WO2023206383A1 - 随机接入方法、装置、设备、存储介质以及程序产品 - Google Patents

随机接入方法、装置、设备、存储介质以及程序产品 Download PDF

Info

Publication number
WO2023206383A1
WO2023206383A1 PCT/CN2022/090359 CN2022090359W WO2023206383A1 WO 2023206383 A1 WO2023206383 A1 WO 2023206383A1 CN 2022090359 W CN2022090359 W CN 2022090359W WO 2023206383 A1 WO2023206383 A1 WO 2023206383A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnti
prach
prach opportunity
system frame
operator
Prior art date
Application number
PCT/CN2022/090359
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/090359 priority Critical patent/WO2023206383A1/zh
Publication of WO2023206383A1 publication Critical patent/WO2023206383A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of mobile communication technology, and in particular, to a random access method, device, equipment, storage medium and program product.
  • terminal equipment needs to perform uplink synchronization with network equipment, obtain uplink resources, and obtain legal identification, and then data can be transmitted through the mobile communication network.
  • embodiments of the present application provide a random access method, apparatus, equipment, storage medium and program product.
  • embodiments of the present application provide a random access method, which method includes:
  • the terminal device sends the first PRACH to the network device through the first PRACH opportunity;
  • the terminal equipment monitors the first PDCCH according to the first RNTI, wherein the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • embodiments of the present application provide a random access method, which method includes:
  • the network device detects the first PRACH through the first PRACH opportunity
  • the network device After the network device detects the first PRACH, the network device sends the first PDCCH according to the first RNTI, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR .
  • a random access device which includes:
  • a sending module configured to send the first PRACH to the network device through the first PRACH opportunity
  • a monitoring module configured to monitor the first PDCCH according to the first RNTI, wherein the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • a random access device which includes:
  • a detection module used to detect the first PRACH through the first PRACH opportunity
  • a sending module configured to send a first PDCCH according to a first RNTI after detecting the first PRACH, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • embodiments of the present application provide a terminal device, including: a processor and a memory, the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory to execute The method described in the first aspect above.
  • embodiments of the present application provide a network device, including: a processor and a memory, the memory is used to store a computer program, the processor is used to call and run the computer program stored in the memory to execute The method described in the second aspect above.
  • embodiments of the present application provide a chip, including: a processor configured to call and run a computer program from a memory, so that a device installed with the chip executes the method described in the first aspect.
  • embodiments of the present application provide a chip, including: a processor configured to call and run a computer program from a memory, so that a device installed with the chip executes the method described in the second aspect.
  • embodiments of the present application provide a computer-readable storage medium for storing a computer program that causes a computer to execute the method described in the first aspect.
  • embodiments of the present application provide a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method described in the second aspect.
  • embodiments of the present application provide a computer program product, including computer program instructions, which cause a computer to execute the method described in the first aspect.
  • embodiments of the present application provide a computer program product, including computer program instructions, which cause a computer to execute the method described in the second aspect.
  • embodiments of the present application provide a computer program, which causes a computer to execute the method described in the first aspect.
  • embodiments of the present application provide a computer program that causes a computer to execute the method described in the second aspect.
  • the terminal device can complete uplink synchronization with the network device, obtain uplink resources, and obtain a legal identity, thereby enabling data transmission through the mobile communication network.
  • Figure 1 is a schematic architectural diagram of a communication system provided in an embodiment
  • Figure 2 is an architectural schematic diagram of a communication system provided in an embodiment
  • Figure 3 is an architectural schematic diagram of a communication system provided in an embodiment
  • Figure 4 is a flow chart of a random access method provided in an embodiment
  • Figure 5 is a flow chart of a random access method provided in an embodiment
  • Figure 6 is a flow chart of a random access method provided in an embodiment
  • Figure 7 is a schematic diagram of a PRACH format provided by an embodiment
  • Figure 8 is a flow chart of a random access method provided in an embodiment
  • Figure 9 is a block diagram of a random access device provided in an embodiment
  • Figure 10 is a block diagram of a random access device provided in an embodiment
  • Figure 11 is a block diagram of a random access device provided in an embodiment
  • Figure 12 is a block diagram of a communication device provided in an embodiment
  • Figure 13 is a block diagram of a chip provided in an embodiment
  • Figure 14 is a block diagram of a communication system provided by an embodiment.
  • the communication system involved in the embodiment of the present application may include Terrestrial Network (abbreviation: TN; Chinese: terrestrial communication network) or Non Terrestrial Network (abbreviation: NTN; Chinese: non-terrestrial communication network).
  • TN Terrestrial Network
  • NTN Non Terrestrial Network
  • NTN generally uses satellite communication to provide communication services to ground terminal equipment.
  • NTN currently includes NR-NTN and IoT-NTN.
  • the embodiments of this application do not limit the network standard of the communication system involved.
  • the communication system can be a long-term evolution (English: Long Term Evolution; abbreviation: LTE) system, LTE frequency division duplex (English: Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD) system, 5G communication system or future communication system, etc.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system etc.
  • FIGS. 1 to 3 show a schematic architectural diagram of a communication system involved in embodiments of the present application.
  • the communication system 100 may include a network device 110 , and the network device 110 may be a device that communicates with a terminal device 120 .
  • Network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110 and the coverage of each network device 110 may include Other numbers of terminal devices 120 are not limited in this embodiment of the present application.
  • the communication system 200 includes a terminal device 1101 and a satellite 1102, and wireless communication can be performed between the terminal device 1101 and the satellite 1102.
  • the network formed by terminal equipment 1101 and satellite 1102 is NTN.
  • the satellite 1102 can have the function of a base station, and the terminal device 1101 and the satellite 1102 can communicate directly.
  • satellite 1102 may be referred to as a network device.
  • Figure 2 exemplarily shows a network device 1102 and a terminal device 1101.
  • the communication system 200 may include multiple network devices 1102 and the coverage of each network device 1102 may include other
  • the number of terminal devices 1101 is not limited in this embodiment of the present application.
  • the communication system 300 includes a terminal device 1201, a satellite 1202 and a base station 1203.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed by terminal equipment 1201, satellite 1202 and base station 1203 is NTN.
  • the satellite 1202 does not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202.
  • the base station 1203 can be called a network device.
  • Figure 3 exemplarily shows a network device 1203 and a terminal device 1201.
  • the communication system 300 may include multiple network devices 1203 and the coverage of each network device 1203 may include other
  • the number of terminal devices 1201 is not limited in this embodiment of the present application.
  • the network equipment mentioned above can be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or a wireless controller in the Cloud Radio Access Network (CloudRadioAccess Network, CRAN), or the network
  • the equipment can be a mobile switching center, relay station, access point, vehicle-mounted equipment, wearable device, hub, switch, bridge, router, network side equipment in the 5G network or network equipment in the future communication system, etc.
  • terminal equipment includes but is not limited to connections via wired lines, such as via the Public Switched Telephone Networks (English: Public Switched Telephone Networks; abbreviation: PSTN), digital subscriber lines (English: Digital SubscriberLine; abbreviation: DSL) , digital cable, direct cable connection; and/or another data connection/network; and/or via a wireless interface, e.g.
  • PSTN Public Switched Telephone Networks
  • DSL Digital SubscriberLine
  • DSL Digital SubscriberLine
  • a wireless interface e.g.
  • Wireless Local Area Networks (English: Wireless Local Area Network; abbreviation: WLAN), such as DVB-H networks Digital television network, satellite network, AM-FM broadcast transmitter; and/or a device of another terminal device configured to receive/transmit communication signals; and/or Internet of Things (English: Internet of Things; abbreviation: IoT) equipment.
  • a terminal device configured to communicate via a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or "mobile terminal”.
  • terminal devices include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communications capabilities; may include radiotelephones, pagers , Internet/Intranet access, Web browser, planner, calendar, and/or Global Positioning System (GPS) receiver; as well as conventional laptop and/or handheld receivers or other electronic device including a radiotelephone transceiver.
  • Terminal equipment can also refer to access terminals, user equipment (English: User Equipment; referred to as: UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communications Device, user agent, or user device.
  • UE User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (English: Session Initiation Protocol; Abbreviation: SIP) phone, a Wireless Local Loop (English: Wireless Local Loop; Abbreviation: WLL) station, or Personal Digital Processing (English: Personal Digital Assistant (PDA for short), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • Session Initiation Protocol English: Session Initiation Protocol; Abbreviation: SIP
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the above communication system may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
  • Figures 1 to 3 are only used as examples to illustrate the systems to which the present application is applicable. Of course, the methods shown in the embodiments of the present application can also be applied to other systems. It should be understood that the terms “system” and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character “/” in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • Figure 4 shows a flow chart of a random access method provided by an embodiment of the present application.
  • the random access method includes the following steps:
  • Step 401 The terminal device sends the first PRACH to the network device through the first PRACH (English: Physical Random Access Channel; Chinese: Physical Random Access Channel) opportunity.
  • step 401 describes that the terminal device sends PRACH to the network device, readers should understand that the PRACH here can also be called a random access preamble, a random access preamble, or a random access preamble sequence. .
  • PRACH opportunity (English: PRACH Occasion; abbreviation: RO) described in step 401 refers to the resources used to transmit PRACH (random access preamble, random access preamble code or random access preamble sequence) in the PRACH channel
  • PRACH opportunities can also be called PRACH resources.
  • Step 402 The terminal equipment monitors the first PDCCH according to the first RNTI, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • the network device After receiving the PRACH sent by the terminal device, the network device will send RAR (English: RandomAccess Response; Chinese: Random Access Response) to the terminal device.
  • the RAR is carried in PDSCH (English: Physical Downlink Shared CHannel; Chinese: Physical Downlink Shared Channel ), or in other words, RAR is transmitted through PDSCH, where PDSCH is scheduled by PDCCH (English: Physical Downlink Control Channel; Chinese: Physical Downlink Control Channel), or in other words, PDSCH is carried by DCI (English: Downlink Control Information) carried on PDCCH; Chinese: Downlink Control Information) scheduling, the DCI's CRC (English: Cyclic Redundancy Check; Chinese: Cyclic Redundancy Check Code) is scrambled by RNTI (English: Radio Network Tempory Identifier; Chinese: Wireless Network Equipment Temporary Identifier).
  • the RNTI used for scrambling DCI is related to the time-frequency information of the PRACH opportunity.
  • the terminal device can obtain the RNTI based on the PRACH opportunity used to send the PRACH.
  • the network device can obtain the RNTI based on the PRACH opportunity that detects the PRACH sent by the terminal device. , in other words, the terminal device and the network device can obtain the same RNTI, so that the network device can scramble the CRC of the DCI based on the RNTI, and the terminal device can descramble the DCI based on the RNTI.
  • the terminal device after sending the first PRACH to the network device through the first PRACH opportunity, the terminal device can monitor the first PDCCH according to the first RNTI.
  • the first PDCCH is used to schedule the PDSCH.
  • the PDSCH scheduled by PDCCH carries RAR.
  • the first RNTI is determined based on the time-frequency information of the first PRACH opportunity.
  • the RAR carried by the PDSCH scheduled by the first PDCCH may correspond to the first PRACH, that is, the correct recipient of the RAR carried by the PDSCH scheduled by the first PDCCH may be step 401 and the terminal equipment involved in step 402 (for convenience of distinction, the PDSCH in this case is called the first PDSCH).
  • the RAR carried by the PDSCH scheduled by the first PDCCH does not correspond to the first PRACH. That is, the correct recipient of the RAR carried by the PDSCH scheduled by the first PDCCH is not step 401. and the terminal equipment involved in step 402, but other terminal equipment.
  • the random access method provided by the embodiments of this application can be a type 1 random access process or a type 2 random access process.
  • the type 1 random access process is also a four-step random access process.
  • the type 2 random access process is also a two-step random access.
  • the first PRACH opportunity mentioned above includes the PRACH opportunity in the type 1 random access process or the PRACH opportunity corresponding to MsgA (message A) in the type 2 random access process.
  • the first RNTI in the above is RA-RNTI (English: RandomAccess-RNTI)
  • MsgB-RNTI Message B-RNTI
  • the terminal device before monitoring the first PDCCH based on the first RNTI, the terminal device sends MsgA-PUSCH (message A-PUSCH) to the network device, where MsgA-PUSCH is determined based on the RA-RNTI.
  • MsgA-PUSCH messages A-PUSCH
  • PUSCH is the abbreviation of Physical Uplink Shared Channel
  • its Chinese translation is Physical Uplink Shared Channel.
  • step 401 in the type 2 random access process, can be replaced by: the terminal device sends MsgA to the network device, where the first PRACH corresponding to MsgA is transmitted through the first PRACH opportunity, MsgA-PUSCH corresponding to MsgA is determined based on RA-RNTI.
  • Step 402 may be replaced by: the terminal device monitors the first PDCCH according to MsgB-RNTI, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • Figure 5 is a flow chart of four-step random access
  • Figure 6 is a flow chart of two-step random access. picture.
  • the four-step random access includes steps 501 to 504:
  • Step 501 The terminal device sends PRACH to the network device through the PRACH opportunity (in four-step random access, it may also be called message1, that is, Msg1). This step corresponds to step 401 above.
  • Step 502 After receiving the PRACH sent by the terminal device, the network device sends RAR (in four-step random access, it can also be called message2, that is, Msg2) to the terminal device. This step is the same as step 402 above. correspond.
  • RAR in four-step random access, it can also be called message2, that is, Msg2
  • the RAR is carried in the PDSCH, and the PDSCH is scheduled by the PDCCH, and the PDCCH is scrambled by the RA-RNTI.
  • the PDSCH is scheduled by the DCI carried on the PDCCH, and the CRC of the DCI carried on the PDCCH is scrambled by the RA-RNTI.
  • RA-RNTI is determined based on the time-frequency information of the PRACH opportunity.
  • RAR is used to inform the terminal device to send message3, which is the PUSCH resource that can be used when Msg3 is used, to allocate TC-RNTI (English: temporary-CRNTI; Chinese: temporary CRNTI) to the terminal device, and to inform the terminal device TA (English: TimingAdvance; Chinese : timing advance), where CRNTI (English: Cell RNTI) is the identity assigned by the network device to the terminal device.
  • Step 503 After receiving the RAR, the terminal device sends message3, that is, Msg3, through the PUSCH resource indicated by the RAR.
  • Step 504 The network device sends message 4, that is, Msg4, to the terminal device.
  • Msg4 may include contention resolution messages. Msg3 and Msg4 are mainly used to solve the problem of terminal device conflicts during random access. After receiving Msg4, the terminal device feeds back the ACK (Chinese: Acknowledgment) information corresponding to Msg4 to the network device, thereby completing random access.
  • ACK Chonese: Acknowledgment
  • the two-step random access includes step 601 and step 602.
  • Step 601 The terminal device sends message A (English: message A; abbreviation: MsgA) to the network device through the PRACH channel and the PUSCH channel, where MsgA includes PRACH and MsgA-PUSCH.
  • MsgA includes PRACH and MsgA-PUSCH.
  • the scrambling code of MsgA-PUSCH is calculated through RA-RNTI. This step corresponds to step 401 above.
  • Step 602 After receiving MsgA, the network device sends message B (English: message B; abbreviation: MsgB) to the terminal device, where MsgB includes RAR. This step corresponds to step 402 above.
  • message B English: message B; abbreviation: MsgB
  • the RAR is carried in the PDSCH, or in other words, the RAR is transmitted through the PDSCH, the PDSCH is scheduled by the PDCCH, and the PDCCH is scrambled using MsgB-RNTI, or in other words, the PDSCH is scheduled by the DCI carried on the PDCCH, and the CRC in the DCI is used MsgB-RNTI scrambling.
  • the terminal device After receiving the MsgB message, the terminal device feeds back the ACK information corresponding to the MsgB message to the network device, thereby completing random access.
  • This uplink coverage enhancement technology can introduce new PRACH formats or new PRACH in addition to the existing PRACH formats 0, 1, 2, 3, A1, A2, A3, B1, B2, B3, B4, C0 and C2. Transmission method.
  • the sequence lengths supported by PRACH formats 0, 1, 2, and 3 are 839
  • the sequence lengths supported by PRACH formats A1, A2, A3, B1, B2, B3, B4, C0, and C2 include 139, 1151, and 571.
  • the subcarrier spacing supported by 0, 1, and 2 is 1.25kHz
  • the subcarrier spacing supported by PRACH format 3 is 5kHz
  • the subcarrier spacing supported by PRACH formats A1, A2, A3, B1, B2, B3, B4, C0, and C2 include 15kHz, 30kHz, 60kHz, 120kHz, 480kHz, 960kHz.
  • Figure 7 shows a schematic diagram of PRACH formats 0, 1, 2, 3, A1, A2, A3, B1, B2, B3, B4, C0 and C2.
  • the transmission duration of the new PRACH format or new PRACH transmission method may exceed the length of one system frame.
  • the length of the PRACH opportunity used to transmit the new PRACH in the time domain may also exceed the length of one system frame.
  • the transmission duration of the existing PRACH is within the length of a system frame.
  • the length of the PRACH opportunity to transmit the existing PRACH in the time domain is also within the length of a system frame. Therefore, the existing RNTI is for The PRACH opportunity length is smaller than one system frame. Therefore, the existing RNTI is not applicable in the uplink coverage enhancement technology.
  • uplink coverage enhancement technology is not limited to NTN networks.
  • uplink coverage enhancement can also be introduced in TN networks. technology.
  • the random access method provided in steps 401 and 402 above can be applied to the uplink coverage enhancement technology.
  • the first PRACH is a new format PRACH, and the transmission duration of the first PRACH exceeds the length of one system frame, correspondingly, the length of the first PRACH opportunity in the time domain also exceeds the length of one system frame.
  • embodiments of the present application provide three methods. Below, embodiments of the present application will describe these three methods one by one.
  • the first method does not use a new RNTI, but still uses the existing RNTI.
  • using the existing RNTI may appear in a PRACH configuration cycle. Different PRACH opportunities correspond to the same RNTI situation, resulting in terminal equipment and network equipment may have inconsistent understanding of RNTI.
  • the network device when sending RAR, the network device will use the same RNTI to scramble the PDCCH of the scheduled PDSCH, and through these different PRACH opportunities
