WO2021187412A1 - Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus - Google Patents

Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus Download PDF

Info

Publication number
WO2021187412A1
WO2021187412A1 PCT/JP2021/010351 JP2021010351W WO2021187412A1 WO 2021187412 A1 WO2021187412 A1 WO 2021187412A1 JP 2021010351 W JP2021010351 W JP 2021010351W WO 2021187412 A1 WO2021187412 A1 WO 2021187412A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
potassium
particles
potassium tantalate
mist
Prior art date
Application number
PCT/JP2021/010351
Other languages
French (fr)
Japanese (ja)
Inventor
康孝 西
涼子 鈴木
澄志 蟹江
淳司 村松
Original Assignee
株式会社ニコン
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン, 国立大学法人東北大学 filed Critical 株式会社ニコン
Priority to JP2022508343A priority Critical patent/JPWO2021187412A1/ja
Publication of WO2021187412A1 publication Critical patent/WO2021187412A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to a method for producing potassium tantalate particles and a method for producing a film, and a method for producing potassium tantalate particles, a film, an antireflection film, an optical element, and an optical device.
  • the present invention claims the priority of application number 2020-049969 of the Japanese patent filed on March 19, 2020, and for designated countries that are permitted to be incorporated by reference to the literature, the contents described in the application are as follows. Incorporated into this application by reference.
  • Potassium tantalate is expected to be used as an optical material, and examples thereof include those having a perovskite-type crystal structure (Patent Document 1 and the like).
  • the first aspect of the present invention is (A) an oxide containing tantalum, (B) a potassium compound which is at least one of potassium hydroxide or potassium chloride, and (C) ethylene glycol, methanol, ethanol, 1-.
  • a method for producing potassium hydroxide particles which comprises a heating step of heating a mixture containing at least one alcohol selected from the group consisting of propanol and 2-propanol and (D) water.
  • a second aspect of the present invention is a step of obtaining potassium tantalate particles by the above-mentioned production method, a mistification step of mistizing a dispersion containing potassium tantalate particles, and supplying the mistized dispersion to a substrate.
  • a method for producing a film containing potassium tantalate particles which comprises a feeding step and a drying step of drying the dispersion liquid existing on the substrate after the feeding step.
  • the third aspect of the present invention is potassium tantalate particles having an average particle size of 100 nm or less.
  • the fourth aspect of the present invention is a film containing the above-mentioned potassium tantalate particles.
  • a fifth aspect of the present invention is an antireflection film containing at least one layer of the above-mentioned film.
  • the sixth aspect of the present invention is an optical element provided with the antireflection film described above.
  • the seventh aspect of the present invention is an optical device including the above-mentioned optical element.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the positional relationships such as up, down, left, and right shall be based on the positional relationships shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the ratios shown.
  • the method for producing potassium tantalate (KTaO 3 ) particles (hereinafter, may be simply referred to as “particles”) according to the present embodiment is (A) an oxide containing tantalum and (B) potassium hydroxide or chloride.
  • a potassium compound which is at least one of potassium, at least one alcohol selected from the group consisting of (C) ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol, and (D) water. It comprises a heating step of heating the containing mixture.
  • potassium tartrate having a small average particle size has been required for application to an optical thin film for the purpose of suppressing light scattering, a catalyst material requiring a large specific surface area, and the like.
  • potassium tantalate having a small average particle size it has been difficult to obtain potassium tantalate having a small average particle size by the conventional production method.
  • nanoparticles of potassium tantalate having an average particle size of 100 nm or less can be efficiently produced.
  • Such nanoparticles of potassium tartrate can be used not only in the film forming technique by the mist method described later, but also because the particles can be uniformly and densely arranged when the film is formed by the mist method. Light scattering can be suppressed, and a film having a high refractive index can be obtained. Therefore, the potassium tantalate particles according to the present embodiment can be suitably used as an optical thin film or the like that suppresses light scattering.
  • the potassium tantalate particles obtained by the production method according to the present embodiment can be suitably used as a catalyst material or the like.
  • Potassium tantalate is also expected to be used as a catalyst for various reactions such as organic synthesis reactions and photoreactions. Since potassium tantalate particles having an average particle size of 100 nm or less have a large specific surface area, they can be used as reactants in the system. High contact efficiency with substrates and the like. Therefore, the potassium tantalate particles according to the present embodiment can be suitably used as a catalyst having high catalytic ability.
  • the potassium tantalate particles produced by such a production method have a certain degree of dispersibility in a dispersion medium such as water. Therefore, the potassium tantalate particles according to the present embodiment can be applied to a film forming technique or the like by the mist method.
  • tantalum pentoxide tantalum pentoxide, Ta 2 O 5
  • tantalum pentoxide Ta 2 O 5
  • the ratio of the component (A) in the mixed solution is not particularly limited, but is preferably 0.01 M or more and 1 M or less. Further, the lower limit thereof is more preferably 0.03 M, and further preferably 0.05 M. Further, the upper limit thereof is more preferably 0.5 M, and further preferably 0.3 M. In addition, "M" in this embodiment means a molar concentration (mol / L).
  • the (B) potassium compound at least one of potassium hydroxide and potassium chloride may be used. These may be used alone or in combination. Among these, potassium hydroxide is preferable from the viewpoint of basic strength.
  • the molar ratio (B / A) of the component (B) to the component (A) is not particularly limited, but is preferably 5 or more and 300 or less from the viewpoint of the reaction efficiency and the reaction cost of the potassium tantalate particles. Further, the lower limit thereof is more preferably 10, further preferably 20, and even more preferably 30. Further, the upper limit thereof is more preferably 280, further preferably 250, and even more preferably 220.
  • the alcohols at least one selected from the group consisting of ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol may be used. These may be used alone or in combination of two or more.
