WO2023206554A1 - 一种无线通信方法及装置、通信设备 - Google Patents

一种无线通信方法及装置、通信设备 Download PDF

Info

Publication number
WO2023206554A1
WO2023206554A1 PCT/CN2022/090715 CN2022090715W WO2023206554A1 WO 2023206554 A1 WO2023206554 A1 WO 2023206554A1 CN 2022090715 W CN2022090715 W CN 2022090715W WO 2023206554 A1 WO2023206554 A1 WO 2023206554A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
transmission
pucch transmission
time slots
frequency hopping
Prior art date
Application number
PCT/CN2022/090715
Other languages
English (en)
French (fr)
Inventor
赵楠德
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202280086324.4A priority Critical patent/CN118511618A/zh
Priority to PCT/CN2022/090715 priority patent/WO2023206554A1/zh
Publication of WO2023206554A1 publication Critical patent/WO2023206554A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically to a wireless communication method and device, and communication equipment.
  • the PUCCH resources used for Physical Uplink Control Channel (PUCCH) transmission are configured based on one time slot, and it is necessary to allocate as many frequency domain Physical Resource Blocks (PRBs) as possible on one time slot.
  • PRBs Physical Resource Blocks
  • UCI uplink control information
  • Embodiments of the present application provide a wireless communication method and device, and communication equipment.
  • the terminal device receives first information sent by the network device, where the first information is used to indicate repeated transmission of a first physical uplink control channel PUCCH transmission, where the first PUCCH transmission is performed based on at least two first time slots.
  • the network device sends first information to the terminal device, where the first information is used to indicate repeated transmission of a first physical uplink control channel PUCCH transmission, where the first PUCCH transmission is performed based on at least two first time slots.
  • a receiving unit configured to receive first information sent by the network device, the first information being used to indicate repeated transmission of the first physical uplink control channel PUCCH transmission, the first PUCCH transmission being transmitted based on at least two first time slots .
  • the wireless communication device provided by the embodiment of the present application is applied to network equipment, including:
  • a sending unit configured to send first information to the terminal device, where the first information is used to indicate repeated transmission of a first physical uplink control channel PUCCH transmission, where the first PUCCH transmission is based on at least two first time slots.
  • the communication device provided by the embodiment of the present application may be a terminal device in the above solution or a network device in the above solution.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to perform the above-mentioned wireless communication method.
  • the chip provided by the embodiment of the present application is used to implement the above wireless communication method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned wireless communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program causes the computer to execute the above-mentioned wireless communication method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above-mentioned wireless communication method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to perform the above wireless communication method.
  • the terminal equipment receives the first information, the first information is used to indicate repeated transmission of the first physical uplink control channel PUCCH transmission, and the first PUCCH transmission is transmitted based on at least two first time slots.
  • the UCI carrying capacity of PUCCH transmission is increased in the time domain, and energy is concentrated on fewer frequency domain resources and PUCCH repeated transmission to ensure coverage performance.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • FIG. 2 is a schematic architectural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic architectural diagram of another communication system provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of an NTN scenario based on transparent transmission and forwarding satellites provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of an NTN scenario based on regeneration and forwarding satellites provided by an embodiment of the present application
  • Figure 6 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 7 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 8 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 9 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 10 is an optional flow diagram of the wireless communication method according to the embodiment of the present application.
  • Figure 11 is an optional flow diagram of the wireless communication method according to the embodiment of the present application.
  • Figure 12 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 13 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 14 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 15 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 16 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 17 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 18 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 19 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 20 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 21 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 22 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 23 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 24 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 25 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 26 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 27 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 28 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 29 is an optional structural schematic diagram of time domain resources according to the embodiment of the present application.
  • Figure 30 is an optional structural schematic diagram of a wireless communication device according to an embodiment of the present application.
  • Figure 31 is an optional structural schematic diagram of a wireless communication device according to an embodiment of the present application.
  • Figure 32 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 33 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 34 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network equipment can provide communication coverage for a specific geographical area and can communicate with terminal equipment 110 (such as user equipment (User Equipment, UE)) located within the coverage area.
  • terminal equipment 110 such as user equipment (User Equipment, UE) located within the coverage area.
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, a UE, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device .
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the Uu interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 the next generation wireless access base station
  • gNB next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base stations and other numbers of terminal devices may be included within the coverage of each base station. , the embodiment of the present application does not limit this.
  • NTN non-terrestrial communication network equipment
  • NTN generally uses satellite communications to provide communication services to terrestrial users.
  • satellite communications have many unique advantages.
  • satellite communication is not restricted by the user's geographical area. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be installed or where communication coverage is not available due to sparse population.
  • general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be installed or where communication coverage is not available due to sparse population.
  • satellite Satellites due to a satellite Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communications have great social value.
  • Satellite communications can cover remote mountainous areas and poor and backward countries or regions at a lower cost, allowing people in these areas to enjoy advanced voice communications and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • satellite communication has a long distance, and the cost of communication does not increase significantly as the communication distance increases; finally, satellite communication has high stability and is not restricted by natural disasters.
  • NTN technology can be combined with various communication systems.
  • NTN technology can be combined with NR systems to form NR-NTN systems.
  • NTN technology can be combined with the Internet of Things (IoT) system to form an IoT-NTN system.
  • IoT-NTN system may include an NB-IoT-NTN system and an eMTC-NTN system.
  • Figure 2 is a schematic architectural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102.
  • the network formed between the terminal device 1101 and the satellite 1102 may also be called NTN.
  • the satellite 1102 can have the function of a base station, and the terminal device 1101 and the satellite 1102 can communicate directly.
  • the satellite 1102 can be called a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which is not limited in the embodiments of the present application.
  • Figure 3 is a schematic architectural diagram of another communication system provided by an embodiment of the present application.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be called NTN.
  • the satellite 1202 may not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202. Under this system architecture, the base station 1203 can be called a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which is not limited in the embodiments of the present application.
  • the network device 1203 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 1202 includes but is not limited to:
  • Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and improve the system capacity of the entire satellite communication system.
  • the altitude range of LEO satellites can be 500 kilometers to 1,500 kilometers, and the corresponding orbital period can be about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users can generally be less than 20 milliseconds, and the maximum satellite visibility time It can be 20 minutes.
  • the signal propagation distance of LEO satellites is short and the link loss is small, so the transmission power requirements of the user terminal are not high.
  • the orbital altitude of GEO satellites can be 35,786km, and the rotation period around the earth can be 24 hours.
  • the signal propagation delay of single-hop communication between users can generally be 250 milliseconds.
  • satellites use multiple beams to cover the ground.
  • One satellite can form dozens or even hundreds of beams to cover the ground; one satellite beam can cover dozens to hundreds of kilometers in diameter.
  • Ground area In order to ensure satellite coverage and improve the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • One satellite can form dozens or even hundreds of beams to cover the ground; one satellite beam can cover dozens to hundreds of kilometers in diameter. Ground area.
  • Figures 1 to 3 are only used as examples to illustrate the systems to which the present application is applicable. Of course, the methods shown in the embodiments of the present application can also be applied to other systems. Additionally, the terms “system” and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character “/” in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • Satellites can be divided into two types based on the functions they provide: transparent payload and regenerative payload.
  • transparent transmission and forwarding satellites it only provides wireless frequency filtering, frequency conversion and amplification functions. It only provides transparent forwarding of signals and does not change the waveform signal it forwards.
  • regenerative forwarding satellites in addition to providing wireless frequency filtering, frequency conversion and amplification functions, it can also provide demodulation/decoding, routing/conversion, encoding/modulation functions, which have some or all of the functions of a base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • Figures 4 and 5 show schematic diagrams of NTN scenarios based on transparent transmission and retransmission satellites and regeneration and retransmission satellites respectively.
  • the gateway and the satellite communicate through the feeder link, and the satellite and the terminal can communicate through the service link.
  • the satellites communicate through InterStar link, gateways and satellites communicate through feeder links, and satellites and terminals communicate They can communicate through service links.
  • FIG. 1 to FIG. 5 only illustrate systems to which the present application is applicable in the form of examples. Of course, the methods shown in the embodiments of the present application can also be applied to other systems. Additionally, the terms “system” and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character “/” in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • the UCI carried by PUCCH includes one or more of Hybrid Automatic Repeat-reQuest Acknowledgment (HARQ-ACK), Scheduling Request (SR), and Channel State Information (CSI), respectively.
  • HARQ-ACK Hybrid Automatic Repeat-reQuest Acknowledgment
  • SR Scheduling Request
  • CSI Channel State Information
  • the number of bits representing each information is O ACK , O SR and O CSI respectively.
  • PUCCH resources are configured based on a time slot.
  • the PUCCH configuration parameters for configuring PUCCH resources are as follows:
  • the code rate r, r is configured by the high-level parameter maximum code rate (maxCodeRate).
  • PUCCH format 2 if the PUCCH resource configuration parameters include the length of the Orthogonal Cover Code (OCC) but otherwise in, Based on the high-level parameter occ-Length configuration, OCC is used for multi-user multiplexing. is the number of subcarriers on each PRB, For PUCCH format 3, if the PUCCH resource configuration parameters include the OCC length but otherwise For PUCCH format 4, in, is the OCC length.
  • OCC Orthogonal Cover Code
  • the maximum number of UCI bits carried by the configured PUCCH transmission is
  • the maximum number of UCI bits carried by PUCCH transmission is determined based on one time slot.
  • the UCI load is large, the UCI of PUCCH transmission can only be improved by allocating as many time domain symbols and frequency domain PRBs as possible. Carrying capacity.
  • the terminal device receives first information, the first information is used to indicate repeated transmission of the first physical uplink control channel PUCCH transmission, and the first PUCCH transmission is based on at least two first time intervals. Transmit in slots, increase the UCI carrying capacity of PUCCH transmission in the time domain, and realize energy concentration on fewer frequency domain resources and PUCCH repeated transmission to ensure coverage performance.
  • the wireless communication method provided by the embodiment of the present application is shown in Figure 6 and is applied to terminal equipment, including:
  • the terminal device receives the first information sent by the network device.
  • the first information is used to indicate repeated transmission of the first PUCCH transmission.
  • the first PUCCH transmission is transmitted based on at least two first time slots.
  • the network device directly or indirectly sends first information to the terminal device, where the first information indicates repeated transmission of the first PUCCH transmission.
  • the first information is included in a first PUCCH configuration parameter, where the first PUCCH configuration parameter is used to configure the first PUCCH transmission.
  • the first PUCCH configuration parameters include first PUCCH resource configuration parameters.
  • the first PUCCH configuration parameter may also include a first PUCCH format configuration parameter, and the first PUCCH resource configuration parameter may indicate the following information transmitted by the first PUCCH: etc.
  • the first PUCCH format configuration parameter may indicate the following information of the first PUCCH transmission: r, Q m , etc.
  • the first information may be included in the first PUCCH resource configuration parameter, or may be included in the first PUCCH format configuration parameter.
  • the first information may be in PUCCH format.
  • PUCCH transmission in the same PUCCH format uses the same first information.
  • the first information is included in the first PUCCH format configuration parameter.
  • the first information may be transmitted for PUCCH.
  • the first information corresponding to different first PUCCH transmissions is independent.
  • the first information is included in the first PUCCH resource configuration parameter.
  • the terminal device After receiving the first information, the terminal device determines the first PUCCH transmission based on the first information and performs repeated transmission.
  • repeated transmission of the first PUCCH transmission may be understood as repeating the first PUCCH transmission at least twice.
  • the number of repeated transmissions of the first PUCCH transmission Can be fixed, network device configured, or determined based on the first device implementation. In the embodiment of this application, for The determination method and size are not subject to any restrictions.
  • the first PUCCH transmission may be understood as the first PUCCH transmitted. It can be understood that the first PUCCH transmission is transmitted based on at least two first time slots. It can be understood that the first PUCCH transmission occupies at least two time slots in the time domain.
  • the time slot occupied by the first PUCCH transmission is called First time slot.
  • the first PUCCH transmission may occupy all or part of the symbols of the first time slot.
  • the symbols occupied by the first PUCCH transmission in a first time slot are called first symbols.
  • the terminal device sends the first PUCCH transmission the first PUCCH transmission may actually use all or part of the first time slots in at least two first time slots in the time domain.
  • a first symbol occupied by a PUCCH transmission the first PUCCH transmission may actually use all the first symbols or part of the first symbols in the first time slot in the time domain.
  • the first PUCCH transmission occupies two first time slots: time slot 0 and time slot 1, then time slot 0 and time slot 1 can be used to transmit the first PUCCH, and one first time slot includes 14 symbols, Each symbol is indexed from 0 to 13, and the first PUCCH transmission occupies symbols 4 to 13 in slot 0, and slots 4 to 13 in slot 1.
  • the first PUCCH transmission occupies two first time slots: time slot 0 and time slot 1, then time slot 0 and time slot 1 can be used to transmit the first PUCCH, and one first time slot includes 14 symbols, Each symbol is indexed from 0 to 13, and the first PUCCH transmission occupies symbol 4 in slot 0 to symbol 8 in slot 1.
  • the part of the first PUCCH transmitted on time slot 0 and the part of the first PUCCH transmitted on time slot 1 are not repeated first PUCCHs.
  • the part of the first PUCCH on time slot 0 and Part of the first PUCCH on time slot 1 constitutes a complete first PUCCH.
  • the terminal device when the terminal device performs repeated transmission of the first PUCCH transmission based on the first information, it repeatedly sends multiple first PUCCH transmissions to the network device. At this time, the network device receives multiple repeated first PUCCH transmissions. transmission.
  • the repeatedly transmitted first PUCCH transmission is discontinuous in the time domain.
  • the first PUCCH transmission occupies two first time slots.
  • One first time slot includes 14 symbols, and the index of each symbol is 0 to 13.
  • the first PUCCH transmission occupies the first Symbols 4 to 13 in the first time slot, and symbols 4 to 13 in the second first time slot; the number of repeated transmissions of the first PUCCH transmission is 2, then the first PUCCH transmission of the repeated transmission Occupying symbols 4 to 13 in slot 0, and symbols 4 to 13 in slot 1, the 2nd first PUCCH transmission of the repeated transmission occupies symbols 4 to 13 in slot 2, and slot 3 Symbol 4 to Symbol 13 in .
  • the repeatedly transmitted first PUCCH transmission is continuous in the time domain.
  • the first PUCCH transmission occupies two first time slots, one first time slot includes 14 symbols, and the index of each symbol is 0 to 13, and the first PUCCH transmission occupies the first There are 19 symbols from symbol 4 in the first time slot to symbol 8 in the second first time slot; the number of repeated transmissions of the first PUCCH transmission is 2, then the first repeated transmission of the first PUCCH transmission occupies time slot 0 The 19 symbols from symbol 4 in slot 1 to symbol 8 in slot 1, and the second first PUCCH transmission of the repeated transmission occupies the 19 symbols from symbol 9 in slot 1 to symbol 13 in slot 2.
  • the first PUCCH transmission may carry the first UCI, and the first UCI may include at least one of the following information: SR, HARK-ACK, and CSI.
  • the first UCI is repeatedly transmitted.
  • the terminal device receives first information, the first information is used to indicate repeated transmission of the first PUCCH transmission, and the first PUCCH transmission is transmitted based on at least two first time slots,
  • the UCI carrying capacity of PUCCH transmission is increased in the time domain, and energy is concentrated on fewer frequency domain resources and PUCCH repeated transmission to ensure coverage performance.
  • the wireless communication method provided by the embodiment of the present application is shown in Figure 9 and is applied to network equipment, including:
  • the network device sends first information to the terminal device, where the first information is used to indicate repeated transmission of the first PUCCH transmission, where the first PUCCH transmission is transmitted based on at least two first time slots.
  • the network device directly or indirectly sends first information to the terminal device, where the first information indicates repeated transmission of the first PUCCH transmission.
  • the first information is included in the first PUCCH configuration parameter, where the first PUCCH configuration parameter is used to configure the first PUCCH resource, and the first PUCCH resource is used for the first PUCCH transmission.
  • the first information may be included in the first PUCCH resource configuration parameter, or may be included in the first PUCCH format configuration parameter.
  • the first information may be in PUCCH format.
  • PUCCH transmission in the same PUCCH format uses the same first information.
  • the first information is included in the first PUCCH format configuration parameter.
  • the first information may be transmitted for PUCCH.
  • the first information corresponding to different first PUCCH transmissions is independent.
  • the first information is included in the first PUCCH resource configuration parameter.
  • the terminal device After receiving the first information, the terminal device determines that the first PUCCH transmission needs to be repeated based on the first information.
  • the repeated transmission of the first PUCCH may be understood as repeating the first PUCCH transmission at least twice.
  • the number of repeated transmissions of the first PUCCH transmission Can be fixed, network device configured, or determined based on the first device implementation. In the embodiment of this application, for The determination method and size are not subject to any restrictions.
  • the first PUCCH transmission may be understood as the first PUCCH transmitted. It can be understood that the first PUCCH transmission is transmitted based on at least two first time slots. It can be understood that the first PUCCH transmission occupies at least two time slots in the time domain.
  • the time slot occupied by the first PUCCH transmission is called First time slot.
  • the first PUCCH transmission may occupy all or part of the symbols of the first time slot.
  • the symbols occupied by the first PUCCH transmission in a first time slot are called first symbols.
  • the terminal device sends the first PUCCH transmission the first PUCCH transmission may actually use all or part of the first time slots in at least two first time slots in the time domain.
  • a first symbol occupied by a PUCCH transmission the first PUCCH transmission may actually use all the first symbols or part of the first symbols in the first time slot in the time domain.
  • the first PUCCH transmission occupies two first time slots: time slot 0 and time slot 1, then time slot 0 and time slot 1 can be used to transmit the first PUCCH, and one first time slot includes 14 symbols, Each symbol is indexed from 0 to 13, and the first PUCCH transmission occupies symbols 4 to 13 in slot 0, and slots 4 to 13 in slot 1.
  • the first PUCCH transmission occupies two first time slots: time slot 0 and time slot 1, then time slot 0 and time slot 1 can be used to transmit the first PUCCH, and one first time slot includes 14 symbols, Each symbol is indexed from 0 to 13, and the first PUCCH transmission occupies symbol 4 in slot 0 to symbol 8 in slot 1.
  • the part of the first PUCCH transmitted on time slot 0 and the part of the first PUCCH transmitted on time slot 1 are not repeated first PUCCHs.
  • the part of the first PUCCH on time slot 0 and Part of the first PUCCH on time slot 1 constitutes a complete first PUCCH.
  • the terminal device when the terminal device performs repeated transmission of the first PUCCH transmission based on the first information, it repeatedly sends multiple first PUCCH transmissions to the network device. At this time, the network device receives multiple repeated first PUCCH transmissions. transmission.
  • the repeatedly transmitted first PUCCH transmission is discontinuous in the time domain.
  • the repeatedly transmitted first PUCCH transmission is continuous in the time domain.
  • the first PUCCH transmission may carry the first UCI, and the first UCI may include at least one of the following information: SR, HARK-ACK, and CSI.
  • the first UCI is repeatedly transmitted.
  • the network device sends first information to the terminal device, the first information is used to indicate repeating the first PUCCH transmission, and the first PUCCH transmission is transmitted based on at least two first time slots. , increase the UCI carrying capacity of PUCCH transmission in the time domain, and realize energy concentration on fewer frequency domain resources and PUCCH repeated transmission to ensure coverage performance.
  • the wireless communication method provided by the embodiment of the present application is shown in Figure 10 and is applied to a wireless communication system including terminal equipment and network equipment, including:
  • the network device sends first information to the terminal device, where the first information is used to indicate repeated transmission of the first PUCCH transmission, and the first PUCCH transmission is transmitted based on at least two first time slots.
  • the terminal device receives the first information sent by the network device,
  • the wireless communication method provided by the embodiment of the present application also includes:
  • the terminal device repeatedly transmits the first PUCCH transmission, the first PUCCH transmission is transmitted based on at least two first time slots, and the repeated transmission of the first PUCCH transmission is based on the first information indication.
  • the network device receives the repeatedly transmitted first PUCCH transmission.
  • the terminal equipment repeats the first PUCCH transmission multiple times.
  • the network device may receive the first PUCCH transmission on all or part of the first time slots among the at least two first time slots, and receive the first PUCCH transmission that is repeated multiple times.
  • the first PUCCH transmission may actually use all or part of the first time slots in at least two first time slots in the time domain.
  • the first PUCCH transmission may actually use all the first symbols or part of the first symbols in the first time slot in the time domain.
  • the terminal device repeatedly transmits the first PUCCH transmission, and the first PUCCH transmission is transmitted based on at least two first time slots, which increases the UCI carrying capacity of the PUCCH transmission in the time domain and realizes energy Concentrate on fewer frequency domain resources and repeat PUCCH transmission to ensure coverage performance.
  • the terminal device receives second information, the second information being used to indicate the at least two first time slots.
  • the network device sends second information to the terminal device device, the second information being used to indicate the at least two first time slots.
  • the network device indicates to the terminal device at least two first time slots occupied by the first PUCCH transmission based on the second information.
  • the terminal device receives the second information sent by the network device and determines at least two first time slots based on the second information.
  • the second information is included in the first PUCCH configuration parameter.
  • the second information can be understood as high-level parameters.
  • the first PUCCH configuration parameters may also include high-level parameters configuring at least one of the following information: code rate r, Q m , index of the starting symbol of the first PUCCH transmission wait.
  • the second information may be included in the first PUCCH resource configuration parameter, or may be included in the first PUCCH format configuration parameter.
  • the second information may be in PUCCH format.
  • PUCCH transmission in the same PUCCH format uses the same second information.
  • the second information is included in the first PUCCH format configuration parameter.
  • the second information may be transmitted for PUCCH.
  • the second information corresponding to different first PUCCH transmissions is independent.
  • the second information is included in the first PUCCH resource configuration parameter.
  • the second information includes at least one of the following:
  • the first indication information is used to indicate a first number, and the first number is the number of first time slots included in the at least two first time slots;
  • the second indication information is used to indicate a second number.
  • the first PUCCH resource includes a second number of second PUCCH resources in the time domain.
  • the first PUCCH resource is used for the first PUCCH transmission.
  • the number of symbols included in the second PUCCH resource in the time domain is less than or equal to a third number, and the third number is the number of symbols included in one time slot;
  • the third indication information is used to indicate a fourth quantity, the fourth quantity is the number of first symbols included in the first PUCCH resource in the time domain, the fourth quantity is greater than the Third quantity.
  • the number of first time slots included in at least two first time slots is directly indicated.
  • the first quantity can be identified as
  • the first number is greater than 1.
  • the second quantity is the number of second PUCCH resources included in the time domain of the first PUCCH resource, and the second quantity may be identified as
  • the second number is greater than one.
  • the number of symbols included in the second PUCCH resource in the time domain is less than or equal to the number of symbols included in one time slot, then the second PUCCH resource is located in one time slot in the time domain.
  • the first PUCCH resource is used for first PUCCH transmission, and the first PUCCH resource includes a second number of second PUCCH resources, then the first PUCCH resource includes a plurality of first time slots in the time domain.
