WO2023206194A1 - 触控面板和基于触控面板的人机交互方法 - Google Patents

触控面板和基于触控面板的人机交互方法 Download PDF

Info

Publication number
WO2023206194A1
WO2023206194A1 PCT/CN2022/089749 CN2022089749W WO2023206194A1 WO 2023206194 A1 WO2023206194 A1 WO 2023206194A1 CN 2022089749 W CN2022089749 W CN 2022089749W WO 2023206194 A1 WO2023206194 A1 WO 2023206194A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
electrode
pressure detector
actuator
touch
Prior art date
Application number
PCT/CN2022/089749
Other languages
English (en)
French (fr)
Inventor
王帅
齐德兴
花慧
王迎姿
黄东升
周莉
徐晓光
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000921.0A priority Critical patent/CN117321550A/zh
Priority to PCT/CN2022/089749 priority patent/WO2023206194A1/zh
Publication of WO2023206194A1 publication Critical patent/WO2023206194A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the fields of touch technology and tactile feedback, and in particular, to a touch panel and a human-computer interaction method based on the touch panel.
  • a touch panel includes: a base substrate, at least one pressure detector and at least one actuator arranged on the base substrate, and a driving circuit.
  • the at least one pressure detector is electrically connected to the drive circuit, and the drive circuit is electrically connected to the at least one actuator.
  • the ratio of the numbers of the at least one actuator and the at least one pressure detector is in the range of 1:4 to 2:1.
  • the at least one actuator includes a plurality of actuators, and the plurality of actuators is arranged in an array including at least two rows and at least two columns. Every four directly adjacent actuators form a parallelogram sub-array, and the orthographic projection of the four actuators forming the sub-array on the substrate serves as a vertex to define a sub-region. An orthographic projection of each of the at least one pressure detector on the substrate is located within a corresponding sub-region.
  • each sub-region corresponds to a pressure detector.
  • the orthographic projection of the one pressure detector on the substrate is located at the geometric center of the corresponding sub-region.
  • each sub-region corresponds to two pressure detectors.
  • the arrangement direction of the orthographic projections of the two pressure detectors on the base substrate is parallel to the row direction or column direction of the array of the plurality of actuators.
  • the sub-area is divided into two areas by a center line, and orthographic projections of the two pressure detectors on the substrate are respectively located at the geometric centers of the two areas.
  • each sub-region corresponds to four pressure detectors.
  • the four pressure detectors serve as vertices to form a parallelogram.
  • the extending directions of the two sets of opposite sides of the parallelogram are respectively parallel to the row direction and the column direction of the array of actuators.
  • the at least one pressure detector and the at least one actuator are arranged in the same layer.
  • the orthographic projection of each of the at least one pressure detector on the substrate substrate is the same as the orthographic projection of a corresponding one of the at least one actuator on the substrate.
  • the orthographic projections on the substrate at least partially overlap.
  • the at least one pressure detector and the at least one actuator are arranged in different layers.
  • each of the at least one pressure detector includes an input terminal and an output terminal
  • the driving circuit includes at least one detection signal output terminal and at least one detection signal receiving terminal.
  • the input terminal of each pressure detector is electrically connected to the corresponding detection signal output terminal of the driving circuit
  • the output terminal of each pressure detector is electrically connected to the corresponding detection signal receiving terminal of the driving circuit.
  • the input terminal of each pressure detector corresponds to the same detection signal output terminal.
  • each of the pressure detectors includes a capacitive device including a first electrode, a second electrode, and an insulator between the first electrode and the second electrode.
  • the first electrode serves as the input end of each pressure detector, and the second electrode serves as the output end of each pressure detector.
  • each of the pressure detectors includes a piezoelectric device including a first electrode, a second electrode, and a layer of piezoelectric material between the first electrode and the second electrode. .
  • the first electrode serves as the input end of each pressure detector, and the second electrode serves as the output end of each pressure detector.
  • each of the pressure detectors includes a piezoresistive device including a first electrode, a second electrode, and a layer of piezoresistive material between the first electrode and the second electrode. .
  • the first electrode serves as the input end of each pressure detector, and the second electrode serves as the output end of each pressure detector.
  • each of the at least one actuator includes an input terminal and an output terminal
  • the drive circuit includes at least one actuation signal output terminal and a ground terminal.
  • the input terminal of each actuator is electrically connected to the corresponding actuation signal output terminal of the drive circuit, and the output terminal of each actuator is electrically connected to the ground terminal of the drive circuit.
  • the actuator includes a piezoelectric device including a first electrode, a second electrode, and a layer of piezoelectric material between the first electrode and the second electrode.
  • the first electrode serves as the input end of the actuator, and the second electrode serves as the output end of the actuator.
  • the driving circuit includes at least one detection signal output terminal, at least one detection signal receiving terminal, at least one actuation signal output terminal, and a ground terminal.
  • the at least one detection signal output terminal and the at least one detection signal receiving terminal are electrically connected to the at least one pressure detector, and the at least one actuation signal output terminal and the ground terminal are connected to the at least one actuator. Electrical connection.
  • the at least one detection signal output terminal and the at least one detection signal receiving terminal are located at the first edge of the touch panel, and the at least one actuation signal output terminal and the ground terminal are located at the second edge of the touch panel. , the first edge is opposite to the second edge.
  • the touch panel is divided into a touch area and a frame area surrounding the touch area.
  • the at least one pressure detector and/or the at least one actuator are located in the frame area.
  • the touch panel further includes a touch layer.
  • the touch layer is configured to determine a touch location.
  • the at least one pressure detector is disposed in the touch layer.
  • a touch panel includes at least one piezoelectric device and a driving circuit.
  • Each of the at least one piezoelectric device includes a piezoelectric material layer having a first end surface and a second end surface, and a first electrode disposed on the first end surface and a first electrode disposed on the second end surface.
  • the second electrode is electrically connected to the signal output terminal of the driving circuit, and the second electrode is electrically connected to the signal receiving terminal of the driving circuit.
  • the driving circuit is configured to, in a first period, determine the pressure on the piezoelectric device by detecting a first voltage difference between the signal output terminal and the signal receiving terminal, and, in a second period, The piezoelectric device is driven to implement tactile feedback by providing a second voltage difference between the signal output terminal and the signal receiving terminal.
  • the signal output terminal of the driving circuit is located at the first edge of the touch panel
  • the signal input terminal of the driving circuit is located at the second edge of the touch panel
  • the first edge is connected to the first edge of the touch panel.
  • the second edge is opposite.
  • a human-computer interaction method based on a touch panel includes a pressure detector, an actuator and a driving circuit.
  • the method includes: using the pressure detector to generate a detection signal based on the magnitude of the force exerted by the user on the touch panel, and sending the detection signal to the driving circuit; using the driving circuit to generate a detection signal based on the force exerted by the user on the touch panel.
  • the drive circuit In response to the detection signal indicating that the force exerted by the user on the touch panel is greater than or equal to the trigger threshold, the drive circuit generates an actuation signal and outputs the actuation signal to the actuator so that the actuator generates tactile feedback to the user.
  • the touch panel further includes a touch sensor
  • the method further includes: generating a position signal based on the user's touch position by the touch sensor, and sending the position signal to the signal controller.
  • the step of generating an actuation signal by the drive circuit includes: generating the actuation signal by the drive circuit based on the position signal, so that the actuator generates a motion to the user at the touch position. Tactile feedback.
  • Figure 1 schematically shows a perspective view of a touch panel according to an embodiment of the present application
  • Figure 2 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 3 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 4 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 5 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 6 schematically shows a perspective view of a touch panel according to an embodiment of the present application
  • FIGS. 7A and 7B schematically illustrate an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 8 schematically shows a partial cross-sectional view of a touch panel according to an embodiment of the present application
  • Figure 9 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • Figure 10 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 11 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 12 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 13 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application
  • Figure 14 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • Figure 15 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • Figure 16 schematically shows a perspective view of a touch panel according to an embodiment of the present application
  • Figure 17 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • Figure 18 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • Figure 19 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • Figure 20 schematically shows an enlarged partial view of Figure 19
  • Figure 21 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • Figure 22 schematically shows a flow chart of a touch panel-based human-computer interaction method according to an embodiment of the present application
  • Figure 23 schematically shows a flow chart of a touch panel-based human-computer interaction method according to an embodiment of the present application.
  • Touch-based human-computer interaction can be carried out through physical buttons or through touch panels.
  • the position of each key is fixed, and the function of each key is single.
  • the number of keys needs to be increased. This will take up more space, and there are also challenges in arranging the key locations.
  • the number of keys increases, it will be more difficult for users to quickly find the keys they need, and the operation speed and accuracy will be relatively low.
  • touch panel when a touch panel is used as an input method, the touch panel can be instantly partitioned in different forms according to different scenarios. This means that touching the same part of the touch panel may produce different input effects in different scenarios. Therefore, if it is only to achieve more interactions, the touch panel does not need to have a large touch area, so that the size of the touch panel will not be greatly limited. With this variety of input effects and freedom of volume control, touch panels hold great promise.
  • panel is to be understood as a structure whose extension length in two of the three mutually perpendicular dimensions is significantly greater than in the other dimension.
  • the extended length allows the structure as a whole to be viewed as a flat plate-like structure.
  • planar structure may contain multiple parallel layers.
  • touch panel can be understood as any panel-type human-computer interaction device that collects input information based on the user's touch operation for subsequent processing.
  • the inventor of this application found that in some scenarios, users may easily make mistakes when operating the touch panel, including the accidental touches and wrong touches mentioned above. These mistakes are even unavoidable in some scenarios.
  • the user when operating with a touch panel, in order for the user to accurately touch the corresponding position of the touch panel, the user is usually required to visually observe the position of the touch panel and the device used to contact the touch panel. (e.g., a stylus) or the location of a body part (e.g., a finger).
  • users may need to use their vision to observe other things. For example, when driving a vehicle, the driver needs to observe the situation around the vehicle and cannot (and should not) focus on the touch panel located on the center console.
  • FIG. 1 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • FIG. 2 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • the touch panel 100 includes a base substrate 101 , at least one pressure detector 112 and at least one actuator 114 disposed on the base substrate, and a driving circuit 115 .
  • the at least one pressure detector 112 is electrically connected to the drive circuit 115
  • the drive circuit 115 is electrically connected to the at least one actuator 114 .
  • the base substrate 101 plays a bearing role for the pressure detector 112 and the actuator 114, so that the pressure detector 112 and the actuator 114 are fixedly installed in the touch panel 100.
  • this does not mean that the pressure detector 112 and the actuator 114 are in direct contact with the base substrate 101 .
  • other structures may be present between the pressure detector 112 and actuator 114 and the substrate substrate 101 .
  • the driving circuit 115 may be directly or indirectly arranged on the base substrate 101 , or may be arranged at other locations within the touch panel 100 .
  • the pressure detector 112 is electrically connected to the driving circuit 115 (for example, through the detection circuit 122 ), so electrical signals can be transmitted between the pressure detector 112 and the driving circuit 115 .
  • the drive circuit 115 is electrically connected to the actuator 114 (for example, through the feedback circuit 124), so electrical signals can also be transmitted between the drive circuit 115 and the actuator 114.
  • the drive circuit 115 may establish a correlation between the pressure detector 112 and the actuator 114 .
  • the actuator 114 may be caused to actuate the touch panel 100 based on the electrical signal generated by the pressure detector 112 to provide tactile feedback to the user.
  • the actuation of the actuator 114 is based on the electrical signal generated by the pressure detector 112
  • the user feels the tactile feedback he or she can have a better understanding of the operation performed on the touch panel. If the actual operation performed by the user is inconsistent with the operation expected by the user, this tactile feedback can make the user aware of the inconsistency in time, so that the user can adjust his next operation as soon as possible.
  • the touch panel 100 may include a cover 105 .
  • the user's finger may contact the cover 105.
  • the actuator 114 can actuate the cover 105 so that the cover generates mechanical vibration. Since the user is in contact with the touch cover 105, he or she can feel the vibration through tactile sensation, thereby knowing the information to be provided by the touch panel 100.
  • the vibration caused by the actuator 114 depends on the operation exerted by the user detected by the pressure detector 112, therefore, the information provided to the user by the touch panel 100 through tactile sensation is a kind of information on the user's operation. Feedback information, therefore, the information-providing activity of the touch panel can be called tactile feedback.
  • the term “actuation” may be understood to mean that the actuator 114 causes the touch panel 100 or certain components within the touch panel 100 (eg, the cover 105 ) to deform or shift. That is to say, when providing tactile feedback to the user, the touch panel 100 is not static, but can be considered to be moving.
  • the touch panel 100 and its components according to the embodiment of the present application will be described in more detail below.
  • the pressure detector 112 will be described first.
  • the pressure exerted by the user on the touch device 100 can be transmitted to the pressure detector 112 within the touch device.
  • the pressure detector 112 can change the electrical properties of its internal structure or material according to certain rules. This change in electrical properties can be represented by electrical signals.
  • This electrical signal may be referred to as a detection signal in this application.
  • the detection signal changes as the force applied by the user to the touch device 100 changes.
  • some attributes of the pressure can be determined, such as the size of the pressure. In this application, the above process may be simply referred to as pressure detection.
  • pressure detection may be accomplished by force-sensitive sensors.
  • the force-sensitive sensor may be a capacitive sensor including a capacitive device, a piezoelectric sensor including a piezoelectric device, a piezoresistive sensor including a piezoresistive device, or the like. These sensors are described below.
  • Capacitive sensors may include capacitive devices.
  • the capacitive device may include a first electrode and a second electrode, and an insulator between the two electrodes.
  • the change in capacitance value can be output in the form of an electrical signal. By measuring this electrical signal, properties of the pressure exerted by the user can be determined, such as the magnitude of the pressure.
  • the pressure detector may also include a measurement circuit with a compensation function to perform compensation on the output electrical signal.
  • Non-linear compensation Capacitive sensors have the advantages of good temperature stability, simple structure, good dynamic response, and high sensitivity.
  • Piezoelectric sensors may include piezoelectric devices.
  • the piezoelectric device includes a piezoelectric material layer having a first end surface and a second end surface, and first electrodes and second electrodes disposed on the two end surfaces of the piezoelectric material layer (ie, the piezoelectric material layer is between the first and second end surfaces of the piezoelectric material layer). between the electrode and the second electrode).
  • the term "piezoelectric material layer” is understood to mean that the first electrode, the piezoelectric material layer, and the second electrode are stacked one on top of another. However, this is not intended to limit the size of each dimension of the piezoelectric material layer.
  • the piezoelectric material forming the piezoelectric material layer may be a single crystal material, such as quartz, potassium sodium tartrate, etc.
  • the piezoelectric material may also be a polycrystalline material, such as a piezoelectric ceramic material.
  • the piezoelectric material may include dielectric elastomeric materials.
  • dielectric elastomeric materials may include silicone rubber, acrylate elastomers, polyurethane elastomers, nitrile rubber, vinylidene fluorinated trifluoroethylene, and conforming materials thereof.
  • some high-dielectric fillers such as titanium oxide (TiO 2 ), barium titanate (BaTiO 3 ), etc.
  • TiO 2 titanium oxide
  • BaTiO 3 barium titanate
  • the amount of charge generated by a piezoelectric material is proportional to the magnitude of the external force.
  • the piezoelectric material itself is non-conductive, so it is not ruled out that it can serve as electrical insulation between other components in the touch panel.
  • Piezoresistive sensors may include piezoresistive devices.
  • the piezoresistive device includes a first electrode, a second electrode, and a piezoresistive material layer between the two electrodes.
  • the term "piezoresistive material layer” should also not be understood as limiting the size of each dimension of the piezoresistive material layer. Based on the piezoresistive effect, the resistivity of the piezoresistive material (such as single crystal silicon) forming the piezoresistive material layer will change when it is acted upon by force. Through the corresponding measuring circuit, an electrical signal output proportional to the change in force can be obtained.
  • the piezoresistive sensor may include multiple piezoresistive devices, and the multiple piezoresistive devices may be connected in the form of a Wheatstone bridge. The specific implementation manner will be described in detail in the following embodiments.
  • the actuator 114 in the embodiment of the present application is electrically connected to the driving circuit 115.
  • the driving circuit 115 receives the detection signal from the pressure detector 112 and sends an actuation signal to the actuator 114 based on the detection signal.
  • the actuator 114 actuates the touch panel 100 or certain components therein (such as the cover 105 ), so that the touch panel 100 provides tactile feedback to the user.
  • the above process may be simply referred to as tactile feedback.
  • the actuator 114 converts the received electrical signal into a mechanical deformation or displacement. This deformation or displacement of the actuator 114 itself will be transmitted to the user who is in contact with the touch panel via other components in the touch panel 100 . In this way, the user can feel the deformation or displacement through touch, thereby learning the information that the touch panel 100 wants to convey to the user.
  • actuator 114 may include a piezoelectric device.
  • the piezoelectric device includes a first electrode, a second electrode, and a piezoelectric material layer between the first electrode and the second electrode.
  • the piezoelectric material expands or contracts, thereby converting electrical energy into mechanical energy.
  • piezoelectric materials can include crystal piezoelectric materials and dielectric elastomer materials. The specific material types will not be described again.
  • drive circuit 115 may be arranged in the same layer as pressure detector 112 or actuator 114 .
  • pressure detector 112 and actuator 114 are arranged in the same layer.
  • the driving circuit 115 may be arranged in the same layer as the pressure detector 112 and the actuator 114, or may be arranged in a different layer from the pressure detector 112 and the actuator 114.
  • the pressure detector 112 is electrically connected to the drive circuit 115
  • the drive circuit 115 is electrically connected to the actuator 114 .
  • the term "electrical connection" is understood to mean that electrical signals can be passed between two or more devices described by this term.
  • This transmission of electrical signals can be achieved by means of physical elements such as wires, or wirelessly such as electromagnetic waves. There may or may not be other devices between electrically connected devices. That is, electrical signals can be passed directly between electrically connected devices, or they can flow through other devices besides these devices.
  • the detection signal generated by the pressure detector 112 can be transmitted to the driving circuit 115 .
  • the driving circuit 115 and the actuator 114 are electrically connected, the actuation signal sent by the driving circuit 115 can be transmitted to the actuator 114 so that the actuator 114 actuates other components in the touch panel 100 to generate tactile feedback.
  • the drive circuit 115 is provided with various ports to which the pressure detector 112 and the actuator 114 may be connected. The driver circuit can receive detection signals and output actuation signals through these ports.
  • the driving circuit 115 may be configured to determine whether to generate and send an actuation signal based on the detection signal, and when it is determined that the actuation signal will be generated, further determine the specific content of the actuation signal based on the detection signal, so that the touch
  • the tactile feedback generated by the control panel is associated with the user's operations on the touch panel 100 .
  • the driving circuit 115 may be a central processing unit (CPU), a field programmable logic array (FPGA), a microcontroller (MCU), a digital driving circuit (DSP), an application specific integrated circuit (ASIC), etc. with data processing capabilities.
