WO2023206793A1 - 空调器的控制方法、装置、空调器及存储介质 - Google Patents

空调器的控制方法、装置、空调器及存储介质 Download PDF

Info

Publication number
WO2023206793A1
WO2023206793A1 PCT/CN2022/102327 CN2022102327W WO2023206793A1 WO 2023206793 A1 WO2023206793 A1 WO 2023206793A1 CN 2022102327 W CN2022102327 W CN 2022102327W WO 2023206793 A1 WO2023206793 A1 WO 2023206793A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
energy
energy storage
function
temperature
Prior art date
Application number
PCT/CN2022/102327
Other languages
English (en)
French (fr)
Inventor
蔡国健
杜顺开
于永全
姚晓波
Original Assignee
芜湖美智空调设备有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芜湖美智空调设备有限公司, 广东美的制冷设备有限公司 filed Critical 芜湖美智空调设备有限公司
Publication of WO2023206793A1 publication Critical patent/WO2023206793A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/875Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling heat-storage apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to a control method and device for an air conditioner, an air conditioner and a storage medium.
  • the air conditioners used in the kitchen and bathroom are different from conventional split household air conditioners.
  • Kitchen and bathroom air conditioners have energy storage and energy release functions. The energy storage function first stores cold energy or heat, and then releases the stored cold energy or heat through the energy release function.
  • kitchen and bathroom air conditioners are prone to system overload problems when working, causing the air conditioner to shut down and fail to work. Therefore, how to avoid overload problems in kitchen and bathroom air conditioners is an urgent technical issue that needs to be solved.
  • the main purpose of this application is to provide a control method, device, air conditioner and storage medium for an air conditioner, aiming to solve the technical problem that kitchen and bathroom air conditioners are prone to overload in the prior art.
  • the air conditioner includes an energy storage circuit, an energy discharge circuit and an energy storage unit.
  • the air conditioner has an energy storage function and an energy discharge function. Under the energy storage function, the air conditioner The energy storage circuit stores cold or heat in the energy storage unit; under the energy discharging function, the air conditioner uses the cold or heat in the energy storage unit for cooling or heating through the energy discharging circuit; the control method of the air conditioner includes:
  • controlling the switches of the energy storage function and the energy discharge function according to the current ambient temperature includes:
  • the current mode is cooling mode or heating mode
  • the discharge energy includes a first step, a second step, and a third step that increase in sequence, and the switch of the energy storage function and the energy discharge function is controlled according to the discharge energy, including:
  • the energy release function is controlled to be turned on, and the energy storage function is controlled to be turned on or off according to user needs;
  • both the energy release function and the energy storage function are controlled to be turned on;
  • the energy release function is controlled to be turned on, and the energy storage function is controlled to be turned off.
  • determining the energy dissipation of the air conditioner according to the current mode and the current ambient temperature includes:
  • the reference temperature includes a first temperature and a second temperature
  • the air conditioner includes a compressor
  • Air conditioner control methods also include:
  • the compressor is controlled to run at a reference frequency, which changes with the current ambient temperature.
  • the air conditioner includes a compressor
  • Air conditioner control methods also include:
  • the compressor is controlled to run at a frequency within the set frequency range.
  • the energy storage unit includes a water tank, which uses water to store cold energy or heat;
  • Air conditioner control methods also include:
  • the air conditioner is controlled to enter the cooling mode
  • the air conditioner is controlled to enter the heating mode.
  • the air conditioner includes an energy storage circuit, an energy discharge circuit and an energy storage unit.
  • the air conditioner has an energy storage function and an energy discharge function. Under the energy storage function, , the air conditioner stores cold energy or heat into the energy storage unit through the energy storage circuit; under the energy discharging function, the air conditioner uses the cold energy or heat in the energy storage unit through the energy discharging circuit for cooling or heating;
  • Air conditioner controls include:
  • a detection module used to obtain the current ambient temperature when the air conditioner is cooling or heating
  • the control module is used to control the switch of the energy storage function and the energy discharge function according to the current ambient temperature.
  • the air conditioner includes a first chassis and a second chassis.
  • the first chassis includes an air inlet duct, an air exhaust duct, a water tank, a compressor and a first heat exchanger.
  • the compressor, the first heat exchanger and the water tank heat exchanger form an energy storage circuit.
  • the second chassis includes a flow regulating pump and a second heat exchanger. The flow regulating pump and the second heat exchanger are included in the water tank.
  • An energy release loop is formed; the air conditioner has an energy storage function and an energy release function; under the energy storage function, the air conditioner stores cold energy or heat into the water tank through the energy storage circuit; under the energy release function, the air conditioner utilizes energy through the energy release circuit Use the cold or heat in the water tank for cooling or heating;
  • the air conditioner also includes a controller, which is connected to the energy storage circuit and the energy discharge circuit.
  • the controller includes a memory, a processor, and a control program of the air conditioner that is stored in the memory and can be run on the processor.
  • the control program of the air conditioner When executed by the processor, the above control method of the air conditioner is implemented.
  • the present application also proposes a storage medium in which a control program for an air conditioner is stored.
  • a control program for an air conditioner is stored.
  • the control program for the air conditioner is executed by a processor, the above control method for the air conditioner is implemented.
  • This application obtains the current ambient temperature when the air conditioner is cooling or heating; and controls the switch of the energy storage function and the energy release function according to the current ambient temperature.
  • This application determines the air conditioner system pressure through the current ambient temperature, and then controls the energy storage function and the energy discharge function respectively according to the air conditioner system pressure to avoid the air conditioner system shutting down due to excessive pressure, and ensures that the air conditioner can normally realize cooling or heating. hot.
  • Figure 1 is a schematic structural diagram of the first chassis of the air conditioner involved in the embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the second chassis of the air conditioner involved in the embodiment of the present application.
  • FIG. 3 is a system structure diagram of an air conditioner involved in the embodiment of the present application.
  • Figure 4 is a schematic flow chart of the first embodiment of the control method of the air conditioner of the present application.
  • Figure 5 is a schematic flow chart of the second embodiment of the control method of the air conditioner of the present application.
  • Figure 6 is a structural block diagram of the first embodiment of the control device of the air conditioner of the present application.
  • Figure 1 is a schematic structural diagram of the first chassis of the air conditioner involved in the embodiment of the present application
  • Figure 2 is a schematic structural diagram of the second chassis of the air conditioner involved in the embodiment of the present application.
  • the air conditioner includes a first case 1 and a second case 2.
  • the first chassis 1 includes an air inlet pipe 11, an air exhaust pipe 12, a first heat exchanger 13, a compressor 14 and a water tank 15.
  • a water tank heat exchanger 16 is provided in the water tank 15.
  • the second chassis 2 includes a flow regulating pump 21 and a second heat exchanger 22 .
  • the flow regulating pump 21 in the second cabinet 2 is connected to the water tank 15 in the first cabinet 1 through a water pipe.
  • the first chassis 1 and the second chassis 2 are usually installed indoors, and are connected to the outdoor environment through the air inlet duct 11 and the exhaust duct 12 .
  • the first chassis can also be directly installed outdoors.
  • the first chassis 1 is also provided with a first fan, which inhales outdoor air through the air inlet duct 11 during operation, and then discharges it to the outdoors through the exhaust duct 12 .
  • the air flows through the first heat exchanger 13 in the first case 1 to exchange heat with the refrigerant in the first heat exchanger 13 .
  • the second chassis 2 is also provided with a second fan, an air inlet and an air outlet. When running, the second fan sucks indoor air through the air inlet, and then discharges it into the room through the air outlet.
