WO2023206122A1 - 一种芯片组件及其制备方法、显示面板制备方法 - Google Patents

一种芯片组件及其制备方法、显示面板制备方法 Download PDF

Info

Publication number
WO2023206122A1
WO2023206122A1 PCT/CN2022/089487 CN2022089487W WO2023206122A1 WO 2023206122 A1 WO2023206122 A1 WO 2023206122A1 CN 2022089487 W CN2022089487 W CN 2022089487W WO 2023206122 A1 WO2023206122 A1 WO 2023206122A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
chip
substrate
layer
emitting chip
Prior art date
Application number
PCT/CN2022/089487
Other languages
English (en)
French (fr)
Inventor
柴圆圆
王涛
朱小松
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2022/089487 priority Critical patent/WO2023206122A1/zh
Publication of WO2023206122A1 publication Critical patent/WO2023206122A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present application relates to the field of LED technology, and in particular to a chip component and its preparation method, and a display panel preparation method.
  • LED high-definition display solutions are inseparable from red light, green light and blue light chips. After the preparation of the LED chips of these three colors is completed, they will be transferred from the substrate to the driving backplane. During the transfer process, the bond between the LED chip and the substrate needs to be released by laser. This process is suitable for blue light chips or green light chips. In terms of maturity and simplicity. But for red light chips, because the red light epitaxial layer is actually bonded to the substrate through BCB (benzocyclobutene) glue, peeling off the substrate actually means decomposing the BCB glue layer with laser. It bonds the red LED chip to the substrate. However, BCB glue has poor absorption of laser, so it is often necessary to use higher laser energy.
  • BCB glue has poor absorption of laser, so it is often necessary to use higher laser energy.
  • the physical impact of the laser is used to carbonize and decompose the BCB glue.
  • excessive laser energy can easily damage the red light chip;
  • the risk of laser damage to the red light chip and the reduction of laser energy will also cause the laser stripping process window of the red light chip to be greatly reduced. Therefore, the current process of transferring red light chips to the driver backplane is difficult and the transfer yield is not high.
  • the purpose of this application is to provide a chip component, a preparation method thereof, and a display panel preparation method, aiming to solve the current problems of high difficulty and low yield when transferring red light chips to the driving backplane.
  • This application provides a chip component, including:
  • An adhesion layer and a sacrificial layer located between the carrier substrate and the light-emitting chip
  • the side of the light-emitting chip that is configured to face the driving backplane is the near back plate surface
  • the side opposite to the near back plate surface is the far back plate surface
  • the far back plate surface faces the carrier substrate
  • the adhesive layer simultaneously adheres to the far back plate surface.
  • the back plate surface and the carrier substrate, and the contact area of the adhesion layer with the far back plate surface is smaller than the contact area with the carrier substrate;
  • the space-occupying sacrificial layer is attached to the far back plate surface, and the space-occupying sacrificial layer includes the far back plate surface and the far back plate surface.
  • the first area in contact with the back panel and the second area in an unobstructed state are connected to the first area and the second area.
  • this application also provides another chip component, including:
  • an adhesive layer located between the carrier substrate and the light-emitting chip and configured to adhere the two;
  • the side of the light-emitting chip that is configured to face the driving backplane is the near back plate surface
  • the side opposite to the near back plate surface is the far back plate surface
  • the far back plate surface faces the carrier substrate
  • the adhesion layer and the far back plate The contact area of the surface is smaller than the contact area with the carrier substrate; there is a vacant space between the light-emitting chip and the carrier substrate, the vacant space is in contact with the far back plate surface, and the vacant space is connected to the external space.
  • this application also provides a chip component preparation method, which is applied to the preparation of the first chip component mentioned above.
  • the chip component preparation method includes:
  • the epitaxial layer located on the growth substrate, the epitaxial layer includes an N-type semiconductor layer, an active layer and a P-type semiconductor layer whose distance from the growth substrate increases in sequence;
  • N electrodes and P electrodes electrically connected to the N-type semiconductor layer and the P-type semiconductor layer are provided respectively to form at least two light-emitting chips, and the side of the light-emitting chip facing the growth substrate is the far back surface;
  • An adhesive glue is provided on the side of the growth substrate where the light-emitting chip is provided, and a temporary substrate opposite to the growth substrate is adhered through the adhesive glue;
  • An adhesion layer is provided on the side of the light-emitting chip away from the temporary substrate, and a carrier substrate opposite to the temporary substrate is adhered through the adhesion layer.
  • the contact area between the adhesion layer and the far back plate is smaller than that between the adhesion layer and the carrier substrate.
  • the contact area; after the adhesion layer is provided, the space-occupying sacrificial layer includes a first area in contact with the far back plate surface and a second area in an unobstructed state, and the first area is connected to the second area;
  • the adhesive glue and the temporary substrate are removed to prepare the chip assembly.
  • this application also provides a display panel preparation method, including:
  • the adhesive layer and the carrier substrate are removed to prepare a display panel.
  • the above chip assembly at least two light-emitting chips are bonded to the carrier substrate through an adhesive layer, and a space-occupying sacrificial layer is provided between the light-emitting chip and the carrier substrate.
  • the space-occupying sacrificial layer is attached to the far back plate of the light-emitting chip.
  • the adhesive layer occupies a place on the far back plate surface, it is impossible for the adhesive layer to adhere to the entire area of the far back plate surface of the light-emitting chip, which reduces the contact area between the adhesive layer and the light-emitting chip, thus reducing the The adhesion ability of the adhesive layer to the light-emitting chip is reduced.
  • the space-occupying sacrificial layer includes a first area in contact with the far back plate surface and a second area in an unobstructed state
  • wet etching is used to remove the place-occupying sacrificial layer, not only the place-occupying sacrificial layer is in an unobstructed state
  • the second area can be removed, and because the first area is connected to the second area, the first area can also be removed.
  • the adhesive layer forms a weakened connection structure between the carrier substrate and the light-emitting chip.
  • the contact area between the adhesive layer and the light-emitting chip is smaller than the contact area between the adhesive layer and the carrier substrate, the bond between the adhesive layer and the carrier substrate is stronger than the bond between the adhesive layer and the light-emitting chip. Therefore, when the carrier After the connection between the substrate and the light-emitting chip is damaged, the adhesive layer is more likely to fall off together with the carrier substrate. Therefore, after the light-emitting chip is bonded to the driving backplane, the connection between the carrier substrate and the light-emitting chip can be released by simply destroying the weakened connection structure, and the transfer process of the light-emitting chip from the carrier substrate to the driving backplane is completed. .
  • This transfer process is based on a weakened connection structure, which is not only easy to implement, but also causes low damage to the light-emitting chip, improving the efficiency and yield of the light-emitting chip transfer.
  • the adhesive layer does not adhere to the entire area of the far back surface of the light-emitting chip, which reduces the contact area between the adhesive layer and the light-emitting chip, thereby reducing the impact of the adhesive layer on the light-emitting chip.
  • Adhesion ability the adhesion layer exists as a weakened connection structure between the carrier substrate and the light-emitting chip.
  • the contact area between the adhesive layer and the light-emitting chip is smaller than the contact area between the adhesive layer and the carrier substrate, the bond between the adhesive layer and the carrier substrate is stronger than the bond between the adhesive layer and the light-emitting chip. Therefore, when the carrier After the connection between the substrate and the light-emitting chip is damaged, the adhesive layer is more likely to fall off together with the carrier substrate. Therefore, after the light-emitting chip in the chip assembly is bonded to the driving backplane, the connection between the carrying substrate and the light-emitting chip can be released by simply destroying the weakened connection structure, completing the transfer of the light-emitting chip from the carrying substrate to the driving Backplane transfer process. This transfer process is based on a weakened connection structure, which is not only easy to implement, but also causes low damage to the light-emitting chip, improving the efficiency and yield of the light-emitting chip transfer.
  • the electrodes of the light-emitting chips can be directly produced on the growth substrate, thereby forming at least two light-emitting chips on the growth substrate.
  • the temporary substrate is bonded to the light-emitting chip using adhesive glue, so that the temporary substrate faces the growth substrate.
  • the growth substrate is then patterned, and the growth substrate is directly used to form a space-occupying sacrificial layer, and an adhesion layer is set on the side of the light-emitting chip away from the temporary substrate, and the adhesion layer is used to bond the light-emitting chip and the carrier substrate.
  • the adhesive glue and the temporary substrate are removed to obtain the chip assembly.
  • the growth substrate of the light-emitting chip is directly used to form the space-occupying sacrificial layer. Therefore, from the time the epitaxial layer of the light-emitting chip is grown on the growth substrate to the completion of the chip component preparation, there is no need to perform any treatment on the epitaxial layer. Substrate transfer, the light-emitting chip realizes the transfer directly from the growth substrate to the driving backplane, avoiding multiple transfer processes in the preparation process of related display panels, reducing the difficulty of preparing display panels and improving growth efficiency. At the same time, because the growth substrate directly forms a sacrificial layer, this further reduces production costs.
  • the chip component produced by the chip component preparation method can also use the space-occupying sacrificial layer to make the adhesion layer form a weakened connection structure between the carrier substrate and the light-emitting chip, thereby improving the efficiency and efficiency of transferring the light-emitting chip on the chip component to the driving backplane. Yield.
  • the aforementioned first chip assembly with a space-occupying sacrificial layer is provided, and then the space-occupying sacrificial layer in the chip assembly is removed by wet etching, so that the adhesion layer forms the carrier substrate and the light-emitting chip
  • the connection between the carrier substrate and the light-emitting chip can be released by simply destroying the weakened connection structure, and the light-emitting chip can be removed from the light-emitting chip.
  • the transfer process from the carrier substrate to the driving backplane will not cause damage to the light-emitting chip.
  • the display panel preparation method can directly transfer the light-emitting chip from the growth substrate to the driving backplane, the intermediate process of using a transient substrate to transfer the light-emitting chip is omitted, simplifying the process flow, reducing production costs, and improving improve production efficiency.
  • Figure 1 is a schematic diagram of a manufacturing process of a display panel in the related art
  • Figure 2 is a schematic structural diagram of a chip component provided in an optional embodiment of the present application.
  • Figure 3 is a schematic top view of a chip assembly provided in an optional embodiment of the present application.
  • Figure 4a is a schematic diagram of an etching area on a growth substrate provided in an optional embodiment of the present application.
  • Figure 4b is a schematic diagram of an etching area on another growth substrate provided in an optional embodiment of the present application.
  • Figure 4c is a schematic diagram of an etching area on another growth substrate provided in an optional embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a chip component provided in another optional embodiment of the present application.
  • Figure 6 is a schematic flow chart of a chip component manufacturing method provided in yet another optional embodiment of the present application.
  • Figure 7 is a schematic diagram of a manufacturing process of a chip assembly provided in yet another optional embodiment of the present application.
  • Figure 8 is a schematic flow chart of a display panel preparation method provided in yet another optional embodiment of the present application.
  • FIG. 9 is a schematic diagram of a manufacturing process of a display panel provided in yet another optional embodiment of the present application.
  • 10-Red light chip 110-GaAs substrate; 111-N-type semiconductor layer; 112-Active layer; 113-P-type semiconductor layer; 114-ITO layer; 115-BCB glue layer; 116-Sapphire substrate; 117 -Temporary substrate; 118-Transfer substrate; 119-Drive backplane; 20-Chip component; 21-Carrying substrate; 22-Light-emitting chip; 220-Epitaxial layer; 221-N-type semiconductor layer; 222-Active layer; 223 -P-type semiconductor layer; 224-current expansion layer; 23-adhesion layer; 24-occupancy sacrificial layer; 241-first region; 242-second region; 25-vacant space; 40a-growth substrate; 40b- Growth substrate; 40c-growth substrate; 50-chip component; 70-growth substrate; 71-adhesive; 72-temporary substrate; 90-drive backplane; 100-display panel.
  • the preparation plan of LED high-definition display screen is to bond red, green and blue light chips to the driving backplane.
  • Each pixel is composed of at least three light-emitting chips of red, green and blue.
  • the pixels are arranged In a lattice structure, the light-emitting chip in each pixel can be driven independently and can support the adjustment of the brightness of the red, green, and blue light-emitting chips respectively.
  • red, green, and blue light-emitting chips can directly grow a GaN (gallium nitride)-based structure on a sapphire substrate, and complete the setting of chip electrodes on the sapphire substrate to prepare Output blue light chip or green light chip.
  • red light chips generally grow an AlGaInP (aluminum gallium indium phosphorus)-based structure on a GaAs (gallium arsenide) substrate 110. Please combine it with (a) in Figure 1 to gradually grow the N-type semiconductor layer 111 and the active layer 112. , P-type semiconductor layer 113, and deposit an ITO (indium tin oxide) layer 114.