  • the terminal equipment that sends PRACH separately can descramble the PDCCH and receive the PDSCH carrying the RAR under its schedule.
  • each terminal equipment thinks that the RAR is sent to itself by the network equipment, which will lead to errors. .
  • terminal device 1 sends PRACH to the network device through PRACH opportunity 1 and PRACH preamble 1
  • terminal device 2 sends PRACH to the network device through PRACH opportunity 2 and PRACH preamble 1. Since the existing RNTI is used, PRACH occurs.
  • the RNTI corresponding to opportunity 1 and PRACH opportunity 2 is the same, assuming that they are both target RNTIs, when the network device sends the PDSCH carrying RAR to terminal device 1, it will use the target RNTI to scramble the PDCCH of the scheduled PDSCH.
  • the PDSCH includes the RAR corresponding to the PRACH preamble 1.
  • Both terminal equipment 1 and terminal equipment 2 can descramble the PDCCH based on the target RNTI, thereby receiving the PDSCH carrying the RAR corresponding to the PRACH preamble 1 under its schedule, and, the terminal equipment 1 and terminal equipment 2 both believe that the PDSCH is sent to them by the network equipment.
  • the actual situation is that the PDSCH carrying the corresponding PRACH preamble 1 is sent by the network equipment to terminal equipment 1.
  • the network equipment When sending the PDSCH carrying the RAR corresponding to PRACH preamble 1 to terminal equipment 2, the target RNTI will be used to scramble the PDCCH of the scheduled PDSCH.
  • Both terminal equipment 1 and terminal equipment 2 can descramble the PDCCH based on the target RNTI, so that in Under its scheduling, the PDSCH carrying the RAR corresponding to PRACH preamble 1 is received, and both terminal equipment 1 and terminal equipment 2 believe that the PDSCH carrying the corresponding PRACH preamble 1 is sent to them by the network equipment. However, the real situation is, The PDSCH carrying the corresponding PRACH preamble 1 is sent by the network device to the terminal device 2, which will cause an error.
  • the first method introduces first indication information.
  • the first indication information can indicate whether the terminal equipment is the correct recipient of the PDCCH.
  • the first indication information can indicate the terminal equipment whether it is the correct receiver of the PDSCH.
  • the terminal device can further determine whether the PDCCH is the PDCCH sent by the network device to the terminal device based on the first indication information, or, after receiving the PDCCH scheduled by the successfully descrambled PDCCH
  • the terminal device can further determine whether the PDSCH is the PDSCH sent by the network device to the terminal device based on the first indication information, or, after receiving the RAR in the PDSCH scheduled by the PDCCH, the terminal device can further determine based on the first indication information.
  • the indication information further determines whether the RAR is the RAR sent by the network device to the terminal device.
  • terminal equipment 1 and terminal equipment 2 can descramble the PDCCH based on the target RNTI, according to the instructions of the first indication information, terminal equipment 1 and terminal equipment 2 can determine the correct reception of the PDCCH. Whether the party is itself, in this way, errors can be avoided, or, although both terminal equipment 1 and terminal equipment 2 can descramble the PDCCH based on the target RNTI, thereby receiving the PDSCH carrying RAR under its scheduling, according to the first indication According to the indication of the information, terminal equipment 1 and terminal equipment 2 can determine whether the correct recipient of the PDSCH is themselves.
  • terminal equipment 1 and terminal equipment 2 can receive the PDSCH scheduled by the PDCCH RAR, however, according to the instructions of the first indication information, terminal device 1 and terminal device 2 can determine whether the correct recipient of the RAR is themselves, so that errors can be avoided.
  • the terminal equipment determines whether the first PDCCH is the PDCCH that schedules the first PDSCH according to the first indication information; or , the terminal equipment determines whether the PDSCH scheduled by the first PDCCH is the first PDSCH according to the first indication information; wherein, as mentioned above, the RAR carried by the first PDSCH is the RAR corresponding to the first PRACH.
  • the first indication information may be carried in the first PDCCH, or the first indication information may be carried in the PDSCH scheduled by the first PDCCH. Specifically, the first indication information may be carried in the DCI carried on the first PDCCH, and/or the first indication information may be carried in the RAR in the PDSCH scheduled by the first PDCCH.
  • the first indication information is used to indicate at least one of the following:
  • the system frame index corresponding to the first RNTI or the system frame index corresponding to the first PRACH opportunity refers to the system frame index corresponding to the first symbol of the first PRACH opportunity, or in other words, the system frame index corresponding to the first RNTI or The system frame index corresponding to the first PRACH opportunity refers to the index of the system frame where the first symbol of the first PRACH opportunity is located, and its value range can be 0-1023.
  • the time domain length of a PRACH opportunity is greater than the length of one system frame, there may be multiple PRACH opportunities whose first symbols are located in different system frames. Therefore, the system frame index corresponding to the first RNTI or The system frame index corresponding to the first PRACH opportunity indicates to the terminal equipment, so that the terminal equipment determines whether the correct recipient of the PDCCH and/or PDSCH is itself.
  • the first indication information may indicate the system frame corresponding to the first RNTI.
  • k ceil(log 2 (N)), where the ceil operator is an upward rounding operator, log 2 represents the logarithm with base 2, and N is the first RNTI
  • the first indication information includes 3 bits, which are used to indicate the lower 3 bits of the system frame index corresponding to the first RNTI or the lower 3 bits of the system frame index corresponding to the first PRACH opportunity.
  • the first indication information includes 1 bit, which is used to indicate the lower 1 bit of the system frame index corresponding to the first RNTI or the first PRACH opportunity.
  • the lower 1 bit of the system frame index is used to indicate the lower 3 bits of the system frame index corresponding to the first RNTI or the first PRACH opportunity.
  • the first indication information may also indicate the system frame number value N corresponding to the first RNTI or the system frame number value N corresponding to the first PRACH opportunity.
  • N can also be understood as the configuration period of the PRACH opportunity, such as the corresponding maximum configuration period when configuring PRACH resources for the system.
  • the system frame number value N is determined according to at least one of the following:
  • the first length where the first length is the maximum length of the system-configurable PRACH opportunity in the time domain.
  • the second length where the second length is the maximum RAR window length configurable by the system.
  • the RAR window refers to the listening window of the PDCCH.
  • the RAR window can be configured for the terminal device.
  • the terminal device only performs PDCCH processing within the RAR window. Monitor instead of monitoring the PDCCH outside the RAR window. This can effectively reduce the monitoring time of the terminal device on the PDCCH, thus reducing the power consumption and computational complexity of the terminal device.
  • the first length is greater than the length of one system frame; and/or the second length is greater than the length of one system frame.
  • the system frame number value N corresponding to the first PRACH opportunity is greater than or equal to the minimum number of system frames of the first length; or, the system frame number value N corresponding to the first PRACH opportunity is greater than or equal to the first length. or equal to the minimum number of system frames of the second length; or, the value N of the number of system frames corresponding to the first PRACH opportunity is the minimum number of system frames greater than or equal to the third length, where the third length is the first length and the The larger of the two lengths.
  • the value of N is 2. Assuming that the second length is 40 milliseconds, the value of N is 4. Assume that the first length is 16 milliseconds. , the second length is 40 milliseconds. Since the second length is larger than the first length, the value of N is 4.
  • system frame number value N can be pre-configured by the network side, or the system frame number value N can be specified by the communication protocol.
  • N system frame lengths may be regarded as configuration periods of PRACH opportunities, where one configuration period may include at least one PRACH opportunity.
  • a PRACH opportunity can span two or more configuration periods. It should be pointed out that "one configuration period may include at least one PRACH opportunity" may be understood to mean that one configuration period may include the first symbol of at least one PRACH opportunity.
  • different PRACH opportunities can be distinguished based on the time domain position of the PRACH opportunity in the configuration period.
  • the time domain position of the system frame where the first symbol of the PRACH opportunity is located in the configuration period can be used to distinguish different PRACH opportunities. Therefore, the first symbol of the PRACH opportunity can be distinguished.
  • An indication information may indicate the system frame index associated with the first RNTI in N system frames or the system frame index associated with the first PRACH opportunity in N system frames, and its value may be 0 to N-1.
  • a new RNTI is introduced for PRACH opportunities with a time domain length greater than 1 system frame.
  • the first RNTI is as described here.
  • the new RNTI is as described here.
  • the first RNTI is determined according to at least one of the following:
  • the system frame index corresponding to the first PRACH opportunity, the lower k bits of the system frame index corresponding to the first PRACH opportunity, the system frame number value N corresponding to the first PRACH opportunity, and the first PRACH opportunity is associated in N system frames
  • the system frame index has been explained above and will not be described again in the embodiment of the present application.
  • the first RNTI is determined based on the modulo operation result of the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity, or, An RNTI is determined based on the division operation result between the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity, or the first RNTI is determined based on the system associated with the first PRACH opportunity in N system frames. Frame index determined.
  • the embodiment of the present application provides a specific calculation formula for the first RNTI, where:
  • the first RNTI When the first RNTI is RA-RNTI, the first RNTI may be calculated based on the first formula or the second formula.
  • the first formula includes:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ (SFN_idmodN).
  • This second formula includes:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ f(SFN_id/N).
  • s_id is the index of the first symbol of the first PRACH opportunity, and the value range is 0 ⁇ s_id ⁇ 14.
  • t_id is the index of the first time slot of the first PRACH opportunity in a system frame, and the value range is 0 ⁇ t_id ⁇ 80, where the subcarrier spacing for determining t_id is determined according to the subcarrier spacing configuration ⁇ .
  • the subcarrier spacing of the first PRACH is 1.25kHz or 5kHz, the subcarrier spacing is 15kHz; otherwise, when the subcarrier spacing of the first PRACH is 1.25kHz or 5kHz, the subcarrier spacing of the first PRACH is 15kHz.
  • f_id is the index of the first PRACH opportunity in the frequency domain, and the value range is 0 ⁇ f_id ⁇ 8, ul_carrier_id is the uplink carrier index corresponding to the first PRACH opportunity, where 0 indicates NUL (English: Normal uplink) carrier, 1 indicates SUL (English: Supplementaryuplink) carrier, SFN_id is the system frame index corresponding to the first PRACH opportunity, N is the number of system frames corresponding to the first PRACH opportunity, mod is the modulo operator, (SFN_idmodN) represents the system frame index associated with the first PRACH opportunity in N system frames, f is the floor operator or ceil operator or round operator, where the floor operator is a downward rounding operator, the ceil operator is an upward rounding operator, and the round operator is a rounding operator.
  • the first RNTI may be calculated based on the third formula or the fourth formula.
  • the third formula includes:
  • MsgB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ (SFN_idmodN)+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ N.
  • the fourth formula includes:
  • MsgB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ f(SFN_id/N)+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ N .
  • s_id is the index of the first symbol of the first PRACH opportunity, and the value range is 0 ⁇ s_id ⁇ 14.
  • t_id is the index of the first time slot of the first PRACH opportunity in a system frame, and the value range is 0 ⁇ t_id ⁇ 80, where the subcarrier spacing for determining t_id is determined according to the subcarrier spacing configuration ⁇ .
  • the subcarrier spacing of the first PRACH is 1.25kHz or 5kHz, the subcarrier spacing is 15kHz; otherwise, when the subcarrier spacing of the first PRACH is 1.25kHz or 5kHz, the subcarrier spacing of the first PRACH is 15kHz.
  • f_id is the index of the first PRACH opportunity in the frequency domain, and the value range is 0 ⁇ f_id ⁇ 8, ul_carrier_id is the uplink carrier index corresponding to the first PRACH opportunity, where 0 indicates NUL (English: Normal uplink) carrier, 1 indicates SUL (English: Supplementaryuplink) carrier, SFN_id is the system frame index corresponding to the first PRACH opportunity, N is the number of system frames corresponding to the first PRACH opportunity, mod is the modulo operator, (SFN_idmodN) represents the system frame index associated with the first PRACH opportunity in N system frames, f is the floor operator or ceil operator or round operator, where the floor operator is a downward rounding operator, the ceil operator is an upward rounding operator, and the round operator is a rounding operator.
  • the new RNTI includes RA-RNTI.
  • the new RNTI includes MsgB-RNTI and/or RA-RNTI.
  • MsgA-PUSCH is determined based on the new RA-RNTI, and the terminal device monitors the first PDCCH based on the new MsgB-RNTI.
  • the first PRACH opportunity includes M existing PRACH opportunities, M is a positive integer greater than 1, and the existing PRACH opportunities are used to transmit PRACH in the existing format.
  • the time domain length corresponding to the first PRACH opportunity may be greater than 1 system frame.
  • the first PRACH opportunity includes M second PRACH opportunities, wherein, as mentioned above, the first PRACH opportunity is used to transmit the first PRACH of the new format, and the first PRACH The length of the opportunity in the time domain may exceed the length of one system frame.
  • the second PRACH opportunity is used to transmit PRACH in the existing format.
  • the PRACH formats corresponding to the second PRACH opportunity are 0, 1, 2, 3, A1, and A2. , A3, B1, B2, B3, B4, C0 and C2 format at least one.
  • the length of the first PRACH opportunity in the time domain may also be less than or equal to the length of one system frame, and this application is not limited to this.
  • the first RNTI is determined based on at least one second PRACH opportunity among the M second PRACH opportunities.
  • the first RNTI is determined based on the RNTI corresponding to at least one second PRACH opportunity among the M second PRACH opportunities. It should be noted that the RNTI corresponding to the second PRACH opportunity may be RNTI derived based on existing methods.
  • the first RNTI is the RNTI corresponding to the first of the M second PRACH opportunities; or, the first RNTI is the last of the M second PRACH opportunities.
  • the transmission duration of the new PRACH format or the new PRACH transmission method exceeding the length of one system frame is just an example.
  • the method provided in the embodiments of this application can also be applied to the new PRACH format or the new PRACH transmission method. This application is not limited to the case where the transmission duration does not exceed the length of one system frame.
  • Figure 8 shows a flow chart of a random access method provided by an embodiment of the present application.
  • the random access method includes the following steps:
  • Step 801 The network device detects the first PRACH through the first PRACH opportunity.
  • Step 802 After the network device detects the first PRACH, the network device sends the first PDCCH according to the first RNTI, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • the random access method shown in Figure 8 is a step performed by the opposite end (that is, the network device) involved in the random access method shown in Figure 4. Therefore, the random access method shown in Figure 8 is the same as the random access method shown in Figure 8. The same applies to the random access method shown in Figure 4.
  • the random access method shown in Figure 8 please refer to the corresponding description in Figure 4, and the embodiments of the present application will not be repeated here.
  • the random access method provided by the embodiments of this application can be a type 1 random access process or a type 2 random access process.
  • the type 1 random access process is also a four-step random access process.
  • the type 2 random access process is also a two-step random access.
  • the first PRACH opportunity includes a PRACH opportunity in the type 1 random access process or a PRACH opportunity corresponding to MsgA in the type 2 random access process.
  • the first RNTI is RA- RNTI.
  • the first RNTI is MsgB-RNTI.
  • the network device before the network device sends the first PDCCH according to the first RNTI, the network device receives the MsgA-PUSCH sent by the terminal device, where the MsgA-PUSCH is determined according to the RA-RNTI.
  • step 801 is replaced with: the network device receives MsgA sent by the terminal device, where the first PRACH corresponding to MsgA is transmitted through the first PRACH opportunity, MsgA The corresponding MsgA-PUSCH is determined based on the RA-RNTI.
  • Step 802 may be replaced by: the network device sends the first PDCCH according to MsgB-RNTI, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • the embodiment of the present application provides three methods, as follows: The embodiments of this application will describe these three methods one by one.
  • the first method In this method, the new RNTI is not used, but the existing RNTI is still used. However, the existing RNTI may appear in a PRACH configuration cycle. Different PRACH opportunities correspond to the same RNTI situation, resulting in terminal equipment and network equipment may have inconsistent understanding of RNTI.
  • the first method introduces first indication information.
  • the first indication information can indicate whether the terminal equipment is the correct recipient of the PDCCH.
  • the first indication information can indicate the terminal equipment whether it is the correct receiver of the PDSCH.
  • the terminal device can further determine whether the PDCCH is the PDCCH sent by the network device to the terminal device based on the first indication information, or, after receiving the PDCCH scheduled by the successfully descrambled PDCCH
  • the terminal device can further determine whether the PDSCH is the PDSCH sent by the network device to the terminal device based on the first indication information, or, after receiving the RAR in the PDSCH scheduled by the PDCCH, the terminal device can further determine based on the first indication information.
  • the indication information further determines whether the RAR is the RAR sent by the network device to the terminal device.
  • the network device sends the first indication information, which is used to indicate whether the first PDCCH is the PDCCH that schedules the first PDSCH, or the first indication information is used to indicate whether the first PDCCH is the PDCCH that schedules the first PDSCH.
  • the first indication information is used to indicate whether the first PDCCH is the PDCCH that schedules the first PDSCH.
  • the first indication information may be carried in the first PDCCH, or the first indication information may be carried in the PDSCH scheduled by the first PDCCH. Specifically, the first indication information may be carried in the DCI carried on the first PDCCH, and/or the first indication information may be carried in the RAR in the PDSCH scheduled by the first PDCCH.
  • the first indication information is used to indicate at least one of the following:
  • the system frame index corresponding to the first RNTI or the system frame index corresponding to the first PRACH opportunity refers to the system frame index corresponding to the first symbol of the first PRACH opportunity, or in other words, the system frame index corresponding to the first RNTI or The system frame index corresponding to the first PRACH opportunity refers to the index of the system frame where the first symbol of the first PRACH opportunity is located, and its value range can be 0-1023.
  • the first indication information may indicate the system frame corresponding to the first RNTI.
  • k ceil(log 2 (N)), where the ceil operator is an upward rounding operator, and log 2 represents the logarithm with base 2.
  • N is the system frame number value corresponding to the first RNTI or the system frame number value corresponding to the first PRACH opportunity or the configuration period of the PRACH opportunity.
