WO2023206810A1 - 一种回收餐厨垃圾中氨氮并制备污水处理碳源的方法 - Google Patents
一种回收餐厨垃圾中氨氮并制备污水处理碳源的方法 Download PDFInfo
- Publication number
- WO2023206810A1 WO2023206810A1 PCT/CN2022/103753 CN2022103753W WO2023206810A1 WO 2023206810 A1 WO2023206810 A1 WO 2023206810A1 CN 2022103753 W CN2022103753 W CN 2022103753W WO 2023206810 A1 WO2023206810 A1 WO 2023206810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slurry
- carbon source
- enters
- food waste
- sewage treatment
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000010865 sewage Substances 0.000 title claims abstract description 23
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000010806 kitchen waste Substances 0.000 title claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 40
- 230000009615 deamination Effects 0.000 claims abstract description 35
- 238000006481 deamination reaction Methods 0.000 claims abstract description 35
- 238000009283 thermal hydrolysis Methods 0.000 claims abstract description 23
- 239000004576 sand Substances 0.000 claims abstract description 20
- 238000000605 extraction Methods 0.000 claims abstract description 17
- 238000000926 separation method Methods 0.000 claims abstract description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 238000004062 sedimentation Methods 0.000 claims abstract description 11
- 238000001125 extrusion Methods 0.000 claims abstract description 7
- 239000004519 grease Substances 0.000 claims abstract description 7
- 239000002002 slurry Substances 0.000 claims description 46
- 239000010794 food waste Substances 0.000 claims description 33
- 239000012071 phase Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000007791 liquid phase Substances 0.000 claims description 19
- 238000005345 coagulation Methods 0.000 claims description 15
- 230000015271 coagulation Effects 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 11
- 238000003795 desorption Methods 0.000 claims description 10
- 239000011268 mixed slurry Substances 0.000 claims description 10
- 238000004537 pulping Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 239000008346 aqueous phase Substances 0.000 claims description 7
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 6
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 6
- 239000001099 ammonium carbonate Substances 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 230000006837 decompression Effects 0.000 claims description 3
- 238000005189 flocculation Methods 0.000 claims description 3
- 230000016615 flocculation Effects 0.000 claims description 3
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 159000000003 magnesium salts Chemical class 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000003750 conditioning effect Effects 0.000 claims description 2
- 150000002500 ions Chemical group 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 230000018044 dehydration Effects 0.000 claims 1
- 238000006297 dehydration reaction Methods 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 abstract description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000003763 carbonization Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000002566 Capsicum Nutrition 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000006002 Pepper Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 241000722363 Piper Species 0.000 description 2
- 235000016761 Piper aduncum Nutrition 0.000 description 2
- 235000017804 Piper guineense Nutrition 0.000 description 2
- 235000008184 Piper nigrum Nutrition 0.000 description 2
- 229920002522 Wood fibre Polymers 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000005446 dissolved organic matter Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000002025 wood fiber Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- CKMXBZGNNVIXHC-UHFFFAOYSA-L ammonium magnesium phosphate hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Mg+2].[O-]P([O-])([O-])=O CKMXBZGNNVIXHC-UHFFFAOYSA-L 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000149 chemical water pollutant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052567 struvite Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B5/00—Operations not covered by a single other subclass or by a single other group in this subclass
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/022—Preparation of aqueous ammonia solutions, i.e. ammonia water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/26—Carbonates or bicarbonates of ammonium
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/025—Thermal hydrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/10—Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the invention relates to the technical fields of water treatment and kitchen waste treatment, specifically a method for recovering ammonia nitrogen in kitchen waste and preparing carbon sources for sewage treatment.
- the problem to be solved by this invention is to provide a method for recovering ammonia nitrogen from food waste and preparing carbon sources for sewage treatment.
- the recovered ammonia nitrogen can be used to produce ammonia water or ammonium bicarbonate.
- the recovered industrial mixed grease is sold externally, and the carbon source production time is short. The dosage of chemicals is small and the dissolved carbon source is high.
- the present invention provides a method for recovering ammonia nitrogen from food waste and preparing a carbon source for sewage treatment, which includes the following steps:
- Step 1 food waste is crushed and sorted.
- the incoming food waste is pulped by a hydraulic pulping machine and separated into organic slurry and inorganic materials; the organic slurry enters the slurry mixing tank, and the inorganic materials enter the screw extrusion system;
- Step 2 Press and separate the inorganic materials in the screw extrusion system.
- the pulp obtained after the inorganic impurities are separated enters the slurry mixing tank and is mixed with the organic slurry after hydraulic pulping separation; the separated inorganic impurities are transported and disposed of;
- Step 3 Mix and condition the crushed organic slurry and the screw-pressed slurry. After conditioning, the mixed slurry enters the sand and impurity removal system;
- Step 4 The sand removal and impurity removal system realizes the stepwise removal of heavy impurities in the mixed slurry and the removal of light impurities; the mixed slurry after removing the heavy and light impurities enters the thermal hydrolysis system;
- Step 5 The mixed slurry undergoes a thermal hydrolysis reaction in a high-temperature and high-pressure thermal hydrolysis system.
- the easily degradable macromolecular substances in the food waste are continuously liquefied and dissolved into the liquid phase, improving the solubility COD (COD) of the mixed slurry in the liquid phase.