  • the red light epitaxial layer is usually transferred to the sapphire substrate 116 and the preparation of the red light chip is continued: in related technologies, BCB glue is usually spin-coated on the ITO layer 114 to form the BCB glue layer 115. Please combine it with Figure 1 (b), and then use the adhesion of the BCB glue layer 115 to transfer the red epitaxial layer to the sapphire substrate 116, as shown in (c) and (d) in Figure 1 .
  • red light chip 10 After the red light epitaxial layer is transferred to the sapphire substrate 116, chip electrodes respectively connected to the two semiconductor layers will be provided to produce a red light chip 10, as shown in (e) of Figure 1.
  • the red light chip 10 After the red light chip 10 is prepared, it needs to be peeled off from the sapphire substrate 116 .
  • the most common peeling method is laser lift off (Laser Lift Off, LLO).
  • LLO Laser Lift Off
  • the essence of laser stripping is the material's absorption of laser light in a special waveband: the material absorbs photon energy, causing the electrons to transition to an excited state and eventually decompose.
  • GaN material has a high absorption rate of laser light, so it can enable the blue light chip and green light chip to be relatively completely separated from the sapphire substrate.
  • peeling off the sapphire substrate 116 is essentially to decompose the BCB glue layer 115. BCB has poor absorption of laser light.
  • the BCB glue layer 115 is decomposed by laser, and the sapphire substrate 116 is peeled off.
  • the transfer substrate 118 is bonded to the ITO layer 114 in the red light chip 10
  • the temporary bonding glue and the temporary substrate 117 are peeled off, and the transfer substrate 118 is used to
  • the red light chip 10 is transferred to the driving backplane 119.
  • the above-mentioned transfer scheme involves too many transfers, resulting in low transfer efficiency and low transfer yield of the red light chip 10. During the transfer process, the red light chip 10 is also easily damaged, affecting production efficiency.
  • the chip component 20 includes a carrier substrate 21, at least two light-emitting chips 22, an adhesion layer 23 and a sacrificial placeholder. Layer 24.
  • the light-emitting chip 22 may be a red light chip. However, in other examples of this embodiment, the light-emitting chip 22 may also be LED chips of other colors. In addition, the light-emitting chip 22 may be a Micro-LED (micro-light-emitting diode), a Mini-LED (mini-light-emitting diode), or an OLED (Organic light-emitting diode). Light-Emitting Diode, organic light-emitting semiconductor) chip.
  • the light-emitting chip 22 when the light-emitting chip 22 is transferred to the driving backplane, it must have one side facing the driving backplane. In this embodiment, for ease of introduction, this side is called the “near back side” of the light-emitting chip 22 . "board surface", at the same time, the surface of the light-emitting chip 22 opposite to the near back board surface is the “far back board surface”.
  • the light-emitting chip 22 has a flip-chip structure: please refer to Figure 2. Since the light-emitting chip 22 has a flip-chip structure, the side where the chip electrode is provided is the side near the back surface. Therefore, in Figure 2 , the far back surface of the light-emitting chip 22 faces the carrier substrate 21 .
  • the carrier substrate 21 is used to carry each light-emitting chip 22 in the chip assembly 20.
  • the carrier substrate 21 may be a sapphire substrate.
  • the carrier substrate 21 It may also be a silicon substrate, silicon nitride substrate, etc.
  • the adhesion layer 23 and the space-occupying sacrificial layer 24 are both located between the carrier substrate 21 and the light-emitting chip 22.
  • the adhesion layer 23 serves to adhere the carrier substrate 21 and the light-emitting chip 22.
  • the layer 23 may be a sticky glue material.
  • the space-occupying sacrificial layer 24 is attached to the far back surface of the light-emitting chip 22 and mainly plays the role of occupying and covering the far back surface to prevent the adhesion layer 23 from adhering to the entire area of the far back surface of the light-emitting chip 22 .
  • the presence of the space-occupying sacrificial layer 24 can reduce the contact area between the adhesion layer 23 and the light-emitting chip 22 and reduce the adhesion of the adhesion layer 23 to the light-emitting chip 22 ability.
  • the contact area between the adhesion layer 23 and the far back surface of the light-emitting chip 22 is smaller than the contact area between the space-occupying sacrificial layer 24 and the far back surface. This can ensure that the adhesion layer 23 has a positive effect on the light-emitting chip.
  • the adhesion layer 23 can be simultaneously bonded to the far back surface of the light-emitting chip 22, the side of the carrier substrate 21 facing the light-emitting chip 22, and the side of the space-occupying sacrificial layer 24 away from the light-emitting chip 22. Therefore, the contact area between the adhesive layer 23 and the far back surface of the light-emitting chip 22 is smaller than the contact area between the adhesive layer 23 and the carrier substrate 21. This can ensure that the bonding reliability between the adhesive layer 23 and the light-emitting chip 22 is less than Reliability of the bonding between the adhesion layer 23 and the carrier substrate 21 .
  • the adhesion layer 23 can be attached to the space-occupying sacrificial layer 24 and can even cover at least part of the side of the space-occupying sacrificial layer 24 facing the carrier substrate 21 , the adhesion layer 23 and the light-emitting chip 22 will not affect the space-occupying sacrificial layer 24 .
  • Layer 24 forms the full wrap. In this embodiment, there are some areas on the space-occupying sacrificial layer 24 that are in an “unobstructed state”. This area on the space-occupying sacrificial layer 24 that is in an unobstructed state is called a “second area”.
  • a certain area on the space-occupying sacrificial layer 24 is in an unobstructed state, that is, it belongs to the second area, which means that if the chip assembly 20 is immersed in a certain liquid, then this area will be in direct contact with the liquid.
  • the area where the sacrificial layer 24 is located between the two light-emitting chips 22 can be used as the second area 242 in an unobstructed state.
  • the space-occupying sacrificial layer 24 also includes a first area 241 in contact with the far back surface of the light-emitting chip 22 .
  • each first area 241 is connected to the second area 242, which means that if the chip assembly 20 is immersed in something that can corrode the sacrificial layer 24 without damaging other parts of the chip assembly 20.
  • the first area 241 will also be gradually etched away.
  • the adhesion layer 23 will form a weakened connection structure between the carrier substrate 21 and the light-emitting chip 22 .
  • the connection formed by the weakened connection structure can be destroyed in a relatively easy manner, thereby separating the light-emitting chip 22 from the carrier substrate 21 , thus reducing the risk of the light-emitting chip 22 being damaged due to transfer during the display panel preparation process. Risks are improved, the transfer yield and transfer efficiency of the light-emitting chips 22 are improved, and the manufacturing cost of the display panel is reduced.
  • the reliability of the bonding between the adhesion layer 23 and the carrier substrate 21 is higher than the reliability of the bond between the adhesion layer 23 and the light-emitting chip 22 , when the weakened connection structure is destroyed, the adhesion layer 23 will follow the carrier substrate 21 Being removed together reduces the probability that the adhesive layer 23 remains attached to the light-emitting chip 22, which is beneficial to improving the light extraction effect of the prepared display panel.
  • the arrangement of the light-emitting chips 22 on the chip assembly 20 is consistent with the arrangement of the corresponding chip receiving areas on the driving backplane.
  • the light-emitting chips 22 in the chip assembly 20 are red light chips. If the arrangement of the optical chips on the carrier substrate 21 is consistent with the arrangement of the red light chip receiving areas on the driving backplane, the light-emitting chip 22 in the chip assembly 20 can be bonded to the driving backplane first, so that the light-emitting chip 22 is fixed into the corresponding chip receiving area, and then the carrier substrate 21 is removed.
  • this embodiment does not exclude the practice of first removing the light-emitting chip 22 from the carrier substrate 21 and then transferring and bonding it to the driving backplane.
  • the space-occupying sacrificial layer 24 may be formed from a growth substrate of the light-emitting chip 22.
  • the space-occupying sacrificial layer 24 may be formed from a gallium arsenide substrate. form.
  • the space-occupying sacrificial layer 24 can be formed of any one of a sapphire substrate, a gallium nitride substrate, and a silicon substrate.
  • the space-occupying sacrificial layer 24 is formed by processing the growth substrate of the light-emitting chip 22, it means that after the light-emitting chip 22 is prepared from the growth substrate, it can be directly made into the chip assembly 20, and then After the chip component 20 is manufactured, it is directly bonded to the driving backplane without any other transfer process.
  • This not only reduces the production cost because there is no need to specially provide the space-occupying sacrificial layer 24, but also greatly reduces the number of transfers in the entire process from the preparation of the light-emitting chip 22 to the transfer to the driving backplane, avoiding the risk of damage due to excessive transfer.
  • the problem of damage to the light-emitting chip 22 improves the quality of the display panel and further reduces the manufacturing cost of the display panel.
  • the growth substrate When using the growth substrate to form the space-occupying sacrificial layer, the growth substrate can be patterned. It should be understood that the area where the growth substrate is etched away is the far back surface of the light-emitting chip 22 after the etching is completed. The exposed area will be covered by the adhesion layer 23 later.
  • the central area of the light-emitting chip 22 far from the back surface can be etched and removed.
  • the far back surface of the light-emitting chip 22 is rectangular, and the black area in the middle of the rectangle is the area where the growth substrate 40a is etched away.
  • the rectangular far back plate surface which has four inner corner areas, in other examples of this embodiment, it may be considered to remove the portion of the growth substrate located in the inner corner areas, for example, in Figure 4b Among them, the part of the growth substrate 40b covering the two inner corner areas of the light-emitting chip 22 is removed.
  • the two inner corner areas exposed after etching in FIG. 4b are located on the diagonal of the rectangular far back surface. In some other examples, this The two exposed interior corner areas can also be located on the same side of the rectangular far back panel.
  • the portions of the growth substrate that are opposite to the inner corner areas of all rectangular far back planes can be removed. As shown in FIG. 4c , the portions of the growth substrate 40c covering the four inner corner areas of the light-emitting chip 22 are all removed.
  • the exposed area on the far back surface of the light-emitting chip after etching the growth substrate can also be other areas. For example, it can be based on the shape of the far back surface of the light-emitting chip 22, the shape of the light-emitting chip 22, and the shape of the far back surface of the light-emitting chip 22. 22 on the growth substrate and other factors to determine the patterning treatment plan for the growth substrate.
  • the thickness of the space-occupying sacrificial layer 24 is smaller than the thickness of the growth substrate of the light-emitting chip 22 , that is, in the process of using the growth substrate to form the space-occupying sacrificial layer 24 , the growth substrate is thinned. Processing, for example, in some examples of this embodiment, before patterning the growth substrate, it may be thinned first, such as thinning the growth substrate by grinding. This embodiment does not exclude the practice of patterning the growth substrate first and then thinning the growth substrate. However, relatively speaking, by performing the thinning process first, the workload of patterning the growth substrate can be significantly reduced, and the efficiency of forming the space-occupying sacrificial layer 24 can be improved.
  • the chip assembly provided in this embodiment uses the space-occupying sacrificial layer to occupy the far back plate surface, thereby reducing the contact area between the adhesive layer and the light-emitting chip, and reducing the adhesion ability of the adhesive layer to the light-emitting chip.
  • wet etching is used to remove the space-occupying sacrificial layer
  • the first area in the space-occupying sacrificial layer that is in contact with the far back surface of the light-emitting chip can be removed, so that an adhesion layer can be formed between the carrier substrate and the light-emitting chip. weakened connection structure.
  • the bond between the adhesion layer and the carrier substrate is stronger than the bond between the adhesion layer and the light-emitting chip, when the connection between the carrier substrate and the light-emitting chip is damaged, the adhesion layer is more likely to follow the The load-bearing substrate comes off together. Therefore, after the light-emitting chip is bonded to the driving backplane, the connection between the carrier substrate and the light-emitting chip can be released by simply destroying the weakened connection structure, and the transfer process of the light-emitting chip from the carrier substrate to the driving backplane is completed. .
  • This transfer process is based on a weakened connection structure, which is not only easy to implement, but also causes low damage to the light-emitting chip, improving the efficiency and yield of the light-emitting chip transfer.
  • the placeholder sacrificial layer 24 in the chip assembly 20 needs to be removed first, and then the light-emitting chip 22 therein can be bonded. value driver backplane.
  • a chip assembly not including the sacrificial layer 24 is also provided, as shown in FIG. 5 , for example.
  • the difference between the chip assembly 50 shown in FIG. 5 is that the chip assembly 20 includes a space-occupying sacrificial layer 24, while the chip assembly 50 does not have a space-occupying sacrificial layer. Therefore, the chip assembly 50 may be produced by removing the placeholder sacrificial layer 24 in the chip assembly 20 .
  • the chip assembly 50 includes a carrier substrate 21 , at least two light-emitting chips 22 and an adhesive layer 23 .
  • the material of the carrier substrate 21, and the positional relationship between the light-emitting chip 22 and the carrier substrate 21 please refer to the introduction of the previous embodiments, and will not be described again here.
  • the adhesive layer 23 adheres to the far back surface of the light-emitting chip 22 and the carrier substrate 21 at the same time, and the contact area between the adhesive layer 23 and the light-emitting chip 22 is smaller than the contact area between the adhesive layer 23 and the carrier substrate 21. Therefore, during light emitting, When the chip 22 is separated from the carrier substrate 21 , the adhesive layer 23 is more likely to adhere to the carrier substrate 21 , and is separated from the light-emitting chip 22 along with the carrier substrate 21 .
  • the vacant space 25 there is a vacant space 25 between the light-emitting chip 22 and the carrier substrate 21.
  • the vacant space 25 is in contact with the far back surface of the light-emitting chip 22, and the vacant space 25 is connected to the external space, that is, the vacant space.
