WO2023204235A1 - Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object - Google Patents

Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object Download PDF

Info

Publication number
WO2023204235A1
WO2023204235A1 PCT/JP2023/015559 JP2023015559W WO2023204235A1 WO 2023204235 A1 WO2023204235 A1 WO 2023204235A1 JP 2023015559 W JP2023015559 W JP 2023015559W WO 2023204235 A1 WO2023204235 A1 WO 2023204235A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalate
particles
compound
potassium
tantalate particles
Prior art date
Application number
PCT/JP2023/015559
Other languages
French (fr)
Japanese (ja)
Inventor
建軍 袁
高見 新川
浩児 大道
隆一 清岡
睦子 丹下
将史 魚田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2023204235A1 publication Critical patent/WO2023204235A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to tantalate particles, a method for producing tantalate particles, a resin composition, and a molded article.
  • This application claims priority based on Japanese Patent Application No. 2022-070230, filed in Japan on April 21, 2022, the contents of which are incorporated herein.
  • Alkali metal tantalate salts are widely used as piezoelectric bodies, fillers, catalysts, semiconductor photoelectrodes, etc.
  • Patent Document 1 describes a method for producing tantalate crystal particles having a layered perovskite structure and represented by a specific formula, in which crystals are precipitated and grown by mixing raw materials and flux and heating the mixture.
  • a method for producing tantalate crystal particles is disclosed. Also. It is exemplified that the flux contains potassium chloride or strontium chloride.
  • Patent Document 2 shows a catalyst composition comprising sodium tantalate (NaTaO 3 ) as a base catalyst, a modifier, and at least one cocatalyst as an application example for photocatalytic reduction of carbon dioxide.
  • NaTaO 3 sodium tantalate
  • K x Na (1-x) TaO 3 (0 ⁇ x ⁇ 1) has a perovskite structure and can be used, for example, as a piezoelectric material.
  • a piezoelectric material it is expected that the larger the crystallite size, the more excellent the piezoelectric effect can be exhibited.
  • the present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide tantalate particles having an excellent degree of crystal growth.
  • the present invention has the following aspects.
  • (2) The tantalate particles according to (1) above, wherein the crystal structure includes a perovskite crystal structure.
  • (3) The tantalate particles according to (1) or (2) above, which have a cubic shape.
  • the content of tantalum in the tantalate particles is determined by XRF analysis of the tantalate particles, and is the content in terms of Ta 2 O 5 based on 100% by mass of the total mass of the tantalate particles.
  • the potassium and/or sodium content in the tantalate particles is determined by XRF analysis of the tantalate particles, calculated as K 2 O and Na based on 100% by mass of the tantalate particles.
  • the molybdenum content in the tantalate particles is determined by XRF analysis of the tantalate particles, and the content ratio in terms of MoO 3 is 0.5% based on 100% by mass of the total mass of the tantalate particles.
  • Method of manufacturing particles (15) tantalate particles according to any one of (1) to (9) above; A resin composition comprising a resin. (16) A molded article obtained by molding the resin composition according to (15) above.
  • tantalate particles having an excellent degree of crystal growth can be provided. Further, according to the present invention, a method for producing the tantalate particles can be provided. Moreover, according to the present invention, a resin composition containing the tantalate particles and a molded article thereof can be provided.
  • 3 is a SEM image of NaTaO 3 particles of Example 1.
  • 3 is a SEM image of KTaO 3 particles of Example 2.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 3.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 4.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 5.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 6.
  • 3 is a SEM image of KTaO 3 particles of Example 7.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 8.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 9.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 10.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 11.
  • 3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 12.
  • 1 is an X-ray diffraction (XRD) pattern of powder samples of Examples 1-2.
  • 3 is an X-ray diffraction (XRD) pattern of powder samples of Examples 3 to 6.
  • 3 is an X-ray diffraction (XRD) pattern of powder samples of Examples 7-8.
  • Figure 3 is an X-ray diffraction (XRD) pattern of powder samples of Examples 9-12.
  • the tantalate particles of embodiments include a tantalate compound represented by K x Na (1-x) TaO 3 .
  • K x Na (1-x) TaO 3 x satisfies 0 ⁇ x ⁇ 1.
  • K x Na (1-x) TaO 3 is potassium sodium tantalate.
  • K x Na (1-x) TaO 3 is sodium tantalate (NaTaO 3 ).
  • K x Na (1-x) TaO 3 is potassium tantalate (KTaO 3 ).
  • the raw material may contain an element such as Fe as an unavoidable impurity.
  • the type, composition, and crystal structure of the tantalate contained in the tantalate particles of the embodiment can be specified by the XRD pattern of the spectrum obtained by XRD analysis.
  • the average crystallite size of the crystal structure contained in the tantalate particles of the embodiment can be determined by the following measurement method.
  • Measurement is performed using an X-ray diffractometer (for example, SmartLab, manufactured by Rigaku Corporation), a high-intensity, high-resolution crystal analyzer (CALSA) as a detector, and analysis software.
  • the measurement method is the 2 ⁇ / ⁇ method, and the average crystallite size is calculated from the half-value width of the target peak (a peak having a peak top in the target 2 ⁇ range) using the Scherrer equation.
  • the measurement conditions are: scan speed is 0.05 degrees/min, scan range is 20 to 70 degrees, step is 0.002 degrees, and device standard width is 0.028 degrees (Si). .
  • K x Na (1-x) TaO 3 can exhibit a crystal system different from monoclinic, rectangular, or tetragonal depending on the composition, and the plane assignment differs depending on the crystal system.
  • plane indices are expressed assuming that the crystal structure is a cubic system.
  • the position corresponds to the (100) plane of If the peak is split, define the crystallite size using the peak with the highest intensity.
  • the average crystallite size of the tantalate particles is greater than or equal to the above lower limit, even more excellent piezoelectric performance is exhibited.
  • the position corresponds to the (110) plane of If the peak is split, define the crystallite size using the peak with the highest intensity.
  • the average crystallite size of the tantalate particles is greater than or equal to the above lower limit, even more excellent piezoelectric performance is exhibited.
  • the position corresponds to the (211) plane of If the target peak is split, the crystallite size is defined by the peak with the highest intensity.
  • the crystal growth of the tantalate particles to be manufactured is excellently controlled, and tantalate particles with an improved average crystallite size can be easily obtained.
  • the average crystallite size can be controlled by the amount and type of flux agent used and firing conditions in the manufacturing method described below.
  • the crystal structure of the tantalate particles of the embodiment can include a perovskite crystal structure.
  • the tantalate particles of embodiments can have a cubic shape.
  • cubic shape may be a shape derived from a perovskite structure, preferably a substantially cubic hexahedral shape, and each face constituting the hexahedron may be a flat surface. , it may be a curved or uneven surface.
  • tantalate particles having a perovskite crystal structure and a cubic shape can be manufactured.
  • tantalate particles with a larger average crystallite size and larger particle size tend to be obtained.
  • the particle size is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the upper limit of the particle size when the tantalate particles have a cubic shape is not particularly limited, but may be, for example, 100 ⁇ m or less, 80 ⁇ m or less, 50 ⁇ m or less. It's good.
  • An example of the upper numerical range of the particle size when the tantalate particles have a cubic shape is 0.1 to 100 ⁇ m, 0.5 to 80 ⁇ m, and 1 to 50 ⁇ m. It's fine.
  • the "particle size" of tantalate particles having a cubic shape refers to the particle size of the tantalate particles as determined from the particle image of the primary particles of the tantalate particles in a two-dimensional image taken with a scanning electron microscope (SEM). This is the length of one side of the hexahedron to be determined.
  • the value of the tantalate particle size having a cubic shape is the average value obtained from 50 or more tantalate particles randomly selected from among the euhedral particles to be measured above. do.
  • tantalate particles having a cubic shape When tantalate particles having a cubic shape are included, it is preferable that 50% or more of the particles have a cubic shape based on mass or number, and it is preferable that 80% or more of the particles have a cubic shape. More preferably, 90% or more of the particles have a cubic shape.
  • the median diameter D50 of the tantalate particles of the embodiment calculated by a laser diffraction/scattering method may be 0.1 to 100 ⁇ m, may be 0.5 to 80 ⁇ m, and may be 1 to 50 ⁇ m. good.
  • D 10 of the tantalate particles of the embodiments calculated by laser diffraction/scattering method may be 0.05 to 70 ⁇ m, may be 0.1 to 50 ⁇ m, and may be 0.5 to 20 ⁇ m. good.
  • the median diameter D 90 of the tantalate particles of the embodiment calculated by a laser diffraction/scattering method may be 0.5 to 150 ⁇ m, 1 to 100 ⁇ m, or 3 to 70 ⁇ m.
  • the median diameter D 50 of the tantalate particle sample calculated by the laser diffraction/scattering method is based on the particle size distribution measured dry using a laser diffraction particle size distribution analyzer when the volume integrated % ratio is 50%. It can be determined as the particle size.
  • D10 which is calculated by the laser diffraction/scattering method of a tantalate particle sample, can be determined as the particle diameter at the point where the volume integration % distribution curve intersects the horizontal axis of 10% from the small particle side.
  • 90 can be determined as the particle diameter at the point where the volume integration % distribution curve intersects the 90% horizontal axis from the small particle side.
  • the specific surface area of the tantalate particles of the embodiment determined by the BET method may be 0.02 to 20 m 2 /g, 0.04 to 10 m 2 /g, 0.05 to 10 m 2 /g. It may be 3 m 2 /g.
  • the above specific surface area is measured using a specific surface area meter (for example, BELSORP-mini manufactured by Microtrac Bell Co., Ltd.), and the sample is measured from the amount of nitrogen gas adsorbed by the BET method (Brunauer-Emmett-Teller method).
  • the surface area per 1 g is calculated as the specific surface area (m 2 /g).
  • the tantalate particles of the embodiment include K x Na (1-x) TaO 3 (0 ⁇ x ⁇ 1).
  • the tantalate particles of the embodiment preferably contain 65% by mass or more, and preferably 65 to 99.999% by mass, of the K x Na (1-x) TaO 3 based on 100% by mass of the tantalate particles.
  • the content is preferably from 70 to 99.97% by mass, and even more preferably from 75 to 99.95% by mass.
  • the tantalum content in the tantalate particles is determined by XRF analysis of the tantalate particles, and the content in terms of Ta 2 O 5 based on 100% by mass of the tantalate particles is: It may be 50% by mass or more, 50 to 99% by mass, 60 to 98% by mass, or 70 to 95% by mass.
  • the content in terms of Ta 2 O 5 refers to the value obtained from the amount of Ta 2 O 5 obtained by converting the tantalum content determined by XRF analysis using a calibration curve in terms of Ta 2 O 5 .
  • the tantalate particles of embodiments include potassium and/or sodium.
  • the potassium and/or sodium content in the tantalate particles is determined by XRF analysis of the tantalate particles, calculated in terms of K2O and Na2O based on 100% by mass of the tantalate particles.
  • the total content in terms of conversion may be 0.5% by mass or more, 0.5 to 40% by mass, 1 to 30% by mass, or 3 to 25% by mass. It's okay.
  • the tantalate particles of embodiments can further include molybdenum.
  • the tantalate particles of the embodiment can contain molybdenum derived from a molybdenum compound that may be used in the manufacturing method described below. Moreover, the tantalate particles of the embodiment can achieve highly efficient crystal growth by using a molybdenum compound in the manufacturing method described below.
  • the molybdenum contained in the tantalate particles of the embodiment is not particularly limited in its existence state or amount, and may be contained in the tantalate particles as molybdenum metal, molybdenum oxide, partially reduced molybdenum compounds, etc. It's fine. Molybdenum is considered to be contained in the tantalate particles as MoO 3 , but it may also be contained in the tantalate particles as MoO 2 , MoO, etc. in addition to MoO 3 .
  • molybdenum is contained in a form attached to the surface of the tantalate particles or in a form substituted with a part of the crystal structure of the tantalate particles, It may be contained in an amorphous state or a combination thereof.
  • the molybdenum content is determined by XRF analysis of the tantalate particles, and is calculated as MoO 3 based on 100% by mass of the tantalate particles.
  • the ratio may be 0.01% by mass or more, 0.01 to 20% by mass, 0.05 to 15% by mass, or 0.06 to 10% by mass. Good too.
  • the content in terms of MoO 3 is a value obtained from the amount of MoO 3 obtained by converting the molybdenum content determined by XRF analysis using a calibration curve in terms of MoO 3 .
  • the content rate of molybdenum in terms of MoO 3 is 0 to 100% by mass of the tantalate particles, as determined by XRF analysis of the tantalate particles. 20% by mass, the content of tantalum in terms of Ta 2 O 5 is 50 to 99% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 0.5 to 40% by mass % of tantalate particles. As another example of the tantalate particles of the embodiment, the content of molybdenum in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles is determined by XRF analysis of the tantalate particles.
  • the content of tantalum in terms of Ta 2 O 5 is 50 to 99% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 0.01 to 20% by mass.
  • An example is tantalate particles having a content of 5 to 40% by mass.
  • the content of molybdenum in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles is determined by XRF analysis of the tantalate particles.
  • the content of tantalum in terms of Ta 2 O 5 is 60 to 98% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 1 to 1.
  • An example may be tantalate particles having a content of 30% by mass.
  • the content of molybdenum in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles is determined by XRF analysis of the tantalate particles.
  • the content of tantalum in terms of Ta 2 O 5 is 70 to 95% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 3 to 10% by mass.
  • An example may be tantalate particles having a content of 25% by mass.
  • the tantalate particles of the embodiments can be provided as an aggregate of tantalate particles.
  • values of crystallite size, particle size distribution, specific surface area, value of x, molybdenum content, tantalum content, potassium content, and sodium content adopt the values determined using the above aggregate as a sample. I can do it.
  • the tantalate particles of the embodiment can be manufactured, for example, by the ⁇ method for manufacturing tantalate particles>> described below. Note that the tantalate particles of the present invention are not limited to those produced by the method for producing tantalate particles of the embodiment below.
  • the tantalate particles of the embodiments can be used as piezoelectric bodies, catalysts, water purification materials, and the like.
  • a method for producing tantalate particles of an embodiment includes firing a tantalum compound in the presence of a potassium compound and/or a sodium compound.
  • the degree of crystal growth of the tantalate particles produced can be controlled. Excellent. Furthermore, according to the method for producing tantalate particles of the present embodiment, by firing the tantalum compound in the presence of potassium carbonate and/or sodium carbonate, the degree of crystal growth of the tantalate particles produced depends on the degree of crystal growth. Excellent.
  • a preferred method for producing tantalate particles includes a step of mixing a tantalum compound and a potassium compound and/or a sodium compound to form a mixture (mixing step), and a step of firing the mixture (calcination step). can be included.
  • a molybdenum compound In the method for producing tantalate particles of the embodiment, it is preferable to further use a molybdenum compound.
  • a molybdenum compound By using a molybdenum compound, crystal growth of tantalate particles can be further promoted and tantalate particles can be manufactured with high efficiency.
  • An example of a method for producing such tantalate particles is a method that includes firing a tantalum compound in the presence of a molybdenum compound and a potassium compound and/or a sodium compound.
  • a preferred method for producing tantalate particles includes a step of mixing a tantalum compound, a molybdenum compound, a potassium compound and/or a sodium compound to form a mixture (mixing step), and a step of firing the mixture (calcining step). ) and can include.
  • a compound containing molybdenum and potassium such as potassium molybdate
  • a compound containing molybdenum and potassium can also be used in place of at least some of the molybdenum compounds and potassium compounds.
  • compounds containing molybdenum and sodium such as sodium molybdate. Therefore, mixing molybdenum and a compound containing potassium and/or sodium is also considered to be mixing a molybdenum compound and a potassium compound and/or a sodium compound.
  • the mixing step is a step of mixing a tantalum compound, optionally a molybdenum compound, and a potassium compound and/or a sodium compound to form a mixture.
  • the tantalate particles to be produced include potassium sodium tantalate
  • it may include a step (mixing step) of mixing the tantalum compound, optionally a molybdenum compound, a potassium compound, and a sodium compound to form a mixture.
  • the tantalate particles to be produced may include a step (mixing step) of mixing the tantalum compound, optionally a molybdenum compound, and a potassium compound to form a mixture.
  • the tantalate particles to be produced may include a step (mixing step) of mixing the tantalum compound, optionally a molybdenum compound, and a sodium compound to form a mixture.
  • tantalum compound The tantalum compound is not limited as long as it can be fired with a raw material compound to form a tantalate, and includes tantalum oxide, tantalum hydroxide, tantalum sulfide, tantalum nitride, tantalum fluoride, tantalum chloride, tantalum bromide, Examples include tantalum halides such as tantalum iodide, tantalum alkoxides, tantalum hydroxide and tantalum oxide are preferred, and tantalum oxide is more preferred. Examples of tantalum oxide include tantalum pentoxide (Ta 2 O 5 ), tantalum dioxide (TaO 2 ), and tantalum monoxide (TaO).
  • any tantalum oxide having a different valence can be used.
  • the physical form such as the shape, particle size, specific surface area, etc. of the tantalum compound as a precursor.
  • the shape after firing hardly reflects the shape of the raw tantalum compound, so it may be spherical, amorphous, a structure with an aspect (wire, fiber, ribbon, tube, etc.), or a sheet. can also be suitably used.
  • molybdenum compound examples include molybdenum oxide, molybdic acid, molybdenum sulfide, and molybdate compounds, with molybdenum oxide or molybdate compounds being preferred.
  • molybdenum oxide examples include molybdenum dioxide (MoO 2 ), molybdenum trioxide (MoO 3 ), and molybdenum trioxide is preferred.
  • the molybdate compound is preferably an alkali metal salt of molybdenum oxoanion, more preferably lithium molybdate, potassium molybdate, or sodium molybdate, and even more preferably potassium molybdate or sodium molybdate.
  • the molybdenum compound may be a hydrate.
  • the molybdenum compound is preferably at least one compound selected from the group consisting of molybdenum trioxide, lithium molybdate, potassium molybdate, and sodium molybdate, and preferably from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate. More preferably, it is at least one selected compound.
  • a compound containing molybdenum and potassium that is suitable as a fluxing agent can be produced, for example, in the firing process using cheaper and more easily available molybdenum compounds and potassium compounds as raw materials.
  • a molybdenum compound and a potassium compound as a fluxing agent
  • when using a compound containing molybdenum and potassium as a fluxing agent when using a combination of both, when using a molybdenum compound and a potassium compound as a fluxing agent, that is, Considered to be in the presence of molybdenum compounds and potassium compounds.
  • a compound containing molybdenum and sodium suitable as a fluxing agent can be produced, for example, in the firing process using cheaper and more easily available molybdenum compounds and sodium compounds as raw materials.
  • a molybdenum compound and a sodium compound as a fluxing agent when using a compound containing molybdenum and sodium as a fluxing agent, when using a combination of both, when using a molybdenum compound and a sodium compound as a fluxing agent, that is, Considered to be in the presence of molybdenum compounds and sodium compounds.
  • molybdenum compounds may be used alone or in combination of two or more types.
  • Potassium compounds include, but are not limited to, potassium chloride, potassium chlorite, potassium chlorate, potassium sulfate, potassium hydrogen sulfate, potassium sulfite, potassium hydrogen sulfite, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium acetate, and potassium oxide. , potassium bromide, potassium bromate, potassium hydroxide, potassium silicate, potassium phosphate, potassium hydrogen phosphate, potassium sulfide, potassium hydrogen sulfide, potassium molybdate, potassium tungstate, and the like.
  • the potassium compound includes isomers as in the case of the molybdenum compound.
  • potassium carbonate potassium hydrogen carbonate
  • potassium oxide potassium hydroxide
  • potassium hydroxide potassium hydroxide
  • potassium chloride potassium sulfate
  • potassium molybdate it is preferable to use potassium carbonate and/or potassium molybdate.
  • potassium molybdate contains molybdenum, it can also function as the above-mentioned molybdenum compound.
  • sodium compound examples include, but are not limited to, sodium carbonate, sodium molybdate, sodium oxide, sodium sulfate, sodium hydroxide, sodium nitrate, sodium chloride, sodium metal, and the like. Among these, it is preferable to use sodium carbonate, sodium molybdate, sodium oxide, and sodium sulfate from the viewpoint of easy industrial availability and handling, and it is more preferable to use sodium carbonate and/or sodium molybdate. .
  • sodium molybdate contains molybdenum, it can also function as the above-mentioned molybdenum compound.
  • the molybdenum compound may be described twice as a molybdenum compound in terms of classification, but as an example, the molybdenum compound is at least one compound selected from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate.
  • the molybdenum compound is at least one compound selected from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate.
  • the sodium compound is sodium carbonate or sodium molybdate
  • the potassium compound is potassium carbonate or potassium molybdate.
  • a method for producing potassium sodium tantalate particles can be exemplified, which includes firing a tantalum compound in the presence of a molybdenum compound, a potassium compound, and a sodium compound.
  • An example of a method for producing sodium tantalate particles preferably includes firing a tantalum compound in the presence of a molybdenum compound and a sodium compound.
  • An example of a method for producing potassium tantalate particles preferably includes firing a tantalum compound in the presence of a molybdenum compound and a potassium compound.
  • a potassium compound, a sodium compound, and a molybdenum compound are used as a fluxing agent.
  • oxides Na 2 O and K 2 O
  • tantalate crystal growth progresses.
  • oxides (Na 2 O and K 2 O) and/or CO 2 are formed from some potassium carbonate and/or sodium carbonate. It is presumed that these oxides and/or CO 2 function as a flux to promote crystal growth of tantalate particles.
  • tantalate particles (K x Na (1-x) TaO 3 ) are formed along with the formation of oxides (Na 2 O and K 2 O) and/or CO 2 that function as fluxes. it is conceivable that.
  • the flux function of oxides (Na 2 O and K 2 O) and/or CO 2 promotes the formation of tantalate particles (K x Na (1-x) TaO 3 ) with large crystallite sizes. It is thought that there are.
  • a molybdenum compound is used as a fluxing agent, by such baking, a tantalum compound, a molybdenum compound, a sodium compound or a potassium compound (a compound containing molybdenum and sodium, or a compound containing molybdenum and potassium) ), which react at high temperatures and function as fluxes (e.g., K a Mo b O c , Na a Mo b O c , K a Na a' Mo b O c ) is thought to form tantalate particles (K x Na (1-x) TaO 3 ). It is believed that some molybdenum compounds are incorporated into the tantalate particles when they are formed (crystal growth).
  • molybdenum compounds contained in tantalate particles we will explain the formation and decomposition of Mo-O-Ta in the system during calcination, or the generation mechanism of molybdenum compounds contained in tantalate particles. It is believed that molybdenum compounds, such as molybdenum oxides, are formed during the crystal growth of the particles. Furthermore, considering the above mechanism, it is also possible that molybdenum oxide exists on the surface of the tantalate particles through Mo--O--Ta bonds. Inclusion of a molybdenum compound (for example, molybdenum oxide) in the tantalate particles leads to improvement in the physical properties of the tantalate particles, and for example, the catalytic performance of the tantalate particles can be improved.
  • a molybdenum compound for example, molybdenum oxide
  • the molybdate compound used as the above-mentioned flux does not vaporize even in the firing temperature range and can be easily recovered by cleaning after firing, which reduces the amount of molybdenum compound released outside the firing furnace and significantly reduces production costs. can be reduced to
  • the total amount of the raw materials molybdenum compound, potassium compound, and sodium compound (hereinafter also referred to as fluxing agent) and the amount of tantalum compound used, which are considered to function as fluxing agents are considered to function as fluxing agents.
  • 10 parts by mass or more of a fluxing agent is mixed with 100 parts by mass of the tantalum compound used as a raw material to form a mixture, and the mixture is fired. can. More preferably, 20 to 5,000 parts by mass of a fluxing agent are mixed with 100 parts by mass of the tantalum compound used to form a mixture, and the mixture is fired. More preferably, 100 to 1000 parts by mass of a fluxing agent is mixed with 100 parts by mass of the tantalum compound used to form a mixture, and the mixture is fired.
  • the amount of fluxing agent used with respect to the tantalum compound as a raw material is equal to or more than the above lower limit.
  • the amount of fluxing agent used with respect to the tantalum compound as a raw material By increasing the amount of fluxing agent used with respect to the tantalum compound as a raw material, the crystallite size of the tantalate particles to be produced can be easily controlled, and tantalate particles with improved crystallite size can be easily obtained.
  • the above upper limit or less is preferable. If the amount of flux agent is large, large single crystals may be produced, which may reduce productivity. Therefore, select the amount of flux appropriately so that the particle size of the tantalate particles produced is the desired size. can do.
  • the molar ratio (K+Na)/Ta of potassium atoms and sodium atoms to tantalum atoms in the mixture is 1.1 or more. , more preferably from 1.5 to 10, and even more preferably from 2.0 to 5.
  • the molar ratio (K+Na)/Ta is within the above range, tantalate particles with improved crystallite size can be easily obtained.
  • the excess (K+Na) in the mixture is considered to contribute to good crystal growth of tantalate as so-called self-flux.
  • the K/Na ratio of the tantalate particles to be produced can be changed depending on the K/Na blending ratio of the raw materials.
  • the molar ratio of potassium and/or sodium atoms to molybdenum atoms in the mixture depends on the desired values of X and 1-X of K x Na (1-x) TaO 3 in the tantalate particles produced. You may set it as appropriate.
  • the X is 0 ⁇ X ⁇ 1
  • the larger the value of K/Na the larger the particle size of the tantalate particles produced tends to be.
  • the amount of molybdenum compound contained in the obtained tantalate particles becomes more appropriate, and tantalate particles with a controlled crystal shape can be easily obtained.
  • the firing step is a step of firing the mixture.
  • the tantalate particles according to the embodiment are obtained by firing the mixture.
  • this manufacturing method is called the flux method.
  • the flux method is classified as a solution method. More specifically, the flux method is a crystal growth method that utilizes the fact that a crystal-flux binary phase diagram shows a eutectic type.
  • the mechanism of the flux method is presumed to be as follows. That is, when a mixture of solute and flux is heated, the solute and flux become a liquid phase. At this time, since the flux is a flux, in other words, the solute-flux binary phase diagram shows a eutectic type, so the solute melts at a temperature lower than its melting point and forms a liquid phase. becomes.
  • the flux method has advantages such as being able to grow crystals at a temperature much lower than the melting point, being able to precisely control the crystal structure, and being able to form euhedral crystals.
  • oxides (Na 2 O and K 2 O ) is formed, which functions as a flux and is presumed to promote the crystal growth of tantalate particles.
  • oxides (Na 2 O and K 2 O) and/or CO 2 are formed from some potassium carbonate and/or sodium carbonate. It is presumed that these oxides and/or CO 2 function as a flux to promote crystal growth of tantalate particles.
  • tantalate crystals can be grown at a temperature lower than the melting point of tantalate due to the flux function of molybdate.
  • partially formed tantalum molybdate decomposes and promotes crystal growth of tantalate particles. That is, a molybdenum compound (molybdate) functions as a flux, and tantalate particles are produced via an intermediate called tantalum molybdate.
  • the firing method is not particularly limited and can be performed by any known and commonly used method.
  • a molybdenum compound when used, when the firing temperature exceeds 500°C, some tantalum compounds react with the molybdenum compound to form tantalum molybdate, etc., and the molybdenum compound produces molybdate (K a Mo b O c , Na a Mo b O c , K a Na a' Mo b O c ) are thought to be formed.
  • the firing temperature reaches 800° C. or higher, it is thought that the partially formed tantalum molybdate and the like decomposes, and tantalate particles are formed due to the flux function of the molybdate.
  • molybdenum compounds are considered to be incorporated into the tantalate particles during the decomposition of tantalum molybdate and the growth of particle crystals.
  • the state of the tantalum compound, molybdenum compound, sodium compound, potassium compound, etc. that can be used during firing is not particularly limited, and the raw material compounds such as the molybdenum compound, tantalum compound, sodium compound, potassium compound, etc. can interact with each other. It suffices if it exists in the space of Specifically, it may be simple mixing of powdered raw material compounds, mechanical mixing using a grinder or the like, mixing using a mortar or the like, and mixing in a dry state or a wet state. It's okay.
  • the firing temperature conditions are not particularly limited, and are appropriately determined in consideration of the target particle size of the tantalate particles, the formation of molybdenum compounds in the tantalate particles, the shape of the tantalate particles, and the like.
  • the firing temperature may be 700°C or higher, which is close to the temperature at which the molybdate can function as a flux, may be 750°C or higher, 800°C or higher, or 850°C or higher. , 900°C or higher. From the viewpoint of efficiently producing tantalate particles with improved crystallite size, the firing temperature is preferably 800°C or higher, more preferably 900°C or higher, and even more preferably 1000°C or higher.
  • tantalate particles can be formed efficiently at low cost even under conditions where the maximum firing temperature for firing a tantalum compound is 1500° C. or lower. Further, according to the method for producing tantalate particles of the embodiment, even when the firing temperature is 1300° C. or lower, which is much lower than the melting point of tantalum oxide, the precursor has an automorphic shape regardless of the shape of the precursor. Tantalate particles can be formed. Moreover, from the viewpoint of efficiently producing tantalate particles, the above-mentioned firing temperature is preferably 1200°C or lower, more preferably 1100°C or lower.
  • the numerical range of the firing temperature for firing the tantalum compound may be, for example, 700 to 1300°C, 750 to 1300°C, 800 to 1200°C, and 850 to 1300°C.
  • the temperature may be 1200°C to 1200°C, 900 to 1100°C, or 1000 to 1100°C.
  • the temperature increase rate may be 20 to 600°C/h, 40 to 500°C/h, or 80 to 400°C/h.
  • the heating time to a predetermined firing temperature be carried out in the range of 15 minutes to 10 hours, and the holding time at the firing temperature be carried out in the range of 5 minutes to 30 hours.
  • the firing temperature is preferably held for 2 hours or more, and more preferably from 2 to 15 hours. Tantalate particles with improved crystallite size can be easily obtained by selecting the conditions of a calcination temperature of 700 to 1100° C. and a calcination temperature holding time of 2 to 15 hours.
  • the firing atmosphere is not particularly limited as long as the effects of the present invention can be obtained, but for example, an oxygen-containing atmosphere such as air or oxygen, or an inert atmosphere such as nitrogen, argon, or carbon dioxide is preferable, and from a cost perspective. Taking this into consideration, an air atmosphere is more preferable.
  • the device for firing is not necessarily limited, and a so-called firing furnace can be used.
  • the firing furnace is preferably made of a material that does not react with sublimated molybdenum oxide, and it is also preferable to use a highly airtight firing furnace so that molybdenum oxide can be used efficiently.
  • the method for producing tantalate particles may include a cooling step.
  • the cooling step is a step of cooling the tantalate particles that have grown crystals in the firing step.
  • the cooling rate is not particularly limited, but is preferably 1 to 1000°C/hour, more preferably 5 to 500°C/hour, and even more preferably 50 to 100°C/hour. It is preferable that the cooling rate is 1° C./hour or more because the manufacturing time can be shortened. On the other hand, it is preferable that the cooling rate is 1000° C./hour or less because the firing container is less likely to crack due to heat shock and can be used for a long time.
  • the cooling method is not particularly limited, and may be natural cooling or a cooling device may be used.
  • the manufacturing method of this embodiment may include a post-processing step.
  • the post-treatment step may be a step of separating the tantalate particles and the flux agent contained in the fired product, and can be performed by taking out the fired product from the firing container.
  • the post-treatment step can be performed after the above-mentioned firing step. Further, if necessary, the process may be repeated two or more times.
  • Methods for removing the fluxing agent include washing, high temperature treatment, etc. These can be done in combination.
  • the washing method is not particularly limited, but when the flux is water-soluble like the potassium compound, sodium compound, or molybdate compound mentioned above, washing with water may be used.
  • examples of the high temperature treatment method include a method of raising the temperature to a temperature higher than the sublimation point or boiling point of the flux.
  • the tantalate particles may aggregate and the particle size may not meet the preferred particle size range for the intended use. Therefore, the tantalate particles may be pulverized to satisfy a suitable particle size range, if necessary.
  • the method for pulverizing the baked product is not particularly limited, and conventionally known pulverizing methods such as a ball mill, jaw crusher, jet mill, disk mill, spectro mill, grinder, mixer mill, etc. can be applied.
  • the fired product containing tantalate particles obtained by the firing step may be appropriately classified in order to adjust the particle size range.
  • Classification processing refers to an operation of dividing particles into groups according to their size. Classification may be performed either wet or dry, but from the viewpoint of productivity, dry classification is preferred. In addition to classification using a sieve, dry classification includes wind classification that uses the difference between centrifugal force and fluid drag, but from the perspective of classification accuracy, wind classification is preferable, and air classifiers that use the Coanda effect, This can be carried out using a classifier such as a swirling airflow classifier, a forced vortex centrifugal classifier, or a semi-free vortex centrifugal classifier.
  • the above-described pulverization process and classification process can be performed at necessary stages. For example, the average particle size of the obtained tantalate particles can be adjusted by whether or not these pulverization and classification are performed and by selecting the conditions thereof.
  • the tantalate particles of the embodiment or the tantalate particles obtained by the production method of the embodiment have less agglomeration or are not agglomerated, which are more likely to exhibit their original properties and are easier to handle. Moreover, when used after being dispersed in a medium to be dispersed, it is preferable from the viewpoint of more excellent dispersibility.
  • tantalate particles of the above embodiment it is possible to easily produce tantalate particles with little or no agglomeration, so even if the above-mentioned crushing step and classification step are not performed, It has the excellent advantage that tantalate particles having the desired excellent properties can be produced with high productivity.
  • the tantalate particles of embodiments can be blended with a resin to provide a resin composition.
  • a resin composition containing the tantalate particles of the embodiment and a resin is provided.
  • the resin is not particularly limited, and may be a polymer, an oligomer, or a monomer, a thermosetting resin or a thermoplastic resin, or an active energy ray-curable resin.
  • thermosetting resins are resins that have the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or catalysts.
  • it may be a known and commonly used resin used for molding materials and the like.
  • novolac-type phenolic resins such as phenol novolac resins and cresol novolac resins
  • resol-type phenolic resins such as unmodified resol phenolic resins, oil-modified resol phenolic resins modified with tung oil, linseed oil, walnut oil, etc.
  • Phenol resins such as bisphenol A epoxy resin, bisphenol F epoxy resin, etc.; novolac epoxy resins such as fatty chain modified bisphenol epoxy resins, novolac epoxy resins, cresol novolac epoxy resins; biphenyl epoxy resins, Epoxy resins such as alkylene glycol type epoxy resins; resins with triazine rings such as urea resins and melamine resins; vinyl resins such as (meth)acrylic resins and vinyl ester resins: unsaturated polyester resins, bismaleimide resins, Examples include polyurethane resins, diallyl phthalate resins, silicone resins, resins having benzoxazine rings, cyanate ester resins, and they may be polymers, oligomers, or monomers.
  • thermosetting resin described above may be used together with a curing agent.
  • the curing agent used in this case can be used in a known and commonly used combination with a thermosetting resin.
  • the thermosetting resin is an epoxy resin
  • any compound commonly used as a curing agent can be used, such as amine compounds, amide compounds, acid anhydride compounds, phenol compounds, etc.
  • the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivatives.
  • Examples of the amide compound include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like.
  • acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro.
  • Examples include phthalic anhydride.
  • phenolic compounds include polyhydric hydroxyl compounds such as phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), and resorcin novolak resin.
  • polyhydric hydroxyl compounds such as phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), and resorcin novolak resin.
  • thermosetting resin and the curing agent in the resin composition of the embodiment are not particularly limited, but for example, when the curable resin is an epoxy resin, the properties of the resulting cured product are good. Therefore, it is preferable to use an amount such that the amount of active groups in the curing agent is 0.7 to 1.5 equivalents per total equivalent of epoxy groups in the epoxy resin.
  • a curing accelerator can be appropriately used in combination with the thermosetting resin in the resin composition of the embodiment.
  • the curable resin is an epoxy resin
  • various curing accelerators can be used, including phosphorus compounds, tertiary amines, imidazole, organic acid metal salts, Lewis acids, amine complex salts, etc. It will be done.
  • thermosetting resin including known and commonly used thermal polymerization initiators and active energy ray polymerization initiators.
  • thermoplastic resin examples include known and commonly used resins used in molding materials and the like. Specifically, for example, polyethylene resin, polypropylene resin, polymethyl methacrylate resin, polyvinyl acetate resin, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile resin.
  • thermoplastic polyimide resin thermoplastic urethane resin
  • polyamino bismaleimide resin polyamideimide resin
  • polyetherimide resin bismaleimide triazine resin
  • polymethylpentene resin fluorinated resin
  • liquid crystal polymer olefin-vinyl alcohol copolymer, ionomer resin, polyarylate resin, acrylonitrile-ethylene -styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, etc.
  • At least one type of thermoplastic resin can be selected and used, but depending on the purpose, it is also possible to use
  • the resin When provided as a piezoelectric material, the resin preferably exhibits a high dielectric constant, and the resin is preferably a polymer having an electron-withdrawing group, such as polyvinylidene fluoride (PVDF), vinylidene fluoride-tetrafluoroethylene, etc.
  • PVDF polyvinylidene fluoride
  • vinylidene fluoride-tetrafluoroethylene etc.
  • Copolymers fluorine-containing polymers such as vinylidene fluoride-trifluoroethylene copolymers, cyanoethylated polyvinyl alcohol, vinylidene cyanide-vinyl acetate copolymers, cyanoethylcellulose, cyanoethylhydroxysucrose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan , cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyano
  • the resin composition of the embodiment may contain other compounds as necessary, and may contain an external lubricant, an internal lubricant, an antioxidant, a flame retardant, a light stabilizer, and ultraviolet rays to the extent that the effects of the invention can be obtained.
  • An absorbent, a silane-based, titanate-based, or aluminate-based coupling agent, a reinforcing material such as glass fiber or carbon fiber, a filler, various coloring agents, etc. may be added.
  • stress reducing agents such as silicone oil, liquid rubber, rubber powder, butadiene copolymer rubber such as methyl acrylate-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, and silicone compounds (stress relaxation agents) can also be used.
  • the resin composition of the embodiment can be obtained by mixing the tantalate particles of the embodiment, a resin, and, if necessary, other compounds.
  • mixing method There is no particular limitation on the mixing method, and the mixing may be carried out by any known and commonly used method.
  • the general method is to thoroughly mix the thermosetting resin, the tantalate particles of the embodiment, and other components as necessary using a mixer, etc., and then mix the three Knead with a roll or the like to form a fluid liquid composition, or mix a predetermined amount of thermosetting resin, the tantalate particles of the embodiment, and other components as necessary with a mixer or the like. After that, the mixture is melt-kneaded using a mixing roll, an extruder, etc., and then cooled to obtain a solid composition. Regarding the mixing state, when a curing agent, a catalyst, etc. are blended, it is preferable that the curable resin and those compounds are sufficiently uniformly mixed, and the tantalate particles of the embodiment are also uniformly dispersed and mixed. It is more preferable.
  • thermoplastic resin When the resin is a thermoplastic resin, a common method is to mix the thermoplastic resin, the tantalate particles of the embodiment, and other ingredients as necessary using various mixers such as a tumbler or a Henschel mixer. Examples include a method of premixing and then melt-kneading with a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, and a mixing roll. Note that the melt-kneading temperature is not particularly limited, but may be in the range of 240 to 320°C.
  • the mixing ratio of the tantalate particles of the embodiment and the nonvolatile content of the resin is not particularly limited, but per 100 parts by mass of the nonvolatile content of the resin, For example, it may range from 0.1 to 1800 parts of tantalate particles, and it may range from 10 to 900 parts.
  • the content ratio of the tantalate particles to the total mass (100% by mass) of the resin composition of the embodiment may be 30% by mass or more, 50 to 90% by mass, and 60 to 85% by mass. It may be %.
  • a molded article can be obtained by molding the resin composition of the embodiment.
  • a molded article formed by molding the resin composition of the embodiment is provided.
  • the resin molded article can be obtained by any known and commonly used method.
  • thermosetting resin compositions such as epoxy resin compositions
  • a resin composition in which the resin is an epoxy resin can be cured by heat, and the heating temperature conditions at that time may be selected as appropriate depending on the type of curing agent to be combined and the intended use. It may be heated within a temperature range of approximately °C.
  • active energy ray-curable resins they can be cured and molded by irradiation with active energy rays such as ultraviolet rays and infrared rays.
  • the resin of the embodiment is a thermoplastic resin
  • it can be made into a molded article by a known and commonly used molding method.
  • injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, blow molding method such as gas assist, molding method using insulation mold, molding method using rapid heating mold, foaming Examples include molding (including supercritical fluid), insert molding, IMC (in-mold coating molding), extrusion molding, sheet molding, rotary molding, lamination molding, press molding, and the like.
  • a molding method using a hot runner method can also be used. There are no restrictions on the shape, pattern, color, size, etc. of the molded product, and they may be set arbitrarily depending on the purpose of the molded product.
  • the molded article of the resin composition When the molded article of the resin composition is in the form of a sheet or layer, its thickness may be from 10 to 100 ⁇ m, or from 10 to 80 ⁇ m.
  • the resin composition of the embodiment and its molded article can be provided and used as a piezoelectric body by appropriately performing polarization treatment.
  • the sample powder was subjected to XRF analysis to determine the tantalum content in the sample powder, and the tantalum content was calculated as the content (mass%) in terms of Ta 2 O 5 based on 100 mass% of the total mass of the sample powder.
  • the sample powder was subjected to XRF analysis to determine the molybdenum content in the sample powder, and the molybdenum content was calculated as the content (mass %) in terms of MoO 3 based on the total mass 100 mass % of the sample powder.
  • the sample powder was subjected to XRF analysis to determine the potassium content in the sample powder, and calculated as a content rate (mass%) in terms of K 2 O with respect to 100 mass% of the total mass of the sample powder.
  • the sample powder was subjected to XRF analysis to determine the sodium content in the sample powder, and calculated as the content (mass%) in terms of Na 2 O with respect to the total mass of the sample powder (100% by mass).
  • Measurements were performed using SmartLab (manufactured by Rigaku Co., Ltd.) as an X-ray diffractometer, a high-intensity, high-resolution crystal analyzer (CALSA) as a detector, and PDXL as analysis software.
  • the average crystallite size was calculated from the half-width of the peak appearing at ° using the Scherrer equation.
  • the measurement conditions were: scan speed was 0.05 degrees/min, scan range was 20 to 70 degrees, step was 0.002 degrees, and device standard width was 0.028 degrees (Si). .
  • the particle size distribution of the sample powder was measured in a dry manner using a laser diffraction type dry particle size distribution meter (HELOS (H3355) & RODOS manufactured by Nippon Laser Co., Ltd.) under conditions of a dispersion pressure of 3 bar and a suction pressure of 90 mbar.
  • the particle diameter at the point where the volume integration % distribution curve intersects the 50% horizontal axis was determined as D50 .
  • the particle diameter at the point where the volume integration % distribution curve intersects the horizontal axis of 10% from the small particle side was determined as D10 .
  • the particle diameter at the point where the volume integration % distribution curve intersects the 90% horizontal axis from the small particle side was determined as D90 .
  • the specific surface area of the sample powder is measured using a specific surface area meter (BELSORP-mini, manufactured by Microtrac Bell Co., Ltd.), and the surface area per 1 g of the sample measured from the amount of nitrogen gas adsorbed by the BET method is calculated as the specific surface area ( m 2 /g).
  • Tantalum oxide (Kanto Kagaku Co., Ltd. reagent, Ta 2 O 5 ) 10.0 g, molybdenum oxide (Kanto Kagaku Co., Ltd. reagent, MoO 3 ) 6.8 g, and sodium carbonate (Kanto Kagaku Co., Ltd. reagent, Na 2 CO 3 ) 11.5 g were mixed in a mortar to obtain a mixture.
  • the obtained mixture was placed in a crucible and fired in a ceramic electric furnace at 1000° C. for 10 hours. After cooling, the crucible was taken out from the ceramic electric furnace. Subsequently, the obtained fired product was ultrasonically cleaned with water five times, and then washed with water to remove the cleaning water by filtration, and dried to remove the remaining fluxing agent and prepare powder 9 of Example 1. .1g was obtained.
  • Example 2 to 12 Powders of Examples 2 to 12 were obtained in the same manner as in Example 1, except that the composition of the raw material compounds and the firing temperature were changed as shown in Table 1.
  • K 2 CO 3 potassium carbonate (reagent manufactured by Kanto Kagaku Co., Ltd., K 2 CO 3 ) was used.
  • Table 2 shows the shape and size of the particles of each example as determined from the SEM image. When particles of different shapes are found to be mixed, the representative shape (the shape most often observed) is noted. Aggregates of cubic particles are also included in those having a cubic shape.
  • each of the powders obtained in Examples 1 to 12 has a cubic shape and consists of K x Na (1-x) TaO 3 particles having a perovskite structure (Pe structure). It was confirmed that
  • Examples 1 to 12 were shown to contain tantalum, molybdenum, potassium, and sodium in the oxide equivalent amounts shown in Table 2 determined by XRF analysis.
  • the particles of Examples 1 to 12 had large primary particle sizes and large crystallite sizes. This is because most of the raw material compounds MoO 3 , Na 2 Co 3 , and K 2 CO 3 (including their products and decomposition products) used in the production method of each example functioned as a fluxing agent. This is thought to be due to the fact that the crystal growth of the particles was able to progress well.
  • each particle of Examples 1 to 12 had a BET specific surface area shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Tantalic acid salt particles including a crystal structure of a tantalic acid salt represented by KxNa(1-x)TaO3 (where 0≤x≤1), wherein the crystal structure has an average crystallite size of 80 nm or larger, the average crystallite size being determined from a peak at 2θ=23.0±1.0° of the tantalic acid salt obtained by X-ray diffractometry.

