WO2023204305A1 - Polarization direction discriminator, dual output laser, and polarization direction discrimination method - Google Patents

Polarization direction discriminator, dual output laser, and polarization direction discrimination method Download PDF

Info

Publication number
WO2023204305A1
WO2023204305A1 PCT/JP2023/015918 JP2023015918W WO2023204305A1 WO 2023204305 A1 WO2023204305 A1 WO 2023204305A1 JP 2023015918 W JP2023015918 W JP 2023015918W WO 2023204305 A1 WO2023204305 A1 WO 2023204305A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
polarization
polarization direction
faraday rotator
port
Prior art date
Application number
PCT/JP2023/015918
Other languages
French (fr)
Japanese (ja)
Inventor
ジイヨン セット
康太 宇山
真司 山下
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2023204305A1 publication Critical patent/WO2023204305A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers

Definitions

  • the present invention relates to a polarization direction discriminator having reversible transparency depending on the polarization direction and propagation direction, a dual output laser using the same, and a polarization direction discrimination method.
  • an optical device related to a polarization direction discriminator there is an isolator that allows only light propagating in one direction to pass through.
  • this type of isolator for example, there is an isolator having a structure in which a pair of polarizers set in orthogonal polarization directions are arranged outside a Faraday rotator that rotates the polarization direction by 45 degrees. Note that in order to maintain the polarization direction, a 1/2 wavelength plate may be placed between the Faraday rotator and one polarizer.
  • the isolator as described above transmits light from one direction and blocks light from the other direction, it becomes impossible to utilize light from the other direction.
  • a mode-locked laser that generates high-intensity short pulses one that forms a dual asynchronous pulse, that is, a dual frequency comb, whose components are two orthogonal polarized lights is known (for example, see Non-Patent Documents 1 and 2). ).
  • Non-Patent Document 1 a general isolator is incorporated in the fiber resonator ring, and it is not easy to stably and efficiently extract the dual frequency comb.
  • the present invention has been made in view of the above-mentioned background art, and an object of the present invention is to provide a polarization direction discriminator that exhibits asymmetric transparency depending on the polarization direction of propagating light.
  • An object of the present invention is to provide a dual output laser that can efficiently extract a dual frequency comb using a polarization direction discriminator as described above.
  • the polarization direction discriminator is a polarization dependent device, between a first port provided at one end and a second port provided at the other end, A first Faraday rotator disposed on the first port side, a second Faraday rotator disposed on the second port side between the first port and the second port, the first Faraday rotator and the second Faraday rotator. and a polarization selection device including an optical element disposed between the rotator and the polarization selection device for restricting passage of one of the first intermediate polarized light and the second intermediate polarized light incident on the optical element.
  • the dual output laser includes a polarization-maintaining ring-shaped resonator, an optical gain section disposed in the resonator, and a light beam that propagates into the resonator in the first round direction.
  • a first light supply section that supplies the first polarized light so as to propagate in the second rotation direction to the resonator
  • a second light supply section that supplies the second polarized light so as to propagate in the second circulation direction
  • the above-mentioned polarization direction discriminator includes a polarization-maintaining ring-shaped resonator, an optical gain section disposed in the resonator, and a light beam that propagates into the resonator in the first round direction.
  • a polarization direction discrimination method is a polarization direction discrimination method in which first polarized light and second polarized light are transmitted through a pair of Faraday rotators and a polarization selection device, and the polarization direction is passing the second polarized light while allowing the first polarized light to pass, and restricting the passing of the first polarized light while allowing the second polarized light incident from the other side to pass.
  • FIG. 1A and 1B are conceptual plan views illustrating the polarization direction discriminator of the first embodiment.
  • 2A and 2B are conceptual perspective views illustrating the polarization direction discriminator of the first embodiment.
  • 3A and 3B are conceptual plan views illustrating the polarization direction discriminator of the second embodiment.
  • FIG. 4 is a conceptual diagram illustrating a mode-locked laser according to the third embodiment.
  • FIG. 5 is a diagram illustrating a polarization direction discriminator incorporated in the mode-locked laser shown in FIG. 4.
  • FIG. 6 is a chart showing the optical spectrum of the output of the mode-locked laser shown in FIG.
  • FIG. 7 is a chart showing an output pulse train.
  • X, Y, and Z indicate the overall coordinate system
  • x and y indicate the local coordinate system of the point of interest.
  • X and Y correspond to two directions perpendicular to the direction of incidence of light
  • Z corresponds to the direction of incidence of light
  • x and y give coordinates at a point on the optical axis AX, and correspond to two directions perpendicular to the optical axis AX
  • z corresponds to a direction parallel to the optical axis AX.
  • FIG. 1A shows a case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side
  • FIG. 1B shows the case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side.
  • a case is shown in which two polarized lights P2 are incident.
  • the upper region AR1 in FIGS. 1A and 1B is described as a state in which the polarization state or polarization direction at each position passing through the polarization direction discriminator 10 is viewed from the left side of the paper along the optical axis AX.
  • FIG. 2A shows a case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side
  • FIG. 2B shows the case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side.
  • a case is shown in which two polarized lights P2 are incident.
  • the polarization direction discriminator 10 shown in FIGS. 1A, 1B, etc. is a non-reciprocal optical element, more specifically a polarization-dependent non-reciprocal discriminator.
  • Polarization direction discriminator 10 can also be referred to as a polarization dependent device.
  • the polarization direction discriminator 10 includes a first Faraday rotator 11, a polarizing plate 14, and a second Faraday rotator between a first port PO1 on the left side, that is, on the -Z side, and a second port PO2 on the right side, that is, on the +Z side. 12.
  • the first Faraday rotator 11 is arranged on the first port PO1 side
  • the second Faraday rotator 12 is arranged on the second port PO2 side.
  • the polarizing plate 14 is an optical element disposed between the first Faraday rotator 11 and the second Faraday rotator 12, and functions alone as the polarization selection device 15.
  • the first port PO1 is not an independent member, but the end surface 11a of the first Faraday rotator 11 also serves as the function.
  • the first port PO1 may be a diaphragm disposed adjacent to the end surface 11a of the first Faraday rotator 11.
  • a lens may be added to the first port PO1 to adjust the condensing state of light.
  • the second port PO2 is not an independent member, but the end surface 12a of the second Faraday rotator 12 also serves this function.
  • the second port PO2 may be a diaphragm disposed adjacent to the end surface 12a of the second Faraday rotator 12. Further, a lens may be added to the second port PO2 to adjust the condensing state of light.
  • the first Faraday rotator 11 includes a block-shaped ferromagnetic crystal 11i and a magnet 11j that forms a magnetic field B1 in the ferromagnetic crystal 11i.
  • the magnetic field B1 formed in the ferromagnetic crystal 11i is directed in the -Z direction.
  • the ferromagnetic crystal 11i has a pair of flat end faces 11a and 11b, and when linearly polarized light passes through the ferromagnetic crystal 11i, the polarization direction of the linearly polarized light changes regardless of the angle of the polarization direction at the time of incidence. Rotate 45°.
  • the polarization directions are rotated by 45° counterclockwise when viewed from the -Z side.
  • the polarized light directions are rotated by 45° counterclockwise when viewed from the -Z side.
  • the second Faraday rotator 12 includes a block-shaped ferromagnetic crystal 12i and a magnet 12j that forms a magnetic field B2 in the ferromagnetic crystal 12i.
  • the magnetic field B2 formed in the ferromagnetic crystal 12i is directed in the +Z direction.
  • the ferromagnetic crystal 12i has a pair of flat end faces 12a and 12b, and when linearly polarized light passes through the ferromagnetic crystal 12i, the polarization direction of the linearly polarized light changes regardless of the angle of the polarization direction at the time of incidence. Rotate 45°.
  • the polarization directions are rotated by 45° clockwise when viewed from the -Z side.
  • the polarized light directions are rotated by 45° clockwise when viewed from the -Z side.
  • the polarizing plate 14 is an absorption type polarizer, and limits the light passing through the polarizing plate 14 to linearly polarized light in a specific polarization direction.
  • the polarizing plate 14 is a polarizing film obtained by stretching a polymeric material containing an iodine compound or a dye in a specific direction, for example, and adhered to a parallel plate substrate.
  • the polarization axis of the polarizing plate 14 is set between the -x direction and the +y direction, and forms an angle of 45° with respect to both the -x direction and the +y direction.
  • the polarization axis of the polarizing plate 14 is inclined by 45 degrees with respect to the polarization direction of the first polarized light P1 and the second polarized light P2 that are input to the first Faraday rotator 11 and the second Faraday rotator 12.
  • the polarizing plate 14 is not limited to an absorption type, and can be replaced with a polarizing beam splitter incorporating a dielectric multilayer film, for example. In this case, unnecessary light is branched out of the optical path.
  • an anti-reflection film can be formed on the end faces 11a and 11b of the first Faraday rotator 11, and an anti-reflection film can be formed on the end faces 12a and 12b of the other second Faraday rotator 12.
  • a film can be formed.
  • an antireflection film can also be formed on the surface of the polarizing plate 14.
  • the sine waveform E1 drawn in the first Faraday rotator 11 or before and after the first Faraday rotator 11 indicates the oscillation of the electric field of the first polarized light P1 and the polarized light derived from this
  • the sine waveform E2 which shows the oscillation of the electric field of the second polarized light P2 and the polarized light derived therefrom.
  • the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side.
  • the first polarized light P1 is linearly polarized light having a plane of polarization parallel to the Y direction, that is, the y direction
  • the second polarized light P2 is linear polarized light having a plane of polarization parallel to the X direction, that is, the x direction.
  • the polarization direction of the first polarized light P1 and the polarization direction of the second polarized light P2 are orthogonal to each other.
  • first polarized light P1 and the second polarized light P2 pass through the first Faraday rotator 11, the planes of polarization are rotated counterclockwise by 45 degrees.
  • first polarized light P1 has a polarization plane in a ⁇ 45° inclined direction, which is rotated by 45° counterclockwise with respect to the +y direction.
  • second polarized light P2 has a polarization plane in a +45° inclined direction, which is rotated 45° clockwise with respect to the +y direction.
  • second intermediate polarized light P22 is a polarization plane in a +45° inclined direction
  • the first intermediate polarized light P12 originating from the first polarized light P1 and the second intermediate polarized light P22 originating from the second polarized light P2 enter the polarizing plate 14.
  • the polarization direction of the first intermediate polarized light P12 derived from the first polarized light P1 coincides with the polarization axis of the polarizing plate 14, and passes through the polarizing plate 14 with low loss.
  • the polarization direction of the second intermediate polarized light P22 originating from the second polarized light P2 is perpendicular to the polarization axis of the polarizing plate 14, and is absorbed and blocked by the polarizing plate 14.
  • the polarizing plate 14 has a role of relatively suppressing passage of the second intermediate polarized light P22, which is one of the first intermediate polarized light P12 and the second intermediate polarized light P22.
  • the first intermediate polarized light P12 After passing through the polarizing plate 14, the first intermediate polarized light P12 enters the second Faraday rotator 12 from the end surface 12b side.
  • the plane of polarization is rotated by 45° clockwise.
  • the first Faraday rotator 11 and the second Faraday rotator rotate the polarization direction by 45° in opposite directions.
  • the first intermediate polarized light P12 changes from a state where the direction is tilted at -45° to a state where it has a polarization plane parallel to the +y direction, and is returned to the original state of the first polarized light P1.
  • the first polarized light P1 passes through the polarization direction discriminator 10 in one direction, that is, the +Z direction, while maintaining its polarization state.
  • the second polarized light P2 cannot pass through the polarization direction discriminator 10 and is blocked.
  • the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side.
  • the planes of polarization are rotated by 45° clockwise. That is, the first polarized light P1 has a polarization plane in a +45° inclined direction, which is rotated by 45° clockwise with respect to the +y direction. This state is called second intermediate polarized light P13.
  • the second polarized light P2 has a polarization plane tilted at ⁇ 45°, which is rotated by 45° counterclockwise with respect to the +y direction.
  • first intermediate polarized light P23 This state is called first intermediate polarized light P23.
  • the second intermediate polarized light P13 derived from the first polarized light P1 and the first intermediate polarized light P23 derived from the second polarized light P2 enter the polarizing plate 14.
  • the polarization direction of the first intermediate polarized light P23 derived from the second polarized light P2 matches the polarization axis of the polarizing plate 14, and passes through the polarizing plate 14 with low loss.
  • the polarization direction of the second intermediate polarized light P13 derived from the first polarized light P1 is perpendicular to the polarization axis of the polarizing plate 14, and is absorbed and blocked by the polarizing plate 14.
  • the polarizing plate 14 has a role of relatively suppressing passage of the second intermediate polarized light P13, which is one of the first intermediate polarized light P23 and the second intermediate polarized light P13. After passing through the polarizing plate 14, the first intermediate polarized light P23 enters the first Faraday rotator 11 from the end surface 11b side. When the first intermediate polarized light P23 passes through the first Faraday rotator 11, the plane of polarization is rotated counterclockwise by 45 degrees.
  • the first intermediate polarized light P23 changes from a state in which the direction is tilted at -45° with respect to the +y direction to a state in which it has a polarization plane parallel to the -x direction, and is returned to the second polarized light P2 in the original state.
  • the second polarized light P2 passes through the polarization direction discriminator 10 in the other direction, i.e., the -Z direction, while maintaining its polarization state.
  • the first polarized light P1 cannot pass through the polarization direction discriminator 10 and is blocked.
  • the first Faraday rotator 11 and the second Faraday rotator 12 rotate the polarization direction by 45° in opposite directions.
  • the transmittance of the first polarized light P1 incident from the first port PO1 side and the second polarized light P2 incident from the second port PO2 side can be increased.
  • the polarization direction discriminator 10 of the first embodiment described above is located between the first port PO1 provided at one end and the second port PO2 provided at the other end, and is located on the first port PO1 side.
  • a first Faraday rotator 11 disposed between the first Faraday rotator 11 and a second Faraday rotator 12 disposed between the first port PO1 and the second port PO2 and on the second port PO2 side; It includes a polarizing plate 14 as an optical element disposed between the two Faraday rotators 12, and restricts the passage of one of the first intermediate polarized light P12, P23 and the second intermediate polarized light P22, P13 incident on the polarizing plate 14.
  • a polarization selection device 15 is provided.
  • the polarization selection device 15 restricts the passage of one of the second intermediate polarized lights P22 and P13 that enters the polarizing plate 14, so that the first polarized light P1 that enters from the first port PO1 side is selectively transmitted. It is now possible to selectively pass the second polarized light P2 incident from the second port PO2 side, and force the two types of polarized light P1 and P2 to propagate in opposite directions. It becomes easier to realize.
  • the polarization direction discrimination method in the first embodiment is a polarization direction discrimination method in which the first polarized light P1 and the second polarized light P2 are transmitted through a pair of Faraday rotators 11 and 12 and the polarization selection device 15, and the polarized light is incident from one side. Passage of the second polarized light P2 is restricted while allowing the first polarized light P1 to pass, and passage of the first polarized light P1 is restricted while allowing the second polarized light P2 incident from the other side to pass.
  • the polarization direction discriminator of the second embodiment will be described below. Note that the polarization direction discriminator of the second embodiment is a modification of the device of the first embodiment, and is the same as the first embodiment with respect to parts not particularly described.
  • FIG. 3A shows a case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side
  • FIG. 3B shows the case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side.
  • a case is shown in which two polarized lights P2 are incident.
  • the upper and lower regions AR1 and AR2 in FIGS. 2A and 2B describe the polarization state or polarization direction at each position passing through the polarization direction discriminator 10 as seen from the left side of the paper along the optical axis AX. It is.
  • the plane of the paper extends parallel to an intermediate direction that is parallel to the Z axis and at an angle of 45° to the X and Y directions.
  • the polarization direction discriminator 10 has a birefringent element 14a instead of the polarizing plate 14 as an optical element between the first Faraday rotator 11 and the second Faraday rotator 12.
  • the polarization direction discriminator 10 includes a first diaphragm 14b located outside the first Faraday rotator 11 and a second diaphragm 14c located outside the second Faraday rotator 12.
  • “inner” with respect to the first Faraday rotator 11 and the second Faraday rotator 12 means between the Faraday rotators 11 and 12.