  • the solubility of the component (B) is enhanced, and the reactants such as the cation component in the reaction system are captured, and the starting material is excessively grown (for example, the nucleation of potassium tantalate particles). It is possible to control the density, etc.) and suppress the increase in the particle size of potassium tantalate. From this point of view, ethylene glycol is preferable among the components (C).
  • the ratio of the component (C) in the mixed solution is not particularly limited, but is preferably 0.1 M or more and 17 M or less. Further, the lower limit thereof is more preferably 1M. Further, the upper limit thereof is more preferably 8M. By setting the ratio of the component (C) in such a range, the average particle size of the above-mentioned potassium tantalate can be controlled more effectively.
  • At least (D) water is used as the solvent. That is, the heating step is performed in an aqueous solvent.
  • known components may be appropriately added as long as they do not inhibit the synthesis of potassium tantalate.
  • various catalysts for controlling the reaction rate, the basicity of the solution, and the like can be mentioned.
  • the heating temperature in the heating step is not particularly limited, but is preferably 150 ° C. or higher, more preferably 150 ° C. or higher and 300 ° C. or lower, from the viewpoint of the reaction rate and the yield of potassium tantalate. Further, the lower limit thereof is more preferably 160 ° C., further preferably 170 ° C., and even more preferably 200 ° C. Further, the upper limit thereof is more preferably 295 ° C., further preferably 270 ° C., and even more preferably 260 ° C.
  • the heating time in the heating step is not particularly limited, but is preferably 30 minutes or more and 210 minutes or less from the viewpoint of the reaction rate and the yield of potassium tantalate. Further, the lower limit thereof is more preferably 40 minutes and further preferably 50 minutes. The upper limit is more preferably 180 minutes and even more preferably 150 minutes.
  • the pressure in the heating step is not particularly limited, but is preferably higher than the normal pressure from the viewpoint of the reaction rate and the yield of potassium tantalum.
  • a high-temperature heated acid decomposition container or the like can be used.
  • a cooling step of cooling the mixed liquid may be performed after the heating step.
  • the cooling means is not particularly limited, and known methods such as water cooling and air cooling can be adopted.
  • the average particle size of the potassium tantalate particles obtained by the production method according to the present embodiment can be 100 nm or less.
  • the average particle size may be 80 nm or less, or 50 nm or less, depending on the intended use.
  • the "average particle size” as used in the present embodiment means particles existing in one field of measurement when observed by a TEM (transmission electron microscope) having a magnification of 120 k times (120,000 times), and each particle is measured. Let the arithmetic average of the major axis and the minor axis of be the particle size of the particle, and let the arithmetic average of the particle size of each particle be the "average particle size”.
  • the "major axis” means the longest axis of the particle, and the “minor axis” means the shortest axis of the particle.
  • particles in which only a part of the particles are visible in one field of view are excluded from the target.
  • the method for producing a film containing potassium tantalate particles (hereinafter, may be simply referred to as “film”) according to the present embodiment is (A) an oxide containing tantalum and (B) potassium hydroxide or potassium chloride. (C) At least one alcohol selected from the group consisting of ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol, and (D) water.
  • the potassium tantalate particles according to the present embodiment have high dispersibility in an aqueous solvent, it is possible to form a nanoparticle film by the method described above.
  • the method for producing the nanoparticle film can be achieved, for example, by spraying a nanoparticle-containing mist obtained by mistizing (atomizing) a dispersion containing potassium tantalate particles by vibration of an ultrasonic pendulum in the MHz band. ..
  • a film can be formed on a flexible substrate made of a resin material having a low softening point.
  • any method may be used as long as it is a method of mistizing (atomizing) the dispersion liquid containing the potassium tantalate particles obtained in the (1) step.
  • this mist formation step the operation of adding the potassium tantalate particles obtained in the step (1) to the dispersion medium to prepare the dispersion liquid may be performed.
  • mist generation method a known method can be adopted, for example, a pressurized type, a rotating disc type, an ultrasonic type, an electrostatic type, an orifice vibration type, a steam type, or the like can be adopted.
  • a method of physically mistizing (atomizing) is preferable. This facilitates liquid temperature control and droplet size control.
  • the mist of the dispersion liquid can be carried to the subsequent supply process.
  • a carrier gas for example, an inert gas such as argon, helium, or nitrogen can be used.
  • a step of equalizing the mist by a mist trap or a retention step of providing a retention period (retention portion) of the mist may be performed.
  • the dispersion medium in addition to water, an organic solvent such as ethanol, methanol, or propanol may be used.
  • an organic solvent such as ethanol, methanol, or propanol
  • the above-mentioned component (C) and component (D) can be used as the dispersion medium.
  • the dispersion medium may be used alone or in combination of two or more.
  • the frequency band for atomization may be any one suitable for each dispersion medium, and is not limited to the above band.
  • the material of the base material is not limited to glass, resin, metal, etc., and it is more desirable to provide a step capable of hydrophilizing the surface such as UV irradiation.
  • the supply process is not particularly limited as long as it is a method of supplying mist to the substrate, and a known technique can be adopted.
  • a method of spraying the fine droplets obtained in the mistification step by the mist method onto the substrate can be mentioned.
  • the mist method include ultrasonic spraying, mist CVD method, sonia source method, hot wall method and the like. These methods can be selected in consideration of the film thickness of the film formed on the substrate, the size of the droplets to be sprayed, and the like.
  • the supply step may be under atmospheric pressure, reduced pressure, or vacuum, but it is preferably under atmospheric pressure from the viewpoint of convenience.
  • the film containing the potassium tantalate particles may be patterned by spraying the mist-ized dispersion liquid onto the masked substrate corresponding to a predetermined pattern.
  • dimensional control can be performed with high accuracy.
  • a material that becomes relatively hydrophilic by light irradiation may be used as the masking material.
  • a region having relatively hydrophilicity and a region having water repellency are formed, and in this state, a mist-ized dispersion liquid is sprayed to make the material liquid-friendly.
  • the mist-ized dispersion can be arranged only in the region having the mixture.