  • a logic arithmetic device with capabilities and/or program execution capabilities.
  • the touch panel of the embodiment of the present application has the above-mentioned devices, and there is an electrical connection relationship between the above-mentioned devices, the touch panel can realize pressure detection and perform tactile feedback based on the pressure detection. Therefore, when using the touch panel of the embodiment of the present application, the user can have a more accurate understanding of the operations performed on the touch panel through tactile sensation. For example, because tactile feedback is based on pressure detection, the intensity of tactile feedback can reflect the strength of the pressure the user exerts on the touch panel. For example, in some embodiments, when the pressure exerted by the user is greater, the tactile feedback provided to the user is stronger, such as the vibration of the touch panel is stronger.
  • the touch panel can enhance and enrich the user's experience through touch. For example, when the user exerts greater pressure, it may mean that the user is engaging in intense activities (such as the game is in an intense stage). At this time, strong tactile feedback can be provided to the user, so that in addition to vision and hearing, the user can also receive stimulation through touch, enriching the user's sensory experience.
  • the user's operations on the touch panel 100 can occur on the cover 105 , and the actuator 114 can also provide tactile feedback by actuating the cover 105 .
  • the cover plate 105 will be described below.
  • the user can exert a certain force on the cover 105 of the touch panel 100 .
  • This force may be conducted to pressure detector 112 .
  • Pressure detector 112 generates a detection signal in response to the force.
  • the driving circuit 115 is electrically connected to the pressure detector 112 and receives the detection signal. Then, the driving circuit generates and outputs an actuation signal based on the detection signal.
  • cover 105 User operations on the cover 105 generally exert a force on the cover, with the force having a component perpendicular to the cover 105 .
  • the force perpendicular to the cover plate is also referred to as pressure on the cover plate.
  • the cover plate 105 can transmit pressure to the pressure detector 112 .
  • cover 105 is actuated by actuator 114 to provide tactile feedback to the user.
  • the cover 105 needs to have a certain degree of hardness and elasticity.
  • the material of the cover 105 may include one or more plastics, such as polyimide (PI), polymethyl methacrylate (PMMA), polycarbonate (PC), polyterephthalate Ethylene formate (PET), polyethylene naphthalate (PEN), polyvinylidene chloride, polyvinylidene fluoride (PVDF), polystyrene, ethylene vinyl alcohol copolymer, polyethersulfone ( PES), polyetherimide (PEI), polyphenylene sulfide (PPS), polyacrylate, triacetyl cellulose (TAC), cellulose acetate propionate (CAP), etc.
  • plastics such as polyimide (PI), polymethyl methacrylate (PMMA), polycarbonate (PC), polyterephthalate Ethylene formate (PET), polyethylene naphthalate (PEN), polyvinylidene chloride, polyvinylidene fluoride (PVDF), polystyrene, ethylene vinyl alcohol copolymer,
  • the material of the cover 105 may include glass, such as transparent glass or translucent glass (eg, frosted glass).
  • the cover plate in order to increase the performance of the cover plate, such as impact resistance, the cover plate may be a structure formed by stacking multiple layer structures, or even a structure stacked by layers of different materials.
  • the positional relationship between the actuator 114 and the pressure detector 112 will affect the implementation of pressure detection and tactile feedback.
  • the positional relationship between the pressure detector 112 and the actuator 114 will be described.
  • FIG. 3 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • the at least one actuator 114 includes a plurality of actuators, and the plurality of actuators is arranged in an array including at least two rows and at least two columns.
  • every four directly adjacent actuators 114 form a parallelogram sub-array, and the orthographic projection of the four actuators 114 forming the sub-array on the substrate 101 Define subregion 301 as a vertex. For clarity of the drawing, only one sub-region 301 is shown in FIG. 3 . However, it should be understood that any four directly adjacent actuators 114 will define a sub-area 301 .
  • each pressure detector 112 on the substrate 101 is located within the corresponding sub-region 301 .
  • the term "directly adjacent” means that the row and column numbers of the actuators 112 in the array differ by one.
  • all four actuators that satisfy the following row number and column number relationship are "directly adjacent" actuators: the first actuator is located in the mth row and nth column of the array, and the second actuator is located in the mth row and nth column of the array.
  • the actuator is located at the m-th row and n+1 column of the array, the third actuator is located at the m+1-th row and n-th column of the array, and the fourth actuator is located at the m+1-th row and n+1 of the array.
  • the four actuators constituting the sub-array are adjacent in both the row and column directions.
  • the four actuators can be arranged at the vertices of a parallelogram, or even at the vertices of a rectangle, a square, or a trapezoid.
  • the term "orthographic projection” shall be understood as the projection of an element onto a surface in a direction perpendicular to that surface.
  • a base substrate may be understood as a planar structure whose length and width are significantly greater than its thickness. Therefore, the orthographic projection of the actuator and the pressure detector on the substrate substrate can be understood as the vertical projection of the actuator and the pressure detector on the surface defined by the length direction and the width direction of the substrate substrate.
  • each pressure detector 112 on the substrate substrate 101 is located within the corresponding sub-region 301 , indicating that each pressure detector 112 is arranged between the four actuators 114 . That is, in the touch panel, the pressure detector 112 is interposed between the actuators 114, and the actuators are arranged around the pressure detector. This interspersed arrangement facilitates even dispersion of the pressure detector 112 and the actuator 114 in the touch panel, so as to detect pressure more accurately and provide tactile feedback at a more ideal position.
  • actuators 1141 , 1142 , 1143 , and 1144 form a parallelogram subarray, such as the rectangular subarray shown in FIG. 3 .
  • Orthographic projections of the actuators 1141, 1142, 1143, 1144 on the base substrate 101 serve as vertices to define the sub-region 301.
  • each sub-region corresponds to a pressure detector. That is, only one pressure detector is arranged between every four directly adjacent actuators. As shown in Figure 3, in such an embodiment, a row of pressure detectors 112 is disposed between every two adjacent rows of actuators 114. Between every two adjacent columns of actuators 114, a column of pressure detectors 112 is arranged. The number of rows and columns of pressure detectors 112 is one less than the number of rows and columns of actuators 114 , respectively.
  • the orthographic projection of the one pressure detector between every four directly adjacent actuators on the substrate substrate 101 is located at the geometric center of the corresponding sub-region. This makes the relative position between the one pressure detector and the four actuators corresponding to the sub-area relatively symmetrical, and makes the spacing between the pressure detectors in each row and column equal. This makes the pressure detection accuracy at various locations on the touch panel relatively consistent.
  • FIG. 3 also schematically shows the wiring of the pressure detector 112 and the actuator 114 .
  • each pressure detector 112 includes an input terminal 311 and an output terminal 312 .
  • the input terminal 311 of each pressure detector is electrically connected to the corresponding detection signal output terminal 313 of the driving circuit, and the output terminal 312 of each pressure detector is electrically connected to the corresponding detection signal receiving terminal 314 of the driving circuit.
  • the input terminals of multiple pressure detectors can be electrically connected to the same detection signal output terminal of the driving circuit.
  • the input terminal 311 of each row of pressure detectors is electrically connected to the same detection signal output terminal 313 of the driving circuit.
  • each actuator 114 includes an input terminal 321 and an output terminal 322 .
  • the input terminal 321 of each actuator 114 is electrically connected to the corresponding actuation signal output terminal 323 of the driving circuit, and the output terminal 322 of each actuator 114 is electrically connected to the ground terminal GND of the driving circuit.
  • the number of pressure detectors and actuators shown in FIG. 3 should not be understood as a limitation on the number of pressure detectors and actuators in the touch panel of the embodiment of the present application.
  • each sub-region corresponds to two pressure detectors.
  • the arrangement direction of orthographic projections of the two pressure detectors on the substrate is parallel to the row direction or column direction of the array of actuators.
  • FIG. 4 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • each sub-area 301 corresponds to two pressure detectors 1121 and 1122. That is, two pressure detectors are arranged between every four directly adjacent actuators 114 . Thus, between every two adjacent rows of actuators 114, there is a row of pressure detectors 112. Between every two adjacent columns of actuators 114, there are two columns of pressure detectors.
  • the number of rows of pressure detectors 112 is one less than the number of rows of actuators 114 .
  • the number of columns of actuators 114 is one more than half the number of columns of pressure detectors 112 .
  • the number of columns of pressure detectors in the embodiment of FIG. 4 is doubled, that is, the number of pressure detectors is doubled.
  • sub-region 301 is divided into two regions by a center line.
  • the orthographic projections of the two pressure detectors 1121 and 1122 on the substrate 101 are respectively located at the geometric centers of these two areas.
  • the two pressure detectors 1121 and 1122 corresponding to the sub-area are symmetrically arranged in the sub-area.
  • the intervals between pressure detectors in adjacent sub-regions are also equal.
  • the separation between two pressure detectors 1121 and 1122 within a single sub-region 301 is half the lateral width of the sub-region.
  • the spacing between the pressure detector 1121 and the pressure detector 1123 in the adjacent sub-region is also half the lateral width of the sub-region. This results in consistent spacing between pressure detectors within each row of pressure detectors. With this setup, even if the number of pressure detectors is doubled, the spacing between pressure detectors in each row remains equal.
  • the embodiment of Figure 4 can also be understood in this way.
  • the sub-region 301 is divided into four regions by three quarter lines (including the first quarter line, the second quarter line, and the third quarter line) extending along the column direction.
  • the second quarter is located between the first quarter and the third quarter.
  • one of the pressure detectors is located at the midpoint of the first quarter line, and the other pressure detector is located at the midpoint of the third quarter line. at.
  • Figure 4 also shows the wiring of the pressure detector and actuator.
  • the input terminal 311 of each pressure detector is electrically connected to the corresponding detection signal output terminal 313 of the driving circuit, and the output terminal 312 of each pressure detector is electrically connected to the corresponding detection signal receiving terminal of the driving circuit. 314. Furthermore, in the embodiment of FIG. 4 , the input terminal 311 of each row of pressure detectors is electrically connected to the same detection signal output terminal 313 of the driving circuit. Furthermore, as shown in Figure 4, the input terminal 321 of each actuator is electrically connected to the corresponding actuation signal output terminal of the drive circuit. The output terminal 322 of each actuator is electrically connected to the ground terminal GND of the drive circuit. Similar to FIG. 3 , the number of pressure detectors and actuators shown in FIG. 4 should not be understood as a limitation on the number of pressure detectors and actuators in the touch panel of the embodiment of the present application.
  • each sub-region corresponds to four pressure detectors.
  • the four pressure detectors serve as vertices to form a parallelogram, such as a rectangle.
  • the extending directions of two sets of opposite sides of the parallelogram formed by the four pressure detectors are respectively parallel to the row direction and the column direction of the array of the plurality of actuators.
  • FIG. 5 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • each sub-area 301 corresponds to four pressure detectors 1121, 1122, 1123, and 1124.
  • the pressure detectors 1121, 1122, 1123, and 1124 form a parallelogram (for example, the rectangle shown in FIG. 5) as vertices.
  • a pair of opposite sides 501 and 502 of the parallelogram are parallel to the column direction of the array of actuators 114 .
  • the other set of opposite sides 503, 504 of the parallelogram is parallel to the row direction of the array of actuators 114.
  • the pressure detector 112 and the actuator 114 may be arranged in the same layer or in different layers.
  • the term "arranged on the same layer” is understood to mean that two elements are at least partially coincident in a direction perpendicular to the layer. For example, in a direction perpendicular to the layer, the bottom surface of one element is closer to the layer relative to the top surface of another element.
  • pressure detectors and actuators can be arranged in different layers.
  • the term "arranged in different layers" is understood to mean that two elements do not coincide in a direction perpendicular to the layers, e.g. a bottom surface of one element relative to a top surface of the other element in a direction perpendicular to the layers further away from the layer.
  • Figure 6 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • 7A and 7B respectively schematically illustrate an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • the pressure detector 112 is located in the first layer 601 and the brake 114 is located in the second layer 602 .
  • the number of components and wiring within each layer is small, which can effectively avoid interference between electrical signals.
  • the first layer 601 where the pressure detector 112 is located is closer to the user's interaction interface with the touch panel 100 , such as a cover plate, than the second layer 602 where the actuator 114 is located. 105.
  • the pressure detector 112 is closer to the user's touch position, making the detection of the force exerted by the user more accurate.
  • the actuator 114 is further away from the user's touch position, by adjusting the actuation signal, the actuator 114 can also provide desired touch feedback.
  • Figure 8 schematically shows a cross-sectional view of a touch panel according to an embodiment of the present application.
  • an insulating layer 603 may also exist between the first layer 601 and the second layer 602 to better connect the pressure detector 112 and the actuator 114 as well as the two components. Wiring electrical isolation.
  • the orthographic projection of each of the at least one pressure detector on the substrate substrate is the same as the orthographic projection of a corresponding one of the at least one actuator on the substrate substrate.
  • Figure 9 schematically shows a perspective view of a touch panel according to an embodiment of the present application. As shown in FIG. 9 , the orthographic projection of each pressure detector 112 on the base substrate 101 at least partially overlaps the orthographic projection of the actuator 114 on the base substrate 101 . In other words, the pressure detector 112 and the actuator 114 located at corresponding positions are stacked and arranged in a direction substantially perpendicular to the substrate substrate 101 .
  • the number and proportion of pressure detectors and actuators may be different depending on the terminal device where the touch panel is located, the size of the touch panel, and the specific application scenarios of the touch panel.
  • the ratio of the numbers of the at least one actuator and the at least one pressure detector is in the range of 1:4 to 2:1.
  • the quantity ratio of the two components is relatively close and the distribution is relatively even, so that pressure detection and tactile feedback can achieve a better balance.
  • the number of pressure detectors is relatively large, for example, when the ratio of the number of pressure detectors to actuators is 2:1, the sensitivity of the touch panel is higher.
  • each of the at least one pressure detector includes an input terminal and an output terminal
  • the driving circuit includes at least one detection signal output terminal and at least one detection signal receiving terminal.
  • the input terminal of each pressure detector is electrically connected to the corresponding detection signal output terminal of the driving circuit
  • the output terminal of each pressure detector is electrically connected to the corresponding detection signal receiving terminal of the driving circuit.
  • Figure 2 shows the electrical connection of the pressure detector and actuator to the drive circuit.
  • the pressure detector 112 may be connected to a port of the driving circuit 115 through the detection circuit 122 .
  • the input terminal 152 of the pressure detector 112 may be connected to the detection signal output terminal IN of the driving circuit 115 .
  • the output terminal 162 of the pressure detector 112 may be connected to the detection signal receiving terminal OUT of the driving circuit 115 .
  • the detection signal output terminal IN provides an input signal to the pressure detector 112, and the detection signal output by the pressure detector 112 is received by the driving circuit 115 via the detection signal receiving terminal OUT.
  • the pressure detector can be a capacitive sensor, a piezoelectric sensor, or a piezoresistive sensor.
  • the internal structures of these sensors and their electrical connections with the drive circuit will be described below.
  • each pressure detector includes a capacitive device.
  • the capacitive device includes a first electrode, a second electrode, and an insulator between the first electrode and the second electrode.
  • the first electrode serves as the input terminal 152 of the pressure detector and is electrically connected to the detection signal output terminal IN.
  • the second electrode serves as the output terminal 162 of the pressure detector and is electrically connected to the detection signal receiving terminal OUT.
  • each pressure detector includes a piezoelectric device.
  • the piezoelectric device includes a first electrode, a second electrode, and a piezoelectric material layer between the first electrode and the second electrode.
  • the first electrode serves as the input terminal 152 of the pressure detector and is electrically connected to the detection signal output terminal IN.
  • the second electrode serves as the output terminal 162 of the pressure detector and is electrically connected to the detection signal receiving terminal OUT.
  • each pressure detector includes a piezoresistive device.
  • the piezoresistive device includes a first electrode, a second electrode, and a piezoresistive material layer between the first electrode and the second electrode.
  • the first electrode serves as the input terminal 152 of each pressure detector and is electrically connected to the detection signal output terminal IN.
  • the second electrode serves as the output end 162 of each pressure detector and is electrically connected to the detection signal receiving end OUT.
  • each pressure detector can include multiple piezoresistive devices, and multiple piezoresistors can be connected in the form of a Wheatstone bridge. This is described in more detail below.
  • FIG. 10 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application. Specifically, FIG. 10 shows the internal circuit of the piezoresistive sensor 1000 that can be used in embodiments of the present application.
  • the piezoresistive sensor 1000 may include two positive piezoresistors 1005, 1006 and two negative piezoresistors 1010, 1011.
  • a positive piezoresistor When a positive piezoresistor is exposed to pressure, its resistance value increases; when a negative piezoresistor is exposed to pressure, its resistance value decreases.
  • the positive piezoresistor 1005 and the negative piezoresistor 1010 are connected in series, and the negative piezoresistor 1011 and the positive piezoresistor 1006 are connected in series.
  • the series circuit composed of the positive piezoresistor 1005 and the negative piezoresistor 1010 is connected in parallel with the series circuit composed of the negative piezoresistor 1011 and the positive piezoresistor 1006.
  • the driving circuit 115 provides an input signal to the piezoresistive sensor 1000 through the detection signal output terminal IN.
  • the input signal reaches the positive piezoresistor 1005 and the negative piezoresistor 1011 respectively.
  • FIG. 14 shows two detection signal output terminals IN, in other embodiments, the same detection signal output terminal IN can be used to provide input signals for the positive piezoresistor 1005 and the negative piezoresistor 1011.
  • the piezoresistive sensor 1000 includes two output ports, which are respectively connected to the two detection signal receiving terminals OUT1 and OUT2 of the driving circuit 115.
  • the potential of the port OUT1 corresponds to the potential between the positive piezoresistor 1005 and the negative piezoresistor 1010, and the potential of the port OUT2 corresponds to the potential between the negative piezoresistor 1011 and the positive piezoresistor 1006.
  • the specific voltage values of the two ports can be determined by the following formulas (1) and (2):
  • V out1 V in ⁇ R 1010 /(R 1005 +R 1010 ) (1)
  • V out2 V in ⁇ R 1006 /(R 1011 +R 1006 ) (2)
  • V out1 represents the voltage value detected at port OUT1
  • V out2 represents the voltage value detected at port OUT2
  • V in represents the voltage of the input signal provided by port IN
  • R 1005 , R 1006 , R 1010 , R 1011 respectively Indicates the resistance values of positive piezoresistor 1005, positive piezoresistor 1006, negative piezoresistor 1010, and negative piezoresistor 1011.
  • the difference between the voltage V out2 received by port OUT2 and the voltage V out1 received by port OUT1 (V out2 - V out1 ) is increased, and the increase is greater than the voltage difference across a single piezoresistor. The change.
  • each actuator includes an input terminal and an output terminal
  • the drive circuit includes at least one actuation signal output terminal and a ground terminal.
  • the input terminal of each actuator is electrically connected to the corresponding actuation signal output terminal of the drive circuit, and the output terminal of each actuator is electrically connected to the ground terminal of the drive circuit.
  • Figure 2 also shows the electrical connection between the actuator 114 and the drive circuit 115.
  • actuator 114 may be connected to a port of drive circuit 115 through feedback circuit 124 .
  • the input terminal 154 of the actuator 114 is electrically connected to a corresponding one of the actuation signal output terminals A, B, C, D of the drive circuit 115 .
  • the output terminal 164 of the actuator 114 is electrically connected to the ground terminal GND of the driving circuit 115 .
  • the actuation signal output terminals A, B, C, and D provide actuation signals to the actuator 114, causing the actuator 114 to deform or displace.
  • the ground terminal GND is a common port electrically connected to each actuator 114.
  • the detection circuit 122 and the feedback circuit 124 may be formed using conductive materials, such as metal.
  • actuators closer to the drive circuit 115 are connected to actuator signal outputs than actuators further from the drive circuit 115 are connected to.
  • the actuating signal output terminal is closer to the center line of the row of actuators.
  • the signal output terminal B is closer to the row direction centerline of the first row of actuators in FIG. 2 than the signal output terminal A.
  • the row direction centerline refers to the centerline parallel to the extension direction of the row of actuators.
  • the actuator includes a piezoelectric device.
  • the piezoelectric device includes a first electrode, a second electrode, and a piezoelectric material layer between the first electrode and the second electrode.
