WO2023204468A1 - 3d 프린팅용 치관용 레진 조성물 및 그 제조방법 - Google Patents

3d 프린팅용 치관용 레진 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2023204468A1
WO2023204468A1 PCT/KR2023/004068 KR2023004068W WO2023204468A1 WO 2023204468 A1 WO2023204468 A1 WO 2023204468A1 KR 2023004068 W KR2023004068 W KR 2023004068W WO 2023204468 A1 WO2023204468 A1 WO 2023204468A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
silica filler
parts
resin composition
printing
Prior art date
Application number
PCT/KR2023/004068
Other languages
English (en)
French (fr)
Inventor
박재현
양보미
김경록
최기호
최홍영
Original Assignee
오스템임플란트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스템임플란트 주식회사 filed Critical 오스템임플란트 주식회사
Publication of WO2023204468A1 publication Critical patent/WO2023204468A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0019Production methods using three dimensional printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/62Photochemical radical initiators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/76Fillers comprising silicon-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1063Esters of polycondensation macromers of alcohol terminated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • It relates to a resin composition for dental crowns for 3D printing with excellent mechanical properties and a method of manufacturing the same.
  • Prosthodontics is a treatment that replaces the area where the tooth was extracted with a fixed prosthesis such as a crown or bridge or a removable prosthesis such as dentures in order to minimize the side effects of tooth loss.
  • Fixed prosthesis is a method of removing some of the surface of adjacent natural teeth in front and behind the missing tooth and then placing a prosthesis on it. Because it is similar to natural teeth, it is easy to pronounce and has excellent chewing efficiency, so restoration with a fixed prosthesis is generally preferred over a removable prosthesis such as dentures.
  • Dental prosthetics generally include restorations, supplements, full and partial crowns, bridges, inlays, onlays, veneers, implants, posts, etc.
  • Materials commonly used in dental prosthetics include gold, ceramic, amalgam, porcelain, PFM, PFG, and composites.
  • amalgam was preferred for dental restoration and prosthesis due to its low cost and long lifespan.
  • amalgam has problems such as reduced aesthetics due to the natural color of mercury, toxicity to the human body, and environmental pollution.
  • Gold is used for large fillings or inlays, but like amalgam, it has the problem of reduced aesthetics due to its natural color. Accordingly, ceramic or resin-ceramic materials that match well with the color of teeth have been proposed.
  • 3D printing technology is being introduced to the dental field because it is easy to produce small quantities of a variety of products and to produce personalized products. It is most actively applied in the fields of prosthetics and orthodontics, and temporary crowns, splints, surgical guides, etc. are produced using 3D printing resin.
  • 3D printing resin has a problem that it is not suitable for prosthetics such as crowns due to its low mechanical strength.
  • the mechanical strength of resin is improved by increasing the amount of inorganic filler, but conventional resin compositions with a high content of inorganic filler have a problem in that 3D printing is impossible due to their high viscosity.
  • the silica filler includes a first silica filler having an average particle diameter of 500 to 1,000 nm, a second silica filler having an average particle diameter of 100 to 200 nm, and a third silica filler having an average particle diameter of 10 to 100 nm, and the first silica
  • the weight ratio of filler: second silica filler: third silica filler may be 35 to 45: 5 to 10: 1 to 5.
  • the silica filler may be functionalized with 0.5 to 3 parts by weight of a silane compound.
  • the photoinitiator is phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, camphorquinone, 2-(dimethylamino) It may be one selected from the group consisting of methacrylate and mixtures of two or more thereof.
  • the viscosity of the resin composition for 3D printing crowns may be 3,000 cps or less at 25°C.
  • the silica filler includes a first silica filler having an average particle diameter of 500 to 1,000 nm, a second silica filler having an average particle diameter of 100 to 200 nm, and a third silica filler having an average particle diameter of 10 to 100 nm, and the first silica
  • the weight ratio of filler: second silica filler: third silica filler may be 35 to 45: 5 to 10: 1 to 5.
  • the silica filler is prepared by: (i) mixing the silica filler, a solvent, and a silane-based additive; (ii) drying to produce a functionalized silica filler.
  • the photoinitiator is phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, camphorquinone, 2-(dimethylamino) It may be one selected from the group consisting of methacrylate and mixtures of two or more thereof.
  • the rotation and revolution may each be given at a speed of 500 to 2500 rpm.
  • a resin composition for 3D printing crowns that has excellent mechanical strength and low viscosity and is suitable for 3D printing and a method for manufacturing the same are provided.
  • Figure 1 is a graph showing the evaluation of physical properties of a resin composition for dental crowns for 3D printing according to moisture retention.
  • Figure 2 is a graph showing the evaluation of physical properties of a resin composition for crowns for 3D printing according to the presence or absence of defoaming.
  • Figure 3 is an SEM image of first silica particles with a particle size of 500 to 1,000 nm according to an example of the present specification.
  • Figure 4 is an SEM image of a second silica particle with a particle size of 100 to 200 nm according to an example of the present specification.
  • Figure 5 is an SEM image of a third silica particle with a particle size of 10 to 100 nm according to an example of the present specification.
  • the number 10 includes the range 5.0 to 14.9
  • the number 10.0 includes the range 9.50 to 10.49.
  • a resin composition for dental crowns for 3D printing includes 30 to 39 parts by weight of urethane dimethacrylate; Diethylene glycol dimethacrylate 10 to 19 parts by weight; 50 to 60 parts by weight of silica filler with an average particle diameter of 10 to 1,000 nm; And it may include 0.1 to 3 parts by weight of a photoinitiator.
  • filler part refers to the component constituting the matrix for a crown containing urethane dimethacrylate and diethylene glycol dimethacrylate
  • filler part refers to a filler component containing silica filler.
  • additive refers to ingredients including other photoinitiators, dispersants, functionalizers, etc.
  • the resin composition for dental crowns for 3D printing may be composed of a resin part, a filler part, and an additive part.
  • the properties of the resin composition for dental crowns for 3D printing may vary depending on the composition of the resin portion and the filler portion. Therefore, the composition of each component can be adjusted based on the total content of the resin portion and the filler portion of 100 parts by weight.
  • the resin composition for dental crowns for 3D printing can improve mechanical strength by increasing the amount of silica filler added and adjust the viscosity to a range suitable for 3D printing.
  • Prosthetics manufactured from the composition can maintain durability for a long time even in the oral environment.
  • the resin composition for 3D printing crowns may include urethane dimethacrylate.
  • the urethane dimethacrylate may be a urethane dimethacrylate oligomer prepared by reacting polyol and diisocyanate to synthesize isocyanate-terminated urethane and then reacting it with (meth)acrylate containing a hydroxy group. there is.
  • mechanical properties such as strength, Young's modulus, hardness, elongation, and viscosity of the resin composition can be adjusted.
  • the content of the urethane dimethacrylate may be 30 to 39 parts by weight based on 100 parts by weight of the resin portion and the filler portion. For example, 30 parts by weight, 31 parts by weight, 32 parts by weight, 33 parts by weight, 34 parts by weight, 35 parts by weight, 36 parts by weight, 37 parts by weight, 38 parts by weight, 39 parts by weight, or between these two values. It may be a range, but it is not limited to this. Outside the above range, it may be difficult to improve mechanical strength or 3D printing may be impossible.
  • the resin composition for 3D printing crowns may include diethylene glycol dimethacrylate.
  • the diethylene glycol dimethacrylate acts as a reactive diluent and can induce crosslinking of the urethane dimethacrylate and adjust the viscosity of the resin composition.
  • the content of diethylene glycol dimethacrylate may be 10 to 19 parts by weight based on 100 parts by weight of the resin part and the filler part. For example, 10 parts by weight, 11 parts by weight, 12 parts by weight, 13 parts by weight, 14 parts by weight, 15 parts by weight, 16 parts by weight, 17 parts by weight, 18 parts by weight, 19 parts by weight, or between these two values. It may be a range, but it is not limited to this. If the content of diethylene glycol dimethacrylate is outside the above range, the polymerization reaction may decrease or the viscosity may excessively increase.