- COD solubility COD
- SCOD solubility COD
- volatile organic acid VFAs concentration volatile organic acid VFAs concentration
- the pressure-released steam after thermal hydrolysis enters the deamination system and is used in the deamination system to strip NH 3 in the kitchen water phase
- the hydrolyzed organic slurry enters the oil extraction system ;
- Step 6 Separate the water phase, liquid phase and grease of the hydrolyzed organic slurry in the oil extraction system; the water phase of the slurry enters the solid-liquid separation system;
- Step 7 Adjust the pH of the aqueous phase of the organic slurry after oil extraction to 7.5 to 8.0 in the solid-liquid separation system, then add PAC and non-ionic PAM for demulsification and flocculation; use a plate and frame filter press dehydrator to filter the oil after oil extraction.
- the aqueous phase of the organic slurry is filtered,
- Step 8 In the coagulation and sedimentation system, suspended substances and colloidal substances are further removed, and solid-liquid separation is performed; the liquid phase enters the deamination system;
- Step 9 The liquid phase after coagulation and precipitation is deaminated in the deamination system.
- the hydraulic pulping machine is a blade with a special structure.
- the blade drives the food waste to perform a swirling motion through high-speed rotation to achieve selective crushing of the food waste.
- the pulping machine outlet nozzle is set to 10mm.
- the screen can separate organic matter and inorganic impurities.
- the particle size of the kitchen slurry after hydropulping separation is 8 to 10 mm.
- the organic slurry TS is controlled at 10-15%.
- the multi-stage active cyclone sand remover and impurity removal separator are used for sand and impurity removal.
- the slurry cyclone flow rate is controlled at 5 to 10 m/s, and the removal rate of light substances is ⁇ 90%.
- the sand and impurity removal system includes a multi-stage partitioned active cyclone desander and an impurity removal separator.
- the multi-stage partitioned active cyclone desander is used to remove heavy impurities in steps, and the slurry cyclone flow rate is controlled at 5 ⁇ 10m/s, the heavy impurities include sand, bones, shells, glass, porcelain and other heavy materials, with a specific gravity greater than 2000kg/m 3 ; prevent sand and gravel from wearing on the pump and three-phase centrifugal separator, and reduce anaerobic Grit settling in the digester.
- the impurity removal separator centrifugally separates the kitchen organic slurry to remove light impurities.
- the removal rate of light substances is ⁇ 90%.
- the light impurities include finely crushed plastics, wood fibers, pepper peels, heavy and light impurities. Transportation and disposal of sundries.
- step 5 Furthermore, in the thermal hydrolysis in step 5, 0.6MPa, 160°C saturated steam is used as the heating medium to spray-heat the kitchen slurry.
- the thermal hydrolysis temperature is 120-130°C, and the hydrolysis time is 30-60 minutes.
- the pressure-released steam after thermal hydrolysis is used in the deamination system to strip NH 3 from the kitchen water phase.
- the oil extraction system in step 6 is a three-phase horizontal centrifuge.
- the speed of the centrifuge is 2500-3500 rpm.
- the recovery rate of liquid phase oil after separation is ⁇ 90%, the purity of regenerated oil is ⁇ 97%, and the kitchen water
- the phase grease content is less than 0.2%, and the separated grease can be used to produce industrial-grade mixed oil (crude oil).
- the plate and frame filter press dewatering machine described in step 7 is a diaphragm type, and the slurry after oil extraction is hydraulically filtered to form a mud cake with a moisture content of less than 60%, which can be used for feed production or insect breeding; the filtrate of the filter press
- the SS is lower and the dissolved organic matter is higher, entering the coagulation and sedimentation system.
- liquid phase after coagulation and precipitation in step 9 is deaminated in the deamination system.
- the specific process is as follows:
- the liquid phase after coagulation and precipitation enters the preheater, and the high-temperature deamination carbon source is used as a heat source to preheat and increase the temperature, and then enters the analysis tower to resolve CO 2 and the calcium and magnesium in the water phase.
- the ions form calcium and magnesium salts, and the temperature in the desorption tower is maintained at 55-65°C; the desorbed water phase enters the stripping deamination tower, and the steam after decompression of the thermal hydrolysis system is introduced into the tower, and the water phase and steam flow in reverse.
- the NH 3 in the water phase is stripped out and then flows into the bottom of the tower. After exchanging heat with the raw water phase entering the deamination system, it becomes an efficient dissolved organic carbon source; the NH 3 after stripping is recycled to produce ammonia water or ammonium bicarbonate.
- the preheater adopts a plate heat exchanger; the desorption tower temperature is 55 ⁇ 65°C and the pressure is -700 ⁇ -900Pa; the deamination tower is 65 ⁇ 75°C and the pressure is -700 ⁇ -900Pa; the condenser outlet temperature is 35 ⁇ 42°C, the reflux ratio of the condensate is 1.7 to 2.0; the removal rate of ammonia nitrogen in the deamination system is ⁇ 95%, and the removal rate of total nitrogen is ⁇ 90%; the heat source used in the deamination process comes from the thermal hydrolysis device Pressurized steam, no external heating source.
- the method of the present invention can recover grease and NH 3 from kitchen waste to the greatest extent, reduce the salt content in kitchen waste, improve the quality of organic carbon sources made from kitchen waste, realize resource recycling to the greatest extent, and improve The value of recycling products from food waste.
- the method for preparing carbon sources from food waste used in the present invention has the characteristics of simple method, shorter time, less dosage of chemicals, lower cost, and higher quality of carbon sources. It can not only effectively improve the efficiency of sewage treatment, but also It can significantly reduce sewage treatment operating costs.
- Figure 1 is a flow chart of the inventive method.