  • the birefringent element 14a functions as a polarization selection device 115 in combination with the first aperture 14b and the second aperture 14c.
  • the birefringent element 14a is a birefringent prism whose optical axis 14p extends in a direction parallel to the plane of the paper and inclined at a predetermined angle with respect to the optical axis AX.
  • the S-polarized light (polarization direction component perpendicular to the paper) that is perpendicularly incident on the first surface 14g of the birefringent element 14a from the left side of the paper propagates as an ordinary ray, traveling straight in the direction perpendicular to the first surface 14g, and becomes complex.
  • P-polarized light (polarization direction component parallel to the paper) that is perpendicularly incident on the first surface 14g of the refractive element 14a from the left side of the paper is deflected from the optical axis AX in a direction oblique to the first surface 14g as an extraordinary ray. propagate.
  • the S-polarized light that is perpendicularly incident on the second surface 14h of the birefringent element 14a from the right side of the paper propagates as an ordinary ray in a direction perpendicular to the first surface 14h, and is transmitted to the second surface 14h of the birefringent element 14a.
  • the P-polarized light incident perpendicularly from the right side of the page propagates as an extraordinary ray in a direction oblique to the second surface 14h, deviating from the optical axis AX.
  • the first diaphragm 14b has an aperture 14o, and passes the first polarized light P1 and the second polarized light P2 that are incident from the left side of the paper along the optical axis AX and its vicinity.
  • the second diaphragm 14c has an aperture 14o, and passes the first polarized light P1 and the second polarized light P2 that are incident from the right side of the paper along the optical axis AX and its vicinity.
  • the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side.
  • the first polarized light P1 is linearly polarized light having a plane of polarization parallel to the Y direction, that is, the y direction
  • the second polarized light P2 is linear polarized light having a plane of polarization parallel to the X direction, that is, the x direction.
  • the polarization direction of the first polarized light P1 and the polarization direction of the second polarized light P2 are orthogonal to each other.
  • the first polarized light P1 and the second polarized light P2 that have passed through the aperture 14o of the first diaphragm 14b pass through the first Faraday rotator 11, so that their polarization directions are rotated counterclockwise by 45 degrees.
  • the first polarized light P1 becomes the first intermediate polarized light P12, which is rotated 45° counterclockwise and has a polarization direction in a ⁇ 45° inclined direction.
  • the second polarized light P2 passes through the first Faraday rotator 11, the polarization direction is rotated counterclockwise by 45 degrees.
  • the second polarized light P2 becomes the second intermediate polarized light P22 having a polarization direction in a +45° tilt direction which is rotated by 45° counterclockwise.
  • the first intermediate polarized light P12 originating from the first polarized light P1 and the first intermediate polarized light P22 originating from the second polarized light P2 enter the birefringent element 14a.
  • the polarization direction of the first intermediate polarized light P12 originating from the first polarized light P1 is perpendicular to the plane of the paper, and travels straight through the birefringent element 14a.
  • the polarization direction of the second intermediate polarized light P22 derived from the second polarized light P2 is parallel to the paper surface and deviates from the optical axis AX.
  • the first intermediate polarized light P12 emitted from the birefringent element 14a goes straight along the optical axis AX and enters the second Faraday rotator 12, and the second intermediate polarized light P22 emitted from the birefringent element 14a is a light It is refracted in a direction parallel to the axis AX and enters the second Faraday rotator 12.
  • the plane of polarization is rotated by 45° clockwise.
  • the first Faraday rotator 11 and the second Faraday rotator rotate the polarization direction by 45° in opposite directions. That is, the first intermediate polarized light P12 has a polarization plane parallel to the +y direction from the -45° tilt direction with the +y direction as a reference, and is returned to the original first polarized light P1. As a result, the first polarized light P1 passes through the polarization direction discriminator 10 in one direction, that is, the +Z direction, while maintaining its polarization state.
  • the second intermediate polarized light P22 is returned to the second polarized light P2, but enters outside the aperture 14o of the second aperture 14c and is blocked by the second aperture 14c. That is, the second polarized light P2 cannot pass through the polarization direction discriminator 10 and is blocked.
  • the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side.
  • the first polarized light P1 and the second polarized light P2 that have passed through the aperture 14o of the second diaphragm 14c pass through the second Faraday rotator 12, so that their polarization directions are rotated by 45 degrees clockwise.
  • the first polarized light P1 becomes the second intermediate polarized light P13 having a polarization direction in a +45° tilt direction which is rotated by 45° clockwise.
  • the second polarized light P2 passes through the second Faraday rotator 12, the polarization direction is rotated by 45° clockwise.
  • the second polarized light P2 becomes the first intermediate polarized light P23 having a polarization direction in a -45° tilt direction which is rotated by 45° counterclockwise.
  • the second intermediate polarized light P13 derived from the first polarized light P1 and the first intermediate polarized light P23 derived from the second polarized light P2 enter the birefringent element 14a.
  • the polarization direction of the second intermediate polarized light P13 derived from the first polarized light P1 is parallel to the paper surface and deviates from the optical axis AX.
  • the polarization direction of the first intermediate polarized light P23 derived from the second polarized light P2 is perpendicular to the plane of the paper, and travels straight through the birefringent element 14a.
  • the first intermediate polarized light P23 emitted from the birefringent element 14a goes straight along the optical axis AX and enters the first Faraday rotator 11, and the second intermediate polarized light P13 emitted from the birefringent element 14a is a light It is refracted in a direction parallel to the axis AX and enters the first Faraday rotator 11.
  • the plane of polarization is rotated by -45° counterclockwise.
  • the first intermediate polarized light P23 has a polarization plane parallel to the +x direction from the ⁇ 45° tilted direction with the +y direction as a reference, and is returned to the original second polarized light P2.
  • the second polarized light P2 passes through the polarization direction discriminator 10 in one direction, i.e., the -Z direction, while maintaining its polarization state.
  • the second intermediate polarized light P13 is returned to the first polarized light P1, but enters outside the aperture 14o of the first aperture 14b and is blocked by the first aperture 14b. That is, the first polarized light P1 cannot pass through the polarization direction discriminator 10 and is blocked.
  • the polarization selection device 115 includes the birefringent element 14a, which is an optical element, and the birefringence element 14a, which is an optical element, and a birefringent element 14a, which is an optical element, and a birefringent element 14a, which is an optical element, and a second port PO1, which is disposed outside the first Faraday rotator 11. 1 aperture 14b, and a second aperture 14c disposed outside the second Faraday rotator 12 as a second port PO2.
  • reliable light blocking using the first aperture 14b and the second aperture 14c is possible, and it becomes easy to improve the accuracy of the polarization direction discriminator 10.
  • a mode-locked laser according to the third embodiment will be described below. Note that the mode-locked laser of the third embodiment incorporates the polarization direction discriminator of the first embodiment or the second embodiment.
  • the mode-locked laser 100 shown in FIG. 4 is a dual output laser. More specifically, the mode-locked laser 100 is a dual comb laser, and is a dual comb light source that generates two optical frequency combs within a single optical resonator. The mode-locked laser 100 outputs a pair of optical combs having different polarization directions as a dual output laser.
  • the mode-locked laser 100 is a passive mode-locked laser that performs a passive mode-locking operation, and includes a resonator 100a, a polarization direction discriminator 10, an optical amplification section 20, a first transmission adjustment section 31, and a second transmission adjustment section 31. It includes a transmission adjustment section 32 and an output coupler 50.
  • the mode-locked laser 100 includes a polarization-maintaining ring-shaped resonator 100a, an optical amplification section 20, a first transmission adjustment section 31, a second transmission adjustment section 32, a polarization direction discriminator 10, and an output.
  • a coupler 50 is provided, and these are joined by fusion or the like.
  • the resonator 100a is formed into a ring shape by the optical fiber 2.
  • the optical fiber 2 is a polarization maintaining optical fiber (PMF).
  • the polarization direction discriminator 10 is inserted onto the optical path of the optical fiber 2 of the resonator 100a via the connectors 3a and 3b.
  • the connectors 3a and 3b can include lenses and the like, and can collimate the circulating lights OL1 and OL2.
  • the polarization direction discriminator 10 has a structure illustrated in FIG. 1A and the like.
  • the first Faraday rotator 11, the polarizing plate 14, and the second Faraday rotator 12 constituting the polarization direction discriminator 10 are positioned and fixed in a light-shielding holder 18.
  • the optical amplification section 20 is disposed in the resonator 100a along with the resonator 100a, and includes a first light supply section 21, a second light supply section 22, and a gain fiber 23.
  • the first light supply section 21 has a first excitation light source 21a and a first multiplexing coupler 21b.
  • the first light supply section 21 supplies the excitation light PL of the first polarized light P1 to the resonator 100a from one direction.
  • the first polarized light P1 that is, the excitation light PL, propagates in the first rotation direction (specifically, in the clockwise direction of the loop of the resonator 100a).
  • the first excitation light source 21a is composed of, for example, a semiconductor laser, and outputs excitation light having a wavelength of, for example, 980 nm.
  • the first multiplexing coupler 21b does not prevent light having a wavelength of, for example, 1550 nm from propagating and circulating in the resonator 100a.
  • the excitation light introduced into the resonator 100a from the first light supply unit 21 excites the dopant added to the doped fiber, which is the gain fiber 23, and enables stimulated emission at the wavelength of the output re
  • the second light supply section 22 has a second excitation light source 22a and a second multiplexing coupler 22b.
  • the second light supply section 22 supplies the excitation light PL of the second polarized light P2 to the gain fiber 23 from the other direction.
  • the second polarized light P2, that is, the excitation light PL propagates in the second circulation direction (specifically, in the counterclockwise direction of the loop of the resonator 100a).
  • the first excitation light source 21a is similar to the first excitation light source 21a, and outputs excitation light having a wavelength of 980 nm, for example.
  • the second multiplexing coupler 22b does not prevent light with a wavelength of, for example, 1550 nm from propagating and circulating in the resonator 100a.
  • the optical fiber extending between the second excitation light source 22a and the second multiplexing coupler 22b has a splice connection 22s, and enables rotation of the polarization direction of the excitation light PL output from the second excitation light source 22a.
  • the excitation light introduced into the resonator 100a from the second light supply section 22 excites the dopant added to the doped fiber, which is the gain fiber 23, and enables stimulated emission at the wavelength of the output resonant light.
  • the gain fiber 23 is an optical gain section placed in the resonator 100a.
  • the gain fiber 23 is connected in-line to the optical fiber 2 that constitutes the resonator 100a.
  • the gain fiber 23 is a polarization-maintaining optical fiber doped to have an amplification function.
  • the gain fiber 23 is a doped fiber doped with a rare earth element such as erbium (Er), and the first circulating light OL1 circulates clockwise around the resonator 100a, and the second circulating light OL1 circulates counterclockwise.
  • the circulating light OL2 is amplified.
  • the first transmission adjustment section 31 and the second transmission adjustment section 32 are arranged in the resonator 100a, and enable generation of ultrashort pulses using saturable absorption characteristics in which the transmittance changes nonlinearly.
  • the first transmission adjustment section 31 and the second transmission adjustment section 32 have a saturable absorber 30a arranged on the optical path, and carbon nanotubes, graphene, etc. can be used as the saturable absorber 30a.
  • the output coupler 50 is coupled to the resonator 100a and takes out the first polarized light P1 and the second polarized light P2.
  • Output coupler 50 has two output ports 51a and 51b and is coupled to resonator 100a.
  • the first output light Q1 is output from the first output port 51a of the output coupler 50 via the first isolator 61 as pulsed light of the second polarization P2, and the second output light Q1 is output from the second output port 51b of the output coupler 50 via the first isolator 61.
  • a second output light Q2 is outputted as a pulsed light of the first polarized light P1.
  • the first light supply section 21 and the second light supply section 22 are arranged symmetrically with the output coupler 50 in between, and the gain fiber 23, which is an optical gain section, is arranged symmetrically with the output coupler 50 in between. are arranged symmetrically. Further, the first transmission adjustment section 31 and the second transmission adjustment section 32 are arranged symmetrically with the output coupler 50 in between. In this case, the oscillation state can be stabilized, and the first polarized light P1 and the second polarized light P2 can be generated and extracted with high efficiency.
  • FIG. 6 is a chart showing the optical spectra of the first output light Q1 and the second output light Q2 of the mode-locked laser 100 shown in FIG. 4.
  • FIG. 7 is a chart showing pulse trains of the first output light Q1 and the second output light Q2.
  • FIG. 6 shows the results of measurement using an optical spectrum analyzer with the resolution bandwidth set to 0.05 nm.
  • the 3-dB optical bandwidths of Output 1 of the first output light Q1 and Output 2 of the second output light Q2 are 4.13 nm and 4.52 nm, respectively.
  • FIG. 7 shows a time waveform measured using an oscilloscope, and repetition frequencies of 20.672968 MHz and 20.678468 MHz were observed.
  • the mode-locked laser 100 shown in FIG. 4 can be used as a dual comb light source, and can be applied to spectroscopy and distance measurement.
  • Dual comb spectroscopy has applications in smart agriculture and biotechnology, allowing for smaller implementation sizes and faster measurement speeds.
  • Dual-com distance measurement is expected to be applied to the fields of autonomous driving and drones, and can improve measurement accuracy and reduce equipment costs.
  • the polarization direction discriminator 10 is expressed as an integrated device, but the first Faraday rotator 11, the polarizing plate 14, and the second Faraday rotator 12 that constitute this are optical fibers, connectors, and lenses. Even if they are separated via other light guide members, if the polarization state is maintained when passing through the light guide members, they will exhibit the desired function as a non-reciprocal optical element regarding polarization.
  • the mode-locked laser 100 which is a dual output laser according to the third embodiment described above, includes a polarization-maintaining ring-shaped resonator 100a and a gain fiber 23, which is an optical gain section, arranged in the resonator 100a. , a first light supply unit 21 that supplies the first polarized light P1 to the resonator 100a so as to propagate in the first rotation direction, and a first light supply unit 21 that supplies the second polarized light P2 to the resonator 100a so as to propagate in the second rotation direction. It includes a two-light supply unit 22 and the polarization direction discriminator 10 described above.
  • the first polarized light P1 propagating in one direction in the resonator 100a and the second polarized light P2 propagating in the other direction in the resonator 100a coexist with high efficiency, thereby reducing polarization crosstalk. and can provide a high-power dual-type light source.
  • the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments.
  • the rotation of the polarization direction by the first Faraday rotator 11 and the second Faraday rotator 12 is not limited to ⁇ 45°, but may be ⁇ 45°+180° ⁇ n (n is a natural number). Further, the rotation of the polarization direction by the Faraday rotators 11 and 12 does not have to be strictly ⁇ 45°.
  • the rotation of the polarization direction by the first Faraday rotator 11 and the second Faraday rotator 12 is not limited to the opposite direction but may be the same rotation direction as long as the resulting rotation amount of the polarization direction is ⁇ 45°. can do.
  • the first Faraday rotator 11 and the second Faraday rotator 12 can be in the form of optical fibers, and the polarization selection device 15 including the polarizing plate 14 can be integrated into the optical fiber 2.
  • the first transmission adjustment section 31 and the second transmission adjustment section 32 can be made polarization dependent.
  • the first transmission adjustment section 31 can be given a transmission characteristic suitable for the first polarized light P1
  • the second transmission adjustment section 32 can be given a transmission characteristic suitable for the second polarized light P2.
  • the polarization direction discriminator 10 described in the first embodiment and the second embodiment is not limited to the mode-locked laser 100, but also includes a dual-comb laser that forms an optical comb by a method other than mode-locking, such as a waveguide with a nonlinear effect. can be incorporated into a dual comb laser with a cavity of Specifically, optical combs can be formed by inputting continuous light with different wavelengths into a waveguide, or by inputting a single continuous beam into a waveguide and forming an optical comb through a process similar to the Kerr effect. It is conceivable that this may occur.
  • the polarization direction discriminator 10 can be incorporated into a continuous wave type dual output laser. In this case, continuous oscillation laser output with bidirectionally transmitted polarized waves can be obtained.
  • the resonator 100a includes the optical fiber 2, but the mode-locked laser 100 can also be applied to other waveguide type optical devices that do not use an optical fiber.
  • waveguide type optical devices include PLC (Photonics Lightwave Circuits), silicon photonics waveguides, and semiconductor waveguides (InP, GaAs, InGaAsP, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Polarising Elements (AREA)
  • Lasers (AREA)