  • the resin composition for 3D printing crowns may include silica filler.
  • the silica filler can be added to the resin composition to achieve high mechanical strength.
  • the content of the silica filler may be 50 to 60 parts by weight based on 100 parts by weight of the resin part and the filler part. For example, 50 parts by weight, 51 parts by weight, 52 parts by weight, 53 parts by weight, 54 parts by weight, 55 parts by weight, 56 parts by weight, 57 parts by weight, 58 parts by weight, 59 parts by weight, 60 parts by weight, or any of these. It may be a range between two values, but is not limited to this. If the content of the silica filler is outside the above range, the strength of the resin composition may decrease, or the viscosity may increase excessively, resulting in a decrease in output quality during 3D printing.
  • the average particle diameter of the silica filler may be 10 to 1,000 nm.
  • the average particle size of silica can be measured using software after shooting with a field emission scanning electron microscope (FE-SEM), but is not limited to this and can be measured using a particle size analyzer, light scattering method, electrophoretic scattering method, and centrifugation method. , it can also be performed using electrical resistance methods, etc.
  • FE-SEM field emission scanning electron microscope
  • the silica filler may include a first silica filler with an average particle diameter of 500-1,000 nm, a second silica filler with an average particle diameter of 100-200 nm, and a third silica filler with an average particle diameter of 10-100 nm.
  • the silica filler may be a silica filler having different average particle size ranges and may be densely added to the resin composition. In this way, deterioration of the physical properties of the resin composition due to moisture can be prevented.
  • first, second, and third silica fillers with different average particle size ranges are added to the resin composition, the mechanical strength is improved, and as they are added densely according to the difference in particle size, the influence of moisture is minimized and the physical properties of the resin composition are maintained even in the oral environment. Deterioration can be prevented.
  • the first silica filler may be 500 to 1,000 nm, for example, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, 750 nm, 800 nm, 850 nm, 900 nm, 950 nm, 1,000 nm. Or it may be a range between two of these values, but is not limited to this.
  • the average particle diameter of the second silica filler may be 100 to 200 nm, for example, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm, 190 nm.
  • the average particle diameter of the third silica filler may be 10 to 100 nm, for example, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm. , 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, or a range between two of these values, but is not limited thereto. If the average particle diameter of each silica filler is outside the above range, the kneading properties between compositions may decrease or the physical properties of the resin composition may decrease.
  • the weight ratio of the first silica filler: second silica filler: third silica filler may be 35 to 45: 5 to 10: 1 to 5.
  • the silica filler may be functionalized with 0.5 to 3 parts by weight of a silane compound.
  • the silane compound may be at least one selected from the group consisting of chlorosilane, alkoxysilane, aminosilane, and silazane.
  • silane compound may be at least one selected from the group consisting of chlorosilane, alkoxysilane, aminosilane, and silazane.
  • silane compound may be at least one selected from the group consisting of chlorosilane, alkoxysilane, aminosilane, and silazane.
  • silane compound may be at least one selected from the group consisting of chlorosilane, alkoxysilane, aminosilane, and silazane.
  • 3-aminopropyltriethoxysilane 3-aminopropyltrimethoxysilane
  • vinyltriethoxysilane vinyltrimethoxysilane
  • Silica functionalized with silane can have improved dispersibility by changing its surface properties.
  • Silane-functionalized silica can form a network structure through chemical bonding, and the mechanical properties of the final product can be improved.
  • Using this silica it is possible to manufacture a resin composition for dental crowns for 3D printing that contains 50% by weight or more of silica filler based on the content of the resin portion and filler portion and has low viscosity.
  • the resin composition for dental crowns for 3D printing may include a photoinitiator.
  • the photoinitiator can form free radicals to induce a chain photopolymerization reaction of the oligomer or monomer.
  • the content of the photoinitiator may be 0.1 to 3 parts by weight based on 100 parts by weight of the resin portion and filler portion. For example, 0.1 part by weight, 0.2 part by weight, 0.3 part by weight, 0.4 part by weight, 0.5 part by weight, 0.6 part by weight, 0.7 part by weight, 0.8 part by weight, 0.9 part by weight, 1 part by weight, 1.5 part by weight, 2 parts by weight. parts, 2.5 parts by weight, 3 parts by weight, or a range between the two values, but is not limited thereto. If the content of the photoinitiator is outside the above range, sufficient polymerization and curing may not occur, and the physical properties of the resin composition may deteriorate.
  • the photoinitiator includes phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, camphorquinone, and 2-(dimethylamino)methacryl. It may be one selected from the group consisting of rate and mixtures of two or more thereof, but is not limited thereto.
  • the viscosity of the resin composition for 3D printing crowns may be 3,000 cps or less at 25°C.
  • it may be 3,000cps, 2,750cps, 2,500cps, 2,250cps, 2,000cps, 1,750cps, 1,500cps, 1,250cps, 1,000cps, 750cps, 500cps, or a range between any two of these values, but is not limited thereto. no. If the viscosity of the resin composition at 25°C exceeds 3,000 cps, output failure may occur during 3D printing, and if it exceeds 4,000 cps, 3D printing may be impossible.
  • the viscosity at 25°C of the resin composition for crowns for 3D printing can easily be reduced to 3,000 cps or less. It can be adjusted properly.
  • a method of manufacturing a resin composition for dental crowns for 3D printing is (a) 30 to 39 parts by weight of urethane dimethacrylate, 10 to 19 parts by weight of diethylene glycol dimethacrylate, and an average particle size of 10 to 10 parts by weight. Mechanically mixing 50 to 60 parts by weight of 1,000 nm silica filler and 0.1 to 3 parts by weight of photoinitiator; and (b) defoaming the resin composition of (a) by applying rotation and revolution to the resin composition.
  • step (a) may be performed by ball milling, but is not limited thereto.
  • a mixing container 30 to 39 parts by weight of urethane dimethacrylate, 10 to 19 parts by weight of diethylene glycol dimethacrylate, 50 to 60 parts by weight of silica filler with an average particle diameter of 10 to 1,000 nm, and a photoinitiator.
  • Ball milling can be performed by adding 0.1 to 3 parts by weight and adding zirconia balls.
  • urethane dimethacrylate, diethylene glycol dimethacrylate, photoinitiator, and silica filler are uniformly dispersed to produce a resin composition with a high silica filler content and low viscosity.
  • the characteristics and contents of the urethane dimethacrylate, diethylene glycol dimethacrylate, photoinitiator, and silica filler are as described above.
  • step (a) may be performed under conditions of 5 to 20 hours and 50 to 200 rpm.
  • Run times are, for example, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours. It may be time or a range between two of these values, but is not limited thereto.
  • the running speed could be, for example, 50rpm, 60rpm, 70rpm, 80rpm, 90rpm, 100rpm, 110rpm, 120rpm, 130rpm, 140rpm, 150rpm, 160rpm, 170rpm, 180rpm, 190rpm, 200rpm, or a range between any two of these values. However, it is not limited to this. If it is outside the above range, dispersion may be insufficient or product manufacturing efficiency may be insufficient.
  • the silica filler is prepared by: (i) mixing the silica filler, a solvent, and a silane-based additive; (ii) drying to produce a functionalized silica filler.
  • silica filler, solvent, silane-based additive, and zirconia balls can be added to a mixing container, and ball milling can be performed under the conditions of 10 to 15 hours and 50 to 200 rpm to treat the surface. there is. After completion of ball milling, the mixture is dried in an oven at 70-90°C to remove the solvent, thereby producing a silane-functionalized silica filler.
  • the silane-based additives include, for example, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, gamma-methacryloxypropyltrimethoxysilane, It may be one selected from the group consisting of dimethyl dichloro silane, hexamethylene disilazane, dimethyl polysiloxane, or a mixture of two or more thereof, but is not limited thereto.
  • the solvent may be, for example, one selected from ethanol, isopropyl alcohol, and methyl isopropyl alcohol, but is not limited thereto as long as it is a solvent that does not affect the functionalization step.