  • the first electrode serves as an input terminal of the actuator and is electrically connected to a corresponding one of the actuation signal output terminals A, B, C, and D.
  • the second electrode serves as the output end of the actuator and is electrically connected to the ground port GND.
  • FIG. 11 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • the number of pressure detectors 112 is doubled, so that the pressure detection sensitivity is increased, and the pressure detection capability and tactile feedback capability of the touch panel are more balanced.
  • FIG. 11 shows the arrangement of the connection circuit of the pressure detector 112 and the actuator 114 with the drive circuit 115 .
  • the number of ports for pressure detection of the driving circuit 115 is also doubled, including detection signal output terminals IN1 and IN2, and detection signal receiving terminals OUT1 and OUT2.
  • the pressure detector 112 that is closer to the driving circuit 115 is connected to the detection signal output terminal IN1 and the detection signal receiving terminal OUT1, and the pressure detector 112 that is farther from the driving circuit 115 is connected to the detection signal output terminal IN2 and the detection signal receiving terminal OUT2.
  • the detection signal output terminal IN1 and the detection signal receiving terminal OUT1 are closer to the row direction center line of the pressure detector 112 in this row than the detection signal output terminal IN2 and the detection signal receiving terminal OUT2.
  • the row direction center line refers to the center line parallel to the extending direction of the pressure detectors 112 of this row.
  • FIG. 12 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • the number of pressure detectors 112 is doubled.
  • the detection signal receiving terminals of the driving circuit 115 for receiving the detection signal are correspondingly increased to four, including the port OUT1, the port OUT2, the port OUT3, and the port OUT4.
  • the driving circuit 115 separately determines and processes the detection signals (such as voltage signals) received by each detection signal receiving end, so that the attributes of the pressure received by each pressure detector 112 can be determined more accurately, thereby improving the efficiency of pressure detection. sensitivity.
  • the input terminal of each pressure detector is electrically connected to the same detection signal output terminal IN of the driving circuit.
  • these pressure detectors can share the same detection signal output terminal IN to receive input signals, and are respectively connected to different detection signal receiving terminals OUT.
  • the driving circuit 115 only provides input signals to each pressure detector 112 through one detection signal output terminal IN, which is connected to the input terminal of each pressure detector 112 respectively.
  • all ports of the driving circuit 115 are arranged on one side of the touch panel.
  • the detection signal output terminal IN, the detection signal receiving terminal OUT, the actuation signal output terminals A, B, C, and D, and the ground terminal GND of the driving circuit 115 are all arranged on the touch panel. of the left side. That is, the detection circuit and the feedback circuit start from the pressure detector 112 and the actuator 114 respectively, and both extend to one side of the touch panel. This arrangement may simply be referred to as a "same-side" arrangement of the detection circuit and the feedback circuit.
  • the detection circuit and the feedback circuit respectively start from the pressure detector 112 and the actuator 114 and extend to opposite sides of the touch panel.
  • This arrangement may simply be referred to as a "different sides” arrangement of the detection circuit and the tactile feedback circuit.
  • the port of the driving circuit 115 that is electrically connected to the pressure detector and the port that is electrically connected to the actuator are respectively located on opposite sides of the touch panel.
  • the driving circuit includes at least one detection signal output terminal, at least one detection signal receiving terminal, at least one actuation signal output terminal, and a ground terminal. The at least one detection signal output terminal and the at least one detection signal receiving terminal are electrically connected to the at least one pressure detector.
  • the at least one actuation signal output terminal and the ground terminal are electrically connected to the at least one actuator.
  • the at least one detection signal output terminal and the at least one detection signal receiving terminal are located at the first edge of the touch panel.
  • the at least one actuation signal output terminal and the ground terminal are located at the second edge of the touch panel. The first edge is opposite the second edge.
  • FIG. 13 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • the driving circuit may include two sub-parts, namely, a first sub-part 1151 and a second sub-part 1152 .
  • the first sub-section 1151 and the second sub-section 1152 are located on opposite sides of the touch panel.
  • the actuation signal output terminals A, B, C, D, and the ground terminal GND for electrical connection with the actuator 114 are arranged in the first sub-section 1151 .
  • the detection signal output terminals IN1 and IN2 and the detection signal receiving terminals OUT1 and OUT2 for electrical connection with the pressure detector 112 are arranged in the second sub-section 1152 . This can avoid the situation where the ports of the drive circuit and the wiring of the actuator and pressure detector are too concentrated on one side of the touch panel, thereby reducing the port density and wiring density on one side of the touch panel, which is beneficial to the touch panel. Overall cabling balance.
  • the touch panel may include a touch area.
  • the touch area is the area where the user comes into contact with the touch panel when performing a touch operation. That is to say, when the user performs a touch operation using the touch panel, the user actually operates within the touch area of the touch panel.
  • Figure 14 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • the touch panel includes a touch area 120 .
  • the touch area 120 may be an area divided on the cover 105 .
  • the user mainly operates within the touch area 120 .
  • the force exerted by the user on the touch panel is mainly directly applied within the touch area 120 .
  • the positions of pressure detector 112 and actuator 114 correspond to touch area 120 .
  • the orthographic projections of the pressure detector 112 and the actuator 114 on the cover 105 are located in the touch area 120 .
  • the pressure detector 112 and actuator 114 adopt an "under-screen" arrangement. In this way, the pressure detector 112 and the actuator 114 will be closer to the user's touch position, the measurement of the force exerted by the user will be more accurate, and the tactile feedback the user can feel will be closer to what is expected to be provided to the user. Tactile feedback.
  • the pressure detector 112 and the actuator 114 may also be positioned corresponding to the touch area. outside.
  • the touch panel is divided into a touch area and a frame area surrounding the touch area.
  • the at least one pressure detector and/or the at least one actuator are located in the frame area.
  • the pressure detector 112 is arranged outside the touch area of the touch panel, or the actuator 114 is arranged outside the touch area of the touch panel, or both the pressure detector 112 and the actuator 114 are arranged outside the touch area. outside the touch area of the control panel. This is especially suitable for touch panels with display functions, because this avoids the above two devices from affecting the light transmission effect of the touch panel.
  • FIG. 15 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • the touch panel includes a touch area 120 and a frame area 130 surrounding the touch area 120 .
  • the touch area and the frame area can be two parts of the cover.
  • the orthographic projection of the pressure detector 112 on the cover 105 is located in the touch area 120
  • the orthographic projection of the actuator 114 on the cover 105 is located in the frame area 130 .
  • the touch panel may also have a touch position detection function.
  • the touch position of the user on the touch panel can be determined through the touch position detection function.
  • the tactile feedback function can also be combined with the touch position detection function.
  • the tactile feedback can be made to occur at the touch location, or the specific content of the tactile feedback can be related to the touch location, such as telling the user which specific location the user has touched through tactile feedback.
  • Figure 16 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • the touch panel also includes a touch layer 150.
  • the touch layer includes a touch sensor 151 , and the touch sensor 151 is electrically connected to the driving circuit 115 .
  • the touch layer 150 is configured to detect a touch position 155 and send a position signal indicating the touch position 155 to the driving circuit 115 .
  • the touch sensor 151 can be any detector that can convert position information into an electrical signal.
  • the touch layer 150 may be a layer structure within the touch panel. In some embodiments, the touch layer 150 is disposed between the layer of the cover 105 and the layer where the pressure detector 112 is located.
  • the electrical properties of the touch sensor 151 corresponding to the contact position between the user and the touch panel ie, the touch position
  • the position of the touch sensor can be considered to be the user's touch position.
  • the driving circuit may generate an actuation signal based on the touch position. In this way, the tactile feedback provided by the touch panel can be related to the user's touch position.
  • the generated actuation signal when generating the actuation signal, can be made to actuate the actuator 114 closest to the touch position. This can reduce energy loss during the transmission of vibration from the actuator 114 to the touch location.
  • the generated actuation signal when generating the actuation signal, can be made to drive multiple actuators, and the actuation of the multiple actuators can be superimposed on each other, so that the Tactile feedback is located at the touch location.
  • the actuation signals generated by the drive circuits can control the vibration amplitude and frequency of individual actuators.
  • the vibrations of the respective actuators When the vibrations of the respective actuators are transmitted to the cover plate, the vibrations provided by the respective actuators on the cover plate can be superimposed on each other, so that the vibrations can attenuate each other or enhance each other. As a result, the vibration can be made stronger at the touch location and weaker at other locations. This way, tactile feedback will only occur at the location of the touch.
  • the layer where the pressure detector 112 is located and/or the layer where the actuator 114 is located may be integrated with other layer structures.
  • pressure detector 112 may be disposed in touch layer 150 . That is, the touch sensor 151 and the at least one pressure detector are arranged in the same layer. As shown in FIG. 17 , the touch sensor 151 and the pressure detector 112 are arranged flatly in the same layer, and their positions do not overlap. Actuators 114 may be located in different layers.
  • the touch panel of the present application may also have a display function.
  • touch feedback operations may be combined with display functionality.
  • the touch panel further includes a display substrate.
  • the display substrate is driven by display signals and used to display images.
  • the display substrate is electrically connected to the driving circuit. In this way, the drive circuit can determine the actuation signal based on the display signal. This allows the touch feedback function to be combined with the display function so that the tactile feedback is related to the content displayed on the display.
  • pressure detection and tactile feedback are implemented by a pressure detector and an actuator respectively.
  • both pressure detection and tactile feedback may be implemented by only one device.
  • piezoelectric materials have both positive and inverse piezoelectric effects.
  • the positive piezoelectric effect means that when a piezoelectric material is subjected to pressure, charges with opposite signs will be generated on its two end faces. The voltage between the electrodes located on the two end faces can reflect the properties of the pressure.
  • the inverse piezoelectric effect means that when an electrical signal is applied to the two end surfaces of a piezoelectric material, the piezoelectric material expands or contracts, causing it to deform or shift. Therefore, the piezoelectric device containing the piezoelectric material can realize the two functions of pressure detection and tactile feedback by making the piezoelectric material perform different operations at different time periods.
  • FIG. 18 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application.
  • Figure 19 schematically shows a perspective view of a touch panel according to an embodiment of the present application.
  • FIG. 20 shows a partial enlarged view of FIG. 19 .
  • the touch panel includes at least one piezoelectric device 110 and a driving circuit 115 .
  • the piezoelectric device 110 includes a piezoelectric material body 1105 having a first end surface and a second end surface, a first electrode 1110 disposed on the first end surface, and a second electrode 1110 disposed on the second end surface. Electrode 1115.
  • the first electrode 1110 is electrically connected to the signal output terminal A of the driving circuit, and the second electrode 1115 is electrically connected to the signal receiving terminal OUT of the driving circuit.
  • the driving circuit 115 is configured to, in a first period, determine the pressure on the piezoelectric device 110 by detecting a first voltage difference between the signal output terminal and the signal receiving terminal, and, in a second period, During the period, the piezoelectric device 110 is driven to implement tactile feedback by providing a second voltage difference between the signal output terminal and the signal receiving terminal.
  • the first electrode 1110 of the piezoelectric device 110 receives the input signal provided by the corresponding signal output terminal A, B, C, or D, and outputs the detection signal to the corresponding signal through the second electrode 1115.
  • the driving circuit 115 can determine the properties of the force applied by the user on the touch panel, such as the size of the force, and determine whether to output a feedback signal.
  • the first electrode 1110 of the piezoelectric device 110 receives the feedback signal provided by the corresponding signal output terminal A, B, C, or D,
  • the second electrode 1115 is grounded through the corresponding signal receiving terminal OUT1, OUT2, OUT3, or OUT4.
  • the voltage difference between the first electrode 1110 and the second electrode 1115 can drive the piezoelectric material body 1105 to deform or displace, thereby actuating the touch panel to provide tactile feedback.
  • the first time period and the second time period are two different time periods. Pressure detection and tactile feedback are implemented in different time periods, which can be called "time-division multiplexing" of the piezoelectric device 110 .
  • the signal output end of the driving circuit is located at the first edge of the touch panel, and the signal input end of the driving circuit is located at the second edge of the touch panel, The first edge is opposite the second edge.
  • Figure 21 schematically shows an internal circuit diagram of a touch panel according to an embodiment of the present application. As shown in Figure 21, the signal output terminals OUT1, OUT2, OUT3, OUT4 electrically connected to the first electrode are located in the second sub-section 1152 of the driving circuit. The signal receiving terminals A, B, C, D electrically connected to the second electrode are located in the first sub-part 1151 of the driving circuit. The first sub-portion 1151 and the second sub-portion 1152 are located on opposite sides of the touch panel.
  • various tactile feedback effects can be achieved through the configuration of the driving circuit.
  • the touch panel can be configured to provide stronger tactile feedback to the user as the pressure applied by the user increases.
  • the driving circuit can also be configured in other ways to achieve other effects.
  • the driving circuit is configured to output the actuation signal in response to the detection signal indicating that the force applied to the touch panel is greater than or equal to a preset triggering threshold. That is, when the force applied to the touch panel is less than the trigger threshold, no feedback signal is output, and the touch panel does not provide tactile feedback.
  • a preset triggering threshold For example, users can preset trigger thresholds. If the processor, after processing the detection signal, finds that the force exerted by the user on the touch panel reflected in the detection signal is greater than or equal to the trigger threshold, it indicates that the user indeed intends to operate on the touch panel and did not make a mistake. Touch the touch panel.
  • the driving circuit By configuring the driving circuit in this way, only after it is determined that the user actually intends to use the touch panel, the driving circuit will output an actuation signal, thereby actuating the cover for tactile feedback, and provide tactile feedback to the user. This first avoids the impact of accidental touches on the touch panel, and also reduces the number of touch feedbacks from the actuator and extends its service life.
  • the trigger threshold may be set in the range of 1 Newton (N) to 1.5 Newtons.
  • the driving circuit may be further configured to alarm the user in response to the detection signal indicating that the force applied to the touch panel is greater than the protection threshold.
  • the protection threshold can be set according to the range of the pressure detector. For example, when the force applied to the touch panel is greater than the protection threshold, the force exceeds the range, so that the pressure detector may not accurately reflect the properties of the force applied by the user.
  • the protection threshold can be set based on the properties of the pressure the touch panel can withstand. For example, when the force applied to the touch panel is greater than the protection threshold, damage may be caused to the touch panel. Through this configuration, the user can be prompted that the operation force is too large, causing the user to change the operation mode, thereby improving the measurement accuracy, or protecting the touch panel.
  • the alarm provided to the user can be implemented through tactile feedback, such as making the cover vibrate at a higher frequency or amplitude, or through other means such as sound and light.
  • the touch panel according to the embodiment of the present application can be used in various devices with human-computer interaction functions, including devices with display functions, such as computers, tablets, mobile phones, vehicle-mounted multimedia interactive systems, etc., as well as non-display devices , such as touchpad, etc. This application does not limit this.
  • a human-computer interaction method based on a touch panel is provided.
  • the touch panel may be a touch panel according to embodiments of the present application.
  • the touch panel includes a pressure detector, an actuator and a driving circuit.
  • Figure 22 schematically shows a flow chart of a touch panel-based human-computer interaction method according to an embodiment of the present application. As shown in Figure 22, the method includes the following steps.
  • step S2205 the pressure detector generates a detection signal based on the magnitude of the force exerted by the user on the touch panel, and sends the detection signal to the driving circuit.
  • step S2210 the driving circuit determines whether the force exerted by the user on the touch panel is greater than or equal to a preset trigger threshold based on the detection signal.
  • step S2215 in response to the detection signal indicating that the force exerted by the user on the touch panel is greater than or equal to the triggering threshold, the driving circuit generates an actuation signal and outputs the actuation signal to the actuator, so that the actuator generates force on the user. Tactile feedback.
  • the user when the user performs an operation on the touch panel, the user exerts pressure on the touch panel.
  • the pressure can be detected by the pressure detector and output from the pressure detector to the driving circuit in the form of a detection signal. Therefore, the detection signal reflects the properties of the pressure exerted by the user on the touch panel, such as the magnitude of the pressure.
  • the driving circuit can use the detection signal to determine the value of the pressure applied by the user on the touch panel, or determine whether the pressure applied by the user on the touch panel is greater than a preset trigger threshold.
  • the driving circuit may generate an actuation signal according to the properties of the pressure exerted by the user on the touch panel, and output the actuation signal to the actuator, causing the actuator to actuate The cover is moved to provide tactile feedback to the user.
  • the tactile feedback generated by the touch panel may be related to the pressure exerted by the user on the touch panel.
  • the actuator can act on the touch panel based on the properties of the pressure applied by the user on the touch panel.
  • Figure 23 schematically shows a flow chart of a touch panel-based human-computer interaction method according to an embodiment of the present application.
  • the user's operation on the touch panel will cause the pressure detector to generate a detection signal.
  • a round of pressure detection and touch feedback process can be started.
  • the detection signal is sent to the driving circuit by the pressure detector.
  • the driving circuit analyzes the detection signal to determine whether the force applied by the user to the touch panel is greater than or equal to the preset trigger threshold. If the force is greater than or equal to the trigger threshold, the user is indeed performing a touch operation. At this time, the driving circuit can generate an actuation signal.
  • the actuation signal is output to the actuator, so that the actuator actuates the touch device to generate tactile feedback.
  • the current round of pressure detection and touch feedback is ended, and a new round of pressure detection is started.
  • the pressure detector will continue to detect the force exerted by the user on the touch panel and output a new detection signal.
  • the result of the driving circuit's analysis of the detection signal shows that the force applied to the touch panel is less than the trigger threshold, it means that the user does not intend to perform a touch operation. At this time, no actuation signal is generated and the current round of pressure detection ends, and then a new round of pressure detection is started.
  • the touch panel further includes a touch sensor. Furthermore, the method further includes generating, by the touch sensor, a position signal based on the user's touch position, and sending the position signal to the signal controller.
  • the position signal may indicate the position of the force exerted by the user on the touch panel, that is, the touch position.
  • an actuation signal can be generated based on the touch position, so that the tactile feedback provided by the actuator occurs at the at the touch location. That is, step S2215 may specifically include: generating the actuation signal based on the position signal by the drive circuit, so that the actuator generates tactile feedback to the user at the touch position.
  • the touch panel in addition to the pressure detector to detect the attribute of the force applied by the user to the touch panel, there is also a touch sensor to detect the user's touch position.
  • the actuation signal may be formed based on these two factors. For example, the actuation signal may cause the actuator closest to the touch location to actuate the touch panel, or cause actuation of multiple actuators to overlap with each other so that tactile feedback occurs at the touch location.
  • this application provides a touch panel and a human-computer interaction method based on the touch panel.
  • the touch panel can provide tactile feedback to the user based on the user's operations on the touch panel, so that the user's operation errors will not affect the touch operation or cause errors It can be discovered by users as early as possible so that users can correct it as soon as possible, thereby enhancing the human-computer interaction experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请公开了一种触控面板和基于触控面板的人机交互方法。该触控面板包括衬底基板,布置在所述衬底基板上的至少一个压力检测器和至少一个致动器,以及驱动电路。所述至少一个压力检测器与所述驱动电路电连接,并且所述驱动电路与所述至少一个致动器电连接。