Abstract

The purpose of the present invention is to provide a polarization direction discriminator that exhibits asymmetric transparency in accordance with the polarization direction of propagated light. This polarization direction discriminator 10 comprises: a first Faraday rotator 11 that is between a first port PO1 provided to one end of the discriminator and a second port PO2 provided to the other end, and is disposed on the first port PO1 side; a second Faraday rotator 12 that is between the first port PO1 and the second port PO2, and is disposed on the second port PO2 side; and a polarization selection device 15 that includes a polarizing plate 14 as an optical element disposed between the first Faraday rotator 11 and the second Faraday rotator 12, and that limits the passage of one among first intermediate polarized light P12, P23 and second intermediate polarized light P22, P13 incident on the polarizing plate 14.

Description

偏光方向ディスクリミネータ、デュアル出力レーザ、及び偏光方向弁別方法Polarization direction discriminator, dual output laser, and polarization direction discrimination method
 本発明は、偏光方向及び伝搬方向に応じた可逆的透過性を有する偏光方向ディスクリミネータ、これを用いたデュアル出力レーザ、並びに偏光方向弁別方法に関する。 The present invention relates to a polarization direction discriminator having reversible transparency depending on the polarization direction and propagation direction, a dual output laser using the same, and a polarization direction discrimination method.
 偏光方向ディスクリミネータに関連する光学装置として、一方向に伝搬する光のみを通過させるアイソレータが存在する。この種のアイソレータとして、例えば偏光方向を45°回転させるファラデーローテータの外側に一対の直交する偏光方向に設定された一対のポーラライザを配置した構造を有するものが存在する。なお、偏光方向を維持するため、ファラデーローテータと一のポーラライザとの間に1/2波長板を配置することもある。 As an optical device related to a polarization direction discriminator, there is an isolator that allows only light propagating in one direction to pass through. As this type of isolator, for example, there is an isolator having a structure in which a pair of polarizers set in orthogonal polarization directions are arranged outside a Faraday rotator that rotates the polarization direction by 45 degrees. Note that in order to maintain the polarization direction, a 1/2 wavelength plate may be placed between the Faraday rotator and one polarizer.
 上記のようなアイソレータは、一方向からの光を透過させ、他方向からの光を遮断するものであるため、他方向からの光を利用することができなくなる。 Since the isolator as described above transmits light from one direction and blocks light from the other direction, it becomes impossible to utilize light from the other direction.
 高強度の短パルスを発生するモード同期レーザとして、直交する2種の偏光を成分とするデュアル非同期パルスすなわちデュアル周波数コムを形成するものが公知となっている(例えば、非特許文献1及び2参照)。 As a mode-locked laser that generates high-intensity short pulses, one that forms a dual asynchronous pulse, that is, a dual frequency comb, whose components are two orthogonal polarized lights is known (for example, see Non-Patent Documents 1 and 2). ).
 しかしながら、非特許文献1では、ファイバ共振器リングに一般的なアイソレータを組み込んでおり、デュアル周波数コムを安定して効率的に取り出すことは容易でない。 However, in Non-Patent Document 1, a general isolator is incorporated in the fiber resonator ring, and it is not easy to stably and efficiently extract the dual frequency comb.
 本発明は、上記背景技術に鑑みてなされたものであり、伝搬する光の偏光方向に応じて非対称な透過性を示す偏光方向ディスクリミネータを提供することを目的とする。 The present invention has been made in view of the above-mentioned background art, and an object of the present invention is to provide a polarization direction discriminator that exhibits asymmetric transparency depending on the polarization direction of propagating light.
 本発明は、上記のような偏光方向ディスクリミネータによって、デュアル周波数コムを効率的に取り出すことができるデュアル出力レーザを提供することを目的とする。 An object of the present invention is to provide a dual output laser that can efficiently extract a dual frequency comb using a polarization direction discriminator as described above.
 上記目的を達成するため、本発明に係る偏光方向ディスクリミネータは、偏光依存デバイスであり、一端に設けられた第1ポートと、他端に設けられた第2ポートとの間であって、第1ポート側に配置される第1ファラデーローテータと、第1ポートと第2ポートとの間であって、第2ポート側に配置される第2ファラデーローテータと、第1ファラデーローテータと第2ファラデーローテータとの間に配置される光学要素を含み、光学要素に入射する第1中間偏光と第2中間偏光とのうち一の通過を制限する偏光選択デバイスとを備える。 In order to achieve the above object, the polarization direction discriminator according to the present invention is a polarization dependent device, between a first port provided at one end and a second port provided at the other end, A first Faraday rotator disposed on the first port side, a second Faraday rotator disposed on the second port side between the first port and the second port, the first Faraday rotator and the second Faraday rotator. and a polarization selection device including an optical element disposed between the rotator and the polarization selection device for restricting passage of one of the first intermediate polarized light and the second intermediate polarized light incident on the optical element.
 上記目的を達成するため、本発明に係るデュアル出力レーザは、偏波保持型のリング状の共振器と、共振器中に配置される光利得部と、共振器に第1周回方向に伝搬するように第1偏光を供給する第1光供給部と、共振器に第2周回方向に伝搬するように第2偏光を供給する第2光供給部と、上述した偏光方向ディスクリミネータとを備える。 In order to achieve the above object, the dual output laser according to the present invention includes a polarization-maintaining ring-shaped resonator, an optical gain section disposed in the resonator, and a light beam that propagates into the resonator in the first round direction. a first light supply section that supplies the first polarized light so as to propagate in the second rotation direction to the resonator, a second light supply section that supplies the second polarized light so as to propagate in the second circulation direction, and the above-mentioned polarization direction discriminator. .
 上記目的を達成するため、本発明に係る偏光方向弁別方法は、一対のファラデーローテータ及び偏光選択デバイスを介して第1偏光と第2偏光とを透過させる偏光方向弁別方法であって、一方から入射した第1偏光を通過させつつ第2偏光の通過を制限し、かつ、他方から入射した第2偏光を通過させつつ第1偏光の通過を制限する。 In order to achieve the above object, a polarization direction discrimination method according to the present invention is a polarization direction discrimination method in which first polarized light and second polarized light are transmitted through a pair of Faraday rotators and a polarization selection device, and the polarization direction is passing the second polarized light while allowing the first polarized light to pass, and restricting the passing of the first polarized light while allowing the second polarized light incident from the other side to pass.
図1A及び図1Bは、第1実施形態の偏光方向ディスクリミネータを説明する概念的な平面図である。1A and 1B are conceptual plan views illustrating the polarization direction discriminator of the first embodiment. 図2A及び図2Bは、第1実施形態の偏光方向ディスクリミネータを説明する概念的な斜視図である。2A and 2B are conceptual perspective views illustrating the polarization direction discriminator of the first embodiment. 図3A及び図3Bは、第2実施形態の偏光方向ディスクリミネータを説明する概念的な平面図である。3A and 3B are conceptual plan views illustrating the polarization direction discriminator of the second embodiment. 図4は、第3実施形態のモード同期レーザを説明する概念図である。FIG. 4 is a conceptual diagram illustrating a mode-locked laser according to the third embodiment. 図5は、図4に示すモード同期レーザに組み込まれた偏光方向ディスクリミネータを説明する図である。FIG. 5 is a diagram illustrating a polarization direction discriminator incorporated in the mode-locked laser shown in FIG. 4. 図6は、図4に示すモード同期レーザの出力の光スペクトルを示すチャートである。FIG. 6 is a chart showing the optical spectrum of the output of the mode-locked laser shown in FIG. 図7は、出力のパルス列を示すチャートである。FIG. 7 is a chart showing an output pulse train.
〔第1実施形態〕
 以下、図1A、図2A等を参照して、本発明に係る偏光方向ディスクリミネータの第1実施形態について説明する。図1等において、X、Y、及びZは、全体の座標系を示し、x及びyは着目する箇所の局在的な座標系を示している。特にX及びYは、光の入射方向に対して直交する2方向に相当し、Zは、光の入射方向に相当する。x及びyは、光軸AX上の点における座標を与えるものであり、光軸AXに対して直交する2方向に相当し、zは、光軸AXに平行な方向に相当する。
[First embodiment]
Hereinafter, a first embodiment of a polarization direction discriminator according to the present invention will be described with reference to FIGS. 1A, 2A, etc. In FIG. 1 and the like, X, Y, and Z indicate the overall coordinate system, and x and y indicate the local coordinate system of the point of interest. In particular, X and Y correspond to two directions perpendicular to the direction of incidence of light, and Z corresponds to the direction of incidence of light. x and y give coordinates at a point on the optical axis AX, and correspond to two directions perpendicular to the optical axis AX, and z corresponds to a direction parallel to the optical axis AX.
 図1Aは、偏光方向ディスクリミネータ10において、左側から第1偏光P1及び第2偏光P2が入射する場合を示し、図1Bは、偏光方向ディスクリミネータ10において、右側から第1偏光P1及び第2偏光P2が入射する場合を示している。図1A及び1Bの上部領域AR1は、偏光方向ディスクリミネータ10を通過する各位置での偏光状態又は偏光方向を紙面左側から光軸AXに沿って見た状態として説明するものである。 1A shows a case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side, and FIG. 1B shows the case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side. A case is shown in which two polarized lights P2 are incident. The upper region AR1 in FIGS. 1A and 1B is described as a state in which the polarization state or polarization direction at each position passing through the polarization direction discriminator 10 is viewed from the left side of the paper along the optical axis AX.
 図2Aは、偏光方向ディスクリミネータ10において、左側から第1偏光P1及び第2偏光P2が入射する場合を示し、図2Bは、偏光方向ディスクリミネータ10において、右側から第1偏光P1及び第2偏光P2が入射する場合を示している。 2A shows a case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side, and FIG. 2B shows the case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side. A case is shown in which two polarized lights P2 are incident.
 図1A、1B等に示す偏光方向ディスクリミネータ10は、非相反型の光学素子であり、より詳細には偏光依存非相反型のディスクリミネータである。偏光方向ディスクリミネータ10を偏光依存デバイスと呼ぶこともできる。偏光方向ディスクリミネータ10は、左側つまり-Z側の第1ポートPO1と、右側つまり+Z側の第2ポートPO2との間に、第1ファラデーローテータ11と、偏光板14と、第2ファラデーローテータ12とを備える。第1ファラデーローテータ11は、第1ポートPO1側に配置され、第2ファラデーローテータ12は、第2ポートPO2側に配置される。偏光板14は、第1ファラデーローテータ11と第2ファラデーローテータ12との間に配置される光学要素であり、単独で偏光選択デバイス15として機能する。 The polarization direction discriminator 10 shown in FIGS. 1A, 1B, etc. is a non-reciprocal optical element, more specifically a polarization-dependent non-reciprocal discriminator. Polarization direction discriminator 10 can also be referred to as a polarization dependent device. The polarization direction discriminator 10 includes a first Faraday rotator 11, a polarizing plate 14, and a second Faraday rotator between a first port PO1 on the left side, that is, on the -Z side, and a second port PO2 on the right side, that is, on the +Z side. 12. The first Faraday rotator 11 is arranged on the first port PO1 side, and the second Faraday rotator 12 is arranged on the second port PO2 side. The polarizing plate 14 is an optical element disposed between the first Faraday rotator 11 and the second Faraday rotator 12, and functions alone as the polarization selection device 15.
 図示の例では、第1ポートPO1は、独立した部材ではなく、第1ファラデーローテータ11の端面11aがその機能を兼ねている。第1ポートPO1は、第1ファラデーローテータ11の端面11aに隣接して配置される絞りであってもよい。また、第1ポートPO1において、光の集光状態を調整するレンズを付加してもよい。 In the illustrated example, the first port PO1 is not an independent member, but the end surface 11a of the first Faraday rotator 11 also serves as the function. The first port PO1 may be a diaphragm disposed adjacent to the end surface 11a of the first Faraday rotator 11. Furthermore, a lens may be added to the first port PO1 to adjust the condensing state of light.
 第2ポートPO2は、独立した部材ではなく、第2ファラデーローテータ12の端面12aがその機能を兼ねている。第2ポートPO2は、第2ファラデーローテータ12の端面12aに隣接して配置される絞りであってもよい。また、第2ポートPO2において、光の集光状態を調整するレンズを付加してもよい。 The second port PO2 is not an independent member, but the end surface 12a of the second Faraday rotator 12 also serves this function. The second port PO2 may be a diaphragm disposed adjacent to the end surface 12a of the second Faraday rotator 12. Further, a lens may be added to the second port PO2 to adjust the condensing state of light.
 第1ファラデーローテータ11は、ブロック状の強磁性体結晶11iと、強磁性体結晶11iに磁場B1を形成する磁石11jとを備える。強磁性体結晶11i中に形成された磁場B1は、-Z方向に向かっている。強磁性体結晶11iには、一対の平面である端面11a,11bが形成され、直線偏光が強磁性体結晶11iを通過すると、直線偏光の偏光方向が、入射時の偏光方向の角度にかかわらず45°回転する。具体的には、第1偏光P1や第2偏光P2が左側の端面11aから入射して強磁性体結晶11iを通過すると、偏光方向が-Z側から見て反時計方向に45°回転する。図示を省略するが、第1偏光P1や第2偏光P2が強磁性体結晶11iを逆方向から通過しても、偏光方向が-Z側から見て反時計方向に45°回転する。 The first Faraday rotator 11 includes a block-shaped ferromagnetic crystal 11i and a magnet 11j that forms a magnetic field B1 in the ferromagnetic crystal 11i. The magnetic field B1 formed in the ferromagnetic crystal 11i is directed in the -Z direction. The ferromagnetic crystal 11i has a pair of flat end faces 11a and 11b, and when linearly polarized light passes through the ferromagnetic crystal 11i, the polarization direction of the linearly polarized light changes regardless of the angle of the polarization direction at the time of incidence. Rotate 45°. Specifically, when the first polarized light P1 and the second polarized light P2 enter from the left end surface 11a and pass through the ferromagnetic crystal 11i, the polarization directions are rotated by 45° counterclockwise when viewed from the -Z side. Although not shown, even if the first polarized light P1 and the second polarized light P2 pass through the ferromagnetic crystal 11i from opposite directions, the polarized light directions are rotated by 45° counterclockwise when viewed from the -Z side.
 第2ファラデーローテータ12は、ブロック状の強磁性体結晶12iと、強磁性体結晶12iに磁場B2を形成する磁石12jとを備える。強磁性体結晶12i中に形成された磁場B2は、+Z方向に向かっている。強磁性体結晶12iには、一対の平面である端面12a,12bが形成され、直線偏光が強磁性体結晶12iを通過すると、直線偏光の偏光方向が、入射時の偏光方向の角度にかかわらず45°回転する。具体的には、第1偏光P1や第2偏光P2が右側の端面12aから入射して強磁性体結晶12iを通過すると、偏光方向が-Z側から見て時計方向に45°回転する。図示を省略するが、第1偏光P1や第2偏光P2が強磁性体結晶12iを逆方向から通過しても、偏光方向が-Z側から見て時計方向に45°回転する。 The second Faraday rotator 12 includes a block-shaped ferromagnetic crystal 12i and a magnet 12j that forms a magnetic field B2 in the ferromagnetic crystal 12i. The magnetic field B2 formed in the ferromagnetic crystal 12i is directed in the +Z direction. The ferromagnetic crystal 12i has a pair of flat end faces 12a and 12b, and when linearly polarized light passes through the ferromagnetic crystal 12i, the polarization direction of the linearly polarized light changes regardless of the angle of the polarization direction at the time of incidence. Rotate 45°. Specifically, when the first polarized light P1 and the second polarized light P2 enter from the right end surface 12a and pass through the ferromagnetic crystal 12i, the polarization directions are rotated by 45° clockwise when viewed from the -Z side. Although not shown, even if the first polarized light P1 and the second polarized light P2 pass through the ferromagnetic crystal 12i from opposite directions, the polarized light directions are rotated by 45° clockwise when viewed from the -Z side.