  • the air in 25 can circulate with the outside air, and the part of the light-emitting chip 22 far from the back panel that contacts the control space 25 can be in direct contact with the air. It can be understood that the vacant space 25 is actually the space formed by removing the space-occupying sacrificial layer.
  • the contact area between the adhesion layer 23 and the far back surface of the light-emitting chip 22 is smaller than the contact area between the vacant space 25 and the far back surface. This ensures that the adhesion layer 23 has a strong effect on the light-emitting chip 22 . With sufficient adhesion ability, the difficulty of subsequent detachment of the light-emitting chip from the adhesion layer 23 can be reduced as much as possible.
  • the adhesion layer 23 is only attached to a partial area of the far back panel edge of the light-emitting chip 22.
  • the adhesion layer 23 is simultaneously attached to the four inner corner areas of the far back panel of the light-emitting chip 22.
  • the adhesive layer 23 may also be attached to only one, two or three of the four inner corner areas. It should be understood that the adhesive layer 23 usually will not be attached to the entire area of the far back panel edge at the same time, because if the adhesive layer 23 is attached to the entire area of the far back panel edge at the same time, the adhesive layer 23 will be attached to the far back panel edge at the same time.
  • the central area of the backplane is completely surrounded, resulting in the vacant space 25 between the far backplane and the carrier substrate 21 being in a sealed state, which is difficult to achieve in terms of the preparation process of the chip assembly 50 .
  • the adhesive layer 23 may be attached to the central area of the light-emitting chip 22 far away from the back panel, while the areas other than the central area far from the back panel are exposed.
  • the arrangement of the light-emitting chips 22 on the chip assembly 50 is consistent with the arrangement of the corresponding chip receiving areas on the driving backplane.
  • the light-emitting chips 22 in the chip assembly 50 are red light chips. If the arrangement of the optical chips on the carrier substrate 21 is consistent with the arrangement of the red light chip receiving areas on the driving backplane, the light-emitting chip 22 in the chip assembly 50 can be bonded to the driving backplane first, so that the light-emitting chip 22 is fixed into the corresponding chip receiving area, and then the carrier substrate 21 is removed.
  • this embodiment does not exclude the practice of first removing the light-emitting chip 22 from the carrier substrate 21 and then transferring and bonding it to the driving backplane.
  • the adhesive layer is used to form a weakened connection structure between the carrier substrate and the light-emitting chip.
  • the light-emitting chip in the chip assembly is bonded to the driving backplane, it can be removed by simply destroying the
  • the weakened connection structure releases the connection between the carrier substrate and the light-emitting chip, and completes the transfer process of the light-emitting chip from the carrier substrate to the driving backplane.
  • This transfer process is based on a weakened connection structure, which is not only easy to implement, but also causes low damage to the light-emitting chip, improving the efficiency and yield of the light-emitting chip transfer.
  • S602 Provide an epitaxial layer located on the growth substrate.
  • the epitaxial layer 220 includes an N-type semiconductor layer 221 , an active layer 222 and a P-type semiconductor layer 223 , and the distance between the three layers and the growth substrate 70 increases in sequence. It can be understood that the epitaxial layer 220 may also include other layer structures, such as a buffer layer located between the N-type semiconductor layer 221 and the growth substrate 70 , and an electron blocking layer located between the active layer 222 and the P-type semiconductor layer 223 . layer etc. In an example of this embodiment, please continue to refer to (a) in FIG.
  • the epitaxial layer 220 also includes a current spreading layer 224 , and the current spreading layer 224 is located on the side of the P-type semiconductor layer 223 away from the growth substrate 70 , in some examples of this embodiment, the current expansion layer 224 may be a transparent conductive layer, such as an ITO (indium tin oxide) layer, etc., of course, those skilled in the art can understand that the current expansion layer 224 may also be other layers having Layer structures with good electrical conductivity, such as CNT (carbon nanotube layer) or nanosilver wire layer, etc.
  • ITO indium tin oxide
  • S604 Set N electrodes and P electrodes electrically connected to the N-type semiconductor layer and the P-type semiconductor layer respectively to form at least two light-emitting chips.
  • chip electrodes can be directly set on the epitaxial layer 220 located on the growth substrate 70 to form at least two light-emitting chips 22 on the growth substrate 70 . It can be understood that in the process of forming the light-emitting chip 22 using the epitaxial layer 220 located on the growth substrate 70, the epitaxial layer 220 must be etched. The etching of the epitaxial layer 220 includes mesa etching and trench etching.
  • the chip electrode can be formed by methods including but not limited to evaporation, PVD (Physical Vapor Deposition, physical vapor deposition), CVD (Chemical Vapor Deposition, chemical vapor deposition), etc.
  • the light-emitting chips 22 have a flip-chip structure and are provided with One side of the chip electrode faces away from the growth substrate 70 , that is, the near back surface of the light-emitting chip 22 faces away from the growth substrate 70 , and its far back surface faces toward the growth substrate 70 .
  • S606 Set an adhesive glue on the side of the growth substrate with the light-emitting chip, and adhere a temporary substrate opposite to the growth substrate through the adhesive glue.
  • an adhesive glue 71 can be provided on the side of the growth substrate 70 on which the light-emitting chip 22 is provided, and the adhesive glue 71 can be used to connect the light-emitting chip 22 with the light-emitting chip 22.
  • the temporary substrate 72 is combined together. After the temporary substrate 72 is combined, the temporary substrate 72 faces the growth substrate 70 with the light-emitting chip 22 and the adhesive glue 71 in between, as shown in (d) in FIG. 7 .
  • the adhesive glue 71 and the temporary substrate 71 are only temporarily attached to the light-emitting chip 22 and need to be removed later. Therefore, the adhesive glue 71 used in this embodiment is relatively easy to remove. material, for example, in one example, the adhesive glue 71 is pyrolytic glue.
  • S608 Pattern the growth substrate until a part of the far back surface is exposed on the growth substrate, so as to use the growth substrate to form a space-occupying sacrificial layer.
  • growth substrate 70 may be processed to utilize growth substrate 70 to form spacer sacrificial layer 24 .
  • the growth substrate 70 may be directly patterned, so that a partial area on the far back surface of the light-emitting chip is exposed from under the growth substrate 70 .
  • the growth substrate 70 may be thinned first by grinding or other methods, as shown in (e) of FIG. 7 . After the thinning process is completed, the growth substrate 70 is patterned to form a space-occupying sacrificial layer 24, as shown in (f) of Figure 7.
  • the light-emitting chip 22 is a red light chip, so , the space-occupying sacrificial layer 24 may be made of GaAs material, which is formed from the GaAs growth substrate of the red light chip.
  • the space-occupying sacrificial layer 24 may be made of GaAs material, which is formed from the GaAs growth substrate of the red light chip.
  • S610 Set an adhesion layer on the side of the light-emitting chip away from the temporary substrate, and adhere a carrier substrate opposite to the temporary substrate through the adhesion layer.
  • an adhesion layer 23 can be provided on the side of the space-occupancy sacrificial layer 24 away from the temporary substrate 72, and a carrier substrate 21 can be bonded using the adhesion layer 23.
  • the adhesive layer 23 is simultaneously attached to the exposed far back surface of the light-emitting chip 22, the side of the space-occupying sacrificial layer 24 away from the light-emitting chip 22, and the side of the carrier substrate 21 facing the light-emitting chip 22, as shown in (g in Figure 7 ). It can be understood that the material of the adhesive layer 23 is usually different from the material of the adhesive glue 71.
  • the adhesive glue 71 when the adhesive glue 71 is subsequently removed, the method of removing the adhesive glue 71 will also be effective on the adhesive layer 23, resulting in removal of the adhesive layer 23.
  • the adhesive layer 23 is also removed. Therefore, if the adhesive glue 71 is a pyrolytic glue, the adhesive layer 23 is usually an adhesive material other than pyrolytic glue, such as a BCB glue material.
  • the space-occupying sacrificial layer 24 includes a second area in an unobstructed state, and also includes a first area in contact with the far back surface of the light-emitting chip 22. In this embodiment, each first area is connected to the second area. Therefore, if the space-occupying sacrificial layer 24 is immersed in the wet etching solution, the unobstructed second area of the space-occupying sacrificial layer 24 will be wet etched.
  • the wet etching solution may also come into contact with the first region of the space-occupying sacrificial layer 24, thereby removing the portion of the first region of the space-occupying sacrificial layer 24.
  • the contact area between the adhesive layer 23 and the far back surface of the light-emitting chip 22 is smaller than the contact area between the adhesive layer 23 and the carrier substrate 21 . This can ensure that the light-emitting chip 22 is removed from the carrier substrate. When the bottom 21 is peeled off, the adhesive layer 23 will not peel off together with the light-emitting chip 22 .
  • the temporary substrate 72 is provided on the side of the growth substrate 70 where the light-emitting chip 22 is provided, mainly for the purpose of patterning the growth substrate 70 and setting the carrier substrate. 21, the temporary substrate 72 is used to support the light-emitting chip 22 to prevent the light-emitting chip 22 from being damaged during the patterning process of the growth substrate 70. Therefore, the temporary substrate 72 is provided to facilitate the growth substrate. 70 is processed to protect the light-emitting chip 22. After the space-occupying sacrificial layer 24 is formed and the carrier substrate 21 is set, the adhesive 71 and the temporary substrate 72 can be removed to obtain the chip assembly 20 , see (h) in FIG. 7 .
  • the adhesive glue 71 is a pyrolytic glue. Therefore, when the adhesive glue 71 and the temporary substrate 72 are removed, the adhesive glue 71 can be heated, so that the adhesive glue 71 gradually fails. , the adhesion force is lost, and the temporary substrate 72 and the adhesive glue 71 are detached from the light-emitting chip 22 .
  • the space-occupying sacrificial layer 24 can also be removed by wet etching, thereby producing a chip assembly 50 without the space-occupying sacrificial layer 24 .
  • This embodiment also provides a display panel preparation method, as shown in Figures 8 and 9:
  • S802 Provides a chip component with a sacrificial layer.
  • the chip component 20 is provided with a space-occupying sacrificial layer 24 , as shown in (a) in FIG. 9 .
  • the chip component 20 can be directly purchased or prepared by oneself.
  • the space-occupying sacrificial layer can be immersed in the wet etching solution until the space-occupying sacrificial layer 24 is etched and removed by the wet etching solution, as shown in (b) in FIG. 9 .
  • the entire chip component 20 can be immersed in the wet etching solution.
  • only the side of the chip component 20 provided with the space-occupying sacrificial layer 24 can be immersed in the wet etching solution.
  • some areas of the light-emitting chip 22 may still be exposed to the liquid surface. It should be understood that the wet etching solution should not damage the light-emitting chip 22, at least in a short period of time.
  • the process in S804 can be omitted.
  • S806 Bond at least two light-emitting chips in the chip assembly to the driving backplane.
  • the light-emitting chip in the chip assembly 20 can be bonded to the driving backplane, that is, the chip electrodes of the light-emitting chip 22 and the pads on the driving backplane 90 can be welded together. As shown in (c) in Figure 9.
  • the adhesive layer 23 and the carrier substrate 21 can be removed to obtain the display panel 100, as shown in (d) of FIG. 9 .
  • the adhesion layer 23 is formed of pyrolytic glue. Therefore, the adhesion layer 23 and the carrier substrate 21 can be removed by heating the adhesion layer 23 .
  • the adhesive layer 23 can be removed by laser. Therefore, the laser can also be controlled to penetrate the carrier substrate 21 to decompose the adhesive layer 23, so that the carrier substrate 21 and the adhesive layer are separated. 23 was removed.
  • the weakened connection structure between the carrying substrate 21 and the light-emitting chip 22 can be broken by applying pressure toward at least one of the carrying substrate 21 and the driving backplane, so that the carrying substrate 21 The adhesive layer 23 is separated from the light-emitting chip 22 .
  • the four inner corner areas of the far back surface of the light-emitting chip 22 are exposed to the sacrificial layer 24.
  • the adhesive layer 23 is placed on its far back surface like a four-legged table, between the adhesive layer 23 and the light-emitting chip 22 It is connected by four "table legs", so when pressure is exerted on the tabletop through the load-bearing substrate 21, and the pressure exceeds the endurance limit of the "table legs", the "table legs” will break, causing the "tabletop” and the “tabletop” to The connected carrier substrate 21 comes off together.
  • the adhesion layer 23 It is placed on the far back surface like a one-legged table.
  • the adhesive layer 23 and the light-emitting chip 22 are connected by a "table leg". Therefore, pressure is exerted on the tabletop through the carrier substrate 21, and the pressure exceeds When the "table leg" reaches its bearing limit, the "table leg” will also break, so that most of the adhesive layer 23 will be removed together with the carrier substrate 21 .
  • FIG. 8 shows only one application solution of the chip assembly 20.
  • the light-emitting chip 22 can also be picked up from the carrier substrate 21 first, and then the light-emitting chip 22 can be removed. 22 Transfer to the drive backplane to complete bonding.
  • the chip component preparation method and the display panel preparation method provided in this embodiment directly use the growth substrate of the light-emitting chip to form the space-occupying sacrificial layer. Therefore, from the time the epitaxial layer of the light-emitting chip is grown on the growth substrate to the completion of the chip component preparation , no substrate transfer is required for the epitaxial layer, which avoids multiple transfer processes in the preparation process of related display panels, reduces the difficulty of preparing display panels, and also avoids damage to the light-emitting chips caused by multiple transfers, improving the The display panel preparation efficiency reduces production costs.
  • the adhesion layer forms a weakened connection structure between the carrier substrate and the light-emitting chip, thereby improving the efficiency and yield of transferring the light-emitting chip on the chip assembly to the driving backplane.