  • the silane-based additive may be added in small amounts in step (a).
  • the silane-based additive may be included in the mixing process of the resin composition in step (a) to ensure that each component is evenly dispersed.
  • the silica filler includes a first silica filler with an average particle diameter of 500-1,000 nm, a second silica filler with an average particle diameter of 100-200 nm, and a third silica filler with an average particle diameter of 10-100 nm, and the first silica filler:
  • the weight ratio of the second silica filler to the third silica filler may be 35 to 45: 5 to 10: 1 to 5. Their characteristics are as described above.
  • the photoinitiator includes phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, camphorquinone, 2-(dimethylamino)methacrylate, and among these. It may be one selected from the group consisting of two or more mixtures, and their characteristics are as described above.
  • step (b) air bubbles can be removed by applying rotation and revolution to the resin composition of (a).
  • a paste mixer can be used as a method of providing such rotation and revolution, but is not limited to this.
  • the paste mixer is a mixing and defoaming device for high-viscosity samples and can perform rotational motion as well as revolution.
  • step (b) may be performed under conditions of rotation and revolution of 500 to 2,500 rpm for 3 to 15 minutes, respectively.
  • the execution time can be, for example, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 11 minutes, 12 minutes, 13 minutes, 14 minutes, 15 minutes, or two of these. It may be in the range between, but is not limited to this.
  • the performance speed for example, the rotation and revolution speeds are each independently 500rpm, 600rpm, 700rpm, 800rpm, 900rpm, 1,000rpm, 1,100rpm, 1,200rpm, 1,300rpm, 1,400rpm, 1,500rpm, 1,600rpm, 1,700rpm. rpm, 1,800rpm, 1,900rpm, 2,000rpm, 2,100rpm, 2,200rpm, 2,300rpm, 2,400rpm, 2,500rpm, or a range between two of these values, but is not limited thereto.
  • a mixing container 41 parts by weight of a first silica filler with an average particle diameter of 500-1,000 nm, 6 parts by weight of a second silica filler with an average particle diameter of 100-200 nm, 3 parts by weight of a third silica filler with an average particle diameter of 10-100 nm, ethanol, and silane-based additives. And zirconia balls were added and ball milling was performed for 12 hours at 100 rpm. After completion of ball milling, the balls were removed, and the mixture was completely dried in an oven at 85°C to remove the solvent to prepare a silane-functionalized silica filler.
  • An example of the first silica filler is shown in FIG. 3, the second silica filler is shown in FIG. 4, and the third silica filler is shown in FIG. 5.
  • urethane dimethacrylate UDMA
  • DEGDMA diethylene glycol dimethacrylate
  • silane-functionalized silica filler 50 parts by weight of silane-functionalized silica filler, and phenylbis (2,4,6-trimethyl
  • a resin composition was prepared by adding 1 part by weight of benzoyl)phosphine oxide and zirconia balls and performing ball milling at 100 rpm for 12 hours.
  • the prepared resin composition was degassed by rotating and rotating the paste mixer PDM-300V (Daehwa Tech Co., Ltd.) at 1,000 rpm for 5 minutes.
  • a resin composition was prepared in the same manner as Example 1, except that 45 parts by weight of urethane dimethacrylate and 5 parts by weight of diethylene glycol dimethacrylate were used.
  • a resin composition was prepared in the same manner as in Example 1, except that 40 parts by weight of urethane dimethacrylate and 10 parts by weight of diethylene glycol dimethacrylate were used.
  • a resin composition was prepared in the same manner as Example 1, except that 30 parts by weight of urethane dimethacrylate and 20 parts by weight of diethylene glycol dimethacrylate were used.
  • the base polymer composition was the same as Example 1, except that 60 parts by weight of urethane dimethacrylate, 15 to 25 parts by weight of diethylene glycol dimethacrylate, and 2.5 parts by weight of phosphine oxide were added and the silica filler was omitted.
  • a resin composition was prepared using this method.
  • a resin composition was prepared in the same manner as in Example 1, except that the silica filler with an average particle diameter of 500 to 1,000 nm and the silica filler with an average particle diameter of 10 to 100 nm were omitted.
  • a resin composition was prepared in the same manner as Example 1, except that the silica filler with an average particle diameter of 10 to 100 nm was omitted.
  • a resin composition was prepared in the same manner as Example 1, except that the degassing step was not performed.
  • Example 1 In order to confirm the viscosity suitable for printing according to the base resin composition, the resin compositions of Example 1 and Comparative Examples 1 to 3 were printed with a 3D printer, and the viscosity was measured using a viscometer, and the results are shown in Table 1.
  • Example 1 In order to examine changes in physical properties due to moisture depending on the silica filler composition for each particle size, the resin compositions of Example 1 and Comparative Examples 4 to 6 were printed with a 3D printer, and physical property evaluation was performed before and after moisture immersion, and the results are shown in Tables 2 and 2. It is shown in Figure 1.
  • Example 1 including silica filler showed excellent flexural Young's modulus and compressive Young's modulus, and the flexural Young's modulus was substantially the same before and after moisture immersion, resulting in a decrease in physical properties due to the influence of moisture. This was not done, and there was no significant difference in compressive Young's modulus before and after water immersion. Therefore, it can be predicted that the prosthesis manufactured with the resin composition of Example 1 will maintain excellent mechanical strength even in the oral environment.
  • Comparative Example 4 which is a conventional resin composition, showed higher compressive strength than Example 1, but its flexural Young's modulus and compressive Young's modulus values were significantly lower than those of Example 1, making it suitable for short-term prosthetics such as temporary crowns. It can be predicted that
  • Example 1 is excellent in all mechanical strength evaluations of flexural strength, flexural Young's modulus, compressive strength, and compressive Young's modulus. It can be seen that the mechanical strength of the resin composition of Example 3 was improved by reducing the internal pores of the printed product as the degassing step was performed. On the other hand, Comparative Example 7 showed lower values compared to Example 1 in all physical property evaluations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

우레탄 디메타크릴레이트 30~39중량부, 디에틸렌글라이콜 디메타크릴레이트 10~19중량부, 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부 및 광개시제 0.5~3중량부를 포함하는 3D 프린팅용 치관용 레진 조성물과 그 제조방법이 개시된다.

Description

3D 프린팅용 치관용 레진 조성물 및 그 제조방법
기계적 물성이 우수한 3D 프린팅용 치관용 레진 조성물 및 그 제조방법에 관한 것이다.
우식이나 파절에 의한 손상 또는 결손 등으로 치아가 상실되면 발음, 저작, 심미성 등에 장애가 발생한다. 또한, 치아가 없는 빈 공간으로 인접 치아들이 이동함으로써 치아의 정상적인 배열이 어긋나게 되고, 치아 사이에 음식물이 끼어 충치나 풍치가 발생하기 쉽다. 치아의 손상 또는 결손이 발생하면 치과용 수복 또는 보철 시술을 통해 치료를 실시하고 있다.
보철 시술은 치아의 상실에 따른 부작용을 최소화하기 위해 치아가 발치된 부위를 크라운(crown)이나 브릿지(bridge)와 같은 고정성 보철물이나 틀니와 같은 가철성 보철물 등으로 대체하는 치료법이다. 고정성 보철물은 치아가 상실된 전방과 후방의 인접 자연 치아의 표면을 일부 삭제한 후 보철물을 씌우는 방식이다. 자연 치아와 유사하여 발음이 편하고 저작 효능이 우수하기 때문에, 일반적으로 틀니 등의 가철성 보철물보다 고정성 보철물로 수복하는 방식이 선호된다.
치과용 보철물은 일반적으로 수복재, 보충재, 전체 및 부분 크라운, 브릿지, 인레이(inlay), 온레이(onlay), 이장재(veneer), 임플란트(implant), 포스트(post) 등이 있다. 일반적으로 치과용 보철물에 사용되는 재료에는 금, 세라믹, 아말감, 포셀린, PFM, PFG, 복합물 등이 있다. 최근까지 치아 수복 및 보철물로는 비용이 저렴하고 수명이 긴 아말감이 선호되었다. 그러나, 아말감은 수은 본연의 색으로 인한 심미성 저하, 인체에 대한 독성 및 환경 오염 등의 문제점이 있다. 금은 큰 충전물 또는 인레이에 사용되고 있으나, 아말감과 마찬가지로 본연의 색으로 인해 심미성 저하의 문제점이 있다. 이에 치아의 색과 잘 어울리는 세라믹 또는 레진-세라믹 재료가 제안되었다.