 偏光板14は、吸収型のポーラライザであり、偏光板14を通過する光を特定の偏光方向の直線偏光に制限する。偏光板14は、例えばヨウ素化合物や染料を含有させた高分子材料を特定方向に延伸することによって得た偏光膜を平行平板の基板上に接着したものである。偏光板14の偏光軸は、-x方向と+y方向との間に設定され、-x方向に対しても+y方向に対しても45°をなしている。偏光板14の偏光軸は、第1ファラデーローテータ11及び第2ファラデーローテータ12に入射させる第1偏光P1の偏光方向と第2偏光P2の偏光方向とに対して45°傾いている。偏光板14は、吸収型に限らず、例えば誘電体多層膜を組み込んだ偏光ビームスプリッタに置き換えることができ、この場合、不要光は光路外に分岐される。 The polarizing plate 14 is an absorption type polarizer, and limits the light passing through the polarizing plate 14 to linearly polarized light in a specific polarization direction. The polarizing plate 14 is a polarizing film obtained by stretching a polymeric material containing an iodine compound or a dye in a specific direction, for example, and adhered to a parallel plate substrate. The polarization axis of the polarizing plate 14 is set between the -x direction and the +y direction, and forms an angle of 45° with respect to both the -x direction and the +y direction. The polarization axis of the polarizing plate 14 is inclined by 45 degrees with respect to the polarization direction of the first polarized light P1 and the second polarized light P2 that are input to the first Faraday rotator 11 and the second Faraday rotator 12. The polarizing plate 14 is not limited to an absorption type, and can be replaced with a polarizing beam splitter incorporating a dielectric multilayer film, for example. In this case, unnecessary light is branched out of the optical path.
 以上では説明を省略したが、一方の第1ファラデーローテータ11の端面11a,11bには、反射防止膜を形成することができ、他方の第2ファラデーローテータ12の端面12a,12bには、反射防止膜を形成することができる。また、偏光板14の表面にも、反射防止膜を形成することができる。 Although the explanation has been omitted above, an anti-reflection film can be formed on the end faces 11a and 11b of the first Faraday rotator 11, and an anti-reflection film can be formed on the end faces 12a and 12b of the other second Faraday rotator 12. A film can be formed. Further, an antireflection film can also be formed on the surface of the polarizing plate 14.
 図2A及び2Bを参照して、偏光方向ディスクリミネータ10の動作について説明する。図2A及び2Bにおいて、第1ファラデーローテータ11中や第1ファラデーローテータ11の前後に描かれたサイン波形E1は、第1偏光P1やこれに由来する偏光の電場の振動を示し、サイン波形E2は、第2偏光P2やこれに由来する偏光の電場の振動を示す。 The operation of the polarization direction discriminator 10 will be described with reference to FIGS. 2A and 2B. In FIGS. 2A and 2B, the sine waveform E1 drawn in the first Faraday rotator 11 or before and after the first Faraday rotator 11 indicates the oscillation of the electric field of the first polarized light P1 and the polarized light derived from this, and the sine waveform E2 , which shows the oscillation of the electric field of the second polarized light P2 and the polarized light derived therefrom.
 図2Aの場合、第1偏光P1及び第2偏光P2が、偏光方向ディスクリミネータ10の左側から入射する。ここで、第1偏光P1は、Y方向すなわちy方向に平行な偏光面を有する直線偏光であり、第2偏光P2は、X方向すなわちx方向に平行な偏光面を有する直線偏光であり、第1偏光P1の偏光方向と第2偏光P2の偏光方向とは直交する。第1偏光P1及び第2偏光P2は、第1ファラデーローテータ11を通過することで、偏光面が反時計方向に45°回転する。つまり、第1偏光P1は、+y方向を基準として反時計方向に45°回転した-45°傾斜方向に偏向面を有する状態となっている。この状態を第1中間偏光P12と呼ぶ。一方、第2偏光P2は、+y方向を基準として時計方向に45°回転した+45°傾斜方向に偏向面を有する状態となっている。この状態を第2中間偏光P22と呼ぶ。第1偏光P1に由来する第1中間偏光P12と、第2偏光P2に由来する第2中間偏光P22とは、偏光板14に入射する。第1偏光P1に由来する第1中間偏光P12の偏光方向は、偏光板14の偏光軸と一致しており、偏光板14を低損失で通過する。一方、第2偏光P2に由来する第2中間偏光P22の偏光方向は、偏光板14の偏光軸と直交しており、偏光板14で吸収され遮断される。偏光板14は、第1中間偏光P12と第2中間偏光P22とのうち一つである第2中間偏光P22の通過を相対的に抑制する役割を有する。第1中間偏光P12は、偏光板14を通過した後に、第2ファラデーローテータ12に端面12b側から入射する。第1中間偏光P12は、第2ファラデーローテータ12を通過することで、偏光面が時計方向に45°回転する。結果的に、第1ファラデーローテータ11と第2ファラデーローテータとは、反対方向に45°偏光方向を回転させる。つまり、第1中間偏光P12は、-45°傾斜方向の状態から+y方向に平行な偏向面を有する状態となり、元の状態の第1偏光P1に戻されている。結果的に、第1偏光P1は、偏光状態を保ちつつ、偏光方向ディスクリミネータ10を一方向である+Z方向に通過する。第2偏光P2は、偏光方向ディスクリミネータ10を通過できず遮断される。 In the case of FIG. 2A, the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side. Here, the first polarized light P1 is linearly polarized light having a plane of polarization parallel to the Y direction, that is, the y direction, and the second polarized light P2 is linear polarized light having a plane of polarization parallel to the X direction, that is, the x direction. The polarization direction of the first polarized light P1 and the polarization direction of the second polarized light P2 are orthogonal to each other. When the first polarized light P1 and the second polarized light P2 pass through the first Faraday rotator 11, the planes of polarization are rotated counterclockwise by 45 degrees. In other words, the first polarized light P1 has a polarization plane in a −45° inclined direction, which is rotated by 45° counterclockwise with respect to the +y direction. This state is called first intermediate polarized light P12. On the other hand, the second polarized light P2 has a polarization plane in a +45° inclined direction, which is rotated 45° clockwise with respect to the +y direction. This state is called second intermediate polarized light P22. The first intermediate polarized light P12 originating from the first polarized light P1 and the second intermediate polarized light P22 originating from the second polarized light P2 enter the polarizing plate 14. The polarization direction of the first intermediate polarized light P12 derived from the first polarized light P1 coincides with the polarization axis of the polarizing plate 14, and passes through the polarizing plate 14 with low loss. On the other hand, the polarization direction of the second intermediate polarized light P22 originating from the second polarized light P2 is perpendicular to the polarization axis of the polarizing plate 14, and is absorbed and blocked by the polarizing plate 14. The polarizing plate 14 has a role of relatively suppressing passage of the second intermediate polarized light P22, which is one of the first intermediate polarized light P12 and the second intermediate polarized light P22. After passing through the polarizing plate 14, the first intermediate polarized light P12 enters the second Faraday rotator 12 from the end surface 12b side. When the first intermediate polarized light P12 passes through the second Faraday rotator 12, the plane of polarization is rotated by 45° clockwise. As a result, the first Faraday rotator 11 and the second Faraday rotator rotate the polarization direction by 45° in opposite directions. In other words, the first intermediate polarized light P12 changes from a state where the direction is tilted at -45° to a state where it has a polarization plane parallel to the +y direction, and is returned to the original state of the first polarized light P1. As a result, the first polarized light P1 passes through the polarization direction discriminator 10 in one direction, that is, the +Z direction, while maintaining its polarization state. The second polarized light P2 cannot pass through the polarization direction discriminator 10 and is blocked.
 図2Bの場合、第1偏光P1及び第2偏光P2が、偏光方向ディスクリミネータ10の右側から入射する。第1偏光P1及び第2偏光P2は、第2ファラデーローテータ12を通過することで、偏光面が時計方向に45°回転する。つまり、第1偏光P1は、+y方向を基準として時計方向に45°回転した+45°傾斜方向に偏向面を有する状態となっている。この状態を第2中間偏光P13と呼ぶ。一方、第2偏光P2は、+y方向を基準として反時計方向に45°回転した-45°傾斜方向に偏向面を有する状態となっている。この状態を第1中間偏光P23と呼ぶ。第1偏光P1に由来する第2中間偏光P13と、第2偏光P2に由来する第1中間偏光P23とは、偏光板14に入射する。第2偏光P2に由来する第1中間偏光P23の偏光方向は、偏光板14の偏光軸と一致しており、偏光板14を低損失で通過する。一方、第1偏光P1に由来する第2中間偏光P13の偏光方向は、偏光板14の偏光軸と直交しており、偏光板14で吸収され遮断される。偏光板14は、第1中間偏光P23と第2中間偏光P13とのうち一つである第2中間偏光P13の通過を相対的に抑制する役割を有する。第1中間偏光P23は、偏光板14を通過した後に、第1ファラデーローテータ11に端面11b側から入射する。第1中間偏光P23は、第1ファラデーローテータ11を通過することで、偏光面が反時計方向に45°回転する。つまり、第1中間偏光P23は、+y方向を基準とする-45°傾斜方向の状態から-x方向に平行な偏向面を有する状態となり、元の状態の第2偏光P2に戻されている。結果的に、第2偏光P2は、偏光状態を保ちつつ、偏光方向ディスクリミネータ10を他方向である-Z方向に通過する。第1偏光P1は、偏光方向ディスクリミネータ10を通過できず遮断される。 In the case of FIG. 2B, the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side. When the first polarized light P1 and the second polarized light P2 pass through the second Faraday rotator 12, the planes of polarization are rotated by 45° clockwise. That is, the first polarized light P1 has a polarization plane in a +45° inclined direction, which is rotated by 45° clockwise with respect to the +y direction. This state is called second intermediate polarized light P13. On the other hand, the second polarized light P2 has a polarization plane tilted at −45°, which is rotated by 45° counterclockwise with respect to the +y direction. This state is called first intermediate polarized light P23. The second intermediate polarized light P13 derived from the first polarized light P1 and the first intermediate polarized light P23 derived from the second polarized light P2 enter the polarizing plate 14. The polarization direction of the first intermediate polarized light P23 derived from the second polarized light P2 matches the polarization axis of the polarizing plate 14, and passes through the polarizing plate 14 with low loss. On the other hand, the polarization direction of the second intermediate polarized light P13 derived from the first polarized light P1 is perpendicular to the polarization axis of the polarizing plate 14, and is absorbed and blocked by the polarizing plate 14. The polarizing plate 14 has a role of relatively suppressing passage of the second intermediate polarized light P13, which is one of the first intermediate polarized light P23 and the second intermediate polarized light P13. After passing through the polarizing plate 14, the first intermediate polarized light P23 enters the first Faraday rotator 11 from the end surface 11b side. When the first intermediate polarized light P23 passes through the first Faraday rotator 11, the plane of polarization is rotated counterclockwise by 45 degrees. In other words, the first intermediate polarized light P23 changes from a state in which the direction is tilted at -45° with respect to the +y direction to a state in which it has a polarization plane parallel to the -x direction, and is returned to the second polarized light P2 in the original state. As a result, the second polarized light P2 passes through the polarization direction discriminator 10 in the other direction, i.e., the -Z direction, while maintaining its polarization state. The first polarized light P1 cannot pass through the polarization direction discriminator 10 and is blocked.
 図2A及び2Bにおいて、第1ファラデーローテータ11と第2ファラデーローテータ12とは、反対方向に45°偏光方向を回転させる。結果的に、第1ポートPO1側から入射した第1偏光P1や第2ポートPO2側から入射した第2偏光P2の透過率を高めることができる。 In FIGS. 2A and 2B, the first Faraday rotator 11 and the second Faraday rotator 12 rotate the polarization direction by 45° in opposite directions. As a result, the transmittance of the first polarized light P1 incident from the first port PO1 side and the second polarized light P2 incident from the second port PO2 side can be increased.
 以上で説明した第1実施形態の偏光方向ディスクリミネータ10は、一端に設けられた第1ポートPO1と、他端に設けられた第2ポートPO2との間であって、第1ポートPO1側に配置される第1ファラデーローテータ11と、第1ポートPO1と第2ポートPO2との間であって、第2ポートPO2側に配置される第2ファラデーローテータ12と、第1ファラデーローテータ11と第2ファラデーローテータ12との間に配置される光学要素としての偏光板14を含み、偏光板14に入射する第1中間偏光P12,P23と第2中間偏光P22,P13とのうち一の通過を制限する偏光選択デバイス15とを備える。 The polarization direction discriminator 10 of the first embodiment described above is located between the first port PO1 provided at one end and the second port PO2 provided at the other end, and is located on the first port PO1 side. a first Faraday rotator 11 disposed between the first Faraday rotator 11 and a second Faraday rotator 12 disposed between the first port PO1 and the second port PO2 and on the second port PO2 side; It includes a polarizing plate 14 as an optical element disposed between the two Faraday rotators 12, and restricts the passage of one of the first intermediate polarized light P12, P23 and the second intermediate polarized light P22, P13 incident on the polarizing plate 14. A polarization selection device 15 is provided.
 上記偏光方向ディスクリミネータでは、偏光選択デバイス15が偏光板14に入射する一方の第2中間偏光P22,P13の通過を制限するので、第1ポートPO1側から入射した第1偏光P1を選択的に通過させ、かつ、第2ポートPO2側から入射した第2偏光P2を選択的に通過させるといった動作が可能になり、2種の偏光P1,P2を互いに逆方向に伝搬させる状態を強制的に実現することが容易になる。 In the polarization direction discriminator, the polarization selection device 15 restricts the passage of one of the second intermediate polarized lights P22 and P13 that enters the polarizing plate 14, so that the first polarized light P1 that enters from the first port PO1 side is selectively transmitted. It is now possible to selectively pass the second polarized light P2 incident from the second port PO2 side, and force the two types of polarized light P1 and P2 to propagate in opposite directions. It becomes easier to realize.
 第1実施形態における偏光方向弁別方法は、一対のファラデーローテータ11,12及び偏光選択デバイス15を介して第1偏光P1と第2偏光P2とを透過させる偏光方向弁別方法であって、一方から入射した第1偏光P1を通過させつつ第2偏光P2の通過を制限し、かつ、他方から入射した第2偏光P2を通過させつつ第1偏光P1の通過を制限する。 The polarization direction discrimination method in the first embodiment is a polarization direction discrimination method in which the first polarized light P1 and the second polarized light P2 are transmitted through a pair of Faraday rotators 11 and 12 and the polarization selection device 15, and the polarized light is incident from one side. Passage of the second polarized light P2 is restricted while allowing the first polarized light P1 to pass, and passage of the first polarized light P1 is restricted while allowing the second polarized light P2 incident from the other side to pass.
〔第2実施形態〕
 以下、第2実施形態の偏光方向ディスクリミネータについて説明する。なお、第2実施形態の偏光方向ディスクリミネータは、第1実施形態の装置を変形したものであり、特に説明しない部分については、第1実施形態と同様である。
[Second embodiment]
The polarization direction discriminator of the second embodiment will be described below. Note that the polarization direction discriminator of the second embodiment is a modification of the device of the first embodiment, and is the same as the first embodiment with respect to parts not particularly described.
 図3Aは、偏光方向ディスクリミネータ10において、左側から第1偏光P1及び第2偏光P2が入射する場合を示し、図3Bは、偏光方向ディスクリミネータ10において、右側から第1偏光P1及び第2偏光P2が入射する場合を示している。図2A及び2Bの上部及び下部の領域AR1,AR2は、偏光方向ディスクリミネータ10を通過する各位置での偏光状態又は偏光方向を紙面左側から光軸AXに沿って見た状態として説明するものである。この場合、紙面は、Z軸に平行で、X方向とY方向とに対して45°をなす中間方向に平行に延びる。 3A shows a case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side, and FIG. 3B shows the case where the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side. A case is shown in which two polarized lights P2 are incident. The upper and lower regions AR1 and AR2 in FIGS. 2A and 2B describe the polarization state or polarization direction at each position passing through the polarization direction discriminator 10 as seen from the left side of the paper along the optical axis AX. It is. In this case, the plane of the paper extends parallel to an intermediate direction that is parallel to the Z axis and at an angle of 45° to the X and Y directions.