  • the second PUCCH resource may be determined based on the following information: Indicates the number of PRBs occupied by the first PUCCH transmission, which can be configured by the high-level parameter nrofPRBs; Indicates the index of the starting symbol of the first PUCCH transmission, which can be configured by the high-level parameter startingSymbolIndex; Indicates the number of subcarriers occupied by the first PUCCH transmission on each PRB; Indicates the number of symbols occupied by the first PUCCH transmission on a second PUCCH resource, which can be configured by the high-level parameter nrofSymbols. Less than or equal to the third quantity.
  • the third number is 14.
  • the fourth number is the number of symbols included in the first PUCCH resource in the time domain, which can be identified as in, The value of is greater than the third number, where the third number is the number of symbols included in one time slot, then the first PUCCH resource includes at least two first time slots in the time domain.
  • fourth quantity is the number of extended PUCCH symbols. If the first information includes the third indication information, the PUCCH configuration parameter uses Replace the number of PUCCH symbols indicating the second PUCCH resource and The value can be greater than the maximum value.
  • the third number is 14, and the fourth number is greater than 14.
  • the terminal device may support one or more of the first indication information, the second indication information and the third indication information to determine at least two first time slots. At the same time, at least two first time slots Determined based on one of the first indication information, the second indication information and the third indication information.
  • the first information is used to indicate a fifth number
  • the fifth number is the number of the first PUCCH transmissions included in the second PUCCH transmission
  • the second PUCCH transmission is the number of the first PUCCH transmissions. Repeated transmission of PUCCH transmission.
  • the fifth quantity can be identified as At this time, the first information indicates the number of repeated transmissions of the first PUCCH transmission.
  • the first PUCCH resource configuration parameter includes the high-level parameter PUCCH-nrofSlots, then Configured by PUCCH-nrofSlots, otherwise, Configured by the high-level parameter nrofSlots.
  • DCI downlink control information
  • a second PUCCH transmission is defined, and the second PUCCH transmission includes a fifth number of repeated transmissions of the first PUCCH transmission.
  • the second PUCCH transmission occupies a sixth number of first time slots in the time domain, the sixth number is determined based on the fifth number and a seventh number, and the seventh number is based on the fifth number. Two pieces of information are determined, and the second piece of information is used to indicate the at least two first time slots.
  • the number of first time slots occupied by the second PUCCH transmission in the time domain is determined based on the fifth number and the seventh number.
  • the difference in the seventh number based on the second information includes the following situations:
  • Case 1 If the second information includes first indication information, and the first indication information indicates a first quantity, then the seventh quantity is the first quantity, and the first quantity is the at least two The number of first time slots included in the first time slot.
  • Case 2 If the second information includes second indication information, and the second indication information indicates a second quantity, then the seventh quantity is the second quantity, and the first PUCCH resource includes the second quantity in the time domain.
  • Case 3 If the second information includes third indication information, and the third indication information indicates a fourth quantity, then the seventh quantity is the fourth quantity, and the first PUCCH transmission occupies the time domain
  • the fourth number of consecutive first symbols is greater than the third number, and the third number is the number of symbols included in one time slot.
  • the first PUCCH transmission is a PUCCH transmission based on a first number of first time slots
  • the first PUCCH transmission is a multi-slot PUCCH transmission
  • the fifth number can be understood as the number of repeated transmissions of the multi-slot PUCCH transmission.
  • the terminal equipment supports situation 1, which can be understood as the terminal equipment supports repeated transmission of multi-slot PUCCH transmission.
  • the first PUCCH transmission is a PUCCH transmission based on the second number of second PUCCH resources
  • the first PUCCH transmission is a PUCCH transmission of multiple PUCCH resources
  • the fifth number can be understood as a repeated transmission of PUCCH transmission of multiple PUCCH resources. frequency.
  • the terminal equipment supports case two, which can be understood as the terminal equipment supports repeated transmission of PUCCH transmission of multiple PUCCH resources.
  • the PUCCH resource among the multiple PUCCH resources can be understood as the second PUCCH resource.
  • the first PUCCH transmission is a PUCCH transmission based on the fourth number of symbols, and the fourth number is the number of extended symbols, then the first PUCCH transmission is a PUCCH transmission based on the number of extended symbols, and the fifth number can be understood as the number of extended symbols.
  • the number of times PUCCH transmission is repeated.
  • the terminal equipment supports case three, which can be understood as the terminal equipment supports repeated transmission of PUCCH transmission with an extended number of symbols.
  • N′ is based on and Sure.
  • the sixth number is a product of the fifth number and the first number, and a repeated transmission of the first PUCCH transmission is performed once per the first number of the first time slots.
  • the terminal device is The second PUCCH transmission is sent on time slots, that is, the number of first time slots occupied by the second PUCCH transmission in the time domain is understandable, in A repeat transmission of the first PUCCH transmission is performed on the first time slot, thereby executed on the first time slot Repeat transmission of the first PUCCH transmission.
  • the sixth number is not greater than the maximum number of repeated transmissions
  • the maximum number of repeat transmissions Can be configured by high-level parameters.
  • the terminal device When the UE supports repeated transmission of multi-slot PUCCH transmissions, the terminal device is not expected to be configured more than the It is the maximum number of repeated transmissions that can be configured in the PUCCH configuration parameters.
  • the second PUCCH transmission occupying the first symbol on each first time slot satisfies at least one of the following conditions:
  • Condition A2 The second PUCCH transmission occupies the same number of consecutive first symbols in each first time slot.
  • the second PUCCH transmission occupies the same starting symbols on different first time slots. It can be understood that the starting symbols occupied by the second PUCCH transmission on a first time slot are the same as the starting symbols occupied by the first PUCCH transmission on a first time slot.
  • the second PUCCH transmission occupies 4 first time slots in the time domain, and the starting symbol occupied in each first time slot is the 4th symbol.
  • the second PUCCH transmission occupies 4 first time slots in the time domain, and the starting symbol occupied in each first time slot is the 1st symbol.
  • the second PUCCH transmission occupies the same number of first symbols on different first time slots, and for In each of the first time slots, the first symbols occupied in the first time slot are consecutive.
  • the second PUCCH transmission occupies 4 first time slots in the time domain, the number of symbols occupied in each first time slot is 5, and the 5 occupied symbols are consecutive.
  • the second PUCCH transmission occupies 14 first time slots in the time domain, and the number of symbols occupied in each first time slot is 14, where 14 is the number of symbols included in one time slot.
  • the number of repeated transmissions of the first PUCCH transmission is 2, and the first PUCCH transmission occupies 2 first time slots in the time domain, then the second PUCCH transmission occupies 4 in the time domain.
  • First time slots time slot 0, time slot 1, time slot 2 and time slot 3.
  • the second PUCCH transmission occupies the same starting symbol on each of the four first time slots, which is symbol 4.
  • the number of first symbols occupied in each of the four first time slots is the same as 10, and these 10 first symbols are consecutive, where time slot 0 and time slot 1 are used
  • the 1st PUCCH transmission of repeated transmission, time slot 2 and time slot 3 are used for the 2nd first PUCCH transmission of repeated transmission.
  • the terminal device finds that the number of symbols in the time slot available for the second PUCCH transmission is less than Then the terminal equipment does not send the second PUCCH transmission on the first time slot, but needs to count this first time slot to in the first time slot.
  • the second PUCCH transmission may be configured to perform frequency hopping between different time slots, or may not be configured to perform frequency hopping between different time slots.
  • the high-layer parameter interslot frequency hopping parameter (interslotFrequencyHopping) is used to indicate whether the second PUCCH transmission is configured to perform frequency hopping between different time slots.
  • the frequency hopping method for the second PUCCH transmission includes one or more of the following:
  • Frequency hopping mode A1 If the second PUCCH transmission is configured to perform frequency hopping between different time slots and is not configured to perform PUCCH joint channel estimation, the second PUCCH transmission performs frequency hopping once per time slot.
  • Frequency hopping method A2 If the second PUCCH transmission is configured to perform frequency hopping between different time slots and is configured to perform PUCCH joint channel estimation, the second PUCCH transmission is performed every eighth number of consecutive time slots. One frequency hop.
  • Frequency hopping method A3 If the second PUCCH transmission is not configured to perform frequency hopping between different time slots, and is configured to perform frequency hopping within a time slot, then the first PRB in each first time slot and The frequency hopping patterns between the second PRBs are the same.
  • the terminal device When the frequency hopping mode is frequency hopping mode A1, the terminal device performs frequency hopping in each time slot.
  • the terminal device sends the second PUCCH transmission starting from the first PRB in the even-numbered time slot, and sends the second PUCCH transmission starting from the second PRB in the odd-numbered time slot, and the first PRB is configured based on the first parameter, so The second PRB is configured based on the second parameter.
  • the first parameter is a high-level parameter starting PRB parameter (startingPRB).
  • the second parameter is a high-layer parameter second hop PRB parameter (secondHopPRB).
  • secondHopPRB second hop PRB parameter
  • first time slot used for the second PUCCH transmission is recorded as time slot 0, and each subsequent time slot is counted incrementally until the sixth number of time slots is counted.
  • the frequency hopping result is as shown in Figure 13 , the second PUCCH transmission starts from the first PRB in time slot 0 and time slot 2, and starts from the second PRB in time slot 1 and time slot 3.
  • the terminal equipment does not expect the second PUCCH transmission to be configured to perform frequency hopping within the time slot.
  • the terminal device performs frequency hopping in every eighth consecutive time slot.
  • the eighth quantity can be identified as The terminal equipment is Frequency hopping is performed on consecutive time slots, that is, the eighth number of consecutive time slots is a frequency hopping interval. Among them, the eighth number is greater than 1.
  • the eighth number is a first high-layer parameter configuration; or the eighth number is a number of time slots included in a first time window, and the first time window is used for PUCCH joint channel estimation.
  • the first high-level parameter is a frequency hopping interval parameter (PUCCH-Frequencyhopping-Interval).
  • PUCCH-Frequencyhopping-Interval a frequency hopping interval parameter
  • the first time window is a time domain window (TimeDomainWindow, TDW).
  • the length of the TDW can be configured based on the high-level parameter time domain window length parameter (PUCCH-TimeDomainWindowLength).
  • the value of is the value of the high-level parameter; otherwise, The value is the number of time slots included in the TDW configured by PUCCH-TimeDomainWindowLength.
  • the terminal equipment uses the eighth number of consecutive time slots as the frequency hopping interval, and performs a frequency hopping in each frequency hopping interval until the number of the first frequency hopping time slots reaches
  • the terminal device sends the second PUCCH transmission starting from the first PRB on an even-numbered frequency hopping interval, and sends the second PUCCH transmission starting from the second PRB on an odd-numbered frequency hopping interval.
  • each frequency hopping interval includes time slots
  • the first frequency hopping interval used for the second PUCCH transmission is recorded as 0, and each subsequent frequency hopping interval is counted incrementally until the sixth number of first time slots is counted.
  • Frequency hopping interval 0 includes time slot 0 and time slot 1.
  • Frequency hopping interval 1 includes: time slot 2 and time slot 3.
  • the second PUCCH transmission starts from the first PRB in frequency hopping interval 0. Transmission starts from the second PRB in frequency hopping interval 1.
  • the terminal equipment does not expect the second PUCCH transmission to be configured to perform frequency hopping within the time slot.
  • N′ is based on and Sure. configured by the second indication information.
  • the second number of second PUCCH resources included in the first PUCCH resource in the time domain are discontinuous.
  • the first PUCCH resource includes a second number of consecutive second PUCCH resources in the time domain, that is, the first PUCCH resource includes a second number of consecutive second PUCCH resources in the time domain.
  • the second PUCCH resource occupied by the second PUCCH transmission satisfies at least one of the following conditions:
  • the first PUCCH resource includes a second number of second PUCCH resources consecutively in the time domain.
  • Condition B2 The second PUCCH transmission occupies the same number of consecutive first symbols on each of the second PUCCH resources.
  • the first PUCCH transmission occupies a second number of consecutive second PUCCH resources in the time domain.
  • the second PUCCH transmission occupies a ninth number of time-domain continuous second PUCCH resources in the time domain, and the ninth The quantity is the product of the fifth quantity and the second quantity, and the repeated transmission of the first PUCCH transmission is performed once for every second quantity of the second PUCCH resources.
  • the ninth quantity can be identified as:
  • the terminal equipment is The second PUCCH transmission is transmitted on the second PUCCH resources, that is, the number of second PUCCH resources is understandable, every Perform a repeated transmission of the first PUCCH transmission on a second PUCCH resource, thereby Executed on the second PUCCH resource Repeat transmission of the first PUCCH transmission.
  • the end symbol of the n-th second PUCCH resource and the start symbol of the n+1-th second PUCCH resource are continuous in the time domain, and the value of n is 0 to
  • the ninth number is not greater than the maximum number of repeated transmissions
  • the number of first symbols occupied by the second PUCCH transmission on different second PUCCH resources is the same.
  • the plurality of symbols occupied by the second PUCCH resource for the second PUCCH transmission are consecutive.
  • the number of symbols occupied by the second PUCCH transmission on the second PUCCH resource can be understood as the number of symbols occupied by the first PUCCH transmission on the second PUCCH resource.
  • the second PUCCH transmission occupies 4 second PUCCH resources in the time domain, and occupies 9 consecutive first symbols on each second PUCCH resource.
  • the second PUCCH resource occupied by the second PUCCH transmission satisfies condition B1 and condition B2
  • the second PUCCH occupied second PUCCH resources, and the second PUCCH transmission occupies consecutive symbol.
  • the number of repeated transmissions of the first PUCCH transmission is 2, and the first PUCCH occupies 2 second PUCCH resources, and the number of first symbols occupied by each second PUCCH resource is 10.
  • the second PUCCH transmission occupies four consecutive second PUCCH resources in the time domain: second PUCCH resource 0, second PUCCH resource 1, and second PUCCH resource 2 and the second PUCCH resource 3, and these four resources include 10 symbols, among which the second PUCCH resource 0 and the second PUCCH resource 1 are used for the first PUCCH transmission of repeated transmission, and the second PUCCH resource 2 and the second PUCCH resource 3 are used for the 2nd first PUCCH transmission of the repeated transmission.
  • the sixth number is: described is the index of the configured starting symbol of the first PUCCH transmission, and the is the fifth quantity, the is the second quantity, the is the number of symbols included in the second PUCCH resource, and the is the third quantity.
  • the index of the starting symbol of the second PUCCH transmission that is, the index of the starting symbol of the first PUCCH transmission.
  • the number of first time slots occupied by the second PUCCH transmission of multiple PUCCH resources is:
  • the index of the first slot where the starting position of the n-th second PUCCH resource is located is:
  • K is the time slot where the first PUCCH transmission starting position of repeated transmission is located
  • the index of the starting position of the n-th second PUCCH resource in the first timeslot is:
  • the index of the first slot where the end position of the n-th second PUCCH resource is located is:
  • the index of the starting position of the n-th second PUCCH resource in the first timeslot is:
  • the terminal device finds that the number of symbols available for the second PUCCH transmission is less than Then the terminal device does not send the second PUCCH transmission on the second PUCCH resource, but needs to count the second PUCCH resource to in the second PUCCH resource.
  • the second PUCCH transmission may be configured to perform frequency hopping between different second PUCCH resources, or may not be configured to perform frequency hopping between different second PUCCH resources. Perform frequency hopping between the second PUCCH resources.
  • the reused high-layer parameter interslot frequency hopping parameter (interslotFrequencyHopping) is used to indicate whether the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources.
  • the frequency hopping method for the second PUCCH transmission includes one or more of the following:
  • Frequency hopping method B1 If the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources and is not configured to perform PUCCH joint channel estimation, then the second PUCCH transmission is performed on each second PUCCH resource. One frequency hop.
  • Frequency hopping mode B2 If the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources and is configured to perform PUCCH joint channel estimation, then the second PUCCH transmission will be performed every eighth consecutive time.
  • the second PUCCH resource performs one frequency hopping.
  • Frequency hopping method B3 If the second PUCCH transmission is not configured to perform frequency hopping between different second PUCCH resources, and is configured to perform frequency hopping within the second PUCCH resource, then the frequency hopping in each first time slot The frequency hopping patterns between the first PRB and the second PRB are the same.
  • the terminal device When the frequency hopping mode is frequency hopping mode B1, the terminal device performs frequency hopping on each second PUCCH resource.
  • the terminal device sends the second PUCCH transmission starting from the first PRB on the even-numbered second PUCCH resource, and sends the second PUCCH transmission starting from the second PRB on the odd-numbered second PUCCH resource, and the first PRB is based on the first Parameter configuration, the second PRB is configured based on the second parameter.
  • first second PUCCH resource used for the second PUCCH transmission is recorded as 0, and each subsequent second PUCCH resource is counted incrementally until the ninth number of second PUCCH resources is counted.
  • the frequency hopping result is as shown in Figure 16
  • the second PUCCH transmission starts from the first PRB in the second PUCCH resource 0 and the second PUCCH resource 2, and starts from the second PRB in the second PUCCH resource 1 and the second PUCCH resource 3.
  • the terminal equipment When the frequency hopping mode is frequency hopping mode B1, the terminal equipment does not expect the second PUCCH transmission to be configured to perform frequency hopping within the second PUCCH resource.
  • the terminal device When the frequency hopping mode is frequency hopping mode B2, the terminal device performs frequency hopping on every eighth consecutive second PUCCH resource.
  • the eighth quantity can be identified as The terminal equipment is Frequency hopping is performed on consecutive second PUCCH resources, that is, the eighth number of consecutive second PUCCH resources is one frequency hopping interval. Among them, the eighth number is greater than 1.
  • the eighth number is a first high-layer parameter configuration; or the eighth number is a number of second PUCCH resources included in a first time window, and the first time window is used for PUCCH joint channel estimation.
  • the first high-level parameter is a frequency hopping interval parameter (PUCCH-Frequencyhopping-Interval).
  • PUCCH-Frequencyhopping-Interval a frequency hopping interval parameter
  • the first time window is TDW.
  • the length of the TDW can be configured based on the high-level parameter time domain window length parameter (PUCCH-TimeDomainWindowLength).
  • the value of is the value of the high-level parameter; otherwise, The value is the number of second PUCCH resources included in the TDW configured with PUCCH-TimeDomainWindowLength.
  • the terminal equipment uses the eighth number of consecutive second PUCCH resources as the frequency hopping interval, and performs frequency hopping once in each frequency hopping interval until the number of frequency-hopping second PUCCH resources reaches
  • the terminal device sends the second PUCCH transmission starting from the first PRB on even-numbered frequency hopping intervals, and sends the second PUCCH transmission starting from the second PRB on odd-numbered frequency hopping intervals.
  • each frequency hopping interval includes second PUCCH resources
  • the first frequency hopping interval used for the second PUCCH transmission is recorded as 0, and each subsequent frequency hopping interval is counted incrementally until the ninth number of second PUCCH resources is counted.
  • the frequency hopping interval is 2 second PUCCH resource
  • the frequency hopping result is shown in Figure 17.
  • the frequency hopping interval is 0, including the second PUCCH resource 0 and the second PUCCH resource 1.
  • the frequency hopping interval is 1, including the second PUCCH resource 2 and the second PUCCH resource 3.
  • the second PUCCH transmission starts from the first PRB at hopping interval 0 and starts from the second PRB at hopping interval 1.
  • the terminal equipment does not expect the second PUCCH transmission to be configured to perform frequency hopping within the second PUCCH resource.
  • N′ is based on and Sure.
  • the second PUCCH transmission occupies the sixth number of consecutive first time slots in the time domain, and the sixth number is the product of the fifth number and the tenth number, each The tenth number of consecutive first time slots perform repeated transmission of the first PUCCH transmission once, and the tenth number is determined based on the fourth number.
  • the first PUCCH transmission occupies the fourth number of consecutive first symbols in the time domain, and the first PUCCH transmission occupies the tenth number of first time slots in the time domain, then the tenth number for:
  • the first PUCCH transmission occupies 20 consecutive first symbols in the time domain, is 14, then the tenth number is 2.
  • the terminal device is A repeated transmission of the first PUCCH transmission, that is, a second PUCCH transmission, is sent on a time slot.
  • the number of first time slots occupied by the second PUCCH transmission in the time domain is understandable, every A repeated transmission of the first PUCCH transmission is performed on consecutive first time slots, so that executed on the first time slot Repeat transmission of the first PUCCH transmission.
  • the sixth number is not greater than the maximum number of repeated transmissions
  • the maximum number of repeat transmissions Can be configured by high-level parameters.
  • the terminal device When the UE supports repeated transmissions of PUCCH transmissions with an extended number of symbols, the terminal device is not expected to be configured more than the It is the maximum number of repeated transmissions that can be configured in the PUCCH configuration parameters.
  • the second PUCCH transmission occupying the first symbol on each first time slot satisfies at least one of the following conditions:
  • the second PUCCH transmission occupies the same number of consecutive first symbols on every tenth number of consecutive first time slots.
  • the second PUCCH is transmitted in On the first time slot.
  • the starting symbols occupied in consecutive first time slots are the same. It can be understood that the starting symbol of each first PUCCH transmission is the same in the first time slot in which it is located.
  • the second PUCCH is transmitted in The number of first symbols occupied in consecutive first time slots is the same, and for Each of the first time slots the first consecutive time slot, in which The first symbols occupied in consecutive first time slots are consecutive.
  • the second PUCCH transmission occupies 4 first time slots in the time domain: time slot 0, time slot 1, time slot 2 and time slot 3, and the first first PUCCH transmission occupies time slot 0 and time slot 1 , the 2nd first PUCCH transmission occupies time slot 2 and time slot 3, for time slot 0 and time slot 1, the second PUCCH transmission occupies 18 consecutive symbols on time slot 0 and time slot 1, for time slot 2 and slot 3, the second PUCCH transmission occupies 18 consecutive symbols on slots 2 and 3.
  • the number of repeated transmissions of the first PUCCH transmission is 2, and the first PUCCH transmission occupies 18 first symbols in the time domain, then the first PUCCH transmission occupies 2 first symbols in the time domain.
  • the second PUCCH transmission occupies 4 first time slots in the time domain: time slot 0, time slot 1, time slot 2 and time slot 3, the second PUCCH transmission occupies 2 of each of the 4 first time slots
  • the starting symbols occupied in every first time slot are the same symbol 4, and the number of first symbols occupied in every two first time slots is the same 18, and these 18 first symbols are consecutive, where, the time slot Time slot 0 and time slot 1 are used for the 1st first PUCCH transmission of repeated transmission, and time slot 2 and time slot 3 are used for the 2nd first PUCCH transmission of repeated transmission.
  • the terminal device finds that the number of symbols available for the first PUCCH resource is less than Then the terminal device does not send the second PUCCH transmission on the first PUCCH resource, but needs to count the first PUCCH resource to in the first PUCCH resource.
  • the first PUCCH resource is used to transmit the first PUCCH transmission.
  • the first PUCCH transmission is a PUCCH transmission with an extended number of symbols
  • the first number of symbols included in the first PUCCH resource is Then the second PUCCH transmission occupies the time domain The first PUCCH resource.
  • the second PUCCH transmission may be configured to perform frequency hopping between different time slots, or may not be configured to perform frequency hopping between different time slots.
  • the high-layer parameter interslot frequency hopping parameter (interslotFrequencyHopping) is used to indicate whether the second PUCCH transmission is configured to perform frequency hopping between different time slots.