  • the air flows through the second heat exchanger 22 in the second case 2 to exchange heat with the refrigerant in the second heat exchanger 22 .
  • FIG. 4 is a system structure diagram of the air conditioner involved in the embodiment of the present application.
  • the air conditioner has energy storage and energy release functions.
  • the compressor 14, the first heat exchanger 13, the water tank heat exchanger 16 and the expansion valve 18 form an energy storage circuit.
  • the air conditioner stores cold energy or heat into the water tank 15 through the energy storage circuit. Water is stored in the water tank 15.
  • the purpose of storing heat is achieved by increasing the temperature of the water, and the purpose of storing cold energy is achieved by lowering the temperature of the water.
  • the compressor 14 is started, and the gaseous refrigerant is transferred to the first heat exchanger 13 for condensation, and then passes through the expansion valve 18 and enters the water tank heat exchanger 16 for evaporation, thereby reducing the temperature of the water.
  • the compressor 14 is started, and the gaseous refrigerant is transferred to the water tank heat exchanger 16 for condensation, and then passes through the expansion valve 18 and enters the first heat exchanger 13 for evaporation, thereby reducing the elevated temperature.
  • One or more temperature sensors 17 may also be provided in the water tank 15 to monitor the water temperature in the water tank 15 .
  • the flow regulating pump 21, the energy storage unit and the second heat exchanger 22 form an energy discharging circuit.
  • the energy storage unit can be a water tank 15.
  • the water tank 15 is provided with a water outlet 23 and a water inlet 24.
  • the flow regulating pump 21 can be a water pump.
  • the air conditioner uses the cold energy or heat in the water tank 15 for cooling or heating through the energy dissipation circuit.
  • water is pumped from the water tank 15 and sent to the second heat exchanger 22 .
  • the second heat exchanger 22 can reduce the temperature of the indoor air flowing through it, thereby achieving a cooling effect.
  • the second heat exchanger 22 can increase the temperature of the indoor air flowing through it, thereby achieving a heating effect.
  • the air conditioner also includes a controller, which is connected to the compressor 14, the flow regulating pump 21 and the fan for controlling the operation of each component.
  • the controller 8 may include a processor, a memory, and the like.
  • the memory stores a control program for the air conditioner, and the processor executes the control method for the air conditioner provided by the embodiment of the present application by calling the control program for the air conditioner.
  • Figures 1 and 2 do not limit the air conditioner, and may include more or less components than shown, or combine certain components, or arrange different components. .
  • FIG. 4 is a schematic flowchart of a first embodiment of a control method for an air conditioner of the present application.
  • the first embodiment of a control method of an air conditioner of the present application is proposed.
  • control method of the air conditioner includes the following steps:
  • Step S10 When the air conditioner is cooling or heating, obtain the current ambient temperature.
  • the execution subject of this embodiment may be the controller in the aforementioned air conditioner, and the controller has functions such as data processing, data communication, and program running. Of course, it can also be other devices with similar functions, which are not limited by these implementation conditions.
  • the air conditioner may be provided with a temperature sensor, and the temperature sensor may be provided on the first chassis (such as the air inlet duct entrance) to detect the temperature of the outdoor environment to determine the current ambient temperature. Or the temperature sensor can be set on the second chassis to detect the temperature of the indoor environment to determine the current ambient temperature; of course, the current ambient temperature can also be obtained in other ways, such as from a meteorological database through the network. This embodiment is useful for This is not limited.
  • the temperature sensor can feedback data to the controller at set time intervals to reduce the power consumption of the temperature sensor.
  • the time interval can be 1 minute or 2 minutes, etc., and its specific value can be set according to requirements, which is not limited in this embodiment.
  • Air conditioners usually have heating mode and cooling mode.
  • the water temperature in the water tank can also be obtained after the air conditioner is started; when the cooling command is received and the water temperature is less than the third temperature, the control The air conditioner enters the cooling mode; after receiving the heating command and the water temperature is greater than the fourth temperature, the air conditioner is controlled to enter the heating mode.
  • a temperature sensor can also be provided in the water tank, and the controller receives the temperature sensor installed in the water tank or the water temperature in the water tank.
  • the controller receives the temperature sensor installed in the water tank or the water temperature in the water tank.
  • multiple temperature sensors can also be used to detect the water temperature, thereby improving the detection accuracy of the water temperature.
  • the water temperature in the water tank can reflect the storage capacity of cold or heat. The more cold capacity, the lower the water temperature; the more heat, the higher the water temperature.
  • the third temperature may be less than zero, such as -2°C or -3°C. When the water temperature is lower than the third temperature, it means that the cooling capacity in the water tank is sufficient. If a cooling command is received at this time, cooling can be started.
  • the fourth temperature is usually higher, such as 60°C or 65°C. When the water temperature is greater than the third temperature, it means that the heat in the water tank is sufficient. If a heating command is received at this time, heating can be started. Users can also input cooling commands or heating commands through function buttons set on the remote control or mobile terminal.
  • Step S20 Control the switches of the energy storage function and the energy discharge function according to the current ambient temperature.
  • the energy storage function and the energy discharge function of the air conditioner can be operated separately or simultaneously.
  • the energy storage function is activated online and the compressor is started to store cold or heat in the water tank; at this time, only the energy storage function is running.
  • the flow regulating pump is turned on and the water in the water tank is used for cooling or cooling; at this time, the compressor can remain in the starting state, that is, the energy storage function and the energy releasing function run at the same time.
  • the compressor can be turned off and the flow regulating pump can be kept started. At this time, only the energy discharging function is running.
  • the energy storage circuit and the energy discharging circuit belong to two different circuits, which are driven by different components respectively. Therefore, the energy storage circuit and the energy discharge circuit will not have direct influence on each other when they are working.
  • the air conditioner when the air conditioner is cooling, if the current ambient temperature is higher, the system pressure during cold storage and cooling will be greater; when the air conditioner is heating, if the current ambient temperature is lower, the heat storage and heat release will be greater. The greater the system pressure. If the system pressure of the air conditioner is too high, it may cause the air conditioner to shut down and affect the user experience.
  • the switch control of the energy storage function is mainly realized by controlling the operating status of the compressor.
  • the compressor can be controlled to be on; when the energy storage function needs to be turned off, the compressor can be controlled to be in a shutdown state.
  • the switch control of the energy release function is mainly realized by controlling the flow rate to adjust the operating status of the pump.
  • the flow regulating pump can be controlled to be in the on state; when the energy discharging function needs to be turned off, the flow regulating pump can be controlled to be in the shut down state.
  • the cooling function or the heating function needs to be turned on first.
  • the energy storage function can be selectively turned on or off. That is, during cooling, if the current ambient temperature is higher, the cold storage function can be turned off and the cooling function can be kept on; during heating, if the current ambient temperature is higher, the heat storage function can be turned off and the heat release function can be kept on.
  • the energy storage function and energy release function are turned off.
  • the current ambient temperature is obtained when the air conditioner is cooling or heating; and then the switches of the energy storage function and the energy discharge function are controlled according to the current ambient temperature; thereby the energy storage function and the energy discharge function are respectively controlled according to the air conditioner system pressure.
  • Functional switch control can prevent the air conditioner system from shutting down due to excessive pressure, ensuring that the air conditioner can achieve normal cooling or heating.
  • Figure 5 is a schematic flow chart of a second embodiment of a control method for an air conditioner of the present application. Based on the above first embodiment, a second embodiment of a control method for an air conditioner of the present application is proposed.
  • step S20 may include:
  • Step S201 Determine the current mode of the air conditioner.