 偏光方向ディスクリミネータ10は、第1ファラデーローテータ11と第2ファラデーローテータ12との間に、光学要素として、偏光板14の代わりに複屈折素子14aを有する。偏光方向ディスクリミネータ10は、第1ファラデーローテータ11より外側に配置される第1絞り14bと、第2ファラデーローテータ12より外側に配置される第2絞り14cとを備える。ここで、第1ファラデーローテータ11及び第2ファラデーローテータ12に関して内側は、ファラデーローテータ11,12間を意味する。複屈折素子14aは、第1絞り14bと第2絞り14cと組み合わせることで、偏光選択デバイス115として機能する。 The polarization direction discriminator 10 has a birefringent element 14a instead of the polarizing plate 14 as an optical element between the first Faraday rotator 11 and the second Faraday rotator 12. The polarization direction discriminator 10 includes a first diaphragm 14b located outside the first Faraday rotator 11 and a second diaphragm 14c located outside the second Faraday rotator 12. Here, "inner" with respect to the first Faraday rotator 11 and the second Faraday rotator 12 means between the Faraday rotators 11 and 12. The birefringent element 14a functions as a polarization selection device 115 in combination with the first aperture 14b and the second aperture 14c.
 複屈折素子14aは、紙面に平行で光軸AXに対して所定角度だけ傾いた方向に光学軸14pが延びる複屈折プリズムである。複屈折素子14aの第1面14gに紙面左側から垂直に入射したS偏光(紙面に垂直な偏光方向成分)は、常光線として第1面14gに垂直な方向に直進するように伝搬し、複屈折素子14aの第1面14gに紙面左側から垂直に入射したP偏光(紙面に平行な偏光方向成分)は、異常光線として第1面14gに対して傾斜した方向に光軸AXから逸れるように伝搬する。複屈折素子14aの第2面14hに紙面右側から垂直に入射したS偏光は、常光線として第1面14hに垂直な方向に直進するように伝搬し、複屈折素子14aの第2面14hに紙面右側から垂直に入射したP偏光は、異常光線として第2面14hに対して傾斜した方向に光軸AXから逸れるように伝搬する。 The birefringent element 14a is a birefringent prism whose optical axis 14p extends in a direction parallel to the plane of the paper and inclined at a predetermined angle with respect to the optical axis AX. The S-polarized light (polarization direction component perpendicular to the paper) that is perpendicularly incident on the first surface 14g of the birefringent element 14a from the left side of the paper propagates as an ordinary ray, traveling straight in the direction perpendicular to the first surface 14g, and becomes complex. P-polarized light (polarization direction component parallel to the paper) that is perpendicularly incident on the first surface 14g of the refractive element 14a from the left side of the paper is deflected from the optical axis AX in a direction oblique to the first surface 14g as an extraordinary ray. propagate. The S-polarized light that is perpendicularly incident on the second surface 14h of the birefringent element 14a from the right side of the paper propagates as an ordinary ray in a direction perpendicular to the first surface 14h, and is transmitted to the second surface 14h of the birefringent element 14a. The P-polarized light incident perpendicularly from the right side of the page propagates as an extraordinary ray in a direction oblique to the second surface 14h, deviating from the optical axis AX.
 第1絞り14bは、開口14oを有し、光軸AX及びその近傍に沿って紙面左側から入射する第1偏光P1及び第2偏光P2を通過させる。第2絞り14cは、開口14oを有し、光軸AX及びその近傍に沿って紙面右側から入射する第1偏光P1及び第2偏光P2を通過させる。 The first diaphragm 14b has an aperture 14o, and passes the first polarized light P1 and the second polarized light P2 that are incident from the left side of the paper along the optical axis AX and its vicinity. The second diaphragm 14c has an aperture 14o, and passes the first polarized light P1 and the second polarized light P2 that are incident from the right side of the paper along the optical axis AX and its vicinity.
 図3Aの場合、第1偏光P1及び第2偏光P2が、偏光方向ディスクリミネータ10の左側から入射する。ここで、第1偏光P1は、Y方向すなわちy方向に平行な偏光面を有する直線偏光であり、第2偏光P2は、X方向すなわちx方向に平行な偏光面を有する直線偏光であり、第1偏光P1の偏光方向と第2偏光P2の偏光方向とは直交する。第1絞り14bの開口14oを通過した第1偏光P1及び第2偏光P2は、第1ファラデーローテータ11を通過することで、偏光方向が反時計方向に45°回転する。つまり、第1偏光P1は、反時計方向に45°回転した-45°傾斜方向に偏向方向を有する第1中間偏光P12となる。一方、第2偏光P2は、第1ファラデーローテータ11を通過することで、偏光方向が反時計方向に45°回転する。つまり、第2偏光P2は、反時計方向に45°回転した+45°傾斜方向に偏向方向を有する第2中間偏光P22となる。第1偏光P1に由来する第1中間偏光P12と、第2偏光P2に由来する第1中間偏光P22とは、複屈折素子14aに入射する。第1偏光P1に由来する第1中間偏光P12の偏光方向は、紙面に垂直であり、複屈折素子14aを直進する。一方、第2偏光P2に由来する第2中間偏光P22の偏光方向は、紙面に平行であり、光軸AXから逸れる。複屈折素子14aから射出された第1中間偏光P12は、そのまま光軸AXに沿って直進して第2ファラデーローテータ12に入射し、複屈折素子14aから射出された第2中間偏光P22は、光軸AXに平行な方向に屈折されて第2ファラデーローテータ12に入射する。第1中間偏光P12は、第2ファラデーローテータ12を通過することで、偏光面が時計方向に45°回転する。結果的に、第1ファラデーローテータ11と第2ファラデーローテータとは、反対方向に45°偏光方向を回転させる。つまり、第1中間偏光P12は、+y方向を基準として-45°傾斜方向から+y方向に平行な偏向面を有する状態となり、元の第1偏光P1に戻されている。結果的に、第1偏光P1は、偏光状態を保ちつつ、偏光方向ディスクリミネータ10を一方向である+Z方向に通過する。第2中間偏光P22は、第2偏光P2に戻されるが、第2絞り14cの開口14o外に入射し、第2絞り14cによって遮られる。つまり、第2偏光P2は、偏光方向ディスクリミネータ10を通過できず遮断される。 In the case of FIG. 3A, the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the left side. Here, the first polarized light P1 is linearly polarized light having a plane of polarization parallel to the Y direction, that is, the y direction, and the second polarized light P2 is linear polarized light having a plane of polarization parallel to the X direction, that is, the x direction. The polarization direction of the first polarized light P1 and the polarization direction of the second polarized light P2 are orthogonal to each other. The first polarized light P1 and the second polarized light P2 that have passed through the aperture 14o of the first diaphragm 14b pass through the first Faraday rotator 11, so that their polarization directions are rotated counterclockwise by 45 degrees. In other words, the first polarized light P1 becomes the first intermediate polarized light P12, which is rotated 45° counterclockwise and has a polarization direction in a −45° inclined direction. On the other hand, when the second polarized light P2 passes through the first Faraday rotator 11, the polarization direction is rotated counterclockwise by 45 degrees. In other words, the second polarized light P2 becomes the second intermediate polarized light P22 having a polarization direction in a +45° tilt direction which is rotated by 45° counterclockwise. The first intermediate polarized light P12 originating from the first polarized light P1 and the first intermediate polarized light P22 originating from the second polarized light P2 enter the birefringent element 14a. The polarization direction of the first intermediate polarized light P12 originating from the first polarized light P1 is perpendicular to the plane of the paper, and travels straight through the birefringent element 14a. On the other hand, the polarization direction of the second intermediate polarized light P22 derived from the second polarized light P2 is parallel to the paper surface and deviates from the optical axis AX. The first intermediate polarized light P12 emitted from the birefringent element 14a goes straight along the optical axis AX and enters the second Faraday rotator 12, and the second intermediate polarized light P22 emitted from the birefringent element 14a is a light It is refracted in a direction parallel to the axis AX and enters the second Faraday rotator 12. When the first intermediate polarized light P12 passes through the second Faraday rotator 12, the plane of polarization is rotated by 45° clockwise. As a result, the first Faraday rotator 11 and the second Faraday rotator rotate the polarization direction by 45° in opposite directions. That is, the first intermediate polarized light P12 has a polarization plane parallel to the +y direction from the -45° tilt direction with the +y direction as a reference, and is returned to the original first polarized light P1. As a result, the first polarized light P1 passes through the polarization direction discriminator 10 in one direction, that is, the +Z direction, while maintaining its polarization state. The second intermediate polarized light P22 is returned to the second polarized light P2, but enters outside the aperture 14o of the second aperture 14c and is blocked by the second aperture 14c. That is, the second polarized light P2 cannot pass through the polarization direction discriminator 10 and is blocked.
 図3Bの場合、第1偏光P1及び第2偏光P2が、偏光方向ディスクリミネータ10の右側から入射する。第2絞り14cの開口14oを通過した第1偏光P1及び第2偏光P2は、第2ファラデーローテータ12を通過することで、偏光方向が時計方向に45°回転する。つまり、第1偏光P1は、時計方向に45°回転した+45°傾斜方向に偏向方向を有する第2中間偏光P13となる。一方、第2偏光P2は、第2ファラデーローテータ12を通過することで、偏光方向が時計方向に45°回転する。つまり、第2偏光P2は、反時計方向に45°回転した-45°傾斜方向に偏向方向を有する第1中間偏光P23となる。第1偏光P1に由来する第2中間偏光P13と、第2偏光P2に由来する第1中間偏光P23とは、複屈折素子14aに入射する。第1偏光P1に由来する第2中間偏光P13の偏光方向は、紙面に平行であり、光軸AXから逸れる。一方、第2偏光P2に由来する第1中間偏光P23の偏光方向は、紙面に垂直であり、複屈折素子14aを直進する。複屈折素子14aから射出された第1中間偏光P23は、そのまま光軸AXに沿って直進して第1ファラデーローテータ11に入射し、複屈折素子14aから射出された第2中間偏光P13は、光軸AXに平行な方向に屈折されて第1ファラデーローテータ11に入射する。第1中間偏光P23は、第1ファラデーローテータ11を通過することで、偏光面が反時計方向に-45°回転する。つまり、第1中間偏光P23は、+y方向を基準とする-45°傾斜方向から+x方向に平行な偏向面を有する状態となり、元の第2偏光P2に戻されている。結果的に、第2偏光P2は、偏光状態を保ちつつ、偏光方向ディスクリミネータ10を一方向である-Z方向に通過する。第2中間偏光P13は、第1偏光P1に戻されるが、第1絞り14bの開口14o外に入射し、第1絞り14bによって遮られる。つまり、第1偏光P1は、偏光方向ディスクリミネータ10を通過できず遮断される。 In the case of FIG. 3B, the first polarized light P1 and the second polarized light P2 enter the polarization direction discriminator 10 from the right side. The first polarized light P1 and the second polarized light P2 that have passed through the aperture 14o of the second diaphragm 14c pass through the second Faraday rotator 12, so that their polarization directions are rotated by 45 degrees clockwise. In other words, the first polarized light P1 becomes the second intermediate polarized light P13 having a polarization direction in a +45° tilt direction which is rotated by 45° clockwise. On the other hand, when the second polarized light P2 passes through the second Faraday rotator 12, the polarization direction is rotated by 45° clockwise. In other words, the second polarized light P2 becomes the first intermediate polarized light P23 having a polarization direction in a -45° tilt direction which is rotated by 45° counterclockwise. The second intermediate polarized light P13 derived from the first polarized light P1 and the first intermediate polarized light P23 derived from the second polarized light P2 enter the birefringent element 14a. The polarization direction of the second intermediate polarized light P13 derived from the first polarized light P1 is parallel to the paper surface and deviates from the optical axis AX. On the other hand, the polarization direction of the first intermediate polarized light P23 derived from the second polarized light P2 is perpendicular to the plane of the paper, and travels straight through the birefringent element 14a. The first intermediate polarized light P23 emitted from the birefringent element 14a goes straight along the optical axis AX and enters the first Faraday rotator 11, and the second intermediate polarized light P13 emitted from the birefringent element 14a is a light It is refracted in a direction parallel to the axis AX and enters the first Faraday rotator 11. When the first intermediate polarized light P23 passes through the first Faraday rotator 11, the plane of polarization is rotated by -45° counterclockwise. In other words, the first intermediate polarized light P23 has a polarization plane parallel to the +x direction from the −45° tilted direction with the +y direction as a reference, and is returned to the original second polarized light P2. As a result, the second polarized light P2 passes through the polarization direction discriminator 10 in one direction, i.e., the -Z direction, while maintaining its polarization state. The second intermediate polarized light P13 is returned to the first polarized light P1, but enters outside the aperture 14o of the first aperture 14b and is blocked by the first aperture 14b. That is, the first polarized light P1 cannot pass through the polarization direction discriminator 10 and is blocked.
 以上で説明した第2実施形態の偏光方向ディスクリミネータ10において、偏光選択デバイス115は、光学要素である複屈折素子14aと、第1ポートPO1として第1ファラデーローテータ11より外側に配置される第1絞り14bと、第2ポートPO2として第2ファラデーローテータ12より外側に配置される第2絞り14cとを備える。第2実施形態の場合、第1絞り14bや第2絞り14cを用いた確実な遮光が可能なり、偏光方向ディスクリミネータ10の精度を向上させることが容易となる。 In the polarization direction discriminator 10 of the second embodiment described above, the polarization selection device 115 includes the birefringent element 14a, which is an optical element, and the birefringence element 14a, which is an optical element, and a birefringent element 14a, which is an optical element, and a birefringent element 14a, which is an optical element, and a second port PO1, which is disposed outside the first Faraday rotator 11. 1 aperture 14b, and a second aperture 14c disposed outside the second Faraday rotator 12 as a second port PO2. In the case of the second embodiment, reliable light blocking using the first aperture 14b and the second aperture 14c is possible, and it becomes easy to improve the accuracy of the polarization direction discriminator 10.
〔第3実施形態〕
 以下、第3実施形態のモード同期レーザについて説明する。なお、第3実施形態のモード同期レーザは、第1実施形態又は第2実施形態の偏光方向ディスクリミネータを組み込んだものである。
[Third embodiment]
A mode-locked laser according to the third embodiment will be described below. Note that the mode-locked laser of the third embodiment incorporates the polarization direction discriminator of the first embodiment or the second embodiment.
 図4に示すモード同期レーザ100は、デュアル出力レーザである。モード同期レーザ100は、より詳細にはデュアルコムレーザであり、2つの光周波数コムを単一の光共振器内で発生させるデュアルコム光源である。モード同期レーザ100は、デュアル出力レーザとして、偏光方向が異なる一対の光コムを出力する。モード同期レーザ100は、受動型のモード同期動作を行う受動モード同期レーザであり、共振器100aと、偏光方向ディスクリミネータ10と、光増幅部20と、第1透過調整部31と、第2透過調整部32と、出力カプラ50とを備える。モード同期レーザ100は、偏波保持型のリング状の共振器100aに、光増幅部20と、第1透過調整部31と、第2透過調整部32と、偏光方向ディスクリミネータ10と、出力カプラ50とを備え、これらを融着等によって接合したものである。 The mode-locked laser 100 shown in FIG. 4 is a dual output laser. More specifically, the mode-locked laser 100 is a dual comb laser, and is a dual comb light source that generates two optical frequency combs within a single optical resonator. The mode-locked laser 100 outputs a pair of optical combs having different polarization directions as a dual output laser. The mode-locked laser 100 is a passive mode-locked laser that performs a passive mode-locking operation, and includes a resonator 100a, a polarization direction discriminator 10, an optical amplification section 20, a first transmission adjustment section 31, and a second transmission adjustment section 31. It includes a transmission adjustment section 32 and an output coupler 50. The mode-locked laser 100 includes a polarization-maintaining ring-shaped resonator 100a, an optical amplification section 20, a first transmission adjustment section 31, a second transmission adjustment section 32, a polarization direction discriminator 10, and an output. A coupler 50 is provided, and these are joined by fusion or the like.
 モード同期レーザ100のうち、共振器100aは、光ファイバ2によってリング状に形成されている。光ファイバ2は、偏波保持型の光ファイバ(PMF:Polarization Maintaining Fiber)である。 In the mode-locked laser 100, the resonator 100a is formed into a ring shape by the optical fiber 2. The optical fiber 2 is a polarization maintaining optical fiber (PMF).