Description

タンタル酸塩粒子、タンタル酸塩粒子の製造方法、樹脂組成物及び成形体Tantalate particles, method for producing tantalate particles, resin composition, and molded article
 本発明は、タンタル酸塩粒子、タンタル酸塩粒子の製造方法、樹脂組成物及び成形体に関する。
 本願は、2022年4月21日に日本に出願された、特願2022-070230号に基づき優先権主張し、その内容をここに援用する。
The present invention relates to tantalate particles, a method for producing tantalate particles, a resin composition, and a molded article.
This application claims priority based on Japanese Patent Application No. 2022-070230, filed in Japan on April 21, 2022, the contents of which are incorporated herein.
 タンタル酸アルカリ金属塩は、圧電体、フィラー、触媒、半導体光電極などとして幅広く使用されている。 Alkali metal tantalate salts are widely used as piezoelectric bodies, fillers, catalysts, semiconductor photoelectrodes, etc.
 特許文献1には、層状ペロブスカイト型構造を有し、特定の式で表されるタンタル酸塩結晶粒子の製造方法であって、原料およびフラックスを混合して加熱することによって結晶を析出および成長させることを特徴とするタンタル酸塩結晶粒子の製造方法が示されている。また。前記フラックスが、塩化カリウムまたは塩化ストロンチウムを含有することが例示されている。 Patent Document 1 describes a method for producing tantalate crystal particles having a layered perovskite structure and represented by a specific formula, in which crystals are precipitated and grown by mixing raw materials and flux and heating the mixture. A method for producing tantalate crystal particles is disclosed. Also. It is exemplified that the flux contains potassium chloride or strontium chloride.
 特許文献2には、二酸化炭素の光触媒還元に用いる応用例として、ベース触媒としてのタンタル酸ナトリウム(NaTaO)、改質剤、および少なくとも1つの共触媒を含む触媒組成物が示されている。 Patent Document 2 shows a catalyst composition comprising sodium tantalate (NaTaO 3 ) as a base catalyst, a modifier, and at least one cocatalyst as an application example for photocatalytic reduction of carbon dioxide.
特開2009-190927号公報JP2009-190927A 特表2016-524534号公報Special table 2016-524534 publication
 タンタル酸塩粒子の結晶成長の制御は、得られるタンタル酸塩粒子の用途の汎用性を高めるうえで、非常に重要な技術である。KNa(1-x)TaO(0≦x≦1)はペロブスカイト構造を有し、例えば、圧電体として利用可能である。圧電体材料としては、結晶子サイズが大きいほど優れた圧電効果を発揮できることが期待される。しかし、従来のタンタル酸塩粒子の製造方法で得られたタンタル酸塩粒子の結晶成長の向上について、未だ検討の余地がある。 Controlling the crystal growth of tantalate particles is a very important technique for increasing the versatility of the tantalate particles obtained. K x Na (1-x) TaO 3 (0≦x≦1) has a perovskite structure and can be used, for example, as a piezoelectric material. As a piezoelectric material, it is expected that the larger the crystallite size, the more excellent the piezoelectric effect can be exhibited. However, there is still room for investigation into improving the crystal growth of tantalate particles obtained by conventional methods for producing tantalate particles.
 本発明は、上記のような問題点を解消するためになされたものであり、結晶成長の程度に優れるタンタル酸塩粒子を提供することを目的とする。 The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide tantalate particles having an excellent degree of crystal growth.
 本発明は以下の態様を有する。 The present invention has the following aspects.
(1) KNa(1-x)TaO(ただし、0≦x≦1である。)で表されるタンタル酸塩の結晶構造を含み、
 前記結晶構造は、X線回折測定により得られる、前記タンタル酸塩の2θ=23.0±1.0°のピークから求められる平均結晶子サイズが80nm以上である、タンタル酸塩粒子。
(2) 前記結晶構造はペロブスカイト結晶構造を含む、前記(1)に記載のタンタル酸塩粒子。
(3) キュービック状の形状を有する、前記(1)又は(2)に記載のタンタル酸塩粒子。
(4) 前記結晶構造は、X線回折測定により得られる、前記タンタル酸塩の2θ=32.0±1.2°のピークから求められる平均結晶子サイズが50nm以上である、前記(1)~(3)のいずれか一つに記載のタンタル酸塩粒子。
(5) レーザー回折・散乱法により算出されるメディアン径D50が、0.1~100μmである、前記(1)~(4)のいずれか一つに記載のタンタル酸塩粒子。
(6) 前記タンタル酸塩粒子におけるタンタルの含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するTa換算での含有率が50~99質量%である、前記(1)~(5)のいずれか一つに記載のタンタル酸塩粒子。
(7) 前記タンタル酸塩粒子におけるカリウム及び/又はナトリウム含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するKO換算及びNaO換算での合計含有率が0.5~40質量%である、前記(1)~(6)のいずれか一つに記載のタンタル酸塩粒子。
(8) モリブデンを含む、前記(1)~(7)のいずれか一つに記載のタンタル酸塩粒子。
(9) 前記タンタル酸塩粒子におけるモリブデン含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するMoO換算での含有率が0.01~20質量%である、前記(8)に記載のタンタル酸塩粒子。
(10) 前記(1)~(9)のいずれか一つに記載のタンタル酸塩粒子の製造方法であって、
 カリウム化合物及び/又はナトリウム化合物の存在下で、タンタル化合物を焼成することを含む、タンタル酸塩粒子の製造方法。
(11) 前記ナトリウム化合物が炭酸ナトリウムであり、前記カリウム化合物が炭酸カリウムである、前記(10)に記載のタンタル酸塩粒子の製造方法。
(12) モリブデン化合物と、カリウム化合物及び/又はナトリウム化合物との存在下で、タンタル化合物を焼成することを含む、前記(10)又は(11)に記載のタンタル酸塩粒子の製造方法。
(13) 前記モリブデン化合物が、三酸化モリブデン、モリブデン酸カリウム及びモリブデン酸ナトリウムからなる群から選ばれる少なくとも一種の化合物である、前記(12)に記載のタンタル酸塩粒子の製造方法。
(14) タンタル化合物と、カリウム化合物及び/又はナトリウム化合物と、を混合して混合物とする工程と、前記混合物を焼成する工程とを含み、
 前記混合物中の、カリウム原子及びナトリウム原子と、タンタル原子とのモル比(K+Na)/Taが1.1以上である、前記(10)~(13)のいずれか一つに記載のタンタル酸塩粒子の製造方法。
(15) 前記(1)~(9)のいずれか一つに記載のタンタル酸塩粒子と、
 樹脂と、を含む樹脂組成物。
(16) 前記(15)に記載の樹脂組成物を成形してなる成形体。
(1) Contains the crystal structure of tantalate represented by K x Na (1-x) TaO 3 (0≦x≦1),
The crystal structure is a tantalate particle having an average crystallite size of 80 nm or more as determined from a peak at 2θ=23.0±1.0° of the tantalate obtained by X-ray diffraction measurement.
(2) The tantalate particles according to (1) above, wherein the crystal structure includes a perovskite crystal structure.
(3) The tantalate particles according to (1) or (2) above, which have a cubic shape.
(4) The crystal structure described in (1) above has an average crystallite size of 50 nm or more as determined from the peak of 2θ = 32.0 ± 1.2° of the tantalate obtained by X-ray diffraction measurement. - The tantalate particles according to any one of (3).
(5) The tantalate particles according to any one of (1) to (4) above, wherein the median diameter D 50 calculated by a laser diffraction/scattering method is 0.1 to 100 μm.
(6) The content of tantalum in the tantalate particles is determined by XRF analysis of the tantalate particles, and is the content in terms of Ta 2 O 5 based on 100% by mass of the total mass of the tantalate particles. The tantalate particles according to any one of (1) to (5) above, wherein the tantalate particles are 50 to 99% by mass.
(7) The potassium and/or sodium content in the tantalate particles is determined by XRF analysis of the tantalate particles, calculated as K 2 O and Na based on 100% by mass of the tantalate particles. The tantalate particles according to any one of (1) to (6) above, wherein the total content in terms of 2 O is 0.5 to 40% by mass.
(8) The tantalate particles according to any one of (1) to (7) above, which contain molybdenum.
(9) The molybdenum content in the tantalate particles is determined by XRF analysis of the tantalate particles, and the content ratio in terms of MoO 3 is 0.5% based on 100% by mass of the total mass of the tantalate particles. The tantalate particles according to (8) above, which have a content of 01 to 20% by mass.
(10) A method for producing tantalate particles according to any one of (1) to (9) above, comprising:
A method for producing tantalate particles, comprising firing a tantalum compound in the presence of a potassium compound and/or a sodium compound.
(11) The method for producing tantalate particles according to (10) above, wherein the sodium compound is sodium carbonate and the potassium compound is potassium carbonate.
(12) The method for producing tantalate particles according to (10) or (11) above, which comprises firing a tantalum compound in the presence of a molybdenum compound and a potassium compound and/or a sodium compound.
(13) The method for producing tantalate particles according to (12) above, wherein the molybdenum compound is at least one compound selected from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate.
(14) A step of mixing a tantalum compound and a potassium compound and/or a sodium compound to form a mixture, and a step of firing the mixture,
The tantalate salt according to any one of (10) to (13) above, wherein the molar ratio (K+Na)/Ta of potassium atoms and sodium atoms to tantalum atoms in the mixture is 1.1 or more. Method of manufacturing particles.
(15) tantalate particles according to any one of (1) to (9) above;
A resin composition comprising a resin.
(16) A molded article obtained by molding the resin composition according to (15) above.
 本発明によれば、結晶成長の程度に優れるタンタル酸塩粒子を提供できる。
 また、本発明によれば、前記タンタル酸塩粒子の製造方法を提供できる。
 また、本発明によれば、前記タンタル酸塩粒子を含む樹脂組成物、及びその成形体を提供できる。
According to the present invention, tantalate particles having an excellent degree of crystal growth can be provided.
Further, according to the present invention, a method for producing the tantalate particles can be provided.
Moreover, according to the present invention, a resin composition containing the tantalate particles and a molded article thereof can be provided.
実施例1のNaTaO粒子のSEM画像である。3 is a SEM image of NaTaO 3 particles of Example 1. 実施例2のKTaO粒子のSEM画像である。3 is a SEM image of KTaO 3 particles of Example 2. 実施例3のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 3. 実施例4のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 4. 実施例5のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 5. 実施例6のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 6. 実施例7のKTaO粒子のSEM画像である。3 is a SEM image of KTaO 3 particles of Example 7. 実施例8のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 8. 実施例9のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 9. 実施例10のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 10. 実施例11のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 11. 実施例12のKNa(1-x)TaO粒子のSEM画像である。3 is a SEM image of K x Na (1-x) TaO 3 particles of Example 12. 実施例1~2の粉末試料のX線回折(XRD)パターンである。1 is an X-ray diffraction (XRD) pattern of powder samples of Examples 1-2. 実施例3~6の粉末試料のX線回折(XRD)パターンである。3 is an X-ray diffraction (XRD) pattern of powder samples of Examples 3 to 6. 実施例7~8の粉末試料のX線回折(XRD)パターンである。3 is an X-ray diffraction (XRD) pattern of powder samples of Examples 7-8. 実施例9~12の粉末試料のX線回折(XRD)パターンである。Figure 3 is an X-ray diffraction (XRD) pattern of powder samples of Examples 9-12.
 以下、本発明のタンタル酸塩粒子、タンタル酸塩粒子の製造方法、樹脂組成物及び成形体の実施形態を説明する。 Hereinafter, embodiments of tantalate particles, a method for producing tantalate particles, a resin composition, and a molded article of the present invention will be described.
≪タンタル酸塩粒子≫
 実施形態のタンタル酸塩粒子は、KNa(1-x)TaO(ただし、0≦x≦1である。)で表されるタンタル酸塩の結晶構造を含み、前記結晶構造は、X線回折測定により得られる、前記タンタル酸塩の2θ=23.0±1.0°のピークから求められる平均結晶子サイズが80nm以上である。
≪Tantalate particles≫
The tantalate particles of the embodiment include a tantalate crystal structure represented by K x Na (1-x) TaO 3 (where 0≦x≦1), and the crystal structure is represented by The average crystallite size determined from the peak at 2θ=23.0±1.0° of the tantalate obtained by line diffraction measurement is 80 nm or more.
 実施形態のタンタル酸塩粒子は、KNa(1-x)TaOで表されるタンタル酸塩化合物を含む。前記式KNa(1-x)TaOにおいて、xは0≦x≦1である。
 xが0<x<1の場合には、KNa(1-x)TaOはタンタル酸カリウムナトリウムである。
 x=0の場合には、KNa(1-x)TaOはタンタル酸ナトリウム(NaTaO)である。
 x=1の場合には、KNa(1-x)TaOはタンタル酸カリウム(KTaO)である。
The tantalate particles of embodiments include a tantalate compound represented by K x Na (1-x) TaO 3 . In the above formula K x Na (1-x) TaO 3 , x satisfies 0≦x≦1.
When x is 0<x<1, K x Na (1-x) TaO 3 is potassium sodium tantalate.
If x=0, K x Na (1-x) TaO 3 is sodium tantalate (NaTaO 3 ).
If x=1, K x Na (1-x) TaO 3 is potassium tantalate (KTaO 3 ).
 また、リーク電流を抑え、絶縁性を保つことを目的として、Taより価数の低い元素、例えばMn、Cr、Co、Ni、Znなどの元素をTaに対して数モル(1~3モル)%以内の範囲で適宜含んでいてもよい。また、原材料の不可避不純物として、例えばFeなどの元素が含まれていてもよい。 In addition, for the purpose of suppressing leakage current and maintaining insulation, several moles (1 to 3 moles) of elements with a lower valence than Ta, such as Mn, Cr, Co, Ni, and Zn, are added to Ta. It may be included as appropriate within a range of %. Furthermore, the raw material may contain an element such as Fe as an unavoidable impurity.
 本明細書においては、KNa(1-x)TaOにおける前記xの数値範囲の記載を省略することがある。 In this specification, the description of the numerical range of x in K x Na (1-x) TaO 3 may be omitted.
 実施形態のタンタル酸塩粒子に含有されるタンタル酸塩の種類や組成、結晶構造は、XRD分析にて得られたスペクトルのXRDパターンにより特定できる。 The type, composition, and crystal structure of the tantalate contained in the tantalate particles of the embodiment can be specified by the XRD pattern of the spectrum obtained by XRD analysis.
 実施形態のタンタル酸塩粒子が含む結晶構造の平均結晶子サイズは、以下の測定方法により特定できる。 The average crystallite size of the crystal structure contained in the tantalate particles of the embodiment can be determined by the following measurement method.
[結晶子サイズの測定]
 X線回折装置(例えば、株式会社リガク製、SmartLab)を用い、検出器として高強度・高分解能結晶アナライザ(CALSA)を用い、解析ソフト用いて測定を行う。測定方法は2θ/θ法であり、対象ピーク(対象の2θの範囲にピークトップを有するピーク)の半値幅からシェラー式を用いて平均結晶子サイズを算出する。なお、測定条件として、スキャンスピードは0.05度/分であり、スキャン範囲は20~70度であり、ステップは0.002度であり、装置標準幅は0.028°(Si)とする。
[Measurement of crystallite size]
Measurement is performed using an X-ray diffractometer (for example, SmartLab, manufactured by Rigaku Corporation), a high-intensity, high-resolution crystal analyzer (CALSA) as a detector, and analysis software. The measurement method is the 2θ/θ method, and the average crystallite size is calculated from the half-value width of the target peak (a peak having a peak top in the target 2θ range) using the Scherrer equation. The measurement conditions are: scan speed is 0.05 degrees/min, scan range is 20 to 70 degrees, step is 0.002 degrees, and device standard width is 0.028 degrees (Si). .
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=23.0±1.0°のピークから求められる平均結晶子サイズは、80nm以上であり、90nm以上であることが好ましく、100nm以上であることがより好ましく、140nm以上であることがさらに好ましい。 The average crystallite size determined from the peak at 2θ = 23.0 ± 1.0° of the crystal structure contained in the tantalate particles of the embodiment is 80 nm or more, preferably 90 nm or more, and 100 nm or more. It is more preferable that it be 140 nm or more, and even more preferably that it is 140 nm or more.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=23.0±1.0°のピークから求められる平均結晶子サイズの上限値は、特に制限されるものではないが、1000nm以下であってよく、800nm以下であってよく、500nm以下であってよい。 The upper limit of the average crystallite size determined from the peak at 2θ = 23.0 ± 1.0° of the crystal structure contained in the tantalate particles of the embodiment is not particularly limited, but is 1000 nm or less. It may be 800 nm or less, and may be 500 nm or less.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=23.0±1.0°のピークから求められる平均結晶子サイズの、上記数値範囲の一例としては、80nm以上1000nm以下であってよく、90nm以上800nm以下であってよく、100nm以上500nm以下であってよく、140nm以上500nm以下であってよい。 As an example of the above numerical range of the average crystallite size determined from the peak of 2θ = 23.0 ± 1.0° of the crystal structure contained in the tantalate particles of the embodiment, it may be 80 nm or more and 1000 nm or less. , may be 90 nm or more and 800 nm or less, 100 nm or more and 500 nm or less, and 140 nm or more and 500 nm or less.
 KNa(1-x)TaOは、組成により単斜晶系、直方晶系、又は正方晶系と異なる結晶系を示し得るものであり、結晶系によって面の帰属は異なる。
 本明細書において特に断りのない限り、面指数の表記については、結晶構造を立方晶系と仮定した場合を示す。
K x Na (1-x) TaO 3 can exhibit a crystal system different from monoclinic, rectangular, or tetragonal depending on the composition, and the plane assignment differs depending on the crystal system.
In this specification, unless otherwise specified, plane indices are expressed assuming that the crystal structure is a cubic system.
 上記の結晶子サイズの測定で得られる対象ピークについて、ピーク分裂を考慮せず立方晶系と仮定して帰属した場合、上記の2θ=23.0±1.0°のピークは、立方晶系の(100)面に相当する位置となる。ピークが分裂している場合は、強度の一番強いピークにて結晶子サイズを定義する。 When assigning the target peak obtained in the crystallite size measurement above to the cubic system without considering peak splitting, the peak at 2θ = 23.0 ± 1.0° above is the cubic system. The position corresponds to the (100) plane of If the peak is split, define the crystallite size using the peak with the highest intensity.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=32.0±1.2°のピークから求められる平均結晶子サイズは、50nm以上であることが好ましく、70nm以上であることがより好ましく、220nm以上であることがさらに好ましい。
 タンタル酸塩粒子の該平均結晶子サイズが上記下限値以上であることで、より一層優れた圧電性能が発揮される。
The average crystallite size determined from the peak at 2θ = 32.0 ± 1.2° of the crystal structure contained in the tantalate particles of the embodiment is preferably 50 nm or more, more preferably 70 nm or more. , more preferably 220 nm or more.
When the average crystallite size of the tantalate particles is greater than or equal to the above lower limit, even more excellent piezoelectric performance is exhibited.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=32.0±1.2°のピークから求められる平均結晶子サイズの上限値は、特に制限されるものではないが、1000nm以下であってよく、800nm以下であってよく、700nm以下であってよい。 The upper limit of the average crystallite size determined from the peak at 2θ = 32.0 ± 1.2° of the crystal structure contained in the tantalate particles of the embodiment is not particularly limited, but is 1000 nm or less. It may be 800 nm or less, and may be 700 nm or less.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=32.0±1.2°のピークから求められる平均結晶子サイズの、上記数値範囲の一例としては、50nm以上1000nm以下であってよく、70nm以上800nm以下であってよく、220nm以上700nm以下であってよい。 As an example of the above numerical range of the average crystallite size determined from the peak of 2θ = 32.0 ± 1.2° of the crystal structure included in the tantalate particles of the embodiment, it may be 50 nm or more and 1000 nm or less. , may be 70 nm or more and 800 nm or less, and may be 220 nm or more and 700 nm or less.
 上記の結晶子サイズの測定で得られる対象ピークについて、ピーク分裂を考慮せず立方晶系と仮定して帰属した場合、上記の2θ=32.0±1.2°のピークは、立方晶系の(110)面に相当する位置となる。ピークが分裂している場合は、強度の一番強いピークにて結晶子サイズを定義する。 When assigning the target peak obtained in the above crystallite size measurement assuming that it is a cubic system without considering peak splitting, the peak at 2θ = 32.0 ± 1.2° above is a cubic system. The position corresponds to the (110) plane of If the peak is split, define the crystallite size using the peak with the highest intensity.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=57.0±1.0°のピークから求められる平均結晶子サイズは、15nm以上であることが好ましく、30nm以上であることがより好ましく、80nm以上であることがさらに好ましい。
 タンタル酸塩粒子の該平均結晶子サイズが上記下限値以上であることで、より一層優れた圧電性能が発揮される。
The average crystallite size determined from the peak at 2θ = 57.0 ± 1.0° of the crystal structure contained in the tantalate particles of the embodiment is preferably 15 nm or more, more preferably 30 nm or more. , more preferably 80 nm or more.
When the average crystallite size of the tantalate particles is greater than or equal to the above lower limit, even more excellent piezoelectric performance is exhibited.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=57.0±1.0°のピークから求められる平均結晶子サイズの上限値は、特に制限されるものではないが、500nm以下であってよく、400nm以下であってよく、300nm以下であってよい。 The upper limit of the average crystallite size determined from the peak at 2θ = 57.0 ± 1.0° of the crystal structure contained in the tantalate particles of the embodiment is not particularly limited, but is 500 nm or less. It may be 400 nm or less, and may be 300 nm or less.
 実施形態のタンタル酸塩粒子が含む結晶構造の、2θ=57.0±1.0°のピークから求められる平均結晶子サイズの、上記数値範囲の一例としては、15nm以上500nm以下であってよく、30nm以上400nm以下であってよく、80nm以上300nm以下であってよい。 As an example of the above numerical range of the average crystallite size determined from the peak of 2θ = 57.0 ± 1.0° of the crystal structure included in the tantalate particles of the embodiment, it may be 15 nm or more and 500 nm or less. , may be 30 nm or more and 400 nm or less, and may be 80 nm or more and 300 nm or less.
 上記の結晶子サイズの測定で得られる対象ピークについて、ピーク分裂を考慮せず立方晶系と仮定して帰属した場合、上記の2θ=57.0±1.0°のピークは、立方晶系の(211)面に相当する位置となる。対象ピークについてピークが分裂している場合は、強度の一番強いピークにて結晶子サイズを定義する。 When assigning the target peak obtained in the crystallite size measurement above to a cubic system without considering peak splitting, the peak at 2θ = 57.0 ± 1.0° above is a cubic system. The position corresponds to the (211) plane of If the target peak is split, the crystallite size is defined by the peak with the highest intensity.
 後述の実施形態の製造方法によれば、製造されるタンタル酸塩粒子の結晶成長の制御に優れており、平均結晶子サイズが向上されたタンタル酸塩粒子を容易に取得できる。 According to the manufacturing method of the embodiment described below, the crystal growth of the tantalate particles to be manufactured is excellently controlled, and tantalate particles with an improved average crystallite size can be easily obtained.
 平均結晶子サイズは、後述する製造方法におけるフラックス剤の使用量や種類、焼成条件により制御可能である。 The average crystallite size can be controlled by the amount and type of flux agent used and firing conditions in the manufacturing method described below.
 実施形態のタンタル酸塩粒子の前記結晶構造は、ペロブスカイト結晶構造を含むことができる。 The crystal structure of the tantalate particles of the embodiment can include a perovskite crystal structure.
 実施形態のタンタル酸塩粒子は、キュービック状の形状を有することができる。 The tantalate particles of embodiments can have a cubic shape.
 本明細書において、「キュービック状」とは、ペロブスカイト構造に由来する形状であってよく、好ましくは略立方体である六面体の形状を有し、六面体を構成する各面は、平面であってもよく、湾曲や凹凸のある面であってもよい。 In this specification, "cubic shape" may be a shape derived from a perovskite structure, preferably a substantially cubic hexahedral shape, and each face constituting the hexahedron may be a flat surface. , it may be a curved or uneven surface.
 後述の実施形態の製造方法によれば、ペロブスカイト結晶構造を有し、キュービック状の形状を有するタンタル酸塩粒子を製造可能である。 According to the manufacturing method of the embodiment described below, tantalate particles having a perovskite crystal structure and a cubic shape can be manufactured.
