WO2023206541A1 - 上行传输方法及装置、存储介质 - Google Patents

上行传输方法及装置、存储介质 Download PDF

Info

Publication number
WO2023206541A1
WO2023206541A1 PCT/CN2022/090684 CN2022090684W WO2023206541A1 WO 2023206541 A1 WO2023206541 A1 WO 2023206541A1 CN 2022090684 W CN2022090684 W CN 2022090684W WO 2023206541 A1 WO2023206541 A1 WO 2023206541A1
Authority
WO
WIPO (PCT)
Prior art keywords
sul
terminal
uplink
uplink transmission
target
Prior art date
Application number
PCT/CN2022/090684
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001424.2A priority Critical patent/CN117158092A/zh
Priority to PCT/CN2022/090684 priority patent/WO2023206541A1/zh
Publication of WO2023206541A1 publication Critical patent/WO2023206541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications, and in particular to uplink transmission methods and devices, and storage media.
  • NR New Radio
  • SUL Supplementary Uplink
  • embodiments of the present disclosure provide an uplink transmission method and device, and a storage medium.
  • an uplink transmission method is provided.
  • the method is applied to a terminal and includes:
  • a target SUL for uplink transmission is determined among a plurality of supplementary uplink SULs corresponding to one ordinary uplink of the terminal.
  • the method also includes:
  • the plurality of SULs are determined based on the first radio resource control RRC signaling sent by the base station.
  • the method also includes:
  • Determining a target SUL for uplink transmission among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the number of the target SUL is determined based on the protocol agreement.
  • the method also includes:
  • the first indication information instructs the terminal to perform uplink transmission on a common uplink, perform uplink transmission on the common uplink;
  • the method also includes:
  • the method also includes:
  • Determining the target SUL where uplink transmission is located among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL indicated by the third indication information is used as the target SUL.
  • the designated signaling includes:
  • each SUL among the plurality of SULs corresponds to a timer, and at the same time point, only the timer corresponding to one SUL is in the running state;
  • Determining a target SUL for uplink transmission among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL whose corresponding timer is in the running state at the target time point is used as the target SUL; wherein the target time point is the time point when the first indication information sent by the base station is received.
  • the first indication information is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the method also includes:
  • determining a target SUL for uplink transmission among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL corresponding to the association identifier is used as the target SUL; wherein the association identifier is a resource identifier related to DCI transmission, and different values of the same type of association identifier correspond to different SULs.
  • the associated identification includes at least one of the following:
  • the control resource set CORESET identifier of the DCI is transmitted.
  • each SUL among the plurality of SULs corresponds to a time pattern, and the time pattern is used to indicate the time point at which each of the SULs is in the active state within each preset period, and at the same time point Only one SUL is active;
  • Determining a target SUL for uplink transmission among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL in the active state at the target time point is used as the target SUL; wherein the target time point is when the target time point is received and sent by the base station.
  • the time point of the first indication information which is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the method also includes:
  • the time pattern corresponding to each SUL is determined.
  • the method also includes:
  • the first indication information instructs the terminal to perform uplink transmission on a common uplink, perform uplink transmission on the common uplink;
  • an uplink transmission method is provided, and the method is applied to a base station and includes:
  • a target SUL for uplink transmission of the terminal is determined among a plurality of supplementary uplink SULs corresponding to one ordinary uplink of the terminal.
  • the method also includes:
  • the method also includes:
  • Determining a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the number of the target SUL is determined based on the protocol agreement.
  • the method also includes:
  • the terminal When the first indication information instructs the terminal to perform uplink transmission on a common uplink, receive the uplink information sent by the terminal on the common uplink;
  • the uplink information sent by the terminal is received on the target SUL.
  • the method also includes:
  • Second indication information is sent to the terminal through DCI; wherein the second indication information is used to indicate the number of the uplink on which uplink transmission is performed.
  • the method also includes:
  • Determining a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL indicated by the third indication information is used as the target SUL.
  • the designated signaling includes:
  • each SUL among the plurality of SULs corresponds to a timer, and at the same time point, only the timer corresponding to one SUL is in the running state;
  • Determining a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL whose corresponding timer is in the running state at the target time point is used as the target SUL; wherein the target time point is when the terminal receives the first indication information sent by the base station.
  • the first indication information is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the method also includes:
  • the terminal Send first configuration information to the terminal; wherein the first configuration information is used to configure the timing length of the timer corresponding to each SUL; or,
  • the timing duration of the timer corresponding to each SUL is determined.
  • determining a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to one common uplink of the terminal includes:
  • the SUL corresponding to the association identifier is used as the target SUL; wherein the association identifier is a resource identifier related to DCI transmission, and different values of the same type of association identifier correspond to different SULs.
  • the associated identification includes at least one of the following:
  • the control resource set CORESET identifier of the DCI is transmitted.
  • each SUL among the plurality of SULs corresponds to a time pattern, and the time pattern is used to indicate the time point at which each of the SULs is in the active state within each preset period, and at the same time point Only one SUL is active;
  • Determining a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to a common uplink of the terminal includes:
  • the SUL in the active state at the target time point is used as the target SUL; wherein the target time point is when the terminal receives the The time point of the first indication information sent by the base station, which is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the method also includes:
  • the time pattern corresponding to each SUL is determined.
  • the method also includes:
  • the terminal When the first indication information instructs the terminal to perform uplink transmission on a common uplink, receive the uplink information sent by the terminal on the common uplink;
  • the uplink information sent by the terminal is received on the target SUL.
  • an uplink transmission device is provided.
  • the device is applied to a terminal and includes:
  • the first determining module is configured to determine a target SUL for uplink transmission among multiple supplementary uplink SULs corresponding to a common uplink of the terminal.
  • an uplink transmission device is provided, and the device is applied to a base station and includes:
  • the second determination module is configured to determine a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to one common uplink of the terminal.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any of the above uplink transmission methods on the terminal side.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any one of the above uplink transmission methods on the base station side.
  • an uplink transmission device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the above mentioned uplink transmission methods on the terminal side.
  • an uplink transmission device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the above mentioned uplink transmission methods on the base station side.
  • the target SUL where the terminal's uplink transmission is located can be quickly determined, which improves the flexibility of network deployment and scheduling, and achieves uplink uplink in the NR system. Transmission switching is enhanced and availability is high.
  • Figure 1 is a schematic diagram of a scenario in which uplink transmission is switched between normal uplink and SUL according to an exemplary embodiment.
  • FIG. 2A is a schematic flowchart of an uplink transmission method according to an exemplary embodiment.
  • Figure 2B is a schematic flowchart of an uplink transmission method according to an exemplary embodiment.
  • Figure 3 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 4 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 5 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 6 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 7 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 8 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 9 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 10 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 11 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 12 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 13 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 14 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 15 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 16 is a schematic flowchart of another uplink transmission method according to an exemplary embodiment.
  • Figure 17A is a schematic diagram illustrating a common uplink corresponding to multiple SULs according to an exemplary embodiment.
  • Figure 17B is a schematic diagram of a time pattern corresponding to SUL according to an exemplary embodiment.
  • Figure 18 is a block diagram of an uplink transmission device according to an exemplary embodiment.
  • Figure 19 is a block diagram of another uplink transmission device according to an exemplary embodiment.
  • Figure 20 is a schematic structural diagram of an uplink transmission device according to an exemplary embodiment of the present disclosure.
  • Figure 21 is a schematic structural diagram of another uplink transmission device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • the terminal supports up to 2 transmissions (Transmit, TX) when performing uplink transmission.
  • TX Transmissions
  • the Release-18 (Release-18, Rel-18) multicarrier enhancement project it is determined to enhance the uplink (UpLink, UL) TX switching (switching).
  • UpLink, UL Uplink
  • the terminal supports UL TX switching between 3 or 4 frequency bands.
  • SUL transmission it can only support one normal uplink band and one supplementary uplink band, as shown in Figure 1.
  • the terminal determines the band where the uplink transmission is located based on the 1-bit UL/SUL indicator (indicator) carried in the downlink control information (DCI).
  • the uplink indicated by the bit value of the UL/SUL indicator is shown in Table 1.
  • the present disclosure provides the following uplink transmission method.
  • the uplink transmission method provided by the present disclosure is first introduced from the terminal side below.
  • FIG. 2A is a flow chart of an uplink transmission method according to an embodiment. It can be applied to terminals. The method can include the following steps:
  • a target SUL for uplink transmission is determined among multiple supplementary uplink SULs corresponding to one common uplink of the terminal.
  • the terminal may determine the target SUL for uplink transmission among multiple SULs based on instructions from the base station or a protocol agreement.
  • the flexibility of network deployment and scheduling is improved, uplink transmission switching is enhanced in the NR system, and availability is high.
  • Figure 2B is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 200 multiple SULs corresponding to one common uplink of the terminal are determined based on the first radio resource control RRC signaling sent by the base station.
  • the terminal may receive the first Radio Resource Control (RRC) signaling sent by the base station.
  • RRC Radio Resource Control
  • the first RRC signaling is used to configure multiple SULs corresponding to a common uplink of the terminal. .
  • a target SUL for uplink transmission is determined among multiple supplementary uplink SULs corresponding to one common uplink of the terminal.
  • the terminal may determine the target SUL for uplink transmission among multiple SULs based on instructions from the base station or a protocol agreement.
  • the flexibility of network deployment and scheduling is improved, uplink transmission switching is enhanced in the NR system, and availability is high.
  • the terminal may also determine multiple SULs based on protocol agreements or its own capabilities, which is not limited in this disclosure.
  • the terminal can determine the target SUL through DCI sent by the base station.
  • Figure 3 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 301 receive first indication information sent by the base station through downlink control information DCI; wherein the first indication information is used to instruct the terminal to perform uplink transmission on a normal uplink or SUL.
  • the first indication information may be a UL/SUL indicator, and the first indication information may occupy 1 bit in the DCI.
  • the DCI format can be a non-fallback DCI format (format), such as DCI format 0-1, DCI format 0-2.
  • the DCI format may be a fallbackable DCI format, such as DCI format 0-0, which is not limited by this disclosure.
  • the terminal when the bit value corresponding to the first indication information is 0, the terminal is instructed to perform uplink transmission on the ordinary uplink.
  • the bit value corresponding to the first indication information is 1, the terminal is instructed to perform uplink transmission on the SUL.
  • step 302 if the first indication information indicates that the terminal performs uplink transmission on the SUL, the number of the target SUL among the plurality of SULs is determined based on the agreement.
  • the terminal may determine the number of the target SUL among multiple SULs based on the protocol agreement.
  • the terminal uses SUL#1 as the target SUL.
  • the base station can send the first indication information to the terminal through DCI.