  • the first indication information includes 2 bits, which are used to indicate the lower 2 bits of the system frame index corresponding to the first RNTI or the system corresponding to the first PRACH opportunity. The lower 2 bits of the frame index.
  • the first indication information includes 3 bits, which are used to indicate the lower 3 bits of the system frame index corresponding to the first RNTI or the lower 3 bits of the system frame index corresponding to the first PRACH opportunity. The lower 3 bits of the system frame index.
  • the first indication information includes 1 bit, which is used to indicate the lower 1 bit of the system frame index corresponding to the first RNTI or the first PRACH opportunity.
  • the lower 1 bit of the system frame index is used to indicate the lower 1 bit of the system frame index.
  • the first indication information may also indicate the system frame number value N corresponding to the first RNTI or the system frame number value N corresponding to the first PRACH opportunity.
  • N can also be understood as the configuration period of the PRACH opportunity, such as the corresponding maximum configuration period when configuring PRACH resources for the system.
  • the system frame number value N is determined according to at least one of the following:
  • the first length where the first length is the maximum length of the system-configurable PRACH opportunity in the time domain.
  • the second length where the second length is the maximum RAR window length configurable by the system.
  • the first length is greater than the length of one system frame; and/or the second length is greater than the length of one system frame.
  • the system frame number value N corresponding to the first PRACH opportunity is greater than or equal to the minimum number of system frames of the first length; or, the system frame number value N corresponding to the first PRACH opportunity is greater than or equal to the first length. or equal to the minimum number of system frames of the second length; or, the value N of the number of system frames corresponding to the first PRACH opportunity is the minimum number of system frames greater than or equal to the third length, where the third length is the first length and the The larger of the two lengths.
  • system frame number value N can be pre-configured by the network side, or the system frame number value N can be specified by the communication protocol.
  • a new RNTI is introduced for PRACH opportunities with a time domain length greater than 1 system frame.
  • the first RNTI is as described here.
  • the new RNTI is as described here.
  • the first RNTI is determined according to at least one of the following:
  • the first RNTI is determined based on the modulo operation result of the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity, or, An RNTI is determined based on the division operation result between the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity, or the first RNTI is determined based on the system associated with the first PRACH opportunity in N system frames. Frame index determined.
  • the embodiment of the present application provides a specific calculation formula for the first RNTI, where:
  • the first RNTI When the first RNTI is RA-RNTI, the first RNTI may be calculated based on the first formula or the second formula. In the case where the first RNTI is MsgB-RNTI, the first RNTI may be calculated based on the third formula or the fourth formula.
  • the new RNTI includes RA-RNTI.
  • the new RNTI includes MsgB-RNTI and/or RA-RNTI.
  • MsgA-PUSCH is determined based on the new RA-RNTI, and the network device sends the first PDCCH based on the new MsgB-RNTI.
  • the first PRACH opportunity includes M existing PRACH opportunities, M is a positive integer greater than 1, and the existing PRACH opportunities are used to transmit PRACH in the existing format.
  • the time domain length corresponding to the first PRACH opportunity may be greater than 1 system frame.
  • the first PRACH opportunity includes M second PRACH opportunities, wherein, as mentioned above, the first PRACH opportunity is used to transmit the first PRACH of the new format, and the first PRACH The length of the opportunity in the time domain may exceed the length of one system frame.
  • the second PRACH opportunity is used to transmit PRACH in the existing format.
  • the PRACH formats corresponding to the second PRACH opportunity are 0, 1, 2, 3, A1, and A2. , A3, B1, B2, B3, B4, C0 and C2 format at least one.
  • the length of the first PRACH opportunity in the time domain may also be less than or equal to the length of one system frame, and this application is not limited to this.
  • the first RNTI is determined based on at least one second PRACH opportunity among the M second PRACH opportunities.
  • the first RNTI is determined based on the RNTI corresponding to at least one second PRACH opportunity among the M second PRACH opportunities. It should be noted that the RNTI corresponding to the second PRACH opportunity may be RNTI derived based on existing methods.
  • the first RNTI is the RNTI corresponding to the first of the M second PRACH opportunities; or, the first RNTI is the last of the M second PRACH opportunities.
  • the transmission duration of the new PRACH format or the new PRACH transmission method exceeding the length of one system frame is just an example.
  • the method provided in the embodiments of this application can also be applied to the new PRACH format or the new PRACH transmission method. This application is not limited to the case where the transmission duration does not exceed the length of one system frame.
  • a random access device 900 including: a sending module 901 and a listening module 902.
  • the sending module 901 is configured to send the first PRACH to the network device through the first PRACH opportunity.
  • the monitoring module 902 is configured to monitor the first PDCCH according to the first RNTI, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • the monitoring module 902 is also configured to determine whether the first PDCCH is the first scheduled PDCCH according to the first indication information after receiving the first PDCCH or the PDSCH scheduled by the first PDCCH. PDCCH of PDSCH; or, determine whether the PDSCH scheduled by the first PDCCH is the first PDSCH according to the first indication information; wherein the RAR carried by the first PDSCH is the RAR corresponding to the first PRACH.
  • the first indication information is carried in the first PDCCH, or the first indication information is carried in the PDSCH scheduled by the first PDCCH.
  • the first indication information is used to indicate at least one of the following:
  • N is a positive integer greater than 1
  • k is a positive integer greater than or equal to 1.
  • the first RNTI is determined according to at least one of the following:
  • the system frame number value N corresponding to the first PRACH opportunity
  • N is a positive integer greater than 1
  • k is a positive integer greater than or equal to 1.
  • the first RNTI is determined based on the modulo operation result of the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity; or,
  • the first RNTI is determined based on the division result of the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity; or,
  • the first RNTI is determined according to the system frame index associated with the first PRACH opportunity in N system frames.
  • the first RNTI is an RA-RNTI
  • the RA-RNTI is calculated based on the first formula or the second formula
  • the first formula includes:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ (SFN_idmodN);
  • This second formula includes:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ f(SFN_id/N);
  • s_id is the index of the first symbol of the first PRACH opportunity
  • t_id is the index of the first time slot of the first PRACH opportunity in a system frame
  • f_id is the index of the first PRACH opportunity in the frequency domain.
  • ul_carrier_id is the uplink carrier index corresponding to the first PRACH opportunity
  • SFN_id is the system frame index corresponding to the first PRACH opportunity
  • N is the system frame number value corresponding to the first PRACH opportunity
  • mod is the modulo operator
  • ( SFN_idmod N) represents the system frame index associated with the first PRACH opportunity in N system frames.
  • f is the floor operator or ceil operator or round operator, where the floor operator is the rounding down operator and the ceil operator is the rounding operator, and the round operator is the rounding operator.
  • the RNTI is MsgB-RNTI, and the MsgB-RNTI is calculated based on the third formula or the fourth formula;
  • the third formula includes:
  • MsgB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ (SFN_idmodN)+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ N;
  • the fourth formula includes:
  • MsgB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ f(SFN_id/N)+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ N ;
  • s_id is the index of the first symbol of the first PRACH opportunity
  • t_id is the index of the first time slot of the first PRACH opportunity in a system frame
  • f_id is the index of the first PRACH opportunity in the frequency domain.
  • ul_carrier_id is the uplink carrier index corresponding to the first PRACH opportunity
  • SNF_id is the system frame index corresponding to the first PRACH opportunity
  • N is the system frame number value corresponding to the first PRACH opportunity
  • mod is the modulo operator
  • ( SFN_idmod N) represents the system frame index associated with the first PRACH opportunity in N system frames.
  • f is the floor operator or ceil operator or round operator, where the floor operator is the rounding down operator and the ceil operator is the rounding operator, and the round operator is the rounding operator.
  • k ceil(log 2 (N)), where the ceil operator is an upward rounding operator, and log 2 represents the logarithm with base 2.
  • the system frame index corresponding to the first PRACH opportunity includes: the system frame index corresponding to the first symbol of the first PRACH opportunity.
  • the system frame number value N corresponding to the first PRACH opportunity is determined according to at least one of the following:
  • a first length wherein the first length is the maximum length of the system-configurable PRACH opportunity in the time domain;
  • the second length is the maximum RAR window length configurable by the system.
  • the first length is greater than the length of one system frame; and/or the second length is greater than the length of one system frame.
  • the system frame number value N corresponding to the first PRACH opportunity is the minimum number of system frames greater than or equal to the first length; or,
  • the system frame number value N corresponding to the first PRACH opportunity is the minimum number of system frames greater than or equal to the second length; or,
  • the system frame number value N corresponding to the first PRACH opportunity is the minimum number of system frames that is greater than or equal to a third length, where the third length is the larger value of the first length and the second length.
  • the first PRACH opportunity includes M second PRACH opportunities
  • the first RNTI is determined based on at least one second PRACH opportunity among the M second PRACH opportunities
  • M is greater than A positive integer of 1.
  • the first RNTI is determined based on the RNTI corresponding to at least one second PRACH opportunity among the M second PRACH opportunities.
  • the first RNTI is the RNTI corresponding to the first second PRACH opportunity among the M second PRACH opportunities; or,
  • the first RNTI is the RNTI corresponding to the last second PRACH opportunity among the M second PRACH opportunities.
  • the PRACH format corresponding to the second PRACH opportunity is at least one of 0, 1, 2, 3, A1, A2, A3, B1, B2, B3, B4, C0 and C2 formats. .
  • the first PRACH opportunity includes a PRACH opportunity in a type 1 random access process
  • the first RNTI includes an RA-RNTI
  • the first PRACH opportunity includes a PRACH opportunity corresponding to MsgA in the type 2 random access process
  • the first RNTI includes MsgB-RNTI.
  • the sending module 901 is also configured to: before monitoring the first PDCCH according to the first RNTI, send MsgA-PUSCH to the network device, wherein the MsgA-PUSCH is based on the RA -RNTI determined.
  • a random access device 1000 is provided.
  • the random access device 1000 includes a detection module 1001 and a sending module 1002.
  • the detection module 1001 is used to detect the first PRACH through the first PRACH opportunity.
  • the sending module 1002 is configured to send the first PDCCH according to the first RNTI after detecting the first PRACH, where the first PDCCH is used to schedule PDSCH, and the PDSCH scheduled by the first PDCCH carries RAR.
  • the sending module 1002 is also configured to send first indication information, where the first indication information is used to indicate whether the first PDCCH is the PDCCH that schedules the first PDSCH; or, the first The indication information is used to indicate whether the PDSCH scheduled by the first PDCCH is the first PDSCH, wherein the RAR carried by the first PDSCH is the RAR corresponding to the first PRACH.
  • the first indication information is carried in the first PDCCH, or the first indication information is carried in the PDSCH scheduled by the first PDCCH.
  • the first indication information is used to indicate at least one of the following:
  • N is a positive integer greater than 1
  • k is a positive integer greater than or equal to 1.
  • the first RNTI is determined according to at least one of the following:
  • the system frame number value N corresponding to the first PRACH opportunity
  • N is a positive integer greater than 1
  • k is a positive integer greater than or equal to 1.
  • the first RNTI is determined based on the modulo operation result of the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity; or,
  • the first RNTI is determined based on the division result of the system frame index corresponding to the first PRACH opportunity and the system frame number value N corresponding to the first PRACH opportunity; or,
  • the first RNTI is determined according to the system frame index associated with the first PRACH opportunity in N system frames.
  • the first RNTI is an RA-RNTI
  • the RA-RNTI is calculated based on the first formula or the second formula
  • the first formula includes:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ (SFN_idmodN);
  • This second formula includes:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ f(SFN_id/N);
  • s_id is the index of the first symbol of the first PRACH opportunity
  • t_id is the index of the first time slot of the first PRACH opportunity in a system frame
  • f_id is the index of the first PRACH opportunity in the frequency domain.
  • ul_carrier_id is the uplink carrier index corresponding to the first PRACH opportunity
  • SFN_id is the system frame index corresponding to the first PRACH opportunity
  • N is the system frame number value corresponding to the first PRACH opportunity
  • mod is the modulo operator
  • ( SFN_idmod N) represents the system frame index associated with the first PRACH opportunity in N system frames.
  • f is the floor operator or ceil operator or round operator, where the floor operator is the rounding down operator and the ceil operator is the rounding operator, and the round operator is the rounding operator.
  • the first RNTI is MsgB-RNTI, and the MsgB-RNTI is calculated based on the third formula or the fourth formula;
  • the third formula includes:
  • MsgB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ (SFN_idmodN)+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ N;
  • the fourth formula includes:
  • MsgB-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ f(SFN_id/N)+14 ⁇ 80 ⁇ 8 ⁇ 2 ⁇ N ;
  • s_id is the index of the first symbol of the first PRACH opportunity
  • t_id is the index of the first time slot of the first PRACH opportunity in a system frame
  • f_id is the index of the first PRACH opportunity in the frequency domain.
  • ul_carrier_id is the uplink carrier index corresponding to the first PRACH opportunity
  • SNF_id is the system frame index corresponding to the first PRACH opportunity
  • N is the system frame number value corresponding to the first PRACH opportunity
  • mod is the modulo operator
  • ( SFN_idmod N) represents the system frame index associated with the first PRACH opportunity in N system frames.
  • f is the floor operator or ceil operator or round operator, where the floor operator is the rounding down operator and the ceil operator is the rounding operator, and the round operator is the rounding operator.
  • k ceil(log 2 (N)), where the ceil operator is an upward rounding operator, and log 2 represents the logarithm with base 2.
  • the system frame index corresponding to the first PRACH opportunity includes: the system frame index corresponding to the first symbol of the first PRACH opportunity.
  • the system frame number value N corresponding to the first PRACH opportunity is determined according to at least one of the following:
  • a first length wherein the first length is the maximum length of the system-configurable PRACH opportunity in the time domain;
  • the second length is the maximum RAR window length configurable by the system.
  • the first length is greater than the length of one system frame; and/or the second length is greater than the length of one system frame.
  • the system frame number value N corresponding to the first PRACH opportunity is the minimum number of system frames greater than or equal to the first length; or,
  • the system frame number value N corresponding to the first PRACH opportunity is the minimum number of system frames greater than or equal to the second length; or,
  • the system frame number value N corresponding to the first PRACH opportunity is the minimum number of system frames that is greater than or equal to a third length, where the third length is the larger value of the first length and the second length.
  • the first PRACH opportunity includes M second PRACH opportunities
  • the first RNTI is determined based on at least one second PRACH opportunity among the M second PRACH opportunities
  • M is greater than A positive integer of 1.
  • the first RNTI is determined based on the RNTI corresponding to at least one second PRACH opportunity among the M second PRACH opportunities.
  • the first RNTI is the RNTI corresponding to the first second PRACH opportunity among the M second PRACH opportunities; or,
  • the first RNTI is the RNTI corresponding to the last second PRACH opportunity among the M second PRACH opportunities.
  • the PRACH format corresponding to the second PRACH opportunity is at least one of 0, 1, 2, 3, A1, A2, A3, B1, B2, B3, B4, C0 and C2 formats. .
  • the first PRACH opportunity includes a PRACH opportunity in a type 1 random access process
  • the first RNTI includes an RA-RNTI
  • the first PRACH opportunity includes a PRACH opportunity corresponding to the message MsgA in the type 2 random access process
  • the first RNTI includes MsgB-RNTI.
  • the random access device 1100 also includes a receiving module 1003.
  • the receiving module 1003 is configured to receive the MsgA-PUSCH sent by the terminal device before sending the first PDCCH according to the first RNTI, where the MsgA-PUSCH is determined according to the RA-RNTI.
  • Each module in the above random access device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules can be embedded in or independent of the processor in the communication device in the form of hardware, or can be stored in the memory of the communication device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • Figure 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device can be a terminal device or a network device.
  • the communication device 1200 shown in Figure 12 includes a processor 1210.
  • the processor 1210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220.
  • the processor 1210 can call and run the computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated into the processor 1210.
  • the communication device 1200 can also include a transceiver 1230, and the processor 1210 can control the transceiver 1230 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1200 can be specifically a network device according to the embodiment of the present application, and the communication device 1200 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the communication device 1200 can be specifically a terminal device according to the embodiment of the present application, and the communication device 1200 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • Figure 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1300 shown in Figure 13 includes a processor 1310.
  • the processor 1310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1300 may also include a memory 1320.
  • the processor 1310 can call and run the computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated into the processor 1310.
  • the chip 1300 may also include an input interface 1330.
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1300 may also include an output interface 1340.
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 14 is a schematic block diagram of a communication system 1400 provided by an embodiment of the present application. As shown in Figure 14, the communication system 1400 includes a terminal device 1410 and a network device 1420.
  • the terminal device 1410 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1420 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (FieldProgrammable GateArray, FPGA) or other programmable logic.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SynchlinkDRAM Synchrobus RAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch linkDRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of simplicity, here No longer.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application.
  • the terminal device in the embodiment of the present application
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of simplicity , which will not be described in detail here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种随机接入方法、装置、设备、存储介质以及程序产品,该方法包括:终端设备通过第一PRACH机会向网络设备发送第一PRACH(401);该终端设备根据第一RNTI监听第一PDCCH,其中,该第一PDCCH用于调度PDSCH,该第一PDCCH调度的PDSCH携带RAR(402)。