한편, 3D 프린팅 기술은 다품종 소량생산과 개인맞춤형 제작이 용이하여 치과 분야에 도입되고 있다. 보철 분야, 교정 분야에 가장 활발하게 적용되고 있고, 3D 프린팅 레진을 이용하여 임시 치관, 스플린트, 서지컬 가이드 등이 제작되고 있다. 다만, 3D 프린팅 레진은 기계적 강도가 낮아 크라운 등의 보철물에 적합하지 않은 문제점이 있다. 일반적으로 레진의 기계적 강도는 무기 필러를 증량하여 개선하나, 종래의 무기 필러 함량이 높은 레진 조성물은 점도가 높아 3D 프린팅이 불가능한 문제점이 있다.
이와 같이 무기 필러 함량에 따른 기계적 강도와 점도는 트레이드 오프의 관계가 존재하여 종래 3D 프린팅 레진의 무기 필러 함량은 레진부 및 필러부 총합을 기준으로 10중량% 내외에 그치고 있다. 따라서 3D 프린터에 적용 가능하면서도 기계적 물성이 보철물에 적합한 수준을 가지는 3D 프린팅용 치관용 레진 조성물에 대한 요구가 증가하고 있다.
강도 및 점도의 트레이드오프 관계를 개선한 3D 프린팅용 치관용 레진 조성물 및 그 제조방법을 제공하는 것이다.
일 측면에 따르면 우레탄 디메타크릴레이트 30~39중량부; 디에틸렌글라이콜 디메타크릴레이트 10~19중량부; 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부; 및 광개시제 0.1~3중량부를 포함하는 3D 프린팅용 치관용 레진 조성물을 제공한다.
일 실시예에 있어서, 상기 실리카 필러는 평균 입경이 500~1,000㎚인 제 1실리카 필러, 100~200㎚인 제2 실리카 필러 및 10~100㎚인 제3 실리카 필러를 포함하고, 상기 제1 실리카 필러 : 제2 실리카 필러 : 제3 실리카 필러의 중량비는 35~45 : 5~10 : 1~5일 수 있다.
일 실시예에 있어서, 실리카 필러는 0.5~3중량부의 실란 화합물로 기능화된 것일 수 있다.
일 실시예에 있어서, 상기 광개시제는 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드, 디페닐(2,4,6-트리메틸벤조일)포스핀옥사이드, 캄포퀴논, 2-(디메틸아미노)메타크릴레이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 3D 프린팅용 치관용 레진 조성물의 점도는 25℃에서 3,000cps 이하일 수 있다.
다른 일 측면에 따르면, (a) 우레탄 디메타크릴레이트 30~39중량부, 디에틸렌글라이콜 디메타크릴레이트 10~19중량부, 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부; 및 광개시제 0.1~3중량부를 기계적으로 혼합하는 단계; 및 (b) 상기 (a)의 레진 조성물에 자전 및 공전을 부여하여 탈포하는 단계;를 포함하는 3D 프린팅용 치관용 레진 조성물의 제조방법이 제공된다.
일 실시예에 있어서, 상기 실리카 필러는 평균 입경이 500~1,000㎚인 제 1실리카 필러, 100~200㎚인 제2 실리카 필러 및 10~100㎚인 제3 실리카 필러를 포함하고, 상기 제1 실리카 필러 : 제2 실리카 필러 : 제3 실리카 필러의 중량비는 35~45 : 5~10 : 1~5일 수 있다.
일 실시예에 있어서, 상기 실리카 필러는, (i) 실리카 필러, 용매 및 실란계 첨가제와 혼합하는 단계; (ii) 건조하여 기능화된 실리카 필러를 제조하는 단계;로 제조된 기능화 실리카 필러일 수 있다.
일 실시예에 있어서, 상기 광개시제는 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드, 디페닐(2,4,6-트리메틸벤조일)포스핀옥사이드, 캄포퀴논, 2-(디메틸아미노)메타크릴레이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 자전 및 공전은 각각 500~2500 rpm의 속도로 부여될 수 있다.
일 측면에 따르면, 기계적 강도가 우수하며 낮은 점도를 가져 3D 프린팅에 적합한 3D 프린팅용 치관용 레진 조성물과 그 제조방법이 제공된다.
본 명세서의 일 측면의 효과는 상기한 효과로 한정되는 것은 아니며, 본 명세서의 상세한 설명 또는 청구범위에 기재된 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 수분 담지에 따른 3D 프린팅용 치관용 레진 조성물의 물성 평가 그래프이다.
도 2는 탈포 유무에 따른 3D 프린팅용 치관용 레진 조성물의 물성 평가 그래프이다.
도 3은 본 명세서의 실시예에 따른 입경 500~1,000㎚ 크기의 제1 실리카 입자의 SEM 이미지이다.
도 4는 본 명세서의 실시예에 따른 입경 100~200㎚ 크기의 제2 실리카 입자의 SEM 이미지이다.
도 5는 본 명세서의 실시예에 따른 입경 10~100 ㎚ 크기의 제3 실리카 입자의 SEM 이미지이다.
이하에서는 첨부한 도면을 참조하여 본 명세서의 일 측면을 설명하기로 한다. 그러나 본 명세서의 기재사항은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 명세서의 일 측면을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 수치적 값의 범위가 기재되었을 때, 이의 구체적인 범위가 달리 기술되지 않는 한 그 값은 유효 숫자에 대한 화학에서의 표준규칙에 따라 제공된 유효 숫자의 정밀도를 갖는다. 예를 들어, 10은 5.0 내지 14.9의 범위를 포함하며, 숫자 10.0은 9.50 내지 10.49의 범위를 포함한다.
이하, 첨부된 도면을 참고하여 본 명세서의 일 실시예를 상세히 설명하기로 한다.
3D 프린팅용 치관용 레진 조성물
일 측면에 따른 3D 프린팅용 치관용 레진 조성물은 우레탄 디메타크릴레이트 30~39중량부; 디에틸렌글라이콜 디메타크릴레이트10~19중량부; 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부; 및 광개시제 0.1~3중량부를 포함할 수 있다.
본 명세서에서 “레진부”는 우레탄 디메타크릴레이트 및 디에틸렌글라이콜 디메타크릴레이트를 포함하는 치관용 매트릭스를 구성하는 성분을 의미하고, “필러부”는 실리카 필러를 포함하는 필러 성분을 의미하며, “첨가제부”는 그 외의 광개시제, 분산제, 기능화제 등을 포함하는 성분을 의미한다.
3D 프린팅용 치관용 레진 조성물은 레진부, 필러부 및 첨가제부로 구성될 수 있다. 3D 프린팅용 치관용 레진 조성물은 레진부와 필러부의 조성에 따라 그 특성이 달라질 수 있다. 따라서 각 성분의 조성은 레진부 및 필러부의 함량 총합 100중량부를 기준으로 조절될 수 있다.
종래 3D 프린팅 레진 조성물은 출력 문제로 인해 레진부 및 필러부를 기준으로 고분자 레진의 비율이 80~90중량% 이상으로 구성되어 무기 필러의 함량이 10중량% 내외에 불과하였다. 치관과 같은 보철물은 반복적인 외력을 부여받으므로 높은 기계적 강도를 가져야 한다. 레진 조성물의 강도는 무기 필러의 비율을 높여 개선될 수 있으나, 이에 따른 레진 조성물의 점도가 높아져 3D 프린팅에 적용이 어렵다.