  • the base station can determine the number of the target SUL based on the protocol agreement. The flexibility of network deployment and scheduling is improved, and uplink transmission switching is enhanced in the NR system, with high availability.
  • the terminal can directly perform uplink transmission on the common uplink.
  • the terminal performs uplink transmission on the target SUL based on the first indication information.
  • the number of the target SUL can be determined based on the protocol agreement.
  • the terminal can perform uplink transmission on the common uplink or target SUL based on DCI scheduling, which is simple to implement and has high availability.
  • the terminal can determine the target SUL through DCI sent by the base station.
  • Figure 4 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 401 receive second indication information sent by the base station through DCI; wherein the second indication information is used to indicate the number of the uplink on which uplink transmission is performed.
  • the number of bits occupied by the UL/SUL indicator in the DCI can be expanded, and the UL/SUL indicator expanded by the number of occupied bits is used as the second indication information.
  • the number of bits occupied by the second indication information in the DCI may be greater than 1, and specifically may be a positive integer greater than 1, such as 2, 3, etc., which is not limited in this disclosure.
  • the second indication information can be carried by non-fallback DCI format, that is, it can be carried by DCI format 0-1 or DCI format 2-0.
  • the base station may send the second indication information to the terminal through DCI, and the terminal directly determines the number of the uplink on which uplink transmission is performed based on the second indication information.
  • the terminal directly performs uplink transmission on the common uplink.
  • the terminal performs uplink transmission on the target SUL.
  • the terminal can directly perform uplink transmission on the common uplink or target SUL based on DCI scheduling and instructions, which is simple to implement and has high availability.
  • the terminal may determine the target SUL through the third indication information carried in the designated signaling sent by the base station.
  • Figure 5 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 501 receive third indication information sent by the base station through designated signaling; wherein the third indication information is used to indicate the SUL in the active state.
  • the designated signaling may be second RRC signaling.
  • the designated signaling may be Media Access Control Element (MAC CE) signaling.
  • MAC CE Media Access Control Element
  • step 502 among the plurality of SULs, the SUL indicated by the third indication information is used as the target SUL.
  • the terminal may use SUL#1 as the target SUL.
  • the base station may inform the terminal of the SUL in the active state by displaying the indication through the third indication information in the designated signaling, so that the terminal uses the SUL indicated by the designated signaling as the target SUL.
  • the terminal if the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, the terminal directly transmits on the ordinary uplink. Uplink transmission is performed on the link.
  • the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the terminal performs uplink transmission on the target SUL.
  • the target SUL is determined based on the designated signaling sent by the base station.
  • the terminal can perform uplink transmission on the common uplink or target SUL based on DCI scheduling and instructions, which is simple to implement and has high availability.
  • the terminal can determine the target SUL through the timer corresponding to each SUL.
  • Each SUL among the plurality of SULs corresponds to a timer, and at the same time point, only the timer corresponding to one SUL is in a running state.
  • Figure 6 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 601 among the plurality of SULs, the SUL whose corresponding timer is in the running state at the target time point is used as the target SUL.
  • the terminal receives the first configuration information sent by the base station, and determines the timing length of the timer corresponding to each SUL based on the first configuration information.
  • the terminal determines the timing length of the timer corresponding to each SUL based on the protocol agreement.
  • the terminal when the timer corresponding to one SUL times out, the terminal can start the timer corresponding to another SUL. When the timer corresponding to any SUL is in the running state, the timer corresponding to other SUL will not be started. Thus, Make sure that only one timer corresponding to SUL is running at the same time.
  • the target time point is the time point when the first indication information sent by the base station is received.
  • the first indication information is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the first indication information can be a UL/SUL indicator, which occupies 1 bit in DCI.
  • the terminal uses the SUL whose corresponding timer is in the running state at the target time point as the target SUL, which improves the flexibility of network deployment and scheduling, realizes enhanced uplink transmission switching in the NR system, and achieves high availability.
  • the terminal if the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, the terminal directly transmits on the ordinary uplink. Uplink transmission is performed on the link.
  • the terminal If the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the terminal performs uplink transmission on the target SUL.
  • the target SUL is determined based on the timer corresponding to each SUL.
  • the terminal can perform uplink transmission on the common uplink or target SUL based on DCI scheduling and instructions, which is simple to implement and has high availability.
  • the terminal may determine the target SUL through content implicitly indicated by the base station.
  • Figure 7 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 701 among the plurality of SULs, the SUL corresponding to the association identifier is used as the target SUL; wherein the association identifier is a resource identifier related to DCI transmission, and different values of the same type of association identifier correspond to Different SUL.
  • the association identifier includes at least one of the following: transmitting the Bandwidth Part (BWP) identifier of the DCI; transmitting the Search Space (SS) identifier of the DCI; transmitting the DCI
  • BWP Bandwidth Part
  • SS Search Space
  • CORESET Control-Resource SET, CORESET
  • DCI is transmitted through SS#1, and SS#1 corresponds to SUL#1 among multiple SULs, so the terminal uses SUL#1 as the target SUL.
  • the base station can use the resource identifier related to DCI transmission to allow the terminal to determine the target SUL in an implicit manner.
  • the flexibility of network deployment and scheduling is improved, and uplink transmission switching is enhanced in the NR system, with high availability.
  • the terminal if the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, the terminal directly transmits on the ordinary uplink. Uplink transmission is performed on the link.
  • the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the terminal performs uplink transmission on the target SUL.
  • the target SUL is determined based on the above-mentioned association identifier.
  • the terminal can perform uplink transmission on the common uplink or target SUL based on DCI scheduling and instructions, which is simple to implement and has high availability.
  • the terminal may determine the target SUL through the time pattern corresponding to each SUL in the multiple SULs.
  • the time pattern is used to indicate the time point at which each SUL is in the active state within each preset period, and only one SUL is in the active state at the same time point.
  • Figure 8 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a terminal.
  • the method can include the following steps:
  • step 801 among the plurality of SULs, based on the time pattern corresponding to each SUL, the SUL that is active at the target time point is used as the target SUL.
  • the target time point is the time point when the first indication information sent by the base station is received.
  • the first indication information is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the terminal may receive the second configuration information sent by the base station, and determine the time pattern corresponding to each SUL based on the second configuration information.
  • the terminal determines the time pattern corresponding to each SUL based on the protocol agreement.
  • the terminal uses the SUL that is active at the target time point as the target SUL, which improves the flexibility of network deployment and scheduling, realizes enhanced uplink transmission switching in the NR system, and achieves high availability.
  • the terminal if the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, the terminal directly transmits on the ordinary uplink. Uplink transmission is performed on the link.
  • the terminal If the terminal receives the first indication information sent by the base station through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the terminal performs uplink transmission on the target SUL.
  • the target SUL is determined based on the time pattern corresponding to each SUL.
  • the terminal can perform uplink transmission on the common uplink or target SUL based on DCI scheduling and instructions, which is simple to implement and has high availability.
  • the uplink transmission method provided by the present disclosure will be introduced from the base station side.
  • FIG. 9 is a flow chart of an uplink transmission method according to an embodiment. It can be applied to a base station. The method can include the following steps:
  • a target SUL for uplink transmission of the terminal is determined among multiple supplementary uplink SULs corresponding to one common uplink of the terminal.
  • the target SUL used for the terminal's uplink transmission may be determined among multiple SULs based on instructions from the base station or based on protocol agreement.
  • the selection of target SUL by the base station and the terminal can be consistent, which improves the flexibility of network deployment and scheduling.
  • uplink transmission switching is enhanced and the availability is high.
  • Figure 10 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1001 first radio resource control RRC signaling is sent to the terminal; wherein the first RRC signaling is used to indicate the multiple SULs.
  • a target SUL for uplink transmission of the terminal is determined among multiple supplementary uplink SULs corresponding to one common uplink of the terminal.
  • the target SUL used for the terminal's uplink transmission may be determined among multiple SULs based on instructions from the base station or based on protocol agreement.
  • the selection of target SUL by the base station and the terminal can be consistent, which improves the flexibility of network deployment and scheduling.
  • uplink transmission switching is enhanced and the availability is high.
  • the base station may also determine multiple SULs corresponding to one common uplink of the terminal based on protocol agreement or based on terminal capabilities, which is not limited in this disclosure.
  • the base station may determine the target SUL through DCI sent to the terminal.
  • Figure 11 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1101 first indication information is sent to the terminal through downlink control information DCI; wherein the first indication information is used to instruct the terminal to perform uplink transmission on a normal uplink or SUL.
  • the first indication information may be a UL/SUL indicator, and the first indication information may occupy 1 bit in the DCI.
  • the DCI format can be a non-fallback DCI format (format), such as DCI format 0-1, DCI format 0-2.
  • the DCI format may be a fallbackable DCI format, such as DCI format 0-0, which is not limited by this disclosure.
  • the terminal when the bit value corresponding to the first indication information is 0, the terminal is instructed to perform uplink transmission on the ordinary uplink.
  • the bit value corresponding to the first indication information is 1, the terminal is instructed to perform uplink transmission on the SUL.
  • step 1102 if the first indication information indicates that the terminal performs uplink transmission on the SUL, among the plurality of SULs, determine the number of the target SUL based on the protocol agreement.
  • the base station may send the first indication information to the terminal through DCI. Further, the base station may determine the number of the target SUL based on the protocol agreement. The flexibility of network deployment and scheduling is improved, and uplink transmission switching is enhanced in the NR system, with high availability.
  • the base station can directly receive the uplink information sent by the terminal on the ordinary uplink. .
  • the base station receives the uplink information sent by the terminal on the target SUL based on the first indication information.
  • the number of the target SUL can be determined based on the protocol agreement.
  • the base station can perform uplink transmission on the common uplink or target SUL through DCI scheduling and instructions, which is simple to implement and has high availability.
  • the base station may determine the target SUL through DCI sent to the terminal.
  • Figure 12 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1201 second indication information is sent to the terminal through DCI; wherein the second indication information is used to indicate the number of the uplink on which uplink transmission is performed.
  • the number of bits occupied by the UL/SUL indicator in the DCI can be expanded, and the UL/SUL indicator after the number of occupied bits is expanded is used as the second indication information.
  • the number of bits occupied by the second indication information in the DCI may be greater than 1, and specifically may be a positive integer greater than 1, such as 2, 3, etc., which is not limited in this disclosure.
  • the base station can determine a group corresponding to the bits where the second indication information is located based on the correspondence between the number of the common uplink, the number of each SUL, and each group of bit values. bit value.
  • a common uplink of the terminal corresponds to two SULs, namely SUL#1 and SUL#2.
  • the corresponding relationship between the number of the common uplink, the number of each SUL and each group of bit values is as shown in Table 2.
  • the base station may indicate the number of the uplink by setting a bit value corresponding to the second indication information.