 焼成温度が高温になるほど、平均結晶子サイズが大きく、粒子サイズも大きな、タンタル酸塩粒子が得られる傾向にある。 As the firing temperature becomes higher, tantalate particles with a larger average crystallite size and larger particle size tend to be obtained.
 タンタル酸塩粒子が、キュービック状の形状を有する場合の粒子サイズは、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。
 タンタル酸塩粒子が、キュービック状の形状を有する場合の粒子サイズの上限値は、特に制限されるものではないが、一例として、100μm以下であってよく、80μm以下であってよく、50μm以下であってよい。
 タンタル酸塩粒子が、キュービック状の形状を有する場合の粒子サイズの上限数値範囲の一例としては、0.1~100μmであってよく、0.5~80μmであってよく、1~50μmであってよい。
When the tantalate particles have a cubic shape, the particle size is preferably 0.1 μm or more, more preferably 0.5 μm or more, and even more preferably 1 μm or more.
The upper limit of the particle size when the tantalate particles have a cubic shape is not particularly limited, but may be, for example, 100 μm or less, 80 μm or less, 50 μm or less. It's good.
An example of the upper numerical range of the particle size when the tantalate particles have a cubic shape is 0.1 to 100 μm, 0.5 to 80 μm, and 1 to 50 μm. It's fine.
 本明細書において、キュービック状の形状を有するタンタル酸塩粒子の「粒子サイズ」とは、走査型電子顕微鏡(SEM)で撮影された二次元画像において、タンタル酸塩粒子の一次粒子の粒子像から判別される六面体の一辺の長さである。
 当該キュービック状の形状を有するタンタル酸塩粒子サイズの値は、上記の測定対象の自形を有する粒子のなかから、無作為に選出した50個以上のタンタル酸塩粒子から得られた平均値とする。
In this specification, the "particle size" of tantalate particles having a cubic shape refers to the particle size of the tantalate particles as determined from the particle image of the primary particles of the tantalate particles in a two-dimensional image taken with a scanning electron microscope (SEM). This is the length of one side of the hexahedron to be determined.
The value of the tantalate particle size having a cubic shape is the average value obtained from 50 or more tantalate particles randomly selected from among the euhedral particles to be measured above. do.
 キュービック状の形状を有するタンタル酸塩粒子を含む場合、質量基準又は個数基準で50%以上の粒子がキュービック状の形状を有することが好ましく、80%以上の粒子がキュービック状の形状を有することがより好ましく、90%以上の粒子がキュービック状の形状を有することがさらに好ましい。 When tantalate particles having a cubic shape are included, it is preferable that 50% or more of the particles have a cubic shape based on mass or number, and it is preferable that 80% or more of the particles have a cubic shape. More preferably, 90% or more of the particles have a cubic shape.
 実施形態のタンタル酸塩粒子の、レーザー回折・散乱法により算出されるメディアン径D50は、0.1~100μmであってよく、0.5~80μmであってよく、1~50μmであってよい。 The median diameter D50 of the tantalate particles of the embodiment calculated by a laser diffraction/scattering method may be 0.1 to 100 μm, may be 0.5 to 80 μm, and may be 1 to 50 μm. good.
 実施形態のタンタル酸塩粒子の、レーザー回折・散乱法により算出されるD10は、0.05~70μmであってよく、0.1~50μmであってよく、0.5~20μmであってよい。 D 10 of the tantalate particles of the embodiments calculated by laser diffraction/scattering method may be 0.05 to 70 μm, may be 0.1 to 50 μm, and may be 0.5 to 20 μm. good.
 実施形態のタンタル酸塩粒子の、レーザー回折・散乱法により算出されるメディアン径D90は、0.5~150μmであってよく、1~100μmであってよく、3~70μmであってよい。 The median diameter D 90 of the tantalate particles of the embodiment calculated by a laser diffraction/scattering method may be 0.5 to 150 μm, 1 to 100 μm, or 3 to 70 μm.
 タンタル酸塩粒子試料の、レーザー回折・散乱法により算出されるメディアン径D50は、レーザー回折式粒度分布計を用いて乾式で測定された粒子径分布において、体積積算%の割合が50%となる粒子径として求めることができる。タンタル酸塩粒子試料の、レーザー回折・散乱法により算出されるD10は、体積積算%の分布曲線が小粒子側から10%の横軸と交差する点の粒子径として求めることができ、D90は、体積積算%の分布曲線が小粒子側から90%の横軸と交差する点の粒子径として求めることができる。 The median diameter D 50 of the tantalate particle sample calculated by the laser diffraction/scattering method is based on the particle size distribution measured dry using a laser diffraction particle size distribution analyzer when the volume integrated % ratio is 50%. It can be determined as the particle size. D10 , which is calculated by the laser diffraction/scattering method of a tantalate particle sample, can be determined as the particle diameter at the point where the volume integration % distribution curve intersects the horizontal axis of 10% from the small particle side. 90 can be determined as the particle diameter at the point where the volume integration % distribution curve intersects the 90% horizontal axis from the small particle side.
 実施形態のタンタル酸塩粒子の、BET法により求められる比表面積は、0.02~20m/gであってもよく、0.04~10m/gであってもよく、0.05~3m/gであってもよい。 The specific surface area of the tantalate particles of the embodiment determined by the BET method may be 0.02 to 20 m 2 /g, 0.04 to 10 m 2 /g, 0.05 to 10 m 2 /g. It may be 3 m 2 /g.
 上記の比表面積は、比表面積計(例えば、マイクロトラック・ベル株式会社製、BELSORP-mini)にて測定し、BET法(Brunauer-Emmett-Teller法)による窒素ガスの吸着量から測定された試料1g当たりの表面積を、比表面積(m/g)として算出する。 The above specific surface area is measured using a specific surface area meter (for example, BELSORP-mini manufactured by Microtrac Bell Co., Ltd.), and the sample is measured from the amount of nitrogen gas adsorbed by the BET method (Brunauer-Emmett-Teller method). The surface area per 1 g is calculated as the specific surface area (m 2 /g).
 実施形態のタンタル酸塩粒子は、KNa(1-x)TaO(ただし、0≦x≦1である。)を含むものである。 The tantalate particles of the embodiment include K x Na (1-x) TaO 3 (0≦x≦1).
 実施形態のタンタル酸塩粒子は、前記タンタル酸塩粒子100質量%に対して、前記KNa(1-x)TaOを65質量%以上含むことが好ましく、65~99.999質量%含むことが好ましく、70~99.97質量%含むことがより好ましく、75~99.95質量%含むことがさらに好ましい。 The tantalate particles of the embodiment preferably contain 65% by mass or more, and preferably 65 to 99.999% by mass, of the K x Na (1-x) TaO 3 based on 100% by mass of the tantalate particles. The content is preferably from 70 to 99.97% by mass, and even more preferably from 75 to 99.95% by mass.
 前記タンタル酸塩粒子における、タンタルの含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するTa換算での含有率が、50質量%以上であってもよく、50~99質量%であってもよく、60~98質量%であってもよく、70~95質量%であってもよい。 The tantalum content in the tantalate particles is determined by XRF analysis of the tantalate particles, and the content in terms of Ta 2 O 5 based on 100% by mass of the tantalate particles is: It may be 50% by mass or more, 50 to 99% by mass, 60 to 98% by mass, or 70 to 95% by mass.
 Ta換算での含有率とは、XRF分析することによって求められるタンタル含有量を、Ta換算の検量線を用いて換算したTa量から求めた値とを云う。 The content in terms of Ta 2 O 5 refers to the value obtained from the amount of Ta 2 O 5 obtained by converting the tantalum content determined by XRF analysis using a calibration curve in terms of Ta 2 O 5 .
 実施形態のタンタル酸塩粒子はカリウム及び/又はナトリウム含む。 The tantalate particles of embodiments include potassium and/or sodium.
 前記タンタル酸塩粒子における、カリウム及び/又はナトリウム含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するKO換算及びNaO換算での合計含有率が0.5質量%以上であってもよく、0.5~40質量%であってもよく、1~30質量%であってもよく、3~25質量%であってもよい。 The potassium and/or sodium content in the tantalate particles is determined by XRF analysis of the tantalate particles, calculated in terms of K2O and Na2O based on 100% by mass of the tantalate particles. The total content in terms of conversion may be 0.5% by mass or more, 0.5 to 40% by mass, 1 to 30% by mass, or 3 to 25% by mass. It's okay.
 KO換算及びNaO換算での合計含有率とは、XRF分析することによって求められるカリウム含有量を、KO換算の検量線を用いて換算したKO量と、XRF分析することによって求められるナトリウム含有量を、NaO換算の検量線を用いて換算したNaO量と、の総和から求めた値とを云う。なお、タンタル酸塩粒子の組成が、KNa(1-x)TaOにおいてx=0又は1である場合には、カリウム含有量又はナトリウム含有量は0であってもよい。 The total content in terms of K 2 O and Na 2 O is the potassium content determined by XRF analysis, the amount of K 2 O calculated using the calibration curve of K 2 O, and the amount of K 2 O calculated by XRF analysis. This is the value determined from the sum of the sodium content determined by this method and the Na 2 O amount converted using a calibration curve for Na 2 O conversion. Note that when the composition of the tantalate particles is K x Na (1-x) TaO 3 where x=0 or 1, the potassium content or sodium content may be 0.
 実施形態のタンタル酸塩粒子は更にモリブデンを含むことができる。 The tantalate particles of embodiments can further include molybdenum.
 実施形態のタンタル酸塩粒子は、後述する製造方法において使用されてよいモリブデン化合物に由来したモリブデンを含むことができる。また、実施形態のタンタル酸塩粒子は、後述する製造方法においてモリブデン化合物を使用することで、高効率な結晶成長を達成できる。 The tantalate particles of the embodiment can contain molybdenum derived from a molybdenum compound that may be used in the manufacturing method described below. Moreover, the tantalate particles of the embodiment can achieve highly efficient crystal growth by using a molybdenum compound in the manufacturing method described below.
 実施形態のタンタル酸塩粒子に含まれるモリブデンとしては、その存在状態や量は特に制限されず、モリブデン金属の他、酸化モリブデンや一部が還元されたモリブデン化合物等としてタンタル酸塩粒子に含まれてよい。モリブデンは、MoOとしてタンタル酸塩粒子に含まれると考えられるが、MoO以外にもMoOやMoO等としてタンタル酸塩粒子に含まれてもよい。 The molybdenum contained in the tantalate particles of the embodiment is not particularly limited in its existence state or amount, and may be contained in the tantalate particles as molybdenum metal, molybdenum oxide, partially reduced molybdenum compounds, etc. It's fine. Molybdenum is considered to be contained in the tantalate particles as MoO 3 , but it may also be contained in the tantalate particles as MoO 2 , MoO, etc. in addition to MoO 3 .
 モリブデンの含有形態は、特に制限されず、タンタル酸塩粒子の表面に付着する形態で含まれていても、タンタル酸塩粒子の結晶構造の一部に置換された形態で含まれていても、アモルファスの状態で含まれていてもよいし、これらの組み合わせであってもよい。 The form in which molybdenum is contained is not particularly limited, and even if it is contained in a form attached to the surface of the tantalate particles or in a form substituted with a part of the crystal structure of the tantalate particles, It may be contained in an amorphous state or a combination thereof.
 実施形態のタンタル酸塩粒子がモリブデンを含む場合のモリブデン含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するMoO換算での含有率が0.01質量%以上であってもよく、0.01~20質量%であってもよく、0.05~15質量%であってもよく、0.06~10質量%であってもよい。 When the tantalate particles of the embodiment contain molybdenum, the molybdenum content is determined by XRF analysis of the tantalate particles, and is calculated as MoO 3 based on 100% by mass of the tantalate particles. The ratio may be 0.01% by mass or more, 0.01 to 20% by mass, 0.05 to 15% by mass, or 0.06 to 10% by mass. Good too.
 MoO換算での含有率とは、XRF分析することによって求められるモリブデン含有量を、MoO換算の検量線を用いて換算したMoO量から求めた値を云う。 The content in terms of MoO 3 is a value obtained from the amount of MoO 3 obtained by converting the molybdenum content determined by XRF analysis using a calibration curve in terms of MoO 3 .
 上記のモリブデン含有量、タンタル含有量、並びにカリウム及びナトリウムの合計含有量の値は、自由に組み合わせることができる。 The above values of molybdenum content, tantalum content, and total potassium and sodium content can be freely combined.
 実施形態のタンタル酸塩粒子の一例として、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対する、モリブデンのMoO換算での含有率が0~20質量%であり、タンタルのTa換算での含有率が50~99質量%であり、カリウム及びナトリウムのKO換算及びNaO換算での含有率が0.5~40質量%であるタンタル酸塩粒子を例示できる。
 実施形態のタンタル酸塩粒子の別の一例として、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対する、モリブデンのMoO換算での含有率が0.01~20質量%であり、タンタルのTa換算での含有率が50~99質量%であり、カリウム及びナトリウムのKO換算及びNaO換算での含有率が0.5~40質量%であるタンタル酸塩粒子を例示できる。
 実施形態のタンタル酸塩粒子の別の一例として、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対する、モリブデンのMoO換算での含有率が0.05~15質量%であり、タンタルのTa換算での含有率が60~98質量%であり、カリウム及びナトリウムのKO換算及びNaO換算での含有率が1~30質量%であるタンタル酸塩粒子を例示できる。
 実施形態のタンタル酸塩粒子の別の一例として、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対する、モリブデンのMoO換算での含有率が0.06~10質量%であり、タンタルのTa換算での含有率が70~95質量%であり、カリウム及びナトリウムのKO換算及びNaO換算での含有率が3~25質量%であるタンタル酸塩粒子を例示できる。
As an example of the tantalate particles of the embodiment, the content rate of molybdenum in terms of MoO 3 is 0 to 100% by mass of the tantalate particles, as determined by XRF analysis of the tantalate particles. 20% by mass, the content of tantalum in terms of Ta 2 O 5 is 50 to 99% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 0.5 to 40% by mass % of tantalate particles.
As another example of the tantalate particles of the embodiment, the content of molybdenum in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles is determined by XRF analysis of the tantalate particles. The content of tantalum in terms of Ta 2 O 5 is 50 to 99% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 0.01 to 20% by mass. An example is tantalate particles having a content of 5 to 40% by mass.
As another example of the tantalate particles of the embodiment, the content of molybdenum in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles is determined by XRF analysis of the tantalate particles. The content of tantalum in terms of Ta 2 O 5 is 60 to 98% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 1 to 1. An example may be tantalate particles having a content of 30% by mass.
As another example of the tantalate particles of the embodiment, the content of molybdenum in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles is determined by XRF analysis of the tantalate particles. The content of tantalum in terms of Ta 2 O 5 is 70 to 95% by mass, and the content of potassium and sodium in terms of K 2 O and Na 2 O is 3 to 10% by mass. An example may be tantalate particles having a content of 25% by mass.
 実施形態のタンタル酸塩粒子は、タンタル酸塩粒子の集合体として提供可能である。上記の結晶子サイズ、粒度分布、比表面積、xの数値、モリブデン含有量、タンタル含有量、カリウム含有量、並びにナトリウム含有量の値は、前記集合体を試料として求められた値を採用することができる。 The tantalate particles of the embodiments can be provided as an aggregate of tantalate particles. For the above values of crystallite size, particle size distribution, specific surface area, value of x, molybdenum content, tantalum content, potassium content, and sodium content, adopt the values determined using the above aggregate as a sample. I can do it.
 実施形態のタンタル酸塩粒子は、例えば、後述の≪タンタル酸塩粒子の製造方法≫により製造することができる。
 なお、本発明のタンタル酸塩粒子は、下記実施形態のタンタル酸塩粒子の製造方法で製造されたものに限定されるものではない。
The tantalate particles of the embodiment can be manufactured, for example, by the <<method for manufacturing tantalate particles>> described below.
Note that the tantalate particles of the present invention are not limited to those produced by the method for producing tantalate particles of the embodiment below.
 実施形態のタンタル酸塩粒子は、圧電体、触媒、浄水材料などとして使用可能である。 The tantalate particles of the embodiments can be used as piezoelectric bodies, catalysts, water purification materials, and the like.
≪タンタル酸塩粒子の製造方法≫
 実施形態のタンタル酸塩粒子の製造方法は、カリウム化合物及び/又はナトリウム化合物の存在下で、タンタル化合物を焼成することを含む。
≪Method for producing tantalate particles≫
A method for producing tantalate particles of an embodiment includes firing a tantalum compound in the presence of a potassium compound and/or a sodium compound.
 本実施形態のタンタル酸塩粒子の製造方法によれば、上記の本発明の一実施形態にかかるタンタル酸塩粒子を製造可能である。 According to the method for producing tantalate particles of this embodiment, it is possible to produce tantalate particles according to one embodiment of the present invention described above.
 また、本実施形態のタンタル酸塩粒子の製造方法によれば、カリウム化合物及び/又はナトリウム化合物の存在下で、タンタル化合物を焼成することにより、製造されるタンタル酸塩粒子の結晶成長の程度に優れる。
 さらに、本実施形態のタンタル酸塩粒子の製造方法によれば、炭酸カリウム及び/又は炭酸ナトリウムの存在下で、タンタル化合物を焼成することにより、製造されるタンタル酸塩粒子の結晶成長の程度により優れる。
Further, according to the method for producing tantalate particles of the present embodiment, by firing the tantalum compound in the presence of a potassium compound and/or a sodium compound, the degree of crystal growth of the tantalate particles produced can be controlled. Excellent.
Furthermore, according to the method for producing tantalate particles of the present embodiment, by firing the tantalum compound in the presence of potassium carbonate and/or sodium carbonate, the degree of crystal growth of the tantalate particles produced depends on the degree of crystal growth. Excellent.
 タンタル酸塩粒子の好ましい製造方法は、タンタル化合物と、カリウム化合物及び/又はナトリウム化合物と、を混合して混合物とする工程(混合工程)と、前記混合物を焼成する工程(焼成工程)と、を含むことができる。 A preferred method for producing tantalate particles includes a step of mixing a tantalum compound and a potassium compound and/or a sodium compound to form a mixture (mixing step), and a step of firing the mixture (calcination step). can be included.
 実施形態のタンタル酸塩粒子の製造方法において、更にモリブデン化合物を用いることが好ましい。モリブデン化合物を使用することで、タンタル酸塩粒子の結晶成長を更に促進させ、高効率にタンタル酸塩粒子を製造可能である。 In the method for producing tantalate particles of the embodiment, it is preferable to further use a molybdenum compound. By using a molybdenum compound, crystal growth of tantalate particles can be further promoted and tantalate particles can be manufactured with high efficiency.
 かかるタンタル酸塩粒子の製造方法として、モリブデン化合物と、カリウム化合物及び/又はナトリウム化合物との存在下で、タンタル化合物を焼成することを含む方法を例示できる。 An example of a method for producing such tantalate particles is a method that includes firing a tantalum compound in the presence of a molybdenum compound and a potassium compound and/or a sodium compound.
 タンタル酸塩粒子の好ましい製造方法は、タンタル化合物と、モリブデン化合物と、カリウム化合物及び/又はナトリウム化合物と、を混合して混合物とする工程(混合工程)と、前記混合物を焼成する工程(焼成工程)と、を含むことができる。 A preferred method for producing tantalate particles includes a step of mixing a tantalum compound, a molybdenum compound, a potassium compound and/or a sodium compound to form a mixture (mixing step), and a step of firing the mixture (calcining step). ) and can include.
 ここで、少なくとも一部のモリブデン化合物及びカリウム化合物に代えて、モリブデン酸カリウムのような、モリブデンとカリウムとを含有する化合物を使用することもできる。同様に、少なくとも一部のモリブデン化合物及びナトリウム化合物に代えて、モリブデン酸ナトリウムのような、モリブデンとナトリウムとを含有する化合物を使用することもできる。
 そのため、モリブデンとカリウム及び/又はナトリウムとを含む化合物と、を混合することも、モリブデン化合物と、カリウム化合物及び/又はナトリウム化合物と、を混合することとみなす。
Here, a compound containing molybdenum and potassium, such as potassium molybdate, can also be used in place of at least some of the molybdenum compounds and potassium compounds. Similarly, in place of at least some of the molybdenum and sodium compounds, it is also possible to use compounds containing molybdenum and sodium, such as sodium molybdate.
Therefore, mixing molybdenum and a compound containing potassium and/or sodium is also considered to be mixing a molybdenum compound and a potassium compound and/or a sodium compound.
[混合工程]
 混合工程は、タンタル化合物と、所望によりモリブデン化合物と、カリウム化合物及び/又はナトリウム化合物と、を混合して混合物とする工程である。
[Mixing process]
The mixing step is a step of mixing a tantalum compound, optionally a molybdenum compound, and a potassium compound and/or a sodium compound to form a mixture.
 製造されるタンタル酸塩粒子がタンタル酸カリウムナトリウムを含む場合、タンタル化合物と、所望によりモリブデン化合物と、カリウム化合物と、ナトリウム化合物とを混合して混合物とする工程(混合工程)を含むことができる。 When the tantalate particles to be produced include potassium sodium tantalate, it may include a step (mixing step) of mixing the tantalum compound, optionally a molybdenum compound, a potassium compound, and a sodium compound to form a mixture. .
 製造されるタンタル酸塩粒子がタンタル酸カリウムを含む場合、タンタル化合物と、所望によりモリブデン化合物と、カリウム化合物とを混合して混合物とする工程(混合工程)を含むことができる。 When the tantalate particles to be produced contain potassium tantalate, it may include a step (mixing step) of mixing the tantalum compound, optionally a molybdenum compound, and a potassium compound to form a mixture.
 製造されるタンタル酸塩粒子がタンタル酸ナトリウムを含む場合、タンタル化合物と、所望によりモリブデン化合物と、ナトリウム化合物とを混合して混合物とする工程(混合工程)を含むことができる。 When the tantalate particles to be produced contain sodium tantalate, it may include a step (mixing step) of mixing the tantalum compound, optionally a molybdenum compound, and a sodium compound to form a mixture.
 以下、混合物の内容について説明する。 The contents of the mixture will be explained below.
(タンタル化合物)
 前記タンタル化合物としては、原料化合物とともに焼成してタンタル酸塩となり得る化合物であれば限定されず、酸化タンタルや、水酸化タンタル、硫化タンタル、窒化タンタル、フッ化タンタル、塩化タンタル、臭化タンタル、ヨウ化タンタル等のハロゲン化タンタル、タンタルアルコキシド等を例示でき、水酸化タンタル及び酸化タンタルが好ましく、酸化タンタルがより好ましい。
 酸化タンタルとしては、五酸化タンタル(Ta)、二酸化タンタル(TaO)、一酸化タンタル(TaO)が挙げられる。また上記の酸化数の酸化タンタル以外にも、価数の異なる任意のタンタル酸化物を用いることができる。
 これら前駆体としてのタンタル化合物の形状、粒子径、比表面積等の物理形態については、特に限定されるものではない。
(Tantalum compound)
The tantalum compound is not limited as long as it can be fired with a raw material compound to form a tantalate, and includes tantalum oxide, tantalum hydroxide, tantalum sulfide, tantalum nitride, tantalum fluoride, tantalum chloride, tantalum bromide, Examples include tantalum halides such as tantalum iodide, tantalum alkoxides, tantalum hydroxide and tantalum oxide are preferred, and tantalum oxide is more preferred.
Examples of tantalum oxide include tantalum pentoxide (Ta 2 O 5 ), tantalum dioxide (TaO 2 ), and tantalum monoxide (TaO). In addition to tantalum oxide having the above-mentioned oxidation number, any tantalum oxide having a different valence can be used.
There are no particular limitations on the physical form, such as the shape, particle size, specific surface area, etc. of the tantalum compound as a precursor.
 焼成後の形状は、原料のタンタル化合物の形状が殆ど反映されていないため、例えば、球状、無定形、アスペクトのある構造体(ワイヤー、ファイバー、リボン、チューブなど)、シートなどのいずれであっても好適に用いることができる。 The shape after firing hardly reflects the shape of the raw tantalum compound, so it may be spherical, amorphous, a structure with an aspect (wire, fiber, ribbon, tube, etc.), or a sheet. can also be suitably used.
(モリブデン化合物)
 前記モリブデン化合物としては、酸化モリブデン、モリブデン酸、硫化モリブデン、モリブデン酸塩化合物等が挙げられ、酸化モリブデン又はモリブデン酸塩化合物が好ましい。
(Molybdenum compound)
Examples of the molybdenum compound include molybdenum oxide, molybdic acid, molybdenum sulfide, and molybdate compounds, with molybdenum oxide or molybdate compounds being preferred.
