的具体过程为:The specific process of step (3) is:
(3-1)计算各个光伏发电阵列的各个顶点坐标;(3-1) Calculate the coordinates of each vertex of each photovoltaic power generation array;
(3-2)计算各个光伏发电阵列的各个顶点在地面上的投影点坐标;(3-2) Calculate the coordinates of the projection points of each vertex of each photovoltaic power generation array on the ground;
(3-3)确定各个光伏发电阵列在地面上的投影区域(3-3) Determine the projection area of each photovoltaic power generation array on the ground
Figure PCTCN2022105427-appb-000012
Figure PCTCN2022105427-appb-000012
其中,A表示与投影点坐标有关的投影矩阵,k表示与投影点有关的投影向量;Among them, A represents the projection matrix related to the coordinates of the projection point, and k represents the projection vector related to the projection point;
(3-4)构建以下角度优化问题(3-4) Construct the following angle optimization problem
Figure PCTCN2022105427-appb-000013
Figure PCTCN2022105427-appb-000013
s.t.s.t.
Figure PCTCN2022105427-appb-000014
Figure PCTCN2022105427-appb-000014
Figure PCTCN2022105427-appb-000015
Figure PCTCN2022105427-appb-000015
Figure PCTCN2022105427-appb-000016
Figure PCTCN2022105427-appb-000016
μ j≥0 μj≥0
λ j≥0 λ j ≥0
j=1,2,...,M-1j=1,2,...,M-1
其中,
Figure PCTCN2022105427-appb-000017
表示第i个需要控制的光伏发电阵列的法向量,
Figure PCTCN2022105427-appb-000018
表示太阳的位置向量,A j,k j分别表示第j个需要控制的光伏发电阵列的投影矩阵和投影向量,μ jj表示第j个辅助变量,N表示需要控制的光伏发电阵列的数量,M表示光伏发电阵列的总数。
in,
Figure PCTCN2022105427-appb-000017
Represents the normal vector of the i-th photovoltaic power generation array that needs to be controlled,
Figure PCTCN2022105427-appb-000018
Represents the position vector of the sun, A j and k j respectively represent the projection matrix and projection vector of the jth photovoltaic power generation array that needs to be controlled, μ j and λ j represent the jth auxiliary variable, and N represents the number of photovoltaic power generation arrays that need to be controlled. Quantity, M represents the total number of photovoltaic power generation arrays.
步骤(3-1)中,各个顶点坐标表示为:In step (3-1), the coordinates of each vertex are expressed as:
Figure PCTCN2022105427-appb-000019
Figure PCTCN2022105427-appb-000019
其中,x 0,y 0,z 0表示顶点在光伏发电阵列平放时的坐标,x,y,z表示顶点的实际坐标;R为旋转矩阵。 Among them, x 0 , y 0 , z 0 represent the coordinates of the vertex when the photovoltaic power generation array is laid flat, x, y, z represent the actual coordinates of the vertex; R is the rotation matrix.
步骤(3-2)中,投影点坐标的计算公式为:In step (3-2), the calculation formula of the projection point coordinates is:
Figure PCTCN2022105427-appb-000020
Figure PCTCN2022105427-appb-000020
其中,x e,y e表示顶点在地面上的投影点的横纵坐标,(x r,y r,z r)表示太阳位置。 Among them, x e , y e represent the horizontal and vertical coordinates of the projection point of the vertex on the ground, and (x r , y r , z r ) represents the position of the sun.
本发明提出方法能够自适应的选择合适的光伏发电阵列并优化其旋转角度,同时保证光伏发电阵列间不发生阴影遮挡;有利于提高发电效率,提高整体经济效益。The method proposed by the invention can adaptively select a suitable photovoltaic power generation array and optimize its rotation angle, while ensuring that no shadows occur between photovoltaic power generation arrays; it is conducive to improving power generation efficiency and improving overall economic benefits.