Description

随机接入方法、装置、设备、存储介质以及程序产品 技术领域
本申请涉及移动通信技术领域,特别是涉及一种随机接入方法、装置、设备、存储介质以及程序产品。
背景技术
在移动通信技术中,终端设备需要与网络设备进行上行同步,获得上行资源,并且获得合法的身份标识,而后,才能通过移动通信网络进行数据传输。
发明内容
基于此,本申请实施例提供一种了随机接入方法、装置、设备、存储介质以及程序产品。
第一方面,本申请的实施例提供一种随机接入方法,所述方法包括:
终端设备通过第一PRACH机会向网络设备发送第一PRACH;
所述终端设备根据第一RNTI监听第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH携带RAR。
第二方面,本申请的实施例提供一种随机接入方法,所述方法包括:
网络设备通过第一PRACH机会检测第一PRACH;
当所述网络设备检测到所述第一PRACH后,所述网络设备根据第一RNTI发送第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH中携带RAR。
第三方面,本申请的实施例提供一种随机接入装置,所述装置包括:
发送模块,用于通过第一PRACH机会向网络设备发送第一PRACH;
监听模块,用于根据第一RNTI监听第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH携带RAR。
第四方面,本申请的实施例提供一种随机接入装置,所述装置包括:
检测模块,用于通过第一PRACH机会检测第一PRACH;
发送模块,用于当检测到所述第一PRACH后,根据第一RNTI发送第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH中携带RAR。
第五方面,本申请的实施例提供一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如上述第一方面所述的方法。
第六方面,本申请的实施例提供一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面所述的方法。
第七方面,本申请的实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面所述的方法。
第八方面,本申请的实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第二方面所述的方法。
第九方面,本申请的实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如上述第一方面所述的方法。
第十方面,本申请的实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第二方面所述的方法。
第十一方面,本申请的实施例提供一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行如上述第一方面所述的方法。
第十二方面,本申请的实施例提供一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行如上述第二方面所述的方法。
第十三方面,本申请的实施例提供一种计算机程序,所述计算机程序使得计算机执行如上述第一方面所述的方法。
第十四方面,本申请的实施例提供一种计算机程序,所述计算机程序使得计算机执行如上述第二方面所述的方法。
通过上述技术方案,使得终端设备能够完成与网络设备的上行同步,获得上行资源,并且获得合法的身份标识,从而能够通过移动通信网络进行数据传输。
附图说明
图1为一个实施例提供的一种通信系统的架构示意图;
图2为一个实施例提供的一种通信系统的架构示意图;
图3为一个实施例提供的一种通信系统的架构示意图;
图4为一个实施例提供的一种随机接入方法的流程图;
图5为一个实施例提供的一种随机接入方法的流程图;
图6为一个实施例提供的一种随机接入方法的流程图;
图7为一个实施例提供的一种PRACH格式的示意图;
图8为一个实施例提供的一种随机接入方法的流程图;
图9为一个实施例提供的一种随机接入装置的框图;
图10为一个实施例提供的一种随机接入装置的框图;
图11为一个实施例提供的一种随机接入装置的框图;
图12为一个实施例提供的一种通信设备的框图;
图13为一个实施例提供的一种芯片的框图;
图14为一个实施例提供的一种通信系统的框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例涉及的通信系统可以包括Terrestrial Network(简称:TN;中文:地面通信网络)或者Non Terrestrial Network(简称:NTN;中文:非地面通信网络)。其中,NTN一般采用卫星通信的方式向地面的终端设备提供通信服务,NTN目前包括NR-NTN和IoT-NTN。
本申请实施例不对涉及的通信系统的网络制式进行限定,例如:本申请实施例中,通信系统可以为长期演进(英文:Long TermEvolution;简称:LTE)系统、LTE频分双工(英文:Frequency Division Duplex;简称:FDD)系统、LTE时分双工(英文:Time Division Duplex;简称:TDD)系统、5G通信系统或未来的通信系统等。
请参考图1至图3,其示出了本申请实施例所涉及的通信系统的架构示意图。
如图1所示,通信系统100可以包括网络设备110,网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信
图1示例性地示出了一个网络设备110和两个终端设备120,在本申请一些实施例中,该通信系统100可以包括多个网络设备110并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
如图2所示,通信系统200包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102所形成的网络即为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在图2所示的架构中,可以将卫星1102称为网络设备。图2示例性地示出了一个网络设备1102和一个终端设备1101,在本申请一些实施例中,该通信系统200可以包括多个网络设备1102并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备1101,本申请实施例对此不做限定。
如图3所示,通信系统300包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203所形成的网络即为NTN。在图3所示的通信系统的架构中,卫星1202不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。图3示例性地示出了一个网络设备1203和一个终端设备1201,在本申请一些实施例中,该通信系统300可以包括多个网络设备1203并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备1201,本申请实施例对此不做限定。
其中,上文中的网络设备网络设备可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(CloudRadioAccess Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
其中,上文中的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(英文:Public Switched Telephone Networks;简称:PSTN)、数字用户线路(英文:Digital SubscriberLine;简称:DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(英文:Wireless LocalAreaNetwork;简称:WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(英文:Internet ofThings;简称:IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。终端设备的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(英文:Personal Communications System;简称:PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(英文:Global Positioning System;简称:GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备还可以指接入终端、用户设备(英文:User Equipment;简称:UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(英文:Session Initiation Protocol;简称:SIP)电话、无线本地环路(英文:Wireless Local Loop;简称:WLL)站、个人数字处理(英文:Personal DigitalAssistant,简称:PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
另外,上文中的通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
请参考图4,其示出了本申请实施例提供的一种随机接入方法的流程图,如图4所示,该随机接入方法包括以下步 骤:
步骤401、终端设备通过第一PRACH(英文:Physical RandomAccess Channel;中文:物理随机接入信道)机会向网络设备发送第一PRACH。
需要指出的是,尽管步骤401中描述的是终端设备向网络设备发送PRACH,但是,读者应该理解,这里的PRACH还可以被称为随机接入前导、随机接入前导码或者随机接入前导序列。
此外,步骤401中所述的PRACH机会(英文:PRACH Occasion;简称:RO)指的是PRACH信道中用于传输PRACH(随机接入前导、随机接入前导码或者随机接入前导序列)的资源,PRACH机会也可以称为PRACH资源。
步骤402、终端设备根据第一RNTI监听第一PDCCH,其中,该第一PDCCH用于调度PDSCH,该第一PDCCH调度的PDSCH携带RAR。
网络设备在接收到终端设备发送的PRACH后,会向终端设备发送RAR(英文:RandomAccess Response;中文:随机接入响应),RAR携带于PDSCH(英文:Physical Downlink Shared CHannel;中文:物理下行共享信道)中,或言,RAR通过PDSCH传输,其中,PDSCH由PDCCH(英文:Physical Downlink Control Channel;中文:物理下行控制信道)调度,或言,PDSCH由PDCCH上承载的DCI(英文:Downlink Control Information;中文:下行控制信息)调度,该DCI的CRC(英文:Cyclic Redundancy Check;中文:循环冗余校验码)被RNTI(英文:Radio Network Tempory Identifier;中文:无线网络设备临时标识)加扰。
用于加扰DCI的RNTI与PRACH机会的时频信息相关,终端设备可以基于发送PRACH所使用的PRACH机会得到该RNTI,同时,网络设备可以基于检测到终端设备发送的PRACH的PRACH机会得到该RNTI,换言之,终端设备和网络设备可以获取同样的RNTI,这样,网络设备可以基于该RNTI对DCI的CRC加扰,终端设备可以基于该RNTI对DCI进行解扰。
基于以上说明,在本申请实施例中,终端设备在通过第一PRACH机会向网络设备发送第一PRACH之后,可以根据第一RNTI监听第一PDCCH,该第一PDCCH用于调度PDSCH,该第一PDCCH调度的PDSCH携带RAR。其中,该第一RNTI根据第一PRACH机会的时频信息确定。
在本申请的一个可选实施例中,该第一PDCCH调度的PDSCH携带的RAR可以与第一PRACH对应,也即是,该第一PDCCH调度的PDSCH携带的RAR的正确接收方可以是步骤401和步骤402中涉及到的终端设备(为了方便区分,将这种情况中的PDSCH称为第一PDSCH)。
在本申请另一可选实施例中,该第一PDCCH调度的PDSCH携带的RAR与第一PRACH不对应,也即是,该第一PDCCH调度的PDSCH携带的RAR的正确接收方并不是步骤401和步骤402中涉及到的终端设备,而是其他的终端设备。
需要指出的是,本申请实施例提供的随机接入方法可以为类型1随机接入过程,也可以为类型2随机接入过程,其中,类型1随机接入过程也即是四步随机接入,类型2随机接入过程也即是两步随机接入。对应地,上文中的第一PRACH机会包括类型1随机接入过程中的PRACH机会或者类型2随机接入过程中的MsgA(消息A)对应的PRACH机会,同时,在类型1随机接入过程中,上文中的第一RNTI为RA-RNTI(英文:RandomAccess-RNTI),在类型2随机接入过程中,上文中的第一RNTI为MsgB-RNTI(消息B-RNTI)。
此外,在类型2随机接入过程中,在根据第一RNTI监听第一PDCCH前,终端设备向网络设备发送MsgA-PUSCH(消息A-PUSCH),其中,MsgA-PUSCH是根据RA-RNTI确定的,PUSCH为Physical Uplink Shared Channel的简称,其中文翻译为物理上行共享信道。
在本申请另一可选实施例中,在类型2随机接入过程中,步骤401可以被替换为:终端设备向网络设备发送MsgA,其中,MsgA对应的第一PRACH通过第一PRACH机会传输,MsgA对应的MsgA-PUSCH是根据RA-RNTI确定的。步骤402可以被替换为:终端设备根据MsgB-RNTI监听第一PDCCH,其中,第一PDCCH用于调度PDSCH,第一PDCCH调度的PDSCH携带RAR。
为了便于读者理解,下面,本申请实施例将对四步随机接入和两步随机接入分别进行说明,图5为四步随机接入的流程图,图6为两步随机接入的流程图。
如图5所示,该四步随机接入包括步骤501至步骤504:
步骤501、终端设备通过PRACH机会向网络设备发送PRACH(在四步随机接入中,也可被称为message1,也即是Msg1),这一步与上文中的步骤401对应。
步骤502、网络设备在接收到终端设备发送的PRACH后,向终端设备发送RAR(在四步随机接入中,也可被称为message2,也即是Msg2),这一步与上文中的步骤402对应。
其中,RAR携带于PDSCH中,且该PDSCH由PDCCH调度,PDCCH则被RA-RNTI加扰,或言,该PDSCH由PDCCH上承载的DCI调度,PDCCH上承载的DCI的CRC被RA-RNTI加扰,RA-RNTI根据PRACH机会的时频信息确定。
RAR用于告知终端设备发送message3,也即是Msg3时可使用的PUSCH资源、为终端设备分配TC-RNTI(英文:temporary-CRNTI;中文:临时CRNTI)、告知终端设备TA(英文:TimingAdvance;中文:定时提前量),其中,CRNTI(英文:Cell RNTI)是网络设备为终端设备分配的身份标识。
步骤503、终端设备在接收到RAR后,通过RAR所指示的PUSCH资源发送message3,也即是Msg3。
步骤504、网络设备向终端设备发送message4,也即是Msg4。
Msg4可以包括竞争解决消息。Msg3和Msg4主要是用来解决随机接入过程中终端设备冲突的问题。终端设备在收到Msg4后,向网络设备反馈Msg4对应的ACK(中文:确认)信息,从而完成随机接入。
如图6所示,该两步随机接入包括步骤601和步骤602。
步骤601、终端设备通过PRACH信道和PUSCH信道向网络设备发送消息A(英文:message A;简称:MsgA), 其中,MsgA包括PRACH和MsgA-PUSCH。MsgA-PUSCH的扰码是通过RA-RNTI计算得到的。这一步与上文中的步骤401相对应。
步骤602、网络设备在接收到MsgA后,向终端设备发送消息B(英文:message B;简称:MsgB),其中,MsgB包括RAR。这一步与上文中的步骤402相对应。
该RAR携带于PDSCH中,或言,该RAR通过PDSCH传输,该PDSCH由PDCCH调度,该PDCCH利用MsgB-RNTI加扰,或言,该PDSCH由PDCCH上承载的DCI调度,该DCI中的CRC利用MsgB-RNTI加扰。
终端设备在收到MsgB消息后,向网络设备反馈MsgB消息对应的ACK信息,从而完成随机接入。
由于NTN网络具有较大的信号传播时延和卫星移动等特性,因此可能导致上行覆盖出现问题,为了改善上行覆盖,使终端设备能够顺利接入网络,演进的NTN网络中,在随机接入阶段引入了上行覆盖增强技术。该上行覆盖增强技术,在现有的PRACH格式0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2之外,可以引入新的PRACH格式或新的PRACH传输方法。其中,PRACH格式0、1、2、3支持的序列长度为839,PRACH格式A1、A2、A3、B1、B2、B3、B4、C0、C2支持的序列长度包括139、1151、571,PRACH格式0、1、2支持的子载波间隔为1.25kHz,PRACH格式3支持的子载波间隔为5kHz,PRACH格式A1、A2、A3、B1、B2、B3、B4、C0、C2支持的子载波间隔包括15kHz、30kHz、60kHz、120kHz、480kHz、960kHz。请参考图7,其示出了PRACH格式0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2的示意图。
其中,新的PRACH格式或新的PRACH传输方法的传输时长可能超过一个系统帧的长度,相应地,用于传输该新的PRACH的PRACH机会在时域上的长度也可能超过一个系统帧的长度。而现有的PRACH的传输时长均在一个系统帧的长度内,对应的,传输现有PRACH的PRACH机会在时域上的长度也在一个系统帧的长度内,故而,现有的RNTI是针对长度小于一个系统帧的PRACH机会设计的,因此,现有的RNTI在上行覆盖增强技术中并不适用。
需要指出的是,尽管上文叙述中指出演进的NTN网络引入了上行覆盖增强技术,但是,读者应该理解,上行覆盖增强技术并不仅局限于NTN网络,例如,TN网络中也可以引入上行覆盖增强技术。
还需要指出的是,上文中步骤401和402提供的随机接入方法可以应用于上行覆盖增强技术中,在这种情况下,该第一PRACH为新格式的PRACH,该第一PRACH的传输时长超过一个系统帧的长度,对应的,该第一PRACH机会在时域上的长度也超过一个系统帧的长度。
为了解决上文中提出的“现有的RNTI在上行覆盖增强技术中并不适用”问题,本申请实施例提供了三种方法,下面,本申请实施例将对这三种方法一一进行说明。
第一种方法、在这种方法中,并不使用新的RNTI,而是仍沿用现有的RNTI,但是,沿用现有的RNTI可能会出现在一个PRACH配置周期中不同的PRACH机会对应相同的RNTI的情况,从而导致终端设备和网络设备对RNTI的理解可能不一致。
如上文所述,若不同的PRACH机会对应相同的RNTI,则对于不同的PRACH机会,在发送RAR时,网络设备会使用同样的RNTI对调度PDSCH的PDCCH进行加扰,而通过该不同的PRACH机会分别发送PRACH的终端设备就都可以对PDCCH进行解扰,从而在其调度下接收携带RAR的PDSCH,而且,各终端设备都认为该RAR是网络设备发送给自身的,这就会导致错误的发生。