 前記酸化モリブデンとしては、二酸化モリブデン(MoO)、三酸化モリブデン(MoO)等が挙げられ、三酸化モリブデンが好ましい。 Examples of the molybdenum oxide include molybdenum dioxide (MoO 2 ), molybdenum trioxide (MoO 3 ), and molybdenum trioxide is preferred.
 前記モリブデン酸塩化合物としては、モリブデンオキソアニオンのアルカリ金属塩が好ましく、モリブデン酸リチウム、モリブデン酸カリウム又はモリブデン酸ナトリウムであることがより好ましく、モリブデン酸カリウム又はモリブデン酸ナトリウムであることがさらに好ましい。 The molybdate compound is preferably an alkali metal salt of molybdenum oxoanion, more preferably lithium molybdate, potassium molybdate, or sodium molybdate, and even more preferably potassium molybdate or sodium molybdate.
 本実施形態のタンタル酸塩粒子の製造方法において、前記モリブデン化合物は、水和物であってもよい。 In the method for producing tantalate particles of the present embodiment, the molybdenum compound may be a hydrate.
 モリブデン化合物は、三酸化モリブデン、モリブデン酸リチウム、モリブデン酸カリウム、及びモリブデン酸ナトリウムからなる群から選ばれる少なくとも一種の化合物であること好ましく、三酸化モリブデン、モリブデン酸カリウム及びモリブデン酸ナトリウムからなる群から選ばれる少なくとも一種の化合物であることがより好ましい。 The molybdenum compound is preferably at least one compound selected from the group consisting of molybdenum trioxide, lithium molybdate, potassium molybdate, and sodium molybdate, and preferably from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate. More preferably, it is at least one selected compound.
 フラックス剤として好適な、モリブデンとカリウムとを含有する化合物は、例えば、より安価かつ入手が容易な、モリブデン化合物及びカリウム化合物を原料として焼成の過程で生じさせることができる。ここでは、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、モリブデンとカリウムとを含有する化合物をフラックス剤として用いる場合、の両者を合わせて、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、即ち、モリブデン化合物及びカリウム化合物の存在下とみなす。 A compound containing molybdenum and potassium that is suitable as a fluxing agent can be produced, for example, in the firing process using cheaper and more easily available molybdenum compounds and potassium compounds as raw materials. Here, when using a molybdenum compound and a potassium compound as a fluxing agent, when using a compound containing molybdenum and potassium as a fluxing agent, when using a combination of both, when using a molybdenum compound and a potassium compound as a fluxing agent, that is, Considered to be in the presence of molybdenum compounds and potassium compounds.
 フラックス剤として好適な、モリブデンとナトリウムとを含有する化合物は、例えば、より安価かつ入手が容易な、モリブデン化合物及びナトリウム化合物を原料として焼成の過程で生じさせることができる。ここでは、モリブデン化合物及びナトリウム化合物をフラックス剤として用いる場合、モリブデンとナトリウムとを含有する化合物をフラックス剤として用いる場合、の両者を合わせて、モリブデン化合物及びナトリウム化合物をフラックス剤として用いる場合、即ち、モリブデン化合物及びナトリウム化合物の存在下とみなす。 A compound containing molybdenum and sodium suitable as a fluxing agent can be produced, for example, in the firing process using cheaper and more easily available molybdenum compounds and sodium compounds as raw materials. Here, when using a molybdenum compound and a sodium compound as a fluxing agent, when using a compound containing molybdenum and sodium as a fluxing agent, when using a combination of both, when using a molybdenum compound and a sodium compound as a fluxing agent, that is, Considered to be in the presence of molybdenum compounds and sodium compounds.
 なお、上述のモリブデン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 In addition, the above-mentioned molybdenum compounds may be used alone or in combination of two or more types.
 また、モリブデン酸カリウム(KMo3n+1、n=1~3)は、カリウムを含むため、後述するカリウム化合物としての機能も有しうる。 Furthermore, since potassium molybdate (K 2 Mon O 3n+1 , n=1 to 3) contains potassium, it can also function as a potassium compound, which will be described later.
 また、モリブデン酸ナトリウム(NaMo3n+1、n=1~3)は、ナトリウムを含むため、後述するナトリウム化合物としての機能も有しうる。 Furthermore, since sodium molybdate (Na 2 Mon O 3n+1 , n=1 to 3) contains sodium, it can also function as a sodium compound as described below.
(カリウム化合物)
 カリウム化合物としては、特に制限されないが、塩化カリウム、亜塩素酸カリウム、塩素酸カリウム、硫酸カリウム、硫酸水素カリウム、亜硫酸カリウム、亜硫酸水素カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、酢酸カリウム、酸化カリウム、臭化カリウム、臭素酸カリウム、水酸化カリウム、珪酸カリウム、燐酸カリウム、燐酸水素カリウム、硫化カリウム、硫化水素カリウム、モリブデン酸カリウム、タングステン酸カリウム等が挙げられる。この際、前記カリウム化合物は、モリブデン化合物の場合と同様に、異性体を含む。これらのうち、炭酸カリウム、炭酸水素カリウム、酸化カリウム、水酸化カリウム、塩化カリウム、硫酸カリウム、モリブデン酸カリウムを用いることが好ましく、炭酸カリウム、炭酸水素カリウム、塩化カリウム、硫酸カリウム、モリブデン酸カリウムを用いることがより好ましく、炭酸カリウム、及び/又はモリブデン酸カリウムを用いることがより好ましい。
(potassium compound)
Potassium compounds include, but are not limited to, potassium chloride, potassium chlorite, potassium chlorate, potassium sulfate, potassium hydrogen sulfate, potassium sulfite, potassium hydrogen sulfite, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium acetate, and potassium oxide. , potassium bromide, potassium bromate, potassium hydroxide, potassium silicate, potassium phosphate, potassium hydrogen phosphate, potassium sulfide, potassium hydrogen sulfide, potassium molybdate, potassium tungstate, and the like. In this case, the potassium compound includes isomers as in the case of the molybdenum compound. Among these, it is preferable to use potassium carbonate, potassium hydrogen carbonate, potassium oxide, potassium hydroxide, potassium chloride, potassium sulfate, and potassium molybdate. It is more preferable to use potassium carbonate and/or potassium molybdate.
 なお、上述のカリウム化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 Note that the above-mentioned potassium compounds may be used alone or in combination of two or more.
 また、上記と同様に、モリブデン酸カリウムは、モリブデンを含むため、上述のモリブデン化合物としての機能も有しうる。 Furthermore, similarly to the above, since potassium molybdate contains molybdenum, it can also function as the above-mentioned molybdenum compound.
(ナトリウム化合物)
 ナトリウム化合物としては、特に制限されないが、炭酸ナトリウム、モリブデン酸ナトリウム、酸化ナトリウム、硫酸ナトリウム、水酸化ナトリウム、硝酸ナトリウム、塩化ナトリウム、金属ナトリウム等が挙げられる。これらのうち、工業的に容易入手と取扱いし易さの観点から炭酸ナトリウム、モリブデン酸ナトリウム、酸化ナトリウム、硫酸ナトリウムを用いることが好ましく、炭酸ナトリウム、及び/又はモリブデン酸ナトリウムを用いることがより好ましい。
(sodium compound)
Examples of the sodium compound include, but are not limited to, sodium carbonate, sodium molybdate, sodium oxide, sodium sulfate, sodium hydroxide, sodium nitrate, sodium chloride, sodium metal, and the like. Among these, it is preferable to use sodium carbonate, sodium molybdate, sodium oxide, and sodium sulfate from the viewpoint of easy industrial availability and handling, and it is more preferable to use sodium carbonate and/or sodium molybdate. .
 なお、上述のナトリウム化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 Note that the above-mentioned sodium compounds may be used alone or in combination of two or more.
 また、上記と同様に、モリブデン酸ナトリウムは、モリブデンを含むため、上述のモリブデン化合物としての機能も有しうる。 Furthermore, similarly to the above, since sodium molybdate contains molybdenum, it can also function as the above-mentioned molybdenum compound.
 このように、分類上モリブデン化合物としての重複する表記となる場合があるが、一例として、前記モリブデン化合物が、三酸化モリブデン、モリブデン酸カリウム及びモリブデン酸ナトリウムからなる群から選ばれる少なくとも一種の化合物であり、
 前記ナトリウム化合物が炭酸ナトリウム又はモリブデン酸ナトリウムであり、前記カリウム化合物が炭酸カリウム又はモリブデン酸カリウムであることが好ましい。
In this way, the molybdenum compound may be described twice as a molybdenum compound in terms of classification, but as an example, the molybdenum compound is at least one compound selected from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate. can be,
Preferably, the sodium compound is sodium carbonate or sodium molybdate, and the potassium compound is potassium carbonate or potassium molybdate.
 好ましくは、モリブデン化合物と、カリウム化合物及びナトリウム化合物との存在下で、タンタル化合物を焼成することを含む、タンタル酸カリウムナトリウム粒子の製造方法を例示できる。 Preferably, a method for producing potassium sodium tantalate particles can be exemplified, which includes firing a tantalum compound in the presence of a molybdenum compound, a potassium compound, and a sodium compound.
 好ましくは、モリブデン化合物と、ナトリウム化合物との存在下で、タンタル化合物を焼成することを含む、タンタル酸ナトリウム粒子の製造方法を例示できる。 An example of a method for producing sodium tantalate particles preferably includes firing a tantalum compound in the presence of a molybdenum compound and a sodium compound.
 好ましくは、モリブデン化合物と、カリウム化合物との存在下で、タンタル化合物を焼成することを含む、タンタル酸カリウム粒子の製造方法を例示できる。 An example of a method for producing potassium tantalate particles preferably includes firing a tantalum compound in the presence of a molybdenum compound and a potassium compound.
 本実施形態のタンタル酸塩粒子の製造方法において、カリウム化合物、ナトリウム化合物及びモリブデン化合物は、フラックス剤として用いられる。
 フラックス剤としてカリウム化合物および/またはナトリウム化合物を用いた場合は、かかる焼成により、一部のカリウム化合物及び/又はナトリウム化合物から酸化物(NaOやKO)が形成され、これがフラックスとして機能し、タンタル酸塩の結晶成長が進行すると推測される。
In the method for producing tantalate particles of this embodiment, a potassium compound, a sodium compound, and a molybdenum compound are used as a fluxing agent.
When a potassium compound and/or a sodium compound is used as a fluxing agent, oxides (Na 2 O and K 2 O) are formed from a part of the potassium compound and/or sodium compound by such baking, which functions as a flux. However, it is assumed that tantalate crystal growth progresses.
 さらに、炭酸カリウム化及び/又は炭酸ナトリウムの存在下でタンタル化合物を焼成させると、一部の炭酸カリウム及び/又は炭酸ナトリウムから酸化物(NaOやKO)及び/又はCOが形成され、これらの酸化物及び/又はCOがフラックスとして機能し、タンタル酸塩粒子の結晶成長が進行すると推測される。
 かかる焼成で反応により、フラックスとして機能する酸化物(NaOやKO)及び/又はCOの形成とともにタンタル酸塩粒子(KNa(1-x)TaO)が形成されるものと考えられる。酸化物(NaOやKO)及び/又はCOがフラックス機能することで、結晶子サイズの大きいタンタル酸塩粒子(KNa(1-x)TaO)の形成が促進されていると考えられる。
Furthermore, when tantalum compounds are calcined in the presence of potassium carbonate and/or sodium carbonate, oxides (Na 2 O and K 2 O) and/or CO 2 are formed from some potassium carbonate and/or sodium carbonate. It is presumed that these oxides and/or CO 2 function as a flux to promote crystal growth of tantalate particles.
Through reaction during such calcination, tantalate particles (K x Na (1-x) TaO 3 ) are formed along with the formation of oxides (Na 2 O and K 2 O) and/or CO 2 that function as fluxes. it is conceivable that. The flux function of oxides (Na 2 O and K 2 O) and/or CO 2 promotes the formation of tantalate particles (K x Na (1-x) TaO 3 ) with large crystallite sizes. It is thought that there are.
 フラックス剤としてモリブデン化合物を用いた場合には、かかる焼成により、タンタル化合物と、モリブデン化合物と、ナトリウム化合物又はカリウム化合物と(モリブデンとナトリウムとを含有する化合物と、或いはモリブデンとカリウムとを含有する化合物と、の場合も包含される)、が高温で反応し、フラックスとして機能するモリブデン酸塩化合物(例えば、KaMoやNaMo、KaNaa’Mo)の形成とともにタンタル酸塩粒子(KNa(1-x)TaO)が形成されるものと考えられる。タンタル酸塩粒子が形成(結晶成長)される際に、一部のモリブデン化合物がタンタル酸塩粒子内に取り込まれるものと考えられる。タンタル酸塩粒子に含まれるモリブデン化合物の生成機構について、より詳しくは、焼成時に系の中にMo-O-Taの形成および分解、またはフラックス剤であるモリブデン酸塩化合物を介して、タンタル酸塩粒子の結晶成長の過程でモリブデン化合物、例えばモリブデン酸化物が形成されるものと考えられる。さらに、上記のメカニズムを考慮し、モリブデン酸化物がMo-O-Taの結合を介して、タンタル酸塩粒子の表面に存在することも考えられる。タンタル酸塩粒子にモリブデン化合物(例えばモリブデン酸化物)が含まれることで、タンタル酸塩粒子の物性向上につながり、例えばタンタル酸塩粒子の触媒性能を向上できる。 When a molybdenum compound is used as a fluxing agent, by such baking, a tantalum compound, a molybdenum compound, a sodium compound or a potassium compound (a compound containing molybdenum and sodium, or a compound containing molybdenum and potassium) ), which react at high temperatures and function as fluxes (e.g., K a Mo b O c , Na a Mo b O c , K a Na a' Mo b O c ) is thought to form tantalate particles (K x Na (1-x) TaO 3 ). It is believed that some molybdenum compounds are incorporated into the tantalate particles when they are formed (crystal growth). More specifically, regarding the formation mechanism of molybdenum compounds contained in tantalate particles, we will explain the formation and decomposition of Mo-O-Ta in the system during calcination, or the generation mechanism of molybdenum compounds contained in tantalate particles. It is believed that molybdenum compounds, such as molybdenum oxides, are formed during the crystal growth of the particles. Furthermore, considering the above mechanism, it is also possible that molybdenum oxide exists on the surface of the tantalate particles through Mo--O--Ta bonds. Inclusion of a molybdenum compound (for example, molybdenum oxide) in the tantalate particles leads to improvement in the physical properties of the tantalate particles, and for example, the catalytic performance of the tantalate particles can be improved.
 上記フラックスとしてのモリブデン酸塩化合物は、焼成温度域でも気化することなく、焼成後に洗浄で、容易に回収できるため、モリブデン化合物が焼成炉外へ放出される量も低減され、生産コストとしても大幅に低減することができる。 The molybdate compound used as the above-mentioned flux does not vaporize even in the firing temperature range and can be easily recovered by cleaning after firing, which reduces the amount of molybdenum compound released outside the firing furnace and significantly reduces production costs. can be reduced to
 本実施形態のタンタル酸塩粒子の製造方法において、フラックス剤として機能すると考えられる、原料のモリブデン化合物、カリウム化合物及びナトリウム化合物(以下、フラックス剤ともいう。)の総使用量、タンタル化合物の使用量は、特に限定されるものではないが、好ましくは、原料の前記タンタル化合物の使用量100質量部に対して、10質量部以上のフラックス剤を混合して混合物とし、前記混合物を焼成することができる。より好ましくは、前記タンタル化合物の使用量100質量部に対して、20~5000質量部のフラックス剤を混合して混合物とし、前記混合物を焼成することができる。さらに好ましくは、前記タンタル化合物の使用量100質量部に対して、100~1000質量部のフラックス剤を混合して混合物とし、前記混合物を焼成することができる。 In the method for producing tantalate particles of the present embodiment, the total amount of the raw materials molybdenum compound, potassium compound, and sodium compound (hereinafter also referred to as fluxing agent) and the amount of tantalum compound used, which are considered to function as fluxing agents. Although not particularly limited, preferably, 10 parts by mass or more of a fluxing agent is mixed with 100 parts by mass of the tantalum compound used as a raw material to form a mixture, and the mixture is fired. can. More preferably, 20 to 5,000 parts by mass of a fluxing agent are mixed with 100 parts by mass of the tantalum compound used to form a mixture, and the mixture is fired. More preferably, 100 to 1000 parts by mass of a fluxing agent is mixed with 100 parts by mass of the tantalum compound used to form a mixture, and the mixture is fired.
 効率的な結晶成長の観点からは、原料の前記タンタル化合物に対するフラックス剤の使用量が上記下限値以上であることが好ましい。原料の前記タンタル化合物に対するフラックス剤の使用量を増やすことで、製造されるタンタル酸塩粒子の結晶子サイズの制御が容易であり、結晶子サイズが向上されたタンタル酸塩粒子を容易に得られる。一方、使用するフラックス剤の削減と製造効率向上の観点からは、上記上限値以下が好ましい。フラックス剤量が多い場合は大型の単結晶が生産されることで生産性が低下するおそれがあるため、製造されるタンタル酸塩粒子の粒径が所望の大きさとなるように適宜フラックス量を選定することができる。 From the viewpoint of efficient crystal growth, it is preferable that the amount of fluxing agent used with respect to the tantalum compound as a raw material is equal to or more than the above lower limit. By increasing the amount of fluxing agent used with respect to the tantalum compound as a raw material, the crystallite size of the tantalate particles to be produced can be easily controlled, and tantalate particles with improved crystallite size can be easily obtained. . On the other hand, from the viewpoint of reducing the amount of fluxing agent used and improving production efficiency, the above upper limit or less is preferable. If the amount of flux agent is large, large single crystals may be produced, which may reduce productivity. Therefore, select the amount of flux appropriately so that the particle size of the tantalate particles produced is the desired size. can do.
 同様の観点から、実施形態のタンタル酸塩粒子の製造方法において、前記混合物中の、カリウム原子及びナトリウム原子と、タンタル原子とのモル比(K+Na)/Taが1.1以上であることが好ましく、1.5~10であることがより好ましく、2.0~5であることがさらに好ましい。
 上記モル比(K+Na)/Taが上記範囲内であると、結晶子サイズの向上されたタンタル酸塩粒子が容易に得られる。
 製造される、ペロブスカイト構造を有するタンタル酸塩粒子(KNa(1-x)TaO)における(K+Na)/Taの比は、通常(K+Na)/Ta=1付近(ペロブスカイト構造を有する範囲内の値)となるが、前記混合物中の余剰の(K+Na)は、所謂セルフフラックスとして、タンタル酸塩の良好な結晶成長に寄与するものと考えられる。
From the same viewpoint, in the method for producing tantalate particles of the embodiment, it is preferable that the molar ratio (K+Na)/Ta of potassium atoms and sodium atoms to tantalum atoms in the mixture is 1.1 or more. , more preferably from 1.5 to 10, and even more preferably from 2.0 to 5.
When the molar ratio (K+Na)/Ta is within the above range, tantalate particles with improved crystallite size can be easily obtained.
The ratio of (K+Na)/Ta in the manufactured tantalate particles (K x Na (1-x) TaO 3 ) having a perovskite structure is usually around (K+Na)/Ta=1 (within the range having a perovskite structure). However, the excess (K+Na) in the mixture is considered to contribute to good crystal growth of tantalate as so-called self-flux.
 実施形態のタンタル酸塩粒子の製造方法において、前記混合物中のカリウム原子及び又はナトリウム原子とモリブデン原子とのモル比が、(K+Na)/Mo=0.8~4であることが好ましく、0.9~4であることがより好ましい。 In the method for producing tantalate particles of the embodiment, it is preferable that the molar ratio of potassium atoms and/or sodium atoms to molybdenum atoms in the mixture is (K+Na)/Mo=0.8 to 4, and 0. More preferably, it is between 9 and 4.
 実施形態のタンタル酸塩粒子の製造方法では、原料のK/Naの配合比率に応じて、製造されるタンタル酸塩粒子のK/Naの比率を変えることができる。前記混合物中のカリウム原子及び又はナトリウム原子とモリブデン原子とのモル比は、製造されるタンタル酸塩粒子においてKNa(1-x)TaOの、所望のX及び1-Xの値に応じて適宜設定してよい。前記Xが0<X<1である場合の、前記混合物中のカリウム原子とナトリウム原子とのモル比は、一例として、K/Na=0.01~10であってよく、0.1~5であってよい。また、K/Naの値が大きいほど、製造されるタンタル酸塩粒子の粒子サイズが大きい傾向にある。 In the method for producing tantalate particles of the embodiment, the K/Na ratio of the tantalate particles to be produced can be changed depending on the K/Na blending ratio of the raw materials. The molar ratio of potassium and/or sodium atoms to molybdenum atoms in the mixture depends on the desired values of X and 1-X of K x Na (1-x) TaO 3 in the tantalate particles produced. You may set it as appropriate. When the X is 0<X<1, the molar ratio of potassium atoms to sodium atoms in the mixture may be, for example, K/Na=0.01 to 10, and 0.1 to 5. It may be. Moreover, the larger the value of K/Na, the larger the particle size of the tantalate particles produced tends to be.
 上記の範囲で各種化合物を使用することで、得られるタンタル酸塩粒子が含むモリブデン化合物の量がより適当なものとなるとともに、結晶形状の制御されたタンタル酸塩粒子が容易に得られる。 By using various compounds within the above range, the amount of molybdenum compound contained in the obtained tantalate particles becomes more appropriate, and tantalate particles with a controlled crystal shape can be easily obtained.
[焼成工程]
 焼成工程は、前記混合物を焼成する工程である。実施形態に係るタンタル酸塩粒子は、前記混合物を焼成することで得られる。上記の通り、この製造方法はフラックス法と呼ばれる。
[Firing process]
The firing step is a step of firing the mixture. The tantalate particles according to the embodiment are obtained by firing the mixture. As mentioned above, this manufacturing method is called the flux method.
 フラックス法は、溶液法に分類される。フラックス法とは、より詳細には、結晶-フラックス2成分系状態図が共晶型を示すことを利用した結晶成長の方法である。フラックス法のメカニズムとしては、以下の通りであると推測される。すなわち、溶質及びフラックスの混合物を加熱していくと、溶質及びフラックスは液相となる。この際、フラックスは融剤であるため、換言すれば、溶質-フラックス2成分系状態図が共晶型を示すため、溶質は、その融点よりも低い温度で溶融し、液相を構成することとなる。この状態で、フラックスを蒸発させると、フラックスの濃度は低下し、換言すれば、フラックスによる前記溶質の融点低下効果が低減し、フラックスの蒸発が駆動力となって溶質の結晶成長が起こる(フラックス蒸発法)。なお、溶質及びフラックスは液相を冷却することによっても溶質の結晶成長を起こすことができる(徐冷法)。 The flux method is classified as a solution method. More specifically, the flux method is a crystal growth method that utilizes the fact that a crystal-flux binary phase diagram shows a eutectic type. The mechanism of the flux method is presumed to be as follows. That is, when a mixture of solute and flux is heated, the solute and flux become a liquid phase. At this time, since the flux is a flux, in other words, the solute-flux binary phase diagram shows a eutectic type, so the solute melts at a temperature lower than its melting point and forms a liquid phase. becomes. In this state, when the flux is evaporated, the concentration of the flux decreases, in other words, the effect of the flux on lowering the melting point of the solute is reduced, and the evaporation of the flux becomes a driving force to cause crystal growth of the solute (flux evaporation method). Note that crystal growth of the solute and flux can also be caused by cooling the liquid phase (slow cooling method).
 フラックス法は、融点よりもはるかに低い温度で結晶成長をさせることができる、結晶構造を精密に制御できる、自形をもつ結晶体を形成できる等のメリットを有する。 The flux method has advantages such as being able to grow crystals at a temperature much lower than the melting point, being able to precisely control the crystal structure, and being able to form euhedral crystals.
 フラックス法によるタンタル酸塩粒子の製造において、カリウム化合物及び/又はナトリウム化合物の存在下でタンタル化合物を焼成させると、一部のカリウム化合物及び/又はナトリウム化合物から酸化物(NaOやKO)が形成され、これがフラックスとして機能し、タンタル酸塩粒子の結晶成長が進行すると推測される。
 さらに、炭酸カリウム化及び/又は炭酸ナトリウムの存在下でタンタル化合物を焼成させると、一部の炭酸カリウム及び/又は炭酸ナトリウムから酸化物(NaOやKO)及び/又はCOが形成され、これらの酸化物及び/又はCOがフラックスとして機能し、タンタル酸塩粒子の結晶成長が進行すると推測される。
In the production of tantalate particles by the flux method, when tantalum compounds are calcined in the presence of potassium compounds and/or sodium compounds, oxides (Na 2 O and K 2 O ) is formed, which functions as a flux and is presumed to promote the crystal growth of tantalate particles.
Furthermore, when tantalum compounds are calcined in the presence of potassium carbonate and/or sodium carbonate, oxides (Na 2 O and K 2 O) and/or CO 2 are formed from some potassium carbonate and/or sodium carbonate. It is presumed that these oxides and/or CO 2 function as a flux to promote crystal growth of tantalate particles.