본 명세서의 일 측면에 따른 3D 프린팅용 치관용 레진 조성물은 실리카 필러의 첨가량을 높여 기계적 강도를 개선하면서도 점도를 3D 프린팅에 적합한 범위로 조절할 수 있다. 상기 조성물로부터 제조된 보철물은 구강 환경에서도 장시간 내구성이 유지될 수 있다.
상기 3D 프린팅용 치관용 레진 조성물은 우레탄 디메타크릴레이트를 포함할 수 있다. 상기 우레탄 디메타크릴레이트는 공지된 방법으로 폴리올과 디이소시아네이트를 반응시켜 이소시아네이트 말단의 우레탄을 합성한 후 하이드록시기를 포함하고 있는 (메트)아크릴레이트와 반응시킴으로써 제조된 우레탄 디메타크릴레이트 올리고머일 수 있다. 폴리올의 종류, 이소시아네이트의 종류 및 하이드록시 기를 포함하는 (메트)아크릴레이트의 종류에 따라 상기 레진 조성물의 강도, 영율, 경도, 신장률, 점도 등의 기계적 물성을 조절할 수 있다.
일 예시로, 상기 우레탄 디메타크릴레이트의 함량은 레진부 및 필러부 100중량부를 기준으로 기준으로 30~39중량부일 수 있다. 예를 들어, 30중량부, 31중량부, 32중량부, 33중량부, 34중량부, 35중량부, 36중량부, 37중량부, 38중량부, 39 중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 범위를 벗어나면 기계적 강도의 개선이 어렵거나, 3D 프린팅이 불가능할 수 있다.
상기 3D 프린팅용 치관용 레진 조성물은 디에틸렌글라이콜 디메타크릴레이트를 포함할 수 있다. 상기 디에틸렌글라이콜 디메타크릴레이트는 반응성 희석제로 작용하여 상기 우레탄 디메타크릴레이트의 가교 역할을 유도할 수 있고, 레진 조성물의 점도를 조절할 수 있다.
일 예시로, 상기 디에틸렌글라이콜 디메타크릴레이트의 함량은 레진부 및 필러부 100중량부를 기준으로 기준으로 10~19중량부일 수 있다. 예를 들어, 10중량부, 11중량부, 12중량부, 13중량부, 14중량부, 15중량부, 16중량부, 17중량부, 18중량부, 19중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 디에틸렌글라이콜 디메타크릴레이트의 함량이 상기 범위를 벗어나면 중합반응이 저하되거나 점도가 과도하게 상승할 수 있다.
상기 3D 프린팅용 치관용 레진 조성물은 실리카 필러를 포함할 수 있다. 상기 실리카 필러는 레진 조성물에 첨가되어 높은 기계적 강도를 구현할 수 있다. 상기 실리카 필러의 함량은 레진부 및 필러부 100중량부를 기준으로 50~60중량부일 수 있다. 예를 들어, 50중량부, 51중량부, 52중량부, 53중량부, 54중량부, 55중량부, 56중량부, 57중량부, 58중량부, 59중량부, 60중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 실리카 필러의 함량이 상기 범위를 벗어나면 레진 조성물의 강도가 저하되거나, 점도가 과도하게 상승하여 3D 프린팅 시 출력 품질이 저하될 수 있다.
일 예시로, 상기 실리카 필러의 평균 입경은 10~1,000㎚일 수 있다. 예를 들어, 10㎚, 20㎚, 30㎚, 40㎚, 50㎚, 60㎚, 70㎚, 80㎚, 90㎚, 100㎚, 150㎚, 200㎚, 250㎚, 300㎚, 350㎚, 400㎚, 450㎚, 500㎚, 550㎚, 600㎚, 650㎚, 700㎚, 750㎚, 800㎚, 850㎚, 900㎚, 950㎚, 1,000㎚ 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 실리카 필러의 평균 입경이 상기 범위를 벗어나면 기타 성분과의 혼련성이 저하되거나, 기포가 과다하게 생성되어 레진 조성물의 물성이 저하될 수 있다.
이러한 실리카의 평균 입경은 전계 방출형 주사전자현미경(FE-SEM) 촬영 후 소프트웨어를 이용하여 측정하는 방법으로 수행할 수 있으나, 이에 한정되는 것은 아니며 입도분석기, 광산란법, 전기영동산란법, 원심분리법, 전기저항법 등을 이용하여 수행될 수도 있다.
일 예시로, 상기 실리카 필러는 평균 입경이 500~1,000㎚인 제 1실리카 필러, 100~200㎚인 제2 실리카 필러 및 10~100㎚인 제3 실리카 필러를 포함할 수 있다. 상기 실리카 필러는 평균 입경 범위가 각각 다른 실리카 필러로 상기 레진 조성물에 조밀하게 첨가될 수 있다. 이러한 방식으로 레진 조성물의 수분에 의한 물성 저하를 방지할 수 있다. 평균 입경 범위가 다른 제1, 제2, 제3 실리카 필러가 레진 조성물에 첨가되면서 기계적 강도가 향상되며, 입경 차이에 따라 조밀하게 첨가됨에 따라 수분에 의한 영향력을 최소화하여 구강 환경 내에서도 레진 조성물의 물성 저하를 방지할 수 있다.
상기 제 1 실리카 필러의 500~1,000㎚일 수 있고, 예를 들어, 500㎚, 550㎚, 600㎚, 650㎚, 700㎚, 750㎚, 800㎚, 850㎚, 900㎚, 950㎚, 1,000㎚ 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 제2 실리카 필러의 평균 입경은 100~200㎚일 수 있고, 예를 들어, 100㎚, 110㎚, 120㎚, 130㎚, 140㎚, 150㎚, 160㎚, 170㎚, 180㎚, 190㎚, 200㎚ 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 제 3 실리카 필러의 평균 입경은 평균 입경은 10~100㎚일 수 있고, 예를 들어, 10㎚, 15㎚, 20㎚, 25㎚, 30㎚, 35㎚, 40㎚, 45㎚, 50㎚, 55㎚, 60㎚, 65㎚, 70㎚, 75㎚, 80㎚, 85㎚, 90㎚, 95㎚, 100㎚ 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 각각의 실리카 필러의 평균 입경이 상기 범위를 벗어나면 조성물 간 혼련성이 저하되거나 레진 조성물의 물성이 저하될 수 있다.
일 예시로, 상기 제1 실리카 필러 : 제2 실리카 필러 : 제3 실리카 필러의 중량비는 35~45 : 5~10 : 1~5일 수 있다. 예를 들어, 35 : 5 : 1, 40 : 5 : 1, 45 : 5 : 1, 35 : 7.5 : 1, 40 : 7.5 : 1, 45 : 7.5 : 1, 35 : 10 : 1, 40 : 10 : 1, 45 : 10 : 1, 35 : 5 : 2.5, 40 : 5 : 2.5, 45 : 5 : 2.5, 35 : 7.5 : 2.5, 40 : 7.5 : 2.5, 45 : 7.5 : 2.5, 35 : 10 : 2.5, 40 : 10 : 2.5, 45 : 10 : 2.5, 35 : 5 : 5, 40 : 5 : 5, 45 : 5 : 5, 35 : 7.5 : 5, 40 : 7.5 : 5, 45 : 7.5 : 5, 35 : 10 : 5, 40 : 10 : 5, 45 : 10 : 5 또는 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 중량비의 범위를 만족하면, 레진 조성물의 기계적 강도 및 수분에 따른 물성 저하를 효과적으로 개선할 수 있다.
일 예시로, 상기 실리카 필러는 0.5~3중량부의 실란 화합물로 기능화된 것일 수 있다. 상기 실란 화합물은 클로로실란, 알콕시실란, 아미노실란, 실라잔으로 이루어진 군에서 선택된 적어도 하나일 수 있다. 예를 들어, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란, 감마-메타크릴옥시 프로필트리메톡시 실란, 다이메틸 다이클로로 실란, 헥사메틸렌 다이실라잔, 다이메틸 폴리실록산 등이 있으나 이에 한정되는 것은 아니다. 실란으로 기능화된 실리카는 표면 특성이 변화되어 분산성이 개선될 수 있다. 실란 기능화된 실리카는 화학적 결합을 통해 네트워크 구조를 형성할 수 있고, 최종 제품의 기계적 특성이 개선될 수 있다. 이러한 실리카를 사용하면 레진부 및 필러부 함량을 기준으로 50중량% 이상의 실리카 필러를 포함하면서도 낮은 점도를 가지는 3D 프린팅용 치관용 레진 조성물을 제조할 수 있다.