Description

触控面板和基于触控面板的人机交互方法 技术领域
本申请涉及触控技术和触觉反馈的领域,尤其涉及一种触控面板和基于触控面板的人机交互方法。
背景技术
基于触控面板来进行人机交互是用户比较青睐的。其应用领域也在逐渐扩展。不过,在利用触控面板进行的触控操作中,经常出现一些失误。比如,用户在不想触碰触控面板的时候触碰到该面板(这种情况可简称为误触),或者用户在实施触控操作时,并未触碰到期望的位置,而是触碰到其它位置(这种情况可简称为错触)。这些失误会影响用户操作的准确率和效率,降低了用户的体验。
发明内容
根据本申请的一方面,提供了一种触控面板。所述触控面板包括:衬底基板,布置在所述衬底基板上的至少一个压力检测器和至少一个致动器,以及,驱动电路。所述至少一个压力检测器与所述驱动电路电连接,并且所述驱动电路与所述至少一个致动器电连接。
在一些实施例中,所述至少一个致动器和所述至少一个压力检测器的数量的比例在1∶4到2∶1的范围之内。
在一些实施例中,所述至少一个致动器包括多个致动器,并且所述多个致动器布置成包含至少两行且至少两列的阵列。每四个直接相邻的致动器构成平行四边形的子阵列,构成所述子阵列的四个致动器在所述衬底基板上的正投影作为顶点定义子区域。所述至少一个压力检测器中的每个压力检测器在所述衬底基板上的正投影位于对应的子区域内。
在一些实施例中,每个子区域对应一个压力检测器。所述一个压力检测器在所述衬底基板上的正投影位于对应的子区域的几何中心处。
在一些实施例中,每个子区域对应两个压力检测器。所述两个压力检测器在所述衬底基板上的正投影的排列方向与所述多个致动器的 阵列的行方向或列方向平行。
在一些实施例中,所述子区域被其中线分隔成两个区域,所述两个压力检测器在所述衬底基板上的正投影分别位于所述两个区域的几何中心处。
在一些实施例中,每个子区域对应四个压力检测器。所述四个压力检测器作为顶点构成平行四边形。所述平行四边形的两组对边的延伸方向分别与所述多个致动器的阵列的行方向和列方向平行。
在一些实施例中,所述至少一个压力检测器和所述至少一个致动器布置在同一层中。
在一些实施例中,所述至少一个压力检测器中的每个压力检测器在所述衬底基板上的正投影与所述至少一个致动器中的对应的致动器在所述衬底基板上的正投影至少部分重叠。
在一些实施例中,所述至少一个压力检测器和所述至少一个致动器布置在不同的层中。
在一些实施例中,所述至少一个压力检测器中的每个压力检测器包括输入端和输出端,所述驱动电路包括至少一个检测信号输出端和至少一个检测信号接收端。每个压力检测器的输入端电连接到所述驱动电路的对应的检测信号输出端,每个压力检测器的输出端电连接到所述驱动电路的对应的检测信号接收端。
在一些实施例中,每个压力检测器的输入端对应于同一个检测信号输出端。
在一些实施例中,所述每个压力检测器包括电容器件,所述电容器件包括第一电极、第二电极和介于所述第一电极和所述第二电极之间的绝缘体。所述第一电极作为所述每个压力检测器的输入端,所述第二电极作为所述每个压力检测器的输出端。
在一些实施例中,所述每个压力检测器包括压电器件,所述压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层。所述第一电极作为所述每个压力检测器的输入端,所述第二电极作为所述每个压力检测器的输出端。
在一些实施例中,所述每个压力检测器包括压阻器件,所述压阻器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压阻材料层。所述第一电极作为所述每个压力检测器的输入端,所述 第二电极作为所述每个压力检测器的输出端。
在一些实施例中,所述至少一个致动器中的每个致动器包括输入端和输出端,所述驱动电路包括至少一个致动信号输出端和接地端。每个致动器的输入端电连接到所述驱动电路的对应的致动信号输出端,每个致动器的输出端电连接到所述驱动电路的接地端。
在一些实施例中,所述致动器包括压电器件,所述压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层。所述第一电极作为所述致动器的输入端,所述第二电极作为所述致动器的输出端。
在一些实施例中,所述驱动电路包括至少一个检测信号输出端、至少一个检测信号接收端、至少一个致动信号输出端、和接地端。所述至少一个检测信号输出端和所述至少一个检测信号接收端与所述至少一个压力检测器电连接,所述至少一个致动信号输出端和所述接地端与所述至少一个致动器电连接。所述至少一个检测信号输出端和所述至少一个检测信号接收端位于所述触控面板第一边缘,所述至少一个致动信号输出端和所述接地端位于所述触控面板第二边缘,所述第一边缘与所述第二边缘相对。
在一些实施例中,所述触控面板被分为触控区域和包围所述触控区域的边框区域。所述至少一个压力检测器和/或所述至少一个致动器位于所述边框区域。
在一些实施例中,触控面板还包括触控层。所述触控层配置成确定触控位置。
在一些实施例中,所述至少一个压力检测器布置在所述触控层中。
根据本申请的另一方面,提供了一种触控面板。所述触控面板包括至少一个压电器件,和驱动电路。所述至少一个压电器件中的每个压电器件包括具有第一端面和第二端面的压电材料层,以及布置在所述第一端面的第一电极和布置在所述第二端面的第二电极,所述第一电极与所述驱动电路的信号输出端电连接,所述第二电极与所述驱动电路的信号接收端电连接。所述驱动电路配置成,在第一时段,通过检测所述信号输出端和所述信号接收端之间的第一电压差,确定所述压电器件受到的压力,以及,在第二时段,通过在所述信号输出端和所述信号接收端之间提供第二电压差,驱动所述压电器件实施触觉反 馈。
在一些实施例中,所述驱动电路的信号输出端位于所述触控面板第一边缘,所述驱动电路的信号输入端位于所述触控面板第二边缘,所述第一边缘与所述第二边缘相对。
根据本申请的另一方面,提供了一种基于触控面板的人机交互方法。所述触控面板包括压力检测器、致动器和驱动电路。所述方法包括:由所述压力检测器基于用户对所述触控面板施加的力的大小,生成检测信号,并将所述检测信号发送到所述驱动电路;由所述驱动电路基于所述检测信号,判断用户对所述触控面板施加的力是否大于或等于预设的触发阈值;响应于所述检测信号表示用户对所述触控面板施加的力大于或等于所述触发阈值,由所述驱动电路生成致动信号,并将所述致动信号输出到所述致动器,以使所述致动器对所述用户产生触觉反馈。
在一些实施例中,所述触控面板还包括触控传感器,并且所述方法还包括:由所述触控传感器基于所述用户的触控位置,生成位置信号,并将所述位置信号发送到所述信号控制器。并且,由所述驱动电路生成致动信号的步骤包括:由所述驱动电路基于所述位置信号生成所述致动信号,使得所述致动器在所述触控位置处对所述用户产生触觉反馈。
附图说明
为了更清楚地描述本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中,相同或相似的元件可以由相同或相似的图案或符号来表示。应理解,除非有明确的描述,否则附图中的图案或符号仅用于对元件进行区分,但并不用于限定元件的形状。在本申请的附图中:
图1示意性地示出了根据本申请实施例的触控面板的透视图;
图2示意性地示出了根据本申请实施例的触控面板的内部电路图;
图3示意性地示出了根据本申请实施例的触控面板的内部电路图;
图4示意性地示出了根据本申请实施例的触控面板的内部电路图;
图5示意性地示出了根据本申请实施例的触控面板的内部电路图;
图6示意性地示出了根据本申请实施例的触控面板的透视图;
图7A和7B示意性地示出了根据本申请实施例的触控面板的内部电路图;
图8示意性地示出了根据本申请实施例的触控面板的局部截面图;
图9示意性地示出了根据本申请实施例的触控面板的透视图;
图10示意性地示出了根据本申请实施例的触控面板的内部电路图;
图11示意性地示出了根据本申请实施例的触控面板的内部电路图;
图12示意性地示出了根据本申请实施例的触控面板的内部电路图;
图13示意性地示出了根据本申请实施例的触控面板的内部电路图;
图14示意性地示出了根据本申请实施例的触控面板的透视图;
图15示意性地示出了根据本申请实施例的触控面板的透视图;
图16示意性地示出了根据本申请实施例的触控面板的透视图;
图17示意性地示出了根据本申请实施例的触控面板的透视图;
图18示意性地示出了根据本申请实施例的触控面板的内部电路图;
图19示意性地示出了根据本申请实施例的触控面板的透视图;
图20示意性地示出了图19的局部放大图;
图21示意性地示出了根据本申请实施例的触控面板的内部电路图;
图22示意性地示出了根据本申请实施例的基于触控面板的人机交互方法的流程图;
图23示意性地示出了根据本申请实施例的基于触控面板的人机交互方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。显然,所描述的实施例仅仅是本申请的一部分实施例, 而不是全部的实施例。基于所描述的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例都属于本申请的保护范围。
触控式人机交互可以通过实体按键来进行,也可以通过触控面板来进行。在采用实体按键作为输入方式时,每个按键的位置是固定的,且各按键的功能是单一的。为了实现更多不同的交互,需要增加按键的数量。这将会占用更多的空间,且按键位置的合理布置也存在挑战。而且,随着按键数量的增加,用户将更难以快速地找到所需按键,操作速度和准确度都比较低。
相比之下,在采用触控面板作为输入方式时,可以根据不同的场景,即时地以不同的形式将触控面板分区。这使得,在不同的场景中的,触碰触控面板的同一部位可能会产生不同的输入效果。因此,如果仅为了实现更多种交互,则并不需要触控面板具有很大的触控面积,使得触控面板的体积不会受到很大限制。凭借这种输入效果的多样化和体积控制的自由度,触控面板具有很好的前景。
应指出,在本申请的上下文中,术语“面板”应被理解为这样的结构:在三个相互垂直的维度中,该结构在其中两个维度上的延伸长度显著大于在另一个维度上的延伸长度,使该结构整体可被看做平板状结构。不过,并不排除该平板状结构内可能包含多个彼此平行的层。在此基础上,“触控面板”可被理解为任何基于用户的触摸式操作而采集输入信息,以备后续处理的面板式人机交互设备。
本申请的发明人发现,在一些场景中,用户在利用触控面板进行操作时,可能容易出现失误,包括前文提到的误触和错触。这些失误在一些场景中甚至是难以避免的。具体的,在利用触控面板进行操作时,为了使用户能够准确地触摸到触控面板的相应位置,通常需要用户借助于视觉来观察触控面板的位置和用于接触该触控面板的器件(例如,触控笔)或身体部位(例如,手指)的位置。然而,在一些场景中,用户可能需要将视觉用于观察其它事物。比如,在驾驶车辆时,驾驶员需要观察车辆周围的情况,而无法(也不应该)将注意力集中到位于中控台的触控面板。而且,即使不考虑场景的限制,例如即使人眼可以专注于辅助触控操作,但由于接触触控面板的器件或身体部位会挡在人眼和触控面板之间,一小部分面板会不可避免地被该 器件或身体部位遮挡。在触控面板的触控分辨率较高时,即,在单位面积的触控面板上,产生不同触控结果的区域的数量较多(也就是每个触控单元的面积较小)时,这种遮挡可能导致失误。因此,在实施触控操作时,失误可能难以避免。
鉴于此,本申请的发明人认为,可以提出一些方案,使得失误不会对触控操作产生影响,或者使失误能够尽早被用户发现,以便用户能尽快纠正。这样有利于解决前述失误问题,提升了用户的交互体验。
根据本申请的一方面,提供了一种触控面板。图1示意性地示出了根据本申请实施例的触控面板的透视图。图2示意性地示出了根据本申请实施例的触控面板的内部电路图。如图1所示,在一些实施例中,触控面板100包括衬底基板101、布置在所述衬底基板上的至少一个压力检测器112和至少一个致动器114,以及驱动电路115。所述至少一个压力检测器112与所述驱动电路115电连接,并且所述驱动电路115与所述至少一个致动器114电连接。在触控面板100中,衬底基板101对压力检测器112和致动器114起到承载的作用,使得压力检测器112和致动器114固定地安装在触控面板100内。不过,这并不表示压力检测器112和致动器114与衬底基板101直接接触。例如,在一些实施例中,在压力检测器112和致动器114与衬底基板101之间,还可能存在其它结构。驱动电路115可以直接或间接地布置在衬底基板101上,也可以布置在触控面板100内的其它位置。
如图2所示,在本申请实施例中,压力检测器112与驱动电路115电连接(例如通过检测电路122),因此电信号可以在压力检测器112与驱动电路115之间传递。同时,驱动电路115与致动器114电连接(例如通过反馈电路124),因此电信号也可以在驱动电路115与致动器114之间传递。在这种情况下,驱动电路115可以为压力检测器112和致动器114之间建立关联。例如,可以使致动器114根据压力检测器112产生的电信号来致动触控面板100,以为用户提供触觉反馈。由于致动器114的致动是基于压力检测器112产生的电信号的,因此,当用户感受到触觉反馈时,可以对其在触控面板上实施的操作更加了解。如果用户实际实施的操作与用户预想的操作不一致,则这种触觉反馈能使用户及时知悉这种不一致,以便用户尽快调整其下一步的操作。
术语“触觉反馈”可以理解为,当用户通过身体部位直接接触触控面板,或者通过某些辅助设备间接接触触控面板时,触控面板可以通过这种接触为用户提供信息。比如,如图1所示,触控面板100可以包括盖板105。当用户操作触控面板100时,用户的手指可以与盖板105接触。致动器114可以致动盖板105,使得盖板产生机械振动。用户因为与接触盖板105接触,因此可以通过触觉感受到这种振动,从而知悉触控面板100所要提供的信息。另外,在本申请中,因为致动器114导致的振动取决于压力检测器112所检测到的用户施加的操作,因此,触控面板100通过触觉向用户提供的信息是一种对用户操作的反馈信息,因此,触控面板这种提供信息的活动可被成为触觉反馈。
术语“致动”可理解为,致动器114会导致触控面板100或其内的某些部件(例如,盖板105)产生变形或位移。也就是说,在向用户提供触觉反馈时,触控面板100并不是静止的,而可以被认为是运动的。
下面对根据本申请实施例的触控面板100及其包括的各部件进行更详细的描述。
首先描述压力检测器112。在本申请实施例中,用户对触控设备100施加的压力可以在触控设备内传递到压力检测器112。在该压力的作用下,压力检测器112可以按照一定规律改变其内部结构或材料的电学性能。这种电学性能的改变可以通过电信号来表示。该电信号在本申请中可以称为检测信号。检测信号会随着用户施加到触控设备100上的力的变化而变化。通过对检测信号的检测和处理,可以确定该压力的一些属性,比如压力的大小等。在本申请中,上述过程可被简称为压力检测。
在一些实施例中,压力检测可以通过力敏传感器来实现。例如,力敏传感器可以是包括电容器件的电容式传感器、包括压电器件的压电式传感器、或包括压阻器件的压阻式传感器等。下面对这些传感器进行描述。
电容式传感器可以包括电容器件。电容器件可以包括第一电极和第二电极、以及介于这两个电极之间的绝缘体。当采用电容式传感器实现压力检测时,用户对触控面板施加的压力会使得电容式传感器的两个电极之间的距离发生一定的变化,从而使其电容值发生变化。电 容值的变化量可以以电信号的形式输出。通过对该电信号的测量,可以确定用户施加的压力的属性,比如压力的大小。由于电容式传感器的电容值与两个电极之间的距离的关系是非线性的关系,因此,在一些实施例中,压力检测器还可以包括具有补偿功能的测量电路,以对输出的电信号进行非线性补偿。电容式传感器具有温度稳定性好、结构简单、动态响应好、和灵敏度高等优点。
压电式传感器可以包括压电器件。压电器件包括具有第一端面和第二端面的压电材料层,以及布置在压电材料层的所述两个端面的第一电极和第二电极(即,压电材料层介于第一电极和第二电极之间)。术语“压电材料层”应理解为,第一电极、压电材料层、和第二电极是以一层接一层的形式堆叠在一起的。但这并不意图对压电材料层的各维度的尺寸进行限制。当采用压电式传感器实现压力检测时,基于正压电效应,压电材料层在受到压力时,其两个端面上产生符号相反的电荷。当压力撤去后,压电材料层又恢复到不带电的状态。因此,通过使位于两个端面上的两个电极之间的电压变化以电信号的形式输出,并对该电信号进行检测,可以确定压力的属性。形成压电材料层的压电材料可以是单晶体材料,例如石英、酒石酸钾钠等。压电材料也可以是多晶体材料,例如压电陶瓷材料,具体可以是例如钛酸钡、锆钛酸铅、铌镁酸铅等。此外,一些新型高分子材料,如聚偏二氟乙烯(PVDF)也可以用作压电材料。另外,压电材料可以包括介电弹性体材料。在一些实施例中,介电弹性体材料可以包括硅橡胶、丙烯酸酯弹性体、聚氨酯弹性体、丁腈橡胶、亚乙烯基氟化三氟乙烯及它们的符合材料。在一些实施例中,为了减小介电弹性体的驱动电压,可以在介电弹性体内添加一些高介电填料,如氧化钛(TiO 2)、钛酸钡(BaTiO 3)等。通常,压电材料受力所产生的电荷量与外力的大小成正比。此外,压电材料自身是不导电的,因此不排除在触控面板中可以在其它元件之间起到电绝缘的作用。
压阻式传感器可以包括压阻器件。压阻器件包括第一电极、第二电极、和介于这两个电极之间的压阻材料层。术语“压阻材料层”也不应该理解为对压阻材料层的各维度的尺寸进行限制。基于压阻效应,形成压阻材料层的压阻材料(例如单晶硅)在受到力的作用时,其电阻率会发生变化。通过相应的测量电路,可得到正比于力的变化的电 信号输出。在一些实施例中,为了提高检测准确度和灵敏度,压阻式传感器可以包括多个压阻器件,并将所述多个压阻器件按照惠斯通电桥的形式连接。具体的实现方式将在后文的实施例中详述。
接下来将描述致动器114。本申请实施例的致动器114与驱动电路115电连接。驱动电路115接收到压力检测器112发出的检测信号,并基于该检测信号,向致动器114发出致动信号。致动器114接收到致动信号后,致动触控面板100或其内的某些部件(例如盖板105),以使所述触控面板100向用户提供触觉反馈。在本申请中,上述过程可被简称为触觉反馈。
在触觉反馈中,致动器114将接收到的电信号转换成机械上的变形或位移。致动器114自身的这种变形或位移会经由触控面板100内的其它元件传递给与触控面板接触的用户。这样,用户可通过触觉感受到这种变形或位移,从而获悉触控面板100想要传递给用户的信息。
在一些实施例中,致动器114可以包括压电器件。压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层。当电信号施加到压电材料层的两个端面上时,压电材料会膨胀或收缩,从而将电能转化为机械能。前文提到,压电材料可以包括晶体压电材料和介电弹性体材料,具体的材料类型不再赘述。
接下来对驱动电路115进行描述。在一些实施例中,驱动电路115可以与压力检测器112或致动器114布置在同一层中。例如,如图1所示,压力检测器112和致动器114布置在同一层中。驱动电路115可以和压力检测器112和致动器114布置在同一层中,也可以和压力检测器112和致动器114布置在不同的层中。压力检测器112与驱动电路115电连接,且驱动电路115与致动器114电连接。术语“电连接”可以理解为,电信号可以在用该术语描述的两个或更多个器件之间传递。这种电信号的传递可以借助于例如导线的实体元件来实现,也可以以诸如电磁波的无线方式来实现。被电连接的器件之间可能存在或不存在其它器件。也就是,电信号可以在被电连接的器件之间直接传递,也可以流经这些器件之外的其它器件。
在本申请实施例中,由于压力检测器112与驱动电路115是电连接的,压力检测器112产生的检测信号可以传递到驱动电路115。由于驱动电路115与致动器114是电连接的,驱动电路115发出的致动信 号可以传递到致动器114,使致动器114致动触控面板100中的其它部件,以产生触觉反馈。在具体的实施例中,驱动电路115上布置有各种端口,压力检测器112和致动器114可以连接到这些端口。驱动电路可以通过这些端口接收检测信号和输出致动信号。