 フラックスとしてモリブデン化合物を用いた場合のタンタル酸塩粒子の製造では、そのメカニズムは必ずしも明らかではないが、例えば、以下のようなメカニズムによるものと推測される。すなわち、モリブデン化合物の存在下でタンタル化合物を焼成すると、一部のタンタル化合物からモリブデン酸タンタルが形成され、モリブデン化合物からはモリブデン酸塩(例えば、KaMoやNaMo、KaNaa’Mo)が形成される。この際、上述の説明からも理解されるように、モリブデン酸塩のフラックス機能により、タンタル酸塩の融点よりも低温でタンタル酸塩結晶を成長させることができる。また、例えば、一部形成されたモリブデン酸タンタルが分解し、タンタル酸塩粒子の結晶成長を促進する。すなわち、モリブデン化合物(モリブデン酸塩)がフラックスとして機能し、モリブデン酸タンタルという中間体を経由してタンタル酸塩粒子が製造されるのである。 Although the mechanism for producing tantalate particles using a molybdenum compound as a flux is not necessarily clear, it is assumed that the following mechanism is involved, for example. That is, when a tantalum compound is calcined in the presence of a molybdenum compound, tantalum molybdate is formed from a part of the tantalum compound, and molybdate salts (for example, K a Mo b O c and Na a Mo b O c ) are formed from the molybdenum compound. , K a Na a' Mo b O c ) are formed. At this time, as understood from the above explanation, tantalate crystals can be grown at a temperature lower than the melting point of tantalate due to the flux function of molybdate. Also, for example, partially formed tantalum molybdate decomposes and promotes crystal growth of tantalate particles. That is, a molybdenum compound (molybdate) functions as a flux, and tantalate particles are produced via an intermediate called tantalum molybdate.
 焼成の方法は、特に限定はなく、公知慣用の方法で行うことができる。モリブデン化合物を用いた場合では、焼成温度が500℃を超えると、一部のタンタル化合物がモリブデン化合物と反応しモリブデン酸タンタル等が形成され、モリブデン化合物からはモリブデン酸塩(KaMoやNaMo、KaNaa’Mo)が形成されると考えられる。さらに、焼成温度が800℃以上になると、一部形成されたモリブデン酸タンタル等が分解し、モリブデン酸塩のフラックス機能によりタンタル酸塩粒子が形成されると考えられる。また、タンタル酸塩粒子では、モリブデン酸タンタルの分解や粒子結晶成長の過程で、モリブデン化合物がタンタル酸塩粒子内に取り込まれるものと考えられる。 The firing method is not particularly limited and can be performed by any known and commonly used method. When a molybdenum compound is used, when the firing temperature exceeds 500°C, some tantalum compounds react with the molybdenum compound to form tantalum molybdate, etc., and the molybdenum compound produces molybdate (K a Mo b O c , Na a Mo b O c , K a Na a' Mo b O c ) are thought to be formed. Furthermore, when the firing temperature reaches 800° C. or higher, it is thought that the partially formed tantalum molybdate and the like decomposes, and tantalate particles are formed due to the flux function of the molybdate. Furthermore, in tantalate particles, molybdenum compounds are considered to be incorporated into the tantalate particles during the decomposition of tantalum molybdate and the growth of particle crystals.
 また、焼成する際に使用され得る、タンタル化合物、モリブデン化合物、ナトリウム化合物、カリウム化合物等の状態は特に限定されず、モリブデン化合物、タンタル化合物、ナトリウム化合物、カリウム化合物等の原料化合物が互いに作用できる同一の空間に存在すれば良い。具体的には、原料化合物の粉体を混ぜ合わせる簡便な混合、粉砕機等を用いた機械的な混合、乳鉢等を用いた混合であっても良く、乾式状態、湿式状態での混合であっても良い。 In addition, the state of the tantalum compound, molybdenum compound, sodium compound, potassium compound, etc. that can be used during firing is not particularly limited, and the raw material compounds such as the molybdenum compound, tantalum compound, sodium compound, potassium compound, etc. can interact with each other. It suffices if it exists in the space of Specifically, it may be simple mixing of powdered raw material compounds, mechanical mixing using a grinder or the like, mixing using a mortar or the like, and mixing in a dry state or a wet state. It's okay.
 焼成温度の条件に特に限定は無く、目的とするタンタル酸塩粒子の粒子サイズ、タンタル酸塩粒子におけるモリブデン化合物の形成、タンタル酸塩粒子の形状等を考慮して、適宜、決定される。焼成温度は、モリブデン酸塩がフラックスとして機能できる温度に近い700℃以上であってもよく、750℃以上であってもよく、800℃以上であってもよく、850℃以上であってもよく、900℃以上であってもよい。
 結晶子サイズが向上されたタンタル酸塩粒子を効率よく製造するとの観点からは、上記焼成温度は、800℃以上が好ましく、900℃以上がより好ましく、1000℃以上がさらに好ましい。
The firing temperature conditions are not particularly limited, and are appropriately determined in consideration of the target particle size of the tantalate particles, the formation of molybdenum compounds in the tantalate particles, the shape of the tantalate particles, and the like. The firing temperature may be 700°C or higher, which is close to the temperature at which the molybdate can function as a flux, may be 750°C or higher, 800°C or higher, or 850°C or higher. , 900°C or higher.
From the viewpoint of efficiently producing tantalate particles with improved crystallite size, the firing temperature is preferably 800°C or higher, more preferably 900°C or higher, and even more preferably 1000°C or higher.
 一般的に、焼成後に得られるタンタル酸塩の形状を制御しようとすると、酸化タンタルの融点に近い1500℃超の高温焼成を行う必要があるが、焼成炉へ負担や燃料コストの点から、産業上利用する為には大きな課題がある。 Generally, in order to control the shape of the tantalate obtained after firing, it is necessary to perform high-temperature firing at over 1500°C, which is close to the melting point of tantalum oxide. There are major challenges in making full use of it.
 本発明の一実施形態によれば、例えば、タンタル化合物を焼成する最高焼成温度が1500℃以下の条件であっても、タンタル酸塩粒子の形成を低コストで効率的に行うことができる。
 また、実施形態のタンタル酸塩粒子の製造方法によれば、焼成温度が1300℃以下という酸化タンタルの融点よりもはるかに低い温度であっても、前駆体の形状にかかわりなく、自形をもつタンタル酸塩粒子を形成することができる。また、タンタル酸塩粒子を効率よく製造するとの観点からは、上記焼成温度は、1200℃以下が好ましく、1100℃以下がより好ましい。
According to one embodiment of the present invention, for example, tantalate particles can be formed efficiently at low cost even under conditions where the maximum firing temperature for firing a tantalum compound is 1500° C. or lower.
Further, according to the method for producing tantalate particles of the embodiment, even when the firing temperature is 1300° C. or lower, which is much lower than the melting point of tantalum oxide, the precursor has an automorphic shape regardless of the shape of the precursor. Tantalate particles can be formed. Moreover, from the viewpoint of efficiently producing tantalate particles, the above-mentioned firing temperature is preferably 1200°C or lower, more preferably 1100°C or lower.
 焼成工程における、タンタル化合物を焼成する焼成温度の数値範囲は、一例として、700~1300℃であってもよく、750~1300℃であってもよく、800~1200℃であってもよく、850~1200℃であってもよく、900~1100℃であってもよく、1000~1100℃であってもよい。 In the firing process, the numerical range of the firing temperature for firing the tantalum compound may be, for example, 700 to 1300°C, 750 to 1300°C, 800 to 1200°C, and 850 to 1300°C. The temperature may be 1200°C to 1200°C, 900 to 1100°C, or 1000 to 1100°C.
 昇温速度は、製造効率の観点から、20~600℃/hであってもよく、40~500℃/hであってもよく、80~400℃/hであってもよい。 From the viewpoint of production efficiency, the temperature increase rate may be 20 to 600°C/h, 40 to 500°C/h, or 80 to 400°C/h.
 焼成の時間については、所定の焼成温度への昇温時間を15分~10時間の範囲で行い、且つ焼成温度における保持時間を5分~30時間の範囲で行うことが好ましい。タンタル酸塩粒子の形成を効率的に行うには、2時間以上の焼成温度保持時間であることが好ましく、2~15時間の焼成温度保持時間であることがより好ましい。
 焼成温度が700~1100℃、且つ2~15時間の焼成温度保持時間の条件を選択することで、結晶子サイズの向上されたタンタル酸塩粒子が、容易に得られる。
Regarding the firing time, it is preferable that the heating time to a predetermined firing temperature be carried out in the range of 15 minutes to 10 hours, and the holding time at the firing temperature be carried out in the range of 5 minutes to 30 hours. In order to efficiently form tantalate particles, the firing temperature is preferably held for 2 hours or more, and more preferably from 2 to 15 hours.
Tantalate particles with improved crystallite size can be easily obtained by selecting the conditions of a calcination temperature of 700 to 1100° C. and a calcination temperature holding time of 2 to 15 hours.
 焼成の雰囲気としては、本発明の効果が得られるのであれば特に限定されないが、例えば、空気や酸素といった含酸素雰囲気や、窒素やアルゴン、又は二酸化炭素といった不活性雰囲気が好ましく、コストの面を考慮した場合は空気雰囲気がより好ましい。 The firing atmosphere is not particularly limited as long as the effects of the present invention can be obtained, but for example, an oxygen-containing atmosphere such as air or oxygen, or an inert atmosphere such as nitrogen, argon, or carbon dioxide is preferable, and from a cost perspective. Taking this into consideration, an air atmosphere is more preferable.
 焼成するための装置としても必ずしも限定されず、いわゆる焼成炉を用いることができる。焼成炉は昇華した酸化モリブデンと反応しない材質で構成されていることが好ましく、さらに酸化モリブデンを効率的に利用するように、密閉性の高い焼成炉を用いることが好ましい。 The device for firing is not necessarily limited, and a so-called firing furnace can be used. The firing furnace is preferably made of a material that does not react with sublimated molybdenum oxide, and it is also preferable to use a highly airtight firing furnace so that molybdenum oxide can be used efficiently.
[冷却工程]
 タンタル酸塩粒子の製造方法は、冷却工程を含んでいてもよい。当該冷却工程は、焼成工程において結晶成長したタンタル酸塩粒子を冷却する工程である。
[Cooling process]
The method for producing tantalate particles may include a cooling step. The cooling step is a step of cooling the tantalate particles that have grown crystals in the firing step.
 冷却速度は、特に制限されないが、1~1000℃/時間であることが好ましく、5~500℃/時間であることがより好ましく、50~100℃/時間であることがさらに好ましい。冷却速度が1℃/時間以上であると、製造時間が短縮されうることから好ましい。一方、冷却速度が1000℃/時間以下であると、焼成容器がヒートショックで割れることが少なく、長く使用できることから好ましい。 The cooling rate is not particularly limited, but is preferably 1 to 1000°C/hour, more preferably 5 to 500°C/hour, and even more preferably 50 to 100°C/hour. It is preferable that the cooling rate is 1° C./hour or more because the manufacturing time can be shortened. On the other hand, it is preferable that the cooling rate is 1000° C./hour or less because the firing container is less likely to crack due to heat shock and can be used for a long time.
 冷却方法は特に制限されず、自然放冷であっても、冷却装置を使用してもよい。 The cooling method is not particularly limited, and may be natural cooling or a cooling device may be used.
[後処理工程]
 本実施形態の製造方法は、後処理工程を含んでいてもよい。当該後処理工程は、焼成物に含まれるタンタル酸塩粒子とフラックス剤とを分離する工程であってよく、焼成容器から焼成物を取り出して行うことができる。後処理工程は、上述の焼成工程の後に行うことができる。また、必要に応じて、2度以上繰り返し行ってもよい。
[Post-processing process]
The manufacturing method of this embodiment may include a post-processing step. The post-treatment step may be a step of separating the tantalate particles and the flux agent contained in the fired product, and can be performed by taking out the fired product from the firing container. The post-treatment step can be performed after the above-mentioned firing step. Further, if necessary, the process may be repeated two or more times.
 フラックス剤を除去する方法としては、洗浄、高温処理等が挙げられる。これらは組み合わせて行うことができる。 Methods for removing the fluxing agent include washing, high temperature treatment, etc. These can be done in combination.
 前記洗浄方法としては、特に制限されないが、上記のカリウム化合物、ナトリウム化合物、モリブデン酸塩化合物のようにフラックスが水溶性である場合には、水洗等が挙げられる。 The washing method is not particularly limited, but when the flux is water-soluble like the potassium compound, sodium compound, or molybdate compound mentioned above, washing with water may be used.
 また、高温処理の方法としては、フラックスの昇華点または沸点以上に昇温する方法が挙げられる。 Further, examples of the high temperature treatment method include a method of raising the temperature to a temperature higher than the sublimation point or boiling point of the flux.
[粉砕工程]
 焼成工程を経て得られる焼成物は、タンタル酸塩粒子が凝集して、検討される用途における好適な粒子径の範囲を満たさない場合がある。そのため、タンタル酸塩粒子は、必要に応じて、好適な粒子径の範囲を満たすように粉砕してもよい。
 焼成物の粉砕の方法は特に限定されず、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等の従来公知の粉砕方法を適用できる。
[Crushing process]
In the fired product obtained through the firing step, the tantalate particles may aggregate and the particle size may not meet the preferred particle size range for the intended use. Therefore, the tantalate particles may be pulverized to satisfy a suitable particle size range, if necessary.
The method for pulverizing the baked product is not particularly limited, and conventionally known pulverizing methods such as a ball mill, jaw crusher, jet mill, disk mill, spectro mill, grinder, mixer mill, etc. can be applied.
[分級工程]
 焼成工程により得られたタンタル酸塩粒子を含む焼成物は、粒子サイズの範囲の調整のために、適宜、分級処理されてもよい。「分級処理」とは、粒子の大きさによって粒子をグループ分けする操作をいう。
 分級は湿式、乾式のいずれでも良いが、生産性の観点からは、乾式の分級が好ましい。乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、分級精度の観点からは、風力分級が好ましく、コアンダ効果を利用した気流分級機、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うことができる。
 上記した粉砕工程や分級工程は、必要な段階において行うことができる。これら粉砕や分級の有無やそれらの条件選定により、例えば、得られるタンタル酸塩粒子の平均粒径を調整することができる。
[Classification process]
The fired product containing tantalate particles obtained by the firing step may be appropriately classified in order to adjust the particle size range. "Classification processing" refers to an operation of dividing particles into groups according to their size.
Classification may be performed either wet or dry, but from the viewpoint of productivity, dry classification is preferred. In addition to classification using a sieve, dry classification includes wind classification that uses the difference between centrifugal force and fluid drag, but from the perspective of classification accuracy, wind classification is preferable, and air classifiers that use the Coanda effect, This can be carried out using a classifier such as a swirling airflow classifier, a forced vortex centrifugal classifier, or a semi-free vortex centrifugal classifier.
The above-described pulverization process and classification process can be performed at necessary stages. For example, the average particle size of the obtained tantalate particles can be adjusted by whether or not these pulverization and classification are performed and by selecting the conditions thereof.
 実施形態のタンタル酸塩粒子、或いは実施形態の製造方法で得られるタンタル酸塩粒子は、凝集が少ないもの或いは凝集していないものが、本来の性質を発揮しやすく、それ自体の取扱性により優れており、また被分散媒体に分散させて用いる場合において、より分散性に優れる観点から、好ましい。 The tantalate particles of the embodiment or the tantalate particles obtained by the production method of the embodiment have less agglomeration or are not agglomerated, which are more likely to exhibit their original properties and are easier to handle. Moreover, when used after being dispersed in a medium to be dispersed, it is preferable from the viewpoint of more excellent dispersibility.
 なお、上記の実施形態のタンタル酸塩粒子の製造方法によれば、凝集が少ない又は凝集のないタンタル酸塩粒子を容易に製造可能であるので、上記の粉砕工程や分級工程は行わなくとも、目的の優れた性質を有するタンタル酸塩粒子を、生産性高く製造することができるという優れた利点を有する。 In addition, according to the method for producing tantalate particles of the above embodiment, it is possible to easily produce tantalate particles with little or no agglomeration, so even if the above-mentioned crushing step and classification step are not performed, It has the excellent advantage that tantalate particles having the desired excellent properties can be produced with high productivity.
≪樹脂組成物≫
 実施形態のタンタル酸塩粒子は、樹脂とともに配合されて樹脂組成物として提供することができる。一実施形態として、実施形態のタンタル酸塩粒子と、樹脂とを含有する樹脂組成物を提供する。
 樹脂としては特に限定はなく、ポリマーであってもオリゴマーであってもモノマーであってもよく、熱硬化性樹脂あるいは熱可塑性樹脂であってよく、活性エネルギー線硬化性樹脂であってもよい。
≪Resin composition≫
The tantalate particles of embodiments can be blended with a resin to provide a resin composition. As one embodiment, a resin composition containing the tantalate particles of the embodiment and a resin is provided.
The resin is not particularly limited, and may be a polymer, an oligomer, or a monomer, a thermosetting resin or a thermoplastic resin, or an active energy ray-curable resin.
(熱硬化性樹脂)
 熱硬化性樹脂は、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。例えば、成形材料等に使用される公知慣用の樹脂であってよい。具体的には、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型フェノール樹脂;未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂;ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂;脂肪鎖変性ビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、ポリアルキレングルコール型エポキシ樹脂等のエポキシ樹脂;ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂;(メタ)アクリル樹脂やビニルエステル樹脂等のビニル樹脂:不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂等が挙げられ、ポリマーであってもオリゴマーであってもモノマーであってもかまわない。
(thermosetting resin)
Thermosetting resins are resins that have the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or catalysts. For example, it may be a known and commonly used resin used for molding materials and the like. Specifically, for example, novolac-type phenolic resins such as phenol novolac resins and cresol novolac resins; resol-type phenolic resins such as unmodified resol phenolic resins, oil-modified resol phenolic resins modified with tung oil, linseed oil, walnut oil, etc. Phenol resins such as bisphenol A epoxy resin, bisphenol F epoxy resin, etc.; novolac epoxy resins such as fatty chain modified bisphenol epoxy resins, novolac epoxy resins, cresol novolac epoxy resins; biphenyl epoxy resins, Epoxy resins such as alkylene glycol type epoxy resins; resins with triazine rings such as urea resins and melamine resins; vinyl resins such as (meth)acrylic resins and vinyl ester resins: unsaturated polyester resins, bismaleimide resins, Examples include polyurethane resins, diallyl phthalate resins, silicone resins, resins having benzoxazine rings, cyanate ester resins, and they may be polymers, oligomers, or monomers.
 上記した熱硬化性樹脂は、硬化剤とともに用いてもかまわない。その際に用いられる硬化剤は、熱硬化性樹脂と公知慣用の組み合わせで用いることができる。例えば、熱硬化性樹脂がエポキシ樹脂の場合、硬化剤として常用されている化合物を何れも使用することができ、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物などが挙げられる。具体的には、アミン系化合物としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾール、BF3-アミン錯体、グアニジン誘導体等が挙げられる。アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。これらの硬化剤は、単独でも2種類以上の併用でも構わない。 The thermosetting resin described above may be used together with a curing agent. The curing agent used in this case can be used in a known and commonly used combination with a thermosetting resin. For example, when the thermosetting resin is an epoxy resin, any compound commonly used as a curing agent can be used, such as amine compounds, amide compounds, acid anhydride compounds, phenol compounds, etc. Can be mentioned. Specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivatives. Examples of the amide compound include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like. Examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro. Examples include phthalic anhydride. Examples of phenolic compounds include polyhydric hydroxyl compounds such as phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), and resorcin novolak resin. Polyhydric phenol novolac resins synthesized from chemical compounds and formaldehyde, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylolethane resins, naphthol novolac resins, naphthol-phenol condensed novolac resins, naphthol-cresol condensed novolac resins, biphenyl modified resins Phenol resin (a polyhydric phenol compound in which phenol nuclei are linked by bismethylene groups), biphenyl-modified naphthol resin (a polyhydric naphthol compound in which phenol nuclei are linked by bismethylene groups), aminotriazine-modified phenol resin (phenol with melamine, benzoguanamine, etc.) Polyhydric phenol compounds such as a polyhydric phenol compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde) and alkoxy group-containing aromatic ring-modified novolac resins (a polyhydric phenol compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde) are mentioned. These curing agents may be used alone or in combination of two or more types.
 実施形態の樹脂組成物における、熱硬化性樹脂と前記の硬化剤の配合量は、特に限定されないが、例えば、硬化性樹脂がエポキシ樹脂である場合は、得られる硬化物特性が良好である点から、エポキシ樹脂のエポキシ基の合計1当量に対して、硬化剤中の活性基が0.7~1.5当量になる量の使用が好ましい。 The blending amounts of the thermosetting resin and the curing agent in the resin composition of the embodiment are not particularly limited, but for example, when the curable resin is an epoxy resin, the properties of the resulting cured product are good. Therefore, it is preferable to use an amount such that the amount of active groups in the curing agent is 0.7 to 1.5 equivalents per total equivalent of epoxy groups in the epoxy resin.
 また必要に応じて、実施形態の樹脂組成物における、熱硬化性樹脂に硬化促進剤を適宜併用することもできる。例えば、硬化性樹脂がエポキシ樹脂の場合、硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。 Further, if necessary, a curing accelerator can be appropriately used in combination with the thermosetting resin in the resin composition of the embodiment. For example, when the curable resin is an epoxy resin, various curing accelerators can be used, including phosphorus compounds, tertiary amines, imidazole, organic acid metal salts, Lewis acids, amine complex salts, etc. It will be done.
 また必要に応じて、熱硬化性樹脂に、硬化触媒を適時併用することもでき、公知慣用の熱重合開始剤や活性エネルギー線重合開始剤が挙げられる。 Furthermore, if necessary, a curing catalyst can be used in combination with the thermosetting resin, including known and commonly used thermal polymerization initiators and active energy ray polymerization initiators.
(熱可塑性樹脂)
 実施形態の樹脂組成物に使用されてもよい熱可塑性樹脂としては、成形材料等に使用される公知慣用の樹脂が挙げられる。具体的には、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメタクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ビスマレイミドトリアジン樹脂、ポリメチルペンテン樹脂、フッ化樹脂、液晶ポリマー、オレフィン-ビニルアルコール共重合体、アイオノマー樹脂、ポリアリレート樹脂、アクリロニトリル-エチレン-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体などが挙げられる。少なくとも1種の熱可塑性樹脂が選択されて使用可能であるが、目的に応じて、2種以上の熱可塑性樹脂を組み合わせての使用も可能である。
(Thermoplastic resin)
Examples of the thermoplastic resin that may be used in the resin composition of the embodiment include known and commonly used resins used in molding materials and the like. Specifically, for example, polyethylene resin, polypropylene resin, polymethyl methacrylate resin, polyvinyl acetate resin, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride resin, polystyrene resin, polyacrylonitrile resin. , polyamide resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic urethane resin , polyamino bismaleimide resin, polyamideimide resin, polyetherimide resin, bismaleimide triazine resin, polymethylpentene resin, fluorinated resin, liquid crystal polymer, olefin-vinyl alcohol copolymer, ionomer resin, polyarylate resin, acrylonitrile-ethylene -styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, etc. At least one type of thermoplastic resin can be selected and used, but depending on the purpose, it is also possible to use a combination of two or more types of thermoplastic resins.