 図5に示すように、偏光方向ディスクリミネータ10は、コネクタ3a,3bを介して共振器100aの光ファイバ2の光路上に挿入されている。コネクタ3a,3bには、レンズ等を含ませることができ、周回光OL1,OL2をコリメートすることができる。偏光方向ディスクリミネータ10は、図1A等に例示する構造を有する。偏光方向ディスクリミネータ10を構成する第1ファラデーローテータ11と、偏光板14と、第2ファラデーローテータ12とは、遮光性を有するホルダ18中に位置決めされた状態で固定されている。 As shown in FIG. 5, the polarization direction discriminator 10 is inserted onto the optical path of the optical fiber 2 of the resonator 100a via the connectors 3a and 3b. The connectors 3a and 3b can include lenses and the like, and can collimate the circulating lights OL1 and OL2. The polarization direction discriminator 10 has a structure illustrated in FIG. 1A and the like. The first Faraday rotator 11, the polarizing plate 14, and the second Faraday rotator 12 constituting the polarization direction discriminator 10 are positioned and fixed in a light-shielding holder 18.
 図4に戻って、光増幅部20は、共振器100aに付随して共振器100a中に配置され、第1光供給部21と、第2光供給部22と、ゲインファイバ23とを有する。 Returning to FIG. 4, the optical amplification section 20 is disposed in the resonator 100a along with the resonator 100a, and includes a first light supply section 21, a second light supply section 22, and a gain fiber 23.
 第1光供給部21は、第1励起光源21aと第1合波カプラ21bとを有する。第1光供給部21は、共振器100aに一方向から第1偏光P1の励起光PLを供給する。第1偏光P1すなわち励起光PLは、第1周回方向(具体的には共振器100aのループの時計方向)に伝搬する。第1励起光源21aは、例えば半導体レーザで構成され、例えば波長980nmの励起光を出力する。第1合波カプラ21bは、共振器100aにおいて例えば波長1550nmの光が伝搬し周回することを妨げないものとなっている。第1光供給部21から共振器100aに導入された励起光は、ゲインファイバ23であるドープファイバに添加されたドーパントを励起し、出力用の共振光の波長での誘導放出を可能にする。 The first light supply section 21 has a first excitation light source 21a and a first multiplexing coupler 21b. The first light supply section 21 supplies the excitation light PL of the first polarized light P1 to the resonator 100a from one direction. The first polarized light P1, that is, the excitation light PL, propagates in the first rotation direction (specifically, in the clockwise direction of the loop of the resonator 100a). The first excitation light source 21a is composed of, for example, a semiconductor laser, and outputs excitation light having a wavelength of, for example, 980 nm. The first multiplexing coupler 21b does not prevent light having a wavelength of, for example, 1550 nm from propagating and circulating in the resonator 100a. The excitation light introduced into the resonator 100a from the first light supply unit 21 excites the dopant added to the doped fiber, which is the gain fiber 23, and enables stimulated emission at the wavelength of the output resonant light.
 第2光供給部22は、第2励起光源22aと第2合波カプラ22bとを有する。第2光供給部22は、ゲインファイバ23に他方向から第2偏光P2の励起光PLを供給する。第2偏光P2すなわち励起光PLは、第2周回方向(具体的には共振器100aのループの反時計方向)に伝搬する。第1励起光源21aは、第1励起光源21aと同様のものであり、例えば波長980nmの励起光を出力する。第2合波カプラ22bは、共振器100aにおいて例えば波長1550nmの光が伝搬し周回することを妨げないものとなっている。第2励起光源22aと第2合波カプラ22bとの間に延びる光ファイバは、スプライス接続部22sを有し、第2励起光源22aから出力される励起光PLについて偏光方向の回転を可能にしている。第2光供給部22から共振器100aに導入された励起光は、ゲインファイバ23であるドープファイバに添加されたドーパントを励起し、出力用の共振光の波長での誘導放出を可能にする。 The second light supply section 22 has a second excitation light source 22a and a second multiplexing coupler 22b. The second light supply section 22 supplies the excitation light PL of the second polarized light P2 to the gain fiber 23 from the other direction. The second polarized light P2, that is, the excitation light PL, propagates in the second circulation direction (specifically, in the counterclockwise direction of the loop of the resonator 100a). The first excitation light source 21a is similar to the first excitation light source 21a, and outputs excitation light having a wavelength of 980 nm, for example. The second multiplexing coupler 22b does not prevent light with a wavelength of, for example, 1550 nm from propagating and circulating in the resonator 100a. The optical fiber extending between the second excitation light source 22a and the second multiplexing coupler 22b has a splice connection 22s, and enables rotation of the polarization direction of the excitation light PL output from the second excitation light source 22a. There is. The excitation light introduced into the resonator 100a from the second light supply section 22 excites the dopant added to the doped fiber, which is the gain fiber 23, and enables stimulated emission at the wavelength of the output resonant light.
 ゲインファイバ23は、共振器100a中に配置される光利得部である。ゲインファイバ23は、共振器100aを構成する光ファイバ2にインラインで接続される。ゲインファイバ23は、増幅機能を備えるようにドープされた偏波保持型の光ファイバである。具体的には、ゲインファイバ23は、エルビウム(Er)等の希土類元素を添加したドープファイバであり、共振器100aを時計回りに周回する第1周回光OL1と、反時計回りに周回する第2周回光OL2とを増幅する。 The gain fiber 23 is an optical gain section placed in the resonator 100a. The gain fiber 23 is connected in-line to the optical fiber 2 that constitutes the resonator 100a. The gain fiber 23 is a polarization-maintaining optical fiber doped to have an amplification function. Specifically, the gain fiber 23 is a doped fiber doped with a rare earth element such as erbium (Er), and the first circulating light OL1 circulates clockwise around the resonator 100a, and the second circulating light OL1 circulates counterclockwise. The circulating light OL2 is amplified.
 第1透過調整部31及び第2透過調整部32は、共振器100a中に配置され、非線形に透過率が変化する可飽和吸収特性によって超短パルスの生成を可能にする。第1透過調整部31及び第2透過調整部32は、可飽和吸収体30aを光路上に配置したものであり、可飽和吸収体30aとして、カーボンナノチューブ、グラフェン等を用いることができる。 The first transmission adjustment section 31 and the second transmission adjustment section 32 are arranged in the resonator 100a, and enable generation of ultrashort pulses using saturable absorption characteristics in which the transmittance changes nonlinearly. The first transmission adjustment section 31 and the second transmission adjustment section 32 have a saturable absorber 30a arranged on the optical path, and carbon nanotubes, graphene, etc. can be used as the saturable absorber 30a.
 出力カプラ50は、共振器100aに結合され第1偏光P1と第2偏光P2とを取り出す。出力カプラ50は、2つの出力ポート51a,51bを有し、共振器100aに結合されている。出力カプラ50の第1出力ポート51aから第1アイソレータ61を介して、第2偏光P2のパルス光として第1出力光Q1が出力され、出力カプラ50の第2出力ポート51bから第2アイソレータ62を介して、第1偏光P1のパルス光として第2出力光Q2が出力される。 The output coupler 50 is coupled to the resonator 100a and takes out the first polarized light P1 and the second polarized light P2. Output coupler 50 has two output ports 51a and 51b and is coupled to resonator 100a. The first output light Q1 is output from the first output port 51a of the output coupler 50 via the first isolator 61 as pulsed light of the second polarization P2, and the second output light Q1 is output from the second output port 51b of the output coupler 50 via the first isolator 61. A second output light Q2 is outputted as a pulsed light of the first polarized light P1.
 図示の偏光方向ディスクリミネータ10において、第1光供給部21及び第2光供給部22が出力カプラ50を挟んで対称的に配置され、光利得部であるゲインファイバ23が出力カプラ50を挟んで対称的に配置されている。また、第1透過調整部31及び第2透過調整部32が出力カプラ50を挟んで対称的に配置されている。この場合、発振状態を安定化することができ、第1偏光P1と第2偏光P2とを高効率で発生させ取り出すことができる。 In the illustrated polarization direction discriminator 10, the first light supply section 21 and the second light supply section 22 are arranged symmetrically with the output coupler 50 in between, and the gain fiber 23, which is an optical gain section, is arranged symmetrically with the output coupler 50 in between. are arranged symmetrically. Further, the first transmission adjustment section 31 and the second transmission adjustment section 32 are arranged symmetrically with the output coupler 50 in between. In this case, the oscillation state can be stabilized, and the first polarized light P1 and the second polarized light P2 can be generated and extracted with high efficiency.
 図6は、図4に示すモード同期レーザ100の第1出力光Q1及び第2出力光Q2の光スペクトルを示すチャートである。また、図7は、第1出力光Q1及び第2出力光Q2のパルス列を示すチャートである。 FIG. 6 is a chart showing the optical spectra of the first output light Q1 and the second output light Q2 of the mode-locked laser 100 shown in FIG. 4. Moreover, FIG. 7 is a chart showing pulse trains of the first output light Q1 and the second output light Q2.
 図6は、分解能帯域幅を0.05nmに設定した光スペクトラムアナライザを用いて測定した結果である。第1出力光Q1のOutput 1と第2出力光Q2のOutput 2との3-dB光帯域幅は、それぞれ4.13nmと4.52nmとである。図7は、オシロスコープによる時間波形を測定したものであり、繰り返し周波数は20.672968MHzと20.678468MHzとが観測された。 FIG. 6 shows the results of measurement using an optical spectrum analyzer with the resolution bandwidth set to 0.05 nm. The 3-dB optical bandwidths of Output 1 of the first output light Q1 and Output 2 of the second output light Q2 are 4.13 nm and 4.52 nm, respectively. FIG. 7 shows a time waveform measured using an oscilloscope, and repetition frequencies of 20.672968 MHz and 20.678468 MHz were observed.
 図4に示すモード同期レーザ100は、デュアルコム光源として用いることができ、分光や測距に応用することができる。デュアルコム分光は、スマート農業やバイオ分野に応用され、実装サイズを小さくすることができ、測定速度の高速化を可能にする。デュアルコム測距は、自動運転やドローンの分野に応用が期待され、測定精度を高くすることができ、装置価格を抑えることを可能にする。 The mode-locked laser 100 shown in FIG. 4 can be used as a dual comb light source, and can be applied to spectroscopy and distance measurement. Dual comb spectroscopy has applications in smart agriculture and biotechnology, allowing for smaller implementation sizes and faster measurement speeds. Dual-com distance measurement is expected to be applied to the fields of autonomous driving and drones, and can improve measurement accuracy and reduce equipment costs.
 図5において、偏光方向ディスクリミネータ10は、一体的な装置として表現されているが、これを構成する第1ファラデーローテータ11と偏光板14と第2ファラデーローテータ12とが光ファイバ、コネクタ、レンズその他の導光部材を介して離間していても、導光部材の通過に際して偏光状態が維持されるならば、偏光に関する非相反型の光学素子として所期の機能を発揮する。 In FIG. 5, the polarization direction discriminator 10 is expressed as an integrated device, but the first Faraday rotator 11, the polarizing plate 14, and the second Faraday rotator 12 that constitute this are optical fibers, connectors, and lenses. Even if they are separated via other light guide members, if the polarization state is maintained when passing through the light guide members, they will exhibit the desired function as a non-reciprocal optical element regarding polarization.
 以上で説明した第3実施形態のデュアル出力レーザであるモード同期レーザ100は、偏波保持型のリング状の共振器100aと、共振器100a中に配置される光利得部であるゲインファイバ23と、共振器100aに第1周回方向に伝搬するように第1偏光P1を供給する第1光供給部21と、共振器100aに第2周回方向に伝搬するように第2偏光P2を供給する第2光供給部22と、上述した偏光方向ディスクリミネータ10とを備える。 The mode-locked laser 100, which is a dual output laser according to the third embodiment described above, includes a polarization-maintaining ring-shaped resonator 100a and a gain fiber 23, which is an optical gain section, arranged in the resonator 100a. , a first light supply unit 21 that supplies the first polarized light P1 to the resonator 100a so as to propagate in the first rotation direction, and a first light supply unit 21 that supplies the second polarized light P2 to the resonator 100a so as to propagate in the second rotation direction. It includes a two-light supply unit 22 and the polarization direction discriminator 10 described above.
 上記モード同期レーザ100では、共振器100a中で一方に伝搬する第1偏光P1と共振器100a中で他方に伝搬する第2偏光P2とを高効率で併存させることによって、偏波クロストークを低減することができ、高出力のデュアルタイプの光源を提供することができる。 In the mode-locked laser 100, the first polarized light P1 propagating in one direction in the resonator 100a and the second polarized light P2 propagating in the other direction in the resonator 100a coexist with high efficiency, thereby reducing polarization crosstalk. and can provide a high-power dual-type light source.
〔その他〕
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。例えば、第1ファラデーローテータ11や第2ファラデーローテータ12による偏光方向の回転は、±45°に限らず、±45°+180°×n(nは自然数)とすることができる。また、ファラデーローテータ11,12よる偏光方向の回転は、厳密に±45°でなくてもよい。
〔others〕
Although the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments. For example, the rotation of the polarization direction by the first Faraday rotator 11 and the second Faraday rotator 12 is not limited to ±45°, but may be ±45°+180°×n (n is a natural number). Further, the rotation of the polarization direction by the Faraday rotators 11 and 12 does not have to be strictly ±45°.
 また、上記実施形態において、第1ファラデーローテータ11や第2ファラデーローテータ12による偏光方向の回転は、結果的な偏光方向の回転量が±45°であれば、反対方向に限らず同一回転方向とすることができる。 Furthermore, in the above embodiment, the rotation of the polarization direction by the first Faraday rotator 11 and the second Faraday rotator 12 is not limited to the opposite direction but may be the same rotation direction as long as the resulting rotation amount of the polarization direction is ±45°. can do.
 第1ファラデーローテータ11や第2ファラデーローテータ12は、光ファイバ状とすることができ、偏光板14を含めた偏光選択デバイス15を光ファイバ2中に一体的に組み込むことができる。 The first Faraday rotator 11 and the second Faraday rotator 12 can be in the form of optical fibers, and the polarization selection device 15 including the polarizing plate 14 can be integrated into the optical fiber 2.
 第1透過調整部31及び第2透過調整部32は、偏波依存を持たせることができる。例えば、第1透過調整部31に第1偏光P1に適合する透過特性を持たせ、第2透過調整部32に第2偏光P2に適合する透過特性を持たせることができる。 The first transmission adjustment section 31 and the second transmission adjustment section 32 can be made polarization dependent. For example, the first transmission adjustment section 31 can be given a transmission characteristic suitable for the first polarized light P1, and the second transmission adjustment section 32 can be given a transmission characteristic suitable for the second polarized light P2.
 第1実施形態や第2実施形態で説明した偏光方向ディスクリミネータ10は、モード同期レーザ100に限らず、モード同期以外の手法によって光コムを形成するデュアルコムレーザ、例えば非線形効果を持つ導波路の共振器を備えるデュアルコムレーザに組み込むことができる。具体的には、異なる波長を持つ連続光を導波路に入射させることで光コムの形成させること、或いは、単一の連続光を導波路に入射させ、カー効果に似た過程を経て光コムを発生させることが考えられる。 The polarization direction discriminator 10 described in the first embodiment and the second embodiment is not limited to the mode-locked laser 100, but also includes a dual-comb laser that forms an optical comb by a method other than mode-locking, such as a waveguide with a nonlinear effect. can be incorporated into a dual comb laser with a cavity of Specifically, optical combs can be formed by inputting continuous light with different wavelengths into a waveguide, or by inputting a single continuous beam into a waveguide and forming an optical comb through a process similar to the Kerr effect. It is conceivable that this may occur.
 偏光方向ディスクリミネータ10は、連続発振型のデュアル出力レーザに組み込むことができる。この場合、双方向送偏波の連続発振のレーザ出力を得ることができる。 The polarization direction discriminator 10 can be incorporated into a continuous wave type dual output laser. In this case, continuous oscillation laser output with bidirectionally transmitted polarized waves can be obtained.
 また、上記実施形態において、共振器100aが光ファイバ2を含む構成であるとしたが、モード同期レーザ100は、光ファイバを用ない他の導波路式光デバイスにも適通用することができる。導波路式光デバイスとしては、例えば、PLC(Photonics Lightwave Circuits)、シリコンフォトニクス導波路(Silicon Photonics Waveguides)、半導体式導波路(InP、GaAs、InGaAsP等)が挙げられる。 Furthermore, in the above embodiment, the resonator 100a includes the optical fiber 2, but the mode-locked laser 100 can also be applied to other waveguide type optical devices that do not use an optical fiber. Examples of waveguide type optical devices include PLC (Photonics Lightwave Circuits), silicon photonics waveguides, and semiconductor waveguides (InP, GaAs, InGaAsP, etc.).
 なお、この出願は、2022年4月21日に出願された日本国特許出願2022-70433号を基礎とする優先権を主張し、その開示のすべてを引用によりここに組み込む。 This application claims priority based on Japanese Patent Application No. 2022-70433 filed on April 21, 2022, and the entire disclosure thereof is incorporated herein by reference.