在本申请实施例中,驱动电路115可以配置成基于检测信号确定是否生成和发出致动信号,以及在确定将生成致动信号时,基于检测信号进一步确定致动信号的具体内容,以使触控面板所产生的触觉反馈与用户在触控面板100上实施的操作相关联。在一些实施例中,驱动电路115可以是诸如中央处理器(CPU)、现场可编程逻辑阵列(FPGA)、单片机(MCU)、数字驱动电路(DSP)、专用集成电路(ASIC)等具有数据处理能力和/或程序执行能力的逻辑运算器件。
由于本申请实施例的触控面板具有上述器件,且上述器件之间存在电连接的关系,因此该触控面板能够实现压力检测,并基于压力检测进行触觉反馈。因此,在使用本申请实施例的触控面板时,用户可以通过触觉对其在触控面板上实施的操作有更准确地了解。例如,由于触觉反馈以压力检测为基础,触觉反馈的强度可以反映用户在触控面板上施加的压力的力度。例如,在一些实施例中,当用户施加的压力越大时,向用户提供的触觉反馈越强烈,比如触控面板的振动越强烈。这样,如果用户感受到触控面板出现了强烈的振动,则可能表示用户的操作力度过大,用户因此可以立刻改变操作方式,以免对触控面板造成破坏。在触觉上,人能够感受到超声频段内的振动。当振动频率在100Hz到1000Hz时,尤其是100Hz到300Hz时,人能够通过触觉感受到比较明显的振动。此外,即使用户已经依靠其它感觉方式(例如视觉或听觉)准确地了解其在触控面板上实施的操作,根据本申请实施例的触控面板也可以通过触觉来增强和丰富用户的体验。例如,当用户施加的压力较大时,可能表示用户正在进行激烈的活动(比如游戏正处于激烈的阶段)。此时,可以为用户提供较强烈的触觉反馈,使得用户在视觉和听觉之外,还可以通过触觉获得刺激,丰富了用户的感官体验。
前文提到,用户对触控面板100实施的操作可以发生在盖板105上,致动器114也可以通过致动盖板105来提供触觉反馈。下面对盖板105进行描述。
当用户对触控面板实时触控操作时,用户可以对触控面板100的盖板105施加一定的力。该力可以传导至压力检测器112。压力检测器112响应于该力而产生检测信号。驱动电路115与压力检测器112电连接,并接收所述检测信号。然后,驱动电路基于所述检测信号而产生和输出致动信号。
用户在盖板105上的操作一般会对盖板施加力,该力具有垂直于盖板105的分量。在本申请的一些具体描述中,垂直于盖板的力也被称为对盖板的压力。在本申请实施例中,盖板105可以将压力传递到压力检测器112。此外,盖板105还会受到致动器114的致动,以便向用户提供触觉反馈。为了配合上述压力检测和触觉反馈功能,盖板105需要具有一定的硬度和弹性。在一些实施例中,盖板105的材料可以包括一种或多种塑料,比如聚酰亚胺(PI)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚偏二氯乙烯、聚偏二氟乙烯(PVDF)、聚苯乙烯、乙烯乙烯醇共聚物、聚醚砜(PES)、聚醚酰亚胺(PEI)、聚苯硫醚(PPS)、聚丙烯酸酯、三乙酰基纤维素(TAC)、乙酸丙酸纤维素(CAP)等。在另一些实施例中,盖板105的材料可以包括玻璃,例如透明玻璃或半透明玻璃(如,磨砂玻璃)。在另一些实施例中,为了增加盖板的性能,比如抗冲击性能等,盖板可以是由多个层结构堆叠而形成的结构,甚至是由不同材料的层堆叠的结构。
在触控面板100中,致动器114和压力检测器112之间的位置关系将影响压力检测和触觉反馈的实现效果。接下来,将对压力检测器112和致动器114之间的位置关系进行描述。
图3示意性地示出了根据本申请实施例的触控面板的内部电路图。在一些实施例中,所述至少一个致动器114包括多个致动器,并且所述多个致动器布置成包含至少两行且至少两列的阵列。在致动器114的阵列中,每四个直接相邻的致动器114构成平行四边形的子阵列,构成所述子阵列的四个致动器114在所述衬底基板101上的正投影作为顶点定义子区域301。为了附图的清楚性,图3中仅示出了一个子区域301。但应理解,任何直接相邻的四个致动器114都会定义子区域301。每个压力检测器112在所述衬底基板101上的正投影位于对应的子区域301内。术语“直接相邻”表示这些致动器112在阵列中的行 编号和列编号相差一。例如,所有满足下述行编号和列编号关系的四个致动器都是“直接相邻”的致动器:第一个致动器位于阵列的第m行第n列、第二个致动器位于阵列的第m行第n+1列、第三个致动器位于阵列的第m+1行第n列、第四个致动器位于阵列的第m+1行第n+1列,其中m和n都是正整数。应理解,无论m和n取何值,m和m+1之间的差值永远是1,n和n+1之间的差值也永远是1。构成子阵列的四个致动器在行的方向上和列的方向上都相邻。在本申请的实施例中,这四个致动器可以布置成平行四边形的顶点,甚至布置成矩形、正方形、梯形的顶点。术语“正投影”应理解为某元件沿着垂直于某表面的方向在该表面上的投影。衬底基板可被理解为长度和宽度显著大于厚度的平面结构。因此,致动器和压力检测器在衬底基板上的正投影可以被理解为致动器和压力检测器在由衬底基板的长度方向和宽度方向定义的表面上的垂直投影。
每个压力检测器112在衬底基板101上的正投影位于对应的子区域301内,说明每个压力检测器112都布置在四个致动器114之间。也就是,在触控面板中,压力检测器112穿插在致动器114之间,致动器布置在压力检测器外围。这种穿插布置有利于压力检测器112和致动器114在触控面板中的均匀分散,以便对压力进行更准确的检测,并在更理想的位置提供触觉反馈。
如图3所示,四个直接相邻的致动器1141、1142、1143、1144构成平行四边形的子阵列,例如图3中示出的矩形子阵列。致动器1141、1142、1143、1144在衬底基板101上的正投影作为顶点定义子区域301。
在一些实施例中,每个子区域对应一个压力检测器。也就是说,每四个直接相邻的致动器之间,只布置一个压力检测器。如图3所示,在这样的实施例中,在每两行相邻的致动器114之间,布置有一行压力检测器112。在每两列相邻的致动器114之间,布置有一列压力检测器112。压力检测器112的行数和列数分别比致动器114的行数和列数少一。
在更具体的实施例中,每四个直接相邻的致动器之间的所述一个压力检测器在衬底基板101上的正投影位于对应的子区域的几何中心处。这使得,该一个压力检测器与该子区域对应的四个致动器之间的相对位置比较对称,而且使得每行和每列压力检测器之间的间距都相 等。这使得触控面板各位置处的压力检测的精度都比较一致。
图3还示意性地示出了压力检测器112与致动器114的布线。如图3所示,每个压力检测器112都包括输入端311和输出端312。每个压力检测器的输入端311电连接到驱动电路的对应的检测信号输出端313,每个压力检测器的输出端312电连接到驱动电路的对应的检测信号接收端314。为了减少布线数量,降低布线密度,多个压力检测器的输入端可以电连接到驱动电路的同一个检测信号输出端。例如,在图3的实施例中,每一行压力检测器的输入端311电连接到驱动电路的同一个检测信号输出端313。
如图3所示,每个致动器114包括输入端321和输出端322。每个致动器114的输入端321电连接到驱动电路的对应的致动信号输出端323,每个致动器114的输出端322电连接到驱动电路的接地端GND。应注意,图3中示出的压力检测器和致动器的数量不应被理解为对于本申请实施例的触控面板内的压力检测器和致动器的数量的限制。
在另一些实施例中,每个子区域对应两个压力检测器。所述两个压力检测器在所述衬底基板上的正投影的排列方向与所述多个致动器的阵列的行方向或列方向平行。
图4示意性地示出了根据本申请实施例的触控面板的内部电路图。如图4所示,每个子区域301对应两个压力检测器1121和1122。也就是说,每四个直接相邻的致动器114之间,布置了两个压力检测器。这样,在每两行相邻的致动器114之间,有一行压力检测器112。在每两列相邻的致动器114之间,有两列压力检测器。压力检测器112的行数比致动器114的行数少一。致动器114的列数比压力检测器112的列数的一半多一。与图3的实施例相比,图4的实施例中的压力检测器的列数增加了一倍,也就是压力检测器的数量增加了一倍。
在更具体的实施例中,如图4所示,子区域301被其中线分隔成两个区域。所述两个压力检测器1121和1122在所述衬底基板101上的正投影分别位于这两个区域的几何中心处。这样,以子区域301的角度,与该子区域对应的两个压力检测器1121和1122在该子区域内对称地布置。从多个子区域的角度看,相邻的子区域内的压力检测器的间隔也是相等的。例如,单个子区域301内的两个压力检测器1121和1122的间隔是该子区域的横向宽度的一半。压力检测器1121与相 邻的子区域内的压力检测器1123之间的间隔也是子区域的横向宽度的一半。这使得每行压力检测器内的各压力检测器的间距都一致。通过这种设置,在压力检测器数量加倍的情况下,每行压力检测器之间的间距仍是相等的。
图4的实施例也可以这样理解。子区域301被沿着列的方向延伸的三条四等分线(包括第一四等分线、第二四等分线、和第三四等分线)分隔成四个区域。第二四等分线位于第一四等分线和第三四等分线之间。在子区域301对应的两个压力检测器中,其中一个压力检测器位于所述第一四等分线的中点处,并且另一个压力检测器位于所述第三四等分线的中点处。图4也示出了压力检测器和致动器的布线。如图4所示,每个压力检测器的输入端311电连接到驱动电路的对应的检测信号输出端313,每个压力检测器的输出端312电连接到驱动电路的对应的检测信号接收端314。更进一步的,在图4的实施例中,每一行压力检测器的输入端311电连接到驱动电路的同一个检测信号输出端313。此外,如图4所示,每个致动器的输入端321电连接到驱动电路的对应的致动信号输出端。每个致动器的输出端322电连接到驱动电路的接地端GND。与图3类似,图4中示出的压力检测器和致动器的数量不应被理解为对于本申请实施例的触控面板内的压力检测器和致动器的数量的限制。
在一些实施例中,每个子区域对应四个压力检测器。所述四个压力检测器作为顶点构成平行四边形,例如矩形。所述四个压力检测器构成的平行四边形的两组对边的延伸方向分别与所述多个致动器的阵列的行方向和列方向平行。图5示意性地示出了根据本申请实施例的触控面板的内部电路图。如图5所示,每个子区域301对应四个压力检测器1121、1122、1123、1124。压力检测器1121、1122、1123、1124作为顶点构成平行四边形(例如,图5中示出的矩形)。而且,该平行四边形的一组对边501、502与致动器114的阵列的列方向平行。该平行四边形的另一组对边503、504与致动器114的阵列的行方向平行。通过这种布置,压力检测器的排列方向和致动器的排列方向一致,有利于两种器件的均匀分布。出于绘图空间的限制,图5中并未示出压力检测器和致动器的布线。不过,本领域技术人员在图3和图4的基础上,可以想到图5中压力检测器和致动器的布线方式。
在一些实施例中,例如在前述图3至图5所示的实施例中,压力检测器112和致动器114可以布置在同一层中,也可以布置在不同的层中。术语“布置在同一层”可以理解为,两个元件在垂直于层的方向上至少部分重合。例如,沿着垂直于层的方向上,一个元件的底表面相对于另一元件的顶表面更接近于该层。
为了减少同一层内的电学器件的密度,从而降低布线密度,压力检测器和致动器可以布置在不同的层中。术语“布置在不同的层中”可以理解为,两个元件在垂直于层的方向上不重合,例如,沿着垂直于层的方向上,一个元件的底表面相对于另一元件的顶表面更远离该层。
图6示意性地示出了根据本申请实施例的触控面板的透视图。图7A和图7B分别示意性地示出了根据本申请实施例的触控面板的内部电路图。如图6所示,压力检测器112位于第一层601中,制动器114位于第二层602中。如图7A和图7B所示,每一层内的元件数量和布线数量都较少,可以有效地避免电信号之间的干扰。在一些实施例中,如图6所示,压力检测器112所在的第一层601相对于致动器114所在的第二层602,更靠近用户与触控面板100的交互界面,例如盖板105。这样,压力检测器112距离用户的触控位置更加接近,使得对用户施加的力的检测更加准确。作为比较,虽然致动器114相对用户的触控位置更远,但通过调整致动信号,也可以使致动器114提供期望的触控反馈。
图8示意性地示出了根据本申请实施例的触控面板的截面图。如图8所示,在一些实施例中,第一层601和第二层602之间还可以存在绝缘层603,以更好地将压力检测器112和致动器114以及这两种元件的布线电学隔离。
在一些实施例中,所述至少一个压力检测器中的每个压力检测器在衬底基板上的正投影与所述至少一个致动器中的对应的致动器在所述衬底基板上的正投影至少部分重叠。图9示意性地示出了根据本申请实施例的触控面板的透视图。如图9所示,每个压力检测器112在衬底基板101上的正投影与致动器114在衬底基板101上的正投影至少部分重叠。换句话说,位于对应位置的压力检测器112和致动器114按照基本垂直于所述衬底基板101的方向堆叠布置。
根据触控面板所在的终端设备、触控面板的尺寸、触控面板的具体应用场景,压力检测器和致动器的数量和比例可以不同。例如,在一些实施例中,所述至少一个致动器和所述至少一个压力检测器的数量的比例在1∶4到2∶1的范围之内。通过将两种元件的数量比设置在上述范围之内,两种元件的数量比较接近,分布比较均匀,压力检测和触觉反馈可以实现更好的平衡。当压力检测器数量相对较多时,例如当压力检测器和致动器的数量的比例为2∶1时,触控面板的灵敏度较高。
接下来,将描述压力检测器112和致动器114与驱动电路115的电连接方式。在一些实施例中,所述至少一个压力检测器中的每个压力检测器包括输入端和输出端,所述驱动电路包括至少一个检测信号输出端和至少一个检测信号接收端。每个压力检测器的输入端电连接到所述驱动电路的对应的检测信号输出端,每个压力检测器的输出端电连接到所述驱动电路的对应的检测信号接收端。
图2示出了压力检测器和致动器与驱动电路的电连接方式。如图2所示,例如,压力检测器112可以通过检测电路122连接到驱动电路115的端口。具体的,压力检测器112的输入端152可以连接到驱动电路115的检测信号输出端IN。压力检测器112的输出端162可以连接到驱动电路115的检测信号接收端OUT。检测信号输出端IN向压力检测器112提供输入信号,压力检测器112输出的检测信号经由检测信号接收端OUT被驱动电路115接收。
前面提到,压力检测器可以是电容式传感器、压电式传感器、或压阻式传感器。下面将分别描述这几种传感器的内部结构以及与驱动电路的电连接关系。
当压力检测器是电容式传感器时,每个压力检测器包括电容器件。所述电容器件包括第一电极、第二电极和介于所述第一电极和所述第二电极之间的绝缘体。在这种情况下,所述第一电极作为压力检测器的输入端152,并与检测信号输出端IN电连接。所述第二电极作为压力检测器的输出端162,并与检测信号接收端OUT电连接。
当压力检测器是压电式传感器时,每个压力检测器包括压电器件。所述压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层。在这种情况下,所述第一电极作为压力检测器 的输入端152,并与检测信号输出端IN电连接。所述第二电极作为压力检测器的输出端162,并与检测信号接收端OUT电连接。
当压力检测器是压阻式传感器时,每个压力检测器包括压阻器件。所述压阻器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压阻材料层。在这种情况下,所述第一电极作为所述每个压力检测器的输入端152,并与检测信号输出端IN电连接。所述第二电极作为所述每个压力检测器的输出端162,并与检测信号接收端OUT电连接。
前文还提到,为了提高检测准确度和灵敏度,每个压力检测器可包括多个压阻器件,并且可以将多个压敏电阻按照惠斯通电桥的形式连接。下面对此进行更详细的描述。图10示意性地示出了根据本申请实施例的触控面板的内部电路图。具体的,图10示出了可用于本申请实施例的压阻式传感器1000的内部电路。
如图10所示,压阻式传感器1000可以包括两个正压阻1005、1006和两个负压阻1010、1011。正压阻在受到压力后,其电阻值增大;负压阻在受到压力后,其电阻值减小。正压阻1005与负压阻1010串联,负压阻1011与正压阻1006串联。正压阻1005与负压阻1010组成的串联电路和负压阻1011与正压阻1006组成的串联电路并联。驱动电路115通过检测信号输出端IN向压阻式传感器1000提供输入信号。该输入信号分别到达正压阻1005与负压阻1011。应注意,虽然图14示出了两个检测信号输出端IN,但在其它实施例中,可以用同一个检测信号输出端IN为正压阻1005与负压阻1011提供输入信号。压阻式传感器1000包括两个输出端口,其分别连接到驱动电路115的两个检测信号接收端OUT1和OUT2。端口OUT1的电位对应于正压阻1005与负压阻1010之间的电位,端口OUT2的电位对应于负压阻1011与正压阻1006之间的电位。在用户对触控面板施加的压力传递到压阻式传感器1000后,正负压阻的电阻值反向变化。随着压力的增加,正压阻1005与负压阻1010之间的电位降低,导致端口OUT1接收到的电压降低;负压阻1011与正压阻1006之间的电位升高,导致端口OUT2接收到的电压升高,两个端口具体的电压值可通过如下公式(1)和(2)确定:
V out1=V in×R 1010/(R 1005+R 1010)        (1)
V out2=V in×R 1006/(R 1011+R 1006)       (2)
其中,V out1表示端口OUT1处检测到的电压值,V out2表示端口OUT2处检测到的电压值,V in表示端口IN提供的输入信号的电压,R 1005、R 1006、R 1010、R 1011分别表示正压阻1005、正压阻1006、负压阻1010、和负压阻1011的阻值。这样,响应于压力的增加,端口OUT2接收到的电压V out2和端口OUT1接收到的电压V out1的差值(V out2-V out1)得到了增加,且增加量大于单个压阻两端的电压差的变化。通过按照上述惠斯通电桥的形式来布置压阻式传感器1000的各压阻,各压阻在受压后产生的变化被累积和放大,从而提升压力检测的灵敏度和精度。
接下来描述致动器114与驱动电路115之间的电连接方式。在一些实施例中,每个致动器包括输入端和输出端,所述驱动电路包括至少一个致动信号输出端和接地端。每个致动器的输入端电连接到所述驱动电路的对应的致动信号输出端,每个致动器的输出端电连接到所述驱动电路的接地端。
图2也示出了致动器114与驱动电路115之间的电连接方式。如图2所示,例如,致动器114可以通过反馈电路124连接到驱动电路115的端口。例如,致动器114的输入端154电连接到驱动电路115的致动信号输出端A、B、C、D中对应的一个。致动器114的输出端164电连接到驱动电路115的接地端GND。致动信号输出端A、B、C、D向致动器114提供致动信号,使得致动器114发生变形或位移。接地端GND是电连接到各个致动器114的公共端口,其可以是驱动电路115内的端口,也可以是触控面板100内其它能够提供接地电位的端口。检测电路122和反馈电路124可以采用导电材料,例如金属,来形成。在该实施例中,在同一行致动器114中,离驱动电路115较近的致动器所连接到的致动信号输出端比离驱动电路115较远的致动器所连接到的致动信号输出端更靠近该行致动器的中线。比如,信号输出端B比信号输出端A更靠近图2中第一行致动器的行方向中线。行方向中线是指与该行致动器的延伸方向平行的中线。
在一些实施例中,致动器包括压电器件。所述压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层。所述第一电极作为所述致动器的输入端,电连接到致动信号输出端A、B、C、D中对应的一个。所述第二电极作为所述致动器的输出端,与 接地端口GND电连接。