  • the second indication information can be carried by non-fallback DCI format, that is, it can be carried by DCI format 0-1 or DCI format 2-0.
  • the base station may send the second indication information to the terminal through DCI. Further, the base station directly indicates the number of the uplink through the second indication information. The flexibility of network deployment and scheduling is improved, and uplink transmission switching is enhanced in the NR system, with high availability.
  • the base station directly receives the uplink information sent by the terminal on the common uplink.
  • the base station directly receives the uplink information sent by the terminal on the target SUL.
  • the base station can directly instruct the terminal to perform uplink transmission on the common uplink or target SUL through DCI scheduling and instructions, which is simple to implement and has high availability.
  • the base station may explicitly indicate the target SUL through designated signaling.
  • Figure 13 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1301 third indication information is sent to the terminal through designated signaling; wherein the third indication information is used to indicate the SUL in the active state.
  • the designated signaling may be second RRC signaling.
  • the designated signaling may be MAC CE signaling.
  • step 1302 among the plurality of SULs, the SUL indicated by the third indication information is used as the target SUL.
  • the base station may notify the terminal of the activated SUL by displaying the indication through the third indication information in the designated signaling.
  • the base station if the base station sends first indication information to the terminal through DCI, the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, and the base station directly receives the terminal on the ordinary uplink. Uplink information sent.
  • the base station If the base station sends first indication information to the terminal through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the base station receives the uplink information sent by the terminal on the target SUL.
  • the target SUL is determined based on the designated signaling sent by the base station.
  • the base station can instruct the terminal to perform uplink transmission on the common uplink or target SUL through DCI scheduling and instructions, which is simple to implement and has high availability.
  • the base station can determine the target SUL through a timer corresponding to each SUL. Wherein, each SUL among the plurality of SULs corresponds to a timer, and at the same time point, only the timer corresponding to one SUL is in a running state.
  • Figure 14 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1401 among the plurality of SULs, the SUL whose corresponding timer is in the running state at the target time point is used as the target SUL.
  • the base station sends first configuration information to the terminal, and configures the timing duration of the timer corresponding to each SUL through the first configuration information.
  • the base station determines the timing length of the timer corresponding to each SUL based on the protocol agreement.
  • the terminal when the timer corresponding to one SUL times out, the terminal can start the timer corresponding to another SUL. When the timer corresponding to any SUL is in the running state, the timer corresponding to other SUL will not be started. Thus, Make sure that only one timer corresponding to SUL is running at the same time.
  • the target time point is the time point when the first indication information sent by the base station is received.
  • the first indication information is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the first indication information can be a UL/SUL indicator, which occupies 1 bit in DCI.
  • the base station uses the SUL whose corresponding timer is in the running state at the target time point as the target SUL, which improves the flexibility of network deployment and scheduling, achieves enhanced uplink transmission switching in the NR system, and achieves high availability.
  • the base station if the base station sends first indication information to the terminal through DCI, the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, and the base station directly receives the terminal on the ordinary uplink. Uplink information sent.
  • the base station If the base station sends first indication information to the terminal through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the base station receives the uplink information sent by the terminal on the target SUL.
  • the target SUL is determined based on the timer corresponding to each SUL.
  • the base station can instruct the terminal to perform uplink transmission on the common uplink or target SUL through DCI scheduling and instructions, which is simple to implement and has high availability.
  • the base station may indicate the target SUL in an implicit indication manner.
  • Figure 15 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1501 among the plurality of SULs, the SUL corresponding to the association identifier is used as the target SUL; wherein the association identifier is a resource identifier related to DCI transmission, and different values of the same type of association identifier correspond to Different SUL.
  • the association identifier includes at least one of the following: a BWP identifier for transmitting the DCI; an SS identifier for transmitting the DCI; and a CORESET identifier for transmitting the DCI.
  • DCI is transmitted through SS#1, and SS#1 corresponds to SUL#1 among multiple SULs, so the terminal uses SUL#1 as the target SUL.
  • the base station may indicate the target SUL in an implicit manner through the resource identifier related to DCI transmission.
  • the flexibility of network deployment and scheduling is improved, and uplink transmission switching is enhanced in the NR system, with high availability.
  • the base station if the base station sends first indication information to the terminal through DCI, the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, and the base station directly receives the terminal on the ordinary uplink. Uplink information sent.
  • the base station If the base station sends first indication information to the terminal through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the base station receives the uplink information sent by the terminal on the target SUL.
  • the target SUL is determined based on the above-mentioned association identifier.
  • the base station can instruct the terminal to perform uplink transmission on the common uplink or target SUL through DCI scheduling and instructions, which is simple to implement and has high availability.
  • the base station may determine the target SUL through the time pattern corresponding to each SUL in the multiple SULs.
  • the time pattern is used to indicate the time point at which each SUL is in the active state within each preset period, and only one SUL is in the active state at the same time point.
  • Figure 16 is a flow chart of an uplink transmission method according to an embodiment, which can be applied to a base station.
  • the method can include the following steps:
  • step 1601 among the plurality of SULs, based on the time pattern corresponding to each SUL, the SUL that is active at the target time point is used as the target SUL.
  • the target time point is the time point when the first indication information sent by the base station is received.
  • the first indication information is used to instruct the terminal to perform uplink transmission on the normal uplink or SUL.
  • the base station sends second configuration information to the terminal to configure the time pattern corresponding to each SUL for the terminal.
  • the base station needs to ensure that only one SUL is active at the same time point.
  • the base station determines the time pattern corresponding to each SUL based on the protocol agreement.
  • the base station uses the SUL that is active at the target time point as the target SUL, which improves the flexibility of network deployment and scheduling, achieves enhanced uplink transmission switching in the NR system, and achieves high availability.
  • the base station if the base station sends first indication information to the terminal through DCI, the first indication information instructs the terminal to perform uplink transmission on the ordinary uplink, and the base station directly receives the terminal on the ordinary uplink. Uplink information sent.
  • the base station If the base station sends first indication information to the terminal through DCI, and the first indication information instructs the terminal to perform uplink transmission on the SUL, the base station receives the uplink information sent by the terminal on the target SUL.
  • the target SUL is determined based on the time pattern corresponding to each SUL.
  • the base station can instruct the terminal to perform uplink transmission on the common uplink or target SUL through DCI scheduling and instructions, which is simple to implement and has high availability.
  • Embodiment 1 assuming that the terminal supports multiple SULs.
  • the number of SULs supported by the terminal is 2, that is, one common uplink corresponds to two supplementary uplinks, for example, as shown in Figure 17A.
  • the base station may send third indication information to the terminal through the second RRC signaling, and the third indication information is used to indicate the number of the activated supplementary uplink corresponding to the normal uplink band.
  • the terminal and base station use the active SUL as the target SUL. In other words, if the SUL in the supplementary list (i.e., the SUL list consisting of multiple SULs) is not indicated as active by the second RRC signaling, the terminal will not send uplink transmission on it, and the base station side does not expect to transmit on it. Receive uplink transmission.
  • the second RRC signaling uses log2(N) bits to activate SUL, where N is the number of SULs included in the SUL list, that is, the number of multiple SULs.
  • N may be 2.
  • the SUL in the active state indicated by the second RRC signaling is as shown in Table 3.
  • the terminal determines to perform uplink transmission on the normal uplink or SUL#1 according to the first indication information sent by the base station through DCI.
  • the base station sends the DCI for scheduling PUSCH, and the DCI is format 0-1, and the first indication information carried therein, that is, the UL/SUL indicator indicates the PUSCH Need to be transmitted on SUL.
  • the terminal sends PUSCH on SUL#1 according to the scheduling information.
  • the base station receives the PUSCH on SUL#1.
  • Embodiment 2 assuming that the terminal supports multiple SULs. In this embodiment, it is assumed that the number of SULs supported by the terminal is 2, that is, one common uplink corresponds to two supplementary uplinks, for example, as shown in Figure 17A.
  • the base station can send the first indication information through DCI, and its PUSCH is scheduled by DCI format 0-0.
  • the first indication information carried in DCI format 0-0 that is, the UL/SUL indicator
  • the terminal and the base station can use SUL#1 as the target SUL according to the agreement.
  • the base station may also send second indication information through DCI to directly indicate the number of the common uplink or the number of the target SUL.
  • the information domain where the UL/SUL indicator carried in the DCI is located can be expanded. Specifically, the number of bits occupied by the UL/SUL indicator is expanded from 1 bit to at least 2 bits.
  • the frequency band in which the DCI scheduled uplink transmission is located can be determined to be NUL, SUL#1 or SUL#2 through at least 2 bits of second indication information.
  • the bit value of the second indication information and the indicated uplink number are shown in Table 2, which will not be described again here.
  • the terminal and the base station can determine that the DCI scheduled PUSCH is transmitted on SUL#2.
  • the second indication information is carried by non-fallback DCI format, that is, it can only be carried by DCI format 0-1 or DCI format 0-2.
  • Embodiment 3 Assume that the terminal supports multiple SULs. In this embodiment, it is assumed that the number of SULs supported by the terminal is 2, that is, one common uplink corresponds to two supplementary uplinks, for example, as shown in Figure 17A.
  • the base station sends third indication information to the terminal through MAC CE signaling, and the third indication information is used to indicate the SUL corresponding to the ordinary uplink in the active state.
  • the terminal and the base station can use the SUL in the active state as the target SUL.
  • the terminal will not send uplink transmissions on it, and the base station does not expect to receive uplink transmissions on it.
  • the terminal determines to perform uplink transmission on NUL or SUL#1 according to the first indication information sent by the base station through DCI.
  • the base station sends DCI format 0-1 for scheduling PUSCH, and the UL/SUL indicator carried in it indicates that the PUSCH needs to be transmitted on SUL.
  • the terminal since SUL#1 is the active SUL, the terminal sends PUSCH on SUL#1 according to the scheduling information.
  • the base station receives the PUSCH on SUL#1.
  • Embodiment 4 Assume that the terminal supports multiple SULs. In this embodiment, it is assumed that the number of SULs supported by the terminal is 2, that is, one common uplink corresponds to two supplementary uplinks, for example, as shown in Figure 17A. Only one supplementary uplink can be active at the same time. In this embodiment, by defining the timer related to the supplementary uplink, the supplementary uplink that is active at a specific moment is determined.
  • SUL#1 and SUL#2 have two independently configured timers, that is, SUL#1 corresponds to timer#1, and SUL#2 corresponds to timer#2. And the two timers cannot be started at the same time, that is, Only when the timer on the active SUL times out (expired) can the timer on another SUL be started and correspondingly enter the active state.
  • the terminal receives the first indication information sent by the base station at the target time point, and determines that SUL#1 is an activated supplementary uplink based on the timer. Then, the terminal determines to perform uplink transmission on NUL or SUL#1 according to the first indication information sent by the base station side.