Abstract

本申请涉及一种芯片组件及其制备方法、显示面板制备方法,该芯片组件,包括:承载衬底、位于承载衬底上的至少两颗发光芯片、位于承载衬底与发光芯片之间的粘附层与占位牺牲层;其中,粘附层同时粘接远背板面与承载衬底,且粘附层与远背板面的接触面积小于其与承载衬底的接触面积;占位牺牲层附着在远背板面上,且占位牺牲层包括与远背板面接触的第一区域以及处于无遮挡状态的第二区域,第一区域与第二区域连通。

Description

一种芯片组件及其制备方法、显示面板制备方法 技术领域
本申请涉及LED技术领域,尤其涉及一种芯片组件及其制备方法、显示面板制备方法。
背景技术
目前,LED高清显示方案中都离不开红光、绿光以及蓝光芯片。这三种颜色的LED芯片制备完成后会被从衬底上转移到驱动背板上,转移过程中需要通过激光解除LED芯片与衬底之间的结合,该工艺过程对于蓝光芯片或绿光芯片而言,成熟简单。但对于红光芯片而言,因为红光外延层实际上是通过BCB(苯并环丁烯)胶粘接在衬底上的,因此,剥离衬底实际上就是通过激光分解BCB胶层从而解除其对红光LED芯片与衬底的粘接结合。但BCB胶对激光的吸收较差,所以往往需要使用较高的激光能量,利用激光的物理冲击作用使BCB胶发生碳化而分解,但过高的激光能量容易损伤红光芯片;如果出于降低激光对红光芯片损伤风险而减小激光能量,又会导致红光芯片的激光剥离工艺窗口被极大的缩减。所以目前红光芯片转移到驱动背板过程存在转移难度大,转移良率不高的问题。
因此,如何降低红光芯片转移到驱动背板的难度,提升其转移良率是目前亟待解决的问题。
技术问题
鉴于上述相关技术的不足,本申请的目的在于提供一种芯片组件及其制备方法、显示面板制备方法,旨在解决目前红光芯片转移到驱动背板时难度大,良率不高的问题。
技术解决方案
本申请提供一种芯片组件,包括:
承载衬底;
位于承载衬底上的至少两颗发光芯片;以及
位于承载衬底与发光芯片之间的粘附层与占位牺牲层;
其中,发光芯片上被配置为朝向驱动背板的一面为近背板面,与近背板面相对的一面为远背板面,远背板面朝向承载衬底;粘附层同时粘接远背板面与承载衬底,且粘附层与远背板面的接触面积小于其与承载衬底的接触面积;占位牺牲层附着在远背板面上,且占位牺牲层包括与远背板面接触的第一区域以及处于无遮挡状态的第二区域,第一区域与第二区域连通。
基于同样的发明构思,本申请还提供另一种芯片组件,包括:
承载衬底;
位于承载衬底上的至少两颗发光芯片;以及
位于承载衬底与发光芯片之间且被配置为粘附二者的粘附层;
其中,发光芯片上被配置为朝向驱动背板的一面为近背板面,与近背板面相对的一面为远背板面,远背板面朝向承载衬底;粘附层与远背板面的接触面积小于其与承载衬底的接触面积;发光芯片与承载衬底之间存在空置空间,空置空间与远背板面接触,且空置空间与外部空间连通。
基于同样的发明构思,本申请还提供一种芯片组件制备方法,应用于前述第一种芯片组件的制备,该芯片组件制备方法包括:
提供一位于生长衬底上的外延层,外延层包括与生长衬底的距离依次增大的N型半导体层、有源层与P型半导体层;
分别设置与N型半导体层、P型半导体层电连接的N电极、P电极,以形成至少两颗发光芯片,发光芯片上朝向生长衬底的一面为远背板面;
在生长衬底设有发光芯片的一侧设置粘接胶,并通过粘接胶粘附一与生长衬底相对的临时衬底;
对生长衬底进行图案化处理至远背板面的部分区域外露于生长衬底,以利用生长衬底形成占位牺牲层;
在发光芯片远离临时衬底的一侧设置粘附层,并通过粘附层粘附一与临时衬底相对的承载衬底,粘附层与远背板面的接触面积小于其与承载衬底的接触面积;设置粘附层后,占位牺牲层包括与远背板面接触的第一区域以及处于无遮挡状态的第二区域,第一区域与第二区域连通;
去除粘接胶与临时衬底,以制得芯片组件。
基于同样的发明构思,本申请还提供一种显示面板制备方法,包括:
提供一前述第一种芯片组件;
将占位牺牲层浸于湿法刻蚀溶液中,直至占位牺牲层被腐蚀去除;
将芯片组件中的至少两颗发光芯片键合至驱动背板;
去除粘附层与承载衬底,以制得显示面板。
有益效果
上述芯片组件中,至少两颗发光芯片通过粘附层粘接在承载衬底上,在发光芯片与承载衬底之间设有占位牺牲层,占位牺牲层附着在发光芯片的远背板面上。由于占位牺牲层在远背板面上的占位,使得粘附层不可能粘附发光芯片远背板面的全部区域,减小了粘附层与发光芯片间的接触面积,也就减小了粘附层对发光芯片的粘附能力。同时,因为占位牺牲层包括与远背板面接触的第一区域及处于无遮挡状态的第二区域,采用湿法刻蚀去除占位牺牲层时,不仅占位牺牲层中处于无遮挡状态的第二区域可以被去除,而且,因为第一区域与第二区域连通,因此第一区域也可以被去除。在占位牺牲层中与远背板面接触的第一区域被去除后,粘附层就形成了承载衬底与发光芯片之间的弱化连接结构。而且由于粘附层与发光芯片的接触面积小于其与承载衬底的接触面积,因此粘附层与承载衬底之间的结合比粘附层与发光芯片之间的结合更牢靠,因此当承载衬底与发光芯片之间的连接被破坏后,粘附层更容易随着承载衬底一起脱落。故,将发光芯片键合到驱动背板上以后,可以通过简单地破坏该弱化连接结构来解除承载衬底与发光芯片之间的连接,完成发光芯片从承载衬底到驱动背板的转移过程。该转移过程基于弱化连接结构实现,不仅易于实现,而且对发光芯片的损伤低,提升了发光芯片转移的效率与良率。
上述芯片组件中,至少两颗发光芯片通过粘附层粘接在承载衬底上,在发光芯片与承载衬底之间存在空置空间,空置空间与发光芯片的远背板面接触。由于空置空间的存在,使得粘附层没有粘附到发光芯片远背板面的全部区域,减小了粘附层与发光芯片间的接触面积,也就减小了粘附层对发光芯片的粘附能力,粘附层作为承载衬底与发光芯片之间的弱化连接结构存在。而且由于粘附层与发光芯片的接触面积小于其与承载衬底的接触面积,因此粘附层与承载衬底之间的结合比粘附层与发光芯片之间的结合更牢靠,因此当承载衬底与发光芯片之间的连接被破坏后,粘附层更容易随着承载衬底一起脱落。故,在将芯片组件中的发光芯片键合到驱动背板上以后,可以通过简单地破坏该弱化连接结构来解除承载衬底与发光芯片之间的连接,完成发光芯片从承载衬底到驱动背板的转移过程。该转移过程基于弱化连接结构实现,不仅易于实现,而且对发光芯片的损伤低,提升了发光芯片转移的效率与良率。
上述芯片组件制备方法中,获得带有生长衬底的外延层后,可以直接在生长衬底上制作发光芯片的电极,从而在生长衬底上形成至少两颗发光芯片。接着利用粘接胶将临时衬底粘接到发光芯片上,使得临时衬底与生长衬底相对。随后对生长衬底进行图案化处理,直接利用生长衬底形成占位牺牲层,并在发光芯片远离临时衬底的一侧设置粘附层,利用粘附层粘接发光芯片与承载衬底,随后去除粘接胶与临时衬底,得到芯片组件。该芯片组件制备方法中,直接利用发光芯片的生长衬底形成了占位牺牲层,所以从发光芯片的外延层从生长衬底上生长完成,到芯片组件制备完成,都不需要对外延层进行衬底转移,发光芯片实现了直接从生长衬底到驱动背板的转移,避免了相关显示面板制备过程中的多次转移过程,降低了显示面板的制备难度,提升了生长效率。同时,因为生长衬底直接形成了占位牺牲层,这也进一步降低了生产成本。当然芯片组件制备方法制得的芯片组件同样可以利用占位牺牲层使得粘附层在承载衬底与发光芯片之间形成弱化连接结构,进而提升芯片组件上发光芯片向驱动背板转移的效率与良率。
上述显示面板制备方法中,首先提供前述第一种带有占位牺牲层的芯片组件,然后通过湿法刻蚀去除芯片组件中的占位牺牲层,使得粘附层形成承载衬底与发光芯片之间的弱化连接结构,在将芯片组件中的发光芯片键合到驱动背板上以后,可以通过简单地破坏该弱化连接结构来解除承载衬底与发光芯片之间的连接,完成发光芯片从承载衬底到驱动背板的转移过程,该过程不会对发光芯片造成损伤。另外,因为该显示面板制备方法中可以直接将发光芯片从生长衬底上转移到驱动背板上,省略了中间采用暂态基板转移发光芯片的过程,简化了工艺流程,降低了生产成本,提升了生产效率。
附图说明
图1为相关技术中显示面板的一种制程示意图;
图2为本申请一可选实施例中提供的一种芯片组件的结构示意图;
图3为本申请一可选实施例中提供的芯片组件的一种俯视示意图;
图4a为本申请一可选实施例中提供的一种生长衬底上刻蚀区域的一种示意图;
图4b为本申请一可选实施例中提供的另一种生长衬底上刻蚀区域的一种示意图;
图4c为本申请一可选实施例中提供的又一种生长衬底上刻蚀区域的一种示意图;
图5为本申请另一可选实施例中提供的一种芯片组件的结构示意图;
图6为本申请又一可选实施例中提供的芯片组件制备方法的一种流程示意图;
图7为本申请又一可选实施例中提供的芯片组件的一种制程示意图;
图8为本申请又一可选实施例中提供的显示面板制备方法的一种流程示意图;
图9为本申请又一可选实施例中提供的显示面板的一种制程示意图。
附图标记说明:
10-红光芯片;110-GaAs衬底;111-N型半导体层;112-有源层;113-P型半导体层;114-ITO层;115-BCB胶层;116-蓝宝石衬底;117-临时基板;118-转移基板;119-驱动背板;20-芯片组件;21-承载衬底;22-发光芯片;220-外延层;221-N型半导体层;222-有源层;223-P型半导体层;224-电流扩展层;23-粘附层;24-占位牺牲层;241-第一区域;242-第二区域;25-空置空间;40a-生长衬底;40b-生长衬底;40c-生长衬底;50-芯片组件;70-生长衬底;71-粘接胶;72-临时衬底;90-驱动背板;100-显示面板。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
目前,LED高清显示屏的制备方案中是将红光、绿光以及蓝光芯片键合到驱动背板上,每个像素点至少由红光、绿光、蓝光三颗发光芯片组成,像素点排列成点阵结构,每个像素点中的发光芯片可以被单独驱动并可以支持分别调节红光、绿光、蓝光发光芯片的亮度。