例如,假设终端设备1通过PRACH机会1以及PRACH前导码1向网络设备发送PRACH,终端设备2通过PRACH机会2以及PRACH前导码1向网络设备发送PRACH,由于沿用现有的RNTI,导致出现了PRACH机会1和PRACH机会2所对应的RNTI相同的情况,假设其均为目标RNTI,则网络设备在向终端设备1发送携带RAR的PDSCH时,会使用目标RNTI对调度PDSCH的PDCCH进行加扰,该PDSCH中包括对应PRACH前导码1的RAR,终端设备1和终端设备2都可以基于目标RNTI对PDCCH进行解扰,从而在其调度下接收携带对应PRACH前导码1的RAR的PDSCH,且,终端设备1和终端设备2都认为该PDSCH是网络设备发送给自身的,然而,真实的情况是,该携带对应PRACH前导码1的PDSCH是网络设备发送给终端设备1的,同理地,网络设备在向终端设备2发送携带对应PRACH前导码1的RAR的PDSCH时,会使用目标RNTI对调度PDSCH的PDCCH进行加扰,终端设备1和终端设备2都可以基于目标RNTI对PDCCH进行解扰,从而在其调度下接收携带对应PRACH前导码1的RAR的PDSCH,且,终端设备1和终端设备2都认为该携带对应PRACH前导码1的PDSCH是网络设备发送给自身的,然而,真实的情况是,该携带对应PRACH前导码1的PDSCH是网络设备发送给终端设备2的,这就会导致错误的发生。
为了避免错误,第一种方法引入了第一指示信息,该第一指示信息可以指示终端设备其是否为PDCCH的正确接收方,或者,第一指示信息可以指示终端设备其是否为PDSCH的正确接收方,这样,在成功对PDCCH解扰之后,终端设备可以基于该第一指示信息进一步判断该PDCCH是否为网络设备发送给该终端设备的PDCCH,或者,在接收到成功解扰的PDCCH所调度的PDSCH后,终端设备可以基于该第一指示信息进一步判断该PDSCH是否为网络设备发送给该终端设备的PDSCH,或者,在接收到PDCCH所调度的PDSCH中的RAR后,终端设备可以基于该第一指示信息进一步判断该RAR是否为网络设备发送给该终端设备的RAR。
例如,在上述举例中,虽然终端设备1和终端设备2都可以基于目标RNTI对PDCCH进行解扰,但是,根据第一指示信息的指示,终端设备1和终端设备2可以确定该PDCCH的正确接收方是否为自身,这样,就可以避免错误,或者,虽然终端设备1和终端设备2都可以基于目标RNTI对PDCCH进行解扰,从而在其调度下接收携带RAR的PDSCH,但是,根据第一指示信息的指示,终端设备1和终端设备2可以确定该PDSCH的正确接收方是否为自身,这样,就可以避免错误,或者,虽然终端设备1和终端设备2都可以接收到PDCCH所调度的PDSCH中的RAR,但是,根据第一指示信息的指示,终端设备1和终端设备2可以确定该RAR的正确接收方是否为自身,这样,就可以避免错误。
具体到上文步骤401和402中的情况,当终端设备收到第一PDCCH或第一PDCCH调度的PDSCH后,终端设备根据第一指示信息确定第一PDCCH是否为调度第一PDSCH的PDCCH;或,终端设备根据第一指示信息确定第一PDCCH调度的PDSCH是否为第一PDSCH;其中,如上文所述,第一PDSCH携带的RAR为与第一PRACH对应的RAR。
在本申请的可选实施例中,该第一指示信息可以携带在第一PDCCH中,或该第一指示信息可以携带在第一PDCCH调度的PDSCH中。具体来说,该第一指示信息可以携带在第一PDCCH上承载的DCI中,和/或,该第一指示信息可以携带在第一PDCCH调度的PDSCH中的RAR中。
在本申请的可选实施例中,第一指示信息用于指示以下至少一项:
1、第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引。
2、第一RNTI对应的系统帧索引的低位k个比特或第一PRACH机会对应的系统帧索引的低位k个比特,k为大于或等于1的正整数。
3、所述第一RNTI对应的系统帧数量值N或所述第一PRACH机会对应的系统帧数量值N,N为大于1的正整数。
4、第一RNTI在N个系统帧中关联的系统帧索引或第一PRACH机会在N个系统帧中关联的系统帧索引。
其中,第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引指的是第一PRACH机会的第一个符号对应的系统帧索引,或言,第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引指的是第一PRACH机会的第一个符号所在系统帧的索引,其取值范围可以为0-1023。在PRACH机会的时域长度大于1个系统帧的长度的情况下,可能存在多个PRACH机会的第一个符号所在的系统帧互不相同,因此,可以利用第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引对终端设备进行指示,以使终端设备确定PDCCH和/或PDSCH的正确接收方是否为自身。
考虑到第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引的比特数较多,为了减少传输的数据量,可选的,第一指示信息可以指示第一RNTI对应的系统帧索引的低位k个比特或第一PRACH机会对应的系统帧索引的低位k个比特,其中,k小于第一RNTI对应的系统帧索引的比特数或者第一PRACH机会对应的系统帧索引的比特数,在本申请的一个可选实施例中,k=ceil(log 2(N)),其中ceil运算符为向上取整运算符,log 2表示以2为底的对数,N为第一RNTI对应的系统帧数量值或第一PRACH机会对应的系统帧数量值或PRACH机会的配置周期。例如,当N取值为4时,k=2,该情况下,第一指示信息包括2比特,用于指示第一RNTI对应的系统帧索引的低位2个比特或第一PRACH机会对应的系统帧索引的低位2个比特。又例如,当N取值为6时,k=3,该情况下,第一指示信息包括3比特,用于指示第一RNTI对应的系统帧索引的低位3个比特或第一PRACH机会对应的系统帧索引的低位3个比特。又例如,当N取值为2时,k=1,该情况下,第一指示信息包括1比特,用于指示第一RNTI对应的系统帧索引的低位1个比特或第一PRACH机会对应的系统帧索引的低位1个比特。
如上文所述,该第一指示信息还可以指示第一RNTI对应的系统帧数量值N或第一PRACH机会对应的系统帧数量值N。在一些情况中,N也可以理解为PRACH机会的配置周期,例如为系统配置PRACH资源时对应的最大配置周期。其中,在本申请的一个可选实施例中,该系统帧数量值N根据以下至少一项确定:
1、第一长度,其中,第一长度为系统可配置的PRACH机会在时域上的最大长度。
2、第二长度,其中,第二长度为系统可配置的最大RAR窗口长度。
RAR窗口指的是PDCCH的监听窗口,为了降低终端设备的耗电量以及计算复杂度等,可以为终端设备配置RAR窗口,在接收RAR的过程中,终端设备仅在该RAR窗口内对PDCCH进行监听,而不在RAR窗口之外对PDCCH进行监听,这样,可以有效地减少终端设备对PDCCH的监听时长,从而起到降低终端设备的耗电量以及计算复杂度等的效果。
在本申请的可选实施例中,第一长度大于1个系统帧的长度;和/或,第二长度大于1个系统帧的长度。
在本申请的可选实施例中,第一PRACH机会对应的系统帧数量值N为大于或等于第一长度的最小系统帧个数;或者,第一PRACH机会对应的系统帧数量值N为大于或等于第二长度的最小系统帧个数;或者,第一PRACH机会对应的系统帧数量值N为大于或等于第三长度的最小系统帧个数,其中,第三长度为第一长度和第二长度中的较大值。
举例来说,假设第一长度为16毫秒,单个系统帧长度为10毫秒,则N的取值为2,假设第二长度为40毫秒,则N取值为4,假设第一长度为16毫秒,第二长度为40毫秒,由于第二长度较第一长度更大,则N的取值为4。
在本申请的可选实施例中,该系统帧数量值N可以由网络侧预先进行配置,或者,该系统帧数量值N可以由通信协议规定。
在上行覆盖增强技术中,可以将N个系统帧长度视为PRACH机会的配置周期,其中,一个配置周期可以包括至少一个PRACH机会。可选地,一个PRACH机会可以跨越两个或者更多个配置周期。需要指出的是,“一个配置周期可以包括至少一个PRACH机会”可以理解为一个配置周期可以包括至少一个PRACH机会的第一个符号。
基于以上说明可知,可以基于PRACH机会在配置周期中的时域位置,例如,PRACH机会的第一个符号所在的系统帧在配置周期中的时域位置来区分不同的PRACH机会,因此,该第一指示信息可以指示第一RNTI在N个系统帧中关联的系统帧索引或第一PRACH机会在N个系统帧中关联的系统帧索引,其取值可以为0至N-1。
第二种方法、在这种方法中,针对时域长度大于1个系统帧的PRACH机会,引入了新的RNTI,具体到上文步骤401和402中的情况,第一RNTI即为这里所述的新的RNTI。
在本申请的可选实施例中,该第一RNTI根据以下至少一项确定:
1、第一PRACH机会对应的系统帧索引。
2、第一PRACH机会对应的系统帧索引的低位k个比特。
3、第一PRACH机会对应的系统帧数量值N。
4、第一PRACH机会在N个系统帧中关联的系统帧索引。
其中,第一PRACH机会对应的系统帧索引、第一PRACH机会对应的系统帧索引的低位k个比特、第一PRACH机会对应的系统帧数量值N、第一PRACH机会在N个系统帧中关联的系统帧索引,在上文中都已经进行了相关说明解释,本申请实施例在此处对其不再赘述。
进一步地,在本申请的可选实施例中,该第一RNTI根据对第一PRACH机会对应的系统帧索引和第一PRACH机 会对应的系统帧数量值N的取模运算结果确定,或者,第一RNTI根据对第一PRACH机会对应的系统帧索引和第一PRACH机会对应的系统帧数量值N的除法运算结果确定,或者,第一RNTI根据第一PRACH机会在N个系统帧中关联的系统帧索引确定。
在第二种方式中,本申请实施例针对第一RNTI提供了具体的计算公式,其中:
在第一RNTI为RA-RNTI的情况下,第一RNTI可以基于第一公式或者第二公式计算得到。
该第一公式包括:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN)。
该第二公式包括:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N)。
其中,s_id为第一PRACH机会的第一个符号的索引,取值范围为0≤s_id<14,t_id为第一PRACH机会在一个系统帧中的第一个时隙的索引,取值范围为0≤t_id<80,其中,确定t_id的子载波间隔是根据子载波间隔配置μ确定的,当第一PRACH的子载波间隔为1.25kHz或5kHz时,该子载波间隔为15kHz;否则,当第一PRACH的子载波间隔为15kHz或30kHz或60kHz或120kHz时,该子载波间隔与第一PRACH的子载波间隔相同,f_id为第一PRACH机会在频域上的索引,取值范围为0≤f_id<8,ul_carrier_id为第一PRACH机会对应的上行载波索引,其中,0表示NUL(英文:Normal uplink)载波,1表示SUL(英文:Supplementaryuplink)载波,SFN_id为第一PRACH机会对应的系统帧索引,N为第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmodN)表示第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
在第一RNTI为MsgB-RNTI的情况下,第一RNTI可以基于第三公式或者第四公式计算得到。
该第三公式包括:
MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN)+14×80×8×2×N。
该第四公式包括:
MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N)+14×80×8×2×N。
其中,s_id为第一PRACH机会的第一个符号的索引,取值范围为0≤s_id<14,t_id为第一PRACH机会在一个系统帧中的第一个时隙的索引,取值范围为0≤t_id<80,其中,确定t_id的子载波间隔是根据子载波间隔配置μ确定的,当第一PRACH的子载波间隔为1.25kHz或5kHz时,该子载波间隔为15kHz;否则,当第一PRACH的子载波间隔为15kHz或30kHz或60kHz或120kHz时,该子载波间隔与第一PRACH的子载波间隔相同,f_id为第一PRACH机会在频域上的索引,取值范围为0≤f_id<8,ul_carrier_id为第一PRACH机会对应的上行载波索引,其中,0表示NUL(英文:Normal uplink)载波,1表示SUL(英文:Supplementaryuplink)载波,SFN_id为第一PRACH机会对应的系统帧索引,N为第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmodN)表示第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
可选地,在类型1随机接入过程中,新的RNTI包括RA-RNTI。
可选地,在类型2随机接入过程中,新的RNTI包括MsgB-RNTI和/或RA-RNTI。例如,在类型2随机接入过程中,MsgA-PUSCH是根据新的RA-RNTI确定的,终端设备根据新的MsgB-RNTI监听第一PDCCH。
第三种方法、在这种方法中,第一PRACH机会包括M个现有的PRACH机会,M为大于1的正整数,该现有的PRACH机会用于传输现有格式的PRACH。可选地,第一PRACH机会对应的时域长度可能大于1个系统帧。具体到上文步骤401和402中的情况,第一PRACH机会包括M个第二PRACH机会,其中,如上文所述,该第一PRACH机会用于传输新格式的第一PRACH,该第一PRACH机会在时域上的长度可能超过一个系统帧的长度,第二PRACH机会用于传输现有格式的PRACH,其中,第二PRACH机会对应的PRACH格式为0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2格式中的至少一个。当然,第一PRACH机会在时域上的长度也可能小于或等于一个系统帧的长度,本申请对此并不限定。
在第三种方法中,第一RNTI根据M个第二PRACH机会中的至少一个第二PRACH机会确定。在本申请的可选实施例中,第一RNTI根据M个第二PRACH机会中的至少一个第二PRACH机会所对应的RNTI确定的,需要指出的是,第二PRACH机会所对应的RNTI可以是基于现有的方式所得出的RNTI。
在本申请的可选实施例中,第一RNTI为M个第二PRACH机会中的第一个第二PRACH机会所对应的RNTI;或者,第一RNTI为M个第二PRACH机会中的最后一个第二PRACH机会所对应的RNTI。
需要说明的是,新的PRACH格式或新的PRACH传输方法的传输时长超过一个系统帧的长度只是一个示例,本申请实施例中提供的方法也可以应用于新的PRACH格式或新的PRACH传输方法的传输时长没有超过一个系统帧的长度的情况,本申请对此并不限定。
请参考图8,其示出了本申请实施例提供的一种随机接入方法的流程图,如图8所示,该随机接入方法包括以下步骤:
步骤801、网络设备通过第一PRACH机会检测第一PRACH。
步骤802、当网络设备检测到第一PRACH后,网络设备根据第一RNTI发送第一PDCCH,其中,第一PDCCH用于调度PDSCH,第一PDCCH调度的PDSCH中携带RAR。
其中,图8所示的随机接入方法是图4所示的随机接入方法涉及到的对端(也即是网络设备)所执行的步骤,因此,图8所示的随机接入方法与图4所示的随机接入方法同理,具体针对图8所示的随机接入方法的说明可以参见图4对应的描述,本申请实施例在此不再赘述。
需要指出的是,本申请实施例提供的随机接入方法可以为类型1随机接入过程,也可以为类型2随机接入过程,其中,类型1随机接入过程也即是四步随机接入,类型2随机接入过程也即是两步随机接入。对应地,第一PRACH机会包括类型1随机接入过程中的PRACH机会或者类型2随机接入过程中的MsgA对应的PRACH机会,同时,在类型1随机接入过程中,第一RNTI为RA-RNTI,在类型2随机接入过程中,第一RNTI为MsgB-RNTI。
此外,在类型2随机接入过程中,在网络设备根据第一RNTI发送第一PDCCH之前,网络设备接收终端设备发送的MsgA-PUSCH,其中,MsgA-PUSCH是根据RA-RNTI确定的。
在本申请的另一实施例中,在类型2随机接入过程中,步骤801被替换为:网络设备接收终端设备发送的MsgA,其中,MsgA对应的第一PRACH通过第一PRACH机会传输,MsgA对应的MsgA-PUSCH是根据RA-RNTI确定的。步骤802可以被替换为:网络设备根据MsgB-RNTI发送第一PDCCH,其中,第一PDCCH用于调度PDSCH,第一PDCCH调度的PDSCH携带RAR。
图8对应实施例中涉及到的四步随机接入和两步随机接入的过程可以参考图5和图6所示的流程图,本申请实施例在此不再赘述。
与上文所述同理,在图8对应的随机接入方法中,为了解决“现有的RNTI在上行覆盖增强技术中并不适用”问题,本申请实施例提供了三种方法,下面,本申请实施例将对这三种方法一一进行说明。
第一种方法、在这种方法中,并不使用新的RNTI,而是仍沿用现有的RNTI,但是,沿用现有的RNTI可能会出现在一个PRACH配置周期中不同的PRACH机会对应相同的RNTI的情况,从而导致终端设备和网络设备对RNTI的理解可能不一致。
为了避免错误,第一种方法引入了第一指示信息,该第一指示信息可以指示终端设备其是否为PDCCH的正确接收方,或者,第一指示信息可以指示终端设备其是否为PDSCH的正确接收方,这样,在成功对PDCCH解扰之后,终端设备可以基于该第一指示信息进一步判断该PDCCH是否为网络设备发送给该终端设备的PDCCH,或者,在接收到成功解扰的PDCCH所调度的PDSCH后,终端设备可以基于该第一指示信息进一步判断该PDSCH是否为网络设备发送给该终端设备的PDSCH,或者,在接收到PDCCH所调度的PDSCH中的RAR后,终端设备可以基于该第一指示信息进一步判断该RAR是否为网络设备发送给该终端设备的RAR。
具体到上文步骤801和802中的情况,网络设备发送该第一指示信息,该第一指示信息用于指示第一PDCCH是否为调度第一PDSCH的PDCCH,或,该第一指示信息用于指示第一PDCCH调度的PDSCH是否为第一PDSCH,其中,第一PDSCH携带的RAR为与第一PRACH对应的RAR。
在本申请的可选实施例中,该第一指示信息可以携带在第一PDCCH中,或该第一指示信息可以携带在第一PDCCH调度的PDSCH中。具体来说,该第一指示信息可以携带在第一PDCCH上承载的DCI中,和/或,该第一指示信息可以携带在第一PDCCH调度的PDSCH中的RAR中。
在本申请的可选实施例中,第一指示信息用于指示以下至少一项:
1、第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引。
2、第一RNTI对应的系统帧索引的低位k个比特或第一PRACH机会对应的系统帧索引的低位k个比特,k为大于或等于1的正整数。
3、所述第一RNTI对应的系统帧数量值N或所述第一PRACH机会对应的系统帧数量值N,N为大于1的正整数。
4、第一RNTI在N个系统帧中关联的系统帧索引或第一PRACH机会在N个系统帧中关联的系统帧索引。
其中,第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引指的是第一PRACH机会的第一个符号对应的系统帧索引,或言,第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引指的是第一PRACH机会的第一个符号所在系统帧的索引,其取值范围可以为0-1023。
考虑到第一RNTI对应的系统帧索引或第一PRACH机会对应的系统帧索引的比特数较多,为了减少传输的数据量,可选的,第一指示信息可以指示第一RNTI对应的系统帧索引的低位k个比特或第一PRACH机会对应的系统帧索引的低位k个比特,其中,k小于第一RNTI对应的系统帧索引的比特数或者第一PRACH机会对应的系统帧索引的比特数,在本申请的一个可选实施例中,k=ceil(log 2(N)),其中ceil运算符为向上取整运算符,log 2表示以2为底的对数。N为第一RNTI对应的系统帧数量值或第一PRACH机会对应的系统帧数量值或PRACH机会的配置周期。例如,当N取值为4时,k=2,该情况下,第一指示信息包括2比特,用于指示第一RNTI对应的系统帧索引的低位2个比特或第一PRACH机会对应的系统帧索引的低位2个比特。又例如,当N取值为6时,k=3,该情况下,第一指示信息包括3比特,用于指示第一RNTI对应的系统帧索引的低位3个比特或第一PRACH机会对应的系统帧索引的低位3个比特。又例如,当N取值为2时,k=1,该情况下,第一指示信息包括1比特,用于指示第一RNTI对应的系统帧索引的低位1个比特或第一PRACH机会对应的系统帧索引的低位1个比特。