Claims (14)

  1.  一端に設けられた第1ポートと、他端に設けられた第2ポートとの間であって、前記第1ポート側に配置される第1ファラデーローテータと、
     前記第1ポートと前記第2ポートとの間であって、前記第2ポート側に配置される第2ファラデーローテータと、
     前記第1ファラデーローテータと前記第2ファラデーローテータとの間に配置される光学要素を含み、前記光学要素に入射する第1中間偏光と第2中間偏光とのうち一の中間偏光の通過を制限する偏光選択デバイスと
    を備える偏光方向ディスクリミネータ。
    a first Faraday rotator disposed on the first port side between a first port provided at one end and a second port provided at the other end;
    a second Faraday rotator located between the first port and the second port and on the second port side;
    an optical element disposed between the first Faraday rotator and the second Faraday rotator, the optical element restricting passage of one of the first intermediate polarized light and the second intermediate polarized light incident on the optical element; A polarization direction discriminator comprising a polarization selection device.
  2.  前記偏光選択デバイスは、前記光学要素として、前記第1中間偏光と前記第2中間偏光とのうち一の中間偏光の通過を相対的に抑制する偏光板を備える、請求項1に記載の偏光方向ディスクリミネータ。 The polarization direction according to claim 1, wherein the polarization selection device includes, as the optical element, a polarizing plate that relatively suppresses passage of one of the first intermediate polarization and the second intermediate polarization. discriminator.
  3.  前記第1ファラデーローテータと前記第2ファラデーローテータとは、反対方向に45°偏光方向を回転させる、請求項2に記載の偏光方向ディスクリミネータ。 The polarization direction discriminator according to claim 2, wherein the first Faraday rotator and the second Faraday rotator rotate the polarization direction by 45 degrees in opposite directions.
  4.  前記偏光板の偏光軸は、前記第1ファラデーローテータと前記第2ファラデーローテータとに入射させる第1偏光の偏光方向と第2偏光の偏光方向とに対して45°傾いている、請求項3に記載の偏光方向ディスクリミネータ。 4. The polarizing axis of the polarizing plate is inclined by 45 degrees with respect to the polarization direction of the first polarized light and the polarization direction of the second polarized light that are input to the first Faraday rotator and the second Faraday rotator. Polarization direction discriminator as described.
  5.  前記偏光選択デバイスは、前記光学要素である複屈折素子と、前記第1ポートとして前記第1ファラデーローテータより外側に配置される第1絞りと、前記第2ポートとして前記第2ファラデーローテータより外側に配置される第2絞りとを備える、請求項1に記載の偏光方向ディスクリミネータ。 The polarization selection device includes a birefringent element as the optical element, a first aperture disposed as the first port outside the first Faraday rotator, and an outside as the second Faraday rotator as the second port. The polarization direction discriminator according to claim 1, further comprising a second diaphragm disposed.
  6.  前記第1ファラデーローテータと前記第2ファラデーローテータとは、反対方向に45°偏光方向を回転させる、請求項5に記載の偏光方向ディスクリミネータ。 The polarization direction discriminator according to claim 5, wherein the first Faraday rotator and the second Faraday rotator rotate the polarization direction by 45 degrees in opposite directions.
  7.  偏波保持型のリング状の共振器と、
     前記共振器中に配置される光利得部と、
     前記共振器に第1周回方向に伝搬するように第1偏光を供給する第1光供給部と、
     前記共振器に第2周回方向に伝搬するように第2偏光を供給する第2光供給部と、
     請求項1~6のいずれか一項に記載の偏光方向ディスクリミネータと
    を備えるデュアル出力レーザ。
    A polarization-maintaining ring-shaped resonator,
    an optical gain section disposed in the resonator;
    a first light supply unit that supplies first polarized light to the resonator so as to propagate in a first rotation direction;
    a second light supply unit that supplies second polarized light to the resonator so as to propagate in a second rotation direction;
    A dual output laser comprising a polarization direction discriminator according to any one of claims 1 to 6.
  8.  前記共振器に結合され前記第1偏光と前記第2偏光とを取り出す出力カプラをさらに備え、
     前記第1光供給部及び第2光供給部が前記出力カプラを挟んで対称的に配置され、
     前記光利得部が前記出力カプラを挟んで対称的に配置されている、請求項7に記載のデュアル出力レーザ。
    further comprising an output coupler coupled to the resonator and extracting the first polarized light and the second polarized light,
    The first light supply section and the second light supply section are arranged symmetrically with the output coupler in between,
    8. The dual output laser of claim 7, wherein the optical gain section is arranged symmetrically across the output coupler.
  9.  偏光方向が異なる一対の光コムを出力する、請求項8に記載のデュアル出力レーザ。 The dual output laser according to claim 8, which outputs a pair of optical combs with different polarization directions.
  10.  前記共振器中に配置された透過調整部を備え、
     透過調整部を構成する第1透過調整器及び第2透過調整器が前記出力カプラを挟んで対称的に配置され、
     受動型のモード同期動作を行うモード同期レーザである、請求項9に記載のデュアル出力レーザ。
    comprising a transmission adjustment section disposed in the resonator,
    A first transmission adjuster and a second transmission adjuster constituting a transmission adjustment section are arranged symmetrically with the output coupler in between,
    The dual output laser according to claim 9, which is a mode-locked laser that performs passive mode-locked operation.
  11.  一対のファラデーローテータ及び偏光選択デバイスを介して第1偏光と第2偏光とを透過させる偏光方向弁別方法であって、
     一方から入射した第1偏光を通過させつつ第2偏光の通過を制限し、かつ、他方から入射した第2偏光を通過させつつ第1偏光の通過を制限する偏光方向弁別方法。
    A polarization direction discrimination method in which first polarized light and second polarized light are transmitted through a pair of Faraday rotators and a polarization selection device,
    A polarization direction discrimination method that limits the passage of a second polarized light while allowing the first polarized light incident from one side to pass, and restricts the passage of the first polarized light while passing the second polarized light incident from the other side.
  12.  前記偏光選択デバイスは、前記一対のファラデーローテータの間に配置される光学要素を含み、前記光学要素に一方から入射する第1中間偏光と他方から入射する第2中間偏光とのうち一の中間偏光の通過を制限する、請求項11に記載の偏光方向弁別方法。 The polarization selection device includes an optical element disposed between the pair of Faraday rotators, and selects one of a first intermediate polarization that enters the optical element from one side and a second intermediate polarization that enters the optical element from the other side. 12. The polarization direction discrimination method according to claim 11, wherein passage of the polarization direction is restricted.
  13.  前記偏光選択デバイスは、前記光学要素として、前記第1中間偏光と前記第2中間偏光とのうち一の中間偏光の通過を相対的に抑制する偏光板を備える、請求項12に記載の偏光方向弁別方法。 The polarization direction according to claim 12, wherein the polarization selection device includes, as the optical element, a polarizing plate that relatively suppresses passage of one of the first intermediate polarization and the second intermediate polarization. Discrimination method.
  14.  前記偏光選択デバイスは、前記光学要素である複屈折素子と、第1ポートとして前記一対のファラデーローテータの一方より外側に配置される第1絞りと、第2ポートとして前記一対のファラデーローテータの他方より外側に配置される第2絞りとを備える、請求項12に記載の偏光方向弁別方法。 The polarization selection device includes a birefringent element as the optical element, a first aperture disposed outside one of the pair of Faraday rotators as a first port, and a second port disposed outside the other of the pair of Faraday rotators as a second port. 13. The polarization direction discrimination method according to claim 12, further comprising a second aperture disposed on the outside.
PCT/JP2023/015918 2022-04-21 2023-04-21 Polarization direction discriminator, dual output laser, and polarization direction discrimination method WO2023204305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070433 2022-04-21
JP2022070433A JP2023160233A (en) 2022-04-21 2022-04-21 Polarization direction discriminator, dual output laser, and polarization direction discrimination method