  • the working modes of air conditioners usually include cooling mode and heating mode. Users usually turn on the cooling mode when the room temperature is high, and turn on the heating mode when the room temperature is low. In the cooling mode, the higher the room temperature, the higher the air conditioner system pressure, and vice versa; in the heating mode, the higher the room temperature, the lower the air conditioner system pressure, and vice versa. Therefore, in different modes, the system pressure reflected by the current ambient temperature is also different.
  • the working mode of the air conditioner is usually controlled by the user, so the current mode of the air conditioner can be determined according to the control instructions input by the user. If the control command input by the user is a cooling command, the current mode is the cooling mode; if the control command input by the user is a heating command, the current mode is the heating mode.
  • the controller can also drive the current mode through the operating parameters of the air conditioner.
  • Step S202 Determine the energy dissipation of the air conditioner according to the current mode and the current ambient temperature.
  • the energy released can be the cooling capacity or heating capacity that the air conditioner needs to provide. Therefore, if the controller is cooling, the higher the current ambient temperature is, the more cooling capacity is required and the greater the energy is, and conversely, the smaller the energy is; if the controller is heating, the lower the current ambient temperature is, the required The greater the heating capacity, the greater the energy released, and vice versa, the smaller the energy released.
  • the energy release may be set as a first step, a second step, and a third step that increase in sequence.
  • the corresponding reference temperature can be determined according to the current mode, and the reference temperature includes a first temperature and a second temperature; the current ambient temperature is compared with the first temperature and the second temperature respectively to obtain the comparison result; according to the comparison result Determine the energy dissipation of the air conditioner.
  • Three temperature intervals are divided by setting the first temperature and the second temperature, and each temperature interval corresponds to an energy release.
  • the system pressure reflected by the current ambient temperature is also different, so the first temperature and the second temperature are also different in different working modes.
  • the first temperature when the air conditioner is in cooling mode, the first temperature may be 35°C and the second temperature may be 43°C. If the current ambient temperature is less than or equal to 35°C, the energy release is the first step; if the current ambient temperature is greater than 35°C and less than or equal to 43°C, the energy release is the second step; if the current ambient temperature is greater than 35°C, the energy release is Discharging energy is the third step.
  • the first temperature may be 5°C and the second temperature may be 12°C.
  • the energy release is the third step; if the current ambient temperature is greater than or equal to 5°C and less than 12°C, the energy release is the second step; if the current ambient temperature is greater than or equal to 12°C, then Emitting energy is the first step.
  • the above numerical values are only examples, and the specific values of the first temperature and the second temperature can be set according to requirements, which is not limited in this embodiment.
  • Step S203 Control the switches of the energy storage function and the energy discharge function according to the discharge energy.
  • the energy discharge function needs to be kept on; and then the switch of the energy storage function is controlled according to the pressure of the energy discharge function.
  • the system pressure pressure of the energy storage circuit brought by the energy discharging function is relatively large.
  • the energy storage function can be controlled to be turned off; when discharging energy is large, the pressure caused by the energy discharging function is small. , at this time, the energy storage function can be controlled to be turned on.
  • the energy release function when the energy release is at the first step, the energy release function is controlled to be turned on, and the energy storage function is controlled to be turned on or off according to the user's needs;
  • the energy discharging function When the energy discharging function is at the third level, the energy discharging function and the energy storage function are controlled to be turned on.
  • the energy discharging function is controlled to be turned on and the energy storage function is controlled to be turned off.
  • the energy dissipation When the energy dissipation is at the first level, it means that the system pressure brought by the energy dissipation circuit is not large, and the air conditioner system pressure is low. Therefore, the energy discharging function can be kept on. Similarly, due to the low energy release, the consumption of cold or heat stored in the water tank is not high. Therefore, the energy storage function can also be turned off directly. Or in order to maintain the long-term operation of the energy discharge function, the energy storage function can also be turned on. Among them, when the energy storage function is turned on, the compressor can be controlled to run at a reference frequency, and the reference frequency changes with the current ambient temperature. In cooling mode, the reference frequency is positively correlated with the current ambient temperature.
  • the reference frequency is negatively correlated with the current ambient temperature. That is, if the current ambient temperature is greater than 12°C, the lower the current ambient temperature, the higher the reference frequency to ensure that heat release meets user needs.
  • the load of the air conditioner is large and the peak capacity of cooling or heat release is high. Energy release alone may not be able to maintain user demand.
  • the energy storage function and energy discharge function can be controlled to be turned on at the same time.
  • the compressor in order to avoid causing system overload, can be controlled to run at a frequency within a set frequency range, thereby limiting the pressure caused by the energy storage function and avoiding overpressure of the air conditioner system.
  • the set frequency range can be set according to requirements, which is not limited in this embodiment.
  • the system pressure exceeds the standard. In order to ensure the reliability of the system and meet the needs of users, it is necessary to turn off the energy storage function and only keep the energy discharge function running. Usually, when the ambient temperature is high, as the evaporation pressure of the water tank increases, the system pressure may exceed the standard.
  • the current mode of the air conditioner is determined; then the discharge energy is determined based on the current mode and the current ambient temperature; and then the switches of the energy storage function and the energy discharge function are controlled based on the discharge energy.
  • This implementation method uses the current ambient temperature to differentiate the energy discharge of the air conditioner, thereby controlling the switches of the energy storage function and the energy discharge function respectively under different levels of energy discharge, thereby ensuring the user's needs and improving the air conditioner system. Pressure is limited to avoid shutdown caused by overpressure.
  • embodiments of the present application also propose a storage medium, which stores a control program for an air conditioner.
  • the control program for the air conditioner is executed by a processor, the control method for the air conditioner as described above is implemented. step. Since this storage medium can adopt the technical solutions of all the above embodiments, it has at least the beneficial effects brought by the technical solutions of the above embodiments, which will not be described again here.
  • FIG. 6 is a structural block diagram of a first embodiment of a control device for an air conditioner of the present application.
  • An embodiment of the present application also provides a control device for an air conditioner.
  • control device of the air conditioner includes:
  • the detection module 10 is used to obtain the current ambient temperature when the air conditioner is cooling or heating.
  • the air conditioner may be provided with a temperature sensor, and the temperature sensor may be provided on the first chassis (such as the air inlet duct entrance) to detect the temperature of the outdoor environment to determine the current ambient temperature. Or the temperature sensor can be set on the second chassis to detect the temperature of the indoor environment to determine the current ambient temperature; of course, the current ambient temperature can also be obtained in other ways, such as from a meteorological database through the network. This embodiment is useful for This is not limited.
  • the temperature sensor can feedback data to the controller at set time intervals to reduce the power consumption of the temperature sensor.
  • the time interval can be 1 minute or 2 minutes, etc., and its specific value can be set according to requirements, which is not limited in this embodiment.
  • Each time the detection module 10 receives feedback data from the temperature sensor it executes the control process involved in this embodiment according to the received current ambient temperature.
  • Air conditioners usually have heating mode and cooling mode.
  • the water temperature in the water tank can also be obtained after the air conditioner is started; when the cooling command is received and the water temperature is less than the third temperature, the control The air conditioner enters the cooling mode; after receiving the heating command and the water temperature is greater than the fourth temperature, the air conditioner is controlled to enter the heating mode.
  • a temperature sensor may also be provided in the water tank, and the detection module 10 receives the temperature sensor provided in the water tank or the water temperature in the water tank.
  • the detection module 10 receives the temperature sensor provided in the water tank or the water temperature in the water tank.