如上文所述,该第一指示信息还可以指示第一RNTI对应的系统帧数量值N或第一PRACH机会对应的系统帧数量值N。在一些情况中,N也可以理解为PRACH机会的配置周期,例如为系统配置PRACH资源时对应的最大配置周期。其中,在本申请的一个可选实施例中,该系统帧数量值N根据以下至少一项确定:
1、第一长度,其中,第一长度为系统可配置的PRACH机会在时域上的最大长度。
2、第二长度,其中,第二长度为系统可配置的最大RAR窗口长度。
在本申请的可选实施例中,第一长度大于1个系统帧的长度;和/或,第二长度大于1个系统帧的长度。
在本申请的可选实施例中,第一PRACH机会对应的系统帧数量值N为大于或等于第一长度的最小系统帧个数;或者,第一PRACH机会对应的系统帧数量值N为大于或等于第二长度的最小系统帧个数;或者,第一PRACH机会对应的系统帧数量值N为大于或等于第三长度的最小系统帧个数,其中,第三长度为第一长度和第二长度中的较大值。
在本申请的可选实施例中,该系统帧数量值N可以由网络侧预先进行配置,或者,该系统帧数量值N可以由通信协议规定。
第二种方法、在这种方法中,针对时域长度大于1个系统帧的PRACH机会,引入了新的RNTI,具体到上文步骤801和802中的情况,第一RNTI即为这里所述的新的RNTI。
在本申请的可选实施例中,该第一RNTI根据以下至少一项确定:
1、第一PRACH机会对应的系统帧索引。
2、第一PRACH机会对应的系统帧索引的低位k个比特。
3、第一PRACH机会对应的系统帧数量值N。
4、第一PRACH机会在N个系统帧中关联的系统帧索引。
进一步地,在本申请的可选实施例中,该第一RNTI根据对第一PRACH机会对应的系统帧索引和第一PRACH机会对应的系统帧数量值N的取模运算结果确定,或者,第一RNTI根据对第一PRACH机会对应的系统帧索引和第一PRACH机会对应的系统帧数量值N的除法运算结果确定,或者,第一RNTI根据第一PRACH机会在N个系统帧中关联的系统帧索引确定。
在第二种方式中,本申请实施例针对第一RNTI提供了具体的计算公式,其中:
在第一RNTI为RA-RNTI的情况下,第一RNTI可以基于第一公式或者第二公式计算得到。在第一RNTI为MsgB-RNTI的情况下,第一RNTI可以基于第三公式或者第四公式计算得到。
第一公式、第二公式、第三公式以及第四公式均在上文中说明,本申请实施例在此不再赘述、
可选地,在类型1随机接入过程中,新的RNTI包括RA-RNTI。
可选地,在类型2随机接入过程中,新的RNTI包括MsgB-RNTI和/或RA-RNTI。例如,在类型2随机接入过程中,MsgA-PUSCH是根据新的RA-RNTI确定的,网络设备根据新的MsgB-RNTI发送第一PDCCH。
第三种方法、第一PRACH机会包括M个现有的PRACH机会,M为大于1的正整数,该现有的PRACH机会用于传输现有格式的PRACH。可选地,第一PRACH机会对应的时域长度可能大于1个系统帧。具体到上文步骤801和802中的情况,第一PRACH机会包括M个第二PRACH机会,其中,如上文所述,该第一PRACH机会用于传输新格式的第一PRACH,该第一PRACH机会在时域上的长度可能超过一个系统帧的长度,第二PRACH机会用于传输现有格式的PRACH,其中,第二PRACH机会对应的PRACH格式为0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2格式中的至少一个。当然,第一PRACH机会在时域上的长度也可能小于或等于一个系统帧的长度,本申请对此并不限定。
在第三种方法中,第一RNTI根据M个第二PRACH机会中的至少一个第二PRACH机会确定。在本申请的可选实施例中,第一RNTI根据M个第二PRACH机会中的至少一个第二PRACH机会所对应的RNTI确定的,需要指出的是,第二PRACH机会所对应的RNTI可以是基于现有的方式所得出的RNTI。
在本申请的可选实施例中,第一RNTI为M个第二PRACH机会中的第一个第二PRACH机会所对应的RNTI;或者,第一RNTI为M个第二PRACH机会中的最后一个第二PRACH机会所对应的RNTI。
需要说明的是,新的PRACH格式或新的PRACH传输方法的传输时长超过一个系统帧的长度只是一个示例,本申请实施例中提供的方法也可以应用于新的PRACH格式或新的PRACH传输方法的传输时长没有超过一个系统帧的长度的情况,本申请对此并不限定。
应该理解的是,虽然图4-8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图4-8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图9所示,提供了一种随机接入装置900,包括:发送模块901和监听模块902。
其中,该发送模块901,用于通过第一PRACH机会向网络设备发送第一PRACH。
该监听模块902,用于根据第一RNTI监听第一PDCCH,其中,该第一PDCCH用于调度PDSCH,该第一PDCCH调度的PDSCH携带RAR。
在本申请的可选实施例中,该监听模块902,还用于当收到该第一PDCCH或该第一PDCCH调度的PDSCH后,根据第一指示信息确定该第一PDCCH是否为调度第一PDSCH的PDCCH;或,根据该第一指示信息确定该第一PDCCH调度的PDSCH是否为该第一PDSCH;其中,该第一PDSCH携带的RAR为与该第一PRACH对应的RAR。
在本申请的可选实施例中,该第一指示信息携带在该第一PDCCH中,或该第一指示信息携带在该第一PDCCH调度的PDSCH中。
在本申请的可选实施例中,该第一指示信息用于指示以下至少一项:
该第一RNTI对应的系统帧索引或该第一PRACH机会对应的系统帧索引;
该第一RNTI对应的系统帧索引的低位k个比特或该第一PRACH机会对应的系统帧索引的低位k个比特;
该第一RNTI对应的系统帧数量值N或该第一PRACH机会对应的系统帧数量值N;
该第一RNTI在N个系统帧中关联的系统帧索引或该第一PRACH机会在N个系统帧中关联的系统帧索引;
其中,N为大于1的正整数,k为大于或等于1的正整数。
在本申请的可选实施例中,该第一RNTI根据以下至少一项确定:
该第一PRACH机会对应的系统帧索引;
该第一PRACH机会对应的系统帧索引的低位k个比特;
该第一PRACH机会对应的系统帧数量值N;
该第一PRACH机会在N个系统帧中关联的系统帧索引;
其中,N为大于1的正整数,k为大于或等于1的正整数。
在本申请的可选实施例中,该第一RNTI根据对该第一PRACH机会对应的系统帧索引和该第一PRACH机会对应的系统帧数量值N的取模运算结果确定;或,
该第一RNTI根据对该第一PRACH机会对应的系统帧索引和该第一PRACH机会对应的系统帧数量值N的除法运算结果确定;或,
该第一RNTI根据该第一PRACH机会在N个系统帧中关联的系统帧索引确定。
在本申请的可选实施例中,该第一RNTI为RA-RNTI,该RA-RNTI基于第一公式或者第二公式计算得到;
该第一公式包括:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN);
该第二公式包括:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N);
其中,s_id为该第一PRACH机会的第一个符号的索引,t_id为该第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为该第一PRACH机会在频域上的索引,ul_carrier_id为该第一PRACH机会对应的上行载波索引,SFN_id为该第一PRACH机会对应的系统帧索引,N为该第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmod N)表示该第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
在本申请的可选实施例中,该RNTI为MsgB-RNTI,该MsgB-RNTI基于第三公式或者第四公式计算得到;
该第三公式包括:
MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN)+14×80×8×2×N;
该第四公式包括:
MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N)+14×80×8×2×N;
其中,s_id为该第一PRACH机会的第一个符号的索引,t_id为该第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为该第一PRACH机会在频域上的索引,ul_carrier_id为该第一PRACH机会对应的上行载波索引,SNF_id为该第一PRACH机会对应的系统帧索引,N为该第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmod N)表示该第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
在本申请的可选实施例中,k=ceil(log 2(N)),其中ceil运算符为向上取整运算符,log 2表示以2为底的对数。
在本申请的可选实施例中,该第一PRACH机会对应的系统帧索引,包括:该第一PRACH机会的第一个符号对应的系统帧索引。
在本申请的可选实施例中,该第一PRACH机会对应的系统帧数量值N根据以下至少一项确定:
第一长度,其中,该第一长度为系统可配置的PRACH机会在时域上的最大长度;
第二长度,其中,该第二长度为系统可配置的最大RAR窗口长度。
在本申请的可选实施例中,该第一长度大于1个系统帧的长度;和/或,该第二长度大于1个系统帧的长度。
在本申请的可选实施例中,,该第一PRACH机会对应的系统帧数量值N为大于或等于该第一长度的最小系统帧个数;或者,
该第一PRACH机会对应的系统帧数量值N为大于或等于该第二长度的最小系统帧个数;或者,
该第一PRACH机会对应的系统帧数量值N为大于或等于第三长度的最小系统帧个数,其中,该第三长度为该第一长度和该第二长度中的较大值。
在本申请的可选实施例中,该第一PRACH机会包括M个第二PRACH机会,该第一RNTI是根据该M个第二PRACH机会中的至少一个第二PRACH机会确定的,M为大于1的正整数。
在本申请的可选实施例中,该第一RNTI是根据该M个第二PRACH机会中的至少一个第二PRACH机会所对应的RNTI确定的。
在本申请的可选实施例中,该第一RNTI为该M个第二PRACH机会中的第一个第二PRACH机会所对应的RNTI;或者,
该第一RNTI为该M个第二PRACH机会中的最后一个第二PRACH机会所对应的RNTI。
在本申请的可选实施例中,该第二PRACH机会对应的PRACH格式为0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2格式中的至少一个。
在本申请的可选实施例中,该第一PRACH机会包括类型1随机接入过程中的PRACH机会,该第一RNTI包括RA-RNTI。
在本申请的可选实施例中,该第一PRACH机会包括类型2随机接入过程中的MsgA对应的PRACH机会,该第一RNTI包括MsgB-RNTI。
在本申请的可选实施例中,该发送模块901,还用于:在根据该第一RNTI监听该第一PDCCH前,向该网络设备发送MsgA-PUSCH,其中,该MsgA-PUSCH是根据RA-RNTI确定的。
上述实施例提供的一种随机接入装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在其中一个实施例中,如图10所示,提供了一种随机接入装置1000,该随机接入装置1000包括检测模块1001和发送模块1002。
其中,该检测模块1001,用于通过第一PRACH机会检测第一PRACH。
该发送模块1002,用于当检测到该第一PRACH后,根据第一RNTI发送第一PDCCH,其中,该第一PDCCH用于调度PDSCH,该第一PDCCH调度的PDSCH中携带RAR。
在本申请的可选实施例中,该发送模块1002,还用于发送第一指示信息,该第一指示信息用于指示该第一PDCCH是否为调度第一PDSCH的PDCCH;或,该第一指示信息用于指示该第一PDCCH调度的PDSCH是否为该第一PDSCH,其中,该第一PDSCH携带的RAR为与该第一PRACH对应的RAR。
在本申请的可选实施例中,该第一指示信息携带在该第一PDCCH中,或该第一指示信息携带在该第一PDCCH调度的PDSCH中。
在本申请的可选实施例中,该第一指示信息用于指示以下至少一项:
该第一RNTI对应的系统帧索引或该第一PRACH机会对应的系统帧索引;
该第一RNTI对应的系统帧索引的低位k个比特或该第一PRACH机会对应的系统帧索引的低位k个比特;
该第一RNTI对应的系统帧数量值N或该第一PRACH机会对应的系统帧数量值N;
该第一RNTI在N个系统帧中关联的系统帧索引或该第一PRACH机会在N个系统帧中关联的系统帧索引;
其中,N为大于1的正整数,k为大于或等于1的正整数。
在本申请的可选实施例中,该第一RNTI根据以下至少一项确定:
该第一PRACH机会对应的系统帧索引;
该第一PRACH机会对应的系统帧索引的低位k个比特;
该第一PRACH机会对应的系统帧数量值N;
该第一PRACH机会在N个系统帧中关联的系统帧索引;
其中,N为大于1的正整数,k为大于或等于1的正整数。
在本申请的可选实施例中,该第一RNTI根据对该第一PRACH机会对应的系统帧索引和该第一PRACH机会对应的系统帧数量值N的取模运算结果确定;或,
该第一RNTI根据对该第一PRACH机会对应的系统帧索引和该第一PRACH机会对应的系统帧数量值N的除法运算结果确定;或,
该第一RNTI根据该第一PRACH机会在N个系统帧中关联的系统帧索引确定。
在本申请的可选实施例中,该第一RNTI为RA-RNTI,该RA-RNTI基于第一公式或者第二公式计算得到;
该第一公式包括:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN);
该第二公式包括:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N);
其中,s_id为该第一PRACH机会的第一个符号的索引,t_id为该第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为该第一PRACH机会在频域上的索引,ul_carrier_id为该第一PRACH机会对应的上行载波索引,SFN_id为该第一PRACH机会对应的系统帧索引,N为该第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmod N)表示该第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
在本申请的可选实施例中,该第一RNTI为MsgB-RNTI,该MsgB-RNTI基于第三公式或者第四公式计算得到;
该第三公式包括:
MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN)+14×80×8×2×N;
该第四公式包括:
MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N)+14×80×8×2×N;
其中,s_id为该第一PRACH机会的第一个符号的索引,t_id为该第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为该第一PRACH机会在频域上的索引,ul_carrier_id为该第一PRACH机会对应的上行载波索引,SNF_id为该第一PRACH机会对应的系统帧索引,N为该第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmod N)表示该第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
在本申请的可选实施例中,k=ceil(log 2(N)),其中ceil运算符为向上取整运算符,log 2表示以2为底的对数。
在本申请的可选实施例中,该第一PRACH机会对应的系统帧索引,包括:该第一PRACH机会的第一个符号对应的系统帧索引。
在本申请的可选实施例中,该第一PRACH机会对应的系统帧数量值N根据以下至少一项确定:
第一长度,其中,该第一长度为系统可配置的PRACH机会在时域上的最大长度;
第二长度,其中,该第二长度为系统可配置的最大RAR窗口长度。
在本申请的可选实施例中,该第一长度大于1个系统帧的长度;和/或,该第二长度大于1个系统帧的长度。
在本申请的可选实施例中,该第一PRACH机会对应的系统帧数量值N为大于或等于该第一长度的最小系统帧个数;或者,
该第一PRACH机会对应的系统帧数量值N为大于或等于该第二长度的最小系统帧个数;或者,
该第一PRACH机会对应的系统帧数量值N为大于或等于第三长度的最小系统帧个数,其中,该第三长度为该第一长度和该第二长度中的较大值。
在本申请的可选实施例中,该第一PRACH机会包括M个第二PRACH机会,该第一RNTI是根据该M个第二PRACH机会中的至少一个第二PRACH机会确定的,M为大于1的正整数。
在本申请的可选实施例中,该第一RNTI是根据该M个第二PRACH机会中的至少一个第二PRACH机会所对应的RNTI确定的。
在本申请的可选实施例中,该第一RNTI为该M个第二PRACH机会中的第一个第二PRACH机会所对应的RNTI;或者,
该第一RNTI为该M个第二PRACH机会中的最后一个第二PRACH机会所对应的RNTI。
在本申请的可选实施例中,该第二PRACH机会对应的PRACH格式为0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2格式中的至少一个。
在本申请的可选实施例中,该第一PRACH机会包括类型1随机接入过程中的PRACH机会,该第一RNTI包括RA-RNTI。
在本申请的可选实施例中,该第一PRACH机会包括类型2随机接入过程中的消息MsgA对应的PRACH机会,该第一RNTI包括MsgB-RNTI。
请参考图11,其示出了另一种随机接入装置1100,该随机接入装置1100除了包括随机接入装置1000包括的各模块外,还包括接收模块1003。
其中,该接收模块1003,用于在根据该第一RNTI发送该第一PDCCH之前,接收终端设备发送的MsgA-PUSCH,其中,该MsgA-PUSCH是根据RA-RNTI确定的。
上述实施例提供的一种随机接入装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
关于随机接入装置的具体限定可以参见上文中对于随机接入方法的限定,在此不再赘述。上述随机接入装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于通信设备中的处理器中,也可以以软件形式存储于通信设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图12是本申请实施例提供的一种通信设备1200示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1200具体可为本申请实施例的网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1200具体可为本申请实施例的终端设备,并且该通信设备1200可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该芯片1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统1400的示意性框图。如图14所示,该通信系统1400包括终端设备1410和网络设备1420。