- the invention provides a method for recovering ammonia nitrogen from food waste and preparing a carbon source for sewage treatment.
- the food waste is sequentially managed by a crushing and sorting system, a screw extrusion system, a sand and impurity removal system, and a thermal hydrolysis system. , oil extraction system, solid-liquid separation system, coagulation sedimentation and deamination system.
- the food waste crushing and sorting system uses a hydraulic pulper.
- the hydraulic pulper has a special structure of blades. The blades rotate at high speed to drive the food waste into a swirling motion to achieve selective crushing of the food waste.
- a screen is installed at the outlet of the pulping machine to separate organic matter and inorganic impurities.
- the particle size of the kitchen slurry after hydropulping separation is 8 to 10 mm.
- the described screw extrusion system adopts the principle of screw pressing to squeeze and separate the crushed and separated inorganic impurities.
- the separated inorganic impurities are transported out for disposal.
- the separated slurry is separated from the hydraulic pulping slurry in the slurry mixing tank. Mixing, the mixed kitchen materials enter the sand and impurity removal system.
- the described sand and impurity removal system adopts multi-stage partitioned active cyclone sand removal technology to achieve efficient removal of heavy materials in cascades, prevent sand and gravel from wearing on pumps and three-phase centrifugal separators, and reduce the wear and tear of anaerobic digestion tanks.
- the heavy materials include sand, bones, shells, glass, porcelain, etc., with a specific gravity greater than 2000kg/m 3 , and the swirl flow rate of the slurry is controlled at 5 to 10m/s.
- the impurity removal separator centrifugally separates the kitchen organic slurry to remove light impurities such as fine plastics, wood fibers, pepper peels, etc.
- the removal rate of light substances is ⁇ 90%.
- the thermal hydrolysis system described above continuously liquefies and dissolves easily degradable macromolecular substances in food waste into the liquid phase under high-temperature and high-pressure environments, thereby increasing the concentration of soluble COD (SCOD) and volatile organic acids in the liquid phase. Concentration of VFAs.
- the thermal hydrolysis temperature is 120 ⁇ 130°C
- the hydrolysis time is 30 ⁇ 60min
- the heating medium of the thermal hydrolysis tank is 0.6MPa and 160°C saturated steam.
- the pressure-released steam after thermal hydrolysis is used in the deamination system to strip NH 3 from the aqueous phase of the organic slurry.
- the oil extraction system described uses a three-phase horizontal centrifugal separator.
- the speed of the centrifuge is 2500-3500 rpm.
- the oil after centrifugation can be used to produce industrial-grade mixed oil (crude oil).
- the recovery rate of liquid phase oil after separation ⁇ 90%, the purity of regenerated oil is ⁇ 97%, and the content of kitchen water phase oil is ⁇ 0.2%.
- the solid-liquid separation system adjusts the pH of the aqueous phase of the organic slurry after oil extraction to 7.5-8.0, and then adds PAC and non-ionic PAM for demulsification and flocculation.
- a plate and frame filter press dehydrator is used to filter the aqueous phase of the organic slurry after oil extraction in the kitchen.
- the filter press forms a mud cake with a moisture content of less than 60%, which can be used for feed production or insect breeding; the filtrate SS of the filter press is relatively small. Low, dissolved organic matter is high and enters the coagulation and sedimentation system.
- the coagulation and sedimentation system uses coagulation and sedimentation to further remove suspended substances and colloidal substances.
- the coagulation sedimentation tank includes a mixing zone, a reaction zone and a sedimentation zone.
- the flocculants PAC and PAM are added to the mixing zone to quickly mix with the raw water and react, and then solid-liquid separation is performed in the sedimentation zone.
- the deamination system uses when the pH is alkaline, ammonia nitrogen mainly exists in the form of free ammonia. After steam is introduced into the liquid phase, during the process of gas-liquid contact with each other, the free ammonia dissolved in the water is removed from the liquid phase. The principle of diffusing into the gas phase and being taken away with the flow of steam, thereby removing ammonia nitrogen.
- the effluent after coagulation and precipitation enters the preheater, uses the carbon source after high-temperature deamination as a heat source to preheat and increase the temperature, and then enters the desorption tower to decompose CO 2 and medium calcium and magnesium ions in the water phase to form calcium and magnesium salts.
- the temperature in the desorption tower is maintained at 55 ⁇ 65°C; the desorbed water phase enters the stripping deamination tower, and the steam after decompression of the thermal hydrolysis system is introduced into the tower.
- the water phase and steam flow in reverse, and NH in the water phase is stripped out. 3 and then flows into the bottom of the tower, and becomes a high-efficiency dissolved organic carbon source after exchanging heat with the raw water phase entering the deamination system; after deamination and stripping, the ammonia gas enters the condenser for cooling and separation in the gas-liquid separator, and a small amount of condensate flows back to the stripper In the deamination tower, the ammonia gas passes through the vacuum device and enters the carbonization reaction tower.
- ammonia water is continuously cooled and circulated. As the ammonia gas is circulated and absorbed, it reaches a saturated state to form saturated ammonia water. CO 2 can also be passed into the carbonization reaction tower to generate carbonic acid. After ammonium bicarbonate is separated to produce ammonium bicarbonate.