在制备红光、绿光、蓝光芯片时,蓝光、绿光发光芯片可直接在蓝宝石衬底上生长GaN(氮化镓)基结构,并在该蓝宝石衬底上完成芯片电极的设置,从而制备出蓝光芯片或绿光芯片。但红光芯片一般在GaAs(砷化镓)衬底110上生长AlGaInP(铝镓铟磷)基结构,请结合图1中的(a),逐步生长出N型半导体层111、有源层112、P型半导体层113,并沉积ITO(氧化铟锡)层114。随后通常会将红光外延层转移至蓝宝石衬底116后继续完成红光芯片的制备:相关技术中通常是采用在ITO层114上旋涂BCB胶形成BCB胶层115,请结合图1中的(b),然后利用BCB胶层115的粘合性将红光外延层转移至蓝宝石衬底116,如图1中的(c)与(d)所示。
红光外延层转移至蓝宝石衬底116后,将会设置分别与两个半导体层连接的芯片电极,从而制得红光芯片10,如图1中的(e)所示。红光芯片10制备完成后,需要将其从蓝宝石衬底116上剥离下来。目前最常见的剥离方式是激光剥离(Laser Lift Off,LLO)。激光剥离的实质是因为材料对特殊波段激光的吸收:材料吸收光子能量,从而电子跃迁至激态,最终分解。蓝光芯片、绿光芯片中因为是直接采用激光分解GaN,利用GaN→Ga+N 2的原理使得蓝宝石衬底与发光芯片分离。GaN材料对激光的吸收率高,因此可以使得蓝光芯片、绿光芯片能够较为彻底地从蓝宝石基板上脱离。但对于红光芯片10,剥离蓝宝石衬底116实质就是分解BCB胶层115,BCB对激光的吸收较差,该过程纯粹是靠物理冲击作用使BCB胶发生碳化而分解,如图1中的(g),此种情况下,不仅容易出现残胶或者去胶不完全的问题,更重要的是,激光会对红光芯片10造成损伤,从而影响红光芯片10的品质。除此以外,相关技术中红光芯片10在蓝宝石衬底116上制备出芯片电极之后,需要经历多次转移过程才能被转移到驱动背板上,例如,在图1的(f)中,将制备出芯片电极的红光芯片10与通过临时键合胶与临时基板117键合,然后在图1的(g)中通过激光分解BCB胶层115,剥离蓝宝石衬底116。随后图1的(h)中将转移基板118与红光芯片10中的ITO层114键合,并在图1的(i)中剥离临时键合胶与临时基板117,并利用转移基板118将红光芯片10转移到驱动背板119上。上述转移方案中转移次数过多,导致红光芯片10的转移效率与转移良率均不高,在转移过程中,红光芯片10也容易被损坏,影响生产效率。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本申请一可选实施例:
本实施例有限提供一种芯片组件,请参见图2示出的该芯片组件的一种结构示意图:芯片组件20包括承载衬底21、至少两颗发光芯片22以及粘附层23和占位牺牲层24。
其中发光芯片22可以为红光芯片,不过,在本实施例的其他一些示例中,发光芯片22也可以为其他颜色的LED芯片。另外,发光芯片22可以为Micro-LED(微发光二极管)、Mini-LED(迷你发光二极管),或者是OLED(Organic Light-Emitting Diode,有机发光半导体)芯片。
可以理解的是,当发光芯片22被转移到驱动背板后,其必然有一个面是朝向驱动背板的,在本实施例中为了便于介绍而将该面称为发光芯片22的“近背板面”,同时,发光芯片22上与该近背板面相对的一个面为“远背板面”。以发光芯片22为倒装结构进行示例性说明:请参见图2,由于发光芯片22是倒装结构,因此,其设有芯片电极的一面即为其近背板面,所以,在图2中,发光芯片22的远背板面朝向承载衬底21。
承载衬底21用于承载芯片组件20中的各发光芯片22,在本实施例的一些示例中,承载衬底21可以为蓝宝石基板,不过在本实施例的另外一些示例中,承载衬底21也可以为硅衬底、氮化硅衬底等。
粘附层23与占位牺牲层24均位于承载衬底21与发光芯片22之间,在本实施例中,粘附层23起到了粘附承载衬底21与发光芯片22的作用,粘附层23可以为具有黏性的胶材。占位牺牲层24附着在发光芯片22的远背板面上,其主要起到占据、遮掩远背板面的作用,避免粘附层23粘接发光芯片22远背板面的全部区域。所以占位牺牲层24的存在的情况相较于不设置占位牺牲层24的情况,可以减小粘附层23与发光芯片22的接触面积,降低粘附层23对发光芯片22的粘附能力。在本实施例的一些示例中,粘附层23与发光芯片22远背板面的接触面积小于占位牺牲层24与远背板面的接触面积,这样可以在保证粘附层23对发光芯片22具有足够粘附能力的情况下尽可能地降低后续发光芯片从粘附层23上脱离的难度。在本实施例中,粘附层23可以同时粘接在发光芯片22的远背板面上、承载衬底21朝向发光芯片22的一面上以及占位牺牲层24远离发光芯片22的一面上,所以,粘附层23与发光芯片22远背板面的接触面积小于粘附层23同承载衬底21间的接触面积,这样可以保证粘附层23与发光芯片22之间的结合可靠性小于粘附层23与承载衬底21间结合的可靠性。
虽然粘附层23可以附着在占位牺牲层24上,甚至可以覆盖占位牺牲层24朝向承载衬底21一面的至少部分区域,但是粘附层23与发光芯片22并不会对占位牺牲层24形成全包裹。本实施例中,占位牺牲层24上存在部分区域处于“无遮挡状态”,这里将占位牺牲层24上这种处于无遮挡状态的区域称为“第二区域”。可以理解的是,占位牺牲层24上某一区域处于无遮挡状态,即属于第二区域,则说明如果将芯片组件20浸于某种液体中,那么该区域将可以直接与液体接触。请结合图3示出的芯片组件20的一种俯视示意图:占位牺牲层24处于两颗发光芯片22之间区域就可以作为其处于无遮挡状态的第二区域242。占位牺牲层24上除了第二区域以外,还包括与发光芯片22的远背板面接触的第一区域241。在本实施例中,每一个第一区域241均与第二区域242连通,这就意味着,如果将芯片组件20浸于某种可以腐蚀占位牺牲层24而不会损坏芯片组件20中其他结构的液体中,则在占位牺牲层24的第二区域242被腐蚀之后,第一区域241也将被逐步腐蚀去除。
可以理解的是,在芯片组件20中的占位牺牲层24被去除之后,粘附层23将形成承载衬底21与发光芯片22之间的弱化连接结构。这种情况下,可以以相对容易的方式破坏该弱化连接结构形成的连接,从而使得发光芯片22与承载衬底21分离,这样降低了发光芯片22在显示面板制备过程中因转移而遭遇损坏的风险,提升了发光芯片22的转移良率与转移效率,降低了显示面板的制备成本。另外,因为粘附层23与承载衬底21间结合的可靠性高于其与发光芯片22间结合的可靠性,因此在弱化连接结构被破坏时,粘附层23会随着承载衬底21一起被去除,减小了粘附层23附着残留于发光芯片22上的概率,有利于提升所制备显示面板的出光效果。
在本实施例的一些示例中,芯片组件20上发光芯片22的排布与驱动背板上对应的芯片接收区的排布一致,例如,芯片组件20中的发光芯片22为红光芯片,红光芯片在承载基板21上的排布,与驱动背板上各红光芯片接收区的排布一致,则可以先将芯片组件20中的发光芯片22与驱动背板键合,让发光芯片22被固定到对应的芯片接收区中,然后再去除承载衬底21。当然,本实施例也并不排除先将发光芯片22从承载衬底21上取下,然后再转移键合至驱动背板的做法。
在本实施例的一些示例中,占位牺牲层24可以是由发光芯片22的生长衬底形成,例如,如果发光芯片22为红光芯片,则占位牺牲层24可以由砷化镓衬底形成。当然,如果发光芯片22为其他颜色的芯片,例如蓝光芯片或绿光芯片,则占位牺牲层24则可以由蓝宝石基板、氮化镓基板、硅基板几种中的任意一种形成。应当明白的是,如果占位牺牲层24由发光芯片22的生长衬底经处理形成,则说明发光芯片22在从生长衬底上制备完成以后,可以被直接被制成芯片组件20,并在制成芯片组件20之后不经其他转移过程而直接被键合到驱动背板上。这样不仅因为不用专门设置占位牺牲层24而降低了生产成本,而且极大地减小了发光芯片22从制备完成,到转移至驱动背板整个过程中的转移次数,避免了因转移过多而对发光芯片22造成损坏的问题,提升了显示面板的品质,进一步降低了显示面板的制备成本。
在利用生长衬底形成占位牺牲层时,可以对生长衬底进行图案化处理,应当理解的是,生长衬底被刻蚀掉的区域,也即刻蚀完成后发光芯片22远背板面上外露的区域,后续会被粘附层23覆盖,因此在对生长衬底进行图案化处理时,应当保证生长衬底刻蚀完成后,每一颗发光芯片22的远背板面均有部分区域外露,但同时远背板面上也有部分区域依旧被生长衬底覆盖,这样才能确保每一颗发光芯片22均能与粘附层23接触,但每一颗发光芯片22的远背板面又不至于被粘附层23完全覆盖。在本实施例的一些的示例中,可以将发光芯片22远背板面的中心区域刻蚀去除,例如,请参见图4a示出的一种生长衬底40a被刻蚀区域的一种示意图,在图4a当中,发光芯片22的远背板面呈矩形,矩形中间的黑色区域为生长衬底40a被刻蚀掉的区域。毫无疑义的是,对于矩形的远背板面,其具有四个内角区域,在本实施例的另外一些示例中,可以考虑将生长衬底位于内角区域中的部分去除,例如,在图4b当中,生长衬底40b覆盖发光芯片22两个内角区域的部分被去除,在图4b刻蚀后外露的两个内角区域位于矩形远背板面的对角线上,在其他一些示例中,这两个外露的内角区域也可以位于矩形远背板面的同一边上。还有一些示例中,可以将生长衬底与所有矩形远背板面内角区域相对的部分均去除,如图4c所示,生长衬底40c覆盖发光芯片22四个内角区域的部分均被去除。除此以外,在本实施例的其他示例中,刻蚀生长衬底后发光芯片远背板面上外露的区域也可以是其他区域,例如可以根据发光芯片22远背板面的形状、发光芯片22在生长衬底上的排布等因素来确定针对生长衬底的图案化处理方案。
在本实施例的一些示例中,占位牺牲层24的厚度小于发光芯片22生长衬底的厚度,也即在利用生长衬底形成占位牺牲层24的过程中,会生长衬底进行减薄处理,例如,在本实施例的一些示例中,可以在对生长衬底进行图案化处理之前,先对其进行减薄处理,如以研磨的方式打薄生长衬底。本实施例中也并不排除先对生长衬底进行图案化处理,然后再对生长衬底进行打薄处理的做法。不过,相对而言,先进行薄化处理后,可以较为显著地减少图案化处理生长衬底的工作量,提升形成占位牺牲层24的效率。