其中,该终端设备1410可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1420可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(FieldProgrammable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccess Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch linkDRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以 上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(RandomAccess Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (52)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    终端设备通过第一PRACH机会向网络设备发送第一PRACH;
    所述终端设备根据第一RNTI监听第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH携带RAR。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当收到所述第一PDCCH或所述第一PDCCH调度的PDSCH后,所述终端设备根据第一指示信息确定所述第一PDCCH是否为调度第一PDSCH的PDCCH;或,所述终端设备根据所述第一指示信息确定所述第一PDCCH调度的PDSCH是否为所述第一PDSCH;其中,所述第一PDSCH携带的RAR为与所述第一PRACH对应的RAR。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息携带在所述第一PDCCH中,或所述第一指示信息携带在所述第一PDCCH调度的PDSCH中。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一指示信息用于指示以下至少一项:
    所述第一RNTI对应的系统帧索引或所述第一PRACH机会对应的系统帧索引;
    所述第一RNTI对应的系统帧索引的低位k个比特或所述第一PRACH机会对应的系统帧索引的低位k个比特;
    所述第一RNTI对应的系统帧数量值N或所述第一PRACH机会对应的系统帧数量值N;
    所述第一RNTI在N个系统帧中关联的系统帧索引或所述第一PRACH机会在N个系统帧中关联的系统帧索引;
    其中,N为大于1的正整数,k为大于或等于1的正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述第一RNTI根据以下至少一项确定:
    所述第一PRACH机会对应的系统帧索引;
    所述第一PRACH机会对应的系统帧索引的低位k个比特;
    所述第一PRACH机会对应的系统帧数量值N;
    所述第一PRACH机会在N个系统帧中关联的系统帧索引;
    其中,N为大于1的正整数,k为大于或等于1的正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述第一RNTI根据对所述第一PRACH机会对应的系统帧索引和所述第一PRACH机会对应的系统帧数量值N的取模运算结果确定;或,
    所述第一RNTI根据对所述第一PRACH机会对应的系统帧索引和所述第一PRACH机会对应的系统帧数量值N的除法运算结果确定;或,
    所述第一RNTI根据所述第一PRACH机会在N个系统帧中关联的系统帧索引确定。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一RNTI为RA-RNTI,所述RA-RNTI基于第一公式或者第二公式计算得到;
    所述第一公式包括:
    RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN);
    所述第二公式包括:
    RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N);
    其中,s_id为所述第一PRACH机会的第一个符号的索引,t_id为所述第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为所述第一PRACH机会在频域上的索引,ul_carrier_id为所述第一PRACH机会对应的上行载波索引,SFN_id为所述第一PRACH机会对应的系统帧索引,N为所述第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmodN)表示所述第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
  8. 根据权利要求5或6所述的方法,其特征在于,所述第一RNTI为MsgB-RNTI,所述MsgB-RNTI基于第三公式或者第四公式计算得到;
    所述第三公式包括:
    MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN)+14×80×8×2×N;
    所述第四公式包括:
    MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N)+14×80×8×2×N;
    其中,s_id为所述第一PRACH机会的第一个符号的索引,t_id为所述第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为所述第一PRACH机会在频域上的索引,ul_carrier_id为所述第一PRACH机会对应的上行载波索引,SNF_id为所述第一PRACH机会对应的系统帧索引,N为所述第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmodN)表示所述第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符 或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
  9. 根据权利要求4至8任一所述的方法,其特征在于,k=ceil(log 2(N)),其中ceil运算符为向上取整运算符,log 2表示以2为底的对数。
  10. 根据权利要求4至9任一所述的方法,其特征在于,所述第一PRACH机会对应的系统帧索引,包括:所述第一PRACH机会的第一个符号对应的系统帧索引。
  11. 根据权利要求4至10任一所述的方法,其特征在于,所述第一PRACH机会对应的系统帧数量值N根据以下至少一项确定:
    第一长度,其中,所述第一长度为系统可配置的PRACH机会在时域上的最大长度;
    第二长度,其中,所述第二长度为系统可配置的最大RAR窗口长度。
  12. 根据权利要求11所述的方法,其特征在于,所述第一长度大于1个系统帧的长度;和/或,所述第二长度大于1个系统帧的长度。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一PRACH机会对应的系统帧数量值N为大于或等于所述第一长度的最小系统帧个数;或者,
    所述第一PRACH机会对应的系统帧数量值N为大于或等于所述第二长度的最小系统帧个数;或者,
    所述第一PRACH机会对应的系统帧数量值N为大于或等于第三长度的最小系统帧个数,其中,所述第三长度为所述第一长度和所述第二长度中的较大值。
  14. 根据权利要求1所述的方法,其特征在于,所述第一PRACH机会包括M个第二PRACH机会,所述第一RNTI是根据所述M个第二PRACH机会中的至少一个第二PRACH机会确定的,M为大于1的正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述第一RNTI是根据所述M个第二PRACH机会中的至少一个第二PRACH机会所对应的RNTI确定的。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一RNTI为所述M个第二PRACH机会中的第一个第二PRACH机会所对应的RNTI;或者,
    所述第一RNTI为所述M个第二PRACH机会中的最后一个第二PRACH机会所对应的RNTI。
  17. 根据权利要求14至16任一所述的方法,其特征在于,所述第二PRACH机会对应的PRACH格式为0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2格式中的至少一个。
  18. 根据权利要求1至17任一所述的方法,其特征在于,所述第一PRACH机会包括类型1随机接入过程中的PRACH机会,所述第一RNTI包括RA-RNTI。
  19. 根据权利要求1至18任一所述的方法,其特征在于,所述第一PRACH机会包括类型2随机接入过程中的MsgA对应的PRACH机会,所述第一RNTI包括MsgB-RNTI。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    在所述终端设备根据所述第一RNTI监听所述第一PDCCH前,所述终端设备向所述网络设备发送MsgA-PUSCH,其中,所述MsgA-PUSCH是根据RA-RNTI确定的。
  21. 一种随机接入方法,其特征在于,所述方法包括:
    网络设备通过第一PRACH机会检测第一PRACH;
    当所述网络设备检测到所述第一PRACH后,所述网络设备根据第一RNTI发送第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH中携带RAR。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一PDCCH是否为调度第一PDSCH的PDCCH;或,
    所述第一指示信息用于指示所述第一PDCCH调度的PDSCH是否为所述第一PDSCH,其中,所述第一PDSCH携带的RAR为与所述第一PRACH对应的RAR。
  23. 根据权利要求22所述的方法,其特征在于,所述第一指示信息携带在所述第一PDCCH中,或所述第一指示信息携带在所述第一PDCCH调度的PDSCH中。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一指示信息用于指示以下至少一项:
    所述第一RNTI对应的系统帧索引或所述第一PRACH机会对应的系统帧索引;
    所述第一RNTI对应的系统帧索引的低位k个比特或所述第一PRACH机会对应的系统帧索引的低位k个比特;
    所述第一RNTI对应的系统帧数量值N或所述第一PRACH机会对应的系统帧数量值N;
    所述第一RNTI在N个系统帧中关联的系统帧索引或所述第一PRACH机会在N个系统帧中关联的系统帧索引;
    其中,N为大于1的正整数,k为大于或等于1的正整数。
  25. 根据权利要求21所述的方法,其特征在于,所述第一RNTI根据以下至少一项确定:
    所述第一PRACH机会对应的系统帧索引;
    所述第一PRACH机会对应的系统帧索引的低位k个比特;
    所述第一PRACH机会对应的系统帧数量值N;
    所述第一PRACH机会在N个系统帧中关联的系统帧索引;
    其中,N为大于1的正整数,k为大于或等于1的正整数。
  26. 根据权利要求25所述的方法,其特征在于,所述第一RNTI根据对所述第一PRACH机会对应的系统帧索引和所述第一PRACH机会对应的系统帧数量值N的取模运算结果确定;或,
    所述第一RNTI根据对所述第一PRACH机会对应的系统帧索引和所述第一PRACH机会对应的系统帧数量值N的 除法运算结果确定;或,
    所述第一RNTI根据所述第一PRACH机会在N个系统帧中关联的系统帧索引确定。
  27. 根据权利要求25或26所述的方法,其特征在于,所述第一RNTI为RA-RNTI,所述RA-RNTI基于第一公式或者第二公式计算得到;
    所述第一公式包括:
    RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN);
    所述第二公式包括:
    RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N);
    其中,s_id为所述第一PRACH机会的第一个符号的索引,t_id为所述第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为所述第一PRACH机会在频域上的索引,ul_carrier_id为所述第一PRACH机会对应的上行载波索引,SFN_id为所述第一PRACH机会对应的系统帧索引,N为所述第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmodN)表示所述第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
  28. 根据权利要求25或26所述的方法,其特征在于,所述第一RNTI为MsgB-RNTI,所述MsgB-RNTI基于第三公式或者第四公式计算得到;
    所述第三公式包括:
    MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×(SFN_idmodN)+14×80×8×2×N;
    所述第四公式包括:
    MsgB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2×f(SFN_id/N)+14×80×8×2×N;
    其中,s_id为所述第一PRACH机会的第一个符号的索引,t_id为所述第一PRACH机会在一个系统帧中的第一个时隙的索引,f_id为所述第一PRACH机会在频域上的索引,ul_carrier_id为所述第一PRACH机会对应的上行载波索引,SNF_id为所述第一PRACH机会对应的系统帧索引,N为所述第一PRACH机会对应的系统帧数量值,mod为取模运算符,(SFN_idmodN)表示所述第一PRACH机会在N个系统帧中关联的系统帧索引,f为floor运算符或者ceil运算符或者round运算符,其中floor运算符为向下取整运算符,ceil运算符为向上取整运算符,round运算符为四舍五入取整运算符。
  29. 根据权利要求24至28任一所述的方法,其特征在于,k=ceil(log 2(N)),其中ceil运算符为向上取整运算符,log 2表示以2为底的对数。
  30. 根据权利要求24至29任一所述的方法,其特征在于,所述第一PRACH机会对应的系统帧索引,包括:所述第一PRACH机会的第一个符号对应的系统帧索引。
  31. 根据权利要求24至30任一所述的方法,其特征在于,所述第一PRACH机会对应的系统帧数量值N根据以下至少一项确定:
    第一长度,其中,所述第一长度为系统可配置的PRACH机会在时域上的最大长度;
    第二长度,其中,所述第二长度为系统可配置的最大RAR窗口长度。
  32. 根据权利要求31所述的方法,其特征在于,所述第一长度大于1个系统帧的长度;和/或,所述第二长度大于1个系统帧的长度。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一PRACH机会对应的系统帧数量值N为大于或等于所述第一长度的最小系统帧个数;或者,
    所述第一PRACH机会对应的系统帧数量值N为大于或等于所述第二长度的最小系统帧个数;或者,
    所述第一PRACH机会对应的系统帧数量值N为大于或等于第三长度的最小系统帧个数,其中,所述第三长度为所述第一长度和所述第二长度中的较大值。
  34. 根据权利要求31所述的方法,其特征在于,所述第一PRACH机会包括M个第二PRACH机会,所述第一RNTI是根据所述M个第二PRACH机会中的至少一个第二PRACH机会确定的,M为大于1的正整数。
  35. 根据权利要求34所述的方法,其特征在于,所述第一RNTI是根据所述M个第二PRACH机会中的至少一个第二PRACH机会所对应的RNTI确定的。
  36. 根据权利要求34或35所述的方法,其特征在于,所述第一RNTI为所述M个第二PRACH机会中的第一个第二PRACH机会所对应的RNTI;或者,
    所述第一RNTI为所述M个第二PRACH机会中的最后一个第二PRACH机会所对应的RNTI。
  37. 根据权利要求34至36任一所述的方法,其特征在于,所述第二PRACH机会对应的PRACH格式为0、1、2、3、A1、A2、A3、B1、B2、B3、B4、C0和C2格式中的至少一个。
  38. 根据权利要求21至37任一所述的方法,其特征在于,所述第一PRACH机会包括类型1随机接入过程中的PRACH机会,所述第一RNTI包括RA-RNTI。
  39. 根据权利要求21至38任一所述的方法,其特征在于,所述第一PRACH机会包括类型2随机接入过程中的消息MsgA对应的PRACH机会,所述第一RNTI包括MsgB-RNTI。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    在所述网络设备根据所述第一RNTI发送所述第一PDCCH之前,所述网络设备接收终端设备发送的MsgA-PUSCH,其中,所述MsgA-PUSCH是根据RA-RNTI确定的。
  41. 一种随机接入装置,其特征在于,所述装置包括:
    发送模块,用于通过第一PRACH机会向网络设备发送第一PRACH;
    监听模块,用于根据第一RNTI监听第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH携带RAR。
  42. 一种随机接入装置,其特征在于,所述装置包括:
    检测模块,用于通过第一PRACH机会检测第一PRACH;
    发送模块,用于当检测到所述第一PRACH后,根据第一RNTI发送第一PDCCH,其中,所述第一PDCCH用于调度PDSCH,所述第一PDCCH调度的PDSCH中携带RAR。
  43. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至20中任一项所述的方法。
  44. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求21至40中任一项所述的方法。
  45. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20中任一项所述的方法。
  46. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求21至40中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求21至40中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至20中任一项所述的方法。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求21至40中任一项所述的方法。
  51. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
  52. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求21至40中任一项所述的方法。
PCT/CN2022/090359 2022-04-29 2022-04-29 随机接入方法、装置、设备、存储介质以及程序产品 WO2023206383A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090359 WO2023206383A1 (zh) 2022-04-29 2022-04-29 随机接入方法、装置、设备、存储介质以及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090359 WO2023206383A1 (zh) 2022-04-29 2022-04-29 随机接入方法、装置、设备、存储介质以及程序产品