 圧電体用途として提供する場合には、前記樹脂が高誘電率を示すことが好ましく、前記樹脂としては電子吸引性基を有するポリマーが好ましく、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体等のフッ素含有ポリマーや、シアノエチル化ポリビニルアルコール、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロース及びシアノエチルソルビトール等のシアノ基或はシアノエチル基を有するポリマー等であることが好ましい。 When provided as a piezoelectric material, the resin preferably exhibits a high dielectric constant, and the resin is preferably a polymer having an electron-withdrawing group, such as polyvinylidene fluoride (PVDF), vinylidene fluoride-tetrafluoroethylene, etc. Copolymers, fluorine-containing polymers such as vinylidene fluoride-trifluoroethylene copolymers, cyanoethylated polyvinyl alcohol, vinylidene cyanide-vinyl acetate copolymers, cyanoethylcellulose, cyanoethylhydroxysucrose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan , cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyanoethyl glycidol pullulan, cyanoethyl Preferred are polymers having a cyano group or cyanoethyl group, such as saccharose and cyanoethyl sorbitol.
 実施形態の樹脂組成物は、必要に応じてその他の配合物を含有してもよく、発明の効果が得られる範囲で、外部滑剤、内部滑剤、酸化防止剤、難燃剤、光安定剤、紫外線吸収剤、シラン系やチタネート系、アルミネート系のカップリング剤、ガラス繊維やカーボン繊維等の補強材、フィラー、各種の着色剤等を添加してもよい。また、シリコーンオイル、液状ゴム、ゴム粉末、アクリル酸メチル-ブタジエン-スチレン共重合体、メタクリル酸メチル-ブタジエン-スチレン共重合体などのブタジエン系共重合体ゴムやシリコーン系化合物などの低応力化剤(応力緩和剤)の使用も可能である。 The resin composition of the embodiment may contain other compounds as necessary, and may contain an external lubricant, an internal lubricant, an antioxidant, a flame retardant, a light stabilizer, and ultraviolet rays to the extent that the effects of the invention can be obtained. An absorbent, a silane-based, titanate-based, or aluminate-based coupling agent, a reinforcing material such as glass fiber or carbon fiber, a filler, various coloring agents, etc. may be added. In addition, stress reducing agents such as silicone oil, liquid rubber, rubber powder, butadiene copolymer rubber such as methyl acrylate-butadiene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, and silicone compounds (stress relaxation agents) can also be used.
 実施形態の樹脂組成物は、実施形態のタンタル酸塩粒子と、樹脂と、さらに必要に応じてその他の配合物を混合することにより得られる。その混合方法に特に限定はなく、公知慣用の方法により、混合される。 The resin composition of the embodiment can be obtained by mixing the tantalate particles of the embodiment, a resin, and, if necessary, other compounds. There is no particular limitation on the mixing method, and the mixing may be carried out by any known and commonly used method.
 樹脂が熱硬化性樹脂である場合の一般的な手法としては、熱硬化性樹脂と、実施形態のタンタル酸塩粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、三本ロール等で混練し、流動性ある液状の組成物として、あるいは、所定の配合量の熱硬化性樹脂と、実施形態のタンタル酸塩粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、ミキシングロール、押出機等で、溶融混練した後、冷却することで、固形の組成物として得られる。その混合状態は、硬化剤や触媒等を配合した場合は、硬化性樹脂とそれらの配合物が充分に均一に混合されていることが好ましく、実施形態のタンタル酸塩粒子も均一に分散混合された方がより好ましい。 When the resin is a thermosetting resin, the general method is to thoroughly mix the thermosetting resin, the tantalate particles of the embodiment, and other components as necessary using a mixer, etc., and then mix the three Knead with a roll or the like to form a fluid liquid composition, or mix a predetermined amount of thermosetting resin, the tantalate particles of the embodiment, and other components as necessary with a mixer or the like. After that, the mixture is melt-kneaded using a mixing roll, an extruder, etc., and then cooled to obtain a solid composition. Regarding the mixing state, when a curing agent, a catalyst, etc. are blended, it is preferable that the curable resin and those compounds are sufficiently uniformly mixed, and the tantalate particles of the embodiment are also uniformly dispersed and mixed. It is more preferable.
 樹脂が熱可塑性樹脂である場合の一般的な手法としては、熱可塑性樹脂、実施形態のタンタル酸塩粒子、および必要に応じてその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー、混合ロールなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、240~320℃の範囲が挙げられる。 When the resin is a thermoplastic resin, a common method is to mix the thermoplastic resin, the tantalate particles of the embodiment, and other ingredients as necessary using various mixers such as a tumbler or a Henschel mixer. Examples include a method of premixing and then melt-kneading with a mixer such as a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, and a mixing roll. Note that the melt-kneading temperature is not particularly limited, but may be in the range of 240 to 320°C.
 実施形態の樹脂組成物を調製するに当たっての、実施形態のタンタル酸塩粒子と、樹脂の不揮発分との混合比は特に制限されるものではないが、樹脂の不揮発分の質量換算100部当たり、例えば0.1~1800部のタンタル酸塩粒子の範囲としてよく、10~900部の範囲としてよい。 In preparing the resin composition of the embodiment, the mixing ratio of the tantalate particles of the embodiment and the nonvolatile content of the resin is not particularly limited, but per 100 parts by mass of the nonvolatile content of the resin, For example, it may range from 0.1 to 1800 parts of tantalate particles, and it may range from 10 to 900 parts.
 実施形態の樹脂組成物の総質量(100質量%)に対する、タンタル酸塩粒子の含有量の割合は、30質量%以上であってよく、50~90質量%であってよく、60~85質量%であってよい。 The content ratio of the tantalate particles to the total mass (100% by mass) of the resin composition of the embodiment may be 30% by mass or more, 50 to 90% by mass, and 60 to 85% by mass. It may be %.
≪成形体≫
 実施形態の樹脂組成物を成形することで、成形体を得ることができる。一実施形態として、実施形態の樹脂組成物を成形してなる成形体を提供する。樹脂成形体を得るには、公知慣用の方法で行うことができる。
≪Molded object≫
A molded article can be obtained by molding the resin composition of the embodiment. As one embodiment, a molded article formed by molding the resin composition of the embodiment is provided. The resin molded article can be obtained by any known and commonly used method.
 例えば樹脂組成物に含有される樹脂が熱硬化性樹脂である場合、一般的なエポキシ樹脂組成物等の熱硬化性の樹脂組成物の硬化方法に準拠すればよい。例えば、樹脂がエポキシ樹脂である樹脂組成物などは、熱で硬化を行うことができ、その際の加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すれば良く、室温~250℃程度の温度範囲で加熱すればよい。活性エネルギー線硬化性樹脂の場合、紫外線や赤外線といった活性エネルギー線を照射することで硬化成形することができる。 For example, when the resin contained in the resin composition is a thermosetting resin, a general curing method for thermosetting resin compositions such as epoxy resin compositions may be followed. For example, a resin composition in which the resin is an epoxy resin can be cured by heat, and the heating temperature conditions at that time may be selected as appropriate depending on the type of curing agent to be combined and the intended use. It may be heated within a temperature range of approximately ℃. In the case of active energy ray-curable resins, they can be cured and molded by irradiation with active energy rays such as ultraviolet rays and infrared rays.
 また、実施形態の樹脂が熱可塑性樹脂の場合も、公知慣用の成形方法で成形物とすることができる。例えば、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。成形品の形状、模様、色彩、寸法などに制限はなく、その成形品の用途に応じて任意に設定すればよい。 Furthermore, even when the resin of the embodiment is a thermoplastic resin, it can be made into a molded article by a known and commonly used molding method. For example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, blow molding method such as gas assist, molding method using insulation mold, molding method using rapid heating mold, foaming Examples include molding (including supercritical fluid), insert molding, IMC (in-mold coating molding), extrusion molding, sheet molding, rotary molding, lamination molding, press molding, and the like. Further, a molding method using a hot runner method can also be used. There are no restrictions on the shape, pattern, color, size, etc. of the molded product, and they may be set arbitrarily depending on the purpose of the molded product.
 樹脂組成物の成形体がシート状又は層状である場合、その厚さは、10~100μmであってよく、10~80μmであってよい。 When the molded article of the resin composition is in the form of a sheet or layer, its thickness may be from 10 to 100 μm, or from 10 to 80 μm.
 実施形態の樹脂組成物及びその成形体は、適宜、分極処理を行うことで、圧電体として提供及び使用可能である。 The resin composition of the embodiment and its molded article can be provided and used as a piezoelectric body by appropriately performing polarization treatment.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<分析・評価>
 各実施例の粉末を試料として、以下の測定を行った。
<Analysis/Evaluation>
The following measurements were performed using the powders of each example as samples.
[XRF(蛍光X線)分析]
 蛍光X線分析装置PrimusIV(株式会社リガク製)を用い、試料粉末約70mgをろ紙にとり、PPフィルムをかぶせて次の条件でXRF(蛍光X線)分析を行った。測定条件
EZスキャンモード
測定元素:F~U
測定時間:標準
測定径:10mm
残分(バランス成分):なし
[XRF (X-ray fluorescence) analysis]
Using an X-ray fluorescence analyzer Primus IV (manufactured by Rigaku Co., Ltd.), about 70 mg of sample powder was placed on a filter paper, covered with a PP film, and subjected to XRF (X-ray fluorescence) analysis under the following conditions. Measurement conditions EZ scan mode Measuring elements: F to U
Measurement time: Standard measurement diameter: 10mm
Residue (balance component): None
 前記試料粉末のXRF分析を行い、試料粉末におけるタンタル含有量を求め、前記試料粉末の総質量100質量%に対するTa換算での含有率(質量%)として算出した。
 前記試料粉末のXRF分析を行い、試料粉末におけるモリブデン含有量を求め、前記試料粉末の総質量100質量%に対するMoO換算での含有率(質量%)として算出した。
 前記試料粉末のXRF分析を行い、試料粉末におけるカリウム含有量を求め、前記試料粉末の総質量100質量%に対するKO換算での含有率(質量%)として算出した。 前記試料粉末のXRF分析を行い、試料粉末におけるナトリウム含有量を求め、前記試料粉末の総質量100質量%に対するNaO換算での含有率(質量%)として算出した。
The sample powder was subjected to XRF analysis to determine the tantalum content in the sample powder, and the tantalum content was calculated as the content (mass%) in terms of Ta 2 O 5 based on 100 mass% of the total mass of the sample powder.
The sample powder was subjected to XRF analysis to determine the molybdenum content in the sample powder, and the molybdenum content was calculated as the content (mass %) in terms of MoO 3 based on the total mass 100 mass % of the sample powder.
The sample powder was subjected to XRF analysis to determine the potassium content in the sample powder, and calculated as a content rate (mass%) in terms of K 2 O with respect to 100 mass% of the total mass of the sample powder. The sample powder was subjected to XRF analysis to determine the sodium content in the sample powder, and calculated as the content (mass%) in terms of Na 2 O with respect to the total mass of the sample powder (100% by mass).
[結晶構造解析:XRD(X線回折)法]
 試料粉末を、0.5mm深さの測定試料用ホルダーに充填し、それを広角X線回折(XRD)装置(株式会社リガク製 UltimaIV)にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2°/min、走査範囲10~70°又は走査範囲10~90°の条件で測定を行った。
[Crystal structure analysis: XRD (X-ray diffraction) method]
The sample powder was filled into a measurement sample holder with a depth of 0.5 mm, and it was set in a wide-angle X-ray diffraction (XRD) device (Ultima IV, manufactured by Rigaku Co., Ltd.), using Cu/Kα radiation, 40 kV/40 mA, and scanning speed. The measurement was carried out under the conditions of 2°/min and a scanning range of 10 to 70° or a scanning range of 10 to 90°.
[粒子サイズの測定]
(キュービック状の形状を有する粒子の場合)
 試料粉末を、走査型電子顕微鏡(SEM)で撮影した。二次元画像上に認められる最小単位の粒子(すなわち、一次粒子)について、キュービック状の形状を有すると認められる場合、その一次粒子の粒子像から判別される六面体の一辺の長さを、粒子サイズとして計測した。
 同様の操作を50個の一次粒子に対して行い、各平均値を求めた。
[Measurement of particle size]
(For particles with cubic shape)
The sample powder was photographed using a scanning electron microscope (SEM). When the smallest unit particle (i.e., primary particle) observed on a two-dimensional image is recognized to have a cubic shape, the length of one side of the hexahedron determined from the particle image of the primary particle is calculated as the particle size. It was measured as
A similar operation was performed on 50 primary particles, and each average value was determined.
[結晶子サイズの測定]
 X線回折装置としてSmartLab(株式会社リガク製)を用い、検出器として高強度・高分解能結晶アナライザ(CALSA)を用い、解析ソフトとしてPDXLを用いて測定を行った。測定方法は2θ/θ法であり、2θ=23.0±1.0°に出現するピーク、2θ=32.0±1.2°に出現するピーク、及び2θ=57.0±1.0°に出現するピークの半値幅からシェラー式を用いて平均結晶子サイズを算出した。なお、測定条件として、スキャンスピードは0.05度/分であり、スキャン範囲は20~70度であり、ステップは0.002度であり、装置標準幅は0.028°(Si)とした。
[Measurement of crystallite size]
Measurements were performed using SmartLab (manufactured by Rigaku Co., Ltd.) as an X-ray diffractometer, a high-intensity, high-resolution crystal analyzer (CALSA) as a detector, and PDXL as analysis software. The measurement method is the 2θ/θ method, with a peak appearing at 2θ = 23.0 ± 1.0°, a peak appearing at 2θ = 32.0 ± 1.2°, and 2θ = 57.0 ± 1.0. The average crystallite size was calculated from the half-width of the peak appearing at ° using the Scherrer equation. The measurement conditions were: scan speed was 0.05 degrees/min, scan range was 20 to 70 degrees, step was 0.002 degrees, and device standard width was 0.028 degrees (Si). .
[粒度分布測定]
 レーザー回折式乾式粒度分布計(株式会社日本レーザー製 HELOS(H3355)&RODOS)を用いて、分散圧3bar、引圧90mbarの条件で、乾式で試料粉末の粒子径分布を測定した。体積積算%の分布曲線が50%の横軸と交差する点の粒子径をD50として求めた。体積積算%の分布曲線が小粒子側から10%の横軸と交差する点の粒子径をD10として求めた。体積積算%の分布曲線が小粒子側から90%の横軸と交差する点の粒子径をD90として求めた。
[Particle size distribution measurement]
The particle size distribution of the sample powder was measured in a dry manner using a laser diffraction type dry particle size distribution meter (HELOS (H3355) & RODOS manufactured by Nippon Laser Co., Ltd.) under conditions of a dispersion pressure of 3 bar and a suction pressure of 90 mbar. The particle diameter at the point where the volume integration % distribution curve intersects the 50% horizontal axis was determined as D50 . The particle diameter at the point where the volume integration % distribution curve intersects the horizontal axis of 10% from the small particle side was determined as D10 . The particle diameter at the point where the volume integration % distribution curve intersects the 90% horizontal axis from the small particle side was determined as D90 .
[比表面積測定]
 試料粉末の比表面積は、比表面積計(マイクロトラック・ベル株式会社製、BELSORP-mini)にて測定し、BET法による窒素ガスの吸着量から測定された試料1g当たりの表面積を、比表面積(m/g)として算出した。
[Specific surface area measurement]
The specific surface area of the sample powder is measured using a specific surface area meter (BELSORP-mini, manufactured by Microtrac Bell Co., Ltd.), and the surface area per 1 g of the sample measured from the amount of nitrogen gas adsorbed by the BET method is calculated as the specific surface area ( m 2 /g).
[実施例1]
 酸化タンタル(関東化学株式会社製試薬、Ta)10.0g、酸化モリブデン(関東化学株式会社製試薬、MoO)6.8g、及び炭酸ナトリウム(関東化学株式会社製試薬、NaCO)11.5gを乳鉢で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉に1000℃で10時間焼成を行なった。降温後、坩堝をセラミック電気炉から取り出した。
 続いて、得られた焼成物を水で5回超音波洗浄した後、ろ過により洗浄水を除く水洗浄と、乾燥とを行うことで、残存するフラックス剤を除去し、実施例1の粉末9.1gを得た。
[Example 1]
Tantalum oxide (Kanto Kagaku Co., Ltd. reagent, Ta 2 O 5 ) 10.0 g, molybdenum oxide (Kanto Kagaku Co., Ltd. reagent, MoO 3 ) 6.8 g, and sodium carbonate (Kanto Kagaku Co., Ltd. reagent, Na 2 CO 3 ) 11.5 g were mixed in a mortar to obtain a mixture. The obtained mixture was placed in a crucible and fired in a ceramic electric furnace at 1000° C. for 10 hours. After cooling, the crucible was taken out from the ceramic electric furnace.
Subsequently, the obtained fired product was ultrasonically cleaned with water five times, and then washed with water to remove the cleaning water by filtration, and dried to remove the remaining fluxing agent and prepare powder 9 of Example 1. .1g was obtained.
 上記の合成条件を表1に示す。 The above synthesis conditions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2~12]
 実施例1において、原料化合物の配合及び焼成温度を表1に記載のとおり変更した以外は、実施例1と同様の操作により、実施例2~12の粉末をそれぞれ得た。
 表1中の原料KCOは、炭酸カリウム(関東化学株式会社製試薬、KCO)を使用した。
[Examples 2 to 12]
Powders of Examples 2 to 12 were obtained in the same manner as in Example 1, except that the composition of the raw material compounds and the firing temperature were changed as shown in Table 1.
As the raw material K 2 CO 3 in Table 1, potassium carbonate (reagent manufactured by Kanto Kagaku Co., Ltd., K 2 CO 3 ) was used.
<結果>
 上記の実施例1~12の粉末のSEMの画像を図1~12に示す。(図9及び図10はそれぞれの拡大図も示す。)
<Results>
SEM images of the powders of Examples 1 to 12 above are shown in FIGS. 1 to 12. (Figures 9 and 10 also show enlarged views of each.)
 上記の各評価の結果を表2に示す。「-」は該当の化合物を使用していないことを表す。「N.D.」はnot detectedの略であり、不検出であることを表す。 The results of each of the above evaluations are shown in Table 2. "-" indicates that the corresponding compound was not used. "N.D." is an abbreviation for "not detected" and represents non-detection.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に、SEMの画像から判別される、各実施例の粒子の形状及びサイズを記す。
 異なる形状の粒子が混在していると認められる場合には、代表的な形状(最も多く観察される形状)を記した。キュービック状の粒子の凝集体も、キュービック状の形状を有するものに含めて記した。
Table 2 shows the shape and size of the particles of each example as determined from the SEM image.
When particles of different shapes are found to be mixed, the representative shape (the shape most often observed) is noted. Aggregates of cubic particles are also included in those having a cubic shape.
 XRD分析の結果を図13~16に示す。
 各実施例1~5の各試料において、KNa(1-x)TaOのペロブスカイト構造の(100)面、(110)面、(221)面に由来する2θ=23.0±1.0°、2θ=32.0±1.2°、及び2θ=57.0±1.0°のそれぞれのピークが認められた。
The results of the XRD analysis are shown in Figures 13-16.
In each of the samples of Examples 1 to 5, 2θ=23.0±1. derived from the (100) plane, (110) plane, and (221) plane of the perovskite structure of K x Na (1-x) TaO 3 . Peaks at 0°, 2θ=32.0±1.2°, and 2θ=57.0±1.0° were observed.
 上記のSEM観察およびXRD解析の結果から、実施例1~12で得られた各粉末は、キュービック状の形状であり、ペロブスカイト構造(Pe構造)を有するKNa(1-x)TaO粒子であることが確認された。 From the results of the above SEM observation and XRD analysis, each of the powders obtained in Examples 1 to 12 has a cubic shape and consists of K x Na (1-x) TaO 3 particles having a perovskite structure (Pe structure). It was confirmed that
 また、実施例1~12の粉末試料は、XRF分析により求められた表2に示す酸化物換算量で、タンタル、モリブデン、カリウム、ナトリウムを含有することが示された。 Furthermore, the powder samples of Examples 1 to 12 were shown to contain tantalum, molybdenum, potassium, and sodium in the oxide equivalent amounts shown in Table 2 determined by XRF analysis.
 各粒子サイズ(SEM観察、D50)、及び結晶子サイズに着目すると、実施例1~12の粒子は、一次粒子サイズ及び結晶子サイズの大きいものが得られていた。これは、各実施例の製造方法において使用した原料化合物の、MoO、NaCo、及びKCOの大部分(それらの生成物や分解物も含む)がフラックス剤として機能したことで、粒子の結晶成長が良好に進行可能であった結果であると考えられる。 Focusing on each particle size (SEM observation, D 50 ) and crystallite size, the particles of Examples 1 to 12 had large primary particle sizes and large crystallite sizes. This is because most of the raw material compounds MoO 3 , Na 2 Co 3 , and K 2 CO 3 (including their products and decomposition products) used in the production method of each example functioned as a fluxing agent. This is thought to be due to the fact that the crystal growth of the particles was able to progress well.
 原料のK/Naの配合比率の値が大きいほど、より大きなサイズの粒子が得られる傾向にあった(実施例3~6)。
 また、焼成温度が高いほど、より大きなサイズの粒子が得られる傾向にあった(実施例9~12)。
The larger the value of the K/Na blending ratio of the raw materials, the larger the particles tended to be obtained (Examples 3 to 6).
Furthermore, the higher the firing temperature, the larger the particles tended to be obtained (Examples 9 to 12).
 実施例1~12の各粒子は、表2に示すBET比表面積を有することが確認された。 It was confirmed that each particle of Examples 1 to 12 had a BET specific surface area shown in Table 2.
 実施例1~12の結果から、カリウム化合物及び/又はナトリウム化合物の存在下でタンタル化合物を焼成することにより、平均結晶子サイズの値が大きく、ペロブスカイト構造を有する、高品質なKNa(1-x)TaO粒子を焼成可能であることが示された。 From the results of Examples 1 to 12, high-quality K x Na (1 -x) It was shown that it is possible to sinter TaO 3 particles.
 なお、モリブデン化合物を使用した実施例1~6、及び9~12では、KNa(1-x)TaO粒子の実収量/理論収量×100(質量%)で計算した収率が76質量%以上であったが、モリブデン化合物を使用していない実施例7~8では、KNa(1-x)TaO粒子の収率がそれぞれ45質量%、35質量%であった。
 このことから、モリブデン化合物を使用することにより、KNa(1-x)TaO粒子を高効率に製造可能であることが示された。
In addition, in Examples 1 to 6 and 9 to 12 using molybdenum compounds, the yield calculated by the actual yield of K x Na (1-x) TaO 3 particles/theoretical yield x 100 (mass%) was 76 mass However, in Examples 7 and 8 in which no molybdenum compound was used, the yields of K x Na (1-x) TaO 3 particles were 45% by mass and 35% by mass, respectively.
This indicates that K x Na (1-x) TaO 3 particles can be produced with high efficiency by using a molybdenum compound.
 実施例1~12で得られたKNa(1-x)TaO粒子は、結晶子サイズが大きく不純物の少ない高品質なものであることから、優れた触媒性能を発揮できることが期待される。 Since the K x Na (1-x) TaO 3 particles obtained in Examples 1 to 12 are of high quality with a large crystallite size and few impurities, they are expected to exhibit excellent catalytic performance. .
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項の範囲によってのみ限定される。 The configurations and combinations thereof in each embodiment are merely examples, and additions, omissions, substitutions, and other changes to the configurations are possible without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, but only by the scope of the claims.