  • multiple temperature sensors can also be used to detect the water temperature, thereby improving the detection accuracy of the water temperature.
  • the water temperature in the water tank can reflect the storage capacity of cold or heat. The more cold capacity, the lower the water temperature; the more heat, the higher the water temperature.
  • the third temperature may be less than zero, such as -2°C or -3°C. When the water temperature is lower than the third temperature, it means that the cooling capacity in the water tank is sufficient. If a cooling command is received at this time, cooling can be started.
  • the fourth temperature is usually higher, such as 60°C or 65°C. When the water temperature is greater than the third temperature, it means that the heat in the water tank is sufficient. If a heating command is received at this time, heating can be started. Users can also input cooling commands or heating commands through function buttons set on the remote control or mobile terminal.
  • the control module 20 is used to control the switches of the energy storage function and the energy discharge function according to the current ambient temperature.
  • the energy storage circuit and the energy discharging circuit belong to two different circuits, which are driven by different components respectively. Therefore, the energy storage circuit and the energy discharge circuit will not have direct influence on each other when they are working.
  • the air conditioner when the air conditioner is cooling, if the current ambient temperature is higher, the system pressure during cold storage and cooling will be greater; when the air conditioner is heating, if the current ambient temperature is lower, the heat storage and heat release will be greater. The greater the system pressure. If the system pressure of the air conditioner is too high, it may cause the air conditioner to shut down and affect the user experience.
  • the switch control of the energy storage function is mainly realized by controlling the operating status of the compressor.
  • the compressor can be controlled to be on; when the energy storage function needs to be turned off, the compressor can be controlled to be in a shutdown state.
  • the switch control of the energy release function is mainly realized by controlling the flow rate to adjust the operating status of the pump.
  • the flow regulating pump can be controlled to be in the on state; when the energy discharging function needs to be turned off, the flow regulating pump can be controlled to be in the shut down state.
  • the cooling function or the heating function needs to be turned on first.
  • the energy storage function can be selectively turned on or off. That is, during cooling, if the current ambient temperature is higher, the cold storage function can be turned off and the cooling function can be kept on; during heating, if the current ambient temperature is higher, the heat storage function can be turned off and the heat release function can be kept on.
  • the energy storage function and energy release function are turned off.
  • the detection module 10 obtains the current ambient temperature when the air conditioner is cooling or heating; the control module 20 controls the switches of the energy storage function and the energy discharge function according to the current ambient temperature; thereby controlling the energy storage function according to the air conditioner system pressure.
  • the energy function and the energy release function are switched on and off to prevent the air conditioner system from shutting down due to excessive pressure, ensuring that the air conditioner can achieve normal cooling or heating.
  • control module 20 is also used to determine the current mode of the air conditioner, which is the cooling mode or the heating mode; determine the discharge energy according to the current mode and the current ambient temperature; and control the energy storage function and energy discharge according to the discharge energy. Function switch.