  • the base station sends DCI format 0-1 for scheduling PUSCH, and the first indication information UL/SUL indicator carried therein indicates that the PUSCH needs to be transmitted on SUL.
  • the terminal sends PUSCH on SUL#1 according to the scheduling information.
  • the base station receives the PUSCH on SUL#1.
  • Embodiment 5 Assume that the terminal supports multiple SULs. In this embodiment, it is assumed that the number of SULs supported by the terminal is 2, that is, one common uplink corresponds to two supplementary uplinks, for example, as shown in Figure 17A. Only one supplementary uplink can be active at the same time. In this embodiment, by defining the timer related to the supplementary uplink, the supplementary uplink that is active at a specific moment is determined.
  • the target SUL is determined implicitly.
  • association identifiers include at least one of the following: transmitting the bandwidth part BWP identifier of the DCI; transmitting the search space SS identifier of the DCI; transmitting the DCI The control resource collection CORESET identification.
  • SS#1 corresponds to SUL#1
  • SS#2 corresponds to SUL#2.
  • DCI scheduled PUSCH is transmitted on SUL#1:
  • the first indication information UL/SUL indicator in DCI is 1, which means that the scheduled uplink transmission is transmitted on SUL, and the DCI is transmitted in SS#1
  • DCI scheduled PUSCH is transmitted on SUL#2:
  • the UL/SUL indicator in DCI is 1, which indicates that its scheduled uplink transmission is transmitted on SUL, and the DCI is transmitted in SS#2.
  • each SUL can be associated with one or more SSs, which is not limited by this patent.
  • Embodiment 6 Assume that the terminal supports multiple SULs. In this embodiment, it is assumed that the number of SULs supported by the terminal is 2, that is, one common uplink corresponds to two supplementary uplinks, for example, as shown in Figure 17A. Only one supplementary uplink can be active at the same time. In this embodiment, by defining the timer related to the supplementary uplink, the supplementary uplink that is active at a specific moment is determined.
  • Only one SUL can be active at the same time.
  • the SUL that is in the active state at the target time point is used as the target SUL.
  • the base station configures the SUL time pattern cycle and indicates the activation status of different SULs within the cycle, as shown in Figure 17B.
  • the base station sends the DCI format 0-1 for scheduling PUSCH, and the UL/SUL indicator carried in it indicates that the PUSCH needs to be transmitted on SUL.
  • the target SUL used for PUSCH transmission is the SUL that is in the active state at the target time point determined according to the SUL time pattern.
  • the target SUL used for the terminal's uplink transmission can be quickly determined, ensuring consistent understanding between the base station and the terminal, and improving the flexibility of network deployment and scheduling.
  • Uplink transmission switching enhancement is achieved in the NR system, with high availability.
  • the present disclosure also provides an application function implementation device embodiment.
  • Figure 18 is a block diagram of an uplink transmission device according to an exemplary embodiment.
  • the device is applied to a terminal and includes:
  • the first determination module 1801 is configured to determine a target SUL for uplink transmission among multiple supplementary uplink SULs corresponding to a common uplink of the terminal.
  • Figure 19 is a block diagram of an uplink transmission device according to an exemplary embodiment.
  • the device is applied to a base station and includes:
  • the second determination module 1901 is configured to determine a target SUL for uplink transmission of the terminal among multiple supplementary uplink SULs corresponding to one common uplink of the terminal.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in a place, or can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the disclosed solution. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above-mentioned uplink transmission methods for the terminal side.
  • the present disclosure also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute any of the above-mentioned uplink transmission methods for the base station side.
  • an uplink transmission device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the above mentioned uplink transmission methods on the terminal side.
  • Figure 20 is a block diagram of an uplink transmission device 2000 according to an exemplary embodiment.
  • the device 2000 may be a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle-mounted user equipment, an iPad, a smart TV and other terminals.
  • device 2000 may include one or more of the following components: processing component 2002, memory 2004, power supply component 2006, multimedia component 2008, audio component 2010, input/output (I/O) interface 2012, sensor component 2016, and Communications Components 2018.
  • Processing component 2002 generally controls the overall operations of device 2000, such as operations associated with display, phone calls, random access of data, camera operations, and recording operations.
  • the processing component 2002 may include one or more processors 2020 to execute instructions to complete all or part of the steps of the above uplink transmission method.
  • processing component 2002 may include one or more modules that facilitate interaction between processing component 2002 and other components.
  • processing component 2002 may include a multimedia module to facilitate interaction between multimedia component 2008 and processing component 2002.
  • the processing component 2002 can read executable instructions from the memory to implement the steps of an uplink transmission method provided by the above embodiments.
  • Memory 2004 is configured to store various types of data to support operations at device 2000. Examples of such data include instructions for any application or method operating on device 2000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2004 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 2006 provides power to various components of device 2000.
  • Power supply components 2006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2000.
  • Multimedia component 2008 includes a display screen that provides an output interface between the device 2000 and the user.
  • multimedia component 2008 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 2010 is configured to output and/or input audio signals.
  • audio component 2010 includes a microphone (MIC) configured to receive external audio signals when device 2000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 2004 or sent via communications component 2018 .
  • audio component 2010 also includes a speaker for outputting audio signals.
  • the I/O interface 2012 provides an interface between the processing component 2002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 2016 includes one or more sensors for providing various aspects of status assessment for device 2000 .
  • the sensor component 2016 can detect the open/closed state of the device 2000, the relative positioning of components, such as the display and keypad of the device 2000, and the sensor component 2016 can also detect the position change of the device 2000 or a component of the device 2000. , the presence or absence of user contact with device 2000 , device 2000 orientation or acceleration/deceleration and temperature changes of device 2000 .
  • Sensor assembly 2016 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2016 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2016 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2018 is configured to facilitate wired or wireless communication between apparatus 2000 and other devices.