本实施例提供的芯片组件,利用占位牺牲层在远背板面上的占位,减小了粘附层与发光芯片间的接触面积,降低了粘附层对发光芯片的粘附能力。同时,因为采用湿法刻蚀去除占位牺牲层时,占位牺牲层中与发光芯片远背板面接触的第一区域可以被去除,可以使得粘附层形成承载衬底与发光芯片之间的弱化连接结构。而且由于粘附层与承载衬底之间的结合比粘附层与发光芯片之间的结合更牢靠,因此当承载衬底与发光芯片之间的连接被破坏后,粘附层更容易随着承载衬底一起脱落。故,将发光芯片键合到驱动背板上以后,可以通过简单地破坏该弱化连接结构来解除承载衬底与发光芯片之间的连接,完成发光芯片从承载衬底到驱动背板的转移过程。该转移过程基于弱化连接结构实现,不仅易于实现,而且对发光芯片的损伤低,提升了发光芯片转移的效率与良率。
 本申请另一可选实施例:
请继续参见图2,可以理解的是,前述实施例中提供的芯片组件20在应用过程中,需要先将芯片组件20中的占位牺牲层24去除,然后才能将其中的发光芯片22键合值驱动背板上。在本实施例中,还提供一种不包括占位牺牲层24的芯片组件,例如请参见图5所示。图5示出的芯片组件50与前述实施例中提供的芯片组件20相比,区别在于芯片组件20中包括占位牺牲层24,而芯片组件50中不存在占位牺牲层,因此,芯片组件50可以通过去除芯片组件20中的占位牺牲层24制得。
请参见图5所示,芯片组件50中包括承载衬底21、至少两颗发光芯片22以及粘附层23。对于发光芯片22的具体结构、承载衬底21的材质以及发光芯片22与承载衬底21间的位置关系等请参见前述实施例的介绍,这里不再赘述。粘附层23同时粘接发光芯片22的远背板面与承载衬底21,并且粘附层23与发光芯片22间的接触面积小于其与承载衬底21间的接触面积,因此,在发光芯片22与承载衬底21分离的情况下,粘附层23更容易附着在承载衬底21,随着承载衬底21一起与发光芯片22分离。
芯片组件50中,在发光芯片22与承载衬底21之间,该存在空置空间25,空置空间25与发光芯片22的远背板面接触,且空置空间25与外部空间连通,也即空置空间25内的空气可以和外部空气流通,发光芯片22远背板面与控制空间25接触的部分可以直接与空气接触。可以理解的是,空置空间25实际上就是通过去除占位牺牲层后形成的空间。
在本实施例的一些示例中,粘附层23与发光芯片22远背板面的接触面积小于空置空间25与远背板面的接触面积,这样可以在保证粘附层23对发光芯片22具有足够粘附能力的情况下尽可能地降低后续发光芯片从粘附层23上脱离的难度。
在本实施例的一些示例中,粘附层23仅附着在发光芯片22远背板面边缘的部分区域,例如,粘附层23同时附着在发光芯片22远背板面的四个内角区域,另一些示例中,粘附层23也可以仅附着在四个内角区域中的一个、两个或三个内角区域上。应当理解的是,粘附层23通常不会同时附着在远背板面边缘的全部区域,因为如果粘附层23同时附着在远背板面边缘的全部区域,则粘附层23将对远背板面中心区域形成全包围,导致远背板面与承载衬底21之间的空置空间25将处于密闭状态,这从芯片组件50的制备过程来说是难以实现的。还有一些示例中,粘附层23可以附着在发光芯片22远背板面的中心区域,而远背板面中心区域以外的区域均处于外露状态。
毫无疑义的是,获取到芯片组件50后并将其投入应用的过程中,可以不用再进行去除占位牺牲层的过程。在本实施例的一些示例中,芯片组件50上发光芯片22的排布与驱动背板上对应的芯片接收区的排布一致,例如,芯片组件50中的发光芯片22为红光芯片,红光芯片在承载基板21上的排布,与驱动背板上各红光芯片接收区的排布一致,则可以先将芯片组件50中的发光芯片22与驱动背板键合,让发光芯片22被固定到对应的芯片接收区中,然后再去除承载衬底21。当然,本实施例也并不排除先将发光芯片22从承载衬底21上取下,然后再转移键合至驱动背板的做法。
本实施例提供的芯片组件中,利用粘附层形成了承载衬底与发光芯片之间的弱化连接结构,在将芯片组件中的发光芯片键合到驱动背板上以后,可以通过简单地破坏该弱化连接结构来解除承载衬底与发光芯片之间的连接,完成发光芯片从承载衬底到驱动背板的转移过程。该转移过程基于弱化连接结构实现,不仅易于实现,而且对发光芯片的损伤低,提升了发光芯片转移的效率与良率。
 本申请又一可选实施例:
本实施例中将对前述实施例中芯片组件的制备方法进行阐述,请参见图6示出的芯片组件制备方法的流程示意图,以及图7示出的芯片组件的制程示意图:
S602:提供一位于生长衬底上的外延层。
请参见图7中的(a),外延层220包括N型半导体层221、有源层222与P型半导体层223,三者与生长衬底70的距离依次增大。可以理解的是,外延层220中还可以包括其他层结构,例如位于N型半导体层221与生长衬底70之间的缓冲层、位于有源层222与P型半导体层223之间的电子阻挡层等。在本实施例的一种示例中,请继续参见图7中的(a),外延层220中还包括电流扩展层224,电流扩展层224位于P型半导体层223远离生长衬底70的一侧,在本实施例的一些示例中,电流扩展层224可以为透明导电层,例如ITO(氧化铟锡)层等,当然,本领域技术人员可以理解的是,电流扩展层224也可以为其他具有良好导电能力的层结构,例如CNT(碳纳米管层)或纳米银线层等。
S604:分别设置与N型半导体层、P型半导体层电连接的N电极、P电极,以形成至少两颗发光芯片。
在本实施例中,获得位于生长衬底70上的外延层220之后,可以直接在位于生长衬底70的外延层220上设置芯片电极,以在生长衬底70上形成至少两颗发光芯片22。可以理解的是,利用位于生长衬底70上的外延层220形成发光芯片22的过程中,必然要对外延层220进行刻蚀处理,对外延层220的刻蚀包括台面刻蚀与沟槽刻蚀,通过沟槽刻蚀将大面积的外延层220划分为至少两个独立的子外延层,利用台面刻蚀使得N电极与P电极的电极设置区外露,如图7中的(b)所示。随后,在N电极设置区中设置与N型半导体层221电连接的N电极,在P电极设置区中设置与P型半导体层电连接的P电极。可选地,在本实施例的一种示例中,芯片电极可以采用包括但不限于蒸镀、PVD(Physical Vapor Deposition,物理气相沉积)、CVD(Chemical Vapor Deposition,化学气相沉积)等方式中的任意一种设置。芯片电极设置完成后,可以得到位于生长衬底70上的至少两颗发光芯片22,如图7中的(c)所示,在本实施例中,发光芯片22为倒装结构,其设有芯片电极的一面背向生长衬底70,也即发光芯片22的近背板面背向生长衬底70,其远背板面朝向生长衬底70。
S606:在生长衬底设有发光芯片的一侧设置粘接胶,并通过粘接胶粘附一与生长衬底相对的临时衬底。
在本实施例中,在生长衬底70完成发光芯片22的制备后,可以在生长衬底70设有发光芯片22的一侧设置粘接胶71,并利用粘接胶71将发光芯片22与临时衬底72结合在一起,结合临时衬底72后,临时衬底72与生长衬底70相对,二者将发光芯片22以及粘接胶71加在中间,如图7中的(d)。在本实施例中,粘接胶71与临时衬底71仅仅是临时附着在发光芯片22上,后续还需要被去除,因此,本实施例中所使用的粘接胶71是比较便于去除的胶材,例如,在一种示例中,粘接胶71为热解胶。
S608:对生长衬底进行图案化处理至远背板面的部分区域外露于生长衬底,以利用生长衬底形成占位牺牲层。
在设置临时衬底72之后,可以对生长衬底70进行处理,以利用生长衬底70形成占位牺牲层24。在本实施例的一些示例中,可以直接对生长衬底70进行图案化处理,从而使得发光芯片远背板面上的部分区域从生长衬底70下外露出来。还有一些示例中,可以先通过研磨等方式对生长衬底70进行减薄处理,如图7中的(e)所示。在减薄处理完成之后,再对生长衬底70进行图案化处理,以形成占位牺牲层24,如图7中的(f)所示,一些示例中,发光芯片22为红光芯片,因此,占位牺牲层24可以为GaAs材质,其由红光芯片的GaAs生长衬底形成。在本实施例中,对减薄后的生长衬底进行图案化处理时,需要确保各发光芯片22的远背板面均分别外露一部分,例如一个示例中,远背板面的四个内角区域均外露于生长衬底;另一个示例中,远背板面的中心区域外露于生长衬底。应当理解的是,图7(f)中并没有去除远背板面边缘区域中的全部生长衬底70,仅仅是去除了远背板面边缘区域中部分区域内的生长衬底70。
S610:在发光芯片远离临时衬底的一侧设置粘附层,并通过粘附层粘附一与临时衬底相对的承载衬底。
对生长衬底70进行处理形成占位牺牲层24之后,可以在占位牺牲层24远离临时衬底72的一侧设置粘附层23,并利用粘附层23粘接一承载衬底21,粘附层23同时附着在发光芯片22外露的远背板面上、占位牺牲层24远离发光芯片22的一面上以及承载衬底21朝向发光芯片22的一面上,如图7中的(g)。可以理解的是,粘附层23的材质通常与粘接胶71的材质不同,否则在后续去除粘接胶71的时候,去除粘接胶71的手段同样会对粘附层23有效,导致去除粘接胶71时粘附层23也一并被去除。因此,如果粘接胶71为热解胶,则粘附层23通常是热解胶以外的其他胶材,例如BCB胶材。
在本实施例中,设置粘附层23后,占位牺牲层24包括处于无遮挡状态的第二区域,另外还包括与发光芯片22的远背板面接触的第一区域,在本实施例中,各第一区域均与第二区域连通,因此,如果将占位牺牲层24浸于湿法刻蚀溶液中,则占位牺牲层24中处于无遮挡状态的第二区域被湿法刻蚀溶液刻蚀掉以后,湿法刻蚀溶液也可以与占位牺牲层24的第一区域接触,从而将占位牺牲层24第一区域内的部分也去除。
在本实施例的一些示例中,粘附层23与发光芯片22远背板面间的接触面积小于粘附层23与承载衬底21间的接触面积,这样可以保证发光芯片22在从承载衬底21上脱落时,粘附层23不至于随着发光芯片22一起脱落。
S612:去除粘接胶与临时衬底,以制得芯片组件。