  • the energy release includes a first step, a second step, and a third step that increase in sequence.
  • the control module 20 is also used to control the energy release function to turn on when the energy release is at the first step, and to control the energy release function according to user needs. Control the energy storage function to be on or off; when the energy release is at the second level, control both the energy release function and the energy storage function to be on; when the energy release is at the third level, control the energy release function to be on and control the energy storage function to be off.
  • control module 20 is further configured to determine a corresponding reference temperature according to the current mode, where the reference temperature includes a first temperature and a second temperature; the current ambient temperature is compared with the first temperature and the second temperature respectively to obtain Compare the results; determine the energy dissipation of the air conditioner based on the comparison results.
  • control module 20 is also used to control the compressor to run at a reference frequency when the energy dissipation is at the first level and the energy storage function is turned on.
  • the reference frequency changes with changes in the current ambient temperature.
  • control module 20 is also used to control the compressor to operate at a frequency within the set frequency range when the energy dissipation is at the second level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的控制方法、装置、空调器及存储介质,涉及空调器领域。该空调器的控制方法包括:在空调器制冷或者制热时,获取当前环境温度;然后根据当前环境温度控制蓄能功能和放能功能的开关。通过当前环境温度确定空调器系统压力,再根据空调器系统压力分别对蓄能功能和放能功能进行开关控制,避免空调器系统压力过高导致停机,保证了空调器正常实现制冷或者制热。

Description

空调器的控制方法、装置、空调器及存储介质
本申请要求于2022年4月29日申请的、申请号为202210483444.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,尤其涉及一种空调器的控制方法、装置、空调器及存储介质。
背景技术
由于家庭内厨房和浴室环境的特殊性,在厨房和浴室内使用的空调与常规的分体式家用空调不同。厨房和浴室空调具有蓄能功能和放能功能,蓄能功能先将冷量或者热量进行存储,然后通过放能功能将存储的冷量或者热量进行释放。但厨房和浴室空调在工作时容易出现系统过载的问题,导致空调器停机不能工作。因此,如何避免厨房和浴室空调器出现过载问题是亟待解决的技术问题。
技术问题
本申请的主要目的在于提供一种空调器的控制方法、装置、空调器及存储介质,旨在解决现有技术中厨房和浴室空调容易出现过载的技术问题。
技术解决方案
为实现上述目的,本申请提供一种空调器的控制方法,空调器包括蓄能回路、放能回路和储能单元,空调器具有蓄能功能和放能功能,在蓄能功能下,空调器通过蓄能回路向储能单元内存储冷量或热量;在放能功能下,空调器通过放能回路利用储能单元内的冷量或热量进行制冷或制热;空调器的控制方法包括:
在空调器制冷或者制热时,获取当前环境温度;以及,
根据当前环境温度控制蓄能功能和放能功能的开关。
在一实施例中,根据当前环境温度控制蓄能功能和放能功能的开关,包括:
确定空调器的当前模式,当前模式为制冷模式或制热模式;
根据当前模式和当前环境温度确定空调器的放能量;以及,
根据放能量控制蓄能功能和放能功能的开关。
在一实施例中,放能量包括依次增大的第一阶梯、第二阶梯和第三阶梯,根据放能量控制蓄能功能和放能功能的开关,包括:
在放能量处于第一阶梯时,控制放能功能开启,并根据用户需求控制蓄能功能开启或关闭;
在放能量处于第二阶梯时,控制放能功能和蓄能功能均开启;以及,
在放能量处于第三阶梯时,控制放能功能开启,并控制蓄能功能关闭。
在一实施例中,根据当前模式和当前环境温度确定空调器的放能量,包括:
根据当前模式确定对应的参考温度,参考温度包括第一温度和第二温度;
将当前环境温度分别与第一温度和第二温度进行比对,获得比对结果;以及,
根据比对结果确定空调器的放能量。
在一实施例中,空调器包括压缩机;
空调器的控制方法还包括:
在放能量处于第一阶梯,且蓄能功能开启时,控制压缩机以参考频率运行,参考频率随当前环境温度变化而变化。
在一实施例中,空调器包括压缩机;
空调器的控制方法还包括:
在放能量处于第二阶梯时,控制压缩机以设定频率范围内的频率运行。
在一实施例中,储能单元包括水箱,水箱利用水存储冷量或热量;
空调器的控制方法还包括:
在空调器启动后,获取水箱内的水温;
在接收到制冷指令,且水温小于第三温度时,控制空调器进入制冷模式;
在接收到制热指令,且水温大于第四温度时,控制空调器进入制热模式。
此外,为实现上述目的,本申请还提出一种空调器的控制装置,空调器包括蓄能回路、放能回路和储能单元,空调器具有蓄能功能和放能功能,在蓄能功能下,空调器通过蓄能回路向储能单元内存储冷量或热量;在放能功能下,空调器通过放能回路利用储能单元内的冷量或热量进行制冷或制热;
空调器的控制装置包括:
检测模块,用于在空调器制冷或者制热时,获取当前环境温度;以及,
控制模块,用于根据当前环境温度控制蓄能功能和放能功能的开关。
此外,为实现上述目的,本申请还提出一种空调器,空调器包括第一机箱和第二机箱,第一机箱包括进风管、排风管、水箱、压缩机和第一换热器,水箱内设有水箱换热器,压缩机、第一换热器和水箱换热器形成蓄能回路,第二机箱包括流量调节泵和第二换热器,流量调节泵和第二换热器形成放能回路;空调器具有蓄能功能和放能功能;在蓄能功能下,空调器通过蓄能回路向水箱内存储冷量或热量;在放能功能下,空调器通过放能回路利用水箱内的冷量或热量进行制冷或制热;
空调器还包括控制器,控制器与蓄能回路和放能回路连接,控制器包括存储器、处理器及存储在存储器上并可在处理器上运行的空调器的控制程序,空调器的控制程序被处理器执行时实现如上述的空调器的控制方法。
此外,为实现上述目的,本申请还提出一种存储介质,存储介质上存储有空调器的控制程序,空调器的控制程序被处理器执行时实现如上述的空调器的控制方法。
有益效果
本申请在空调器制冷或者制热时,获取当前环境温度;根据当前环境温度控制蓄能功能和放能功能的开关。本申请通过当前环境温度确定空调器系统压力,再根据空调器系统压力分别对蓄能功能和放能功能进行开关控制,避免空调器系统压力过高导致停机,保证了空调器正常实现制冷或者制热。
附图说明
图1为本申请实施例方案涉及的空调器第一机箱的结构示意图;
图2为本申请实施例方案涉及的空调器第二机箱的结构示意图;
图3为本申请实施例方案涉及的空调器的系统结构图;
图4为本申请空调器的控制方法第一实施例的流程示意图;
图5为本申请空调器的控制方法第二实施例的流程示意图;
图6为本申请空调器的控制装置第一实施例的结构框图。
附图标号说明:
标号 名称 标号 名称
1 第一机箱 17 温度传感器
11 进风管 18 膨胀阀
12 排风管 2 第二机箱
13 第一换热器 21 流量调节泵
14 压缩机 22 第二换热器
15 水箱 23 出水口
16 水箱换热器 24 入水口
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为名称。