- the deamination system includes a preheater, a desorption tower, a stripping deamination tower, a condenser, a gas-liquid separation tank and a carbonization reaction tower; the carbonization reaction tower is used to recover stripped ammonia; wherein, the preheater Plate heat exchanger is used; the desorption tower temperature is 55 ⁇ 65°C, the pressure is -700 ⁇ -900Pa; the deamination tower is 65 ⁇ 75°C, the pressure is -700 ⁇ -900Pa; the condenser outlet temperature is 35 ⁇ 42°C, The reflux ratio of the condensate is 1.7 to 2.0; a vacuum device is installed on the upper part of the carbonization reaction tower to provide a negative pressure environment for the desorption tower and deamination tower to increase the rate of NH 3 desorption and desorption.
- the removal rate of ammonia nitrogen is ⁇ 95%, and the removal rate of total nitrogen is ⁇ 90%.
- the highly soluble organic carbon source is obtained.
- the heat source used in the deamination process comes from the pressure-release steam of the thermal hydrolysis process. There is no external heating source.
- the nitrogen and phosphorus precipitation method struvite method
- there is no external agent magnesium chloride and calcium hydroxide
- the cost is lower, the removal efficiency of ammonia nitrogen and total nitrogen is higher, and the generated Ammonia (concentration 10% to 15%) or ammonium bicarbonate.
- the high-concentration organic carbon source prepared from food waste can be used in anaerobic biogas wastewater, municipal sewage, landfill leachate and other industrial wastewater with insufficient carbon sources (COD/TN ⁇ 5), and can significantly reduce Dosage of traditional carbon sources.
- the carbon source can be added at the inlet of the sewage or the denitrification tank. When adding the carbon source to the de-digestion tank, it needs to be mixed with traditional carbon sources in a certain proportion. The specific proportion will be tested according to the water quality indicators of the sewage inlet and outlet.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Physical Water Treatments (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,包括餐厨垃圾破碎分选系统、螺旋挤压系统、除砂除杂系统、热水解系统、提油系统、固液分离系统、混凝沉淀、脱氨九个系统。该方法可以回收餐厨垃圾的油脂和NH 3,降低餐厨垃圾中盐分,提高餐厨垃圾制成有机碳源的品质。
Description
本发明涉及水处理和餐厨垃圾处理技术领域,具体为一种回收餐厨垃圾中氨氮并制备污水处理碳源的方法。
随着我国垃圾分类工作从试点到全面推广和“无废城市”建设试点工作的开展,餐厨垃圾分出量大幅度增长,餐厨垃圾处理处置能力的缺口仍然巨大。目前,我国餐厨垃圾处理主要采用厌氧发酵工艺,由于餐厨垃圾中异物种类多、形态与性质差异大以及沼气与粗油脂等资源化产物产量少等特点,餐厨垃圾处理存在技术工艺复杂、运行成本较高、资源化价值较低等问题。因此,餐厨垃圾处理工艺待进一步研究。
目前,我国污水处理厂普遍存在进水营养物质不平衡的问题,其中,由于反硝化碳源不足,在污水反硝化脱氮过程中,主要依靠外加碳源来实现污水的深度脱氮,常用的碳源包括甲醇、乙酸钠、葡萄糖等,投加成本较高,经济效益较差。餐厨垃圾沼气工程中沼液废水生化处理也普遍存在碳氮比失衡现象,COD为10000~15000mg/L,氨氮为2000~3000mg/L,总氮为2500~4000mg/L,需要投加大量碳源来实现总氮TN达标排放。