상기 3D 프린팅용 치관용 레진 조성물은 광개시제를 포함할 수 있다. 상기 광개시제는 자유라디칼을 형성하여 상기 올리고머 또는 단량체의 연쇄적인 광중합 반응이 일어나도록 유도할 수 있다. 광개시제의 함량은 레진부 및 필러부 100중량부를 기준으로 기준으로 0.1~3중량부일 수 있다. 예를 들어, 0.1중량부, 0.2중량부, 0.3중량부, 0.4중량부, 0.5중량부, 0.6중량부, 0.7중량부, 0.8중량부, 0.9중량부, 1중량부, 1.5중량부, 2중량부, 2.5중량부, 3중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 광개시제의 함량이 상기 범위를 벗어나면 충분한 중합 및 경화가 이루어지지 않아 레진 조성물의 물성이 저하될 수 있다.
일 예시로, 상기 광개시제는 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드, 디페닐(2,4,6-트리메틸벤조일)포스핀옥사이드, 캄포퀴논, 2-(디메틸아미노)메타크릴레이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나 이에 한정되는 것은 아니다.
일 예시로, 상기 3D 프린팅용 치관용 레진 조성물의 점도는 25℃에서 3,000cps 이하일 수 있다. 예를 들어, 3,000cps, 2,750cps, 2,500cps, 2,250cps, 2,000cps, 1,750cps, 1,500cps, 1,250cps, 1,000cps, 750cps, 500cps 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다. 레진 조성물의 25℃ 점도가 3,000cps를 초과하면 3D 프린팅 시 출력 실패가 발생할 수 있고, 4,000cps를 초과하면 3D 프린팅이 불가능할 수 있다. 예를 들어, 상기 3D 프린팅용 치관용 레진 조성물에서 실리카 필러를 제외한 나머지 성분들의 혼합 시 25℃ 점도가 1,000cps 이하인 것을 사용하면 상기 3D 프린팅용 치관용 레진 조성물의 25℃ 점도를 3,000cps 이하로 용이하게 조절할 수 있다.
3D 프린팅용 치관용 레진 조성물의 제조방법
다른 일 측면에 따른 3D 프린팅용 치관용 레진 조성물의 제조방법은 (a) 우레탄 디메타크릴레이트 30~39중량부, 디에틸렌글라이콜 디메타크릴레이트 10~19중량부, 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부 및 광개시제 0.1~3중량부를 기계적으로 혼합하는 단계; 및 (b) 상기 (a)의 레진 조성물에 자전 및 공전을 부여하여 탈포하는 단계;를 포함할 수 있다.
일 예시로, 상기 (a) 단계는 볼 밀링에 의해 수행될 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 혼합 용기에 우레탄 디메타크릴레이트 30~39중량부, 디에틸렌글라이콜 디메타크릴레이트 10~19중량부, 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부 및 광개시제 0.1~3중량부를 투입하고, 지르코니아 볼을 투입하여 볼 밀링을 수행할 수 있다. 기계적 혼합을 통해 우레탄 디메타크릴레이트, 디에틸렌글라이콜 디메타크릴레이트, 광개시제 및 실리카 필러가 균일하게 분산되어 실리카 필러 함량이 높으면서도 점도가 낮은 레진 조성물을 제조할 수 있다. 상기 우레탄 디메타크릴레이트, 디에틸렌글라이콜 디메타크릴레이트, 광개시제 및 실리카 필러에 대한 특성 및 함량에 대해서는 전술한 바와 같다.
비제한적인 일 예시로, 상기 (a) 단계는 5~20시간 및 50~200rpm의 조건에서 수행될 수 있다. 수행 시간은 예를 들어, 5시간, 6시간, 7시간, 8시간, 9시간, 10시간, 11시간, 12시간, 14시간, 15시간, 16시간, 17시간, 18시간, 19시간, 20시간 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 또한, 수행 속도는 예를 들어, 50rpm, 60rpm, 70rpm, 80rpm, 90rpm, 100rpm, 110rpm, 120rpm, 130rpm, 140rpm, 150rpm, 160rpm, 170rpm, 180rpm, 190rpm, 200rpm 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 범위를 벗어나면 분산이 불충분하거나 제품의 제조 효율이 부족할 수 있다.
일 예시에서, 상기 실리카 필러는, (i) 실리카 필러, 용매 및 실란계 첨가제와 혼합하는 단계; (ii) 건조하여 기능화된 실리카 필러를 제조하는 단계;로 제조된 기능화 실리카 필러일 수 있다. 예를 들어, 상기 (a) 단계 이전에, 실리카 필러, 용매, 실란계 첨가제 및 지르코니아 볼을 혼합 용기에 투입하고, 10~15시간 및 50~200rpm의 조건에서 볼 밀링을 수행하여 표면처리할 수 있다. 볼 밀링 완료 후 혼합물을 70~90℃의 오븐에서 건조하여 용매를 제거함으로써 실란 기능화된 실리카 필러를 제조할 수 있다.
상기 실란계 첨가제는 예를 들어, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란, 감마-메타크릴옥시 프로필트리메톡시 실란, 다이메틸 다이클로로 실란, 헥사메틸렌 다이실라잔, 다이메틸 폴리실록산 또는 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나 이에 한정되는 것은 아니다. 또한, 상기 용매는 예를 들어, 에탄올, 아이소프로필 알코올 및 메틸이소프로필 알코올 중 선택된 하나일 수 있으나 기능화 단계에 영향이 없는 용매라면 이에 한정되는 것은 아니다. 비제한적인 일 예시로, 상기 실란계 첨가제는 (a) 단계에서 소량 첨가될 수도 있다. 상기 실란계 첨가제는 (a) 단계의 레진 조성물의 혼합 과정에 포함되어 각 성분들이 고르게 분산될 수 있도록 유도할 수 있다.
일 예시로, 상기 실리카 필러는 평균 입경이 500~1,000㎚인 제 1실리카 필러, 100~200㎚인 제2 실리카 필러 및 10~100㎚인 제3 실리카 필러를 포함하고, 상기 제1 실리카 필러 : 제2 실리카 필러 : 제3 실리카 필러의 중량비는 35~45 : 5~10 : 1~5일 수 있다. 이들에 의한 특성은 전술한 바와 같다.
상기 광개시제는 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드, 디페닐(2,4,6-트리메틸벤조일)포스핀옥사이드, 캄포퀴논, 2-(디메틸아미노)메타크릴레이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으며, 이들의 특성에 대해서는 전술한 바와 같다.
상기 (b) 단계에서 상기 (a)의 레진 조성물에 자전 및 공전을 부여하여 기포를 제거할 수 있다. 자전 및 공전에 의해 발생하는 원심력과 구심력, 마찰력을 이용하여 내부에 임펠러 또는 볼 없이 빠르고 신속하게 혼합 및 탈포를 수행할 수 있다. 이러한 자전 및 공전을 부여하는 방법으로 페이스트 믹서를 사용할 수 있으나, 이에 한정되는 것은 아니다. 페이스트 믹서는 고점도 시료에 대한 혼합 및 탈포기기로 공전과 함께 자전 운동을 진행할 수 있다.
비제한적인 일 예시로, 상기 (b) 단계는 3~15분 동안 자전 및 공전이 각각 500~2,500rpm의 조건에서 수행될 수 있다. 수행 시간은 예를 들어, 3분, 4분, 5분, 6분, 7분, 8분, 9분, 10분, 11분, 12분, 13분, 14분, 15분 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 또한, 수행 속도는, 예를 들어, 자전과 공전 속도가 각각 독립적으로 500rpm, 600rpm, 700rpm, 800rpm, 900rpm, 1,000rpm, 1,100rpm, 1,200rpm, 1,300rpm, 1,400rpm, 1,500rpm, 1,600rpm, 1,700rpm, 1,800rpm, 1,900rpm, 2,000rpm, 2,100rpm, 2,200rpm, 2,300rpm, 2,400rpm, 2,500rpm 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다.