附图说明Description of drawings
图1为本发明一种光伏发电阵列角度自适应动态调整方法的流程图;Figure 1 is a flow chart of a method for adaptive dynamic adjustment of the angle of a photovoltaic power generation array according to the present invention;
图2为本发明实施例中四个光伏发电阵列的俯视图;Figure 2 is a top view of four photovoltaic power generation arrays in an embodiment of the present invention;
图3为本发明实施例中四个光伏发电阵列的主视图。Figure 3 is a front view of four photovoltaic power generation arrays in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。The present invention will be described in further detail below with reference to the accompanying drawings and examples. It should be noted that the following examples are intended to facilitate the understanding of the present invention and do not limit it in any way.
如图1所示,一种光伏发电阵列角度自适应动态调整方法,每隔一定周期(1-30秒),执行以下步骤:As shown in Figure 1, a photovoltaic power generation array angle adaptive dynamic adjustment method performs the following steps every certain period (1-30 seconds):
步骤1,获取各个光伏发电阵列配置信息,包括光伏发电阵列长度、宽度、安装高度,中轴位置坐标等参数。Step 1: Obtain the configuration information of each photovoltaic power generation array, including photovoltaic power generation array length, width, installation height, central axis position coordinates and other parameters.
如图2和图3所示,在本实施例中,共有四个光伏发电阵列,其中光伏发电阵列长度为50米,宽度为2米,安装高度为2米,中轴位置分别为(0,0,2)和(0,50,2),(6,0,2)和(6,50,2),(12,0,2)和(12,50,2),(18,0,2)和(18,50,2)。As shown in Figure 2 and Figure 3, in this embodiment, there are four photovoltaic power generation arrays. The length of the photovoltaic power generation array is 50 meters, the width is 2 meters, the installation height is 2 meters, and the central axis positions are (0, 0,2) and (0,50,2), (6,0,2) and (6,50,2), (12,0,2) and (12,50,2), (18,0, 2) and (18,50,2).
步骤2,选取需要控制的光伏发电阵列。选取方法为,(a)检测光伏发电阵列信号通路是否正常,如果通信异常,认为该发电阵列无法控制;(b)计算光伏发电阵列角度与太阳位置夹角,若小于阈值,认为该发电阵列不需要控制,公式为Step 2: Select the photovoltaic power generation array that needs to be controlled. The selection method is: (a) detect whether the signal path of the photovoltaic power generation array is normal. If the communication is abnormal, the power generation array is considered uncontrollable; (b) calculate the angle between the photovoltaic power generation array angle and the sun's position. If it is less than the threshold, the power generation array is considered uncontrollable. Need to control, the formula is
Figure PCTCN2022105427-appb-000021
Figure PCTCN2022105427-appb-000021
其中,
Figure PCTCN2022105427-appb-000022
表示光伏发电阵列平面的法向量,
Figure PCTCN2022105427-appb-000023
表示指向太阳位置的向量。ε表示夹角阈值,||表示向量的模。
in,
Figure PCTCN2022105427-appb-000022
Represents the normal vector of the photovoltaic power generation array plane,
Figure PCTCN2022105427-appb-000023
Represents a vector pointing to the position of the sun. ε represents the angle threshold, || represents the module of the vector.
Figure PCTCN2022105427-appb-000024
中三个元素的计算方法为:
Figure PCTCN2022105427-appb-000024
The calculation method for the three elements in is:
Figure PCTCN2022105427-appb-000025
Figure PCTCN2022105427-appb-000025
Figure PCTCN2022105427-appb-000026
Figure PCTCN2022105427-appb-000026
Figure PCTCN2022105427-appb-000027
Figure PCTCN2022105427-appb-000027
其中,θ表示发电阵列上一周期的转动角度,γ表示发电阵列的中轴倾斜角度。Among them, θ represents the rotation angle of the power generation array in the previous cycle, and γ represents the tilt angle of the central axis of the power generation array.