  • the frequency hopping method for the second PUCCH transmission includes one or more of the following:
  • Frequency hopping mode C1 If the second PUCCH transmission is configured to perform frequency hopping between different time slots and is not configured to perform PUCCH joint channel estimation, the second PUCCH transmission performs frequency hopping once per time slot.
  • Frequency hopping method C2 If the second PUCCH transmission is configured to perform frequency hopping between different time slots and is configured to perform PUCCH joint channel estimation, the second PUCCH transmission is performed every eighth consecutive time slots. One frequency hop.
  • Frequency hopping mode C3 If the second PUCCH transmission is not configured to perform frequency hopping between different time slots, and is configured to perform frequency hopping within a time slot, then the first PRB in each first time slot and The frequency hopping patterns between the second PRBs are the same.
  • the terminal device When the frequency hopping mode is frequency hopping mode C1, the terminal device performs frequency hopping in each time slot.
  • the terminal device sends the second PUCCH transmission starting from the first PRB in the even-numbered time slot, and sends the second PUCCH transmission starting from the second PRB in the odd-numbered time slot, and the first PRB is configured based on the first parameter, so The second PRB is configured based on the second parameter.
  • the first parameter is a high-level parameter starting PRB parameter (startingPRB).
  • the second parameter is a high-layer parameter second hop PRB parameter (secondHopPRB).
  • secondHopPRB second hop PRB parameter
  • the first time slot indicated to the terminal device for the second PUCCH transmission is marked as time slot 0
  • the first time slot used for the second PUCCH transmission is marked as 0, and each subsequent time slot are counted up until the sixth number of time slots is counted.
  • the frequency hopping result is as shown in Figure 19 , the second PUCCH transmission starts from the first PRB in time slot 0 and time slot 2, and starts from the second PRB in time slot 1 and time slot 3.
  • the terminal equipment does not expect the second PUCCH transmission to be configured to perform frequency hopping within the time slot.
  • the terminal device performs frequency hopping every eighth time slot.
  • the eighth quantity can be identified as The terminal equipment is Frequency hopping is performed on consecutive time slots, that is, the eighth number of consecutive time slots is a frequency hopping interval. Among them, the eighth number is greater than 1.
  • the eighth number is a first high-layer parameter configuration; or the eighth number is a number of time slots included in a first time window, and the first time window is used for PUCCH joint channel estimation.
  • the first high-level parameter is PUCCH-Frequencyhopping-Interval.
  • the first time window is TDW.
  • the length of TDW can be configured based on the high-level parameter PUCCH-TimeDomainWindowLength.
  • the value of is the value of the high-level parameter; otherwise, The value is the number of time slots included in the TDW configured by PUCCH-TimeDomainWindowLength.
  • the terminal equipment uses the eighth number of time slots as the frequency hopping interval, and performs frequency hopping once in each frequency hopping interval until the number of the first time slots of frequency hopping reaches
  • the terminal device sends the second PUCCH transmission starting from the first PRB on an even-numbered frequency hopping interval, and sends the second PUCCH transmission starting from the second PRB on an odd-numbered frequency hopping interval.
  • each frequency hopping interval includes time slots
  • the first frequency hopping interval used for the second PUCCH transmission is recorded as 0, and each subsequent frequency hopping interval is counted incrementally until the sixth number of first time slots is counted.
  • the frequency hopping interval is 0, including time slot 0 and time slot 1.
  • the frequency hopping interval is 1, including time slot 2 and time slot 3.
  • the second PUCCH is transmitted at frequency hopping interval 0 from the first PRB. Start transmission and start transmission from the second PRB in frequency hopping interval 1.
  • the terminal equipment does not expect the second PUCCH transmission to be configured to perform frequency hopping within the time slot.
  • the PUCCH coverage enhancement solution includes PUCCH repeated transmission and PUCCH joint channel estimation.
  • the PUCCH coverage enhancement solution that applies PUCCH transmission based on one time slot still cannot meet the performance requirements.
  • the coverage performance of PUCCH transmission is improved to meet the coverage requirements.
  • PUCCH based on multi-slot processing that is, the first PUCCH transmission
  • PUCCH based on multi-slot processing includes the following three solutions:
  • Multi-slot PUCCH transmission that is, the first PUCCH transmission occupies the time domain time slot.
  • PUCCH transmission is sent on time slot 0 and time slot 1, and the starting symbol index on each time slot is 4, and the number of symbols on each time slot is 10, where the DMRS symbol is PUCCH
  • the transmission occupies the 3rd and 8th symbols on each slot.
  • PUCCH transmission of multiple PUCCH resources is the first PUCCH transmission.
  • a continuous PUCCH resource in the time domain is the second PUCCH resource.
  • PUCCH transmission is sent on PUCCH resource 0 and PUCCH resource 1.
  • the number of symbols occupied by each PUCCH resource is 10.
  • the DMRS symbol is the third and fourth symbols on each time slot among the symbols occupied by PUCCH transmission. 8th symbol.
  • Solution 3 PUCCH transmission with extended number of symbols, that is, PUCCH transmission occupies time domain time-domain continuous symbols, and Greater than the number of symbols included in a time slot.
  • PUCCH transmission is sent on time slot 0 and time slot 1, where the DMRS symbols are the 3rd and 8th symbols on each time slot among the symbols occupied by PUCCH transmission.
  • the wireless communication method provided by the embodiments of this application can provide but is not limited to the following embodiments:
  • Embodiment 1 Combining multi-slot PUCCH transmission with PUCCH repeated transmission and joint channel estimation
  • the number of time slots occupied by PUCCH transmission is
  • the UE may be instructed to PUCCH repeated transmission is performed on multiple time slots.
  • the UE can set the number of repeated transmissions in the PUCCH configuration parameters. Reinterpreted as the number of repeated transmissions of multi-slot PUCCH transmission, when the UE is PUCCH transmissions are sent on time slots.
  • the regulations are as follows:
  • the UE determines the number of repeated transmission slots for multi-slot PUCCH transmission based on the PUCCH configuration parameters as in:
  • the determination method is: if the PUCCH resource is indicated by DCI and the resource configuration parameters of the PUCCH include the high-level parameter PUCCH-nrofSlots, then Configured by PUCCH-nrofSlots, otherwise, Configured by high-level parameter nrofSlots;
  • the UE When the UE supports repeated transmission of multi-slot PUCCH transmission, the UE does not expect to be configured more than the in, It is the maximum number of repeated transmissions that can be configured in the PUCCH configuration parameters.
  • the base station configures in the PUCCH configuration parameters is 2, is 2, then the UE determines that the number of time slots for repeated transmission of multi-slot PUCCH transmission is 4. In addition, if the highest configurable number of PUCCH retransmissions in the PUCCH configuration parameter is 8, the UE does not expect to be configured as greater than 8.
  • the resource determination method is specified as follows:
  • this PUCCH transmissions on slots have the same starting symbol index Configured by the high-level parameter startingSymbolIndex;
  • this PUCCH transmissions on slots have the same number of consecutive symbols Configured by high-level parameter nrofSymbols;
  • the UE For PUCCH transmission on a time slot, if the UE finds that the number of symbols available for PUCCH transmission is less than the number of symbols configured by the high-level parameter nrofSymbols Then the UE does not send PUCCH transmission on this time slot, but needs to count this time slot to in a time slot.
  • the base station binds DMRS on multiple PUCCH transmission time slots within the TDW for joint channel estimation, but the UE is required to maintain power consistency and phase continuity within the TDW. Therefore, the joint channel estimation is based on multiple bonded time slots. Perform frequency hopping. For repeated transmission of multi-slot PUCCH transmission, the frequency hopping process combined with joint channel estimation is specified as follows:
  • the UE is configured by the high-level parameter interslotFrequencyHopping whether to perform frequency hopping in PUCCH transmission between different time slots;
  • the UE is configured to perform frequency hopping for PUCCH transmission between different time slots and is not configured for PUCCH joint channel estimation, then:
  • UE performs frequency hopping in each time slot
  • the UE starts sending PUCCH from the first PRB configured by the high-layer parameter startingPRB in even-numbered time slots, and starts sending PUCCH from the second PRB configured by the high-layer parameter secondHopPRB in odd-numbered time slots.
  • the time slot indicated to the UE for the first PUCCH transmission is recorded as 0, regardless of whether the UE sends a PUCCH transmission in this time slot.
  • Each of the time slots is counted;
  • the UE does not expect to perform frequency hopping for PUCCH transmission configured in the time slot.
  • the UE is configured to perform frequency hopping for PUCCH transmission between different time slots and is not configured for PUCCH joint channel estimation, then:
  • each Perform frequency hopping for consecutive time slots if the high-level parameter PUCCH-Frequencyhopping-Interval configuration is provided but is the value of this high-level parameter; otherwise, The value corresponding to the TDW length configured for the high-level parameter PUCCH-TimeDomainWindowLength;
  • the UE sends PUCCH transmissions on multiple frequency hopping intervals until the time slots of multiple frequency hopping intervals reach time slots, where the first frequency hopping interval used for PUCCH transmission is recorded as 0, and each subsequent frequency hopping interval is counted up until A time slot used for PUCCH transmission.
  • the UE starts sending PUCCH from the first PRB configured by the high-layer parameter startingPRB at the even-numbered frequency hopping intervals, and starts sending PUCCH from the second PRB configured by the high-layer parameter secondHopPRB at the odd-numbered frequency hopping intervals;
  • the UE does not expect to perform frequency hopping for PUCCH transmission configured in the time slot.
  • the UE is not configured to perform frequency hopping for PUCCH transmission between different time slots, and if the UE is configured to perform frequency hopping for PUCCH transmission within a time slot, then the hopping between the first PRB and the second PRB in each time slot
  • the frequency patterns are the same.
  • PUCCH format 3 if the starting symbol index is configured is 4, is 10, is 2, the number of PUCCH repeated transmissions is 2, is 2, then the UE is in PUCCH transmission is sent on time slots, and the first hop corresponds to time slot 0 and time slot 1, and the second hop corresponds to time slot 2 and time slot 3.
  • Embodiment 2 combining PUCCH transmission of multiple PUCCH resources with PUCCH repeated transmission and joint channel estimation
  • the number of time slots occupied by PUCCH transmission is in is the number of symbols in each time slot.
  • the UE may be instructed to PUCCH repeated transmission is performed on multiple time slots.
  • the UE can set the number of repeated transmissions in the PUCCH configuration parameters. Reinterpreted as the number of repeated transmissions of PUCCH transmissions with multiple PUCCH resources, when the UE is Send PUCCH transmission on PUCCH resources.
  • the regulations are as follows:
  • the UE determines the number of timeslots for repeated transmission of PUCCH transmission of multiple PUCCH resources based on the PUCCH configuration parameters, where:
  • the number of timeslots for repeated transmission of PUCCH transmission with multiple PUCCH resources is Configured by high-level parameters
  • the determination method is: if the PUCCH resource is indicated by DCI and the PUCCH transmission resource configuration parameter contains the high-level parameter PUCCH-nrofSlots, then Configured by PUCCH-nrofSlots, otherwise, Configured by high-level parameter nrofSlots;
  • the UE When the UE supports repeated transmission of PUCCH transmissions for multiple PUCCH resources, the UE does not expect to be configured more than the in, It is the maximum number of repeated transmissions that can be configured in the PUCCH configuration parameters.
  • the base station configures in the PUCCH configuration parameters is 4, is 10, is 2, is 2, then the UE determines that the number of timeslots for repeated transmission of PUCCH transmission of multiple PUCCH resources is In addition, if the highest configurable number of PUCCH retransmissions in the PUCCH configuration parameter is 8, the UE does not expect to be configured as greater than 8.
  • the resource determination method is specified as follows:
  • UE is in PUCCH transmissions are sent on PUCCH resources, and each Each PUCCH resource performs repeated transmission of a PUCCH transmission;
  • this PUCCH transmissions on two PUCCH resources have the same number of consecutive symbols Configured by the high-level parameter nrofSymbols, and each PUCCH resource has the same DMRS relative position;
  • the time slot where the transmission start position is located is The symbol index of the transmission start position relative to the timeslot is:
  • the time slot where the transmission ends is:
  • the index of the transmission end position in the timeslot is:
  • the UE For PUCCH transmission on a PUCCH resource, if the UE finds that the number of symbols available for PUCCH transmission is less than the number of symbols configured by the high-level parameter nrofSymbols Then the UE does not send PUCCH transmission on this PUCCH resource, but needs to count this PUCCH resource to in PUCCH resources.
  • each PUCCH resource For PUCCH format 3, if the starting symbol index is configured is 4, is 10, is 2, is 2, is 2, then the UE is in PUCCH transmission is sent on each PUCCH resource.
  • the number of symbols occupied by each PUCCH resource is 10, and each PUCCH resource occupies 10 symbols. That is, two PUCCH resources perform repeated transmission of one PUCCH transmission.
  • the transmission starting position of the 0th PUCCH resource is timeslot 0, the symbol index within the timeslot is 4, the transmission end position is timeslot 0, and the symbol index within the timeslot is 13;
  • the transmission start position of one PUCCH resource is timeslot 1, the symbol index within the timeslot is 0, the transmission end position is timeslot 1, and the symbol index within the timeslot is 9;
  • the transmission start position of the third PUCCH resource is time Slot 1, the symbol index in the slot is 10, the transmission end position is slot 2, and the symbol index in the slot is 5;
  • the transmission starting position of the fourth PUCCH resource is slot 2, and the symbol index in the slot is 6.
  • the transmission end position is time slot 3, and the symbol index in the time slot is 1.
  • the UE is configured by the high-level parameter interslotFrequencyHopping whether to perform frequency hopping in PUCCH transmission between different PUCCH resources;
  • the UE is configured to perform frequency hopping for PUCCH transmission between different PUCCH resources and is not configured for PUCCH joint channel estimation, then:
  • UE performs frequency hopping on each PUCCH resource
  • the UE starts sending PUCCH from the first PRB configured by the high-layer parameter startingPRB on even-numbered PUCCH resources, and starts sending PUCCH from the second PRB configured by the high-layer parameter secondHopPRB on odd-numbered PUCCH resources.
  • the PUCCH resource indicated to the UE for the first PUCCH transmission is recorded as 0, regardless of whether the UE sends a PUCCH transmission in this PUCCH resource.
  • Each PUCCH resource in the PUCCH resources is counted;
  • the UE does not expect frequency hopping to be performed on PUCCH transmission configured in PUCCH resources.
  • the UE is configured to perform frequency hopping for PUCCH transmission between different PUCCH resources and is not configured for PUCCH joint channel estimation, then:
  • the UE starts from the first PUCCH resource instructed to send PUCCH transmission. Perform frequency hopping on consecutive PUCCH resources, if the high-level parameter PUCCH-Frequencyhopping-Interval configuration is provided but is the value of this high-level parameter; otherwise, The value of the PUCCH resource included in the TDW configured for the high-level parameter PUCCH-TimeDomainWindowLength;
  • the UE sends PUCCH transmissions on multiple frequency hopping intervals until the PUCCH resources of multiple frequency hopping intervals reach PUCCH resources, where the first frequency hopping interval used for PUCCH transmission is recorded as 0, and each subsequent frequency hopping interval is counted up until PUCCH resources used for PUCCH transmission.
  • the UE starts sending PUCCH from the first PRB configured by the high-layer parameter startingPRB at the even-numbered frequency hopping intervals, and starts sending PUCCH from the second PRB configured by the high-layer parameter secondHopPRB at the odd-numbered frequency hopping intervals;
  • the UE does not expect frequency hopping to be performed on PUCCH transmission configured within PUCCH resources.
  • the UE is not configured to perform frequency hopping for PUCCH transmissions between different PUCCH resources, and if the UE is configured to perform frequency hopping for PUCCH transmissions within PUCCH resources, then the hopping between the first PRB and the second PRB in each PUCCH resource
  • the frequency patterns are the same.
  • PUCCH format 3 for PUCCH format 3, if the starting symbol index is configured is 4, is 10, is 2, is 2, is 2, is 2, then the UE is in PUCCH transmission is sent on consecutive PUCCH resources, and the first hop corresponds to the 0th PUCCH resource and the 1st PUCCH resource, and the second hop corresponds to the 2nd PUCCH resource and the 3rd PUCCH resource.
  • Embodiment 3 Combining PUCCH transmission with extended number of symbols, PUCCH repeated transmission, and joint channel estimation
  • the number of symbols occupied by PUCCH transmission with extended number of symbols is and Greater than 14, the number of time slots occupied by PUCCH transmission with extended symbol number is
  • the UE may be instructed to PUCCH repeated transmissions are performed on time slots. After the PUCCH transmission with the extended number of symbols is introduced, for the repeated transmission of the PUCCH transmission with the extended number of symbols, the UE can set the number of repeated transmissions in the PUCCH configuration parameters. Reinterpreted as the number of repeated transmissions of the PUCCH transmission with the number of extended symbols, when the UE is PUCCH transmission is sent on PUCCH resources with an extended number of symbols.
  • the determination of the time slot for the repeated transmission of the PUCCH transmission with the extended symbol number, that is, the second PUCCH transmission is specified as follows:
  • the UE determines the number of timeslots for repeated transmission of PUCCH transmission with extended number of symbols based on the PUCCH configuration parameters as in:
  • the determination method is: if the PUCCH resource is indicated by DCI and the resource configuration parameters of the PUCCH include the high-level parameter PUCCH-nrofSlots, then Configured by PUCCH-nrofSlots, otherwise, Configured by high-level parameter nrofSlots;
  • the UE When the UE supports repeated transmissions of PUCCH transmissions with an extended number of symbols, the UE is not expected to be configured more than the in, It is the maximum number of repeated transmissions that can be configured in the PUCCH configuration parameters.
  • the base station configures in the PUCCH configuration parameters is 4, is 20, is 2, then the UE determines the number of time slots occupied by the PUCCH transmission of the extended symbol number. is 2, and the number of time slots occupied by repeated transmissions of PUCCH transmission with the number of extended symbols is 4.
  • the highest configurable number of PUCCH retransmissions in the PUCCH configuration parameter is 8, the UE does not expect to be configured as greater than 8.
  • the resource determination method is specified as follows:
  • UE is in PUCCH transmissions are sent on time slots, where each Perform repeated transmission of a PUCCH transmission in each time slot;
  • Every PUCCH transmissions on slots have the same starting symbol index and the same number of consecutive symbols Configured by the high-level parameter startingSymbolIndex, s is configured by the high-level parameter nrofSymbol;
  • the UE For PUCCH transmission on a PUCCH resource, if the UE finds that the number of symbols available for PUCCH transmission is less than the number of symbols configured by the high-level parameter nrofSymbols Then the UE does not send PUCCH transmission on this PUCCH resource, but needs to count this PUCCH resource to in PUCCH resources.
  • PUCCH format 3 if the starting symbol index is configured is 4, is 20, the number of PUCCH repeated transmissions is 2, then the UE is in PUCCH transmissions are sent on time slots, where each Perform a repeat of the PUCCH transmission for 2 slots, with each starting symbol index 4, and The number of symbols on each time slot is 20.
  • the UE is configured by the high-level parameter interslotFrequencyHopping whether to perform frequency hopping in PUCCH transmission between different time slots;
  • the UE is configured to perform frequency hopping for PUCCH transmission between different time slots and is not configured for PUCCH joint channel estimation, then:
  • UE performs frequency hopping in each time slot
  • the UE starts sending PUCCH from the first PRB configured by the high-layer parameter startingPRB in even-numbered time slots, and starts sending PUCCH from the second PRB configured by the high-layer parameter secondHopPRB in odd-numbered time slots.
  • the time slot indicated to the UE for the first PUCCH transmission is recorded as 0, regardless of whether the UE sends a PUCCH transmission in this time slot.
  • Each of the time slots is counted;
  • the UE does not expect to perform frequency hopping for PUCCH transmission configured in the time slot.
  • the UE is configured to perform frequency hopping for PUCCH transmission between different time slots and is not configured for PUCCH joint channel estimation, then:
  • each Perform frequency hopping for consecutive time slots if the high-level parameter PUCCH-Frequencyhopping-Interval configuration is provided but is the value of this high-level parameter; otherwise, The value corresponding to the TDW length configured for the high-level parameter PUCCH-TimeDomainWindowLength;
  • the UE sends PUCCH transmissions on multiple frequency hopping intervals until the time slots of multiple frequency hopping intervals reach time slots, where the first frequency hopping interval used for PUCCH transmission is recorded as 0, and each subsequent frequency hopping interval is counted up until A time slot used for PUCCH transmission.
  • the UE starts sending PUCCH from the first PRB configured by the high-layer parameter startingPRB at the even-numbered frequency hopping intervals, and starts sending PUCCH from the second PRB configured by the high-layer parameter secondHopPRB at the odd-numbered frequency hopping intervals;
  • the UE does not expect to perform frequency hopping for PUCCH transmission configured in the time slot.
  • the UE is not configured to perform frequency hopping for PUCCH transmission between different time slots, and if the UE is configured to perform frequency hopping for PUCCH transmission within a time slot, then the hopping between the first PRB and the second PRB in each time slot
  • the frequency patterns are the same.
  • PUCCH format 3 if the starting symbol index is configured is 4, is 20, the number of PUCCH repeated transmissions is 2, is 2, then the UE is in PUCCH transmission is sent on time slots, and the first hop corresponds to time slot 0 and time slot 1, and the second hop corresponds to time slot 2 and time slot 3.
  • the wireless communication method provided by the embodiment of the present application provides a coverage enhancement solution for PUCCH transmission based on multi-slot processing, which can be implemented as:
  • UCI can be sent on multiple PUCCH resources that are continuous in the time domain, making full use of time domain resources;
  • the number of configurable symbols for PUCCH resources can be expanded, and PUCCH transmission with the expanded number of symbols can be combined with the PUCCH enhancement scheme to achieve repeated transmission and PUCCH joint channel estimation based on multi-slot PUCCH transmission without introducing additional configuration parameters.
  • the wireless communication method provided by the embodiment of the present application is suitable for any system that uses multiple time slots to determine PUCCH transmission, such as NTN systems.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • FIG 30 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application, which is applied to terminal equipment. As shown in Figure 30, the wireless communication device includes:
  • the receiving unit 3001 is configured to receive the first information sent by the network device, the first information is used to indicate repeated transmission of the first physical uplink control channel PUCCH transmission, and the first PUCCH transmission is performed based on at least two first time slots. transmission.
  • the receiving unit 3001 is further configured to:
  • the second information includes at least one of the following:
  • the first indication information indicates a first number, and the first number is the number of first time slots included in the at least two first time slots;
  • the second indication information indicates a second number
  • the first PUCCH resources include the second number of second PUCCH resources in the time domain
  • the first PUCCH resources are used for the first PUCCH transmission
  • the number of symbols included in the second PUCCH resource in the time domain is less than or equal to a third number
  • the third number is the number of symbols included in one time slot
  • the third indication information indicates a fourth number
  • the first PUCCH transmission includes the fourth number of consecutive first symbols in the time domain, the fourth number is greater than the third number .
  • the first information is used to indicate a fifth number
  • the fifth number is the number of the first PUCCH transmissions included in the second PUCCH transmission
  • the second PUCCH transmission is the number of the first PUCCH transmissions. Repeated transmission of PUCCH transmission.