Publications (1)

Publication Number Publication Date
WO2023204305A1 true WO2023204305A1 (en) 2023-10-26

Family

ID=88420044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015918 WO2023204305A1 (en) 2022-04-21 2023-04-21 Polarization direction discriminator, dual output laser, and polarization direction discrimination method

Country Status (2)

Country Link
JP (1) JP2023160233A (en)
WO (1) WO2023204305A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792325A (en) * 1993-07-29 1995-04-07 Sumitomo Electric Ind Ltd Polarized light selecting element and light source module and optical fiber gyro
JP2015155822A (en) * 2014-02-20 2015-08-27 株式会社東京精密 Optical signal generation device, distance measurement device, spectroscopic characteristic measurement device, frequency response measurement device, and optical signal generation method
JP2018205586A (en) * 2017-06-07 2018-12-27 信越化学工業株式会社 Optical isolator and semiconductor laser module
US20200403372A1 (en) * 2018-02-20 2020-12-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Polarization preserving bidirectional optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792325A (en) * 1993-07-29 1995-04-07 Sumitomo Electric Ind Ltd Polarized light selecting element and light source module and optical fiber gyro
JP2015155822A (en) * 2014-02-20 2015-08-27 株式会社東京精密 Optical signal generation device, distance measurement device, spectroscopic characteristic measurement device, frequency response measurement device, and optical signal generation method
JP2018205586A (en) * 2017-06-07 2018-12-27 信越化学工業株式会社 Optical isolator and semiconductor laser module
US20200403372A1 (en) * 2018-02-20 2020-12-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Polarization preserving bidirectional optical element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UYAMA, KOTA; SHIRAHATA, TAKUMA; SET, SZE YUN; YAMASHITA, SHINJI: "24a-D315-3 Bi-directional Polarization-Maintaining Mode-Locked Fiber Laser", PROCEEDINGS OF THE 69TH JAPAN SOCIETY OF APPLIED PHYSICS (JSAP) SPRING MEETING 2022; MARCH 22-26, 2022, JAPAN SOCIETY OF APPLIED PHYSICS (JSAP), vol. 69, 22 March 2022 (2022-03-22) - 26 March 2022 (2022-03-26), pages 03 - 193, XP009549748 *

Also Published As

Publication number Publication date
JP2023160233A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US7457548B2 (en) Quantum optical transmission device and quantum optical generator device therefor
JP3054707B1 (en) Optical isolator
EP2957863B1 (en) Small low cost resonator fiber optic gyroscope with reduced optical errors
TWI724260B (en) Polarized non-dependent optical isolator
US9207517B2 (en) Optical isolator
Li et al. All-fiber source of frequency-entangled photon pairs
JP2016042089A (en) Resonant fiber optic gyroscope with polarizing crystal waveguide coupler
CN112542761A (en) Phase bias-based linear cavity mode-locked fiber laser and control method
US6943932B2 (en) Waveguide mach-zehnder optical isolator utilizing transverse magneto-optical phase shift
US6430323B1 (en) Polarization maintaining optical isolators
US11715925B2 (en) Polarization preserving bidirectional optical element
WO2023204305A1 (en) Polarization direction discriminator, dual output laser, and polarization direction discrimination method
CN204992240U (en) Fiber laser of phase place biasing ware and applied phase place biasing ware
CN105048268A (en) Integrated phase biasing device and optical fiber laser employing same
Conradi et al. High isolation optical isolator: A new building block for polyboard photonic integrated circuits
WO1993020475A1 (en) Improvements to optical phase shifting
JP2014010241A (en) Optical isolator
JP2989982B2 (en) Fiber type optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JP3716981B2 (en) Optical isolator
AU675424B2 (en) Improvements to optical phase shifting
Chen et al. Design of Six-port Optical Circulator with a Small Aperture of Faraday Rotator
JPS63139318A (en) Ld module optical system
CN117578173A (en) Full polarization-maintaining O-shaped ultrashort pulse mode-locked fiber laser
JPH0426816A (en) Optical isolator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791953

Country of ref document: EP

Kind code of ref document: A1