  • a thin film base material (sometimes called a "sheet base material") having high flexibility can be used as the base material. Furthermore, continuous production such as roll-to-roll (Roll to Roll) is also possible.
  • the base material for example, a known material can be used.
  • a known material can be used.
  • glass polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC). ), Cellulose acetate propionate (CAP) and the like.
  • the dispersion medium of the dispersion liquid sprayed on the substrate is removed.
  • a film containing potassium tantalate particles is formed on the surface of the substrate by vaporizing the dispersion medium by irradiating light such as infrared rays or heating.
  • the heating temperature can be set in consideration of the boiling point of the solvent, the softening point of the substrate, and other physical characteristics that affect the physical characteristics of the film.
  • the softening point of the substrate referred to here means a temperature at which the substrate softens and begins to deform when the substrate is heated, and can be obtained by, for example, a test method according to JIS K7191-1.
  • a UV irradiation step or the like may be performed for the purpose of modifying the base material such as imparting hydrophilicity.
  • FIG. 1 is a conceptual diagram showing an example of a film forming apparatus using the mist method in the present embodiment.
  • the film forming apparatus 1 has a first tank for mistizing a dispersion liquid containing potassium tantalate particles, a second tank which is a mist trap for homogenizing the mist, and a third tank for spraying mist on the substrate 10.
  • the first tank contains the dispersion liquid S containing the above-mentioned potassium tantalate particles.
  • Air 20 for forming a mist flow path is flowing in the first tank.
  • the first tank is equipped with an ultrasonic vibrator 30.
  • the ultrasonic transducer 30 mistizes the dispersion liquid containing the potassium tantalate particles.
  • the particle size of the mist is not particularly limited, but is preferably 10 ⁇ m or less (for example, 1 to 10 ⁇ m).
  • the mist generated in the first tank is conveyed to the second tank via a pipe provided in the first layer.
  • excess mist collects in the lower part of the tank, and the mist having a more uniform particle size is conveyed to the third layer via a pipe provided in the second tank. It is preferable that the mist having a particle size of 5 ⁇ m or less (for example, 1 to 5 ⁇ m) is conveyed from the second tank to the third tank.
  • the substrate 10 is arranged in the third tank, and the mist conveyed from the second tank is sprayed on the substrate.
  • mist is sprayed on the substrate 10 for a predetermined time.
  • the dispersion medium of the mist adhering to the substrate 10 is vaporized to form a film containing potassium tantalate particles on the surface of the substrate 10.
  • new mist adheres to the substrate 10 before the mist evaporates, so that the dispersed dispersion liquid that has become droplets flows down and a uniform film is formed on the substrate 10. It disappears.
  • the time for stopping the spraying of the mist on the substrate 10 may be the time when the mist containing the fine particles of potassium tantalate liquefies and flows down from the substrate 10, or a film having a desired film thickness is formed on the substrate 10. It may be at the time when it was done.
  • the mist is sprayed at a temperature lower than the softening point of the substrate to form a film. Further, when the substrate 10 is heated to a predetermined temperature or higher during mist spraying, the fine particles of potassium tantalate adhering to the substrate 10 aggregate and the uniformity of the film deteriorates. Therefore, more preferably, the mist is sprayed at a temperature of 40 ° C. or lower (for example, 10 to 40 ° C.) to form a film.
  • the water-repellent film is selectively formed on the substrate 10 in advance so that the mist is arranged only in the region having relatively hydrophilicity.
  • the mist adhering to the relatively water-repellent region becomes difficult to repel water, and it may not be possible to selectively form a film. Therefore, in the third tank, it is preferable to spray the mist on the substrate 10 inclined with respect to the horizontal plane.
  • the mist is sprayed on the substrate 10 that is inclined with respect to the plane orthogonal to the spraying direction of the mist. This is to remove excess fine particles adhering to the relatively water-repellent region by the force of mist spraying.
  • the film forming apparatus may omit the mist trap in the second tank.
  • an electrostatic type that directly applies a voltage to a thin tube for spraying droplets to generate mist, and applying pressure to increase the flow velocity.
  • Pressurized type that scatters the generated mist by colliding the generated gas with the liquid
  • rotating disc type that drops droplets on a disk rotating at high speed and disperses the generated mist by centrifugal force
  • micro-sized holes An orifice vibration type or the like that generates micro-sized droplets can be used by passing the liquid droplets through the orifice plate having the above, and cutting the droplets by applying vibration with a piezoelectric element or the like at that time.
  • these methods are appropriately selected according to the cost, performance, and the like. Further, a plurality of the above-mentioned methods may be combined to generate mist.
  • a preferable example of the film obtained by the above-mentioned production method is a film containing potassium tantalate particles having an average particle size of 100 nm or less. Such a film can be suitably used as an antireflection film or the like described later.
  • the film according to the present embodiment may be a film in which potassium tantalate particles are dispersed in a resin material.
  • a resin material a suitable one can be selected according to the application of the film.
  • the resin material include polymethylmethacrylate resin and the like.
  • the film according to the present embodiment is a film containing potassium tantalate particles, it can be suitably used as, for example, an optical thin film that suppresses light scattering. Therefore, the film according to the present embodiment can be suitably used as a layer constituting the antireflection film.
  • Such an antireflection film may have a single-layer structure or a multi-layer structure having two or more layers. For example, it may be an antireflection film containing at least one layer of the film according to the present embodiment.
  • the antireflection film according to this embodiment can be provided on the surface of an optical element such as an optical lens of various optical devices such as a camera and a microscope. Since the surface reflection of an optical element such as an optical lens provided with such an antireflection film is suppressed, stray light can be removed.
  • ⁇ XRD measurement A multipurpose X-ray diffractometer (“Ultima-IV” manufactured by Rigaku Co., Ltd.) was used as a measuring device, the radiation source was CuK ⁇ , the output was 40 kV, 40 mA, and the detector was “D / teX Ultra”.