图11示意性地示出了根据本申请实施例的触控面板的内部电路图。如图11所示,与图2所示的实施例相比,压力检测器112的数量多了一倍,使得压力的检测灵敏度得到增加,且触控面板的压力检测能力与触觉反馈能力更均衡。图11示出了压力检测器112和致动器114与驱动电路115的连接电路的布置。驱动电路115的用于压力检测的端口的数量也增加了一倍,包括检测信号输出端IN1和IN2,以及检测信号接收端OUT1和OUT2。与驱动电路115较近的压力检测器112连接到检测信号输出端IN1和检测信号接收端OUT1,与驱动电路115较远的压力检测器112连接到检测信号输出端IN2和检测信号接收端OUT2。检测信号输出端IN1和检测信号接收端OUT1相对于检测信号输出端IN2和检测信号接收端OUT2更靠近这一行压力检测器112的行方向中线。行方向中线是指与这一行压力检测器112的延伸方向平行的中线。
图12示意性地示出了根据本申请实施例的触控面板的内部电路图。如图12所示,与图11所示的实施例相比,压力检测器112的数量又增加了一倍。驱动电路115用于接收检测信号的检测信号接收端对应地增加至4个,包括端口OUT1、端口OUT2、端口OUT3、和端口OUT4。驱动电路115对每个检测信号接收端接收到的检测信号(例如电压信号)分别进行判断和处理,这样可以更加精准地确定每个压力检测器112接收到的压力的属性,从而提升压力检测的灵敏度。
在一些实施例中,为了减少布线数量,每个压力检测器的输入端电连接到驱动电路的同一个检测信号输出端IN。当触控面板内包括多个压力检测器时,这些压力检测器可以共用同一个检测信号输出端IN来接收输入信号,并分别连接到不同的检测信号接收端OUT。例如,在图12中,驱动电路115仅通过一个检测信号输出端IN向各压力检测器112提供输入信号,该检测信号输出端IN分别连接到各压力检测器112的输入端。
在一些实施例中,驱动电路115的所有端口都布置在触控面板的一侧。例如,如图2、11、12所示,驱动电路115的检测信号输出端IN、检测信号接收端OUT、致动信号输出端A、B、C、D以及接地端GND都布置在触控面板的左侧。也就是,检测电路和反馈电路分别以 压力检测器112和致动器114作为起点,都向触控面板的一侧延伸。这种布置可以简称为检测电路和反馈电路的“同边”布置。
在另外的实施例中,检测电路和反馈电路分别以压力检测器112和致动器114作为起点,向触控面板的相对的两侧延伸。这种布置可以简称为检测电路和触觉反馈电路的“不同边”布置。在这种“不同边”布置中,驱动电路115与所述压力检测器电连接的端口和与所述致动器电连接的端口,分别位于所述触控面板的相对两侧。例如,所述驱动电路包括至少一个检测信号输出端、至少一个检测信号接收端、至少一个致动信号输出端、和接地端。所述至少一个检测信号输出端和所述至少一个检测信号接收端与所述至少一个压力检测器电连接。所述至少一个致动信号输出端和所述接地端与所述至少一个致动器电连接。所述至少一个检测信号输出端和所述至少一个检测信号接收端位于所述触控面板第一边缘。所述至少一个致动信号输出端和所述接地端位于所述触控面板第二边缘。所述第一边缘与所述第二边缘相对。
图13示意性地示出了根据本申请实施例的触控面板的内部电路图。如图13所示,驱动电路可以包括两个子部分,即,第一子部分1151和第二子部分1152中。第一子部分1151和第二子部分1152位于触控面板的相对两侧。用于与致动器114电连接的致动信号输出端A、B、C、D、和接地端GND布置在第一子部分1151中。用于与压力检测器112电连接的检测信号输出端IN1、IN2及检测信号接收端OUT1、OUT2布置在第二子部分1152中。这样可以避免驱动电路的端口和致动器及压力检测器的布线过于集中在触控面板的一侧的情况,从而减少了触控面板的单侧的端口密度和布线密度,有利于触控面板整体上的布线均衡。
在一些实施例中,触控面板可以包括触控区域。触控区域是用户在进行触控操作时与触控面板进行接触的区域。也就是说,当用户使用触控面板进行触控操作时,用户实际上是在触控面板的触控区域内进行操作。图14示意性地示出了根据本申请实施例的触控面板的透视图。如图14所示,在一些实施例中,触控面板包括触控区域120。例如,触控区域120可以是在盖板105上划分的一个区域。在应用触控面板100时,用户主要在触控区域120内进行操作。用户对触控面板施加的力主要直接施加在触控区域120内。
在一些实施例中,压力检测器112和致动器114的位置对应于触控区域120。例如,所述压力检测器112和所述致动器114在所述盖板105上的正投影位于所述触控区域120内。这也可以被理解为,在这些实施例中,压力检测器112和致动器114采用了“屏下”布置。这样,压力检测器112和致动器114与用户的触控位置将更加接近,对于用户施加的力的测量将更准确,用户所能感受到的触觉反馈也能更接近于期望向用户提供的触觉反馈。
除了将压力检测器112和致动器114都布置在对应于触控区域的位置,在另外的一些实施例中,压力检测器112和/或致动器114的位置还可以对应于触控区域外。例如,在一些实施例中,所述触控面板被分为触控区域和包围所述触控区域的边框区域。所述至少一个压力检测器和/或所述至少一个致动器位于所述边框区域。例如,压力检测器112布置在触控面板的触控区域外,或者致动器114布置在触控面板的触控区域外,或者压力检测器112和致动器114这两者都布置在触控面板的触控区域外。这尤其适合于具有显示功能的触控面板,因为这避免了上述两种器件影响触控面板的透光效果。
在需要较高的压力检测精度时,可以将压力检测器112布置在盖板的触控区域内,而将致动器114布置在盖板的触控区域外。图15示意性地示出了根据本申请实施例的触控面板的透视图。如图15所示,在一些实施例中,触控面板包括触控区域120和包围所述触控区域120的边框区域130。触控区域和边框区域可以是盖板的两个部分。压力检测器112在所述盖板105上的正投影位于所述触控区域120,且致动器114在所述盖板105上的正投影位于所述边框区域130。通过这种布置,首先保证了压力检测器能够与用户的触控位置更加接近,以便提高检测精度,而且使得致动器114在不会影响触控区域120内的显示功能的情况下致动盖板。
在一些实施例中,触控面板还可以具有触控位置检测功能。例如,可以通过触控位置检测功能来确定用户在触控面板上的触控位置。并且,触觉反馈功能还可以与触控位置检测功能结合。例如,可以使触觉反馈发生在触控位置,或者使触觉反馈的具体内容与触控位置相关,比如通过触觉反馈告知用户其接触了哪个具体位置。
图16示意性地示出了根据本申请实施例的触控面板的透视图。如 图16所示,触控面板还包括触控层150。所述触控层包括触控传感器151,所述触控传感器151与所述驱动电路115电连接。所述触控层150配置成检测触控位置155,并向所述驱动电路115发送指示所述触控位置155的位置信号。
触控传感器151可以是任何能将位置信息转化为电信号的检测器。触控层150可以是触控面板内的一个层结构。在一些实施例中,触控层150布置在盖板105的层和压力检测器112所在的层之间。当用户操作触控面板时,用户与触控面板的接触位置(即,触控位置)处对应的触控传感器151的电学属性可能发生变化,并以电信号的形式输出。当检测到该电信号时,即可认为该触控传感器的位置就是用户的触控位置。在确定触控位置后,驱动电路可以基于该触控位置产生致动信号。这样,触控面板提供的触觉反馈可以与用户的触控位置有关。比如,在生成致动信号时,可以使得所生成的致动信号能够使与触控位置最近的致动器114致动。这样可以减少振动从致动器114传递到触控位置的过程中的能量损失。或者,在一些实施例中,在生成致动信号时,可以使得所生成的致动信号能够驱动多个致动器,并使所述多个致动器的致动相互叠加,以使所述触觉反馈位于所述触控位置。例如,驱动电路所生成的致动信号能够控制各个致动器的振动幅度和频率。当各个致动器的振动被传递到盖板上时,各个致动器在盖板上提供的振动可以相互叠加,使得振动可以相互消减或相互增强。结果是,可以使振动在触控位置处增强,在其它位置减弱。这样,触觉反馈将仅发生在触控位置处。
在一些实施例中,为了降低触控面板的厚度,可以将压力检测器112所在的层和/或致动器114所在的层与其它层结构集成。例如,在一些实施例中,压力检测器112可以布置在触控层150中。也就是,所述触控传感器151与所述至少一个压力检测器布置在同一层中。如图17所示,触控传感器151和压力检测器112平铺地布置在同一层中,且两者位置不重合。致动器114可以位于不同的层中。
本申请的触控面板还可以具有显示功能。在一些实施例中,触控反馈操作可以与显示功能相结合。例如,在一些实施例中,所述触控面板还包括显示基板。显示基板由显示信号驱动,用于显示画面。显示基板与驱动电路电连接。这样驱动电路可以基于所述显示信号,确 定所述致动信号。这使得,触控反馈功能与显示功能相结合,使得触觉反馈与显示器所显示的内容有关。
在前述实施例中,压力检测和触觉反馈分别由压力检测器和致动器来实现。在另一些实施例中,也可以仅通过一种器件来实现压力检测和触觉反馈这两者。例如,压电材料同时具有正压电效应和逆压电效应。正压电效应是指,压电材料在受到压力时,其两个端面上会产生符号相反的电荷,位于这两个端面上的电极之间的电压能够体现压力的属性。逆压电效应是指,当电信号施加到压电材料的两个端面上时,压电材料膨胀或收缩,使其出现变形或位移。因此,可以通过使压电材料在不同的时段进行不同的工作,来使包含该压电材料的压电器件实现压力检测和触觉反馈这两种功能。
图18示意性地示出了根据本申请实施例的触控面板的内部电路图。图19示意性地示出了根据本申请实施例的触控面板的透视图。图20示出了图19的局部放大图。如图18和19所示,在一些实施例中,触控面板包括至少一个压电器件110和驱动电路115。如图20所示,压电器件110包括具有第一端面和第二端面的压电材料主体1105,以及布置在所述第一端面的第一电极1110和布置在所述第二端面的第二电极1115。所述第一电极1110与所述驱动电路的信号输出端A电连接,所述第二电极1115与所述驱动电路的信号接收端OUT电连接。所述驱动电路115配置成,在第一时段,通过检测所述信号输出端和所述信号接收端之间的第一电压差,确定所述压电器件110受到的压力,以及,在第二时段,通过在所述信号输出端和所述信号接收端之间提供第二电压差,驱动所述压电器件110实施触觉反馈。
具体的,在第一时段,压电器件110的第一电极1110接收对应的信号输出端A、B、C、或D提供的输入信号,并通过第二电极1115,将检测信号输出到对应的信号接收端OUT1、OUT2、OUT3、或OUT4。驱动电路115通过检测信号接收端OUT1、OUT2、OUT3、OUT4的检测信号,可以确定用户施加到触控面板上的力的属性,比如力的大小,并决定是否输出反馈信号。当施加到触控面板上的力满足输出反馈信号的条件时,在第二时段,压电器件110的第一电极1110接收对应的信号输出端A、B、C、或D提供的反馈信号,第二电极1115通过对应的信号接收端OUT1、OUT2、OUT3、或OUT4接地。此时,第一电 极1110与第二电极1115之间的电压差可驱动压电材料主体1105产生变形或位移,从而致动触控面板,以提供触觉反馈。应理解,第一时段和第二时段是两个不同的时段。压力检测和触觉反馈是在不同时段实现的,这可以称为对压电器件110的“分时复用”。
与前面描述的实施例类似,在一些实施例中,所述驱动电路的信号输出端位于所述触控面板第一边缘,所述驱动电路的信号输入端位于所述触控面板第二边缘,所述第一边缘与所述第二边缘相对。图21示意性地示出了根据本申请实施例的触控面板的内部电路图。如图21所示,与第一电极电连接的信号输出端OUT1、OUT2、OUT3、OUT4位于驱动电路的第二子部分1152中。与第二电极电连接的信号接收端A、B、C、D位于驱动电路的第一子部分1151中。第一子部分1151和第二子部分1152位于触控面板的相对的两侧。这样可以避免驱动电路的端口和压电器件110的布线过于集中在触控面板的一侧的情况,从而减少了触控面板的单侧的端口密度和布线密度,有利于触控面板整体上的布线均衡。
在根据本申请实施例的触控面板中,通过对驱动电路的配置,可以实现各种触觉反馈效果。例如,前面提到,触控面板可以配置为,当用户施加的压力越大时,向用户提供的触觉反馈越强烈。除此之外,驱动电路还可以以其它方式配置,以实现其它效果。
例如,在一些实施例中,驱动电路配置成,响应于检测信号指示施加到触控面板上的力大于或等于预设的触发阈值,才输出致动信号。也就是,当施加到触控面板上的力小于触发阈值时,不输出反馈信号,触控面板不提供触觉反馈。例如,用户可以预先设定触发阈值。如果处理器在对检测信号进行处理后,发现检测信号所反映的用户施加到触控面板上的力大于或等于该触发阈值,则表明用户确实意图在该触控面板上进行操作,而不是误触该触控面板。通过对驱动电路进行这样的配置,只有当确定用户确实意图使用该触控面板后,驱动电路才会输出致动信号,从而致动盖板进行触觉反馈,才会向用户提供触觉反馈。这首先避免了误触对触控面板的影响,而且降低了致动器的触控反馈的次数,延长了其使用寿命。在一些实施例中,该触发阈值可以被设定在1牛顿(N)到1.5牛顿的范围内。另一方面,通过这种设置,如果用户在触控面板上进行操作,但并未感受到触觉反馈,则可 能表明用户操作不当,比如施加的力太小。这样,当用户未感受到触觉反馈时,可以了解之前的操作可能不当,并采取新的操作。
在一些实施例中,驱动电路还可以配置成,响应于检测信号指示施加到所述触控面板上的力大于保护阈值,对用户报警。保护阈值可以根据压力检测器的量程设定。例如,当施加到所述触控面板上的力大于该保护阈值时,该力超过了量程,使得压力检测器可能无法准确地反映用户施加的力的属性。或者,保护阈值可以根据触控面板所能承受的压力的属性来设置。例如,当施加到所述触控面板上的力大于该保护阈值时,可能对触控面板造成伤害。通过这种配置,可以提示用户的操作力度过大,使得用户改变操作方式,从而提高测量精度,或者对触控面板起到保护作用。向用户提供的报警可以通过触觉反馈实现,例如使盖板以较高的频率或幅度振动,也可以通过声、光等其他方式实现。
根据本申请实施例的触控面板可以用于各种具有人机交互功能的设备,既包括具有显示功能的设备,如计算机、平板电脑、移动电话、车载多媒体交互系统等,也包括非显示设备,例如触控板等。本申请对此不予限制。
根据本申请的另一方面,提供了一种基于触控面板的人机交互方法。该触控面板可以是根据本申请实施例的触控面板。该触控面板包括压力检测器、致动器和驱动电路。图22示意性地示出了根据本申请实施例的基于触控面板的人机交互方法的流程图。如图22所示,所述方法包括下述步骤。
在步骤S2205,由压力检测器基于用户对触控面板施加的力的大小,生成检测信号,并将检测信号发送到驱动电路。
在步骤S2210,由驱动电路基于检测信号,判断用户对触控面板施加的力是否大于或等于预设的触发阈值。
在步骤S2215,响应于检测信号表示用户对触控面板施加的力大于或等于触发阈值,由驱动电路生成致动信号,并将致动信号输出到致动器,以使致动器对用户产生触觉反馈。
下面更详细地介绍该人机交互方法。首先,当用户在触控面板上实施操作时,用户会对触控面板施加压力。该压力可以被压力检测器检测到,并且以检测信号的形式从压力检测器输出到驱动电路。因此, 检测信号反应了用户对触控面板施加的压力的属性,例如该压力的大小。通过接收该检测信号,并对其进行分析处理,可以确定该压力的属性。例如,驱动电路可以通过该检测信号,确定用户对触控面板施加的压力的值,或判断用户对触控面板施加的压力是否大于预设的触发阈值。然后,可以基于以上分析的结果,确定是否生成致动信号以及生成何种致动信号。当确定用户对所述触控面板施加的力大于或等于所述触发阈值时,则认为可以生成致动信号。在这种情况下,可以由所述驱动电路根据用户对触控面板施加的压力的属性生成致动信号,并将所述致动信号输出到所述致动器,使所述致动器致动所述盖板,以使所述盖板向用户提供触觉反馈。
由于致动信号是基于检测信号,也就是基于用户对触控面板施加的压力的属性而确定的,因此,触控面板产生的触觉反馈可以与用户对触控面板施加的压力有关。将该致动信号输出到致动器后,致动器对触控面板的致动可以以用户对触控面板施加的压力的属性为依据。通过上述人机交互方法,用户可以对其在触控面板上实施的操作有更准确地了解,而且用户的交互体验还得到了增强和丰富。
图23示意性地示出了根据本申请实施例的基于触控面板的人机交互方法的流程图。如图23所示,用户对触控面板实施操作,会导致压力检测器生成检测信号,此时可以开启一轮压力检测和触控反馈过程。首先,检测信号被压力检测器发送至驱动电路。然后,驱动电路对检测信号进行分析,判断用户施加到所述触控面板的力是否大于或等于预设的触发阈值。如果该力大于或等于触发阈值,则表示用户确实正在实施触控操作。此时,驱动电路可以产生致动信号。然后,致动信号被输出到致动器,以使致动器致动触控设备产生触觉反馈。此后,结束当前这一轮压力检测和触控反馈,并开启新的一轮压力检测。在新一轮压力检测中,压力检测器会继续检测用户施加到触控面板上的力并输出新的检测信号。
如果驱动电路对检测信号进行分析的结果表明施加到触控面板的力小于触发阈值,则表示用户并不意图实施触控操作。此时,则不产生致动信号并结束当前这一轮的压力检测,然后再开启新的一轮压力检测。
在一些实施例中,所述触控面板还包括触控传感器。并且,所述 方法还包括,由所述触控传感器基于所述用户的触控位置,生成位置信号,并将所述位置信号发送到所述信号控制器。可以理解,所述位置信号可以指示用户施加的力在所述触控面板上的位置,即,触控位置。在这种情况下,如果用户施加到所述触控面板的力大于或等于预设的触发阈值,则可以基于触控位置来生成致动信号,使得致动器提供的触觉反馈发生在所述触控位置处。也就是,步骤S2215具体可以包括:由所述驱动电路基于所述位置信号生成所述致动信号,使得所述致动器在所述触控位置处对所述用户产生触觉反馈。在该实施例中,在触控面板中,除了有压力检测器检测用户施加到触控面板的力的属性,还有触控传感器来检测用户的触控位置。这使得,致动信号可以基于这两个因素来形成。例如,致动信号可以使与触控位置最接近的致动器致动触控面板,或者使多个致动器的致动彼此叠加,以使触觉反馈发生在触控位置处。
综上所述,本申请提供了一种触控面板和基于触控面板的人机交互方法。该触控面板借助于压力检测器和致动器,能够基于用户在触控面板上实施的操作来为用户提供触觉反馈,可以使得用户的操作失误不会对触控操作产生影响,或者使失误能够尽早被用户发现,以便用户能尽快纠正,从而增强了人机交互体验。
如本领域技术人员将理解的,尽管在附图中以特定顺序描述了本公开实施例中方法的各个步骤,但是这并非要求或者暗示必须按照该特定顺序来执行这些步骤,除非上下文另有明确说明。附加的或可替换的,可以将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行。此外,在步骤之间可以插入其他方法步骤。插入的步骤可以表示诸如本文所描述的方法的改进,或者可以与该方法无关。此外,在下一步骤开始之前,给定步骤可能尚未完全完成。
在本申请实施例的描述中,通过术语“上”、“下”、“左”、“右”等指示的方位或位置关系基于附图所示的方位或位置关系,其仅是为了便于描述本申请的实施例,而不要求这些实施例必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,诸如“一些实施例”、“另一些实施例”等术语意指结合该实施例描述的具体特征、结构、材料或者特点被包含于本申请的至少一个实施例中。说明书中对上述术语的示意性表述不 必须针对的是相同的实施例或示例。而且,所描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本申请中描述的不同实施例或示例以及这些实施例或示例的特征进行结合。另外,需要说明的是,本申请中,术语“第一”、“第二”或类似术语仅用于描述或命名的目的,而不能理解为指示或暗示相对重要性或者指明所修饰的技术特征的数量。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (25)