为使本申请中各控制方法的实施方式所涉及的技术方案更清楚,本申请现提出一种空调器。参照图1和图2,图1为本申请实施例方案涉及的空调器第一机箱的结构示意图;图2为本申请实施例方案涉及的空调器第二机箱的结构示意图。
如图1和图2所示,空调器包括第一机箱1和第二机箱2。其中,第一机箱1包括进风管11、排风管12、第一换热器13、压缩机14和水箱15,水箱15内设置有水箱换热器16。第二机箱2包括流量调节泵21和第二换热器22。第二机箱2中的流量调节泵21通过水管与第一机箱1中的水箱15连接。第一机箱1和第二机箱2通常均设置在室内,并通过进风管11和排风管12连通室外环境。当然第一机箱也可以直接设置在室外。
第一机箱1还设置有第一风机,该第一风机运行时通过进风管11吸入室外空气,然后在通过排风管12排出至室外。空气在第一机箱1内流经第一换热器13,从而与第一换热器13内的冷媒进行热交换。第二机箱2内同样设置有第二风机、进风口和出风口。该第二风机在运行时通过进风口吸入室内空气,然后在通过出风口排出至室内。空气在第二机箱2内流经第二换热器22,从而与第二换热器22内的冷媒进行热交换。
或者参照图4,图4为本申请实施例方案涉及的空调器的系统结构图。空调器具有蓄能功能和放能功能。压缩机14、第一换热器13、水箱换热器16和膨胀阀18形成蓄能回路。在蓄能功能下,空调器通过蓄能回路向水箱15内存储冷量或热量。水箱15内存储有水,通过提高水的温度达到存储热量的目的,通过降低水的温度达到存储冷量的目的。在蓄冷时,压缩机14启动,将气态冷媒传输至第一换热器13进行冷凝,然后经过膨胀阀18后进入水箱换热器16进行蒸发,从而降低水的温度。在蓄热时压缩机14启动,将气态冷媒传输至水箱换热器16进行冷凝,然后经过膨胀阀18后进入第一换热器13进行蒸发,从而降低提高的温度。水箱15内还可以设置一个或者多个温度传感器17,以监测水箱15内的水温。
流量调节泵21、储能单元和第二换热器22形成放能回路。储能单元可以为水箱15,水箱15上设有出水口23和入水口24,流量调节泵21可以为水泵。在放能功能下,空调器通过放能回路利用水箱15内的冷量或热量进行制冷或制热。流量调节泵启动后,从水箱15中抽水,并将水送至第二换热器22。在水箱15中水为冷水时,第二换热器22能够降到流经的室内空气的温度,从而到达制冷的效果。在水箱15中水为热水时,第二换热器22能够提高流经的室内空气的温度,从而到达制热的效果。
空调器还包括控制器,该控制器与压缩机14、流量调节泵21和风机连接,用于控制各部件的运行。控制器8可以包括处理器和存储器等。存储器内存储有空调器的控制程序,处理器通过调用该空调器的控制程序,以执行本申请实施例提供的空调器的控制方法。
本领域技术人员可以理解,图1和图2中示出的结构并不构成对空调器的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述硬件结构,提出本申请空调器的控制方法的实施例。
参照图4,图4为本申请空调器的控制方法第一实施例的流程示意图,提出本申请空调器的控制方法第一实施例。
在第一实施例中,所述空调器的控制方法包括以下步骤:
步骤S10:在空调器制冷或者制热时,获取当前环境温度。
应理解的是,本实施例的执行主体是可以为前述空调器中的控制器,该控制器具有数据处理、数据通信及程序运行等功能。当然,还可为其他具有相似功能的设备,本实施条件对此不加以限制。
空调器可以设置有温度传感器,该温度传感器可以设置在第一机箱上(如进风管入口),以检测室外环境的温度,从而确定当前环境温度。或者该温度传感器可以设置在第二机箱上,以检测室内环境的温度,从而确定当前环境温度;当然,当前环境温度还可以采用其他方式获取,例如通过网络从气象数据库中获取,本实施方式对此不加以限制。
温度传感器可以按照设定的时间间隔向控制器反馈数据,降低温度传感器的功耗。其中,该时间间隔可以1分钟或者2分钟等,其具体值可以根据需求进行设置,本实施方式对此不加以限制。控制器在每次接收到温度传感器的反馈数据,根据接收到的当前环境温度执行本实施方式所涉及的控制流程。
空调器通常具有制热模式和制冷模式,为更准确的控制空调器的运行,还可以在空调器启动后,获取水箱内的水温;在接收到制冷指令,且水温小于第三温度时,控制空调器进入制冷模式;在接收到制热指令,且水温大于第四温度时,控制空调器进入制热模式。
水箱内同样可以设置有温度传感器,控制器通过接收设置在水箱内的温度传感器或者水箱内的水温。在水箱体积较大时,还可以采用多个温度传感器检测水温,从而提高水温的检测精度。
在进行制冷时,通常需要水箱内存储有足够的冷量;而在制热时,通常需要水箱内存储足够的热量。水箱内的水温可以反映冷量或者热量的存储量,冷量越多,水温越低;热量越多,水温越高。第三温度可以小于零度,如-2℃或者-3℃。在水温小于第三温度时,说明水箱内的冷量足够,此时若接收到制冷指令,则可以开始制冷。第四温度通常较高,如60℃或者65℃。在水温大于第三温度时,说明水箱内的热量足够,此时若接收到制热指令,则可以开始制热。用户还可以通过遥控器或者移动终端等设置的功能按钮等输入制冷指令或者制热指令。
步骤S20:根据当前环境温度控制蓄能功能和放能功能的开关。
本申请实施例中,空调器的蓄能功能和放能功能可以分别单独运行,也可以同时运行。例如,空调器启动后,线启动蓄能功能,压缩机启动,向水箱蓄冷或者蓄热;此时仅有蓄能功能运行。在蓄冷或者蓄热达到一定程度后,开启流量调节泵,利用水箱内水进行放冷或者放冷;此时压缩机可以保持启动状态,即蓄能功能和放能功能同时运行。在水箱内蓄冷或者蓄热达到设定上限时,可以关闭压缩机,而保持流量调节泵启动,此时仅有放能功能运行。参照前述的空调器结构,蓄能回路和放能回路属于两个不同的回路,其分别由不同的部件进行驱动。因此蓄能回路和放能回路在工作时,不会产生直接的相互影响。
需要说明的是,空调器在制冷时,若当前环境温度越高,则蓄冷和放冷时的系统压力越大;空调器在制热时,若当前环境温度越低,则蓄热和放热时的系统压力越大。若空调器的系统压力过大,则可能导致空调器停机,影响用户体验。
为避免系统压力过大,需要分别对蓄能功能和放能功能进行开关控制。其中,蓄能功能的开关控制主要通过控制压缩机的运行状态实现。在需要开启蓄能功能时,可以控制压缩机处于开机状态;在需要关闭蓄能功能时,可以控制压缩机处于停机状态。放能功能的开关控制主要通过控制流量调节泵的运行状态实现。在需要开启放能功能时,可以控制流量调节泵处于开机状态;在需要关闭放能功能时,可以控制流量调节泵处于停机状态。
为保证用户体验,在用户需要制冷或者制热时,需要优先保证放冷功能或者放热功能的开启。此时,为避免系统压力过高,可以选择性地开启或者关闭蓄能功能。即在制冷时,若当前环境温度较高,则可以关闭蓄冷功能,保持放冷功能开启;在制热时,若当前环境温度较第,则可以关闭蓄热功能,保持放热功能开启。在用户关闭制冷或者制热时,则关闭蓄能功能和放能功能。
在本实施方式中,通过在空调器制冷或者制热时,获取当前环境温度;然后根据当前环境温度控制蓄能功能和放能功能的开关;从而根据空调器系统压力分别对蓄能功能和放能功能进行开关控制,避免空调器系统压力过高导致停机,保证了空调器正常实现制冷或者制热。
参照图5,图5为本申请空调器的控制方法第二实施例的流程示意图。基于上述第一实施例,提出本申请空调器的控制方法第二实施例。
在本实施例中,为更有效地对空调器系统压力进行调节,步骤S20可以包括:
步骤S201:确定空调器的当前模式。
空调器的工作模式通常包括制冷模式和制热模式,用户通常会在室温较高的时候开启制冷模式,在室温较低的时候开启制热模式。在制冷模式下,室温越高,空调器系统压力越高,反之越低;在制热模式下,室温越高,空调器系统压力越低,反之越高。因此,在不同模式下,当前环境温度所反映系统压力也不同。
空调器的工作模式通常由用户控制,因此可以根据用户所输入的控制指令确定空调器的当前模式。若用户输入的控制指令为制冷指令,则当前模式为制冷模式;若用户输入的控制指令为制热指令,则当前模式为制热模式。当前,控制器还可以通过空调器的运行参数驱动当前模式。
步骤S202:根据当前模式和当前环境温度确定空调器的放能量。
需要说明的是,放能量可以空调器所需要提供的制冷量或者制热量的多少。因此,若控制器制冷,当前环境温度越高,则所需要的制冷量越多,放能量越大,反之则放能量越小;若控制器制热,当前环境温度越低,则所需要的制热量越多,放能量越大,反之则放能量越小。
在本实施方式中,可以将放能量设置为依次增大的第一阶梯、第二阶梯和第三阶梯。具体的,可以根据当前模式确定对应的参考温度,参考温度包括第一温度和第二温度;将当前环境温度分别与第一温度和第二温度进行比对,获得比对结果;根据比对结果确定空调器的放能量。
通过设置第一温度和第二温度划分了三个温度区间,每个温度区间对应一个放能量。正如前述,空调器在不同工作模式下,当前环境温度所反映系统压力也不同,故第一温度和第二温度在不同工作模式下也不相同。
例如,在空调器处于制冷模式下,第一温度可以为35℃,第二温度为43℃。若当前环境温度小于或等于35℃,则放能量为第一阶梯;若当前环境温度大于35℃,且小于或等于43℃,则放能量为第二阶梯;若当前环境温度大于35℃,则放能量为第三阶梯。在空调器处于制热模式下,第一温度可以为5℃,第二温度为12℃。若当前环境温度小于5℃,则放能量为第三阶梯;若当前环境温度大于或等于5℃,且小于12℃,则放能量为第二阶梯;若当前环境温度大于或等于12℃,则放能量为第一阶梯。当然,上述数值仅为示例,第一温度和第二温度的具体值可以根据需求进行设置,本实施方式对此不加以限制。