  • Device 2000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • communication component 2018 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 2018 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented to execute any of the above uplink transmission methods on the terminal side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented to execute any of the above uplink transmission methods on the terminal side.
  • a non-transitory machine-readable storage medium including instructions is also provided, such as a memory 2004 including instructions, and the above instructions can be executed by the processor 2020 of the device 2000 to complete the above uplink transmission method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an uplink transmission device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the above mentioned uplink transmission methods on the base station side.
  • Figure 21 is a schematic structural diagram of an uplink transmission device 2100 according to an exemplary embodiment.
  • Apparatus 2100 may be provided as a base station.
  • the apparatus 2100 includes a processing component 2122, a wireless transmit/receive component 2124, an antenna component 2126, and a signal processing portion specific to the wireless interface.
  • the processing component 2122 may further include at least one processor.
  • One of the processors in the processing component 2122 may be configured to perform any of the above-described uplink transmission methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开提供一种上行传输方法及装置、存储介质,其中,所述上行传输方法包括:在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。本公开提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。

Description

上行传输方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及上行传输方法及装置、存储介质。
背景技术
在TS38.101射频相关协议中,定义了新空口(New Radio,NR)频带与补充上行链路(Supplementary UpLink,SUL)频带的组合,基本的原则是一个NR频带只能有一个对应的SUL频带,但会限制了网络部署和调度的灵活性。
如果一个普通上行链路(normal uplink)配置了多个SUL,当前机制无法在多个SUL中确定上行传输所在的一个SUL。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种上行传输方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种上行传输方法,所述方法应用于终端,包括:
在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
可选地,所述方法还包括:
基于基站发送的第一无线资源控制RRC信令,确定所述多个SUL。
可选地,所述方法还包括:
接收基站通过下行控制信息DCI发送的第一指示信息;其中,所述第一指示信息用于指示所述终端在普通上行链路或SUL上进行上行传输;
所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述多个SUL中,基于协议约定确定所述目标SUL的编号。
可选地,所述方法还包括:
在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上进行上行传输;
在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上进行上行传输。
可选地,所述方法还包括:
接收基站通过DCI发送的第二指示信息;其中,所述第二指示信息用于指示在其上进行上行传输的上行链路的编号。
可选地,所述方法还包括:
接收基站通过指定信令发送的第三指示信息;其中,所述第三指示信息用于指示处于激活状态的SUL;
所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定上行传输所在的目标SUL,包括:
在所述多个SUL中,将所述第三指示信息所指示的SUL作为所述目标SUL。
可选地,所述指定信令包括:
第二RRC信令;或者
媒体访问控制单元MAC CE信令。
可选地,所述多个SUL中的每个SUL对应一个定时器,且在同一时间点只有一个SUL对应的定时器处于运行状态;
所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
在所述多个SUL中,将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL;其中,所述目标时间点是接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路 或SUL上进行上行传输。
可选地,所述方法还包括:
基于基站发送的第一配置信息,确定每个SUL对应的定时器的定时时长;或者,
基于协议约定,确定每个SUL对应的定时器的定时时长。
可选地,所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
在所述多个SUL中,将与关联标识对应的SUL作为所述目标SUL;其中,所述关联标识是与DCI传输相关的资源标识,同一类型的关联标识的不同值对应不同的SUL。
可选地,所述关联标识包括以下至少一项:
传输所述DCI的带宽部分BWP标识;
传输所述DCI的搜索空间SS标识;
传输所述DCI的控制资源集合CORESET标识。
可选地,所述多个SUL中的每个SUL对应一个时间模式,所述时间模式用于指示每个所述SUL在每个预设周期内处于激活状态的时间点,且在同一时间点只有一个SUL处于激活状态;
所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
在所述多个SUL中,基于每个SUL对应的所述时间模式,将在目标时间点处于激活状态的SUL作为所述目标SUL;其中,所述目标时间点是接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
可选地,所述方法还包括:
基于基站发送的第二配置信息,确定每个SUL对应的所述时间模式;或者,
基于协议约定,确定每个SUL对应的所述时间模式。
可选地,所述方法还包括:
接收基站通过DCI发送的第一指示信息;其中,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输;
在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上进行上行传输;
在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上进行上行传输。
根据本公开实施例的第二方面,提供一种上行传输方法,所述方法应用于基站,包括:
在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL。
可选地,所述方法还包括:
向所述终端发送的第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述多个SUL。
可选地,所述方法还包括:
通过下行控制信息DCI向所述终端发送第一指示信息;其中,所述第一指示信息用于指示所述终端在普通上行链路或SUL上进行上行传输;
所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述多个SUL中,基于协议约定确定所述目标SUL的编号。
可选地,所述方法还包括:
在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上接收所述终端发送的上行信息;
在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上接收所述终端发送的上行信息。
可选地,所述方法还包括:
通过DCI向所述终端发送第二指示信息;其中,所述第二指示信息用于指示在其上进行上行传输的上行链路的编号。
可选地,所述方法还包括:
通过指定信令向所述终端发送第三指示信息;其中,所述第三指示信息用于指示处于激活状态的SUL;
所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
在所述多个SUL中,将所述第三指示信息所指示的SUL作为所述目标SUL。
可选地,所述指定信令包括:
第二RRC信令;或者
媒体访问控制单元MAC CE信令。
可选地,所述多个SUL中的每个SUL对应一个定时器,且在同一时间点只有一个SUL对应的定时器处于运行状态;
所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
在所述多个SUL中,将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL;其中,所述目标时间点是所述终端接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
可选地,所述方法还包括:
向所述终端发送第一配置信息;其中,所述第一配置信息用于配置每个所述SUL对应的定时器的定时时长;或者,
基于协议约定,确定每个所述SUL对应的定时器的定时时长。
可选地,所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
在所述多个SUL中,将与关联标识对应的SUL作为所述目标SUL; 其中,所述关联标识是与DCI传输相关的资源标识,同一类型的关联标识的不同值对应不同的SUL。
可选地,所述关联标识包括以下至少一项:
传输所述DCI的带宽部分BWP标识;
传输所述DCI的搜索空间SS标识;
传输所述DCI的控制资源集合CORESET标识。
可选地,所述多个SUL中的每个SUL对应一个时间模式,所述时间模式用于指示每个所述SUL在每个预设周期内处于激活状态的时间点,且在同一时间点只有一个SUL处于激活状态;
所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
在所述多个SUL中,基于每个SUL对应的所述时间模式,将在目标时间点处于激活状态的SUL作为所述目标SUL;其中,所述目标时间点是所述终端接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
可选地,所述方法还包括:
向所述终端发送第二配置信息;其中,所述第二配置信息用于配置每个所述SUL对应的时间模式;或者,
基于协议约定,确定每个SUL对应的所述时间模式。
可选地,所述方法还包括:
通过DCI向所述终端发送第一指示信息;其中,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输;
在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上接收所述终端发送的上行信息;
在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上接收所述终端发送的上行信息。
根据本公开实施例的第三方面,提供一种上行传输装置,所述装置应 用于终端,包括:
第一确定模块,被配置为在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
根据本公开实施例的第四方面,提供一种上行传输装置,所述装置应用于基站,包括:
第二确定模块,被配置为在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述终端侧任一项所述的上行传输方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述基站侧任一项所述的上行传输方法。
根据本公开实施例的第七方面,提供一种上行传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一项所述的上行传输方法。
根据本公开实施例的第八方面,提供一种上行传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一项所述的上行传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,可以在一个普通上行链路对应多个SUL的情况下,快速确定终端的上行传输所在的目标SUL,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种上行传输在正常上行链路与SUL之间切换的场景示意图。
图2A是根据一示例性实施例示出的一种上行传输方法流程示意图。
图2B是根据一示例性实施例示出的一种上行传输方法流程示意图。
图3是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图4是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图5是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图6是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图7是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图8是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图9是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图10是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图11是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图12是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图13是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图14是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图15是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图16是根据一示例性实施例示出的另一种上行传输方法流程示意图。
图17A是根据一示例性实施例示出的一种普通上行链路对应多个SUL的示意图。
图17B是根据一示例性实施例示出的一种SUL对应的时间模式示意图。
图18是根据一示例性实施例示出的一种上行传输装置框图。
图19是根据一示例性实施例示出的另一种上行传输装置框图。
图20是本公开根据一示例性实施例示出的一种上行传输装置的一结构示意图。
图21是本公开根据一示例性实施例示出的另一种上行传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
目前,终端在进行上行传输时,最多支持2传输(Transmit,TX)发送。版本-18(Release-18,Rel-18)多载波(multicarrier)增强(enhancement)项目中,确定对上行链路(UpLink,UL)TX切换(switching)进行增 强。具体地,终端支持在3个或者4个频带(band)之间进行UL TX switching。当终端支持SUL传输时,只能支持一个normal uplink band和一个supplementary uplink band,例如图1所示。
终端根据下行控制信息(Downlink Control Information,DCI)中携带的1比特(bit)UL/SUL指示符(indicator)确定上行传输所在的band。UL/SUL indicator的比特值所指示的上行链路如表1所示。
表1
Figure PCTCN2022090684-appb-000001
如果一个普通上行链路(normal uplink)配置了多个SUL,当前机制无法在多个SUL中确定上行传输所在的一个SUL。
为了解决上述技术问题,本公开提供了以下上行传输方法。下面先从终端侧介绍本公开提供的上行传输方法。