  1. 一种触控面板,包括:
    衬底基板,
    布置在所述衬底基板上的至少一个压力检测器和至少一个致动器,以及
    驱动电路,
    其中,所述至少一个压力检测器与所述驱动电路电连接,并且所述驱动电路与所述至少一个致动器电连接。
  2. 如权利要求1所述的触控面板,其中,所述至少一个致动器和所述至少一个压力检测器的数量的比例在1∶4到2∶1的范围之内。
  3. 如权利要求1所述的触控面板,其中,所述至少一个致动器包括多个致动器,并且所述多个致动器布置成包含至少两行且至少两列的阵列,
    其中,每四个直接相邻的致动器构成平行四边形的子阵列,构成所述子阵列的四个致动器在所述衬底基板上的正投影作为顶点定义子区域,
    其中,所述至少一个压力检测器中的每个压力检测器在所述衬底基板上的正投影位于对应的子区域内。
  4. 如权利要求3所述的触控面板,其中,每个子区域对应一个压力检测器,
    其中,所述一个压力检测器在所述衬底基板上的正投影位于对应的子区域的几何中心处。
  5. 如权利要求3所述的触控面板,其中,每个子区域对应两个压力检测器,
    其中,所述两个压力检测器在所述衬底基板上的正投影的排列方向与所述多个致动器的阵列的行方向或列方向平行。
  6. 如权利要求5所述的触控面板,其中,所述子区域被其中线分隔成两个区域,所述两个压力检测器在所述衬底基板上的正投影分别位于所述两个区域的几何中心处。
  7. 如权利要求3所述的触控面板,其中,每个子区域对应四个压力检测器,
    其中,所述四个压力检测器作为顶点构成平行四边形,
    其中,所述平行四边形的两组对边的延伸方向分别与所述多个致动器的阵列的行方向和列方向平行。
  8. 如权利要求1-7中的任一项所述的触控面板,其中,所述至少一个压力检测器和所述至少一个致动器布置在同一层中。
  9. 如权利要求1所述的触控面板,其中,所述至少一个压力检测器中的每个压力检测器在所述衬底基板上的正投影与所述至少一个致动器中的对应的致动器在所述衬底基板上的正投影至少部分重叠。
  10. 如权利要求1-7和9中的任一项所述的触控面板,其中,所述至少一个压力检测器和所述至少一个致动器布置在不同的层中。
  11. 如权利要求1所述的触控面板,其中,所述至少一个压力检测器中的每个压力检测器包括输入端和输出端,所述驱动电路包括至少一个检测信号输出端和至少一个检测信号接收端,
    其中,每个压力检测器的输入端电连接到所述驱动电路的对应的检测信号输出端,每个压力检测器的输出端电连接到所述驱动电路的对应的检测信号接收端。
  12. 如权利要求11所述的触控面板,其中,每个压力检测器的输入端电连接到所述驱动电路的同一个检测信号输出端。
  13. 如权利要求11或12所述的触控面板,其中,所述每个压力检测器包括电容器件,所述电容器件包括第一电极、第二电极和介于所述第一电极和所述第二电极之间的绝缘体,
    其中,所述第一电极作为所述每个压力检测器的输入端,所述第二电极作为所述每个压力检测器的输出端。
  14. 如权利要求11或12所述的触控面板,其中,所述每个压力检测器包括压电器件,所述压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层,
    其中,所述第一电极作为所述每个压力检测器的输入端,所述第二电极作为所述每个压力检测器的输出端。
  15. 如权利要求11或12所述的触控面板,其中,所述每个压力检测器包括压阻器件,所述压阻器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压阻材料层,
    其中,所述第一电极作为所述每个压力检测器的输入端,所述第 二电极作为所述每个压力检测器的输出端。
  16. 如权利要求1所述的触控面板,其中,所述至少一个致动器中的每个致动器包括输入端和输出端,所述驱动电路包括至少一个致动信号输出端和接地端,
    其中,每个致动器的输入端电连接到所述驱动电路的对应的致动信号输出端,每个致动器的输出端电连接到所述驱动电路的接地端。
  17. 如权利要求16所述的触控面板,其中,所述致动器包括压电器件,所述压电器件包括第一电极、第二电极和介于所述第一电极和第二电极之间的压电材料层,
    其中,所述第一电极作为所述致动器的输入端,所述第二电极作为所述致动器的输出端。
  18. 如权利要求1所述的触控面板,其中,所述驱动电路包括至少一个检测信号输出端、至少一个检测信号接收端、至少一个致动信号输出端、和接地端,
    其中,所述至少一个检测信号输出端和所述至少一个检测信号接收端与所述至少一个压力检测器电连接,所述至少一个致动信号输出端和所述接地端与所述至少一个致动器电连接,
    其中,所述至少一个检测信号输出端和所述至少一个检测信号接收端位于所述触控面板第一边缘,所述至少一个致动信号输出端和所述接地端位于所述触控面板第二边缘,所述第一边缘与所述第二边缘相对。
  19. 如权利要求1所述的触控面板,其中,所述触控面板被分为触控区域和包围所述触控区域的边框区域,
    其中,所述至少一个压力检测器和/或所述至少一个致动器位于所述边框区域。
  20. 如权利要求1所述的触控面板,还包括触控层,其中所述触控层配置成确定触控位置。
  21. 如权利要求20所述的触控面板,其中,所述至少一个压力检测器布置在所述触控层中。
  22. 一种触控面板,包括:
    至少一个压电器件,和
    驱动电路,
    其中,所述至少一个压电器件中的每个压电器件包括具有第一端面和第二端面的压电材料层,以及布置在所述第一端面的第一电极和布置在所述第二端面的第二电极,所述第一电极与所述驱动电路的信号输出端电连接,所述第二电极与所述驱动电路的信号接收端电连接,
    其中,所述驱动电路配置成,在第一时段,通过检测所述信号输出端和所述信号接收端之间的第一电压差,确定所述压电器件受到的压力,以及,在第二时段,通过在所述信号输出端和所述信号接收端之间提供第二电压差,驱动所述压电器件实施触觉反馈。
  23. 如权利要求22所述的触控面板,其中所述驱动电路的信号输出端位于所述触控面板第一边缘,所述驱动电路的信号输入端位于所述触控面板第二边缘,所述第一边缘与所述第二边缘相对。
  24. 一种基于触控面板的人机交互方法,所述触控面板包括压力检测器、致动器和驱动电路,所述方法包括:
    由所述压力检测器基于用户对所述触控面板施加的力的大小,生成检测信号,并将所述检测信号发送到所述驱动电路;
    由所述驱动电路基于所述检测信号,判断用户对所述触控面板施加的力是否大于或等于预设的触发阈值;
    响应于所述检测信号表示用户对所述触控面板施加的力大于或等于所述触发阈值,由所述驱动电路生成致动信号,并将所述致动信号输出到所述致动器,以使所述致动器对所述用户产生触觉反馈。
  25. 如权利要求24所述的方法,其中,所述触控面板还包括触控传感器,并且所述方法还包括:
    由所述触控传感器基于所述用户的触控位置,生成位置信号,并将所述位置信号发送到所述信号控制器,并且,
    由所述驱动电路生成致动信号的步骤包括:
    由所述驱动电路基于所述位置信号生成所述致动信号,使得所述致动器在所述触控位置处对所述用户产生触觉反馈。
PCT/CN2022/089749 2022-04-28 2022-04-28 触控面板和基于触控面板的人机交互方法 WO2023206194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000921.0A CN117321550A (zh) 2022-04-28 2022-04-28 触控面板和基于触控面板的人机交互方法
PCT/CN2022/089749 WO2023206194A1 (zh) 2022-04-28 2022-04-28 触控面板和基于触控面板的人机交互方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089749 WO2023206194A1 (zh) 2022-04-28 2022-04-28 触控面板和基于触控面板的人机交互方法