在本实施例中,之所以要在生长衬底70设置有发光芯片22的一侧设置临时衬底72,主要是为了在对生长衬底70进行图案化处理的过程中以及在设置承载衬底21的过程中,利用临时衬底72对发光芯片22进行承载支撑,避免发光芯片22在图案化处理生长衬底70的过程中受损,所以临时衬底72的设置是为了便于对生长衬底70进行处理,保护发光芯片22。在占位牺牲层24形成,且承载衬底21设置完成之后,可以去除粘接胶71与临时衬底72,从而得到芯片组件20,请参见图7中的(h)。
在本实施例的一些示例中,粘接胶71为热解胶,因此,在去除粘接胶71与临时衬底72时,可以对粘接胶71进行加热,从而使得粘接胶71逐渐失效,失去粘附力,进而使得临时衬底72与粘接胶71从发光芯片22上脱落。
可以理解的是,在制得带有占位牺牲层24的芯片组件20之后,还可以通过湿法刻蚀去除占位牺牲层24,从而制得不带有占位牺牲层24的芯片组件50。
本实施例还提供一种显示面板制备方法,请参见图8与图9所示所示:
S802:提供一带有占位牺牲层的芯片组件。
在本实施例中,提供的芯片组件20中带有占位牺牲层24,如图9中的(a)所示,该芯片组件20可以直接通过购买,或者自己制备得到。
S804:将占位牺牲层浸于湿法刻蚀溶液中,直至占位牺牲层被腐蚀去除。
随后,可以将占位牺牲层浸于湿法刻蚀溶液中,直至占位牺牲层24被湿法刻蚀溶液腐蚀去除,如图9中的(b)所示。在本实施例的一些示例中,可以将芯片组件20整体浸于湿法刻蚀溶液中,还有一些示例中,可以仅将芯片组件20设有占位牺牲层24的一侧浸于湿法刻蚀溶液中,发光芯片22上部分区域仍可以外露于液面。应当理解的是,湿法刻蚀溶液应当不会损伤发光芯片22,至少在短时间内不会损伤发光芯片22。
毫无疑义的是,如果提供的芯片组件是前述实施例中不带有占位牺牲层的芯片组件,则S804中的过程可以省略。
S806:将芯片组件中的至少两颗发光芯片键合至驱动背板。
在本实施例中,去除占位牺牲层24之后,可以将芯片组件20中的发光芯片键合至驱动背板,即将发光芯片22的芯片电极与驱动背板90上的焊盘焊接到一起,如图9中的(c)所示。
S808:去除粘附层与承载衬底,以制得显示面板。
完成发光芯片22与驱动背板的键合之后,可以去除粘附层23与承载衬底21,得到显示面板100,如图9中的(d)所示。在本实施例的一些示例中,粘附层23由热解胶形成,因此,粘附层23与承载衬底21的去除可以通过加热粘附层23实现。在本实施例的另一些示例中,粘附层23可以通过激光去除,因此,也可以控制激光穿透承载衬底21对粘附层23进行分解处理,从而使得承载衬底21与粘附层23被去除。
可以理解的是,在去除占位牺牲层24之后,承载衬底21与发光芯片22之间存在空置空间,因此,在本实施例的一些示例中,如果粘附层23在固化完成后为脆性材质,则可以通过向承载衬底21与驱动背板两个中的至少一个施加朝向对方的压力,从而使得承载衬底21与发光芯片22之间的弱化连接结构断裂,从而使得承载衬底21与粘附层23与发光芯片22分离。例如,如果在制备芯片组件20时,生长衬底上对应于发光芯片22远背板面四个内角区域的部分被去除,发光芯片22远背板面四个内角区域外露于占位牺牲层24,则在设置粘附层23以后,对于一颗发光芯片22而言,粘附层23类似于一张四腿桌子一样置于其远背板面上,粘附层23与发光芯片22之间靠四个“桌腿”连接,因此在通过承载衬底21向桌面施加压力,且压力超过“桌腿”的承受极限时,“桌腿”将断裂,从而使得“桌面”以及与“桌面”连接的承载衬底21一起脱落。如果在制备芯片组件20时,生长衬底上对应于发光芯片22远背板面中心区域的部分被去除,则在设置粘附层23以后,对于一颗发光芯片22而言,粘附层23类似于一张独腿桌一样置于其远背板面上,粘附层23与发光芯片22之间靠一个“桌腿”连接,因此在通过承载衬底21向桌面施加压力,且压力超过“桌腿”的承受极限时,“桌腿”同样会断裂,使得粘附层23的绝大部分与承载衬底21一起被去除。
可以理解的是,图8示出的仅仅是芯片组件20的一种应用方案,在本实施例的其他一些示例中,也可以先从承载衬底21上拾取发光芯片22,然后再将发光芯片22转移到驱动背板上完成键合。
本实施例提供的芯片组件制备方法与显示面板制备方法,直接利用发光芯片的生长衬底形成了占位牺牲层,所以从发光芯片的外延层从生长衬底上生长完成,到芯片组件制备完成,都不需要对外延层进行衬底转移,避免了相关显示面板制备过程中的多次转移过程,降低了显示面板的制备难度,同时也避免了多次转移给发光芯片造成的损伤,提升了显示面板的制备效率,降低了生产成本。同时,因为利用占位牺牲层使得粘附层在承载衬底与发光芯片之间形成弱化连接结构,进而提升芯片组件上发光芯片向驱动背板转移的效率与良率。
 应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种芯片组件,包括:
    承载衬底;
    位于所述承载衬底上的至少两颗发光芯片;以及
    位于所述承载衬底与所述发光芯片之间的粘附层与占位牺牲层;
    其中,所述发光芯片上被配置为朝向驱动背板的一面为近背板面,与所述近背板面相对的一面为远背板面,所述远背板面朝向所述承载衬底;所述粘附层同时粘接所述远背板面与所述承载衬底,且所述粘附层与所述远背板面的接触面积小于其与所述承载衬底的接触面积;所述占位牺牲层附着在所述远背板面上,且所述占位牺牲层包括与所述远背板面接触的第一区域以及处于无遮挡状态的第二区域,所述第一区域与所述第二区域连通。
  2. 如权利要求1所述的芯片组件,其中,所述占位牺牲层由所述发光芯片的生长衬底形成。
  3. 如权利要求2所述的芯片组件,其中,所述生长衬底为砷化镓衬底。
  4. 如权利要求2所述的芯片组件,其中,所述占位牺牲层的厚度小于所述生长衬底的厚度。
  5. 如权利要求1所述的芯片组件,其中,所述粘附层与所述远背板面的接触面积小于所述占位牺牲层与所述远背板面的接触面积。
  6. 如权利要求1所述的芯片组件,其中,所述远背板面呈矩形,所述矩形包括四个内角区域,所述粘附层附着在所述内角区域。
  7. 一种芯片组件,包括:
    承载衬底;
    位于所述承载衬底上的至少两颗发光芯片;以及
    位于所述承载衬底与所述发光芯片之间且被配置为粘附二者的粘附层;
    其中,所述发光芯片上被配置为朝向驱动背板的一面为近背板面,与所述近背板面相对的一面为远背板面,所述远背板面朝向所述承载衬底;所述粘附层与所述远背板面的接触面积小于其与所述承载衬底的接触面积;所述发光芯片与所述承载衬底之间存在空置空间,所述空置空间与所述远背板面接触,且所述空置空间与外部空间连通。
  8. 如权利要求7所述的芯片组件,其中,所述粘附层与所述远背板面的接触面积小于所述空置空间与所述远背板面的接触面积。
  9. 如权利要求7所述的芯片组件,其中,所述远背板面呈矩形,所述矩形包括四个内角区域,所述粘附层附着在所述内角区域。
  10. 一种芯片组件制备方法,应用于如权利要求1所述的芯片组件的制备,所述芯片组件制备方法包括:
    提供一位于生长衬底上的外延层,所述外延层包括与所述生长衬底的距离依次增大的N型半导体层、有源层与P型半导体层;
    分别设置与所述N型半导体层、P型半导体层电连接的N电极、P电极,以形成至少两颗发光芯片,所述发光芯片上朝向所述生长衬底的一面为远背板面;
    在所述生长衬底设有所述发光芯片的一侧设置粘接胶,并通过所述粘接胶粘附一与所述生长衬底相对的临时衬底;
    对所述生长衬底进行图案化处理至所述远背板面的部分区域外露于所述生长衬底,以利用所述生长衬底形成占位牺牲层;
    在所述发光芯片远离所述临时衬底的一侧设置粘附层,并通过所述粘附层粘附一与所述临时衬底相对的承载衬底,所述粘附层与所述远背板面的接触面积小于其与所述承载衬底的接触面积;设置所述粘附层后,所述占位牺牲层包括与所述远背板面接触的第一区域以及处于无遮挡状态的第二区域,所述第一区域与所述第二区域连通;
    去除所述粘接胶与所述临时衬底,以制得所述芯片组件。
  11. 如权利要求10所述的芯片组件制备方法,其中,所述对所述生长衬底进行图案化处理之前,还包括:
    对所述生长衬底进行减薄处理。
  12. 如权利要求10所述的芯片组件制备方法,其中,所述粘接胶为热解胶,所述去除所述粘接胶与所述临时衬底包括:
    对所述粘接胶进行加热,至所述粘接胶失效并所述发光芯片上脱落。
  13. 如权利要求10所述的芯片组件制备方法,其中,所述远背板面呈矩形,所述矩形包括四个内角区域,所述对所述生长衬底进行图案化处理包括:
    将所述生长衬底位于所述四个内角区域中的部分去除。
  14. 一种显示面板制备方法,包括:
    提供一如权利要求1所述的芯片组件;
    将所述占位牺牲层浸于湿法刻蚀溶液中,直至所述占位牺牲层被腐蚀去除;
    将所述芯片组件中的至少两颗所述发光芯片键合至驱动背板;
    去除所述粘附层与所述承载衬底,以制得显示面板。
  15. 如权利要求14所述的显示面板制备方法,其中,所述去除所述粘附层与所述承载衬底包括:
    向所述承载衬底施加朝向所述驱动背板的压力,至所述粘附层与所述承载衬底一同从所述发光芯片上脱落。
PCT/CN2022/089487 2022-04-27 2022-04-27 一种芯片组件及其制备方法、显示面板制备方法 WO2023206122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089487 WO2023206122A1 (zh) 2022-04-27 2022-04-27 一种芯片组件及其制备方法、显示面板制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089487 WO2023206122A1 (zh) 2022-04-27 2022-04-27 一种芯片组件及其制备方法、显示面板制备方法