  • ICP measurement An ICP emission spectroscopic analyzer (“Optima 3300” manufactured by PerkinElmer) was used as the measuring device.
  • TEM measurement A transmission electron microscope (TEM; "JEM-2100” manufactured by Hitachi, Ltd.) was used as a measuring device, and measurement was performed under a magnification condition of 120 k (120,000) times.
  • ⁇ Particle shape evaluation The TEM image of the particles was image-processed using the image processing software "imageJ 1.51j8". Specifically, the scale of 1 pixel was processed so as to correspond to the actual image, and the image was binarized.
  • the average particle size was calculated according to the following method. First, the sample was centrifuged to extract particles. Then, when the particles are observed by TEM at a magnification of 120 k times (120,000 times), the particles existing in one field of view are targeted for measurement, and the arithmetic mean of the major axis and the minor axis of each particle is taken as the particle. The particle size was defined, and the arithmetic mean of the particle size of each particle was defined as the "average particle size".
  • the "major axis” means the longest axis of the particle, and the “minor axis” means the shortest axis of the particle.
  • particles in which only a part of the particles were visible in one field of view were excluded from the target.
  • Examples 1 to 24 To 5 mL of a 10 M potassium hydroxide aqueous solution , further add tantalum pentoxide (tantalum pentoxide, Ta 2 O 5 ) and 5 mL of ethylene glycol to the concentrations shown in Table 1, and add a high-temperature pressurized acid decomposition vessel (manufactured by Parr). It was heated under the conditions shown in Table 1. After heating, it was confirmed by the above-mentioned measurement whether or not potassium tantalate (KTaO 3 ) was obtained, and the average particle size was determined based on the above-mentioned method.
  • tantalum pentoxide tantalum pentoxide, Ta 2 O 5
  • ethylene glycol ethylene glycol
  • potassium tantalate particles having a small average particle size can be efficiently produced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is a method for producing potassium tantalate particles, the method including a heating step for heating a mixture containing (A) an oxide including tantalum, (B) a potassium compound which is potassium hydroxide and/or potassium chloride, (C) at least one alcohol selected from the group consisting of ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol, and (D) water.

Description

タンタル酸カリウム粒子の製造方法、及び膜の製造方法、並びにタンタル酸カリウム粒子、膜、反射防止膜、光学素子、及び光学装置A method for producing potassium tantalate particles and a method for producing a film, and a method for producing potassium tantalate particles, a film, an antireflection film, an optical element, and an optical device.
 本発明は、タンタル酸カリウム粒子の製造方法、及び膜の製造方法、並びにタンタル酸
カリウム粒子、膜、反射防止膜、光学素子、及び光学装置に関する。本発明は2020年3月19日に出願された日本国特許の出願番号2020-049969の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。
The present invention relates to a method for producing potassium tantalate particles and a method for producing a film, and a method for producing potassium tantalate particles, a film, an antireflection film, an optical element, and an optical device. The present invention claims the priority of application number 2020-049969 of the Japanese patent filed on March 19, 2020, and for designated countries that are permitted to be incorporated by reference to the literature, the contents described in the application are as follows. Incorporated into this application by reference.
 タンタル酸カリウムは、光学材料としての使用が期待されており、例えば、ペロブスカイト型の結晶構造を有するものが挙げられる(特許文献1等)。 Potassium tantalate is expected to be used as an optical material, and examples thereof include those having a perovskite-type crystal structure (Patent Document 1 and the like).
特開2007-076926号公報Japanese Unexamined Patent Publication No. 2007-07626
 本発明の第一の態様は、(A)タンタルを含む酸化物と、(B)水酸化カリウム又は塩化カリウムの少なくともいずれかであるカリウム化合物と、(C)エチレングリコール、メタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群より選ばれる少なくとも1種のアルコール類と、(D)水と、を含む混合物を加熱する加熱工程を含む、タンタル酸カリウム粒子の製造方法である。 The first aspect of the present invention is (A) an oxide containing tantalum, (B) a potassium compound which is at least one of potassium hydroxide or potassium chloride, and (C) ethylene glycol, methanol, ethanol, 1-. A method for producing potassium hydroxide particles, which comprises a heating step of heating a mixture containing at least one alcohol selected from the group consisting of propanol and 2-propanol and (D) water.
 本発明の第二の態様は、上述した製造方法によりタンタル酸カリウム粒子を得る工程と、タンタル酸カリウム粒子を含む分散液をミスト化するミスト化工程と、ミスト化した分散液を基板に供給する供給工程と、供給工程後に、基板上に存在する分散液を乾燥させる乾燥工程と、を含む、タンタル酸カリウム粒子を含む膜の製造方法である。 A second aspect of the present invention is a step of obtaining potassium tantalate particles by the above-mentioned production method, a mistification step of mistizing a dispersion containing potassium tantalate particles, and supplying the mistized dispersion to a substrate. A method for producing a film containing potassium tantalate particles, which comprises a feeding step and a drying step of drying the dispersion liquid existing on the substrate after the feeding step.
 本発明の第三の態様は、平均粒子径が、100nm以下である、タンタル酸カリウム粒子である。 The third aspect of the present invention is potassium tantalate particles having an average particle size of 100 nm or less.
 本発明の第四の態様は、上述したタンタル酸カリウム粒子を含む、膜である。 The fourth aspect of the present invention is a film containing the above-mentioned potassium tantalate particles.
 本発明の第五の態様は、上述した膜を少なくとも1層含む、反射防止膜である。 A fifth aspect of the present invention is an antireflection film containing at least one layer of the above-mentioned film.
 本発明の第六の態様は、上述した反射防止膜を備える、光学素子である。 The sixth aspect of the present invention is an optical element provided with the antireflection film described above.
 本発明の第七の態様は、上述した光学素子を備える、光学装置である。 The seventh aspect of the present invention is an optical device including the above-mentioned optical element.