Figure PCTCN2022105427-appb-000028
中三个元素的计算方法为:
Figure PCTCN2022105427-appb-000028
The calculation method for the three elements in is:
Figure PCTCN2022105427-appb-000029
Figure PCTCN2022105427-appb-000029
Figure PCTCN2022105427-appb-000030
Figure PCTCN2022105427-appb-000030
Figure PCTCN2022105427-appb-000031
Figure PCTCN2022105427-appb-000031
其中,z表示太阳的高度角,a表示太阳的方位角。其余发电阵列为需要控制的发电阵列。Among them, z represents the altitude angle of the sun, and a represents the azimuth angle of the sun. The remaining power generation arrays are power generation arrays that need to be controlled.
在本实施例中,不存在通信异常光伏发电阵列,四个光伏发电阵列的转动角度θ分别为
Figure PCTCN2022105427-appb-000032
中轴倾斜角度γ均为0,太阳的高度角z为
Figure PCTCN2022105427-appb-000033
方位角a为
Figure PCTCN2022105427-appb-000034
夹角阈值ε为0.001。经计算,光伏发电阵列#2和#3不需要控制,仅调节光伏发电阵列#1和#4的位置。
In this embodiment, there is no abnormal communication photovoltaic power generation array, and the rotation angles θ of the four photovoltaic power generation arrays are respectively
Figure PCTCN2022105427-appb-000032
The tilt angle γ of the central axis is all 0, and the altitude angle z of the sun is
Figure PCTCN2022105427-appb-000033
The azimuth angle a is
Figure PCTCN2022105427-appb-000034
The angle threshold ε is 0.001. After calculation, photovoltaic power generation arrays #2 and #3 do not need to be controlled, only the positions of photovoltaic power generation arrays #1 and #4 are adjusted.
步骤3,对需要控制的光伏发电阵列构建角度优化问题。具体方法为(3-1)计算各个发电阵列的各个顶点坐标:Step 3: Construct an angle optimization problem for the photovoltaic power generation array that needs to be controlled. The specific method is (3-1) to calculate the coordinates of each vertex of each power generation array:
Figure PCTCN2022105427-appb-000035
Figure PCTCN2022105427-appb-000035
其中,x 0,y 0,z 0表示顶点在发电阵列平放时的坐标,x,y,z表示顶点的实际坐标。R为旋转矩阵。 Among them, x 0 , y 0 , z 0 represent the coordinates of the vertex when the power generation array is placed flat, and x, y, z represent the actual coordinates of the vertex. R is the rotation matrix.
(3-2)计算各个发电阵列的各个顶点在地面上的投影点:(3-2) Calculate the projection points of each vertex of each power generation array on the ground:
Figure PCTCN2022105427-appb-000036
Figure PCTCN2022105427-appb-000036
其中,x e,y e表示顶点在地面上的投影点的横纵坐标,(x r,y r,z r)表示太阳位置。 Among them, x e , y e represent the horizontal and vertical coordinates of the projection point of the vertex on the ground, and (x r , y r , z r ) represents the position of the sun.
(3-3)表示各个发电阵列在地面上的投影区域(3-3) represents the projection area of each power generation array on the ground
Figure PCTCN2022105427-appb-000037
Figure PCTCN2022105427-appb-000037
其中,A表示与投影点坐标有关的矩阵,k表示与投影点有关的向量。Among them, A represents the matrix related to the coordinates of the projection point, and k represents the vector related to the projection point.
(3-4)求解以下优化问题(3-4) Solve the following optimization problems
Figure PCTCN2022105427-appb-000038
Figure PCTCN2022105427-appb-000038
s.t.s.t.
Figure PCTCN2022105427-appb-000039
Figure PCTCN2022105427-appb-000039
Figure PCTCN2022105427-appb-000040
Figure PCTCN2022105427-appb-000040
Figure PCTCN2022105427-appb-000041
Figure PCTCN2022105427-appb-000041
μ j≥0 μj≥0
λ j≥0 λ j ≥0
j=1,2,...,M-1j=1,2,...,M-1
其中,
Figure PCTCN2022105427-appb-000042
表示第i个需要控制的光伏发电阵列的法向量,
Figure PCTCN2022105427-appb-000043
表示太阳的位置向量,A j,k j表示第j个需要控制的光伏发电阵列的投影矩阵和投影向量,μ jj表示第j个辅助变量,N表示需要控制的光伏发电阵列的数量,M表示光伏发电阵列的总数。
in,
Figure PCTCN2022105427-appb-000042
Represents the normal vector of the i-th photovoltaic power generation array that needs to be controlled,
Figure PCTCN2022105427-appb-000043
represents the position vector of the sun, A j , k j represents the projection matrix and projection vector of the jth photovoltaic power generation array that needs to be controlled, μ j , λ j represents the jth auxiliary variable, and N represents the number of photovoltaic power generation arrays that need to be controlled. , M represents the total number of photovoltaic power generation arrays.