Publications (1)

Publication Number Publication Date
WO2023206383A1 true WO2023206383A1 (zh) 2023-11-02

Family

ID=88516828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090359 WO2023206383A1 (zh) 2022-04-29 2022-04-29 随机接入方法、装置、设备、存储介质以及程序产品

Country Status (1)

Country Link
WO (1) WO2023206383A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
WO2020191679A1 (zh) * 2019-03-27 2020-10-01 Oppo广东移动通信有限公司 随机接入方法、终端设备和网络设备
WO2020192738A1 (en) * 2019-03-28 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining radio network temporary identifier in two-step random access procedure
CN111867133A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 一种随机接入方法、网络设备和终端设备
CN111885739A (zh) * 2019-05-01 2020-11-03 华为技术有限公司 一种随机接入方法及其装置
US20210168874A1 (en) * 2019-11-29 2021-06-03 FG Innovation Company Limited User equipment and method for two-step random access procedure
CN113261378A (zh) * 2019-06-14 2021-08-13 Oppo广东移动通信有限公司 随机接入方法、终端设备和网络设备
CN113519201A (zh) * 2019-03-19 2021-10-19 Oppo广东移动通信有限公司 随机接入的方法和设备
CN113545161A (zh) * 2019-03-19 2021-10-22 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
CN113519201A (zh) * 2019-03-19 2021-10-19 Oppo广东移动通信有限公司 随机接入的方法和设备
CN113545161A (zh) * 2019-03-19 2021-10-22 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2020191679A1 (zh) * 2019-03-27 2020-10-01 Oppo广东移动通信有限公司 随机接入方法、终端设备和网络设备
WO2020192738A1 (en) * 2019-03-28 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining radio network temporary identifier in two-step random access procedure
CN111867133A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 一种随机接入方法、网络设备和终端设备
CN111885739A (zh) * 2019-05-01 2020-11-03 华为技术有限公司 一种随机接入方法及其装置
CN113261378A (zh) * 2019-06-14 2021-08-13 Oppo广东移动通信有限公司 随机接入方法、终端设备和网络设备
US20210168874A1 (en) * 2019-11-29 2021-06-03 FG Innovation Company Limited User equipment and method for two-step random access procedure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Carrier selection for PDCCH-ordered random access in Rel-14 NB-IoT", 3GPP DRAFT; 36321_CR1093_(REL-14)_R2-1704180 - CARRIER SELECTION FOR PDCCH-ORDERED RANDOM ACCESS IN REL-14 NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Hangzhou, China; 20170515 - 20170519, 2 May 2017 (2017-05-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051263506 *

Similar Documents

Publication Publication Date Title
US9967902B2 (en) Systems and methods for contention access region in a licensed-assisted access(LAA)
US9319188B2 (en) Systems and methods for special subframe configuration for carrier aggregation
JP7191248B2 (ja) ランダムアクセス方法、端末装置及びネットワーク装置
US10383145B2 (en) Systems and methods for backoff counter handling in license assisted access
US10485025B2 (en) Systems and methods for performing channel sensing for license assisted access
US11765743B2 (en) Downlink channel receiving method and terminal device
US20220330342A1 (en) Wireless communication method, terminal device, and network device
EP4080972A1 (en) Communication method and device
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
WO2017084095A1 (zh) 传输数据的方法、终端和基站
WO2023206383A1 (zh) 随机接入方法、装置、设备、存储介质以及程序产品
WO2022009702A1 (en) Multiplexing of harq-ack with different priorities on pucch
CN114303424B (zh) 一种信号传输方法及装置、终端设备
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
CN114641961A (zh) 一种确定重传资源的方法及装置、终端设备
WO2023201464A1 (en) Methods and apparatuses for resource selection for sidelink transmission
EP4369797A1 (en) Drx configuration method and apparatus, terminal device, and network device
EP3993546B1 (en) Random access method and device, and terminal
WO2023000332A1 (zh) 通信方法及装置
WO2019238108A1 (zh) 一种上行信号传输方法、终端设备及网络设备
WO2020147089A1 (zh) 一种随机接入方法及终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939232

Country of ref document: EP

Kind code of ref document: A1