本公开实施例提供了一种上行传输方法,参照图2A所示,图2A是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤201中,在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
在本公开实施例中,终端可以基于基站的指示或协议约定的方式,在多个SUL中,确定用于上行传输的目标SUL。
上述实施例中,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,参照图2B所示,图2B是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤200中,基于基站发送的第一无线资源控制RRC信令,确定与 所述终端的一个普通上行链路对应的多个SUL。
在本公开实施例中,终端可以接收基站发送的第一无线资源控制(Radio Resource Control,RRC)信令,该第一RRC信令用于配置与终端的一个普通上行链路对应的多个SUL。
在步骤201中,在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
在本公开实施例中,终端可以基于基站的指示或协议约定的方式,在多个SUL中,确定用于上行传输的目标SUL。
上述实施例中,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,终端也可以基于协议约定或者自身能力,确定多个SUL,本公开对此不作限定。
在一些可选实施例中,终端可以通过基站发送的DCI确定目标SUL。
参照图3所示,图3是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤301中,接收基站通过下行控制信息DCI发送的第一指示信息;其中,所述第一指示信息用于指示所述终端在普通上行链路或SUL上进行上行传输。
在本公开实施例中,第一指示信息可以为UL/SUL indicator,第一指示信息在DCI中可以占用1比特。
其中,DCI的格式可以为不可回退(non-fallback)的DCI格式(format),例如DCI format 0-1、DCI format 0-2。或者,DCI的格式可以为可回退的DCI format,例如DCI format 0-0,本公开对此不作限定。
在一个可能的实现方式中,第一指示信息对应的比特值为0时,指示终端在普通上行链路上进行上行传输。第一指示信息对应的比特值为1时,指示终端在SUL上进行上行传输。
在步骤302中,在所述第一指示信息指示所述终端在SUL上进行上行 传输的情况下,在所述多个SUL中,基于约定确定所述目标SUL的编号。
在本公开实施例中,如果第一指示信息指示终端在SUL上进行上行传输,则终端可以在多个SUL中,基于协议约定来确定目标SUL的编号。
例如,协议约定的目标SUL的编号为1,则终端将SUL#1作为目标SUL。
上述实施例中,基站可以通过DCI发送第一指示信息给终端,终端确定需要在SUL上进行上传传输的情况下,可以基于协议约定去确定目标SUL的编号。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送的第一指示信息指示终端在普通上行链路上进行上行传输的情况下,则终端可以直接在该普通上行链路上进行上行传输。
如果基站通过DCI发送的第一指示信息指示终端在SUL上进行上行传输的情况下,则终端基于该第一指示信息,在所述目标SUL上进行上行传输。其中,目标SUL的编号可以基于协议约定来确定。
上述实施例中,终端可以基于DCI的调度在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,终端可以通过基站发送的DCI确定目标SUL。
参照图4所示,图4是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤401中,接收基站通过DCI发送的第二指示信息;其中,所述第二指示信息用于指示在其上进行上行传输的上行链路的编号。
在本公开实施例中,可以对DCI中的UL/SUL indicator所占用的比特位的数目进行扩展,将所占用的比特位的数目扩展后的UL/SUL indicator作为第二指示信息。
在一个可能的实现方式中,第二指示信息在DCI中占用的比特位的数目可以大于1,具体可以为大于1的正整数,例如2、3……等,本公开对 此不作限定。
在本公开实施例中,以第二指示信息在DCI中所占用的比特位的数目是2为例,假设终端的一个普通上行链路对应两个SUL,分别为SUL#1、SUL#2。其中,第二指示信息的比特值与所指示的上行链路的编号例如表2所示。
表2
Figure PCTCN2022090684-appb-000002
需要说明的是,第二指示信息可以由non-fallback DCI format,即可以由DCI format 0-1或者DCI format 2-0的DCI来携带。
上述实施例中,基站可以通过DCI发送第二指示信息给终端,终端直接根据第二指示信息来确定在其上进行上行传输的上行链路的编号。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送的第二指示信息指示所述普通上行链路的编号的情况下,终端直接在该普通上行链路上进行上行传输。
如果基站通过DCI发送的第二指示信息指示所述目标SUL的编号,则终端在该目标SUL上进行上行传输。
上述实施例中,终端可以基于DCI的调度和指示,直接在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,终端可以通过基站发送的指定信令中携带的第三指示信息确定目标SUL。
参照图5所示,图5是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤501中,接收基站通过指定信令发送的第三指示信息;其中,所述第三指示信息用于指示处于激活状态的SUL。
在一个可能的实现方式中,指定信令可以是第二RRC信令。
在另一个可能的实现方式中,指定信令可以是媒体访问控制单元(Media Access Control Element,MAC CE)信令。
在步骤502中,在所述多个SUL中,将所述第三指示信息所指示的SUL作为所述目标SUL。
在本公开实施例中,假设第三指示信息指示的处于激活状态的SUL的编号为1,则终端可以将SUL#1作为目标SUL。
上述实施例中,基站可以通过指定信令中的第三指示信息,采用显示指示的方式告知终端处于激活状态的SUL,以便终端将指定信令指示的SUL作为目标SUL。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,终端直接在该普通上行链路上进行上行传输。
如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则终端在该目标SUL上进行上行传输。其中,目标SUL是基于基站发送的指定信令确定的。
上述实施例中,终端可以基于DCI的调度和指示,在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,终端可以通过每个SUL对应的定时器确定目标SUL。其中,所述多个SUL中的每个SUL对应一个定时器(timer),且在同一时间点只有一个SUL对应的定时器处于运行状态。
参照图6所示,图6是根据一实施例示出的一种上行传输方法流程图, 可以应用于终端,该方法可以包括以下步骤:
在步骤601中,在所述多个SUL中,将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL。
在一个可能的实现方式中,终端接收基站发送的第一配置信息,基于第一配置信息,确定每个SUL对应的定时器的定时时长。
在另一个可能的实现方式中,终端基于协议约定,确定每个SUL对应的定时器的定时时长。
在本公开实施例中,终端可以在一个SUL对应的timer超时的情况下,启动另一个SUL对应的timer,任一SUL对应的timer处于运行状态时,均不会启动其他SUL对应的timer,从而确保在同一时间点只有一个SUL对应的定时器处于运行状态。
在本公开实施例中,目标时间点是接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。第一指示信息可以为UL/SUL indicator,在DCI中占用1比特。
上述实施例中,终端将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,终端直接在该普通上行链路上进行上行传输。
如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则终端在该目标SUL上进行上行传输。其中,目标SUL是基于每个SUL对应的timer确定的。
上述实施例中,终端可以基于DCI的调度和指示,在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,终端可以通过基站隐式指示的内容确定目标 SUL。
参照图7所示,图7是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤701中,在所述多个SUL中,将与关联标识对应的SUL作为所述目标SUL;其中,所述关联标识是与DCI传输相关的资源标识,同一类型的关联标识的不同值对应不同的SUL。
在一个可能的实现方式中,关联标识包括以下至少一项:传输所述DCI的带宽部分(Bandwidth Part,BWP)标识;传输所述DCI的搜索空间(Search Space,SS)标识;传输所述DCI的控制资源集合(Control-Resource SET,CORESET)标识。
例如,DCI通过SS#1进行传输,SS#1对应多个SUL中的SUL#1,则终端将SUL#1作为目标SUL。
上述实施例中,基站可以通过与DCI传输相关的资源标识,采用隐式方式让终端确定目标SUL。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,终端直接在该普通上行链路上进行上行传输。
如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则终端在该目标SUL上进行上行传输。其中,目标SUL是基于上述关联标识确定的。
上述实施例中,终端可以基于DCI的调度和指示,在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,终端可以通过多个SUL中的每个SUL对应的时间模式确定目标SUL。所述时间模式用于指示每个所述SUL在每个预设周期内处于激活状态的时间点,且在同一时间点只有一个SUL处于激活状态。
参照图8所示,图8是根据一实施例示出的一种上行传输方法流程图,可以应用于终端,该方法可以包括以下步骤:
在步骤801中,在所述多个SUL中,基于每个SUL对应的所述时间模式,将在目标时间点处于激活状态的SUL作为所述目标SUL。
在本公开实施例中,目标时间点是接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
在一个可能的实现方式中,终端可以接收基站发送的第二配置信息,基于第二配置信息,确定每个SUL对应的所述时间模式。
在另一个可能的实现方式中,终端基于协议约定,确定每个SUL对应的所述时间模式。
上述实施例中,终端将在目标时间点处于激活状态的SUL作为所述目标SUL,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,终端直接在该普通上行链路上进行上行传输。
如果终端接收到基站通过DCI发送的第一指示信息,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则终端在该目标SUL上进行上行传输。其中,目标SUL是基于每个SUL对应的时间模式确定的。
上述实施例中,终端可以基于DCI的调度和指示,在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
下面再从基站侧介绍本公开提供的上行传输方法。
本公开实施例提供了一种上行传输方法,参照图9所示,图9是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤901中,在与终端的一个普通上行链路对应的多个补充上行链 路SUL中,确定用于所述终端上行传输的目标SUL。
在本公开实施例中,可以由基站进行指示或者基于协议约定的方式,在多个SUL中,确定用于终端上行传输的目标SUL。
上述实施例中,可以让基站与终端对目标SUL的选择保持一致,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,参照图10所示,图10是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1001中,向所述终端发送的第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述多个SUL。
在步骤1002中,在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL。
在本公开实施例中,可以由基站进行指示或者基于协议约定的方式,在多个SUL中,确定用于终端上行传输的目标SUL。
上述实施例中,可以让基站与终端对目标SUL的选择保持一致,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,基站也可以基于协议约定或者基于终端能力,确定与终端的一个普通上行链路对应的多个SUL,本公开对此不作限定。
在一些可选实施例中,基站可以通过发送给终端的DCI确定目标SUL。
参照图11所示,图11是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1101中,通过下行控制信息DCI向所述终端发送第一指示信息;其中,所述第一指示信息用于指示所述终端在普通上行链路或SUL上进行上行传输。
在本公开实施例中,第一指示信息可以为UL/SUL indicator,第一指示信息在DCI中可以占用1比特。
其中,DCI的格式可以为不可回退(non-fallback)的DCI格式(format),例如DCI format 0-1、DCI format 0-2。或者,DCI的格式可以为可回退的DCI format,例如DCI format 0-0,本公开对此不作限定。
在一个可能的实现方式中,第一指示信息对应的比特值为0时,指示终端在普通上行链路上进行上行传输。第一指示信息对应的比特值为1时,指示终端在SUL上进行上行传输。
在步骤1102中,在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述多个SUL中,基于协议约定确定所述目标SUL的编号。
上述实施例中,基站可以通过DCI发送第一指示信息给终端,进一步地,基站可以基于协议约定去确定目标SUL的编号。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送的第一指示信息指示终端在普通上行链路上进行上行传输的情况下,则基站可以直接在该普通上行链路上接收终端发送的上行信息。
如果基站通过DCI发送的第一指示信息指示终端在SUL上进行上行传输的情况下,则基站基于该第一指示信息,在所述目标SUL上接收终端发送的上行信息。其中,目标SUL的编号可以基于协议约定来确定。
上述实施例中,基站可以通过DCI的调度和指示,在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,基站可以通过发送给终端的DCI确定目标SUL。
参照图12所示,图12是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1201中,通过DCI向所述终端发送第二指示信息;其中,所述第二指示信息用于指示在其上进行上行传输的上行链路的编号。
在本公开实施例中,可以对DCI中的UL/SUL indicator所占用的比特位的数目进行扩展,将所占用的比特位的数目扩展后的UL/SUL indicator 作为第二指示信息。
在一个可能的实现方式中,第二指示信息在DCI中占用的比特位的数目可以大于1,具体可以为大于1的正整数,例如2、3……等,本公开对此不作限定。
在一个可能的实现方式中,基站可以基于所述普通上行链路的编号、每个SUL的编号与每组比特值之间的对应关系,确定所述第二指示信息所在比特位对应的一组比特值。
在本公开实施例中,以第二指示信息在DCI中所占用的比特位的数目是2为例,假设终端的一个普通上行链路对应两个SUL,分别为SUL#1、SUL#2。其中,所述普通上行链路的编号、每个SUL的编号与每组比特值之间的对应关系例如表2所示。基站可以通过设置第二指示信息对应的比特值来指示上行链路的编号。
需要说明的是,第二指示信息可以由non-fallback DCI format,即可以由DCI format 0-1或者DCI format 2-0的DCI来携带。
上述实施例中,基站可以通过DCI发送第二指示信息给终端,进一步地,基站通过第二指示信息直接指示上行链路的编号。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送的第二指示信息指示所述普通上行链路的编号的情况下,基站直接在该普通上行链路上接收终端发送的上行信息。
如果基站通过DCI发送的第二指示信息指示所述目标SUL的编号,基站直接在该目标SUL上接收终端发送的上行信息。
上述实施例中,基站可以通过DCI的调度和指示,直接指示终端在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,基站可以通过指定信令显示指示目标SUL。
参照图13所示,图13是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1301中,通过指定信令向所述终端发送第三指示信息;其中,所述第三指示信息用于指示处于激活状态的SUL。
在一个可能的实现方式中,指定信令可以是第二RRC信令。
在另一个可能的实现方式中,指定信令可以是MAC CE信令。
在步骤1302中,在所述多个SUL中,将所述第三指示信息所指示的SUL作为所述目标SUL。