  • the second PUCCH transmission occupies a sixth number of first time slots in the time domain, the sixth number is determined based on the fifth number and a seventh number, and the seventh number is based on the fifth number. Two pieces of information are determined, and the second piece of information is used to indicate the at least two first time slots.
  • the seventh quantity is the first quantity
  • the first quantity is the The number of first time slots included in at least two first time slots.
  • the sixth number is a product of the fifth number and the first number, and a repeated transmission of the first PUCCH transmission is performed once per the first number of the first time slots.
  • the second PUCCH transmission occupies the same starting symbol on each of the first time slots.
  • the second PUCCH transmission occupies the same number of consecutive first symbols on each first time slot.
  • the second PUCCH transmission if the second PUCCH transmission is configured to perform frequency hopping between different time slots and is not configured to perform PUCCH joint channel estimation, the second PUCCH transmission performs frequency hopping once per time slot. .
  • the second PUCCH transmission if the second PUCCH transmission is configured to perform frequency hopping between different time slots and is configured to perform PUCCH joint channel estimation, the second PUCCH transmission occurs every eighth number of consecutive time slots. Perform a frequency hopping.
  • the eighth number is a first high-level parameter configuration
  • the eighth number is the number of time slots included in the first time window, which is used for PUCCH joint channel estimation.
  • the seventh quantity is the second quantity
  • the first PUCCH resource is in the time domain. Includes a second number of second PUCCH resources, the first PUCCH resource is used for the first PUCCH transmission, the number of symbols included in the second PUCCH resource in the time domain is less than or equal to a third number, and the third The number is the number of symbols included in a time slot.
  • the first PUCCH resource includes a second number of consecutive second PUCCH resources in the time domain.
  • the second PUCCH transmission occupies a ninth number of consecutive second PUCCH resources in the time domain, and the ninth number is the product of the fifth number and the second number, Repeated transmission of the first PUCCH transmission is performed once for every second number of second PUCCH resources.
  • the second PUCCH transmission occupies the same number of consecutive first symbols on each of the second PUCCH resources.
  • the sixth number is: described is the index of the configured starting symbol of the first PUCCH transmission, and the is the fifth quantity, the is the second quantity, the is the number of symbols included in the second PUCCH resource, and the is the third quantity.
  • the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources and is not configured to perform PUCCH joint channel estimation, then the second PUCCH transmission is performed on each second PUCCH.
  • the resource performs a frequency hopping.
  • the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources and is configured to perform PUCCH joint channel estimation, then the second PUCCH transmission is performed every eighth consecutive number of times.
  • the second PUCCH resource performs a frequency hopping.
  • the eighth number is a first high-level parameter configuration
  • the eighth number is the number of the second PUCCH resources included in the first time window in the time domain, and the first time window is used for PUCCH joint channel estimation.
  • the seventh quantity is the fourth quantity
  • the first PUCCH transmission is The fourth number of consecutive first symbols is occupied on the domain, and the fourth number is greater than the third number.
  • the third number is the number of symbols included in one time slot.
  • the second PUCCH transmission occupies the sixth number of consecutive first time slots in the time domain, and the sixth number is the product of the fifth number and the tenth number, each The tenth number of consecutive first time slots perform repeated transmission of the first PUCCH transmission once, and the tenth number is determined based on the fourth number.
  • the second PUCCH transmission occupies the same starting symbol on every tenth consecutive first time slot.
  • the second PUCCH transmission occupies the same number of consecutive first symbols on every tenth number of consecutive first time slots.
  • the tenth number is: described is the index of the starting symbol of the first PUCCH transmission, and the is the fourth quantity, the is the third quantity.
  • the second PUCCH transmission if the second PUCCH transmission is configured to perform frequency hopping between different time slots and is not configured to perform PUCCH joint channel estimation, the second PUCCH transmission performs one hopping in each time slot. frequency.
  • the second PUCCH transmission is configured to perform frequency hopping between different time slots and is configured to perform PUCCH joint channel estimation
  • the second PUCCH transmission is performed every eighth consecutive time slots. Perform a frequency hopping during the slot.
  • the eighth number is a first high-level parameter configuration
  • the eighth number is the number of time slots included in the first time window in the time domain, and the first time window is used for PUCCH joint channel estimation.
  • FIG 31 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application, which is applied to network equipment. As shown in Figure 31, the wireless communication device includes:
  • the sending unit 3101 is configured to send first information to the terminal device, the first information is used to indicate repeated transmission of the first physical uplink control channel PUCCH transmission, and the first PUCCH transmission is transmitted based on at least two first time slots. .
  • the sending unit 3101 is further configured to send second information to the terminal device, where the second information is used to indicate the at least two first time slots.
  • the second information includes at least one of the following:
  • the first indication information indicates a first number, and the first number is the number of first time slots included in the at least two first time slots;
  • the second indication information indicates a second number
  • the first PUCCH resources include the second number of second PUCCH resources in the time domain
  • the first PUCCH resources are used for the first PUCCH transmission
  • the number of symbols included in the second PUCCH resource in the time domain is less than or equal to a third number
  • the third number is the number of symbols included in one time slot
  • the third indication information indicates a fourth number
  • the first PUCCH transmission includes the fourth number of consecutive first symbols in the time domain, the fourth number is greater than the third number .
  • the first information is used to indicate a fifth number
  • the fifth number is the number of the first PUCCH transmissions included in the second PUCCH transmission
  • the second PUCCH transmission is the number of the first PUCCH transmissions. Repeated transmission of PUCCH transmission.
  • the second PUCCH transmission occupies a sixth number of first time slots in the time domain, the sixth number is determined based on the fifth number and a seventh number, and the seventh number is based on the fifth number. Two pieces of information are determined, and the second piece of information is used to indicate the at least two first time slots.
  • the seventh quantity is the first quantity
  • the first quantity is the The number of first time slots included in at least two first time slots.
  • the sixth number is a product of the fifth number and the first number, and a repeated transmission of the first PUCCH transmission is performed once per the first number of the first time slots.
  • the second PUCCH transmission occupies the same starting symbol on each of the first time slots.
  • the second PUCCH transmission occupies the same number of consecutive first symbols on each first time slot.
  • the second PUCCH transmission if the second PUCCH transmission is configured to perform frequency hopping between different time slots and is not configured to perform PUCCH joint channel estimation, the second PUCCH transmission performs frequency hopping once per time slot. .
  • the second PUCCH transmission if the second PUCCH transmission is configured to perform frequency hopping between different time slots and is configured to perform PUCCH joint channel estimation, the second PUCCH transmission occurs every eighth number of consecutive time slots. Perform a frequency hopping.
  • the eighth number is a first high-level parameter configuration
  • the eighth number is the number of time slots included in the first time window, which is used for PUCCH joint channel estimation.
  • the seventh quantity is the second quantity
  • the first PUCCH resource is in the time domain. Includes a second number of second PUCCH resources, the first PUCCH resource is used for the first PUCCH transmission, the number of symbols included in the second PUCCH resource in the time domain is less than or equal to a third number, and the third The number is the number of symbols included in a time slot.
  • the first PUCCH resource includes a second number of consecutive second PUCCH resources in the time domain.
  • the second PUCCH transmission occupies a ninth number of consecutive second PUCCH resources in the time domain, and the ninth number is the product of the fifth number and the second number, Repeated transmission of the first PUCCH transmission is performed once for every second number of second PUCCH resources.
  • the second PUCCH transmission occupies the same number of consecutive first symbols on each of the second PUCCH resources.
  • the sixth number is: described is the index of the configured starting symbol of the first PUCCH transmission, and the is the fifth quantity, the is the second quantity, the is the number of symbols included in the second PUCCH resource, and the is the third quantity.
  • the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources and is not configured to perform PUCCH joint channel estimation, then the second PUCCH transmission is performed on each second PUCCH.
  • the resource performs a frequency hopping.
  • the second PUCCH transmission is configured to perform frequency hopping between different second PUCCH resources and is configured to perform PUCCH joint channel estimation, then the second PUCCH transmission is performed every eighth consecutive number of times.
  • the second PUCCH resource performs a frequency hopping.
  • the eighth number is a first high-level parameter configuration
  • the eighth number is the number of the second PUCCH resources included in the first time window in the time domain, and the first time window is used for PUCCH joint channel estimation.
  • the seventh quantity is the fourth quantity
  • the first PUCCH transmission is The fourth number of consecutive first symbols is occupied on the domain, and the fourth number is greater than the third number.
  • the third number is the number of symbols included in one time slot.
  • the second PUCCH transmission occupies the sixth number of consecutive first time slots in the time domain, and the sixth number is the product of the fifth number and the tenth number, each The tenth number of consecutive first time slots perform repeated transmission of the first PUCCH transmission once, and the tenth number is determined based on the fourth number.
  • the second PUCCH transmission occupies the same starting symbol on every tenth consecutive first time slot.
  • the second PUCCH transmission occupies the same number of consecutive first symbols on every tenth number of consecutive first time slots.
  • the tenth number is: described is the index of the starting symbol of the first PUCCH transmission, and the is the fourth quantity, the is the third quantity.
  • the second PUCCH transmission if the second PUCCH transmission is configured to perform frequency hopping between different time slots and is not configured to perform PUCCH joint channel estimation, the second PUCCH transmission performs one hopping in each time slot. frequency.
  • the second PUCCH transmission is configured to perform frequency hopping between different time slots and is configured to perform PUCCH joint channel estimation
  • the second PUCCH transmission is performed every eighth consecutive time slots. Perform a frequency hopping during the slot.
  • the eighth number is a first high-level parameter configuration
  • the eighth number is the number of time slots included in the first time window in the time domain, and the first time window is used for PUCCH joint channel estimation.
  • Figure 32 is a schematic structural diagram of a communication device 3200 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 3200 shown in Figure 32 includes a processor 3210.
  • the processor 3210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 3200 may also include a memory 3220.
  • the processor 3210 can call and run the computer program from the memory 3220 to implement the method in the embodiment of the present application.
  • the memory 3220 may be a separate device independent of the processor 3210, or may be integrated into the processor 3210.
  • the communication device 3200 can also include a transceiver 3230, and the processor 3210 can control the transceiver 3230 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 3230 may include a transmitter and a receiver.
  • the transceiver 3230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 3200 can be specifically a network device according to the embodiment of the present application, and the communication device 3200 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the communication device 3200 can be a mobile terminal/terminal device according to the embodiment of the present application, and the communication device 3200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 3200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 3200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 3200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 3200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • Figure 33 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 3300 shown in Figure 33 includes a processor 3310.