步骤4,求解角度优化问题,得到需要控制的光伏发电阵列的旋转角度。Step 4: Solve the angle optimization problem to obtain the rotation angle of the photovoltaic power generation array that needs to be controlled.
在本实施例中,太阳的位置向量为
Figure PCTCN2022105427-appb-000044
以光伏发电阵列#1为例,计算发电阵列在地面上的投影区域为
In this embodiment, the position vector of the sun is
Figure PCTCN2022105427-appb-000044
Taking photovoltaic power generation array #1 as an example, calculate the projection area of the power generation array on the ground as
Figure PCTCN2022105427-appb-000045
Figure PCTCN2022105427-appb-000045
求解优化问题的结果为#1发电阵列旋转角度为
Figure PCTCN2022105427-appb-000046
#4号发电阵列旋转角度为
Figure PCTCN2022105427-appb-000047
The result of solving the optimization problem is that the rotation angle of the #1 power generation array is
Figure PCTCN2022105427-appb-000046
The rotation angle of the #4 power generation array is
Figure PCTCN2022105427-appb-000047
通过上述实施例的过程,体现了本发明提出方法能够自适应的选择合适的光伏发电阵列并优化其旋转角度,同时保证光伏发电阵列间不发生阴 影遮挡。有利于提高发电效率,提高整体经济效益。Through the process of the above embodiment, it is demonstrated that the method proposed by the present invention can adaptively select a suitable photovoltaic power generation array and optimize its rotation angle, while ensuring that no shadows occur between photovoltaic power generation arrays. It is conducive to improving power generation efficiency and improving overall economic benefits.
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。The above-described embodiments describe in detail the technical solutions and beneficial effects of the present invention. It should be understood that the above-mentioned are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, additions and equivalent substitutions should be included in the protection scope of the present invention.

Claims (8)

  1. 一种光伏发电阵列角度自适应动态调整方法,其特征在于,每隔一定周期,执行以下步骤:A method for adaptive dynamic adjustment of the angle of a photovoltaic power generation array, which is characterized by performing the following steps at certain intervals:
    (1)获取各个光伏发电阵列的配置信息,包括光伏发电阵列长度、宽度、安装高度和中轴位置坐标;(1) Obtain the configuration information of each photovoltaic power generation array, including the photovoltaic power generation array length, width, installation height and central axis position coordinates;
    (2)从各个光伏发电阵列中选取出需要控制的光伏发电阵列;(2) Select the photovoltaic power generation array that needs to be controlled from each photovoltaic power generation array;
    (3)对需要控制的光伏发电阵列构建角度优化问题;(3) The problem of optimizing the construction angle of the photovoltaic power generation array that needs to be controlled;
    (4)求解角度优化问题,得到需要控制的光伏发电阵列的旋转角度。(4) Solve the angle optimization problem and obtain the rotation angle of the photovoltaic power generation array that needs to be controlled.
  2. 根据权利要求1所述的光伏发电阵列角度自适应动态调整方法,其特征在于,步骤(2)中,选取方法为:The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 1, characterized in that in step (2), the selection method is:
    (2-1)检测每个光伏发电阵列信号通路是否正常,如果通信异常,则认为该发电阵列无法控制;(2-1) Check whether the signal path of each photovoltaic power generation array is normal. If the communication is abnormal, the power generation array is considered uncontrollable;
    (2-2)计算每个光伏发电阵列角度与太阳位置夹角,若小于夹角阈值,则认为该发电阵列不需要控制;(2-2) Calculate the angle between the angle of each photovoltaic power generation array and the position of the sun. If it is less than the angle threshold, it is considered that the power generation array does not need to be controlled;
    (2-3)排除无法控制和不需要控制的光伏发电阵列,剩余的作为需要控制的光伏发电阵列。(2-3) Exclude photovoltaic power generation arrays that cannot be controlled and do not need to be controlled, and the remaining ones are regarded as photovoltaic power generation arrays that need to be controlled.