上述实施例中,基站可以通过指定信令中的第三指示信息,采用显示指示的方式告知终端处于激活状态的SUL。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在普通上行链路上进行上行传输,基站直接在该普通上行链路上接收终端发送的上行信息。
如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则基站在该目标SUL上接收终端发送的上行信息。其中,目标SUL是基于基站发送的指定信令确定的。
上述实施例中,基站可以通过DCI的调度和指示,指示终端在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,基站可以通过每个SUL对应的一个定时器确定目标SUL。其中,所述多个SUL中的每个SUL对应一个timer,且在同一时间点只有一个SUL对应的timer处于运行状态。
参照图14所示,图14是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1401中,在所述多个SUL中,将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL。
在一个可能的实现方式中,基站发送第一配置信息给终端,通过第一配置信息配置每个SUL对应的定时器的定时时长。
在另一个可能的实现方式中,基站基于协议约定,确定每个SUL对应 的定时器的定时时长。
在本公开实施例中,终端可以在一个SUL对应的timer超时的情况下,启动另一个SUL对应的timer,任一SUL对应的timer处于运行状态时,均不会启动其他SUL对应的timer,从而确保在同一时间点只有一个SUL对应的定时器处于运行状态。
在本公开实施例中,目标时间点是接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。第一指示信息可以为UL/SUL indicator,在DCI中占用1比特。
上述实施例中,基站将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在普通上行链路上进行上行传输,基站直接在该普通上行链路上接收终端发送的上行信息。
如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则基站在该目标SUL上接收终端发送的上行信息。其中,目标SUL是基于每个SUL对应的timer确定的。
上述实施例中,基站可以通过DCI的调度和指示,指示终端在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,基站可以隐式指示的方式来指示目标SUL。
参照图15所示,图15是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1501中,在所述多个SUL中,将与关联标识对应的SUL作为所述目标SUL;其中,所述关联标识是与DCI传输相关的资源标识,同一类型的关联标识的不同值对应不同的SUL。
在一个可能的实现方式中,关联标识包括以下至少一项:传输所述DCI 的BWP标识;传输所述DCI的SS标识;传输所述DCI的CORESET标识。
例如,DCI通过SS#1进行传输,SS#1对应多个SUL中的SUL#1,则终端将SUL#1作为目标SUL。
上述实施例中,基站可以通过与DCI传输相关的资源标识,采用隐式方式指示目标SUL。提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在普通上行链路上进行上行传输,基站直接在该普通上行链路上接收终端发送的上行信息。
如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则基站在该目标SUL上接收终端发送的上行信息。其中,目标SUL是基于上述关联标识确定的。
上述实施例中,基站可以通过DCI的调度和指示,指示终端在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
在一些可选实施例中,基站可以通过多个SUL中的每个SUL对应的时间模式确定目标SUL。所述时间模式用于指示每个所述SUL在每个预设周期内处于激活状态的时间点,且在同一时间点只有一个SUL处于激活状态。
参照图16所示,图16是根据一实施例示出的一种上行传输方法流程图,可以应用于基站,该方法可以包括以下步骤:
在步骤1601中,在所述多个SUL中,基于每个SUL对应的所述时间模式,将在目标时间点处于激活状态的SUL作为所述目标SUL。
在本公开实施例中,目标时间点是接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
在一个可能的实现方式中,基站发送第二配置信息给终端,为终端配 置每个SUL对应的所述时间模式。基站在确定第二配置信息时,需要确保同一时间点只有一个SUL处于激活状态。
在另一个可能的实现方式中,基站基于协议约定,确定每个SUL对应的所述时间模式。
上述实施例中,基站将在目标时间点处于激活状态的SUL作为所述目标SUL,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
在一些可选实施例中,如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在普通上行链路上进行上行传输,基站直接在该普通上行链路上接收终端发送的上行信息。
如果基站通过DCI发送第一指示信息给终端,该第一指示信息指示所述终端在SUL上进行上行传输的情况下,则基站在该目标SUL上接收终端发送的上行信息。其中,目标SUL是基于每个SUL对应的时间模式确定的。
上述实施例中,基站可以通过DCI的调度和指示,指示终端在普通上行链路或目标SUL上进行上行传输,实现简便,可用性高。
为了便于理解本公开提供的上行传输方法,下面对上述方法进一步举例说明如下。
实施例1,假设终端支持多个SUL,在本实施例中,假设终端支持的SUL的数目为2,也即一个普通上行链路对应于两个supplementary uplink,例如图17A所示。
本实施例中,基站可以通过第二RRC信令发送第三指示信息给终端,第三指示信息用于指示normal uplink band对应的激活supplementary uplink的编号。终端和基站将处于激活状态的SUL作为目标SUL。换言之,如果supplementary list(即由多个SUL组成的SUL列表)中的SUL没有被第二RRC信令指示为激活状态,则终端不会在其上发送上行传输,基站侧也不期待在其上接收上行传输。
假设第二RRC信令采用log2(N)比特激活SUL,其中N为SUL list中包含的SUL数目,即多个SUL的数目。在本实施例中,N可以为2。则所述第二RRC信令所指示的处于激活状态的SUL例如表3所示。
表3
Figure PCTCN2022090684-appb-000003
在本实施例中,假设第二RRC信令指示SUL#1处于激活状态。则终端根据基站通过DCI发送的第一指示信息,确定在普通上行链路或者SUL#1上进行上行传输。
以物理上行共享信道(Physical Uplink Shared Channel,PUSCH)为例,假设基站发送了调度PUSCH的DCI,且DCI为format 0-1,其中携带的第一指示信息,即UL/SUL indicator指示所述PUSCH需要在SUL上传输。此时由于SUL#1处于激活状态,因此终端根据调度信息在SUL#1上发送PUSCH。对应地,基站在SUL#1上接收所述PUSCH。
实施例2,假设终端支持多个SUL,在本实施例中,假设终端支持的SUL的数目为2,也即一个普通上行链路对应于两个supplementary uplink,例如图17A所示。
在本实施例中,基站可以通过DCI发送第一指示信息,且其PUSCH由DCI format 0-0进行调度。此时,当DCI format 0-0中携带的第一指示信息,即UL/SUL indicator指示终端在SUL上进行上行传输,则终端和基站可以按照协议约定将SUL#1作为目标SUL。
在本实施例中,基站还可以通过DCI发送第二指示信息,直接指示普通上行链路的编号或目标SUL的编号。其中,可以对DCI中携带的UL/SUL indicator所在的信息域进行拓展。具体地,将UL/SUL indicator所占用的比特位的数目由1bit拓展为至少2bit。可以通过至少2bits的第二指示信 息,确定所述DCI调度的上行传输所在的频带为NUL、SUL#1或者SUL#2。第二指示信息的比特值与所指示的上行链路的编号例如表2所示,在此不再赘述。
在本实施例中假设第二指示信息对应的一组比特值为10,则终端和基站可以确定所述DCI调度的PUSCH在SUL#2上进行传输。
进一步地,所述第二指示信息由non-fallback DCI format携带,也即只能由DCI format 0-1或者DCI format 0-2携带。
实施例3,假设终端支持多个SUL,在本实施例中,假设终端支持的SUL的数目为2,也即一个普通上行链路对应于两个supplementary uplink,例如图17A所示。
在本实施例中,基站通过MAC CE信令发送第三指示信息给终端,第三指示信息用于指示普通上行链路对应的处于激活状态的SUL。终端和基站可以将处于激活状态的SUL作为目标SUL。
换言之,如果supplementary list中的SUL没有被MAC CE信令中的第三指示信息指示为激活状态,则终端不会在其上发送上行传输,基站侧也不期待在其上接收上行传输。
在本实施例中,假设所述MAC CE信令中的第三指示信息指示SUL#1处于激活状态。则终端根据基站通过DCI发送的第一指示信息,确定在NUL或者SUL#1上进行上行传输。
以PUSCH为例,假设基站发送了调度PUSCH的DCI format 0-1,其中携带的UL/SUL indicator指示所述PUSCH需要在SUL上传输。此时由于SUL#1为激活SUL,因此终端根据调度信息在SUL#1上发送PUSCH。对应地,基站在SUL#1上接收所述PUSCH。
实施例4,假设终端支持多个SUL,在本实施例中,假设终端支持的SUL的数目为2,也即一个普通上行链路对应于两个supplementary uplink,例如图17A所示。在同一时刻,只能有一个supplementary uplink处于激活状态。在本实施例中,通过定义supplementary uplink相关的timer,确定 在特定时刻处于激活状态的supplementary uplink。
在本实施例中,假设SUL#1和SUL#2具有两个独立配置的timer,也即SUL#1对应timer#1,SUL#2对应timer#2.且两个timer不能同时启动,也即只有当激活状态的SUL上的timer超时(expired)之后,另一个SUL上的timer才能启动并对应进入激活状态。
在本实施例中,假设终端在目标时间点接收到基站发送的第一指示信息,根据所述timer确定SUL#1为激活supplementary uplink。则终端根据基站侧发送的第一指示信息,确定在NUL或者SUL#1上进行上行传输。
以PUSCH为例,假设基站发送了调度PUSCH的DCI format 0-1,且其中携带的第一指示信息UL/SUL indicator指示所述PUSCH需要在SUL上传输。此时由于SUL#1为激活SUL,因此终端根据调度信息在SUL#1上发送PUSCH。对应地,基站在SUL#1上接收所述PUSCH。
实施例5,假设终端支持多个SUL,在本实施例中,假设终端支持的SUL的数目为2,也即一个普通上行链路对应于两个supplementary uplink,例如图17A所示。在同一时刻,只能有一个supplementary uplink处于激活状态。在本实施例中,通过定义supplementary uplink相关的timer,确定在特定时刻处于激活状态的supplementary uplink。
在同一时间点,只能有一个supplementary uplink处于激活状态。在本实施例中,通过隐式方式确定目标SUL。
具体地,同一类型的关联标识的不同值对应不同的SUL,所述关联标识包括以下至少一项:传输所述DCI的带宽部分BWP标识;传输所述DCI的搜索空间SS标识;传输所述DCI的控制资源集合CORESET标识。
以SS标识例,SS#1对应SUL#1,SS#2对应SUL#2。
当满足如下条件时,DCI调度的PUSCH在SUL#1上传输:
DCI中的第一指示信息UL/SUL indicator为1,也即指示其调度的上行传输在SUL上传输,且所述DCI在SS#1内传输
当满足如下条件时,DCI调度的PUSCH在SUL#2上传输:
DCI中的UL/SUL indicator为1,也即指示其调度的上行传输在SUL上传输,且所述DCI在SS#2内传输。
进一步地,每个SUL可关联到一个或多个SS,本专利不做任何限定。
实施例6,假设终端支持多个SUL,在本实施例中,假设终端支持的SUL的数目为2,也即一个普通上行链路对应于两个supplementary uplink,例如图17A所示。在同一时刻,只能有一个supplementary uplink处于激活状态。在本实施例中,通过定义supplementary uplink相关的timer,确定在特定时刻处于激活状态的supplementary uplink。
在同一时刻,只能有一个SUL处于激活状态。在本实施例中,通过为SUL分别配置时间模式(time pattern),将目标时间点处于激活状态的SUL作为目标SUL。
作为一个具体的例子,基站通过配置SUL time pattern周期,并指示所述周期内不同SUL的激活状态,例如图17B所示。以PUSCH为例,假设基站发送了调度PUSCH的DCI format 0-1,且其中携带的UL/SUL indicator指示所述PUSCH需要在SUL上传输。所述用于PUSCH传输的目标SUL为根据SUL time pattern确定的在目标时间点处于激活状态的SUL。
在上述实施例中,可以在一个普通上行链路对应多个SUL的情况下,快速确定用于终端上行传输的目标SUL,确保基站和终端的理解一致,提高了网络部署和调度的灵活性,在NR系统中实现了上行传输切换增强,可用性高。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图18,图18是根据一示例性实施例示出的一种上行传输装置框图,所述装置应用于终端,包括:
第一确定模块1801,被配置为在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
参照图19,图19是根据一示例性实施例示出的一种上行传输装置框 图,所述装置应用于基站,包括:
第二确定模块1901,被配置为在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧任一所述的上行传输方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于基站侧任一所述的上行传输方法。
相应地,本公开还提供了一种上行传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的上行传输方法。
图20是根据一示例性实施例示出的一种上行传输装置2000的框图。例如装置2000可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载用户设备、ipad、智能电视等终端。
参照图20,装置2000可以包括以下一个或多个组件:处理组件2002,存储器2004,电源组件2006,多媒体组件2008,音频组件2010,输入/输出(I/O)接口2012,传感器组件2016,以及通信组件2018。
处理组件2002通常控制装置2000的整体操作,诸如与显示,电话呼叫,数据随机接入,相机操作和记录操作相关联的操作。处理组件2002可以包括一个或多个处理器2020来执行指令,以完成上述的上行传输方法的全部或部分步骤。此外,处理组件2002可以包括一个或多个模块,便于处理组件2002和其他组件之间的交互。例如,处理组件2002可以包括多媒体模块,以方便多媒体组件2008和处理组件2002之间的交互。又如,处理组件2002可以从存储器读取可执行指令,以实现上述各实施例提供的一种上行传输方法的步骤。
存储器2004被配置为存储各种类型的数据以支持在装置2000的操作。这些数据的示例包括用于在装置2000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2006为装置2000的各种组件提供电力。电源组件2006可以包括电源管理系统,一个或多个电源,及其他与为装置2000生成、管理和分配电力相关联的组件。
多媒体组件2008包括在所述装置2000和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件2008包括一个前置摄像头和/或后置摄像头。当装置2000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2010被配置为输出和/或输入音频信号。例如,音频组件2010包括一个麦克风(MIC),当装置2000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2004或经由通信组件2018发送。在一 些实施例中,音频组件2010还包括一个扬声器,用于输出音频信号。
I/O接口2012为处理组件2002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2016包括一个或多个传感器,用于为装置2000提供各个方面的状态评估。例如,传感器组件2016可以检测到装置2000的打开/关闭状态,组件的相对定位,例如所述组件为装置2000的显示器和小键盘,传感器组件2016还可以检测装置2000或装置2000一个组件的位置改变,用户与装置2000接触的存在或不存在,装置2000方位或加速/减速和装置2000的温度变化。传感器组件2016可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2016还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2016还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2018被配置为便于装置2000和其他设备之间有线或无线方式的通信。装置2000可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件2018经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2018还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述终端侧任一所述的上行传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储 介质,例如包括指令的存储器2004,上述指令可由装置2000的处理器2020执行以完成上述上行传输方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种上行传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一所述的上行传输方法。