本実施形態におけるミスト法を用いた成膜装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the film forming apparatus using the mist method in this embodiment.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。なお、図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. In the drawings, the positional relationships such as up, down, left, and right shall be based on the positional relationships shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the ratios shown.
<タンタル酸カリウム粒子の製造方法、タンタル酸カリウム粒子> <Manufacturing method of potassium tantalate particles, potassium tantalate particles>
 本実施形態に係るタンタル酸カリウム(KTaO)粒子(以下、単に「粒子」と呼ぶ場合がある。)の製造方法は、(A)タンタルを含む酸化物と、(B)水酸化カリウム又は塩化カリウムの少なくともいずれかであるカリウム化合物と、(C)エチレングリコール、メタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群より選ばれる少なくとも1種のアルコール類と、(D)水と、を含む混合物を加熱する加熱工程を含むものである。 The method for producing potassium tantalate (KTaO 3 ) particles (hereinafter, may be simply referred to as “particles”) according to the present embodiment is (A) an oxide containing tantalum and (B) potassium hydroxide or chloride. A potassium compound which is at least one of potassium, at least one alcohol selected from the group consisting of (C) ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol, and (D) water. It comprises a heating step of heating the containing mixture.
 従来から、光散乱の抑制等を目的とする光学薄膜や、大きい比表面積を必要とする触媒材料等への適用のため、平均粒子径の小さいタンタル酸カリウムが求められている。しかし、従来の製造方法では、平均粒子径の小さいタンタル酸カリウムを得ることが困難であった。 Conventionally, potassium tartrate having a small average particle size has been required for application to an optical thin film for the purpose of suppressing light scattering, a catalyst material requiring a large specific surface area, and the like. However, it has been difficult to obtain potassium tantalate having a small average particle size by the conventional production method.
 本実施形態に係る製造方法によれば、平均粒子径が100nm以下のタンタル酸カリウムのナノ粒子を効率よく製造することができる。このようなタンタル酸カリウムのナノ粒子は、後述するミスト法による成膜技術に使用可能であるだけでなく、ミスト法により成膜した際には粒子を均一かつ密に配置することができるため、光散乱を抑制でき、高屈折率の膜とすることができる。したがって、本実施形態に係るタンタル酸カリウム粒子は、光散乱を抑制する光学薄膜等として好適に使用できる。 According to the production method according to the present embodiment, nanoparticles of potassium tantalate having an average particle size of 100 nm or less can be efficiently produced. Such nanoparticles of potassium tartrate can be used not only in the film forming technique by the mist method described later, but also because the particles can be uniformly and densely arranged when the film is formed by the mist method. Light scattering can be suppressed, and a film having a high refractive index can be obtained. Therefore, the potassium tantalate particles according to the present embodiment can be suitably used as an optical thin film or the like that suppresses light scattering.
 また、本実施形態に係る製造方法によって得られるタンタル酸カリウム粒子は、触媒材料等としても好適に使用できる。タンタル酸カリウムは有機合成反応や光反応等の各種反応の触媒としての用途も期待されるところ、100nm以下の平均粒子径であるタンタル酸カリウム粒子は比表面積が大きいため、系中の反応物質や基質等との接触効率が高い。したがって、本実施形態に係るタンタル酸カリウム粒子は、触媒能が高い触媒として好適に使用できる。 Further, the potassium tantalate particles obtained by the production method according to the present embodiment can be suitably used as a catalyst material or the like. Potassium tantalate is also expected to be used as a catalyst for various reactions such as organic synthesis reactions and photoreactions. Since potassium tantalate particles having an average particle size of 100 nm or less have a large specific surface area, they can be used as reactants in the system. High contact efficiency with substrates and the like. Therefore, the potassium tantalate particles according to the present embodiment can be suitably used as a catalyst having high catalytic ability.
 そして、本実施形態に係る製造方法の好適な態様の一つとして、ソルボサーマル合成法によるものが挙げられる。かかる製造方法によって作製されたタンタル酸カリウム粒子は、水等の分散媒に対してある程度の分散性を有する。よって、本実施形態に係るタンタル酸カリウム粒子は、ミスト法による成膜技術等に応用することができる。 Then, as one of the preferable aspects of the production method according to the present embodiment, there is a method by a solvothermal synthesis method. The potassium tantalate particles produced by such a production method have a certain degree of dispersibility in a dispersion medium such as water. Therefore, the potassium tantalate particles according to the present embodiment can be applied to a film forming technique or the like by the mist method.
 以下、本実施形態に係る製造方法において使用可能な成分や製造条件等を説明する。 Hereinafter, the components and manufacturing conditions that can be used in the manufacturing method according to this embodiment will be described.
 (A)タンタルを含む酸化物としては、特に限定されないが、入手容易性や反応効率等の観点から、酸化タンタル(五酸化タンタル、Ta)が好ましい。 The oxide containing (A) tantalum is not particularly limited, but tantalum pentoxide (tantalum pentoxide, Ta 2 O 5 ) is preferable from the viewpoint of availability, reaction efficiency, and the like.
 混合液における(A)成分の割合は、特に限定されないが、0.01M以上1M以下であることが好ましい。また、その下限は0.03Mであることがより好ましく、0.05Mであることが更に好ましい。また、その上限は0.5Mであることがより好ましく、0.3Mであることが更に好ましい。なお、本実施形態における「M」はモル濃度(mol/L)のことを意味する。 The ratio of the component (A) in the mixed solution is not particularly limited, but is preferably 0.01 M or more and 1 M or less. Further, the lower limit thereof is more preferably 0.03 M, and further preferably 0.05 M. Further, the upper limit thereof is more preferably 0.5 M, and further preferably 0.3 M. In addition, "M" in this embodiment means a molar concentration (mol / L).