  3. 根据权利要求2所述的光伏发电阵列角度自适应动态调整方法,其特征在于,步骤(2-2)中的判断公式为:The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 2, characterized in that the judgment formula in step (2-2) is:
    Figure PCTCN2022105427-appb-100001
    Figure PCTCN2022105427-appb-100001
    其中,
    Figure PCTCN2022105427-appb-100002
    表示光伏发电阵列平面的法向量,
    Figure PCTCN2022105427-appb-100003
    表示指向太阳位置的向量;ε表示夹角阈值,||表示向量的模。
    in,
    Figure PCTCN2022105427-appb-100002
    Represents the normal vector of the photovoltaic power generation array plane,
    Figure PCTCN2022105427-appb-100003
    Represents the vector pointing to the position of the sun; ε represents the angle threshold, and || represents the module of the vector.
  4. 根据权利要求3所述的光伏发电阵列角度自适应动态调整方法,其特征在于,夹角阈值ε为0.001。The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 3, characterized in that the angle threshold ε is 0.001.
  5. 根据权利要求3所述的光伏发电阵列角度自适应动态调整方法,其特征在于,
    Figure PCTCN2022105427-appb-100004
    中三个元素的计算方法为:
    The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 3, characterized in that:
    Figure PCTCN2022105427-appb-100004
    The calculation method for the three elements in is:
    Figure PCTCN2022105427-appb-100005
    Figure PCTCN2022105427-appb-100005
    Figure PCTCN2022105427-appb-100006
    Figure PCTCN2022105427-appb-100006
    Figure PCTCN2022105427-appb-100007
    Figure PCTCN2022105427-appb-100007
    其中,θ表示发电阵列的上一周期的转动角度,γ表示发电阵列的中轴倾斜角度;Among them, θ represents the rotation angle of the power generation array in the previous cycle, and γ represents the tilt angle of the central axis of the power generation array;
    Figure PCTCN2022105427-appb-100008
    中三个元素的计算方法为:
    Figure PCTCN2022105427-appb-100008
    The calculation method for the three elements in is:
    Figure PCTCN2022105427-appb-100009
    Figure PCTCN2022105427-appb-100009
    Figure PCTCN2022105427-appb-100010
    Figure PCTCN2022105427-appb-100010
    Figure PCTCN2022105427-appb-100011
    Figure PCTCN2022105427-appb-100011
    其中,z表示太阳的高度角,a表示太阳的方位角。Among them, z represents the altitude angle of the sun, and a represents the azimuth angle of the sun.
  6. 根据权利要求5所述的光伏发电阵列角度自适应动态调整方法,其特征在于,步骤(3)的具体过程为:The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 5, characterized in that the specific process of step (3) is:
    (3-1)计算各个光伏发电阵列的各个顶点坐标;(3-1) Calculate the coordinates of each vertex of each photovoltaic power generation array;
    (3-2)计算各个光伏发电阵列的各个顶点在地面上的投影点坐标;(3-2) Calculate the coordinates of the projection points of each vertex of each photovoltaic power generation array on the ground;
    (3-3)确定各个光伏发电阵列在地面上的投影区域(3-3) Determine the projection area of each photovoltaic power generation array on the ground
    Figure PCTCN2022105427-appb-100012
    Figure PCTCN2022105427-appb-100012
    其中,A表示与投影点坐标有关的投影矩阵,k表示与投影点有关的投影向量;Among them, A represents the projection matrix related to the coordinates of the projection point, and k represents the projection vector related to the projection point;
    (3-4)构建以下角度优化问题(3-4) Construct the following angle optimization problem
    Figure PCTCN2022105427-appb-100013
    Figure PCTCN2022105427-appb-100013
    s.t.s.t.