이하, 본 명세서의 실시예에 관하여 더욱 상세히 설명하기로 한다. 다만, 이하의 실험 결과는 상기 실시예 중 대표적인 실험 결과만을 기재한 것이며, 실시예 등에 의해 본 명세서의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 아래에서 명시적으로 제시하지 않은 본 명세서의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다. 별도 서술이 없는 경우 각 실험은 상온(20℃), 상압(1bar)에서 수행되었다.
실시예 1
혼합 용기에 평균 입경이 500~1,000㎚인 제1 실리카 필러 41 중량부, 100~200 ㎚인 제2 실리카 필러 6 중량부, 10~100 ㎚인 제3 실리카 필러 3 중량부, 에탄올, 실란계 첨가제 및 지르코니아 볼을 투입하여 12시간, 100rpm의 조건에서 볼 밀링을 수행하였다. 볼 밀링 완료 후 볼을 제거하고, 혼합물은 오븐에서 85℃에서 완전 건조하여 용매를 제거하여 실란 기능화된 실리카 필러를 제조하였다. 도 3에 제1 실리카 필러, 도 4에 제2 실리카 필러, 도 5에 제 3실리카 필러의 일 예시를 나타내었다.
혼합 용기에 우레탄 디메타크릴레이트(UDMA) 35중량부, 디에틸렌글라이콜 디메타크릴레이트(DEGDMA) 15중량부, 실란 기능화된 실리카 필러 50중량부, 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드 1중량부 및 지르코니아 볼을 투입하여 12시간, 100rpm의 조건에서 볼 밀링을 수행하여 레진 조성물을 제조하였다.
제조된 레진 조성물을 페이스트 믹서 PDM-300V(대화테크 社)로 5분, 1,000rpm의 조건으로 자전 및 공전시켜 탈포하였다.
비교예 1
우레탄 디메타크릴레이트 45중량부, 디에틸렌글라이콜 디메타크릴레이트 5중량부를 사용한 것을 제외하면 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
비교예 2
우레탄 디메타크릴레이트 40중량부, 디에틸렌글라이콜 디메타크릴레이트 10중량부를 사용한 것을 제외하면 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
비교예 3
우레탄 디메타크릴레이트 30중량부, 디에틸렌글라이콜 디메타크릴레이트 20중량부를 사용한 것을 제외하면 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
비교예 4
베이스 고분자 조성으로 우레탄 디메타크릴레이트 60중량부, 디에틸렌글라이콜 디메타크릴레이트 15~25 중량부, 포스핀 옥사이드 2.5중량부를 투입하고 실리카 필러를 생략한 것을 제외하고는 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
비교예 5
평균 입경이 500~1,000㎚인 실리카 필러와 10~100㎚인 실리카 필러를 생략한 것을 제외하면 상기 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
비교예 6
평균 입경이 10~100㎚인 실리카 필러를 생략한 것을 제외하면 상기 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
비교예 7
탈포 단계를 수행하지 않는 것을 제외하면 실시예 1과 동일한 방법으로 레진 조성물을 제조하였다.
실험예 1: 레진 조성물의 물성 평가 1
베이스 레진 조성에 따른 출력하기에 적합한 점도를 확인하기 위해 실시예 1 및 비교예 1~3의 레진 조성물을 3D 프린터로 출력하였고, 점도계를 이용하여 점도를 측정하여 그 결과를 표 1에 나타내었다.
구분 실시예 1 비교예 1 비교예 2 비교예 3
UDMA (중량부) 35 45 40 30
DEGDMA (중량부) 15 5 10 20
500~1,000㎚ 실리카 필러 (중량부) 41 41 41 41
100~200 ㎚ 실리카 필러 (중량부) 6 6 6 6
10~100 ㎚ 실리카 필러 (중량부) 3 3 3 3
베이스 점도 (cPs) 285 5,685 2,378 171
최종 점도 (cPs) 1,615 3,000< 3,000< 1,341
인쇄 가능성 O X X O
기계적 강도 O O O X
실험예 2: 레진 조성물의 물성 평가 2
입경 별 실리카 필러 조성에 따른 수분에 의한 물성 변화를 살펴보기 위해 실시예 1 및 비교예 4~6의 레진 조성물을 3D 프린터로 출력하였고, 수분 담지 전과 후의 물성 평가를 수행하여 그 결과를 표 2 및 도 1에 나타내었다.
실시예 1 비교예 4 비교예 5 비교예 6
UDMA (중량부) 35 60 35 35
DEGDMA (중량부) 15 15~25 15 15
500~1,000㎚
실리카 필러 (중량부)
41 - - 41
100~200 ㎚
실리카 필러 (중량부)
6 - 6 6
10~100 ㎚ 실리카 필러 (중량부) 3 - - -
물성 수분
담지 전
수분
담지 후
수분
담지 전
수분
담지 후
수분
담지 전
수분
담지 후
수분
담지 전
수분
담지 후
굴곡강도(㎫) 171 120 142 113 151 96 182 61
굴곡영율(㎫) 5,313 5,313 3,218 3,014 5,544 5,019 5,728 5,524
압축강도(㎫) 161 149 294 263 147 123 141 120
압축영율(㎫) 1,862 1,781 1,313 1,212 2,143 1,616 1,679 1,377
표 2 및 도 1을 참고하면 실시예 1 및 비교예 4~6의 대부분의 물성이 수분의 영향으로 저하된 것을 확인할 수 있다. 다만, 특히 보철물에서 중요한 물성인 영율을 살펴보면, 실리카 필러를 포함한 실시예 1은 우수한 굴곡영율 및 압축영율을 나타내었고, 굴곡영율이 수분 담지 전과 후에 실질적으로 동일하여 수분의 영향에 대한 물성 저하가 발생하지 않았고, 압축영율에서는 수분 담지 전과 후에 큰 차이 없는 결과를 나타내었다. 따라서 실시예 1의 레진 조성물로 제조된 보철물은 구강 환경에서도 우수한 기계적 강도를 유지할 것으로 예측할 수 있다. 이에 반해, 종래 레진 조성물인 비교예 4는 실시예 1에 비해 압축강도는 높은 것으로 나타내었으나, 굴곡영율 및 압축영율 값이 실시예 1에 비해 현저하게 낮은 것으로 나타내어 임시 치관 등의 단기적인 보철물에 적합할 것으로 예측할 수 있다.
실험예 3: 레진 조성물의 물성 평가 3
페이스트 믹서를 이용한 탈포 단계 유무에 따른 레진 조성물의 물성 평가하기 위해, 실시예 1 및 비교예 7의 레진 조성물을 3D 프린터로 출력하여 물성 평가를 수행하였고, 그 결과를 표 3 및 도 2에 나타내었다.
구분 실시예 1 비교예 7
굴곡강도(㎫) 171 94
굴곡영율(㎫) 5,313 5,021
압축강도(㎫) 161 118
압축영율(㎫) 1,862 1,541
표 3 및 도 2를 참고하면 실시예 1은 굴곡강도, 굴곡영율, 압축강도, 압축영율의 모든 기계적 강도 평가가 우수한 것을 확인할 수 있다. 이는 실시예 3의 레진 조성물이 탈포 단계가 수행됨에 따라 출력물의 내부 기공이 감소함으로써 기계적 강도가 향상된 것을 확인할 수 있다. 이에 반해 비교예 7은 모든 물성 평가에서 실시예 1에 비해 저하된 값을 나타내었다.
전술한 본 명세서의 설명은 예시를 위한 것이며, 본 명세서의 일 측면이 속하는 기술분야의 통상의 지식을 가진 자는 본 명세서에 기재된 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 명세서의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 명세서의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 우레탄 디메타크릴레이트 30~39중량부;
    디에틸렌글라이콜 디메타크릴레이트 10~19중량부;
    평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부; 및
    광개시제 0.1~3중량부;를 포함하는 3D 프린팅용 치관용 레진 조성물.