 (B)カリウム化合物としては、水酸化カリウム又は塩化カリウムの少なくともいずれかを用いればよい。これらは1種単独で用いてもよいし、併用してもよい。これらの中では、塩基性の強さの観点から、水酸化カリウムが好ましい。 As the (B) potassium compound, at least one of potassium hydroxide and potassium chloride may be used. These may be used alone or in combination. Among these, potassium hydroxide is preferable from the viewpoint of basic strength.
 (A)成分に対する(B)成分のモル比(B/A)は、特に限定されないが、タンタル酸カリウム粒子の反応効率や反応コストの観点から、5以上300以下であることが好ましい。また、その下限は10であることがより好ましく、20であることが更に好ましく、30であることがより更に好ましい。また、その上限は280であることがより好ましく、250であることが更に好ましく、220であることがより更に好ましい。 The molar ratio (B / A) of the component (B) to the component (A) is not particularly limited, but is preferably 5 or more and 300 or less from the viewpoint of the reaction efficiency and the reaction cost of the potassium tantalate particles. Further, the lower limit thereof is more preferably 10, further preferably 20, and even more preferably 30. Further, the upper limit thereof is more preferably 280, further preferably 250, and even more preferably 220.
 (C)アルコール類としては、エチレングリコール、メタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群より選ばれる少なくとも1種を用いればよい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。(C)成分を用いることで、(B)成分の溶解性を高めるとともに、反応系中のカチオン成分等の反応物質を捕捉し、出発原料の過度な成長(例えば、タンタル酸カリウム粒子の核生成密度等)を制御し、タンタル酸カリウムの粒子径の増大を抑制できる。このような観点から、(C)成分の中では、エチレングリコールが好ましい。 (C) As the alcohols, at least one selected from the group consisting of ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol may be used. These may be used alone or in combination of two or more. By using the component (C), the solubility of the component (B) is enhanced, and the reactants such as the cation component in the reaction system are captured, and the starting material is excessively grown (for example, the nucleation of potassium tantalate particles). It is possible to control the density, etc.) and suppress the increase in the particle size of potassium tantalate. From this point of view, ethylene glycol is preferable among the components (C).
 なお、上述した観点から、混合液における(C)成分の割合を増やせば、タンタル酸カリウムの粒子径を小さくできる傾向にあり、(C)成分の割合を減らせば、タンタル酸カリウムの粒子径を大きくできる傾向にある(ただし、本実施形態の作用はこれに限定されない。)。 From the above viewpoint, increasing the proportion of the component (C) in the mixed solution tends to reduce the particle size of potassium tantalum, and decreasing the proportion of the component (C) reduces the particle size of potassium tantalum. There is a tendency to increase (however, the action of this embodiment is not limited to this).
 混合液における(C)成分の割合は、特に限定されないが、0.1M以上17M以下であることが好ましい。また、その下限は1Mであることがより好ましい。また、その上限は8Mであることがより好ましい。(C)成分の割合をこのような範囲にすることで、上述したタンタル酸カリウムの平均粒子径を一層効果的に制御できる。 The ratio of the component (C) in the mixed solution is not particularly limited, but is preferably 0.1 M or more and 17 M or less. Further, the lower limit thereof is more preferably 1M. Further, the upper limit thereof is more preferably 8M. By setting the ratio of the component (C) in such a range, the average particle size of the above-mentioned potassium tantalate can be controlled more effectively.
 本実施形態に係る製造方法では、溶媒として、少なくとも(D)水を用いる。すなわち、水性溶媒中で加熱工程を行うものである。 In the production method according to this embodiment, at least (D) water is used as the solvent. That is, the heating step is performed in an aqueous solvent.
 本実施形態に係る製造方法では、上述した(A)~(D)成分以外にも、タンタル酸カリウムの合成を阻害しない程度であれば、適宜公知の成分を添加してもよい。例えば、反応速度や溶液の塩基性等を制御する各種触媒等が挙げられる。 In the production method according to the present embodiment, in addition to the above-mentioned components (A) to (D), known components may be appropriately added as long as they do not inhibit the synthesis of potassium tantalate. For example, various catalysts for controlling the reaction rate, the basicity of the solution, and the like can be mentioned.
 加熱工程における加熱温度は、特に限定されないが、反応速度やタンタル酸カリウムの収率の観点から、150℃以上であることが好ましく、150℃以上300℃以下であることがより好ましい。また、その下限は160℃であることがより好ましく、170℃であることが更に好ましく、200℃であることがより更に好ましい。また、その上限は、295℃であることがより好ましく、270℃であることが更に好ましく、260℃であることがより更に好ましい。 The heating temperature in the heating step is not particularly limited, but is preferably 150 ° C. or higher, more preferably 150 ° C. or higher and 300 ° C. or lower, from the viewpoint of the reaction rate and the yield of potassium tantalate. Further, the lower limit thereof is more preferably 160 ° C., further preferably 170 ° C., and even more preferably 200 ° C. Further, the upper limit thereof is more preferably 295 ° C., further preferably 270 ° C., and even more preferably 260 ° C.
 加熱工程における加熱時間は、特に限定されないが、反応速度やタンタル酸カリウムの収率の観点から、30分以上210分以下であることが好ましい。また、その下限は40分であることがより好ましく、50分であることが更に好ましい。また、その上限は、180分であることがより好ましく、150分であることが更に好ましい。 The heating time in the heating step is not particularly limited, but is preferably 30 minutes or more and 210 minutes or less from the viewpoint of the reaction rate and the yield of potassium tantalate. Further, the lower limit thereof is more preferably 40 minutes and further preferably 50 minutes. The upper limit is more preferably 180 minutes and even more preferably 150 minutes.