    Figure PCTCN2022105427-appb-100014
    Figure PCTCN2022105427-appb-100014
    Figure PCTCN2022105427-appb-100015
    Figure PCTCN2022105427-appb-100015
    Figure PCTCN2022105427-appb-100016
    Figure PCTCN2022105427-appb-100016
    μ j≥0 μj≥0
    λ j≥0 λ j ≥0
    j=1,2,...,M-1j=1,2,...,M-1
    其中,
    Figure PCTCN2022105427-appb-100017
    表示第i个需要控制的光伏发电阵列的法向量,
    Figure PCTCN2022105427-appb-100018
    表示太阳的位置向量,A j,k j分别表示第j个需要控制的光伏发电阵列的投影矩阵和投影向量,μ jj表示第j个辅助变量,N表示需要控制的光伏发电阵列的数量,M表示光伏发电阵列的总数。
    in,
    Figure PCTCN2022105427-appb-100017
    Represents the normal vector of the i-th photovoltaic power generation array that needs to be controlled,
    Figure PCTCN2022105427-appb-100018
    Represents the position vector of the sun, A j and k j respectively represent the projection matrix and projection vector of the jth photovoltaic power generation array that needs to be controlled, μ j and λ j represent the jth auxiliary variable, and N represents the number of photovoltaic power generation arrays that need to be controlled. Quantity, M represents the total number of photovoltaic power generation arrays.
  7. 根据权利要求6所述的光伏发电阵列角度自适应动态调整方法,其特征在于,步骤(3-1)中,各个顶点坐标表示为:The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 6, characterized in that in step (3-1), the coordinates of each vertex are expressed as:
    Figure PCTCN2022105427-appb-100019
    Figure PCTCN2022105427-appb-100019
    其中,x 0,y 0,z 0表示顶点在光伏发电阵列平放时的坐标,x,y,z表示顶点的实际坐标;R为旋转矩阵。 Among them, x 0 , y 0 , z 0 represent the coordinates of the vertex when the photovoltaic power generation array is laid flat, x, y, z represent the actual coordinates of the vertex; R is the rotation matrix.
  8. 根据权利要求7所述的光伏发电阵列角度自适应动态调整方法,其特征在于,步骤(3-2)中,投影点坐标的计算公式为:The photovoltaic power generation array angle adaptive dynamic adjustment method according to claim 7, characterized in that in step (3-2), the calculation formula of the projection point coordinates is:
    Figure PCTCN2022105427-appb-100020
    Figure PCTCN2022105427-appb-100020
    其中,x e,y e表示顶点在地面上的投影点的横纵坐标,(x r,y r,z r)表示太阳位置。 Among them, x e , y e represent the horizontal and vertical coordinates of the projection point of the vertex on the ground, and (x r , y r , z r ) represents the position of the sun.