  • the processor 3310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 3300 may also include a memory 3320.
  • the processor 3310 can call and run the computer program from the memory 3320 to implement the method in the embodiment of the present application.
  • the memory 3320 may be a separate device independent of the processor 3310, or may be integrated into the processor 3310.
  • the chip 3300 may also include an input interface 3330.
  • the processor 3310 can control the input interface 3330 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 3300 may also include an output interface 3340.
  • the processor 3310 can control the output interface 3340 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 34 is a schematic block diagram of a communication system 3400 provided by an embodiment of the present application. As shown in Figure 34, the communication system 3400 includes a terminal device 3410 and a network device 3420.
  • the terminal device 3410 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 3420 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法及装置、通信设备,该方法包括:终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。

Description

一种无线通信方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种无线通信方法及装置、通信设备。
背景技术
物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输所使用的PUCCH资源基于一个时隙进行配置,需要在一个时隙上通过分配尽可能多的频域物理资源块(Physical Resource Block,PRB)数来提高PUCCH传输的上行控制信息(Uplink Control Information,UCI)承载能力。对于覆盖性能受限的通信场景,需要能量尽可能集中在更少的频域资源上和PUCCH重复传输来提升覆盖能力,因此,在覆盖性能受限的场景下,PUCCH传输的UCI承载能力和覆盖能力无法同时满足。
发明内容
本申请实施例提供一种无线通信方法及装置、通信设备。
本申请实施例提供的无线通信方法,包括:
终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
本申请实施例提供的无线通信方法,包括:
网络设备向终端设备发送第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
本申请实施例提供的无线通信装置,应用于终端设备,包括:
接收单元,配置为接收网络设备发送的第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
本申请实施例提供的无线通信装置,应用于网络设备,包括:
发送单元,配置为向终端设备发送第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
本申请实施例提供的通信设备,可以是上述方案中的终端设备或者是上述方案中的网络设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的无线通信方法。
本申请实施例提供的芯片,用于实现上述的无线通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的无线通信方法。
通过上述技术方案,终端设备接收第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输,在时域上增加PUCCH传输的UCI承载能力,并且实现能量集中在更少的频域资源上和PUCCH重复传输以保证覆盖性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实 施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例提供的另一种通信系统的架构示意图;
图3是本申请实施例提供的另一种通信系统的架构示意图;
图4是本申请实施例提供的基于透传转发卫星的NTN场景的示意图;
图5是本申请实施例提供的基于再生转发卫星的NTN场景的示意图;
图6是本申请实施例的无线通信方法的可选地流程示意图;
图7是本申请实施例的时域资源的可选地结构示意图;
图8是本申请实施例的时域资源的可选地结构示意图;
图9是本申请实施例的无线通信方法的可选地流程示意图;
图10是本申请实施例的无线通信方法的可选地流程示意图;
图11是本申请实施例的无线通信方法的可选地流程示意图;
图12是本申请实施例的时域资源的可选地结构示意图;
图13是本申请实施例的时域资源的可选地结构示意图;
图14是本申请实施例的时域资源的可选地结构示意图;
图15是本申请实施例的时域资源的可选地结构示意图;
图16是本申请实施例的时域资源的可选地结构示意图;
图17是本申请实施例的时域资源的可选地结构示意图;
图18是本申请实施例的时域资源的可选地结构示意图;
图19是本申请实施例的时域资源的可选地结构示意图;
图20是本申请实施例的时域资源的可选地结构示意图;
图21是本申请实施例的时域资源的可选地结构示意图;
图22是本申请实施例的时域资源的可选地结构示意图;
图23是本申请实施例的时域资源的可选地结构示意图;
图24是本申请实施例的时域资源的可选地结构示意图;
图25是本申请实施例的时域资源的可选地结构示意图;
图26是本申请实施例的时域资源的可选地结构示意图;
图27是本申请实施例的时域资源的可选地结构示意图;
图28是本申请实施例的时域资源的可选地结构示意图;
图29是本申请实施例的时域资源的可选地结构示意图;
图30是本申请实施例的无线通信装置的可选地结构示意图;
图31是本申请实施例的无线通信装置的可选地结构示意图;
图32是本申请实施例提供的一种通信设备示意性结构图;
图33是本申请实施例的芯片的示意性结构图;
图34是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、第五代(5th generation,5G)通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如用户设备(User Equipment,UE))进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过Uu接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
3GPP正在研究非地面通信网络设备(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
NTN技术可以和各种通信系统结合。例如,NTN技术可以和NR系统结合为NR-NTN系统。又例如,NTN技术可以和物联网(Internet of Things,IoT)系统结合为IoT-NTN系统。作为示例,IoT-NTN系统可以包括NB-IoT-NTN系统和eMTC-NTN系统。
图2是本申请实施例提供的另一种通信系统的架构示意图。
如图2所示,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3是本申请实施例提供的另一种通信系统的架构示意图。
如图3所示,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备1203可以是图1中的网络设备120。
应理解,上述卫星1102或卫星1202包括但不限于:
低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO卫星的高度范围可以为500千米~1500千米,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20毫秒,最大卫星可视时间可以为20分钟,LEO卫星的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度可以35786km,围绕地球旋转周期可以为24小时,用户间单跳通信的信号传播延迟一般可为250毫秒。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过 馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
需要说明的是,图1至图5只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
PUCCH承载的UCI包括混合自动重传应答(Hybrid Automatic Repeat-reQuest Acknowledgement,HARQ-ACK)、调度请求(Scheduling Request,SR)、信道状态信息(Channel state information,CSI)中的一个或多个,分别表示各信息的比特数分别为O ACK、O SR和O CSI
PUCCH资源基于一个时隙配置,其中,配置PUCCH资源的PUCCH配置参数如下:
-码率r,r由高层参数最大码率(maxCodeRate)配置。
-PUCCH传输占用的PRB数量
Figure PCTCN2022090715-appb-000001
由高层参数nrofPRBs配置;
-PUCCH传输在每个PRB上占用的子载波数
Figure PCTCN2022090715-appb-000002
对于PUCCH格式2,如果PUCCH资源配置参数包括正交覆盖码(Orthogonal Cover Code,OCC)的长度
Figure PCTCN2022090715-appb-000003
Figure PCTCN2022090715-appb-000004
否则
Figure PCTCN2022090715-appb-000005
其中,
Figure PCTCN2022090715-appb-000006
基于高层参数occ-Length配置,OCC用于多用户复用,
Figure PCTCN2022090715-appb-000007
为每个PRB上的子载波数,
Figure PCTCN2022090715-appb-000008
对于PUCCH格式3,如果PUCCH资源配置参数包括OCC长度
Figure PCTCN2022090715-appb-000009
Figure PCTCN2022090715-appb-000010
否则
Figure PCTCN2022090715-appb-000011
对于PUCCH格式4,
Figure PCTCN2022090715-appb-000012
其中,
Figure PCTCN2022090715-appb-000013
为OCC长度。
-PUCCH传输中UCI占用的符号数
Figure PCTCN2022090715-appb-000014
对于PUCCH格式2,
Figure PCTCN2022090715-appb-000015
等于高层配置的PUCCH符号数
Figure PCTCN2022090715-appb-000016
对于PUCCH格式3/PUCCH格式4,
Figure PCTCN2022090715-appb-000017
等于
Figure PCTCN2022090715-appb-000018
Figure PCTCN2022090715-appb-000019
去除解调参考信号(Demodulation Reference Signal,DMRS)占用的符号之后的符号数。
-表征调制方案的Q m,对于PUCCH格式3/PUCCH格式4,如果调制方案为pi/2-二进制相移键控(Binary Phase Shift Keying,BPSK),则Q m=1;如果调制方案为正交相移键控(Quadrature Phase-Shift Keying,QPSK),则Q m=2。对于PUCCH格式2,Q m=2。
其中,配置的PUCCH传输最多承载的UCI的比特数为
Figure PCTCN2022090715-appb-000020
对于PUCCH传输,基于1个时隙确定PUCCH传输最多承载的UCI比特数,当UCI载荷较大时,只能通过尽可能分配更多的时域符号数和频域PRB数来提高PUCCH传输的UCI承载能力。
对于覆盖性能受限的通信场景,例如NTN系统,通常需要能量尽可能集中在更少的频域资源例如1个PRB上,以提升覆盖能力。此时,无法通过增加频域PRB数来提升PUCCH传输的UCI承载能力,从而限制PUCCH传输的UCI承载能力。
本申请实施例提供的无线通信方法,终端设备接收第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输,在时域上增加PUCCH传输的UCI承载能力,并且实现能量集中在更少的频域资源上和PUCCH重复传输以保证覆盖性能。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的无线通信方法如图6所示,应用于终端设备,包括:
S601、终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
网络设备直接或间接向终端设备发送第一信息,第一信息指示第一PUCCH传输的重复传输。可选地,第一信息包含在第一PUCCH配置参数中,其中,第一PUCCH配置参数用于配置第一PUCCH传输。
可选地,第一PUCCH配置参数包括有第一PUCCH资源配置参数。第一PUCCH配置参数还可包括有第一PUCCH格式配置参数,第一PUCCH资源配置参数可指示第一PUCCH传输的以下信息:
Figure PCTCN2022090715-appb-000021
等,第一PUCCH格式配置参数可指示第一PUCCH传输的以下信息:r、Q m等。
第一信息可包括在第一PUCCH资源配置参数中,也可包括在第一PUCCH格式配置参数中。
本申请实施例中,第一信息可针对PUCCH格式,此时,同一PUCCH格式的PUCCH传输采用相同的第一信息。可选的,第一信息包括在第一PUCCH格式配置参数中。
本申请实施例中,第一信息可针对PUCCH传输,此时,不同的第一PUCCH传输对应的第一信息独立。可选的,第一信息包括在第一PUCCH资源配置参数中。
终端设备接收到第一信息后,基于第一信息确定第一PUCCH传输进行重复传输。这里,第一PUCCH传输的重复传输可以理解为将第一PUCCH传输重复传输至少两次。可选地,第一PUCCH传输的重复传输次数
Figure PCTCN2022090715-appb-000022
可为固定的、网络设备配置或基于第一设备实现确定的。本申请实施例中,对
Figure PCTCN2022090715-appb-000023
的确定方式以及大小不进行任何限定。
第一PUCCH传输可理解为传输的第一PUCCH。可理解的,第一PUCCH传输基于至少两个第一时隙进行传输,可理解为第一PUCCH传输在时域上占用至少两个时隙,这里,将第一PUCCH传输占用的时隙称为第一时隙。其中,对于一个第一时隙,第一PUCCH传输可占用该第一时隙的全部符号或部分符号,这里,将一个第一时隙中,第一PUCCH传输占用的符号称为第一符号。终端设备在发送第一PUCCH传输时,第一PUCCH传输在时域上可实际使用至少两个第一时隙中的全部第一时隙或部分第一时隙,对于一个第一时隙中第一PUCCH传输占用的第一符号,第一PUCCH传输在时域上可实际使用该第一时隙中的全部第一符号或部分第一符号。
在一示例中,第一PUCCH传输占用两个第一时隙:时隙0和时隙1,则时隙0和时隙1可用于传输第一PUCCH,一个第一时隙包括14个符号,各符号的索引为0至13,第一PUCCH传输占用时隙0中的符号4至符号13,以及时隙1中的时隙4至符号13。在一示例中,第一PUCCH传输占用两个第一时隙:时隙0和时隙1,则时隙0和时隙1可用于传输第一PUCCH,一个第一时隙包括14个符号,各符号的索引为0至13,第一PUCCH传输占用时隙0中的符号4至时隙1中的符号8。需要说明的是,这两个示例中,时隙0上传输的部分第一PUCCH和时隙1上传输的部分第一PUCCH并不是重复的第一PUCCH,时隙0上的部分第一PUCCH和时隙1上的部分第一PUCCH构成完整的第一PUCCH。
本申请实施例中,终端设备基于第一信息进行第一PUCCH传输的重复传输的情况下,向网络设备重复发送多个第一PUCCH传输,此时,网络设备接收到重复的多个第一PUCCH传输。
可选地,重复传输的第一PUCCH传输在时域上不连续。
在一示例中,如图7所示,第一PUCCH传输占用两个第一时隙,一个第一时隙包括14个符号,各符号的索引为0至13,第一PUCCH传输占用第一个第一时隙中的符号4至符号13,以及第二个第一时隙中的符号4至符号13;第一PUCCH传输的重复传输次数为2,则重复传输的第1个第一PUCCH传输占用时隙0中的符号4至符号13,以及时隙1中的符号4至符号13,重复传输的第2个第一PUCCH传输占用时隙2中的符号4至符号13,以及时隙3中的符号4至符号13。
可选地,重复传输的第一PUCCH传输在时域上连续。
在一示例中,如图8所示,第一PUCCH传输占用两个第一时隙,一个第一时隙包括14个符号, 各符号的索引为0至13,第一PUCCH传输占用第一个第一时隙中的符号4至第二个第一时隙的符号8这19个符号;第一PUCCH传输的重复传输次数为2,则重复传输的第1个第一PUCCH传输占用时隙0中的符号4至时隙1中的符号8这19个符号,重复传输的第2个第一PUCCH传输占用时隙1中的符号9至时隙2中的符号13这19个符号。
本申请实施例中,第一PUCCH传输上可承载第一UCI,第一UCI可包括以下信息至少之一:SR、HARK-ACK、CSI。在第一PUCCH传输重复传输的情况下,第一UCI重复传输。
本申请实施例提供的无线通信方法,终端设备接收第一信息,所述第一信息用于指示第一PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输,在时域上增加PUCCH传输的UCI承载能力,并且实现能量集中在更少的频域资源上和PUCCH重复传输以保证覆盖性能。
本申请实施例提供的无线通信方法如图9所示,应用于网络设备,包括:
S901、网络设备向终端设备发送第一信息,所述第一信息用于指示第一PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
网络设备直接或间接向终端设备发送第一信息,第一信息指示第一PUCCH传输的重复传输。可选地,第一信息包含在第一PUCCH配置参数中,其中,第一PUCCH配置参数用于配置第一PUCCH资源,第一PUCCH资源用于第一PUCCH传输。
第一信息可包括在第一PUCCH资源配置参数中,也可包括在第一PUCCH格式配置参数中。
本申请实施例中,第一信息可针对PUCCH格式,此时,同一PUCCH格式的PUCCH传输采用相同的第一信息。可选的,第一信息包括在第一PUCCH格式配置参数中。
本申请实施例中,第一信息可针对PUCCH传输,此时,不同的第一PUCCH传输对应的第一信息独立。可选的,第一信息包括在第一PUCCH资源配置参数中。
终端设备接收到第一信息后,基于第一信息确定第一PUCCH传输需要进行重复传输。这里,第一PUCCH重复传输可以理解为将第一PUCCH传输重复传输至少两次。可选地,第一PUCCH传输的重复传输次数
Figure PCTCN2022090715-appb-000024
可为固定的、网络设备配置或基于第一设备实现确定的。本申请实施例中,对
Figure PCTCN2022090715-appb-000025
的确定方式以及大小不进行任何限定。
第一PUCCH传输可理解为传输的第一PUCCH。可理解的,第一PUCCH传输基于至少两个第一时隙进行传输,可理解为第一PUCCH传输在时域上占用至少两个时隙,这里,将第一PUCCH传输占用的时隙称为第一时隙。其中,对于一个第一时隙,第一PUCCH传输可占用该第一时隙的全部符号或部分符号,这里,将一个第一时隙中,第一PUCCH传输占用的符号称为第一符号。终端设备在发送第一PUCCH传输时,第一PUCCH传输在时域上可实际使用至少两个第一时隙中的全部第一时隙或部分第一时隙,对于一个第一时隙中第一PUCCH传输占用的第一符号,第一PUCCH传输在时域上可实际使用该第一时隙中的全部第一符号或部分第一符号。
在一示例中,第一PUCCH传输占用两个第一时隙:时隙0和时隙1,则时隙0和时隙1可用于传输第一PUCCH,一个第一时隙包括14个符号,各符号的索引为0至13,第一PUCCH传输占用时隙0中的符号4至符号13,以及时隙1中的时隙4至符号13。在一示例中,第一PUCCH传输占用两个第一时隙:时隙0和时隙1,则时隙0和时隙1可用于传输第一PUCCH,一个第一时隙包括14个符号,各符号的索引为0至13,第一PUCCH传输占用时隙0中的符号4至时隙1中的符号8。需要说明的是,这两个示例中,时隙0上传输的部分第一PUCCH和时隙1上传输的部分第一PUCCH并不是重复的第一PUCCH,时隙0上的部分第一PUCCH和时隙1上的部分第一PUCCH构成完整的第一PUCCH。
本申请实施例中,终端设备基于第一信息进行第一PUCCH传输的重复传输的情况下,向网络设备重复发送多个第一PUCCH传输,此时,网络设备接收到重复的多个第一PUCCH传输。
可选地,重复传输的第一PUCCH传输在时域上不连续。
可选地,重复传输的第一PUCCH传输在时域上连续。
本申请实施例中,第一PUCCH传输上可承载第一UCI,第一UCI可包括以下信息至少之一:SR、HARK-ACK、CSI。在第一PUCCH传输重复传输的情况下,第一UCI重复传输。
本申请实施例提供的无线通信方法,网络设备向终端设备发送第一信息,所述第一信息用于指示重复第一PUCCH传输,所述第一PUCCH传输基于至少两个第一时隙进行传输,在时域上增加PUCCH传输的UCI承载能力,并且实现能量集中在更少的频域资源上和PUCCH重复传输以保证覆盖性能。
本申请实施例提供的无线通信方法如图10所示,应用于包括终端设备和网络设备的无线通信系统,包括:
S1001、网络设备向终端设备发送第一信息,所述第一信息用于指示第一PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
S1002、终端设备接收所述网络设备发送的所述第一信息,
本申请实施例中终端设备侧的描述和网络设备的描述可参见图6和图9所示的无线通信方法,这里不再赘述。
在一些实施例中,如图11所示,本申请实施例提供的无线通信方法还包括:
S1101、终端设备重复传输第一PUCCH传输,所述第一PUCCH传输基于至少两个第一时隙进行传输,所述第一PUCCH传输的重复传输基于第一信息指示。
S1102、网络设备接收重复传输的所述第一PUCCH传输。
终端设备将第一PUCCH传输重复传输多次。此时,网络设备可在至少两个第一时隙中的全部第一时隙或部分第一时隙上接收到第一PUCCH传输,且接收到多次重复传输的第一PUCCH传输。
可理解的,对于一个PUCCH传输,该第一PUCCH传输在时域上可实际使用至少两个第一时隙中的全部第一时隙或部分第一时隙,对于一个第一时隙中第一PUCCH传输占用的第一符号,第一PUCCH传输在时域上可实际使用该第一时隙中的全部第一符号或部分第一符号。
本申请实施例提供的无线通信方法,终端设备重复传输第一PUCCH传输,且第一PUCCH传输基于至少两个第一时隙进行传输,在时域上增加PUCCH传输的UCI承载能力,并且实现能量集中在更少的频域资源上和PUCCH重复传输以保证覆盖性能。
在一些实施例中,终端设备接收第二信息,所述第二信息用于指示所述至少两个第一时隙。
在一些实施例中,网络设备向终端设备设备发送第二信息,所述第二信息用于指示所述至少两个第一时隙。
网络设备基于第二信息向终端设备指示第一PUCCH传输占用的至少两个第一时隙。终端设备接收到网络设备发送的第二信息,基于第二信息确定至少两个第一时隙。
可选地,第二信息包含在第一PUCCH配置参数中。此时,第二信息可理解为高层参数。
可理解的,第一PUCCH配置参数除了包括第二信息外,还可包括配置以下信息至少之一的高层参数:码率r、
Figure PCTCN2022090715-appb-000026
Q m、第一PUCCH传输的起始符号的索引
Figure PCTCN2022090715-appb-000027
等。
第二信息可包括在第一PUCCH资源配置参数中,也可包括在第一PUCCH格式配置参数中。
本申请实施例中,第二信息可针对PUCCH格式,此时,同一PUCCH格式的PUCCH传输采用相同的第二信息。可选的,第二信息包括在第一PUCCH格式配置参数中。
本申请实施例中,第二信息可针对PUCCH传输,此时,不同的第一PUCCH传输对应的第二信息独立。可选的,第二信息包括在第一PUCCH资源配置参数中。
在一些实施例中,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量;
第二指示信息,所述第二指示信息用于指示第二数量,第一PUCCH资源在时域上包括第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量;
第三指示信息,所述第三指示信息用于指示第四数量,所述第四数量为所述第一PUCCH资源在时域上包括的第一符号的数量,所述第四数量大于所述第三数量。
对于第一指示信息,直接指示至少两个第一时隙所包括的第一时隙的数量。第一数量可标识为
Figure PCTCN2022090715-appb-000028
可选地,第一数量大于1。
对于第二指示信息,第二数量为第一PUCCH资源在时域上包括的第二PUCCH资源的数量,第二数量可标识为
Figure PCTCN2022090715-appb-000029
可选地,第二数量大于1。
第二PUCCH资源在时域上包括的符号数小于或等于一个时隙包括的符号数,则第二PUCCH资源在时域上位于一个时隙内。第一PUCCH资源用于第一PUCCH传输,第一PUCCH资源包括第二数量个第二PUCCH资源,则第一PUCCH资源在时域上包括多个第一时隙。
可选地,第二PUCCH资源可基于以下信息确定:
Figure PCTCN2022090715-appb-000030
表示第一PUCCH传输占用的PRB数量,可由高层参数nrofPRBs配置;
Figure PCTCN2022090715-appb-000031
表示第一PUCCH传输的起始符号的索引,可由高层参数startingSymbolIndex配置;
Figure PCTCN2022090715-appb-000032
表示第一PUCCH传输在每个PRB上占用的子载波的数量;
Figure PCTCN2022090715-appb-000033
表示第一PUCCH传输在一个第二PUCCH资源上占用的符号数,可由高层参数nrofSymbols配置,
Figure PCTCN2022090715-appb-000034
小于或等于第三数量。可选地,第三数量为14。
对于第三指示信息,第四数量为第一PUCCH资源在时域上包括的符号的数量,可标识为
Figure PCTCN2022090715-appb-000035
其中,
Figure PCTCN2022090715-appb-000036
的取值大于第三数量,其中,第三数量为一个时隙包括的符号的数量,则第一PUCCH资源在时域上包括至少两个第一时隙。
可理解的,第四数量
Figure PCTCN2022090715-appb-000037
为扩展的PUCCH符号数。若第一信息包括第三指示信息,PUCCH配置参数使用
Figure PCTCN2022090715-appb-000038
替换指示第二PUCCH资源的PUCCH符号数
Figure PCTCN2022090715-appb-000039
Figure PCTCN2022090715-appb-000040
的取值可大于
Figure PCTCN2022090715-appb-000041
的最大值。
可选地,第三数量为14,第四数量大于14。
本申请实施例中,终端设备可支持第一指示信息、第二指示信息和第三指示信息中的一个或多个确定至少两个第一时隙,在同一时刻,至少两个第一时隙基于第一指示信息、第二指示信息和第三指示信息中的一个确定。
在一些实施例中,所述第一信息用于指示第五数量,所述第五数量为第二PUCCH传输包括的所述第一PUCCH传输的数量,所述第二PUCCH传输为所述第一PUCCH传输的重复传输。
这里,第五数量可标识为
Figure PCTCN2022090715-appb-000042
此时,第一信息指示第一PUCCH传输的重复传输次数。
可选地,如果第一PUCCH资源由下行控制信息(Downlink Control Information,DCI)指示,并且第一PUCCH资源配置参数中包含了高层参数PUCCH-nrofSlots,则
Figure PCTCN2022090715-appb-000043
由PUCCH-nrofSlots配置,否则,
Figure PCTCN2022090715-appb-000044
由高层参数nrofSlots配置。
本申请实施例中,定义第二PUCCH传输,且第二PUCCH传输包括重复传输的第五数量个第一PUCCH传输。
在一些实施例中,所述第二PUCCH传输在时域上占用第六数量个第一时隙,所述第六数量基于所述第五数量和第七数量确定,所述第七数量基于第二信息确定,所述第二信息用于指示所述至少两个第一时隙。
这里,第二PUCCH传输在时域上占用的第一时隙的数量即第六数量N′基于第五数量和第七数量确定。
本申请实施例中,第七数量基于第二信息的不同包括以下几种情况:
情况一、若所述第二信息包括第一指示信息,所述第一指示信息指示第一数量,则所述第七数量为所述第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量。
情况二、若所述第二信息包括第二指示信息,所述第二指示信息指示第二数量,则所述第七数量为所述第二数量,第一PUCCH资源在时域上包括第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量。
情况三、若所述第二信息包括第三指示信息,所述第三指示信息指示第四数量,则所述第七数量为所述第四数量,所述第一PUCCH传输在时域上占用所述第四数量个连续的第一符号,所述第四数量大于所述第三数量,所述第三数量为一个时隙包括的符号的数量。
情况一中,第一PUCCH传输为基于第一数量个第一时隙的PUCCH传输,则第一PUCCH传输为多时隙PUCCH传输,第五数量可理解为多时隙PUCCH传输的重复传输次数。终端设备支持情况一,可理解为终端设备支持多时隙PUCCH传输的重复传输。
情况二中,第一PUCCH传输为基于第二数量个第二PUCCH资源的PUCCH传输,则第一PUCCH传输为多PUCCH资源的PUCCH传输,第五数量可理解为多PUCCH资源的PUCCH传输的重复传输次数。终端设备支持情况二,可理解为终端设备支持多PUCCH资源的PUCCH传输的重复传输。其中,多PUCCH资源中的PUCCH资源可理解为第二PUCCH资源。
情况三中,第一PUCCH传输为基于第四数量个符号的PUCCH传输,第四数量为扩展符号数, 则第一PUCCH传输为扩展符号数的PUCCH传输,第五数量可理解为扩展符号数的PUCCH传输的重复传输的次数。终端设备支持情况三,可理解为终端设备支持扩展符号数的PUCCH传输的重复传输。
下面,分别对第七数量分别为情况一、情况二、情况三下的第二PUCCH传输进行说明。
情况一下的第二PUCCH传输
以第七数量为情况一为例,在终端设备基于第一指示信息确定至少两个第一时隙的情况下,N′基于
Figure PCTCN2022090715-appb-000045
Figure PCTCN2022090715-appb-000046
确定。
Figure PCTCN2022090715-appb-000047
由第一指示信息配置。
在一些实施例中,所述第六数量为所述第五数量与所述第一数量的乘积,每所述第一数量个所述第一时隙执行一次所述第一PUCCH传输的重复传输。
这里,终端设备在
Figure PCTCN2022090715-appb-000048
个时隙上发送第二PUCCH传输,即第二PUCCH传输在时域上占用的第一时隙的数量为
Figure PCTCN2022090715-appb-000049
可理解的,在
Figure PCTCN2022090715-appb-000050
个第一时隙上执行一次第一PUCCH传输的重复传输,从而在
Figure PCTCN2022090715-appb-000051
个第一时隙上执行
Figure PCTCN2022090715-appb-000052
次第一PUCCH传输的重复传输。
在一示例中,
Figure PCTCN2022090715-appb-000053
为2,
Figure PCTCN2022090715-appb-000054
为2,则
Figure PCTCN2022090715-appb-000055
为4,多时隙PUCCH传输的重复传输即第二PUCCH传输占用的时隙数为4。