目前,相关利用餐厨垃圾制备污水处理碳源的专利中,存在着制备方法复杂、时间较长、成本较高以及未去除碳源中氮导致碳源的品质较低等问题,无法满足外加碳源产品含量高、易生物降解、反应速度快、生物适应性好、价格便宜等需求。
发明内容
本发明所要解决的问题是提供一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,回收的氨氮可以制氨水或碳酸氢铵,回收的工业混合油脂外售,碳源生产时间较短,药剂投加量较少,溶解性碳源较高。
本发明的一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,包括如下步骤:
步骤1,餐厨垃圾破碎分选,餐厨垃圾来料经过水力制浆机制浆,并分离为有机浆液和无机物料;有机浆液进入浆液混合池,无机物料进入螺旋挤压系统;
步骤2,在螺旋挤压系统中对无机物料压榨分离,分离出无机杂质后得到的 桨液进入浆液混合池,与水力制浆分离后的有机浆液混合;分离出的无机杂质外运处置;
步骤3,将破碎后的有机浆液和螺旋压榨后的浆液进行混合调质,调质后混合浆液进入除砂除杂系统;
步骤4,在除砂除杂系统实现混合浆液中的重质杂质梯级去除,以及轻质杂质的去除;去除重质轻质杂质后的混合浆液进入热水解系统;
步骤5,混合浆液在高温高压的热水解系统中,进行热水解反应,餐厨垃圾中易降解的大分子物质不断液化溶解到液相中,提高混合浆液在液相中溶解性COD(SCOD)浓度和挥发性有机酸VFAs浓度;热水解后的释压蒸汽进入脱氨系统,用于脱氨系统进行餐厨水相中NH
3的吹脱;水解后的有机浆液进入提油系统;
步骤6,在提油系统中对水解后的有机浆液进行水相、液相与油脂分离;浆液水相进入固液分离系统;
步骤7,在固液分离系统中对提油后的有机浆液水相进行pH调节至7.5~8.0,然后加入PAC和非离子PAM进行破乳、絮凝;采用板框压滤脱水机对提油后的有机浆液水相进行压滤,
步骤8,在混凝沉淀系统,进一步去除悬浮物质和胶体物质,进行固液分离;液相进入脱氨系统;
步骤9,混凝沉淀后的液相在脱氨系统中脱氨。
进一步的,步骤1中水力制浆机为特殊结构的浆叶,浆叶通过高速转动带动餐厨垃圾做旋流运动,实现餐厨垃圾的选择性破碎,同时制浆机出浆管口设置10mm筛网,可以实现有机质和无机杂质的分离。水力制浆分离后的餐厨浆液的粒径为8~10mm。有机浆液TS控制在10~15%。
进一步的,所述除砂除杂采用多级分区主动式旋流除砂器和除杂分离机,浆液旋流流速控制在5~10m/s,轻质物质的去除率≥90%。
进一步的,除砂除杂系统包括多级分区主动式旋流除砂器和除杂分离机,多级分区主动式旋流除砂器用于梯级去除重质杂质,浆液旋流流速控制在5~10m/s,所述重质杂质包括砂石、骨头、贝壳、玻璃、瓷器等重质物质,比重大于2000kg/m
3;防止砂石等对泵、三相离心分离机的磨损,减少厌氧消化罐的沉砂。除杂分离机对餐厨有机浆液进行离心分离,用于去除轻质杂质,轻质物质的去除率≥90%,所述轻质杂质包括细碎塑料、木质纤维、辣椒皮,重质和轻质杂物外运处置。
进一步的,步骤5的热水解中采用0.6MPa、160℃饱和蒸汽作为加热介质,对餐厨浆液进行喷射加热,热水解温度为120~130℃,水解时间为30~60min。热水解后的释压蒸汽用于脱氨系统进行餐厨水相中NH
3的吹脱。
进一步的,步骤6中提油系统为三相卧式离心分离机,离心机的转速为2500~3500rmp,分离后液相油脂的回收率≥90%,再生油脂的纯度≥97%,餐厨水相油脂的含量<0.2%,分离后的油脂可用于生产工业级混合油(毛油)。
进一步的,步骤7中所述板框压滤脱水机为隔膜式,将提油后的浆液压滤形成含水率低于60%的泥饼,可以用于生产饲料或昆虫养殖;压滤的滤液SS较低,溶解性有机物较高,进入混凝沉淀系统。
进一步的,步骤9中混凝沉淀后的液相在脱氨系统中脱氨,具体过程如下:
在脱氨系统中混凝沉淀后的液相进入预热器内,利用高温脱氨后的碳源作为热源进行预热升温,然后进入解析塔内解析出CO
2和水相的中钙、镁离子形成钙镁盐,解析塔内的温度维持在55~65℃;解析后的水相进入汽提脱氨塔,塔中通入热水解系统释压后的蒸汽,水相和蒸汽逆向流动,脱出水相中NH
3后流入塔底,与进入脱氨系统原水相换热后成为高效溶解性有机碳源;脱出后的NH
3回收制氨水或碳酸氢铵。
预热器采用板式换热器;解析塔温度为55~65℃,压力为-700~-900Pa;脱氨塔为65~75℃,压力为-700~-900Pa;冷凝器出气温度为35~42℃,冷凝液的回流比为1.7~2.0;所述脱氨系统,氨氮的去除率≥95%,总氮的去除率≥90%;脱氨过程中所用的热源来自于热水解装置的释压蒸汽,无外加热源。
有益效果:本发明方法可以最大程度的回收餐厨垃圾的油脂和NH
3,降低餐厨垃圾中盐分,提高餐厨垃圾制成有机碳源的品质,最大程度实现了资源的回收利用,提高了餐厨垃圾回收产物利用的价值。本发明所采用的餐厨垃圾制备碳源的方法,具有方法简单、时间较短、药剂有加量较少、成本较低、碳源品质较高等特点,不仅可以有效提高污水处理的效率,也可以显著降低污水处理运行成本。
说明书附图
图1是发明方法的流程图。
本发明提供一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,如图1所示,餐厨垃圾依次经理破碎分选系统、螺旋挤压系统、除砂除杂系统、热水解系统、 提油系统、固液分离系统、混凝沉淀和脱氨系统。
所述餐厨垃圾破碎分选系统,采用水力制浆机,水力制浆机为特殊结构的浆叶,浆叶通过高速转动带动餐厨垃圾做旋流运动,实现餐厨垃圾的选择性破碎,同时制浆机出浆管口设置筛网,可以实现有机质和无机杂质的分离。水力制浆分离后的餐厨浆液的粒径为8~10mm。
所述的螺旋挤压系统,采用螺旋压榨的原理,将破碎分离后的无机杂质物料进行压榨分离,分离出的无机杂质外运处置,分离后浆液在浆液混合池与水力制浆分离后的浆液混合,混合的餐厨物料进入除砂除杂系统。
所述的除砂除杂系统,采用多级分区主动式旋流除砂技术,实现重质物质梯级高效去除,防止砂石等对泵、三相离心分离机的磨损,减少厌氧消化罐的沉砂。所述重质物质包括砂石、骨头、贝壳、玻璃、瓷器等,比重大于2000kg/m
3,浆液的旋流流速控制在5~10m/s。除杂分离机对餐厨有机浆液进行离心分离,去除细碎塑料、木质纤维、辣椒皮等轻质杂物,轻质物质的去除率≥90%。