  2. 제1항에 있어서,
    상기 실리카 필러는 평균 입경이 500~1,000㎚인 제 1실리카 필러, 100~200㎚인 제2 실리카 필러 및 10~100㎚인 제3 실리카 필러를 포함하고, 상기 제1 실리카 필러 : 제2 실리카 필러 : 제3 실리카 필러의 중량비는 35~45 : 5~10 : 1~5인 3D 프린팅용 치관용 레진 조성물.
  3. 제1항에 있어서,
    상기 실리카 필러는 0.5~3중량부의 실란 화합물로 기능화된 것인 3D 프린팅용 치관용 레진 조성물.
  4. 제1항에 있어서,
    상기 광개시제는 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드, 디페닐(2,4,6-트리메틸벤조일)포스핀옥사이드, 캄포퀴논, 2-(디메틸아미노)메타크릴레이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나인 3D 프린팅용 치관용 레진 조성물.
  5. 제1항에 있어서,
    상기 3D 프린팅용 치관용 레진 조성물의 점도는 25℃에서 3,000cps 이하인 3D 프린팅용 치관용 레진 조성물.
  6. (a) 우레탄 디메타크릴레이트 30~39중량부, 디에틸렌글라이콜 디메타크릴레이트 10~19중량부, 평균 입경이 10~1,000㎚인 실리카 필러 50~60중량부; 및 광개시제 0.1~3중량부를 기계적으로 혼합하는 단계; 및
    (b) 상기 (a)의 레진 조성물에 자전 및 공전을 부여하여 탈포하는 단계;를 포함하는 3D 프린팅용 치관용 레진 조성물의 제조방법.
  7. 제6항에 있어서,
    상기 실리카 필러는 평균 입경이 500~1,000㎚인 제1 실리카 필러, 100~200㎚인 제2 실리카 필러 및 10~100㎚인 제3 실리카 필러를 포함하고, 상기 제1 실리카 필러 : 제2 실리카 필러 : 제3 실리카 필러의 중량비는 35~45 : 5~10 : 1~5인 3D 프린팅용 치관용 레진 조성물의 제조방법.
  8. 제7항에 있어서,
    상기 실리카 필러는,
    (i) 실리카 필러, 용매 및 실란계 첨가제와 혼합하는 단계;
    (ii) 건조하여 기능화된 실리카 필러를 제조하는 단계;로 제조된 기능화 실리카 필러인 3D 프린팅용 치관용 레진 조성물의 제조방법.
  9. 제6항에 있어서,
    상기 광개시제는 페닐비스(2,4,6-트리메틸벤조일)포스핀옥사이드, 디페닐(2,4,6-트리메틸벤조일)포스핀옥사이드, 캄포퀴논, 2-(디메틸아미노)메타크릴레이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나인 3D 프린팅용 치관용 레진 조성물의 제조방법.
  10. 제6항에 있어서,
    상기 자전 및 공전은 각각 500~2500 rpm의 속도로 부여되는 3D 프린팅용 치관용 레진 조성물의 제조방법.
PCT/KR2023/004068 2022-04-19 2023-03-28 3d 프린팅용 치관용 레진 조성물 및 그 제조방법 WO2023204468A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0048036 2022-04-19
KR1020220048036A KR20230149368A (ko) 2022-04-19 2022-04-19 3d 프린팅용 치관용 레진 조성물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023204468A1 true WO2023204468A1 (ko) 2023-10-26

Family

ID=88420269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004068 WO2023204468A1 (ko) 2022-04-19 2023-03-28 3d 프린팅용 치관용 레진 조성물 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20230149368A (ko)
WO (1) WO2023204468A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160055727A (ko) * 2013-04-18 2016-05-18 덴카, 인크. 광경화성 수지 조성물 및 인공 치아 및 의치상 제조를 위한 3차원 인쇄에 이를 이용하는 방법
KR20190044315A (ko) * 2017-10-20 2019-04-30 박성원 인공 치아 형성용 조성물, 인공 치아의 제조방법 및 그 방법에 의해 제조된 인공 치아
JP6617205B2 (ja) * 2016-10-20 2019-12-11 Yamakin株式会社 歯科切削加工用複合レジン材料及びその製造方法
KR20200115253A (ko) * 2019-03-26 2020-10-07 소후 인코포레이티드 치과용 3차원 조형물의 제작에 사용되는 치과용 광조형식 3차원 인쇄 재료
WO2022023737A1 (en) * 2020-07-28 2022-02-03 Mitsubishi Chemical UK Limited Additive manufacturing composition for 3-d printed object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160055727A (ko) * 2013-04-18 2016-05-18 덴카, 인크. 광경화성 수지 조성물 및 인공 치아 및 의치상 제조를 위한 3차원 인쇄에 이를 이용하는 방법
JP6617205B2 (ja) * 2016-10-20 2019-12-11 Yamakin株式会社 歯科切削加工用複合レジン材料及びその製造方法
KR20190044315A (ko) * 2017-10-20 2019-04-30 박성원 인공 치아 형성용 조성물, 인공 치아의 제조방법 및 그 방법에 의해 제조된 인공 치아
KR20200115253A (ko) * 2019-03-26 2020-10-07 소후 인코포레이티드 치과용 3차원 조형물의 제작에 사용되는 치과용 광조형식 3차원 인쇄 재료
WO2022023737A1 (en) * 2020-07-28 2022-02-03 Mitsubishi Chemical UK Limited Additive manufacturing composition for 3-d printed object

Also Published As

Publication number Publication date
KR20230149368A (ko) 2023-10-27

Similar Documents

Publication Publication Date Title
Perdigão et al. Adhesive dentistry: Current concepts and clinical considerations
Lazari et al. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material
EP0894117B1 (de) Additionsvernetzende 2-komponenten-siliconmaterialien
DE10124028B4 (de) Selbstadhäsive Dentalmaterialien
JP3122238B2 (ja) 歯科的応用面用の透明材料
EP1049442B1 (de) Unterfütterung für prothesen und verfahren zur herstellung
US5171147A (en) Dental bridge
WO2020166869A1 (ko) 결정화 유리를 포함하는 치과용 복합체
Hulterström et al. Changes in appearance of silicone elastomers for maxillofacial prostheses as a result of aging.
WO2023204468A1 (ko) 3d 프린팅용 치관용 레진 조성물 및 그 제조방법
WO2019132472A1 (ko) 광경화성 조성물 및 이를 이용하여 제조된 성형품
WO2019132473A1 (ko) 광경화성 조성물 및 이를 이용하여 제조된 성형품
WO2006108384A1 (de) Optimierte silikonmaterialien für die digitale optische datenerfassung
Mühlemann et al. Change in color and gloss parameters of stained monolithic resin-ceramic CAD/CAM materials after simulated aging: an in vitro study
WO2021132861A1 (ko) 치과용 컴포지트 블랭크의 제조방법
US8702425B2 (en) Elastic temporary supraconstruction for a dental implant
WO2023204416A1 (ko) 투명 미백 트레이의 제조방법
KR101674067B1 (ko) 우수한 스캐닝 성능 및 기계적 물성을 갖는 치과용 인상재 조성물 및 그를 포함하는 치과용 인상재
WO2023055046A1 (ko) 세라믹 인공치아용 3d 프린팅 조성물
US20110077335A1 (en) Adhesive agent for silicone rubber
Sharma et al. Fracture Resistance of Endodontically Treated Premolars Restored with Flowable Short Fibre-Reinforced Resin Composite–An In Vitro Study
WO2019098791A1 (ko) 3d 프린팅용 의치상 레진
KR102093997B1 (ko) 치아교정 속도증가 장치 및 이의 제조 방법
WO2020138859A1 (ko) 치과용 코팅 조성물 및 그를 포함하는 치과재료
WO2024005249A1 (ko) 형광성을 갖는 의료용 레진 필러 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792048

Country of ref document: EP

Kind code of ref document: A1