可选地,第六数量不大于最大重复传输数量
Figure PCTCN2022090715-appb-000056
可选地,最大重复传输数量
Figure PCTCN2022090715-appb-000057
可由高层参数配置。
当UE支持多时隙PUCCH传输的重复传输,终端设备不期待被配置
Figure PCTCN2022090715-appb-000058
大于
Figure PCTCN2022090715-appb-000059
为PUCCH配置参数中最高可被配置的重复传输次数。
在一些实施例中,所述第二PUCCH传输在每个所述第一时隙上占用第一符号满足以下条件至少之一:
条件A1、所述第二PUCCH传输在每个所述第一时隙上占用的起始符号相同。
条件A2、所述第二PUCCH传输在每个第一时隙上占用相同数量个连续的第一符号。
对于条件A1、在
Figure PCTCN2022090715-appb-000060
个第一时隙上,第二PUCCH传输在不同的第一时隙上占用的起始符号相同。可理解的,第二PUCCH传输在一个第一时隙上占用的起始符号同第一PUCCH传输在一个第一时隙上占用的起始符号。
在一示例中,第二PUCCH传输在时域上占用4个第一时隙,在每个第一时隙上占用的起始符号为第4个符号。
在一示例中,第二PUCCH传输在时域上占用4个第一时隙,在每个第一时隙上占用的起始符号为第1个符号。
对于条件A2、在
Figure PCTCN2022090715-appb-000061
个第一时隙上,第二PUCCH传输在不同的第一时隙上占用的第一符号的数量相同,且对于
Figure PCTCN2022090715-appb-000062
个第一时隙中的每一个第一时隙,在该第一时隙上占用的第一符号连续。
在一示例中,第二PUCCH传输在时域上占用4个第一时隙,在每个第一时隙上占用的符号数量为5,且占用的5个符号连续。
在一示例中,第二PUCCH传输在时域上占用14个第一时隙,在每个第一时隙上占用的符号数量为14,其中,14为一个时隙包括的符号的数量。
在所述第二PUCCH传输在每个所述第一时隙上占用第一符号满足条件A1和条件A2的情况下,第二PUCCH传输在每个所述第一时隙上占用的符号的位置相同。
在一示例中,如图12所示,第一PUCCH传输的重复传输次数为2,且第一PUCCH传输在时域上占用2个第一时隙,则第二PUCCH传输在时域上占用4个第一时隙:时隙0、时隙1、时隙2和时隙3,第二PUCCH传输在4个第一时隙中的每个第一时隙上占用起始符号相同为符号4,且在4个第一时隙中的每个第一时隙上占用的第一符号的数量相同为10个,且这10个第一符号连续,其中,时隙0和时隙1用于重复传输的第1个第一PUCCH传输,时隙2和时隙3用于重复传输的第2个第一PUCCH传输。
可选地,对于一个第一时隙,如果终端设备发现可用于第二PUCCH传输的时隙的符号数小于
Figure PCTCN2022090715-appb-000063
则终端设备不在该第一时隙上发送第二PUCCH传输,但需要将这个第一时隙计数到
Figure PCTCN2022090715-appb-000064
个第一时隙中。
在一些实施例中,所述第二PUCCH传输可被配置为在不同的时隙间执行跳频,或未被配置在不同的时隙间执行跳频。
可选地,高层参数时隙间跳频参数(interslotFrequencyHopping)用于指示第二PUCCH传输被配置为是否在不同的时隙间执行跳频。
第二PUCCH传输的跳频方式包括以下几种中的一种或多种:
跳频方式A1、若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每个时隙执行一次跳频。
跳频方式A2、若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每第八数量个连续的时隙执行一次跳频。
跳频方式A3、若所述第二PUCCH传输未被配置在不同的时隙间执行跳频,且被配置在时隙内的执行跳频,则每个第一时隙内的第一PRB和第二PRB间的跳频图样相同。
以跳频方式为跳频方式A1的情况下,终端设备在每个时隙执行跳频。
可选地,终端设备在偶数的时隙从第一PRB开始发送第二PUCCH传输,在奇数的时隙从第二PRB开始发送第二PUCCH传输,所述第一PRB基于第一参数配置,所述第二PRB基于第二参数配置。
可选地,第一参数为高层参数起始PRB参数(startingPRB)。
可选地,第二参数为高层参数第二跳PRB参数(secondHopPRB)。
可理解的,用于第二PUCCH传输的第一个时隙记为时隙0,随后的每个时隙都被递增计数,直到计数到第六数量个时隙。
在一示例中,基于图12所示的第二PUCCH传输,在第二PUCCH传输被配置为时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则跳频结果如图13所示,第二PUCCH传输在时隙0和时隙2从第一PRB开始传输,且在时隙1和时隙3从第二PRB开始传输。
以跳频方式为跳频方式A1为例,终端设备不期待第二PUCCH传输被配置在时隙内执行跳频。
以跳频方式为跳频方式A2为例,终端设备在每第八数量个连续的时隙执行跳频。
这里,第八数量可标识为
Figure PCTCN2022090715-appb-000065
终端设备在
Figure PCTCN2022090715-appb-000066
个连续时隙上执行跳频,即第八数量个连续的时隙为一个跳频间隔。其中,第八数量大于1。
可选地,所述第八数量为第一高层参数配置;或,所述第八数量为第一时间窗包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
可选的,第一高层参数为跳频间隔参数(PUCCH-Frequencyhopping-Interval)。
可选地,第一时间窗为时域窗口(TimeDomainWindow,TDW)。TDW的长度可基于高层参数时域窗口长度参数(PUCCH-TimeDomainWindowLength)配置。
在一示例中,如果提供了PUCCH-Frequencyhopping-Interval,则
Figure PCTCN2022090715-appb-000067
的值为该高层参数的值;否则,
Figure PCTCN2022090715-appb-000068
的值为PUCCH-TimeDomainWindowLength配置的TDW所包括的时隙的数量。
终端设备以第八数量个连续的时隙为跳频间隔,在每个跳频间隔执行一次跳频,直到跳频的第一时隙的数量达到
Figure PCTCN2022090715-appb-000069
可选地,终端设备在偶数的跳频间隔上从第一PRB开始发送第二PUCCH传输,在奇数的频间隔上从第二PRB开始发送第二PUCCH传输。
可理解的,每个跳频间隔包括
Figure PCTCN2022090715-appb-000070
个时隙,用于第二PUCCH传输的第一个跳频间隔记为0,随后的每个跳频间隔都被递增计数,直到计数到第六数量个第一时隙。
在一示例中,基于图12所示的第二PUCCH传输,若第二PUCCH传输被配置为时隙间执行跳频,且被配置进行PUCCH联合信道估计,跳频间隔为2个时隙,则跳频结果如图14所示,跳频间隔0包括时隙0和时隙1,跳频间隔1包括:时隙2和时隙3,第二PUCCH传输在跳频间隔0从第一PRB开始传输,且在跳频间隔1从第二PRB开始传输。
以跳频方式为跳频方式A2为例,终端设备不期待第二PUCCH传输被配置在时隙内执行跳频。
情况二下的第二PUCCH传输
以第七数量为情况二为例,在终端设备基于第一指示信息确定至少两个第一时隙的情况下,N′基于
Figure PCTCN2022090715-appb-000071
Figure PCTCN2022090715-appb-000072
确定。
Figure PCTCN2022090715-appb-000073
由第二指示信息配置。
可选地,第一PUCCH资源在时域上包括的第二数量个第二PUCCH资源不连续。
可选地,第一PUCCH资源在时域上包括的第二数量个第二PUCCH资源连续,即所述第一PUCCH资源在时域上包括第二数量个连续的第二PUCCH资源。
在一些实施例中,第二PUCCH传输所占用的第二PUCCH资源满足以下条件至少之一:
条件B1、第一PUCCH资源在时域上包括的第二数量个第二PUCCH资源连续。
条件B2、所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号。
对于条件B1、第一PUCCH传输占用第二数量个时域连续的第二PUCCH资源。
在第一PUCCH传输占用第二数量个时域连续的第二PUCCH资源的情况下,所述第二PUCCH传输在时域上占用第九数量个时域连续的第二PUCCH资源,所述第九数量为所述第五数量与所述第二数量的乘积,每所述第二数量个所述第二PUCCH资源执行一次所述第一PUCCH传输的重复传输。
其中,第九数量可标识为:
Figure PCTCN2022090715-appb-000074
终端设备在
Figure PCTCN2022090715-appb-000075
个第二PUCCH资源上传输第二PUCCH传输,即第二PUCCH资源的数量为
Figure PCTCN2022090715-appb-000076
可理解的,每
Figure PCTCN2022090715-appb-000077
个第二PUCCH资源上执行一次第一PUCCH传输的重复传输,从而在
Figure PCTCN2022090715-appb-000078
个第二PUCCH资源上执行
Figure PCTCN2022090715-appb-000079
次第一PUCCH传输的重复传输。
对于
Figure PCTCN2022090715-appb-000080
个第二PUCCH资源,第n个第二PUCCH资源的结束符号和第n+1个第二PUCCH资源的起始符号在时域上连续,n的取值为0至
Figure PCTCN2022090715-appb-000081
在一示例中,
Figure PCTCN2022090715-appb-000082
为3,
Figure PCTCN2022090715-appb-000083
为2,则
Figure PCTCN2022090715-appb-000084
为6,多PUCCH资源的PUCCH传输的重复传输即第二PUCCH传输占用的第二PUCCH资源的数量为6。
可选地,第九数量不大于最大重复传输数量
Figure PCTCN2022090715-appb-000085
对于条件B2,对于第二PUCCH传输占用的第九数量个第二PUCCH资源上,第二PUCCH传输在不同的第二PUCCH资源占用的第一符号的数量相同。且对于第九数量个第二PUCCH资源中的每一个第二PUCCH资源,第二PUCCH传输在该第二PUCCH资源占用的多个符号连续。
可选地,第二PUCCH传输在第二PUCCH资源上占用的符号的数量可理解为第一PUCCH传输在第二PUCCH资源上占用的符号的数量
Figure PCTCN2022090715-appb-000086
在一示例中,第二PUCCH传输在时域上占用4个第二PUCCH资源,在每个第二PUCCH资源上占用9个连续的第一符号。
在所述第二PUCCH传输所占用的第二PUCCH资源满足条件B1和条件B2的情况下,第二PUCCH占用
Figure PCTCN2022090715-appb-000087
个第二PUCCH资源,且第二PUCCH传输在每个第二PUCCH资源上占用连续的
Figure PCTCN2022090715-appb-000088
个符号。
在一示例中,第一PUCCH传输的重复传输次数为2,且第一PUCCH占用2个第二PUCCH资源,每个第二PUCCH资源占用的第一符号的数量为10,在第一PUCCH传输的起始符号为符号4的情况下,如图15所示,第二PUCCH传输在时域上占用4个连续的第二PUCCH资源:第二PUCCH资源0、第二PUCCH资源1、第二PUCCH资源2和第二PUCCH资源3,且这四个资源都包括10个的符号,其中,第二PUCCH资源0和第二PUCCH资源1用于重复传输的第1个第一PUCCH传输,第二PUCCH资源2和第二PUCCH资源3用于重复传输的第2个第一PUCCH传输。
在一些实施例中,若所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号,所述第六数量为:
Figure PCTCN2022090715-appb-000089
所述
Figure PCTCN2022090715-appb-000090
为配置的所述第一PUCCH传输的起始符号的索引,所述
Figure PCTCN2022090715-appb-000091
为所述第五数量,所述
Figure PCTCN2022090715-appb-000092
为所述第二数量,所述
Figure PCTCN2022090715-appb-000093
为所述第二PUCCH资源包括的符号的数量,所述
Figure PCTCN2022090715-appb-000094
为所述第三数量。 这里,
Figure PCTCN2022090715-appb-000095
可理解为第二PUCCH传输的起始符号的索引,即第一个第一PUCCH传输的起始符号的索引。
若所述第二PUCCH传输占用的第二PUCCH资源满足条件B1和条件B2,则第六数量为:
Figure PCTCN2022090715-appb-000096
在一示例中,
Figure PCTCN2022090715-appb-000097
为4,
Figure PCTCN2022090715-appb-000098
为2,
Figure PCTCN2022090715-appb-000099
为10,
Figure PCTCN2022090715-appb-000100
为2,则多PUCCH资源的第二PUCCH传输占用的第一时隙的数量为:
Figure PCTCN2022090715-appb-000101
若所述第二PUCCH传输占用的第二PUCCH资源满足条件B1和条件B2,对于第n个第二PUCCH资源:
第n个第二PUCCH资源的起始位置所在的第一时隙的索引为:
Figure PCTCN2022090715-appb-000102
其中,K为重复传输的第1个第一PUCCH传输起始位置所在的时隙;
第n个第二PUCCH资源的起始位置在所在的第一时隙中的索引为:
Figure PCTCN2022090715-appb-000103
第n个第二PUCCH资源的结束位置所在的第一时隙的索引为:
Figure PCTCN2022090715-appb-000104
第n个第二PUCCH资源的起始位置在所在的第一时隙中的索引为:
Figure PCTCN2022090715-appb-000105
可选地,对于一个第二PUCCH资源,如果终端设备发现可用于第二PUCCH传输的符号数小于
Figure PCTCN2022090715-appb-000106
则终端设备不在该第二PUCCH资源上发送第二PUCCH传输,但需要将这个第二PUCCH资源计数到
Figure PCTCN2022090715-appb-000107
个第二PUCCH资源中。
在一些实施例中,在第一PUCCH传输为多PUCCH资源的PUCCH传输的情况下,所述第二PUCCH传输可被配置为在不同的第二PUCCH资源间执行跳频,或未被配置在不同的第二PUCCH资源间执行跳频。
可选地,重用高层参数时隙间跳频参数(interslotFrequencyHopping)用于指示第二PUCCH传输被配置为是否在不同的第二PUCCH资源间执行跳频。
第二PUCCH传输的跳频方式包括以下几种中的一种或多种:
跳频方式B1、若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每一个第二PUCCH资源执行一次跳频。
跳频方式B2、若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每第八数量个连续的所述第二PUCCH资源执行一次跳频。
跳频方式B3、若所述第二PUCCH传输未被配置在不同的第二PUCCH资源间执行跳频,且被配置在第二PUCCH资源内的执行跳频,则每个第一时隙内的第一PRB和第二PRB间的跳频图样相同。
在跳频方式为跳频方式B1的情况下,终端设备在每个第二PUCCH资源执行跳频。
可选地,终端设备在偶数的第二PUCCH资源从第一PRB开始发送第二PUCCH传输,在奇数的第二PUCCH资源从第二PRB开始发送第二PUCCH传输,所述第一PRB基于第一参数配置,所述第二PRB基于第二参数配置。
可理解的,用于第二PUCCH传输的第一个第二PUCCH资源记为0,并且随后的每个第二PUCCH资源都被递增计数,直到计数到第九数量个第二PUCCH资源。
在一示例中,基于图15所示的第二PUCCH传输,在第二PUCCH传输被配置为第二PUCCH资源间执行跳频,且未被配置进行PUCCH联合信道估计,则跳频结果如图16所示,第二PUCCH传输在第二PUCCH资源0和第二PUCCH资源2从第一PRB开始传输,且在第二PUCCH资源1和第二PUCCH资源3从第二PRB开始传输。
在跳频方式为跳频方式B1的情况下,终端设备不期待第二PUCCH传输被配置在第二PUCCH资源内执行跳频。
在跳频方式为跳频方式B2的情况下,终端设备在每第八数量个连续的第二PUCCH资源执行跳频。
这里,第八数量可标识为
Figure PCTCN2022090715-appb-000108
终端设备在
Figure PCTCN2022090715-appb-000109
个连续第二PUCCH资源上执行跳频,即第八数量个连续的第二PUCCH资源为一个跳频间隔。其中,第八数量大于1。
可选地,所述第八数量为第一高层参数配置;或,所述第八数量为第一时间窗包括的第二PUCCH资源的数量,所述第一时间窗用于PUCCH联合信道估计。
可选的,第一高层参数为跳频间隔参数(PUCCH-Frequencyhopping-Interval)。
可选地,第一时间窗为TDW。TDW的长度可基于高层参数时域窗口长度参数(PUCCH-TimeDomainWindowLength)配置。
在一示例中,如果提供了PUCCH-Frequencyhopping-Interval,则
Figure PCTCN2022090715-appb-000110
的值为该高层参数的值;否则,
Figure PCTCN2022090715-appb-000111
的值为PUCCH-TimeDomainWindowLength配置的TDW所包括的第二PUCCH资源的数量。
终端设备以第八数量个连续的第二PUCCH资源为跳频间隔,在每个跳频间隔执行一次跳频,直到跳频的第二PUCCH资源的数量达到
Figure PCTCN2022090715-appb-000112
可选地,终端设备在偶数的跳频间隔上从第一PRB开始发送第二PUCCH传输,在奇数的跳频间隔上从第二PRB开始发送第二PUCCH传输。
可理解的,每个跳频间隔包括
Figure PCTCN2022090715-appb-000113
个第二PUCCH资源,用于第二PUCCH传输的第一个跳频间隔记为0,随后的每个跳频间隔都被递增计数,直到计数到第九数量个第二PUCCH资源。
在一示例中,基于图12所示的第二PUCCH传输,若第二PUCCH传输被配置为第二PUCCH资源间执行跳频,且被配置进行PUCCH联合信道估计,跳频间隔为2个第二PUCCH资源,则跳频结果如图17所示,跳频间隔0,包括第二PUCCH资源0和第二PUCCH资源1,跳频间隔1,包括第二PUCCH资源2和第二PUCCH资源3,第二PUCCH传输在跳频间隔0从第一PRB开始传输,且在跳频间隔1开始从第二PRB传输。
以跳频方式为跳频方式B2为例,终端设备不期待第二PUCCH传输被配置在第二PUCCH资源内执行跳频。
情况三下的第二PUCCH传输
以第七数量为情况三为例,在终端设备基于第一指示信息确定至少两个第一时隙的情况下,N′基于
Figure PCTCN2022090715-appb-000114
Figure PCTCN2022090715-appb-000115
确定。
Figure PCTCN2022090715-appb-000116
由第三指示信息配置。
在一些实施例中,所述第二PUCCH传输在时域上占用所述第六数量个连续的第一时隙,所述第六数量为所述第五数量与第十数量的乘积,每所述第十数量个连续的所述第一时隙执行一次所述第一PUCCH传输的重复传输,所述第十数量基于所述第四数量确定。
这里,第一PUCCH传输在时域上占用第四数量个连续的第一符号,且第一PUCCH传输在时域上占用第十数量个第一时隙,则第十数量
Figure PCTCN2022090715-appb-000117
为:
Figure PCTCN2022090715-appb-000118
在一示例中,第一PUCCH传输在时域上占用20个连续的第一符号,
Figure PCTCN2022090715-appb-000119
为14,则第十数量为2。
这里,终端设备在
Figure PCTCN2022090715-appb-000120
个时隙上发送第一PUCCH传输的重复传输即第二PUCCH传输,第二PUCCH传输在时域上占用的第一时隙的数量为
Figure PCTCN2022090715-appb-000121
可理解的,每
Figure PCTCN2022090715-appb-000122
个连续的第一时隙上执行一次第一PUCCH传输的重复传输,从而在
Figure PCTCN2022090715-appb-000123
个第一时隙上执行
Figure PCTCN2022090715-appb-000124
次第一PUCCH传输的重复传输。
在一示例中,
Figure PCTCN2022090715-appb-000125
为2,
Figure PCTCN2022090715-appb-000126
为2,则
Figure PCTCN2022090715-appb-000127
为4,扩展符号数的PUCCH传输的重复传输即第二PUCCH传输占用的时隙数为4。
可选地,第六数量不大于最大重复传输数量
Figure PCTCN2022090715-appb-000128
可选地,最大重复传输数量
Figure PCTCN2022090715-appb-000129
可由高层参数配置。
当UE支持扩展符号数的PUCCH传输的重复传输,终端设备不期待被配置
Figure PCTCN2022090715-appb-000130
大于
Figure PCTCN2022090715-appb-000131
为PUCCH配置参数中最高可被配置的重复传输次数。
在一些实施例中,所述第二PUCCH传输在每个所述第一时隙上占用第一符号满足以下条件至少之一:
条件C1、所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用的起始符号相同。
条件C2、所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用相同数量个连续的第一符号。
对于条件C1、在
Figure PCTCN2022090715-appb-000132
个第一时隙上,第二PUCCH传输在
Figure PCTCN2022090715-appb-000133
个连续的第一时隙上占用的起始符号相同。可理解的,每个第一PUCCH传输的起始符号在所在的第一时隙中的相同。
在一示例中,
Figure PCTCN2022090715-appb-000134
为2。
Figure PCTCN2022090715-appb-000135
为2,第二PUCCH传输在时域上占用4个第一时隙:时隙0、时隙1、时隙2和时隙3,第1个第一PUCCH传输占用时隙0和时隙1,第2个第一PUCCH传输占用时隙2和时隙3,对于时隙0和时隙1,第二PUCCH传输在时隙0上具有起始符号,对于时隙2和时隙3,第二PUCCH传输在时隙2上具有起始符号,且在时隙0上的起始符号和在时隙2上的起始符号相同。
对于条件C2、在
Figure PCTCN2022090715-appb-000136
个第一时隙上,第二PUCCH传输在
Figure PCTCN2022090715-appb-000137
个连续的第一时隙上占用的第一符号的数量相同,且对于
Figure PCTCN2022090715-appb-000138
个第一时隙中的每
Figure PCTCN2022090715-appb-000139
个连续第一时隙,在该
Figure PCTCN2022090715-appb-000140
个连续的第一时隙上占用的第一符号连续。
在一示例中,在一示例中,
Figure PCTCN2022090715-appb-000141
为2。
Figure PCTCN2022090715-appb-000142
为2,第二PUCCH传输在时域上占用4个第一时隙:时隙0、时隙1、时隙2和时隙3,第1个第一PUCCH传输占用时隙0和时隙1,第2个第一PUCCH传输占用时隙2和时隙3,对于时隙0和时隙1,第二PUCCH传输在时隙0和时隙1上占用18个连续的符号,对于时隙2和时隙3,第二PUCCH传输在时隙2和时隙3上占用18个连续的符号。
在所述第二PUCCH传输在每
Figure PCTCN2022090715-appb-000143
个连续的所述第一时隙上占用的第一符号满足条件C1和条件C2的情况下,第二PUCCH传输在每
Figure PCTCN2022090715-appb-000144
个连续的所述第一时隙上占用的符号的位置相同。
在一示例中,如图18所示,第一PUCCH传输的重复传输次数为2,且第一PUCCH在时域上传输占用18个第一符号,则第一PUCCH传输在时域上占用2个时隙,第二PUCCH传输在时域上占用4个第一时隙:时隙0、时隙1、时隙2和时隙3,第二PUCCH传输在4个第一时隙中的每2个第一时隙上占用起始符号相同为符号4,且在每2个第一时隙上占用的第一符号的数量相同为18个,且这18个第一符号连续,其中,时隙0和时隙1用于重复传输的第1个第一PUCCH传输,时隙2和时隙3用于重复传输的第2个第一PUCCH传输。
可选地,对于一个第一PUCCH资源,如果终端设备发现可用于第一PUCCH资源的符号数小于
Figure PCTCN2022090715-appb-000145
则终端设备不在该第一PUCCH资源上发送第二PUCCH传输,但需要将这个第一PUCCH资源计数到
Figure PCTCN2022090715-appb-000146
个第一PUCCH资源中。
可理解的,第一PUCCH资源用于传输第一PUCCH传输,第一PUCCH传输为扩展符号数的PUCCH传输的情况下,第一PUCCH资源包括的第一符号数为
Figure PCTCN2022090715-appb-000147
则第二PUCCH传输在时域上占用
Figure PCTCN2022090715-appb-000148
个第一PUCCH资源。
在一些实施例中,所述第二PUCCH传输可被配置为在不同的时隙间执行跳频,或未被配置在不同的时隙间执行跳频。
可选地,高层参数时隙间跳频参数(interslotFrequencyHopping)用于指示第二PUCCH传输被配置为是否在不同的时隙间执行跳频。
第二PUCCH传输的跳频方式包括以下几种中的一种或多种:
跳频方式C1、若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每个时隙执行一次跳频。
跳频方式C2、若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每连续的第八数量个时隙执行一次跳频。
跳频方式C3、若所述第二PUCCH传输未被配置在不同的时隙间执行跳频,且被配置在时隙内的执行跳频,则每个第一时隙内的第一PRB和第二PRB间的跳频图样相同。
以跳频方式为跳频方式C1的情况下,终端设备在每个时隙执行跳频。
可选地,终端设备在偶数的时隙从第一PRB开始发送第二PUCCH传输,在奇数的时隙从第二PRB开始发送第二PUCCH传输,所述第一PRB基于第一参数配置,所述第二PRB基于第二参数配置。
可选地,第一参数为高层参数起始PRB参数(startingPRB)。
可选地,第二参数为高层参数第二跳PRB参数(secondHopPRB)。
可理解的,指示给终端设备用于第二PUCCH传输的第一个第一时隙记为时隙0,用于第二PUCCH传输的第一个时隙记为0,随后的每个时隙都被递增计数,直到计数到第六数量个时隙。
在一示例中,基于图18所示的第二PUCCH传输,在第二PUCCH传输被配置为时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则跳频结果如图19所示,第二PUCCH传输在时隙0和时隙2从第一PRB开始传输,且在时隙1和时隙3从第二PRB开始传输。
以跳频方式为跳频方式C1为例,终端设备不期待第二PUCCH传输被配置在时隙内执行跳频。
以跳频方式为跳频方式C2为例,终端设备在每第八数量个时隙执行跳频。
这里,第八数量可标识为
Figure PCTCN2022090715-appb-000149
终端设备在
Figure PCTCN2022090715-appb-000150
个连续时隙上执行跳频,即第八数量个连续的时隙为一个跳频间隔。其中,第八数量大于1。
可选地,所述第八数量为第一高层参数配置;或,所述第八数量为第一时间窗包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
可选的,第一高层参数为PUCCH-Frequencyhopping-Interval。
可选地,第一时间窗为TDW。TDW的长度可基于高层参数PUCCH-TimeDomainWindowLength配置。
在一示例中,如果提供了PUCCH-Frequencyhopping-Interval,则
Figure PCTCN2022090715-appb-000151
的值为该高层参数的值;否则,
Figure PCTCN2022090715-appb-000152
的值为PUCCH-TimeDomainWindowLength配置的TDW所包括的时隙的数量。
终端设备以第八数量个时隙为跳频间隔,在每个跳频间隔执行一次跳频,直到跳频的第一时隙的数量达到
Figure PCTCN2022090715-appb-000153
可选地,终端设备在偶数的跳频间隔上从第一PRB开始发送第二PUCCH传输,在奇数的频间隔上从第二PRB开始发送第二PUCCH传输。
可理解的,每个跳频间隔包括
Figure PCTCN2022090715-appb-000154
个时隙,用于第二PUCCH传输的第一个跳频间隔记为0,随后的每个跳频间隔都被递增计数,直到计数到第六数量个第一时隙。
在一示例中,基于图18所示的第二PUCCH传输,若第二PUCCH传输被配置为时隙间执行跳频,且被配置进行PUCCH联合信道估计,跳频间隔为2个时隙,则跳频结果如图20所示,跳频间隔0,包括时隙0和时隙1,跳频间隔1,包括时隙2和时隙3,第二PUCCH传输在跳频间隔0从第一PRB开始传输,且在跳频间隔1从第二PRB开始传输。
以跳频方式为跳频方式C2为例,终端设备不期待第二PUCCH传输被配置在时隙内执行跳频。
下面,对本申请实施例提供的无线通信方法进行进一步描述。
PUCCH覆盖增强方案包括PUCCH重复传输和PUCCH联合信道估计,但对于覆盖性能受限的通信场景,例如NTN系统,应用基于一个时隙的PUCCH传输的PUCCH覆盖增强方案仍无法满足性能要求。本申请实施例中,若将基于多时隙处理的PUCCH传输和覆盖增强方案结合,提升PUCCH传输的覆盖性能,从而满足覆盖要求。
其中,基于多时隙处理的PUCCH即第一PUCCH传输包括以下三种方案:
方案1、多时隙PUCCH传输,即第一PUCCH传输在时域上占用
Figure PCTCN2022090715-appb-000155
个时隙。
如图21所示,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000156
为4,
Figure PCTCN2022090715-appb-000157
为10,
Figure PCTCN2022090715-appb-000158
为2,则UE在
Figure PCTCN2022090715-appb-000159
个时隙:时隙0和时隙1上发送PUCCH传输,且每个时隙上起始符号索引均为4,且在每个时隙上的符号数均为10,其中,DMRS符号为PUCCH传输占用的符号中,每个时隙上的第3个和第8个符号。
方案2、多PUCCH资源的PUCCH传输即第一PUCCH传输,第一PUCCH传输对应的PUCCH资源即第一PUCCH资源在时域上包括
Figure PCTCN2022090715-appb-000160
个时域连续的PUCCH资源即第二PUCCH资源。
如图22所示,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000161
为4,
Figure PCTCN2022090715-appb-000162
为10,
Figure PCTCN2022090715-appb-000163
为2,则UE在
Figure PCTCN2022090715-appb-000164
个PUCCH资源:PUCCH资源0和PUCCH资源1上发送PUCCH传输,每个PUCCH资源占用的符号数均为10,其中,DMRS符号为PUCCH传输占用的符号中,每个时隙上的第3个和第8个符号。
方案3、扩展符号数的PUCCH传输,即PUCCH传输在时域上占用
Figure PCTCN2022090715-appb-000165
个时域连续的符号,且
Figure PCTCN2022090715-appb-000166
大于一个时隙包括的符号的数量。
如图23所示,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000167
为4,PUCCH符号数
Figure PCTCN2022090715-appb-000168
为20,则UE在
Figure PCTCN2022090715-appb-000169
个时隙:时隙0和时隙1上发送PUCCH传输,其中,DMRS符号为PUCCH传输占用的符号中,每个时隙上的第3个和第8个符号。