步骤S203:根据放能量控制蓄能功能和放能功能的开关。
为保证用户的制冷或者制热需求,需要保持放能功能处于开启状态;然后在根据放能功能所带的压力控制蓄能功能的开关。在放能量较大,则放能功能所带的系统压力(蓄能回路的压力)较大,此时可以控制蓄能功能关闭;在放能量较大,则放能功能所带的压力较小,此时可以控制蓄能功能开启。
以放能量包括第一阶梯、第二阶梯和第三阶梯为例,在放能量处于第一阶梯时,控制放能功能开启,并根据用户需求控制蓄能功能开启或关闭;在放能量处于第二阶梯时,控制放能功能和蓄能功能均开启;在放能量处于第三阶梯时,控制放能功能开启,并控制蓄能功能关闭。
在放能量处于第一阶梯时,说明放能回路所带来的系统压力不大,空调器系统压力较低。因此,可以保持放能功能开启。同样由于放能量较低,对水箱内存储的冷量或者热量消耗程度也不高,因此,也可以直接关闭蓄能功能。或者为保持放能功能的长久运行,也可以开启蓄能功能。其中,在开启蓄能功能时,可以控制压缩机以参考频率运行,参考频率随当前环境温度变化而变化。在制冷模式下,参考频率与当前环境温度呈正相关,即在当前环境温度小于或等于35℃的前提下,当前环境温度越高,参考频率越高,以保证放冷满足用户需求。在制热模式下,参考频率与当前环境温度呈负相关,即在当前环境温度的大于12℃的前提下,当前环境温度越低,参考频率越高,以保证放热满足用户需求。
在放能量处于第二阶梯时,空调器的负荷较大,放冷或者放热的峰值能力高,单独放能可能无法维持用户需求。此时由于系统压力还在可控范围内,可以控制蓄能功能和放能功能同时开启。另外,为避免引起系统过载,可以控制压缩机以设定频率范围内的频率运行,从而限制蓄能功能所带来的压力,避免空调器系统过压。其中,该设定频率范围可以根据需求进行设置,本实施方式对此不加以限制。
在放能量处于第三阶梯时,系统压力超标,为保证系统的可靠性,同时满足用户的需求,需要关闭蓄能功能,仅保持放能功能运行。通常,在环境温度较高时,随着水箱蒸发压力的提高,系统的压力则可能超标。
在本实施方式中,通过确定空调器的当前模式;然后根据当前模式和当前环境温度确定放能量;再根据放能量控制蓄能功能和放能功能的开关。本实施方式通过利用当前环境温度对空调器的放能量进行区分,从而在不同阶梯的放能量下分别控制蓄能功能和放能功能的开关,从而在保证用户需求的前提下,对空调器系统压力进行限制,避免过压引起停机。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如上文所述的空调器的控制方法的步骤。由于本存储介质可以采用上述所有实施例的技术方案,因此至少具有上述实施例的技术方案所带来的有益效果,在此不再一一赘述。
此外,参照图6,图6为本申请空调器的控制装置第一实施例的结构框图。本申请实施例还提出一种空调器的控制装置。
在本实施方式中,空调器的控制装置包括:
检测模块10,用于在空调器制冷或者制热时,获取当前环境温度。
空调器可以设置有温度传感器,该温度传感器可以设置在第一机箱上(如进风管入口),以检测室外环境的温度,从而确定当前环境温度。或者该温度传感器可以设置在第二机箱上,以检测室内环境的温度,从而确定当前环境温度;当然,当前环境温度还可以采用其他方式获取,例如通过网络从气象数据库中获取,本实施方式对此不加以限制。
温度传感器可以按照设定的时间间隔向控制器反馈数据,降低温度传感器的功耗。其中,该时间间隔可以1分钟或者2分钟等,其具体值可以根据需求进行设置,本实施方式对此不加以限制。检测模块10在每次接收到温度传感器的反馈数据,根据接收到的当前环境温度执行本实施方式所涉及的控制流程。
空调器通常具有制热模式和制冷模式,为更准确的控制空调器的运行,还可以在空调器启动后,获取水箱内的水温;在接收到制冷指令,且水温小于第三温度时,控制空调器进入制冷模式;在接收到制热指令,且水温大于第四温度时,控制空调器进入制热模式。
水箱内同样可以设置有温度传感器,检测模块10通过接收设置在水箱内的温度传感器或者水箱内的水温。在水箱体积较大时,还可以采用多个温度传感器检测水温,从而提高水温的检测精度。
在进行制冷时,通常需要水箱内存储有足够的冷量;而在制热时,通常需要水箱内存储足够的热量。水箱内的水温可以反映冷量或者热量的存储量,冷量越多,水温越低;热量越多,水温越高。第三温度可以小于零度,如-2℃或者-3℃。在水温小于第三温度时,说明水箱内的冷量足够,此时若接收到制冷指令,则可以开始制冷。第四温度通常较高,如60℃或者65℃。在水温大于第三温度时,说明水箱内的热量足够,此时若接收到制热指令,则可以开始制热。用户还可以通过遥控器或者移动终端等设置的功能按钮等输入制冷指令或者制热指令。
控制模块20,用于根据当前环境温度控制蓄能功能和放能功能的开关。
参照前述的空调器结构,蓄能回路和放能回路属于两个不同的回路,其分别由不同的部件进行驱动。因此蓄能回路和放能回路在工作时,不会产生直接的相互影响。
需要说明的是,空调器在制冷时,若当前环境温度越高,则蓄冷和放冷时的系统压力越大;空调器在制热时,若当前环境温度越低,则蓄热和放热时的系统压力越大。若空调器的系统压力过大,则可能导致空调器停机,影响用户体验。
为避免系统压力过大,需要分别对蓄能功能和放能功能进行开关控制。其中,蓄能功能的开关控制主要通过控制压缩机的运行状态实现。在需要开启蓄能功能时,可以控制压缩机处于开机状态;在需要关闭蓄能功能时,可以控制压缩机处于停机状态。放能功能的开关控制主要通过控制流量调节泵的运行状态实现。在需要开启放能功能时,可以控制流量调节泵处于开机状态;在需要关闭放能功能时,可以控制流量调节泵处于停机状态。
为保证用户体验,在用户需要制冷或者制热时,需要优先保证放冷功能或者放热功能的开启。此时,为避免系统压力过高,可以选择性地开启或者关闭蓄能功能。即在制冷时,若当前环境温度较高,则可以关闭蓄冷功能,保持放冷功能开启;在制热时,若当前环境温度较第,则可以关闭蓄热功能,保持放热功能开启。在用户关闭制冷或者制热时,则关闭蓄能功能和放能功能。
在本实施方式中,检测模块10在空调器制冷或者制热时,获取当前环境温度;控制模块20根据当前环境温度控制蓄能功能和放能功能的开关;从而根据空调器系统压力分别对蓄能功能和放能功能进行开关控制,避免空调器系统压力过高导致停机,保证了空调器正常实现制冷或者制热。
在一实施例中,控制模块20还用于确定空调器的当前模式,当前模式为制冷模式或制热模式;根据当前模式和当前环境温度确定放能量;根据放能量控制蓄能功能和放能功能的开关。
在一实施例中,放能量包括依次增大的第一阶梯、第二阶梯和第三阶梯,控制模块20还用于在放能量处于第一阶梯时,控制放能功能开启,并根据用户需求控制蓄能功能开启或关闭;在放能量处于第二阶梯时,控制放能功能和蓄能功能均开启;在放能量处于第三阶梯时,控制放能功能开启,并控制蓄能功能关闭。
在一实施例中,控制模块20还用于根据当前模式确定对应的参考温度,参考温度包括第一温度和第二温度;将当前环境温度分别与第一温度和第二温度进行比对,获得比对结果;根据比对结果确定空调器的放能量。
在一实施例中,控制模块20还用于在放能量处于第一阶梯,且蓄能功能开启时,控制压缩机以参考频率运行,参考频率随当前环境温度变化而变化。
在一实施例中,控制模块20还用于在放能量处于第二阶梯时,控制压缩机以设定频率范围内的频率运行。
本申请所述空调器的控制装置的其他实施例或具体实现条件可参照上述各方法实施例,因此至少具有上述实施例的技术方案所带来的所有有益效果,此处不再赘述。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种空调器的控制方法,其中,所述空调器包括蓄能回路、放能回路和储能单元,所述空调器具有蓄能功能和放能功能,在所述蓄能功能下,所述空调器通过所述蓄能回路向所述储能单元内存储冷量或热量;在所述放能功能下,所述空调器通过所述放能回路利用所述储能单元内的冷量或热量进行制冷或制热;所述控制方法包括:
    在所述空调器制冷或者制热时,获取当前环境温度;以及,
    根据所述当前环境温度控制所述蓄能功能和所述放能功能的开关。
  2. 如权利要求1所述的空调器的控制方法,其中,所述根据所述当前环境温度控制所述蓄能功能和所述放能功能的开关,包括:
    确定所述空调器的当前模式,所述当前模式为制冷模式或制热模式;
    根据所述当前模式和所述当前环境温度确定所述空调器的放能量;以及,
    根据所述放能量控制所述蓄能功能和所述放能功能的开关。
  3. 如权利要求2所述的空调器的控制方法,其中,所述放能量包括依次增大的第一阶梯、第二阶梯和第三阶梯,所述根据所述放能量控制所述蓄能功能和所述放能功能的开关,包括:
    在所述放能量处于第一阶梯时,控制所述放能功能开启,并根据用户需求控制所述蓄能功能开启或关闭;
    在所述放能量处于第二阶梯时,控制所述放能功能和所述蓄能功能均开启;以及,
    在所述放能量处于第三阶梯时,控制所述放能功能开启,并控制所述蓄能功能关闭。
  4. 如权利要求3所述的空调器的控制方法,其中,所述根据所述当前模式和所述当前环境温度确定所述空调器的放能量,包括:
    根据所述当前模式确定对应的参考温度,所述参考温度包括第一温度和第二温度;
    将所述当前环境温度分别与所述第一温度和所述第二温度进行比对,获得比对结果;以及,
    根据所述比对结果确定所述空调器的放能量。