 加熱工程における圧力は、とくに限定されないが、反応速度やタンタル酸カリウムの収率の観点から、常圧よりも高い圧力であることが好ましい。常圧よりも高い圧力で加熱を行う場合、オートクレーブ等を用いて加熱工程を行うことが好ましい。具体的には、例えば、高温加熱酸分解容器等を使用することができる。 The pressure in the heating step is not particularly limited, but is preferably higher than the normal pressure from the viewpoint of the reaction rate and the yield of potassium tantalum. When heating is performed at a pressure higher than normal pressure, it is preferable to perform the heating step using an autoclave or the like. Specifically, for example, a high-temperature heated acid decomposition container or the like can be used.
 なお、本実施形態に係る製造方法は、必要に応じて、加熱工程の後に、混合液を冷却する冷却工程を行ってもよい。冷却手段としては、特に限定されず、水冷、空冷等の公知の手法を採用することができる。 Note that, in the production method according to the present embodiment, if necessary, a cooling step of cooling the mixed liquid may be performed after the heating step. The cooling means is not particularly limited, and known methods such as water cooling and air cooling can be adopted.
 本実施形態に係る製造方法によって得られるタンタル酸カリウム粒子は、その平均粒子径を100nm以下とすることができる。また、その平均粒子径は、用途に応じて80nm以下としてよく、50nm以下としてもよい。 The average particle size of the potassium tantalate particles obtained by the production method according to the present embodiment can be 100 nm or less. The average particle size may be 80 nm or less, or 50 nm or less, depending on the intended use.
 本実施形態でいう「平均粒子径」とは、倍率120k倍(12万倍)のTEM(透過型電子顕微鏡)によって観察した場合に、その1視野に存在する粒子を測定の対象とし、各粒子の長軸と短軸の算術平均を当該粒子の粒子径とし、各粒子の粒子径の算術平均を「平均粒子径」とする。なお、「長軸」とは、当該粒子の最も長い軸をいい、「短軸」とは、当該粒子の最も短い軸をいう。また、1視野中に粒子の一部分のみが視認される粒子は、対象から除外するものとする。 The "average particle size" as used in the present embodiment means particles existing in one field of measurement when observed by a TEM (transmission electron microscope) having a magnification of 120 k times (120,000 times), and each particle is measured. Let the arithmetic average of the major axis and the minor axis of be the particle size of the particle, and let the arithmetic average of the particle size of each particle be the "average particle size". The "major axis" means the longest axis of the particle, and the "minor axis" means the shortest axis of the particle. In addition, particles in which only a part of the particles are visible in one field of view are excluded from the target.
<タンタル酸カリウム粒子を含む膜の製造方法、膜> <Method of manufacturing a membrane containing potassium tantalate particles, membrane>
 本実施形態に係るタンタル酸カリウム粒子を含む膜(以下、単に「膜」と呼ぶ場合がある。)の製造方法は、(A)タンタルを含む酸化物と、(B)水酸化カリウム又は塩化カリウムの少なくともいずれかであるカリウム化合物と、(C)エチレングリコール、メタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群より選ばれる少なくとも1種のアルコール類と、(D)水と、を含む混合物を加熱して、タンタル酸カリウム粒子を得る加熱工程と、タンタル酸カリウム粒子を含む分散液をミスト化するミスト化工程と、ミスト化した分散液を基板に供給する供給工程と、供給工程後に、基板上に存在する分散液を乾燥させる乾燥工程と、を含むものである。 The method for producing a film containing potassium tantalate particles (hereinafter, may be simply referred to as “film”) according to the present embodiment is (A) an oxide containing tantalum and (B) potassium hydroxide or potassium chloride. (C) At least one alcohol selected from the group consisting of ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol, and (D) water. A heating step of heating the mixture to obtain potassium tantalate particles, a mistification step of mistizing a dispersion containing potassium tantalate particles, a supply step of supplying the mistized dispersion to a substrate, and a supply step after the supply step. , A drying step of drying the dispersion liquid existing on the substrate.
 本実施形態に係るタンタル酸カリウム粒子は、水性溶媒に対して高い分散性を有するため、上述したような手法でナノ粒子膜を成膜することが可能である。ナノ粒子膜の作製方法については、例えば、MHz帯の超音波振子の振動によりタンタル酸カリウム粒子を含む分散液をミスト化(霧化)させたナノ粒子含有ミストを基材に吹き付けることにより達成できる。 Since the potassium tantalate particles according to the present embodiment have high dispersibility in an aqueous solvent, it is possible to form a nanoparticle film by the method described above. The method for producing the nanoparticle film can be achieved, for example, by spraying a nanoparticle-containing mist obtained by mistizing (atomizing) a dispersion containing potassium tantalate particles by vibration of an ultrasonic pendulum in the MHz band. ..
 また、上述した手法によれば、基板を高温で熱処理する必要がないため、基板の材質に関する制限を緩和することができる。例えば、軟化点の低い樹脂材料からなるフレキシブル基板に対しても成膜が可能である。 Further, according to the above-mentioned method, since it is not necessary to heat-treat the substrate at a high temperature, restrictions on the material of the substrate can be relaxed. For example, a film can be formed on a flexible substrate made of a resin material having a low softening point.
 以下、各工程について説明する。 Each process will be described below.
 (1)加熱工程については、上述したタンタル酸カリウム粒子の製造方法で行われる加熱工程で述べた条件を採用することができる。 (1) For the heating step, the conditions described in the heating step performed in the above-mentioned method for producing potassium tantalate particles can be adopted.
 (2)ミスト化工程としては、(1)工程で得られたタンタル酸カリウム粒子を含む分散液をミスト化(霧化)する手法であればよい。なお、このミスト化工程において、(1)工程で得られたタンタル酸カリウム粒子を分散媒に加えて分散液を準備する操作を行ってもよい。 As the (2) mistification step, any method may be used as long as it is a method of mistizing (atomizing) the dispersion liquid containing the potassium tantalate particles obtained in the (1) step. In this mist formation step, the operation of adding the potassium tantalate particles obtained in the step (1) to the dispersion medium to prepare the dispersion liquid may be performed.