基于上述三种方案的多时隙处理PUCCH传输,本申请实施例提供的无线通信方法能够提供但不限于以下实施例:
实施例一、多时隙PUCCH传输与PUCCH重复传输、联合信道估计结合
对于多时隙PUCCH传输,PUCCH传输占用的时隙数为
Figure PCTCN2022090715-appb-000170
UE可以被指示在
Figure PCTCN2022090715-appb-000171
个时隙上进行PUCCH重复传输,引入多时隙PUCCH传输后,对于多时隙PUCCH传输的重复传输,UE可以将PUCCH配置参数中的重复传输次数
Figure PCTCN2022090715-appb-000172
重新解读为多时隙PUCCH传输的重复传输次数,此时UE在
Figure PCTCN2022090715-appb-000173
个时隙上发送PUCCH传输。对于多时隙PUCCH传输的重复传输即第二PUCCH传输的时隙的确定,规定如下:
对于多时隙PUCCH传输,UE基于PUCCH配置参数确定多时隙PUCCH传输的重复传输的时隙数为
Figure PCTCN2022090715-appb-000174
其中:
Figure PCTCN2022090715-appb-000175
由高层参数配置;
Figure PCTCN2022090715-appb-000176
的确定方式为:如果PUCCH资源由DCI指示并且该PUCCH的资源配置参数包含了高层参数PUCCH-nrofSlots,则
Figure PCTCN2022090715-appb-000177
由PUCCH-nrofSlots配置,否则,
Figure PCTCN2022090715-appb-000178
由高层参数nrofSlots配置;
当UE支持多时隙PUCCH传输的重复传输,UE不期待被配置
Figure PCTCN2022090715-appb-000179
大于
Figure PCTCN2022090715-appb-000180
其中,
Figure PCTCN2022090715-appb-000181
为PUCCH配置参数中最高可被配置的重复传输次数。
例如,基站在PUCCH配置参数中配置
Figure PCTCN2022090715-appb-000182
为2,
Figure PCTCN2022090715-appb-000183
为2,则UE确定多时隙PUCCH传输的重复传输的时隙数为4。此外,若在PUCCH配置参数中最高可配置的PUCCH重复传输次数为8,则UE不期待被配置为
Figure PCTCN2022090715-appb-000184
大于8。
对于多时隙PUCCH传输的重复传输,其资源确定方式规定如下:
UE在
Figure PCTCN2022090715-appb-000185
个时隙上发送PUCCH传输;
Figure PCTCN2022090715-appb-000186
个时隙上的PUCCH传输有着相同的起始符号索引
Figure PCTCN2022090715-appb-000187
由高层参数startingSymbolIndex配置;
Figure PCTCN2022090715-appb-000188
个时隙上的PUCCH传输有着相同的连续符号数
Figure PCTCN2022090715-appb-000189
由高层参数nrofSymbols配置;
对于一个时隙上的PUCCH传输,如果UE发现可用于PUCCH传输的符号数小于高层参数nrofSymbols配置的符号数
Figure PCTCN2022090715-appb-000190
则UE不在该时隙上发送PUCCH传输,但需要将这个时隙计 数到
Figure PCTCN2022090715-appb-000191
个时隙中。
在一示例中,如图24,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000192
为4,
Figure PCTCN2022090715-appb-000193
为10,
Figure PCTCN2022090715-appb-000194
为2,PUCCH重复传输次数
Figure PCTCN2022090715-appb-000195
为2,则UE在
Figure PCTCN2022090715-appb-000196
个时隙上发送PUCCH传输,且每个时隙上起始符号索引均为4,且在每个时隙上的符号数均为10。
基站绑定TDW内多个PUCCH传输的时隙上的DMRS进行联合信道估计,但需要UE在TDW内维持功率一致性和相位连续性,因此,在联合信道估计时基于多个绑定的时隙进行跳频。对于多时隙PUCCH传输的重复传输,结合联合信道估计后的跳频流程规定如下:
UE由高层参数interslotFrequencyHopping配置是否在不同时隙间的PUCCH传输执行跳频;
如果UE被配置在不同时隙间的PUCCH传输执行跳频,并且没有被配置PUCCH联合信道估计,则:
a)、UE在每个时隙执行跳频;
b)、UE在偶数的时隙从高层参数startingPRB配置的第一PRB开始发送PUCCH,在奇数的时隙从高层参数secondHopPRB配置的第二PRB开始发送PUCCH。指示给UE用于第一个PUCCH传输的时隙记为0,无论UE在这个时隙是否发送PUCCH传输,这
Figure PCTCN2022090715-appb-000197
个时隙中的每个时隙都被计数;
c)、UE不期待被配置在时隙内的PUCCH传输执行跳频。
如果UE被配置在不同时隙间的PUCCH传输执行跳频,并且没有被配置PUCCH联合信道估计,则:
a)、UE从指示发送PUCCH传输的第一个时隙开始,每
Figure PCTCN2022090715-appb-000198
个连续时隙执行跳频,如果提供了高层参数PUCCH-Frequencyhopping-Interval配置
Figure PCTCN2022090715-appb-000199
Figure PCTCN2022090715-appb-000200
为该高层参数的值;否则,
Figure PCTCN2022090715-appb-000201
为高层参数PUCCH-TimeDomainWindowLength配置的TDW长度对应的值;
b)、UE在多个跳频间隔上发送PUCCH传输,直到多个跳频间隔的时隙达到
Figure PCTCN2022090715-appb-000202
个时隙,其中,用于PUCCH传输的第一个跳频间隔记为0,随后的每个跳频间隔都被递增计数,直到
Figure PCTCN2022090715-appb-000203
个用于PUCCH传输的时隙。
c)、UE在偶数跳频间隔上从高层参数startingPRB配置的第一PRB开始发送PUCCH,在奇数跳频间隔上从高层参数secondHopPRB配置的第二PRB开始发送PUCCH;
d)、UE不期待被配置在时隙内的PUCCH传输执行跳频。
如果UE没有被配置在不同时隙间的PUCCH传输执行跳频,且如果UE被配置在时隙内的PUCCH传输执行跳频,则每个时隙内的第一PRB和第二PRB间的跳频图样相同。
在一示例中,如图25所示,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000204
为4,
Figure PCTCN2022090715-appb-000205
为10,
Figure PCTCN2022090715-appb-000206
为2,PUCCH重复传输次数
Figure PCTCN2022090715-appb-000207
为2,
Figure PCTCN2022090715-appb-000208
为2,则UE在
Figure PCTCN2022090715-appb-000209
个时隙上发送PUCCH传输,且第一跳对应时隙0和时隙1,第二跳对应时隙2和时隙3。
实施例2、多PUCCH资源的PUCCH传输与PUCCH重复传输、联合信道估计结合
对于多PUCCH资源的PUCCH传输,PUCCH传输占用的时隙数为
Figure PCTCN2022090715-appb-000210
其中,
Figure PCTCN2022090715-appb-000211
为每个时隙内的符号数。
UE可以被指示在
Figure PCTCN2022090715-appb-000212
个时隙上进行PUCCH重复传输,引入多PUCCH资源的PUCCH传输后,对于多PUCCH资源的PUCCH传输的重复传输,UE可以将PUCCH配置参数中的重复传输次数
Figure PCTCN2022090715-appb-000213
重新解读为多PUCCH资源的PUCCH传输的重复传输次数,此时UE在
Figure PCTCN2022090715-appb-000214
个PUCCH资源上发送PUCCH传输。对于多PUCCH资源的PUCCH传输的重复传输即第二PUCCH传输的时隙的确定,规定如下:
对于多PUCCH资源的PUCCH传输,UE基于PUCCH配置参数确定多PUCCH资源的PUCCH传输的重复传输的时隙数,其中:
多PUCCH资源的PUCCH传输的重复传输的时隙数为
Figure PCTCN2022090715-appb-000215
由高层参数配置;
多PUCCH资源的PUCCH传输的重复传输次数
Figure PCTCN2022090715-appb-000216
的确定方式为:如果PUCCH资源由DCI指示并且该PUCCH传输资源配置参数包含了高层参数PUCCH-nrofSlots,则
Figure PCTCN2022090715-appb-000217
由PUCCH-nrofSlots配置,否则,
Figure PCTCN2022090715-appb-000218
由高层参数nrofSlots配置;
当UE支持多PUCCH资源的PUCCH传输的重复传输,UE不期待被配置
Figure PCTCN2022090715-appb-000219
大于
Figure PCTCN2022090715-appb-000220
其中,
Figure PCTCN2022090715-appb-000221
为PUCCH配置参数中最高可被配置的重复传输次数。
例如,基站在PUCCH配置参数中配置
Figure PCTCN2022090715-appb-000222
为4,
Figure PCTCN2022090715-appb-000223
为10,
Figure PCTCN2022090715-appb-000224
为2,
Figure PCTCN2022090715-appb-000225
为2,则UE确定多PUCCH资源的PUCCH传输的重复传输的时隙数为
Figure PCTCN2022090715-appb-000226
此外,若在PUCCH配置参数中最高可配置的PUCCH重复传输次数为8,则UE不期待被配置为
Figure PCTCN2022090715-appb-000227
大于8。
对于多PUCCH资源的PUCCH传输的重复传输,其资源确定方式规定如下:
UE在
Figure PCTCN2022090715-appb-000228
个PUCCH资源上发送PUCCH传输,且每
Figure PCTCN2022090715-appb-000229
个PUCCH资源执行一次PUCCH传输的重复传输;
Figure PCTCN2022090715-appb-000230
个PUCCH资源上的PUCCH传输有着相同的连续符号数
Figure PCTCN2022090715-appb-000231
由高层参数nrofSymbols配置,并且每个PUCCH资源内有着相同的DMRS相对位置;
对于第n个PUCCH资源,传输起始位置所在的时隙为
Figure PCTCN2022090715-appb-000232
传输起始位置相对于所在时隙的符号索引为:
Figure PCTCN2022090715-appb-000233
传输结束位置所在的时隙为:
Figure PCTCN2022090715-appb-000234
传输结束位置在所在的时隙中的索引为:
Figure PCTCN2022090715-appb-000235
对于一个PUCCH资源上的PUCCH传输,如果UE发现可用于PUCCH传输的符号数小于高层参数nrofSymbols配置的符号数
Figure PCTCN2022090715-appb-000236
则UE不在该PUCCH资源上发送PUCCH传输,但需要将这个PUCCH资源计数到
Figure PCTCN2022090715-appb-000237
个PUCCH资源中。
在一示例中,如图26,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000238
为4,
Figure PCTCN2022090715-appb-000239
为10,
Figure PCTCN2022090715-appb-000240
为2,
Figure PCTCN2022090715-appb-000241
为2,
Figure PCTCN2022090715-appb-000242
为2,则UE在
Figure PCTCN2022090715-appb-000243
个PUCCH资源上发送PUCCH传输,每个PUCCH资源占用的符号数均为10,且每
Figure PCTCN2022090715-appb-000244
即2个PUCCH资源执行一次PUCCH传输的重复传输。
对于图26所述的PUCCH重复传输,第0个PUCCH资源的传输起始位置为时隙0,时隙内符号索引为4,传输结束位置为时隙0,时隙内符号索引为13;第1个PUCCH资源的传输起始位置为时隙1,时隙内符号索引为0,传输结束位置为时隙1,时隙内符号索引为9;第3个PUCCH资源的传输起始位置为时隙1,时隙内符号索引为10,传输结束位置为时隙2,时隙内符号索引为5;第4个PUCCH资源的传输起始位置为时隙2,时隙内符号索引为6,传输结束位置为时隙3,时隙内符号索引为1。
对于多PUCCH资源的PUCCH传输的重复传输,结合联合信道估计后的跳频流程规定如下:
UE由高层参数interslotFrequencyHopping配置是否在不同PUCCH资源间的PUCCH传输执行跳频;
如果UE被配置在不同PUCCH资源间的PUCCH传输执行跳频,并且没有被配置PUCCH联合信道估计,则:
a)、UE在每个PUCCH资源执行跳频;
b)、UE在偶数的PUCCH资源从高层参数startingPRB配置的第一PRB开始发送PUCCH,在奇数的PUCCH资源从高层参数secondHopPRB配置的第二PRB开始发送PUCCH。指示给UE用于 第一个PUCCH传输的PUCCH资源记为0,无论UE在这个PUCCH资源是否发送PUCCH传输,这
Figure PCTCN2022090715-appb-000245
个PUCCH资源中的每个PUCCH资源都被计数;
c)、UE不期待被配置在PUCCH资源内的PUCCH传输执行跳频。
如果UE被配置在不同PUCCH资源间的PUCCH传输执行跳频,并且没有被配置PUCCH联合信道估计,则:
a)、UE从指示发送PUCCH传输的第一个PUCCH资源开始,每
Figure PCTCN2022090715-appb-000246
个连续PUCCH资源执行跳频,如果提供了高层参数PUCCH-Frequencyhopping-Interval配置
Figure PCTCN2022090715-appb-000247
Figure PCTCN2022090715-appb-000248
为该高层参数的值;否则,
Figure PCTCN2022090715-appb-000249
为高层参数PUCCH-TimeDomainWindowLength配置的TDW包括的PUCCH资源的值;
b)、UE在多个跳频间隔上发送PUCCH传输,直到多个跳频间隔的PUCCH资源达到
Figure PCTCN2022090715-appb-000250
个PUCCH资源,其中,用于PUCCH传输的第一个跳频间隔记为0,随后的每个跳频间隔都被递增计数,直到
Figure PCTCN2022090715-appb-000251
个用于PUCCH传输的PUCCH资源。
c)、UE在偶数跳频间隔上从高层参数startingPRB配置的第一PRB开始发送PUCCH,在奇数跳频间隔上从高层参数secondHopPRB配置的第二PRB开始发送PUCCH;
d)、UE不期待被配置在PUCCH资源内的PUCCH传输执行跳频。
如果UE没有被配置在不同PUCCH资源间的PUCCH传输执行跳频,且如果UE被配置在PUCCH资源内的PUCCH传输执行跳频,则每个PUCCH资源内的第一PRB和第二PRB间的跳频图样相同。
在一示例中,如图27所示,对于PUCCH格式3,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000252
为4,
Figure PCTCN2022090715-appb-000253
为10,
Figure PCTCN2022090715-appb-000254
为2,
Figure PCTCN2022090715-appb-000255
为2,
Figure PCTCN2022090715-appb-000256
为2,
Figure PCTCN2022090715-appb-000257
为2,则UE在
Figure PCTCN2022090715-appb-000258
个连续的PUCCH资源上发送PUCCH传输,且第一跳对应第0个PUCCH资源和第1个PUCCH资源,第二跳对应第2个PUCCH资源和第3个PUCCH资源。
实施例三、扩展符号数的PUCCH传输与PUCCH重复传输、联合信道估计结合
对于扩展符号数的PUCCH传输,扩展符号数的PUCCH传输占用的符号数为
Figure PCTCN2022090715-appb-000259
Figure PCTCN2022090715-appb-000260
大于14,扩展符号数的PUCCH传输占用的时隙数为
Figure PCTCN2022090715-appb-000261
UE可以被指示在
Figure PCTCN2022090715-appb-000262
个时隙上进行PUCCH重复传输,引入扩展符号数的PUCCH传输后,对于扩展符号数的PUCCH传输的重复传输,UE可以将PUCCH配置参数中的重复传输次数
Figure PCTCN2022090715-appb-000263
重新解读为扩展符号数的PUCCH传输的重复传输次数,此时UE在
Figure PCTCN2022090715-appb-000264
个扩展符号数的PUCCH资源上发送PUCCH传输。对于扩展符号数的PUCCH传输的重复传输即第二PUCCH传输的时隙的确定,规定如下:
对于扩展符号数的PUCCH传输,UE基于PUCCH配置参数确定扩展符号数的PUCCH传输的重复传输的时隙数为
Figure PCTCN2022090715-appb-000265
其中:
扩展符号数的PUCCH传输占用的时隙数为:
Figure PCTCN2022090715-appb-000266
扩展符号数的PUCCH传输的重复传输次数
Figure PCTCN2022090715-appb-000267
的确定方式为:如果PUCCH资源由DCI指示并且该PUCCH的资源配置参数包含了高层参数PUCCH-nrofSlots,则
Figure PCTCN2022090715-appb-000268
由PUCCH-nrofSlots配置,否则,
Figure PCTCN2022090715-appb-000269
由高层参数nrofSlots配置;
当UE支持扩展符号数的PUCCH传输的重复传输,UE不期待被配置
Figure PCTCN2022090715-appb-000270
大于
Figure PCTCN2022090715-appb-000271
其中,
Figure PCTCN2022090715-appb-000272
为PUCCH配置参数中最高可被配置的重复传输次数。
例如,基站在PUCCH配置参数中配置
Figure PCTCN2022090715-appb-000273
为4,
Figure PCTCN2022090715-appb-000274
为20,
Figure PCTCN2022090715-appb-000275
为2,则UE确 定扩展符号数的PUCCH传输占用的时隙数
Figure PCTCN2022090715-appb-000276
为2,扩展符号数的PUCCH传输的重复传输占用的时隙数为4。此外,若在PUCCH配置参数中最高可配置的PUCCH重复传输次数为8,则UE不期待被配置为
Figure PCTCN2022090715-appb-000277
大于8。
对于扩展符号数的PUCCH传输的重复传输,其资源确定方式规定如下:
UE在
Figure PCTCN2022090715-appb-000278
个时隙上发送PUCCH传输,其中每
Figure PCTCN2022090715-appb-000279
个时隙执行一次PUCCH传输的重复传输;
Figure PCTCN2022090715-appb-000280
个时隙上的PUCCH传输有着相同的起始符号索引
Figure PCTCN2022090715-appb-000281
和相同的连续符号数
Figure PCTCN2022090715-appb-000282
由高层参数startingSymbolIndex配置,
Figure PCTCN2022090715-appb-000283
由高层参数nrofSymbol配置s;
对于一个PUCCH资源上的PUCCH传输,如果UE发现可用于PUCCH传输的符号数小于高层参数nrofSymbols配置的符号数
Figure PCTCN2022090715-appb-000284
则UE不在该PUCCH资源上发送PUCCH传输,但需要将这个PUCCH资源计数到
Figure PCTCN2022090715-appb-000285
个PUCCH资源中。
在一示例中,如图28,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000286
为4,
Figure PCTCN2022090715-appb-000287
为20,PUCCH重复传输次数
Figure PCTCN2022090715-appb-000288
为2,则UE在
Figure PCTCN2022090715-appb-000289
个时隙上发送PUCCH传输,其中,每
Figure PCTCN2022090715-appb-000290
为2个时隙执行一次PUCCH传输的重复传输,且每个起始符号索引均为4,且在每
Figure PCTCN2022090715-appb-000291
个时隙上的符号数均为20。
对于扩展符号数的PUCCH传输的重复传输,结合联合信道估计后的跳频流程规定如下:
UE由高层参数interslotFrequencyHopping配置是否在不同时隙间的PUCCH传输执行跳频;
如果UE被配置在不同时隙间的PUCCH传输执行跳频,并且没有被配置PUCCH联合信道估计,则:
a)、UE在每个时隙执行跳频;
b)、UE在偶数的时隙从高层参数startingPRB配置的第一PRB开始发送PUCCH,在奇数的时隙从高层参数secondHopPRB配置的第二PRB开始发送PUCCH。指示给UE用于第一个PUCCH传输的时隙记为0,无论UE在这个时隙是否发送PUCCH传输,这
Figure PCTCN2022090715-appb-000292
个时隙中的每个时隙都被计数;
c)、UE不期待被配置在时隙内的PUCCH传输执行跳频。
如果UE被配置在不同时隙间的PUCCH传输执行跳频,并且没有被配置PUCCH联合信道估计,则:
a)、UE从指示发送PUCCH传输的第一个时隙开始,每
Figure PCTCN2022090715-appb-000293
个连续时隙执行跳频,如果提供了高层参数PUCCH-Frequencyhopping-Interval配置
Figure PCTCN2022090715-appb-000294
Figure PCTCN2022090715-appb-000295
为该高层参数的值;否则,
Figure PCTCN2022090715-appb-000296
为高层参数PUCCH-TimeDomainWindowLength配置的TDW长度对应的值;
b)、UE在多个跳频间隔上发送PUCCH传输,直到多个跳频间隔的时隙达到
Figure PCTCN2022090715-appb-000297
个时隙,其中,用于PUCCH传输的第一个跳频间隔记为0,随后的每个跳频间隔都被递增计数,直到
Figure PCTCN2022090715-appb-000298
个用于PUCCH传输的时隙。
c)、UE在偶数跳频间隔上从高层参数startingPRB配置的第一PRB开始发送PUCCH,在奇数跳频间隔上从高层参数secondHopPRB配置的第二PRB开始发送PUCCH;
d)、UE不期待被配置在时隙内的PUCCH传输执行跳频。
如果UE没有被配置在不同时隙间的PUCCH传输执行跳频,且如果UE被配置在时隙内的PUCCH传输执行跳频,则每个时隙内的第一PRB和第二PRB间的跳频图样相同。
在一示例中,如图29所示,对于PUCCH格式3,若配置起始符号索引
Figure PCTCN2022090715-appb-000299
为4,
Figure PCTCN2022090715-appb-000300
为20,PUCCH重复传输次数
Figure PCTCN2022090715-appb-000301
为2,
Figure PCTCN2022090715-appb-000302
为2,则UE在
Figure PCTCN2022090715-appb-000303
个时隙上发送PUCCH传输,且第一跳对应时隙0和时隙1,第二跳对应时隙2和时隙3。
本申请实施例提供的无线通信方法,提供基于多时隙处理的PUCCH传输的覆盖增强方案,可以实施为:
1)、多时隙PUCCH传输与PUCCH增强方案结合,实现基于多时隙PUCCH重复传输和PUCCH联合信道估计;
2)、多PUCCH资源的PUCCH传输与PUCCH增强方案结合,能够在时域连续的多个PUCCH资源上发送UCI,更加充分利用时域资源;
3)、可以扩展PUCCH资源可配置符号数,将扩展符号数的PUCCH传输与PUCCH增强方案结合,实现基于多时隙PUCCH传输的重复传输和PUCCH联合信道估计,无需引入额外的配置参数。
本申请实施例提供的无线通信方法,适用于任意应用多时隙确定PUCCH传输的系统,比如:NTN系统。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图30是本申请实施例提供的无线通信装置的结构组成示意图,应用于终端设备,如图30所示,所述无线通信装置包括:
接收单元3001,配置为接收网络设备发送的第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
在一些实施例中,接收单元3001还配置为:
接收所述网络设备发送的第二信息,所述第二信息用于指示所述至少两个第一时隙。
在一些实施例中,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息指示第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量;
第二指示信息,所述第二指示信息指示第二数量,第一PUCCH资源在时域上包括所述第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量;
第三指示信息,所述第三指示信息指示第四数量,所述第一PUCCH传输在时域上包括所述第四数量个连续的第一符号,所述第四数量大于所述第三数量。
在一些实施例中,所述第一信息用于指示第五数量,所述第五数量为第二PUCCH传输包括的所述第一PUCCH传输的数量,所述第二PUCCH传输为所述第一PUCCH传输的重复传输。
在一些实施例中,所述第二PUCCH传输在时域上占用第六数量个第一时隙,所述第六数量基于所述第五数量和第七数量确定,所述第七数量基于第二信息确定,所述第二信息用于指示所述至少两个第一时隙。
在一些实施例中,若所述第二信息包括第一指示信息,所述第一指示信息指示第一数量,则所述第七数量为所述第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量。
在一些实施例中,所述第六数量为所述第五数量与所述第一数量的乘积,每所述第一数量个所述第一时隙执行一次所述第一PUCCH传输的重复传输。
在一些实施例中,所述第二PUCCH传输在每个所述第一时隙上占用的起始符号相同。
在一些实施例中,所述第二PUCCH传输在每个第一时隙上占用相同数量个连续的第一符号。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每个时隙执行一次跳频。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,并被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每第八数量个连续的时隙执行一次跳频。
在一些实施例中,所述第八数量为第一高层参数配置;或,
所述第八数量为第一时间窗包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
在一些实施例中,若所述第二信息包括第二指示信息,所述第二指示信息指示第二数量,则所述第七数量为所述第二数量,第一PUCCH资源在时域上包括第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量。
在一些实施例中,所述第一PUCCH资源在时域上包括第二数量个连续的第二PUCCH资源。
在一些实施例中,所述第二PUCCH传输在时域上占用第九数量个时域连续的第二PUCCH资源,所述第九数量为所述第五数量与所述第二数量的乘积,每所述第二数量个所述第二PUCCH资源执行一次所述第一PUCCH传输的重复传输。
在一些实施例中,所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号。
在一些实施例中,若所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号,所述第六数量为:
Figure PCTCN2022090715-appb-000304
所述
Figure PCTCN2022090715-appb-000305
为配置的所述第一PUCCH传输的起始符号的索引,所述
Figure PCTCN2022090715-appb-000306
为所述第五数量,所述
Figure PCTCN2022090715-appb-000307
为所述第二数量,所述
Figure PCTCN2022090715-appb-000308
为所述第二PUCCH资源包括的符号的数量,所述
Figure PCTCN2022090715-appb-000309
为所述第三数量。
在一些实施例中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个第二PUCCH资源执行一次跳频。
在一些实施例中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的第二PUCCH资源执行一次跳频。
在一些实施例中,所述第八数量为第一高层参数配置;或,
所述第八数量为第一时间窗在时域上包括的所述第二PUCCH资源的数量,所述第一时间窗用于PUCCH联合信道估计。
在一些实施例中,若所述第二信息包括第三指示信息,所述第三指示信息指示第四数量,则所述第七数量为所述第四数量,所述第一PUCCH传输在时域上占用所述第四数量个连续的第一符号,所述第四数量大于所述第三数量,所述第三数量为一个时隙包括的符号的数量。
在一些实施例中,所述第二PUCCH传输在时域上占用所述第六数量个连续的第一时隙,所述第六数量为所述第五数量与第十数量的乘积,每所述第十数量个连续的所述第一时隙执行一次所述第一PUCCH传输的重复传输,所述第十数量基于所述第四数量确定。
在一些实施例中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用的起始符号相同。
在一些实施例中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用相同数量个连续的第一符号。
在一些实施例中,所述第十数量为:
Figure PCTCN2022090715-appb-000310
所述
Figure PCTCN2022090715-appb-000311
为所述第一PUCCH传输的起始符号的索引,所述
Figure PCTCN2022090715-appb-000312
为所述第四数量,所述
Figure PCTCN2022090715-appb-000313
为所述第三数量。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个时隙执行一次跳频。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且被配置进行 PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的时隙执行一次跳频。
在一些实施例中,所述第八数量为第一高层参数配置;或,
所述第八数量为第一时间窗在时域上包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
图31是本申请实施例提供的无线通信装置的结构组成示意图,应用于网络设备,如图31所示,所述无线通信装置包括:
发送单元3101,配置为向终端设备发送第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
在一些实施例中,发送单元3101还配置为向所述终端设备发送第二信息,所述第二信息用于指示所述至少两个第一时隙。