所述的热水解系统,在高温、高压环境下,餐厨垃圾中易降解的大分子物质不断液化溶解到液相中,提高了液相中溶解性COD(SCOD)浓度和挥发性有机酸VFAs浓度。热水解温度为120~130℃,水解时间为30~60min,热水解罐的加热介质为0.6MPa、160℃饱和蒸汽。热水解后的释压蒸汽用于脱氨系统进行有机浆液水相中NH
3的吹脱。
所述的提油系统,采用三相卧式离心分离机,离心机的转速为2500~3500rmp,离心分离后的油脂可用于生产工业级混合油(毛油),分离后液相油脂的回收率≥90%,再生油脂的纯度≥97%,餐厨水相油脂的含量<0.2%。
所述的固液分离系统,对提油后的有机浆液水相进行pH调节至7.5~8.0,然后加入PAC和非离子PAM进行破乳、絮凝。采用板框压滤脱水机对餐厨提油后的有机浆液水相进行压滤,压滤形成含水率低于60%的泥饼,可以用于生产饲料或昆虫养殖;压滤的滤液SS较低,溶解性有机物较高,进入混凝沉淀系统。
所述混凝沉淀系统,采用混凝沉淀进一步去除悬浮物质和胶体物质。混凝沉淀池包括混合区、反应区和沉淀区,絮凝剂PAC和PAM投加到混合区与原水快速混合,并发生反应,然后在沉淀区进行固液分离。
所述脱氨系统,采用pH为碱性时,氨氮主要以游离氨的形式存在,将蒸汽通入到液相后,在气液相互相接触的过程中,使水中溶解的游离氨从液相扩散至 气相随着蒸汽流动被带走,从而脱出氨氮的原理。混凝沉淀后的出水进入预热器内,利用高温脱氨后的碳源作为热源进行预热升温,然后进入解析塔内解析出CO
2和水相的中钙、镁离子形成钙镁盐,解析塔内的温度维持在55~65℃;解析后的水相进入汽提脱氨塔,塔中通入热水解系统释压后的蒸汽,水相和蒸汽逆向流动,脱出水相中NH
3后流入塔底,与进入脱氨系统原水相换热后成为高效溶解性有机碳源;经过脱氨汽提后的氨气进入冷凝器降温和气液分离器分离,少量冷凝液回流至汽提脱氨塔,氨气通过真空装置,进入碳化反应塔,被不断降温循环的氨水,随着氨气的循环吸收达到饱和状态,形成饱和的氨水,也可以在碳化反应塔通入CO
2生成碳酸氢铵后分离制碳酸氢铵。
所述脱氨系统包括预热器、解析塔、汽提脱氨塔、冷凝器、气液分离罐和碳化反应塔;所述碳化反应塔用于吹脱氨气的回收;其中,预热器采用板式换热器;解析塔温度为55~65℃,压力为-700~-900Pa;脱氨塔为65~75℃,压力为-700~-900Pa;冷凝器出气温度为35~42℃,冷凝液的回流比为1.7~2.0;碳化反应塔上部安装真空装置,为解析塔和脱氨塔提供负压环境,增加NH
3解析和脱出的速率。
所述脱氨系统,氨氮的去除率≥95%,总氮的去除率≥90%,得到的高溶解性的有机碳源,脱氨过程中所用的热源来自于热水解工艺释压蒸汽,无外加热源,相对于氮磷沉淀法(鸟粪石法)去除氨氮和水溶性磷,无外加药剂(氯化镁和氢氧化钙),成本较低,氨氮以及总氮的去除效率较高,产生的氨水(浓度10%~15%)或碳酸氢铵。
所述的餐厨垃圾制备的高浓度有机碳源,可以用于存在碳源不足(COD/TN<5)的厌氧沼液废水、市政污水、垃圾渗滤液以及其他工业废水中,可以显著减少传统碳源的投加量。碳源的投加位置可以为污水的进水口或反硝化池,在反消化池投加时需要和传统碳源按照一定比例混合投加,具体的比例按照污水进出水的水质指标进行实验。
Claims (8)
- 一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,包括如下步骤:步骤1,餐厨垃圾破碎分选,餐厨垃圾来料经过水力制浆机制浆,并分离为有机浆液和无机物料;有机浆液进入浆液混合池,无机物料进入螺旋挤压系统;步骤2,在螺旋挤压系统中对无机物料压榨分离,分离出无机杂质后得到的桨液进入浆液混合池,与水力制浆分离后的有机浆液混合;步骤3,将破碎后的有机浆液和螺旋压榨后的浆液进行混合调质,调质后混合浆液进入除砂除杂系统;;步骤4,在除砂除杂系统实现混合浆液中的重质杂质梯级去除,以及轻质杂质的去除;去除重质轻质杂质后的混合浆液进入热水解系统;步骤5,混合浆液在高温高压的热水解系统中,进行热水解反应,提高混合浆液在液相中溶解性COD浓度和挥发性有机酸VFAs浓度;热水解后的释压蒸汽进入脱氨系统;水解后的有机浆液进入提油系统;步骤6,在提油系统中对水解后的有机浆液进行水相、液相与油脂分离;浆液水相进入固液分离系统;步骤7,在固液分离系统中对提油后的有机浆液水相进行pH调节至7.5~8.0,然后加入PAC和非离子PAM进行破乳、絮凝;采用板框压滤脱水机对提油后的有机浆液水相进行压滤;步骤8,在混凝沉淀系统,进一步去除悬浮物质和胶体物质,进行固液分离;液相进入脱氨系统;步骤9,混凝沉淀后的液相在脱氨系统中脱氨。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,步骤1中制浆机制的出浆管中设置筛网,餐厨有机浆液的粒径为8~10mm。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,所述除砂除杂采用多级分区主动式旋流除砂器和除杂分离机,浆液旋流流速控制在5~10m/s。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,除砂除杂系统包括多级分区主动式旋流除砂器和除杂分离机,多级分区主动式旋流除砂器用于梯级去除重质杂质,浆液旋流流速控制在5~10m/s,除 杂分离机用于去除轻质杂质。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,步骤5的热水解中采用0.6MPa、160℃饱和蒸汽对餐厨浆液进行喷射加热,水解时间为30~60min。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,步骤6中提油系统为三相卧式离心分离机,离心机的转速为2500~3500rmp。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,步骤7中所述板框压滤脱水机为隔膜式,将提油后的有机浆液压滤形成含水率低于60%的泥饼。