Publications (1)

Publication Number Publication Date
WO2023206122A1 true WO2023206122A1 (zh) 2023-11-02

Family

ID=88516621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089487 WO2023206122A1 (zh) 2022-04-27 2022-04-27 一种芯片组件及其制备方法、显示面板制备方法

Country Status (1)

Country Link
WO (1) WO2023206122A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859728A (zh) * 2009-04-10 2010-10-13 索尼公司 转移器件的方法
CN102117869A (zh) * 2011-01-21 2011-07-06 厦门市三安光电科技有限公司 一种剥离发光二极管衬底的方法
CN102543910A (zh) * 2012-02-06 2012-07-04 三星半导体(中国)研究开发有限公司 芯片封装件及其制造方法
CN104993023A (zh) * 2015-05-29 2015-10-21 上海芯元基半导体科技有限公司 一种利用化学腐蚀的方法剥离生长衬底的方法
CN207375751U (zh) * 2017-10-29 2018-05-18 广东省半导体产业技术研究院 一种基于干法刻蚀的微器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859728A (zh) * 2009-04-10 2010-10-13 索尼公司 转移器件的方法
CN102117869A (zh) * 2011-01-21 2011-07-06 厦门市三安光电科技有限公司 一种剥离发光二极管衬底的方法
CN102543910A (zh) * 2012-02-06 2012-07-04 三星半导体(中国)研究开发有限公司 芯片封装件及其制造方法
CN104993023A (zh) * 2015-05-29 2015-10-21 上海芯元基半导体科技有限公司 一种利用化学腐蚀的方法剥离生长衬底的方法
CN207375751U (zh) * 2017-10-29 2018-05-18 广东省半导体产业技术研究院 一种基于干法刻蚀的微器件

Similar Documents

Publication Publication Date Title
US10177113B2 (en) Method of mass transferring electronic device
CN109390437B (zh) 微型发光二极管装置及其制作方法
TW564492B (en) Display element and display unit using the same
TWI258184B (en) Device transfer method, and device array method and image display unit production method using the same
WO2020211225A1 (zh) 一种微型led的转移方法
US8274092B2 (en) Light-emitting device having a roughened surface with different topographies
JP2003168762A (ja) 電子部品及びその製造方法
JP2002185039A (ja) 素子の転写方法、素子保持基板の形成方法、及び素子保持基板
CN112582520B (zh) 微发光二极管转移方法及显示面板
US20210118944A1 (en) Micro led device and method of manufacturing the same
CN112582515A (zh) 发光二极管及制作方法
CN116404027A (zh) 一种Micro-LED微显示器及其制备方法
CN112968080B (zh) 一种红光led芯片及制备方法
JP2022093393A (ja) ディスプレイパネルおよびディスプレイパネル作製方法
WO2023206122A1 (zh) 一种芯片组件及其制备方法、显示面板制备方法
US20220392874A1 (en) Red led chip component, red led chip, display panel and manufacturing method
WO2020258644A1 (zh) 一种microled芯片的转移方法
JP2002314123A (ja) 素子の転写方法及びこれを用いた素子の配列方法、画像表示装置の製造方法
CN117012768A (zh) 一种芯片组件及其制备方法、显示面板制备方法
CN209929348U (zh) 显示面板
JP2004128187A (ja) 半導体素子及び半導体装置、並びにこれらの製造方法
CN112736175B (zh) 微led芯片、生长基板、显示面板以及微led芯片的转移方法
CN113471339B (zh) 一种Micro-LED芯片的巨量转移方法
CN112002791B (zh) Micro-LED芯片及其制作方法、显示面板
CN117080323B (zh) 一种Micro LED芯片的巨量转移方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938978

Country of ref document: EP

Kind code of ref document: A1