在一些实施例中,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息指示第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量;
第二指示信息,所述第二指示信息指示第二数量,第一PUCCH资源在时域上包括所述第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量;
第三指示信息,所述第三指示信息指示第四数量,所述第一PUCCH传输在时域上包括所述第四数量个连续的第一符号,所述第四数量大于所述第三数量。
在一些实施例中,所述第一信息用于指示第五数量,所述第五数量为第二PUCCH传输包括的所述第一PUCCH传输的数量,所述第二PUCCH传输为所述第一PUCCH传输的重复传输。
在一些实施例中,所述第二PUCCH传输在时域上占用第六数量个第一时隙,所述第六数量基于所述第五数量和第七数量确定,所述第七数量基于第二信息确定,所述第二信息用于指示所述至少两个第一时隙。
在一些实施例中,若所述第二信息包括第一指示信息,所述第一指示信息指示第一数量,则所述第七数量为所述第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量。
在一些实施例中,所述第六数量为所述第五数量与所述第一数量的乘积,每所述第一数量个所述第一时隙执行一次所述第一PUCCH传输的重复传输。
在一些实施例中,所述第二PUCCH传输在每个所述第一时隙上占用的起始符号相同。
在一些实施例中,所述第二PUCCH传输在每个第一时隙上占用相同数量个连续的第一符号。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每个时隙执行一次跳频。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,并被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每第八数量个连续的时隙执行一次跳频。
在一些实施例中,所述第八数量为第一高层参数配置;或,
所述第八数量为第一时间窗包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
在一些实施例中,若所述第二信息包括第二指示信息,所述第二指示信息指示第二数量,则所述第七数量为所述第二数量,第一PUCCH资源在时域上包括第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量。
在一些实施例中,所述第一PUCCH资源在时域上包括第二数量个连续的第二PUCCH资源。
在一些实施例中,所述第二PUCCH传输在时域上占用第九数量个时域连续的第二PUCCH资源,所述第九数量为所述第五数量与所述第二数量的乘积,每所述第二数量个所述第二PUCCH资源执行一次所述第一PUCCH传输的重复传输。
在一些实施例中,所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号。
在一些实施例中,若所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号,所述第六数量为:
Figure PCTCN2022090715-appb-000314
所述
Figure PCTCN2022090715-appb-000315
为配置的所述第一PUCCH传输的起始符号的索引,所述
Figure PCTCN2022090715-appb-000316
为所述第五数量,所述
Figure PCTCN2022090715-appb-000317
为所述第二数量,所述
Figure PCTCN2022090715-appb-000318
为所述第二PUCCH资源包括的符号的数量,所述
Figure PCTCN2022090715-appb-000319
为所述第三数量。
在一些实施例中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个第二PUCCH资源执行一次跳频。
在一些实施例中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的第二PUCCH资源执行一次跳频。
在一些实施例中,所述第八数量为第一高层参数配置;或,
所述第八数量为第一时间窗在时域上包括的所述第二PUCCH资源的数量,所述第一时间窗用于PUCCH联合信道估计。
在一些实施例中,若所述第二信息包括第三指示信息,所述第三指示信息指示第四数量,则所述第七数量为所述第四数量,所述第一PUCCH传输在时域上占用所述第四数量个连续的第一符号,所述第四数量大于所述第三数量,所述第三数量为一个时隙包括的符号的数量。
在一些实施例中,所述第二PUCCH传输在时域上占用所述第六数量个连续的第一时隙,所述第六数量为所述第五数量与第十数量的乘积,每所述第十数量个连续的所述第一时隙执行一次所述第一PUCCH传输的重复传输,所述第十数量基于所述第四数量确定。
在一些实施例中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用的起始符号相同。
在一些实施例中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用相同数量个连续的第一符号。
在一些实施例中,所述第十数量为:
Figure PCTCN2022090715-appb-000320
所述
Figure PCTCN2022090715-appb-000321
为所述第一PUCCH传输的起始符号的索引,所述
Figure PCTCN2022090715-appb-000322
为所述第四数量,所述
Figure PCTCN2022090715-appb-000323
为所述第三数量。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个时隙执行一次跳频。
在一些实施例中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的时隙执行一次跳频。
在一些实施例中,所述第八数量为第一高层参数配置;或,
所述第八数量为第一时间窗在时域上包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图32是本申请实施例提供的一种通信设备3200示意性结构图。该通信设备可以为终端设备或网络设备。图32所示的通信设备3200包括处理器3210,处理器3210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图32所示,通信设备3200还可以包括存储器3220。其中,处理器3210可以从存储器3220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器3220可以是独立于处理器3210的一个单独的器件,也可以集成在处理器3210中。
可选地,如图32所示,通信设备3200还可以包括收发器3230,处理器3210可以控制该收发器3230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器3230可以包括发射机和接收机。收发器3230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备3200具体可为本申请实施例的网络设备,并且该通信设备3200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备3200具体可为本申请实施例的移动终端/终端设备,并且该通信设备3200可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘 述。
图33是本申请实施例的芯片的示意性结构图。图33所示的芯片3300包括处理器3310,处理器3310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图33所示,芯片3300还可以包括存储器3320。其中,处理器3310可以从存储器3320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器3320可以是独立于处理器3310的一个单独的器件,也可以集成在处理器3310中。
可选地,该芯片3300还可以包括输入接口3330。其中,处理器3310可以控制该输入接口3330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片3300还可以包括输出接口3340。其中,处理器3310可以控制该输出接口3340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图34是本申请实施例提供的一种通信系统3400的示意性框图。如图34所示,该通信系统3400包括终端设备3410和网络设备3420。
其中,该终端设备3410可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备3420可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (63)

  1. 一种无线通信方法,所述方法包括:
    终端设备接收网络设备发送的第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二信息,所述第二信息用于指示所述至少两个第一时隙。
  3. 根据权利要求2所述的方法,其中,所述第二信息包括以下至少之一:
    第一指示信息,所述第一指示信息指示第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量;
    第二指示信息,所述第二指示信息指示第二数量,第一PUCCH资源在时域上包括所述第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量;
    第三指示信息,所述第三指示信息指示第四数量,所述第一PUCCH传输在时域上包括所述第四数量个连续的第一符号,所述第四数量大于所述第三数量。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一信息用于指示第五数量,所述第五数量为第二PUCCH传输包括的所述第一PUCCH传输的数量,所述第二PUCCH传输为所述第一PUCCH传输的重复传输。
  5. 根据权利要求4所述的方法,其中,所述第二PUCCH传输在时域上占用第六数量个第一时隙,所述第六数量基于所述第五数量和第七数量确定,所述第七数量基于第二信息确定,所述第二信息用于指示所述至少两个第一时隙。
  6. 根据权利要求5所述的方法,其中,若所述第二信息包括第一指示信息,所述第一指示信息指示第一数量,则所述第七数量为所述第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量。
  7. 根据权利要求6所述的方法,其中,所述第六数量为所述第五数量与所述第一数量的乘积,每所述第一数量个所述第一时隙执行一次所述第一PUCCH传输的重复传输。
  8. 根据权利要求6或7所述的方法,其中,所述第二PUCCH传输在每个所述第一时隙上占用的起始符号相同。
  9. 根据权利要求7至8中任一项所述的方法,其中,所述第二PUCCH传输在每个第一时隙上占用相同数量个连续的第一符号。
  10. 根据权利要求6至9中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每个时隙执行一次跳频。
  11. 根据权利要求6至9中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,并被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每第八数量个连续的时隙执行一次跳频。
  12. 根据权利要求11所述的方法,其中,所述第八数量为第一高层参数配置;或,
    所述第八数量为第一时间窗包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
  13. 根据权利要求5所述的方法,其中,若所述第二信息包括第二指示信息,所述第二指示信息指示第二数量,则所述第七数量为所述第二数量,第一PUCCH资源在时域上包括第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量。
  14. 根据权利要求13所述的方法,其中,所述第一PUCCH资源在时域上包括第二数量个连续的第二PUCCH资源。
  15. 根据权利要求14所述的方法,其中,所述第二PUCCH传输在时域上占用第九数量个时域连续的第二PUCCH资源,所述第九数量为所述第五数量与所述第二数量的乘积,每所述第二数量个所述第二PUCCH资源执行一次所述第一PUCCH传输的重复传输。
  16. 根据权利要求13至15中任一项所述的方法,其中,所述第二PUCCH传输在每个所述 第二PUCCH资源上占用相同数量个连续的第一符号。
  17. 根据权利要求14至16中任一项所述的方法,其中,若所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号,所述第六数量为:
    Figure PCTCN2022090715-appb-100001
    所述
    Figure PCTCN2022090715-appb-100002
    为配置的所述第一PUCCH传输的起始符号的索引,所述
    Figure PCTCN2022090715-appb-100003
    为所述第五数量,所述
    Figure PCTCN2022090715-appb-100004
    为所述第二数量,所述
    Figure PCTCN2022090715-appb-100005
    为所述第二PUCCH资源包括的符号的数量,所述
    Figure PCTCN2022090715-appb-100006
    为所述第三数量。
  18. 根据权利要求13至17中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个第二PUCCH资源执行一次跳频。
  19. 根据权利要求13至17中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的第二PUCCH资源执行一次跳频。
  20. 根据权利要求19所述的方法,其中,所述第八数量为第一高层参数配置;或,
    所述第八数量为第一时间窗在时域上包括的所述第二PUCCH资源的数量,所述第一时间窗用于PUCCH联合信道估计。
  21. 根据权利要求5所述的方法,其中,若所述第二信息包括第三指示信息,所述第三指示信息指示第四数量,则所述第七数量为所述第四数量,所述第一PUCCH传输在时域上占用所述第四数量个连续的第一符号,所述第四数量大于所述第三数量,所述第三数量为一个时隙包括的符号的数量。
  22. 根据权利要求21所述的方法,其中,所述第二PUCCH传输在时域上占用所述第六数量个连续的第一时隙,所述第六数量为所述第五数量与第十数量的乘积,每所述第十数量个连续的所述第一时隙执行一次所述第一PUCCH传输的重复传输,所述第十数量基于所述第四数量确定。
  23. 根据权利要求22所述的方法,其中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用的起始符号相同。
  24. 根据权利要求22或23所述的方法,其中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用相同数量个连续的第一符号。
  25. 根据权利要求22至24中任一项所述的方法,其中,所述第十数量为:
    Figure PCTCN2022090715-appb-100007
    所述
    Figure PCTCN2022090715-appb-100008
    为配置的所述第一PUCCH传输的起始符号的索引,所述
    Figure PCTCN2022090715-appb-100009
    为所述第四数量,所述
    Figure PCTCN2022090715-appb-100010
    为所述第三数量。
  26. 根据权利要求21至25中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个时隙执行一次跳频。
  27. 根据权利要求21至25中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的时隙执行一次跳频。
  28. 根据权利要求27所述的方法,其中,所述第八数量为第一高层参数配置;或,
    所述第八数量为第一时间窗在时域上包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
  29. 一种无线通信方法,所述方法包括:
    网络设备向终端设备发送的第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
  30. 根据权利要求29所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述至少两个第一时隙。
  31. 根据权利要求30所述的方法,其中,所述第二信息包括以下至少之一:
    第一指示信息,所述第一指示信息指示第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量;
    第二指示信息,所述第二指示信息指示第二数量,第一PUCCH资源在时域上包括所述第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH 资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量;
    第三指示信息,所述第三指示信息指示第四数量,所述第一PUCCH传输在时域上包括所述第四数量个连续的第一符号,所述第四数量大于所述第三数量。
  32. 根据权利要求29至31中任一项所述的方法,其中,所述第一信息用于指示第五数量,所述第五数量为第二PUCCH传输包括的所述第一PUCCH传输的数量,所述第二PUCCH传输为所述第一PUCCH传输的重复传输。
  33. 根据权利要求32所述的方法,其中,所述第二PUCCH传输在时域上占用第六数量个第一时隙,所述第六数量基于所述第五数量和第七数量确定,所述第七数量基于第二信息确定,所述第二信息用于指示所述至少两个第一时隙。
  34. 根据权利要求33所述的方法,其中,若所述第二信息包括第一指示信息,所述第一指示信息指示第一数量,则所述第七数量为所述第一数量,所述第一数量为所述至少两个第一时隙所包括的第一时隙的数量。
  35. 根据权利要求34所述的方法,其中,所述第六数量为所述第五数量与所述第一数量的乘积,每所述第一数量个所述第一时隙执行一次所述第一PUCCH传输的重复传输。
  36. 根据权利要求34或35所述的方法,其中,所述第二PUCCH传输在每个所述第一时隙上占用的起始符号相同。
  37. 根据权利要求35至36中任一项所述的方法,其中,所述第二PUCCH传输在每个第一时隙上占用相同数量个连续的第一符号。
  38. 根据权利要求34至37中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每个时隙执行一次跳频。
  39. 根据权利要求34至37中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,并被配置进行PUCCH联合信道估计,则所述第二PUCCH传输每第八数量个连续的时隙执行一次跳频。
  40. 根据权利要求39所述的方法,其中,所述第八数量为第一高层参数配置;或,
    所述第八数量为第一时间窗包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
  41. 根据权利要求33所述的方法,其中,若所述第二信息包括第二指示信息,所述第二指示信息指示第二数量,则所述第七数量为所述第二数量,第一PUCCH资源在时域上包括第二数量个第二PUCCH资源,所述第一PUCCH资源用于所述第一PUCCH传输,所述第二PUCCH资源在时域上包括的符号数小于或等于第三数量,所述第三数量为一个时隙包括的符号的数量。
  42. 根据权利要求41所述的方法,其中,所述第一PUCCH资源在时域上包括第二数量个连续的第二PUCCH资源。
  43. 根据权利要求42所述的方法,其中,所述第二PUCCH传输在时域上占用第九数量个时域连续的第二PUCCH资源,所述第九数量为所述第五数量与所述第二数量的乘积,每所述第二数量个所述第二PUCCH资源执行一次所述第一PUCCH传输的重复传输。
  44. 根据权利要求41至43中任一项所述的方法,其中,所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号。
  45. 根据权利要求42至44中任一项所述的方法,其中,若所述第二PUCCH传输在每个所述第二PUCCH资源上占用相同数量个连续的第一符号,所述第六数量为:
    Figure PCTCN2022090715-appb-100011
    所述
    Figure PCTCN2022090715-appb-100012
    为配置的所述第一PUCCH传输的起始符号的索引,所述
    Figure PCTCN2022090715-appb-100013
    为所述第五数量,所述
    Figure PCTCN2022090715-appb-100014
    为所述第二数量,所述
    Figure PCTCN2022090715-appb-100015
    为所述第二PUCCH资源包括的符号的数量,所述
    Figure PCTCN2022090715-appb-100016
    为所述第三数量。
  46. 根据权利要求41至45中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个第二PUCCH资源执行一次跳频。
  47. 根据权利要求41至45中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的第二PUCCH资源间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的第二PUCCH资源执行一次跳频。
  48. 根据权利要求47所述的方法,其中,所述第八数量为第一高层参数配置;或,
    所述第八数量为第一时间窗在时域上包括的所述第二PUCCH资源的数量,所述第一时间窗用于PUCCH联合信道估计。
  49. 根据权利要求33所述的方法,其中,若所述第二信息包括第三指示信息,所述第三指示信息指示第四数量,则所述第七数量为所述第四数量,所述第一PUCCH传输在时域上占用所述第四数量个连续的第一符号,所述第四数量大于所述第三数量,所述第三数量为一个时隙包括的符号的数量。
  50. 根据权利要求49所述的方法,其中,所述第二PUCCH传输在时域上占用所述第六数量个连续的第一时隙,所述第六数量为所述第五数量与第十数量的乘积,每所述第十数量个连续的所述第一时隙执行一次所述第一PUCCH传输的重复传输,所述第十数量基于所述第四数量确定。
  51. 根据权利要求50所述的方法,其中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用的起始符号相同。
  52. 根据权利要求50或51所述的方法,其中,所述第二PUCCH传输在每所述第十数量个连续的所述第一时隙上占用相同数量个连续的第一符号。
  53. 根据权利要求50至52中任一项所述的方法,其中,所述第十数量为:
    Figure PCTCN2022090715-appb-100017
    所述
    Figure PCTCN2022090715-appb-100018
    为配置的所述第一PUCCH传输的起始符号的索引,所述
    Figure PCTCN2022090715-appb-100019
    为所述第四数量,所述
    Figure PCTCN2022090715-appb-100020
    为所述第三数量。
  54. 根据权利要求49至53中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且未被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每一个时隙执行一次跳频。
  55. 根据权利要求49至53中任一项所述的方法,其中,若所述第二PUCCH传输被配置在不同的时隙间执行跳频,且被配置进行PUCCH联合信道估计,则所述第二PUCCH传输在每第八数量个连续的时隙执行一次跳频。
  56. 根据权利要求55所述的方法,其中,所述第八数量为第一高层参数配置;或,
    所述第八数量为第一时间窗在时域上包括的时隙的数量,所述第一时间窗用于PUCCH联合信道估计。
  57. 一种无线通信装置,应用于终端设备,包括:
    接收单元,配置为接收第一信息,所述第一信息用于指示第一物理上行控制信道PUCCH传输的重复传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
  58. 一种无线通信装置,应用于网络设备,包括:
    发送单元,配置为向终端设备发送第一信息,所述第一信息用于指示重复第一物理上行控制信道PUCCH传输,所述第一PUCCH传输基于至少两个第一时隙进行传输。
  59. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至28中任一项所述的方法,或者执行如权利要求29至56中任一项所述的方法。
  60. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备,执行如权利要求1至28中任一项所述的方法,或者执行如权利要求29至56中任一项所述的方法。
  61. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机,执行如权利要求1至28中任一项所述的方法,或者执行如权利要求29至56中任一项所述的方法。
  62. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机,执行如权利要求1至28中任一项所述的方法,或者执行如权利要求29至56中任一项所述的方法。
  63. 一种计算机程序,所述计算机程序使得计算机,执行如权利要求1至28中任一项所述的方法,或者执行如权利要求29至56中任一项所述的方法。
PCT/CN2022/090715 2022-04-29 2022-04-29 一种无线通信方法及装置、通信设备 WO2023206554A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280086324.4A CN118511618A (zh) 2022-04-29 2022-04-29 一种无线通信方法及装置、通信设备
PCT/CN2022/090715 WO2023206554A1 (zh) 2022-04-29 2022-04-29 一种无线通信方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090715 WO2023206554A1 (zh) 2022-04-29 2022-04-29 一种无线通信方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2023206554A1 true WO2023206554A1 (zh) 2023-11-02

Family

ID=88517045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090715 WO2023206554A1 (zh) 2022-04-29 2022-04-29 一种无线通信方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN118511618A (zh)
WO (1) WO2023206554A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340001A (zh) * 2020-09-28 2022-04-12 华为技术有限公司 一种上行控制信道的传输方法、装置、存储介质及芯片
CN114375046A (zh) * 2020-10-15 2022-04-19 北京紫光展锐通信技术有限公司 Pucch重复传输方法及相关装置
WO2022077983A1 (en) * 2020-10-16 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for pucch coverage enhancement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340001A (zh) * 2020-09-28 2022-04-12 华为技术有限公司 一种上行控制信道的传输方法、装置、存储介质及芯片
CN114375046A (zh) * 2020-10-15 2022-04-19 北京紫光展锐通信技术有限公司 Pucch重复传输方法及相关装置
WO2022077983A1 (en) * 2020-10-16 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for pucch coverage enhancement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On support of Long PUCCH over multiple slots", 3GPP DRAFT; R1-1711492_ON_SUPPORT_OF_LONG_PUCCH_OVER_MULTIPLE_SLOTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051300677 *
NOKIA, NOKIA SHANGHAI BELL: "Discussion on approaches and solutions for NR PUCCH coverage enhancement", 3GPP DRAFT; R1-2008704, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051940311 *

Also Published As

Publication number Publication date
CN118511618A (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
CN116455529A (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
CN115580380A (zh) 无线通信的方法及装置
CN115804202B (zh) 无线通信方法、终端设备和网络设备
CN114762421B (zh) 用于确定混合自动重传请求信息的方法、终端设备和网络设备
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
CN114731238B (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
CN116548039A (zh) 无线通信的方法和终端设备
CN115399025A (zh) 无线通信方法、终端设备和网络设备
WO2023206554A1 (zh) 一种无线通信方法及装置、通信设备
CN116114197B (zh) 无线通信的方法、终端设备和网络设备
WO2023206564A1 (zh) 一种无线通信方法及装置、通信设备
WO2022067528A1 (zh) 信道传输的方法、终端设备和网络设备
CN116438760A (zh) 信道反馈方法、终端设备和网络设备
CN116114198B (zh) 传输方法、发送端设备和接收端设备
WO2024174177A1 (zh) 通信方法、装置、终端设备、介质、芯片、产品及程序
WO2023206419A1 (zh) 无线通信方法、终端设备和网络设备
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050401A1 (zh) 无线通信方法和设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
EP4090110B1 (en) Channel processing method, apparatus, device and storage medium
WO2023108642A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2023123199A1 (zh) 无线通信的方法、终端设备和网络设备
EP4404489A1 (en) Wireless communication method, first terminal device and second terminal device
EP4340494A1 (en) Wireless communication method, terminal device, and network device
CN116170116B (zh) 信道处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939398

Country of ref document: EP

Kind code of ref document: A1