如图21所示,图21是根据一示例性实施例示出的一种上行传输装置2100的一结构示意图。装置2100可以被提供为基站。参照图21,装置2100包括处理组件2122、无线发射/接收组件2124、天线组件2126、以及无线接口特有的信号处理部分,处理组件2122可进一步包括至少一个处理器。
处理组件2122中的其中一个处理器可以被配置为用于执行上述任一所述的上行传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种上行传输方法,其特征在于,所述方法应用于终端,包括:
    在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于基站发送的第一无线资源控制RRC信令,确定所述多个SUL。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站通过下行控制信息DCI发送的第一指示信息;其中,所述第一指示信息用于指示所述终端在普通上行链路或SUL上进行上行传输;
    所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
    在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述多个SUL中,基于协议约定确定所述目标SUL的编号。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上进行上行传输;
    在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上进行上行传输。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站通过DCI发送的第二指示信息;其中,所述第二指示信息用于指示在其上进行上行传输的上行链路的编号。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站通过指定信令发送的第三指示信息;其中,所述第三指示信息用于指示处于激活状态的SUL;
    所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定上行传输所在的目标SUL,包括:
    在所述多个SUL中,将所述第三指示信息所指示的SUL作为所述目标SUL。
  7. 根据权利要求6所述的方法,其特征在于,所述指定信令包括:
    第二RRC信令;或者
    媒体访问控制单元MAC CE信令。
  8. 根据权利要求1所述的方法,其特征在于,所述多个SUL中的每个SUL对应一个定时器,且在同一时间点只有一个SUL对应的定时器处于运行状态;
    所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
    在所述多个SUL中,将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL;其中,所述目标时间点是接收到基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    基于基站发送的第一配置信息,确定每个SUL对应的定时器的定时时长;或者,
    基于协议约定,确定每个SUL对应的定时器的定时时长。
  10. 根据权利要求1所述的方法,其特征在于,所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
    在所述多个SUL中,将与关联标识对应的SUL作为所述目标SUL;其中,所述关联标识是与DCI传输相关的资源标识,同一类型的关联标识的不同值对应不同的SUL。
  11. 根据权利要求10所述的方法,其特征在于,所述关联标识包括以下至少一项:
    传输所述DCI的带宽部分BWP标识;
    传输所述DCI的搜索空间SS标识;
    传输所述DCI的控制资源集合CORESET标识。
  12. 根据权利要求1所述的方法,其特征在于,所述多个SUL中的每个SUL对应一个时间模式,所述时间模式用于指示每个所述SUL在每个预设周期内处于激活状态的时间点,且在同一时间点只有一个SUL处于激活状态;
    所述在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL,包括:
    在所述多个SUL中,基于每个SUL对应的所述时间模式,将在目标时间点处于激活状态的SUL作为所述目标SUL;其中,所述目标时间点是接收到基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    基于基站发送的第二配置信息,确定每个SUL对应的所述时间模式;或者,
    基于协议约定,确定每个SUL对应的所述时间模式。
  14. 根据权利要求6-13任一项所述的方法,其特征在于,所述方法还包括:
    接收基站通过DCI发送的第一指示信息;其中,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输;
    在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上进行上行传输;
    在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上进行上行传输。
  15. 一种上行传输方法,其特征在于,所述方法应用于基站,包括:
    在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端发送的第一无线资源控制RRC信令;其中,所述第一RRC信令用于指示所述多个SUL。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    通过下行控制信息DCI向所述终端发送第一指示信息;其中,所述第一指示信息用于指示所述终端在普通上行链路或SUL上进行上行传输;
    所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
    在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述多个SUL中,基于协议约定确定所述目标SUL的编号。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上接收所述终端发送的上行信息;
    在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上接收所述终端发送的上行信息。
  19. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    通过DCI向所述终端发送第二指示信息;其中,所述第二指示信息用于指示在其上进行上行传输的上行链路的编号。
  20. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    通过指定信令向所述终端发送第三指示信息;其中,所述第三指示信息用于指示处于激活状态的SUL;
    所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
    在所述多个SUL中,将所述第三指示信息所指示的SUL作为所述目标SUL。
  21. 据权利要求20所述的方法,其特征在于,所述指定信令包括:
    第二RRC信令;或者
    媒体访问控制单元MAC CE信令。
  22. 根据权利要求15所述的方法,其特征在于,所述多个SUL中的每个SUL对应一个定时器,且在同一时间点只有一个SUL对应的定时器处于运行状态;
    所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
    在所述多个SUL中,将对应的定时器在目标时间点处于运行状态的SUL作为所述目标SUL;其中,所述目标时间点是所述终端接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第一配置信息;其中,所述第一配置信息用于配置每个所述SUL对应的定时器的定时时长;或者,
    基于协议约定,确定每个所述SUL对应的定时器的定时时长。
  24. 根据权利要求15所述的方法,其特征在于,所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
    在所述多个SUL中,将与关联标识对应的SUL作为所述目标SUL;其中,所述关联标识是与DCI传输相关的资源标识,同一类型的关联标识的不同值对应不同的SUL。
  25. 根据权利要求24所述的方法,其特征在于,所述关联标识包括以下至少一项:
    传输所述DCI的带宽部分BWP标识;
    传输所述DCI的搜索空间SS标识;
    传输所述DCI的控制资源集合CORESET标识。
  26. 根据权利要求15所述的方法,其特征在于,所述多个SUL中的每个SUL对应一个时间模式,所述时间模式用于指示每个所述SUL在每 个预设周期内处于激活状态的时间点,且在同一时间点只有一个SUL处于激活状态;
    所述在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL,包括:
    在所述多个SUL中,基于每个SUL对应的所述时间模式,将在目标时间点处于激活状态的SUL作为所述目标SUL;其中,所述目标时间点是所述终端接收到所述基站发送的第一指示信息的时间点,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二配置信息;其中,所述第二配置信息用于配置每个所述SUL对应的时间模式;或者,
    基于协议约定,确定每个SUL对应的所述时间模式。
  28. 根据权利要求20-27任一项所述的方法,其特征在于,所述方法还包括:
    通过DCI向所述终端发送第一指示信息;其中,所述第一指示信息用于指示终端在普通上行链路或SUL上进行上行传输;
    在所述第一指示信息指示所述终端在普通上行链路上进行上行传输的情况下,在所述普通上行链路上接收所述终端发送的上行信息;
    在所述第一指示信息指示所述终端在SUL上进行上行传输的情况下,在所述目标SUL上接收所述终端发送的上行信息。
  29. 一种上行传输装置,其特征在于,所述装置应用于终端,包括:
    第一确定模块,被配置为在与所述终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于上行传输的目标SUL。
  30. 一种上行传输装置,其特征在于,所述装置应用于基站,包括:
    第二确定模块,被配置为在与终端的一个普通上行链路对应的多个补充上行链路SUL中,确定用于所述终端上行传输的目标SUL。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计 算机程序,所述计算机程序用于执行上述权利要求1-14任一项所述的上行传输方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求15-28任一项所述的上行传输方法。
  33. 一种上行传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-14任一项所述的上行传输方法。
  34. 一种上行传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求15-28任一项所述的上行传输方法。
PCT/CN2022/090684 2022-04-29 2022-04-29 上行传输方法及装置、存储介质 WO2023206541A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001424.2A CN117158092A (zh) 2022-04-29 2022-04-29 上行传输方法及装置、存储介质
PCT/CN2022/090684 WO2023206541A1 (zh) 2022-04-29 2022-04-29 上行传输方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090684 WO2023206541A1 (zh) 2022-04-29 2022-04-29 上行传输方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023206541A1 true WO2023206541A1 (zh) 2023-11-02

Family

ID=88516941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090684 WO2023206541A1 (zh) 2022-04-29 2022-04-29 上行传输方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN117158092A (zh)
WO (1) WO2023206541A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337152A (zh) * 2019-06-11 2019-10-15 华为技术有限公司 一种配置sul的方法及通信装置
CN110557821A (zh) * 2018-06-04 2019-12-10 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
CN110859003A (zh) * 2018-08-22 2020-03-03 成都华为技术有限公司 确定上行资源的方法与装置
CN113784420A (zh) * 2020-06-10 2021-12-10 华为技术有限公司 一种随机接入方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557821A (zh) * 2018-06-04 2019-12-10 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
CN110859003A (zh) * 2018-08-22 2020-03-03 成都华为技术有限公司 确定上行资源的方法与装置
CN110337152A (zh) * 2019-06-11 2019-10-15 华为技术有限公司 一种配置sul的方法及通信装置
CN113784420A (zh) * 2020-06-10 2021-12-10 华为技术有限公司 一种随机接入方法及终端

Also Published As

Publication number Publication date
CN117158092A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2023206540A1 (zh) 上行传输方法及装置、存储介质
WO2022236626A1 (zh) 系统消息的传输方法、装置及通信设备
WO2022165646A1 (zh) 带宽部分切换方法、装置及通信设备
WO2023097621A1 (zh) 下行控制信息检测、发送方法及装置、存储介质
WO2020258162A1 (zh) 混合自动重传请求harq传输方法及装置
WO2021223226A1 (zh) 控制终端的方法及装置、存储介质
JP2024502680A (ja) 情報設定方法及び装置、通信機器並びに記憶媒体
WO2024059979A1 (zh) 子带配置方法及装置
WO2024020888A1 (zh) 上行定时维护、终端行为确定方法及装置、存储介质
WO2023206541A1 (zh) 上行传输方法及装置、存储介质
WO2022082778A1 (zh) 信息上报方法及装置、存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2022067740A1 (zh) 信道传输方法及装置、存储介质
CN113228794A (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2023159466A1 (zh) 映射关系的确定方法及装置、存储介质
WO2024065220A1 (zh) 跳频处理方法及装置
WO2024059978A1 (zh) 信息传输方法及装置
CN110622551B (zh) 数据发送方法及装置
WO2023240408A1 (zh) 数据传输方法及装置、存储介质
WO2023184271A1 (zh) 资源确定方法及装置、存储介质
WO2022077340A1 (zh) 跨载波调度方法及装置、存储介质
WO2023226032A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2022082777A1 (zh) 信息上报方法及装置、存储介质
WO2024000546A1 (zh) 信息记录、信息发送方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939387

Country of ref document: EP

Kind code of ref document: A1