Publications (1)

Publication Number Publication Date
WO2023206194A1 true WO2023206194A1 (zh) 2023-11-02

Family

ID=88516741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089749 WO2023206194A1 (zh) 2022-04-28 2022-04-28 触控面板和基于触控面板的人机交互方法

Country Status (2)

Country Link
CN (1) CN117321550A (zh)
WO (1) WO2023206194A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028095A1 (en) * 2004-08-03 2006-02-09 Shigeaki Maruyama Piezoelectric composite device, method of manufacturing same, method of controlling same, input-output device, and electronic device
US20100141606A1 (en) * 2008-12-08 2010-06-10 Samsung Electronics Co., Ltd. Method for providing haptic feedback in a touch screen
CN102713805A (zh) * 2009-12-10 2012-10-03 苹果公司 具有力传感器和致动器反馈的触摸板
CN109672765A (zh) * 2018-12-15 2019-04-23 惠州Tcl移动通信有限公司 一种电子设备以及电子设备的显示方法
CN110383215A (zh) * 2017-01-06 2019-10-25 沙特基础工业全球技术公司 具有触觉反馈的摩擦电传感器
WO2020065420A1 (en) * 2018-08-31 2020-04-02 Sabic Global Technologies B.V. User input device with capacitive and triboeuectric sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028095A1 (en) * 2004-08-03 2006-02-09 Shigeaki Maruyama Piezoelectric composite device, method of manufacturing same, method of controlling same, input-output device, and electronic device
US20100141606A1 (en) * 2008-12-08 2010-06-10 Samsung Electronics Co., Ltd. Method for providing haptic feedback in a touch screen
CN102713805A (zh) * 2009-12-10 2012-10-03 苹果公司 具有力传感器和致动器反馈的触摸板
CN110383215A (zh) * 2017-01-06 2019-10-25 沙特基础工业全球技术公司 具有触觉反馈的摩擦电传感器
WO2020065420A1 (en) * 2018-08-31 2020-04-02 Sabic Global Technologies B.V. User input device with capacitive and triboeuectric sensors
CN109672765A (zh) * 2018-12-15 2019-04-23 惠州Tcl移动通信有限公司 一种电子设备以及电子设备的显示方法

Also Published As

Publication number Publication date
CN117321550A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
TWI627567B (zh) 一種具有壓力偵測的觸控顯示模組及其驅動方法
JP6485618B2 (ja) 圧電シートならびにそれを用いたタッチパネルならびにそれらを用いた入出力装置
KR102425824B1 (ko) 가요성 디스플레이의 햅틱 구동 방법 및 장치
JP4424729B2 (ja) タブレット装置
US10372214B1 (en) Adaptable user-selectable input area in an electronic device
CN107844213B (zh) 触摸感测单元
JP4960039B2 (ja) スピーカー兼用タッチパネル
US8982081B2 (en) Displacement sensing touch panel and touch screen using the same
KR101809191B1 (ko) 터치 패널
CN101341605B (zh) 用于组合式压力传感器和致动器的经济元件及其操作方法
US9600104B2 (en) Touch device and a detection method thereof
WO2011125408A1 (ja) タッチパネルおよびタッチパネルを備える入出力装置
JP5615421B2 (ja) 電子機器
KR20050038645A (ko) 입력 장치 및 그 입력 장치를 사용한 전자 기기
US10007386B2 (en) Input device and program
US10599220B2 (en) Display device
WO2016027668A1 (ja) 触覚提示装置
TW201327640A (zh) 具有回饋功能的觸控板及其所應用的觸控裝置
CN107728843A (zh) 显示面板和显示装置
TW201820089A (zh) 觸控顯示面板
US20090153368A1 (en) Tactile input/output device and driving method thereof
WO2023206194A1 (zh) 触控面板和基于触控面板的人机交互方法
JP4562578B2 (ja) タッチパネルおよびタッチパネル型座標入力方法
TW202109259A (zh) 電子裝置及其壓感觸控組件
JP5993242B2 (ja) 振動機能付きタッチセンサ、電子機器、振動機能付きタッチセンサの押圧点座標決定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939046

Country of ref document: EP

Kind code of ref document: A1