- 根据权利要求1所述一种回收餐厨垃圾氨氮并制备污水处理碳源的方法,其特征在于,步骤9中混凝沉淀后的液相在脱氨系统中脱氨,具体过程如下:在脱氨系统中混凝沉淀后的液相进入预热器内,利用高温脱氨后的碳源作为热源进行预热升温,然后进入解析塔内解析出CO 2和水相的中钙、镁离子形成钙镁盐,解析塔内的温度维持在55~65℃;解析后的水相进入汽提脱氨塔,塔中通入热水解系统释压后的蒸汽,水相和蒸汽逆向流动,脱出水相中NH 3后流入塔底,与进入脱氨系统原水相换热后成为高效溶解性有机碳源;脱出后的NH 3回收制氨水或碳酸氢铵。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210453683.0A CN114871245A (zh) | 2022-04-24 | 2022-04-24 | 一种回收餐厨垃圾中氨氮并制备污水处理碳源的方法 |
CN202210453683.0 | 2022-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023206810A1 true WO2023206810A1 (zh) | 2023-11-02 |
Family
ID=82671075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/103753 WO2023206810A1 (zh) | 2022-04-24 | 2022-07-04 | 一种回收餐厨垃圾中氨氮并制备污水处理碳源的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114871245A (zh) |
WO (1) | WO2023206810A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117900243A (zh) * | 2024-02-04 | 2024-04-19 | 维尔利环保科技集团股份有限公司 | 餐厨厨余垃圾高值化利用的方法和系统 |
CN118768362A (zh) * | 2024-08-05 | 2024-10-15 | 西安广泰源科技有限公司 | 一种餐厨垃圾处理装置及方法 |
CN118807276A (zh) * | 2024-06-18 | 2024-10-22 | 天津高能时代环境科技有限公司 | 一种有机垃圾浆液调浆除砂装置及方法 |
CN118847684A (zh) * | 2024-07-04 | 2024-10-29 | 河南永迈环保科技有限公司 | 一种餐余垃圾转化处理再利用系统及工艺 |
CN118893077A (zh) * | 2024-07-15 | 2024-11-05 | 深圳市盘龙环境技术有限公司 | 一种利用厨余垃圾制备高品质有机酸的工艺 |
CN118993454A (zh) * | 2024-10-21 | 2024-11-22 | 天津创业环保集团股份有限公司 | 一种垃圾渗滤液资源化处理方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116213403A (zh) * | 2022-12-07 | 2023-06-06 | 南京万德斯环保科技股份有限公司 | 一种餐厨垃圾昆虫过腹转化全流程处理系统及方法 |
CN118002587A (zh) * | 2024-03-13 | 2024-05-10 | 苏州岚能环保科技有限公司 | 一种湿垃圾制备替代碳源的方法 |
CN118255456B (zh) * | 2024-03-27 | 2024-11-22 | 清控环境(北京)有限公司 | 一种有机垃圾水解mbr制碳源方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101267054B1 (ko) * | 2013-04-10 | 2013-05-27 | 김완수 | 유기성 폐기물 자원화 방법 |
CN103773818A (zh) * | 2014-01-24 | 2014-05-07 | 清华大学 | 一种利用餐厨垃圾厌氧发酵生产碳源的方法 |
CN109455884A (zh) * | 2018-12-21 | 2019-03-12 | 上海市政工程设计研究总院(集团)有限公司 | 一种氮资源热提取回收系统 |
CN112808738A (zh) * | 2020-12-25 | 2021-05-18 | 浙江启迪生态科技有限公司 | 一种利用餐厨垃圾制备碳源的方法 |
CN113664023A (zh) * | 2021-09-10 | 2021-11-19 | 无锡时代桃源环保设备有限公司 | 一种餐厨垃圾水解作为反硝化碳源净化污水的系统与工艺 |
CN113816549A (zh) * | 2021-08-27 | 2021-12-21 | 成都中能恒远环保科技有限公司 | 一种餐厨垃圾处理过程中的氨氮回收方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4902468B2 (ja) * | 2007-08-28 | 2012-03-21 | 三菱化工機株式会社 | 有機性廃棄物の処理装置および処理方法 |
CN103121785A (zh) * | 2012-06-26 | 2013-05-29 | 深圳市环源科技发展有限公司 | 一种污泥中压热水解处理方法及其应用 |
CN104324930B (zh) * | 2014-11-10 | 2016-11-23 | 合肥工业大学 | 一种利用餐厨垃圾生产废水反硝化溶解性碳源的方法 |
CN105925361B (zh) * | 2016-04-13 | 2019-07-05 | 江苏维尔利环保科技股份有限公司 | 餐厨垃圾厌氧消化处理的预处理方法 |
CN205926564U (zh) * | 2016-07-29 | 2017-02-08 | 上海浦东环保发展有限公司 | 一种用于餐厨垃圾预处理除杂、提油及制浆的成套设备 |
CN109455874A (zh) * | 2018-10-23 | 2019-03-12 | 东莞理工学院 | 一种餐厨垃圾资源化回收处理系统 |
CN109455885B (zh) * | 2018-12-21 | 2024-01-19 | 上海市政工程设计研究总院(集团)有限公司 | 一种氮资源热提取回收方法 |
CN113546948B (zh) * | 2021-08-04 | 2022-04-26 | 合肥工业大学 | 一种强化餐厨垃圾热水解生产溶解性反硝化碳源并同步分离回收油脂的方法 |