PCT/CN2022/105427 2022-04-26 2022-07-13 Self-adaptive dynamic adjustment method for angle of photovoltaic power generation array WO2023206822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210446013 2022-04-26
CN202210446013.6 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023206822A1 true WO2023206822A1 (en) 2023-11-02

Family

ID=88517089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105427 WO2023206822A1 (en) 2022-04-26 2022-07-13 Self-adaptive dynamic adjustment method for angle of photovoltaic power generation array

Country Status (1)

Country Link
WO (1) WO2023206822A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013082100A1 (en) * 2011-11-30 2013-06-06 Sunedison, Llc Tracking device for photovoltaic arrays
CN105549627A (en) * 2015-12-17 2016-05-04 上海电机学院 Automatic sun tracking control method of double-axis photovoltaic power generation
CN105955317A (en) * 2016-06-23 2016-09-21 江苏科技大学 Time control tracking control method for photovoltaic double-shaft tracer
CN106843287A (en) * 2017-02-16 2017-06-13 江苏溢美合创新能源科技有限公司 The control method of photovoltaic tracking controller, system and photovoltaic tracing system
CN110658858A (en) * 2019-10-19 2020-01-07 天合光能股份有限公司 Uneven terrain inverse tracking method based on intelligent photovoltaic module
US20200076356A1 (en) * 2018-09-05 2020-03-05 FTC Solar, Inc. Tracking systems for adjusting a photovoltaic array
CN112987802A (en) * 2021-02-22 2021-06-18 山东理工大学 Photovoltaic power generation method and device, electronic equipment and storage medium
CN113419567A (en) * 2021-07-05 2021-09-21 阳光电源(上海)有限公司 Tracking angle optimization method and system of tracking support

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013082100A1 (en) * 2011-11-30 2013-06-06 Sunedison, Llc Tracking device for photovoltaic arrays
CN105549627A (en) * 2015-12-17 2016-05-04 上海电机学院 Automatic sun tracking control method of double-axis photovoltaic power generation
CN105955317A (en) * 2016-06-23 2016-09-21 江苏科技大学 Time control tracking control method for photovoltaic double-shaft tracer
CN106843287A (en) * 2017-02-16 2017-06-13 江苏溢美合创新能源科技有限公司 The control method of photovoltaic tracking controller, system and photovoltaic tracing system
US20200076356A1 (en) * 2018-09-05 2020-03-05 FTC Solar, Inc. Tracking systems for adjusting a photovoltaic array
CN110658858A (en) * 2019-10-19 2020-01-07 天合光能股份有限公司 Uneven terrain inverse tracking method based on intelligent photovoltaic module
CN112987802A (en) * 2021-02-22 2021-06-18 山东理工大学 Photovoltaic power generation method and device, electronic equipment and storage medium
CN113419567A (en) * 2021-07-05 2021-09-21 阳光电源(上海)有限公司 Tracking angle optimization method and system of tracking support

Similar Documents

Publication Publication Date Title
EP4167152A1 (en) Optimization design method for photovoltaic system by taking system benefit optimization as target
US9354294B2 (en) Solar tracking system in real time including a light-resistant box with a loophole at a top surface being smaller than each convex lens in a conex lens plane array located within the light-resistant box
Mi et al. Open-loop solar tracking strategy for high concentrating photovoltaic systems using variable tracking frequency
CN105320154B (en) Device of solar generating, solar power system and its control method
US20120325314A1 (en) Solar Power Collection Using High-Focus-Accuracy Mirror Array
US20120325313A1 (en) Solar-Tower System With High-Focus-Accuracy Mirror Array
CN103149947B (en) Solar energy tracking method with umbra versa tracking
CN103077990B (en) Wide-angle concentrated photovoltaic power generating system with wavelength selectivity and method thereof
CN101751040A (en) Array mirror reflection spotlight method, array mirror reflection condenser and array photovoltaic power station
CN104467637A (en) Self-adaptive solar power system
CN105242693A (en) Photovoltaic system tracking and backtracking method
CN106933255B (en) Different-terrain self-adaptive solar tracking method
KR101131482B1 (en) Solar power generation system for high efficient
CN102354222A (en) Shadow-free tracking method for double-axis solar photovoltaic array power generation system
CN105843264A (en) Photoelectric induction tracking device for movement tracks of the sun
CN102355162A (en) Concentrating photovoltaic power generation system actively equalizing received solar radiation
CN111399548A (en) Control method of tracking type photovoltaic power generation system capable of identifying weather types
WO2023206822A1 (en) Self-adaptive dynamic adjustment method for angle of photovoltaic power generation array
CN113419567B (en) Tracking angle optimization method and system for tracking bracket
CN110764536A (en) Optimization method for flat single-axis photovoltaic tracking system
CN109813754B (en) System and method for measuring and optimizing heat absorber truncation efficiency
US11888435B2 (en) Systems and methods for array level terrain based backtracking
CN104460705B (en) A kind of single shaft photovoltaic generator antitracking method
WO2023240730A1 (en) Photovoltaic power generation array angle control method for double-layer control structure
US11646693B2 (en) Orientation of photovoltaic modules to minimize intercepted radiation in photovoltaic aglectric systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939650

Country of ref document: EP

Kind code of ref document: A1