  5. 如权利要求3所述的空调器的控制方法,其中,所述空调器包括压缩机;
    所述空调器的控制方法还包括:
    在所述放能量处于第一阶梯,且所述蓄能功能开启时,控制所述压缩机以参考频率运行,所述参考频率随所述当前环境温度变化而变化。
  6. 如权利要求3所述的空调器的控制方法,其中,所述空调器包括压缩机;
    所述空调器的控制方法还包括:
    在所述放能量处于第二阶梯时,控制所述压缩机以设定频率范围内的频率运行。
  7. 如权利要求1-6中任一项所述的空调器的控制方法,其中,所述储能单元包括水箱,所述水箱利用水存储冷量或热量;
    所述空调器的控制方法还包括:
    在所述空调器启动后,获取所述水箱内的水温;
    在接收到制冷指令,且所述水温小于第三温度时,控制所述空调器进入制冷模式;以及,
    在接收到制热指令,且所述水温大于第四温度时,控制所述空调器进入制热模式。
  8. 一种空调器的控制装置,其中,空调器包括蓄能回路、放能回路和储能单元,所述空调器具有蓄能功能和放能功能,在所述蓄能功能下,所述空调器通过所述蓄能回路向所述储能单元内存储冷量或热量;在所述放能功能下,所述空调器通过所述放能回路利用所述储能单元内的冷量或热量进行制冷或制热;
    所述空调器的控制装置包括:
    检测模块,用于在所述空调器制冷或者制热时,获取当前环境温度;以及,
    控制模块,用于根据所述当前环境温度控制所述蓄能功能和所述放能功能的开关。
  9. 一种空调器,其中,所述空调器包括第一机箱和第二机箱,所述第一机箱包括进风管、排风管、水箱、压缩机和第一换热器,所述水箱内设有水箱换热器,所述压缩机、所述第一换热器和所述水箱换热器形成蓄能回路,所述第二机箱包括流量调节泵和第二换热器,所述流量调节泵和所述第二换热器形成放能回路;所述空调器具有蓄能功能和放能功能;在所述蓄能功能下,所述空调器通过所述蓄能回路向所述水箱内存储冷量或热量;在所述放能功能下,所述空调器通过所述放能回路利用所述水箱内的冷量或热量进行制冷或制热;
    所述空调器还包括控制器,所述控制器与所述蓄能回路和所述放能回路连接,所述控制器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如权利要求1至7中任一项所述的空调器的控制方法。
  10. 一种存储介质,其中,所述存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如权利要求1至7中任一项所述的空调器的控制方法。
PCT/CN2022/102327 2022-04-29 2022-06-29 空调器的控制方法、装置、空调器及存储介质 WO2023206793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210483444.XA CN117006556A (zh) 2022-04-29 2022-04-29 空调器的控制方法、装置、空调器及存储介质
CN202210483444.X 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023206793A1 true WO2023206793A1 (zh) 2023-11-02

Family

ID=88517085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102327 WO2023206793A1 (zh) 2022-04-29 2022-06-29 空调器的控制方法、装置、空调器及存储介质

Country Status (2)

Country Link
CN (1) CN117006556A (zh)
WO (1) WO2023206793A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047545A (ja) * 2009-08-26 2011-03-10 Panasonic Corp 多室形空気調和機の運転制御方法
CN102338430A (zh) * 2010-07-20 2012-02-01 乐金电子(天津)电器有限公司 可蓄能的空调机
CN205878494U (zh) * 2016-08-01 2017-01-11 北京辰威日晟节能科技有限公司 一种中央空调的水蓄能控制系统
CN207335020U (zh) * 2017-09-25 2018-05-08 陈彬明 一种智能控制的恒温水空调
CN207778662U (zh) * 2017-12-18 2018-08-28 北京天诚同创电气有限公司 空调系统及空调机组
CN214841537U (zh) * 2021-04-22 2021-11-23 广东美的制冷设备有限公司 空调器制冷装置及空调器
CN113983577A (zh) * 2021-09-28 2022-01-28 海信(山东)空调有限公司 一种蓄冷式空调器和控制方法
CN114322144A (zh) * 2022-01-10 2022-04-12 桂林沣泱科技有限公司 一种空调系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047545A (ja) * 2009-08-26 2011-03-10 Panasonic Corp 多室形空気調和機の運転制御方法
CN102338430A (zh) * 2010-07-20 2012-02-01 乐金电子(天津)电器有限公司 可蓄能的空调机
CN205878494U (zh) * 2016-08-01 2017-01-11 北京辰威日晟节能科技有限公司 一种中央空调的水蓄能控制系统
CN207335020U (zh) * 2017-09-25 2018-05-08 陈彬明 一种智能控制的恒温水空调
CN207778662U (zh) * 2017-12-18 2018-08-28 北京天诚同创电气有限公司 空调系统及空调机组
CN214841537U (zh) * 2021-04-22 2021-11-23 广东美的制冷设备有限公司 空调器制冷装置及空调器
CN113983577A (zh) * 2021-09-28 2022-01-28 海信(山东)空调有限公司 一种蓄冷式空调器和控制方法
CN114322144A (zh) * 2022-01-10 2022-04-12 桂林沣泱科技有限公司 一种空调系统及其控制方法

Also Published As

Publication number Publication date
CN117006556A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2019223301A1 (zh) 空调控制方法、控制装置及采用该方法的空调
CN106839332B (zh) 联动控制方法、联动控制装置和多联式空调器
US10006649B2 (en) Air-conditioning system
CN107559956B (zh) 新风系统及其控制方法
US20050257538A1 (en) Apparatus and method for controlling air-conditioner
WO2022077915A1 (zh) 多联机及其控制方法、计算机存储介质
CN114440410A (zh) 基于换热效率对冷冻、冷却水泵进行变流量控制的方法
US11530832B2 (en) Peak demand response operation with improved sensible capacity
CN115013912B (zh) 一种新风系统的控制方法、装置、存储介质及新风系统
CN113790542B (zh) 多模块冷水机组及其调度控制方法
CN113339947B (zh) 空调器的控制方法、装置、空调器和存储介质
WO2019015536A1 (zh) 一种空调器的控制方法
JP2015169399A (ja) 換気装置
CN113587384B (zh) 空调器的控制方法、装置、空调器和存储介质
WO2022227186A1 (zh) 空调器的控制方法、装置、空调器及存储介质
CN112710065B (zh) 一拖多空调器的控制方法、一拖多空调器及存储介质
JP2020008251A (ja) 換気装置
WO2023206793A1 (zh) 空调器的控制方法、装置、空调器及存储介质
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
JP7343824B2 (ja) 空気処理システムの制御方法及び空気処理システム
CN111023465A (zh) 空调器的控制方法、装置、空调器及可读存储介质
US11982487B2 (en) Defrosting control method, central controller and heating system
JP2013015242A (ja) 空調運転制御システム
CN113587249B (zh) 多联机系统
CN110986319A (zh) 一种空调节能控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939621

Country of ref document: EP

Kind code of ref document: A1