Claims (16)

  1.  KNa(1-x)TaO(ただし、0≦x≦1である。)で表されるタンタル酸塩の結晶構造を含み、
     前記結晶構造は、X線回折測定により得られる、前記タンタル酸塩の2θ=23.0±1.0°のピークから求められる平均結晶子サイズが80nm以上である、タンタル酸塩粒子。
    Contains the crystal structure of tantalate represented by K x Na (1-x) TaO 3 (0≦x≦1),
    The crystal structure is a tantalate particle having an average crystallite size of 80 nm or more as determined from a peak at 2θ=23.0±1.0° of the tantalate obtained by X-ray diffraction measurement.
  2.  前記結晶構造はペロブスカイト結晶構造を含む、請求項1に記載のタンタル酸塩粒子。 The tantalate particles according to claim 1, wherein the crystal structure includes a perovskite crystal structure.
  3.  キュービック状の形状を有する、請求項1又は2に記載のタンタル酸塩粒子。 The tantalate particles according to claim 1 or 2, which have a cubic shape.
  4.  前記結晶構造は、X線回折測定により得られる、前記タンタル酸塩の2θ=32.0±1.2°のピークから求められる平均結晶子サイズが50nm以上である、請求項1又は2に記載のタンタル酸塩粒子。 3. The crystal structure according to claim 1 or 2, wherein the average crystallite size determined from the peak of 2θ=32.0±1.2° of the tantalate salt obtained by X-ray diffraction measurement is 50 nm or more. of tantalate particles.
  5.  レーザー回折・散乱法により算出されるメディアン径D50が、0.1~100μmである、請求項1又は2に記載のタンタル酸塩粒子。 The tantalate particles according to claim 1 or 2, wherein the median diameter D 50 calculated by a laser diffraction/scattering method is 0.1 to 100 μm.
  6.  前記タンタル酸塩粒子におけるタンタルの含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するTa換算での含有率が50~99質量%である、請求項1又は2に記載のタンタル酸塩粒子。 The content of tantalum in the tantalate particles is determined by XRF analysis of the tantalate particles, and the content in terms of Ta 2 O 5 is 50 to 50% based on 100% by mass of the total mass of the tantalate particles. Tantalate particles according to claim 1 or 2, which are 99% by mass.
  7.  前記タンタル酸塩粒子におけるカリウム及び/又はナトリウム含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するKO換算及びNaO換算での合計含有率が0.5~40質量%である、請求項1又は2に記載のタンタル酸塩粒子。 The potassium and/or sodium content in the tantalate particles is determined by XRF analysis of the tantalate particles, in terms of K 2 O and Na 2 O based on 100% by mass of the tantalate particles. The tantalate particles according to claim 1 or 2, wherein the total content of tantalate particles is 0.5 to 40% by mass.
  8.  モリブデンを含む、請求項1又は2に記載のタンタル酸塩粒子。 The tantalate particles according to claim 1 or 2, containing molybdenum.
  9.  前記タンタル酸塩粒子におけるモリブデン含有量は、前記タンタル酸塩粒子をXRF分析することによって求められる、前記タンタル酸塩粒子の総質量100質量%に対するMoO換算での含有率が0.01~20質量%である、請求項8に記載のタンタル酸塩粒子。 The molybdenum content in the tantalate particles is determined by XRF analysis of the tantalate particles, and the molybdenum content is 0.01 to 20 in terms of MoO 3 based on 100% by mass of the total mass of the tantalate particles. 9. Tantalate particles according to claim 8, which are % by weight.
  10.  請求項1に記載のタンタル酸塩粒子の製造方法であって、
     カリウム化合物及び/又はナトリウム化合物の存在下で、タンタル化合物を焼成することを含む、タンタル酸塩粒子の製造方法。
    A method for producing tantalate particles according to claim 1, comprising:
    A method for producing tantalate particles, comprising firing a tantalum compound in the presence of a potassium compound and/or a sodium compound.
  11.  前記ナトリウム化合物が炭酸ナトリウムであり、前記カリウム化合物が炭酸カリウムである、請求項10に記載のタンタル酸塩粒子の製造方法。 The method for producing tantalate particles according to claim 10, wherein the sodium compound is sodium carbonate and the potassium compound is potassium carbonate.
  12.  請求項8に記載のタンタル酸塩粒子の製造方法であって、モリブデン化合物と、カリウム化合物及び/又はナトリウム化合物との存在下で、タンタル化合物を焼成することを含む、請求項10に記載のタンタル酸塩粒子の製造方法。 11. A method for producing tantalate particles according to claim 8, which comprises firing a tantalum compound in the presence of a molybdenum compound and a potassium compound and/or a sodium compound. Method for producing acid salt particles.
  13.  前記モリブデン化合物が、三酸化モリブデン、モリブデン酸カリウム及びモリブデン酸ナトリウムからなる群から選ばれる少なくとも一種の化合物である、請求項12に記載のタンタル酸塩粒子の製造方法。 The method for producing tantalate particles according to claim 12, wherein the molybdenum compound is at least one compound selected from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate.
  14.  タンタル化合物と、カリウム化合物及び/又はナトリウム化合物と、を混合して混合物とする工程と、前記混合物を焼成する工程とを含み、
     前記混合物中の、カリウム原子及びナトリウム原子と、タンタル原子とのモル比(K+Na)/Taが1.1以上である、請求項10又は11に記載のタンタル酸塩粒子の製造方法。
    A step of mixing a tantalum compound and a potassium compound and/or a sodium compound to form a mixture, and a step of firing the mixture,
    The method for producing tantalate particles according to claim 10 or 11, wherein the molar ratio (K+Na)/Ta of potassium atoms and sodium atoms to tantalum atoms in the mixture is 1.1 or more.
  15.  請求項1又は2に記載のタンタル酸塩粒子と、
     樹脂と、を含む樹脂組成物。
    tantalate particles according to claim 1 or 2;
    A resin composition comprising a resin.
  16.  請求項15に記載の樹脂組成物を成形してなる成形体。 A molded article formed by molding the resin composition according to claim 15.
PCT/JP2023/015559 2022-04-21 2023-04-19 Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object WO2023204235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022070230 2022-04-21
JP2022-070230 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023204235A1 true WO2023204235A1 (en) 2023-10-26