CN113578935A (zh) * | 2021-08-13 | 2021-11-02 | 中国天楹股份有限公司 | 一种餐厨垃圾资源化处理方法 |
CN113733631A (zh) * | 2021-08-23 | 2021-12-03 | 义乌市深能再生资源利用有限公司 | 餐厨垃圾高效除沙除杂提油方法及系统 |
-
2022
- 2022-04-24 CN CN202210453683.0A patent/CN114871245A/zh active Pending
- 2022-07-04 WO PCT/CN2022/103753 patent/WO2023206810A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101267054B1 (ko) * | 2013-04-10 | 2013-05-27 | 김완수 | 유기성 폐기물 자원화 방법 |
CN103773818A (zh) * | 2014-01-24 | 2014-05-07 | 清华大学 | 一种利用餐厨垃圾厌氧发酵生产碳源的方法 |
CN109455884A (zh) * | 2018-12-21 | 2019-03-12 | 上海市政工程设计研究总院(集团)有限公司 | 一种氮资源热提取回收系统 |
CN112808738A (zh) * | 2020-12-25 | 2021-05-18 | 浙江启迪生态科技有限公司 | 一种利用餐厨垃圾制备碳源的方法 |
CN113816549A (zh) * | 2021-08-27 | 2021-12-21 | 成都中能恒远环保科技有限公司 | 一种餐厨垃圾处理过程中的氨氮回收方法 |
CN113664023A (zh) * | 2021-09-10 | 2021-11-19 | 无锡时代桃源环保设备有限公司 | 一种餐厨垃圾水解作为反硝化碳源净化污水的系统与工艺 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117900243A (zh) * | 2024-02-04 | 2024-04-19 | 维尔利环保科技集团股份有限公司 | 餐厨厨余垃圾高值化利用的方法和系统 |
CN118807276A (zh) * | 2024-06-18 | 2024-10-22 | 天津高能时代环境科技有限公司 | 一种有机垃圾浆液调浆除砂装置及方法 |
CN118847684A (zh) * | 2024-07-04 | 2024-10-29 | 河南永迈环保科技有限公司 | 一种餐余垃圾转化处理再利用系统及工艺 |
CN118893077A (zh) * | 2024-07-15 | 2024-11-05 | 深圳市盘龙环境技术有限公司 | 一种利用厨余垃圾制备高品质有机酸的工艺 |
CN118768362A (zh) * | 2024-08-05 | 2024-10-15 | 西安广泰源科技有限公司 | 一种餐厨垃圾处理装置及方法 |
CN118993454A (zh) * | 2024-10-21 | 2024-11-22 | 天津创业环保集团股份有限公司 | 一种垃圾渗滤液资源化处理方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114871245A (zh) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023206810A1 (zh) | 一种回收餐厨垃圾中氨氮并制备污水处理碳源的方法 | |
CN100551881C (zh) | 利用有机污泥生产液态有机肥的方法 | |
CN109455884B (zh) | 一种氮资源热提取回收系统 | |
CN109455885B (zh) | 一种氮资源热提取回收方法 | |
CN110357334A (zh) | 水煤浆气化废水分盐结晶零排放处理系统及方法 | |
CN101037287A (zh) | 城镇污水污泥的减量化、资源化方法 | |
CN101186423A (zh) | 城镇污水污泥的热处理-脱水-制肥方法 | |
CN105714590A (zh) | 从造纸黑液中分离木质素和半纤维素并回收碱液的方法 | |
CN103880211B (zh) | 一种含镁高盐废水的资源化处理工艺 | |
JP2000015231A (ja) | 有機性廃棄物のメタン発酵方法 | |
CN101948192A (zh) | 一种基于膜技术的造纸黑液高效综合处理方法 | |
CN113754172A (zh) | 一种多晶硅废水处理方法 | |
JPH11197636A (ja) | 有機性廃棄物の処理方法 | |
CN110577566B (zh) | 一种梭菌菌体蛋白的制备方法 | |
CN112960874A (zh) | 一种污水处理厂污泥分质收集及处理方法 | |
CN114105349A (zh) | 一种压裂返排液的零排放资源化利用系统及其工艺方法 | |
CN112624555A (zh) | 一种污泥热碱水解处理的方法及系统 | |
CN109179760B (zh) | 一种餐厨污泥饭渣资源化处理工艺 | |
CN112759210A (zh) | 一种污泥处理系统及方法 | |
CN102153223A (zh) | 羧甲基纤维素钠工业污水回收利用装置 | |
CN215102410U (zh) | 一种压裂返排液的零排放资源化利用系统 | |
CN110981156B (zh) | 一种基于碱改性的油泥三相分离方法 | |
CN204237677U (zh) | 煤化工废水零排放工艺专用设备 | |
CN114289454A (zh) | 一种易腐垃圾厌氧发酵装置及方法 | |
CN201999825U (zh) | 羧甲基纤维素钠工业污水回收利用装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22939638 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22939638 Country of ref document: EP Kind code of ref document: A1 |