Family

ID=88419892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015559 WO2023204235A1 (en) 2022-04-21 2023-04-19 Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object

Country Status (2)

Country Link
TW (1) TW202342632A (en)
WO (1) WO2023204235A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812333A (en) * 1994-06-29 1996-01-16 Hc Starck Gmbh & Co Kg Preparation of hydrated tantalate and/or niobate and tantalate and niobate obtained
JP2007076926A (en) * 2005-09-09 2007-03-29 National Institute Of Advanced Industrial & Technology Method for producing potassium tantalate fine crystal and thin film
WO2010005101A1 (en) * 2008-07-11 2010-01-14 独立行政法人物質・材料研究機構 Luminescent nanosheet, fluorescent device, solar cell and color display using the same, and nanosheet coating
JP2016524534A (en) * 2013-06-17 2016-08-18 ヒンドゥスタン・ペトロリアム・コーポレーション・リミテッド NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
JP2018030115A (en) * 2016-08-26 2018-03-01 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor
JP2019130454A (en) * 2018-01-30 2019-08-08 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor
JP2020092228A (en) * 2018-12-07 2020-06-11 住友化学株式会社 Piezoelectric laminate, piezoelectric element, and manufacturing method for piezoelectric laminate
WO2021187412A1 (en) * 2020-03-19 2021-09-23 株式会社ニコン Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812333A (en) * 1994-06-29 1996-01-16 Hc Starck Gmbh & Co Kg Preparation of hydrated tantalate and/or niobate and tantalate and niobate obtained
JP2007076926A (en) * 2005-09-09 2007-03-29 National Institute Of Advanced Industrial & Technology Method for producing potassium tantalate fine crystal and thin film
WO2010005101A1 (en) * 2008-07-11 2010-01-14 独立行政法人物質・材料研究機構 Luminescent nanosheet, fluorescent device, solar cell and color display using the same, and nanosheet coating
JP2016524534A (en) * 2013-06-17 2016-08-18 ヒンドゥスタン・ペトロリアム・コーポレーション・リミテッド NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
JP2018030115A (en) * 2016-08-26 2018-03-01 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor
JP2019130454A (en) * 2018-01-30 2019-08-08 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor
JP2020092228A (en) * 2018-12-07 2020-06-11 住友化学株式会社 Piezoelectric laminate, piezoelectric element, and manufacturing method for piezoelectric laminate
WO2021187412A1 (en) * 2020-03-19 2021-09-23 株式会社ニコン Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus

Also Published As

Publication number Publication date
TW202342632A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2018112810A1 (en) METHOD OF PRODUCING α-ALUMINA PARTICLES AND METHOD OF PRODUCING RESIN COMPOSITION
JP5995130B1 (en) Spinel particles and method for producing the same, and compositions and molded articles containing the spinel particles
CN109415220B (en) Spinel particle, method for producing same, and composition and molded article comprising spinel particle
JPWO2017104853A1 (en) Composite tungsten oxide ultrafine particles and dispersions thereof
TWI755366B (en) Negative thermal expansion material and composite material and paste containing the same
JP6965562B2 (en) A method for producing spinel particles, spinel particles, and a resin composition and a molded product containing the spinel particles.
JP6468457B2 (en) Titanium oxide particles and method for producing the same
WO2020145343A1 (en) Plate-shaped spinel particles and method for producing same
WO2018207679A1 (en) Spinel-type composite oxide particles and method for producing same, resin composition containing spinel-type composite oxide particles, and molded article
JP7459801B2 (en) Plate-like alumina particles, method for producing plate-like alumina particles, and resin composition
JP2024072854A (en) Method for producing composite particles
WO2023204235A1 (en) Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object
WO2023204242A1 (en) Niobate particles, production method of niobate particles, resin composition and molded body
WO2023234160A1 (en) Copper chromium oxide spinel, resin composition of same, resin molded article, and method for producing copper chromium oxide spinel
JP7392869B2 (en) Zinc oxide particles, method for producing zinc oxide particles, and resin composition
US20230082688A1 (en) Alumina particles, resin composition, molded body, and method for producing alumina particles
WO2020145342A1 (en) Spinel particles, method for producing same, resin composition, molded article, composition, green sheet, fired article, and glass-ceramic substrate
JP7458576B2 (en) Tantalum oxide particles and method for producing tantalum oxide particles
JP6836730B2 (en) Method for producing spinel particles, method for producing resin composition, and method for producing molded product
JP7468790B2 (en) Composite particles and method for producing the same
JPWO2020145341A1 (en) Resin composition, molded product, composition, green sheet, fired product and glass ceramic substrate
TW202229174A (en) Zirconia particles and method for producing zirconia particles
TW202222699A (en) Niobium oxide particles and method for producing niobium oxide particles
JP2022171034A (en) Composite particles and manufacturing method of the composite particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791883

Country of ref document: EP

Kind code of ref document: A1