 ミストの発生手法としては、公知の手法を採用することができ、例えば、加圧式、回転ディスク式、超音波式、静電式、オリフィス振動式、スチーム式等を採用することができる。本実施形態では、タンタル酸カリウム粒子の分散液であることから、物理的にミスト化(霧化)する手法が好ましい。これにより、液体の温度制御や液滴のサイズ制御が容易となる。 As a mist generation method, a known method can be adopted, for example, a pressurized type, a rotating disc type, an ultrasonic type, an electrostatic type, an orifice vibration type, a steam type, or the like can be adopted. In the present embodiment, since it is a dispersion liquid of potassium tantalate particles, a method of physically mistizing (atomizing) is preferable. This facilitates liquid temperature control and droplet size control.
 ミスト化工程では、キャリアガスを用いることで、続く供給工程まで分散液のミストを運ぶことができる。キャリアガスとしては、例えば、アルゴン、ヘリウム、窒素等の不活性ガスを用いることができる。 In the mist conversion process, by using a carrier gas, the mist of the dispersion liquid can be carried to the subsequent supply process. As the carrier gas, for example, an inert gas such as argon, helium, or nitrogen can be used.
 また、(2)工程と(3)工程の間に、ミストトラップによるミストを均一化させる工程や、ミストの滞留期間(滞留部)を設ける滞留工程を行ってもよい。 Further, between the steps (2) and (3), a step of equalizing the mist by a mist trap or a retention step of providing a retention period (retention portion) of the mist may be performed.
 分散媒については、水の他、エタノール、メタノール、プロパノール等の有機系の溶媒を用いてもよい。例えば、分散媒として、上述した(C)成分や(D)成分を用いることができる。分散媒は、1種単独で用いてもよいし、2種以上を併用してもよい。また、霧化を行う周波数帯域については各分散媒に適したものであればよく、上記の帯域に限定されない。基材については、ガラス、樹脂、金属等、材質は限定されず、UV照射等、表面を親水化処理可能な工程を設けることがなお望ましい。 As the dispersion medium, in addition to water, an organic solvent such as ethanol, methanol, or propanol may be used. For example, the above-mentioned component (C) and component (D) can be used as the dispersion medium. The dispersion medium may be used alone or in combination of two or more. Further, the frequency band for atomization may be any one suitable for each dispersion medium, and is not limited to the above band. The material of the base material is not limited to glass, resin, metal, etc., and it is more desirable to provide a step capable of hydrophilizing the surface such as UV irradiation.
 (3)供給工程については、ミストを基板に供給させる手法であれば特に限定されず、公知の技術を採用することができる。例えば、ミスト法によりミスト化工程で得られた微小液滴を基板上に噴霧する方法が挙げられる。ミスト法としては、例えば、超音波噴霧、ミストCVD法、ソニアソース式、ホットウォール式等が挙げられる。これらの手法は、基板上に形成させる膜の膜厚、噴霧する液滴のサイズ等を考慮して、選択することができる。 (3) The supply process is not particularly limited as long as it is a method of supplying mist to the substrate, and a known technique can be adopted. For example, a method of spraying the fine droplets obtained in the mistification step by the mist method onto the substrate can be mentioned. Examples of the mist method include ultrasonic spraying, mist CVD method, sonia source method, hot wall method and the like. These methods can be selected in consideration of the film thickness of the film formed on the substrate, the size of the droplets to be sprayed, and the like.
 供給工程は、大気圧下、減圧下、真空下のいずれであってもよいが、簡便性の観点から大気圧下であることが好ましい。 The supply step may be under atmospheric pressure, reduced pressure, or vacuum, but it is preferably under atmospheric pressure from the viewpoint of convenience.
 また、ミスト化した分散液を所定のパターンに対応してマスキングされた基板上に噴霧することで、タンタル酸カリウム粒子を含む膜のパターニングを行ってもよい。これにより、高い精度で寸法制御ができる。 Alternatively, the film containing the potassium tantalate particles may be patterned by spraying the mist-ized dispersion liquid onto the masked substrate corresponding to a predetermined pattern. As a result, dimensional control can be performed with high accuracy.
 例えば、マスキング材料として、光照射により相対的に親水化する材料を用いてもよい。当該材料に所定のパターンに対応する光を照射することで相対的に親水性を有する領域と撥水性を有する領域が形成され、この状態でミスト化した分散液を噴霧することにより親液性を有する領域にのみミスト化した分散液を配置させることができる。 For example, as the masking material, a material that becomes relatively hydrophilic by light irradiation may be used. By irradiating the material with light corresponding to a predetermined pattern, a region having relatively hydrophilicity and a region having water repellency are formed, and in this state, a mist-ized dispersion liquid is sprayed to make the material liquid-friendly. The mist-ized dispersion can be arranged only in the region having the mixture.
 さらに、基材に対する材料の制約が緩和されるため、基材として、薄く、かつ、高いフレキシビリティを有するフィルム基材(「シート基材」と呼ばれることもある)を使用することもできる。さらには、ロール・ツー・ロール(Roll to Roll)といった連続生産も可能となる。 Furthermore, since the material restrictions on the base material are relaxed, a thin film base material (sometimes called a "sheet base material") having high flexibility can be used as the base material. Furthermore, continuous production such as roll-to-roll (Roll to Roll) is also possible.
 基材としては、例えば、公知の材料を用いることができる。例えば、ガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等が挙げられる。 As the base material, for example, a known material can be used. For example, glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC). ), Cellulose acetate propionate (CAP) and the like.
 (4)乾燥工程としては、基板に噴霧された分散液の分散媒を除去する。例えば、赤外線等の光照射や加熱等によって、分散媒を気化させることによって、基板の表面上にタンタル酸カリウム粒子を含む膜を形成させる。加熱温度は、溶媒の沸点、基板の軟化点、膜の物性に影響するその他の物性を考慮して、設定することができる。ここでいう基板の軟化点とは、基板を加熱した場合に、基板が軟化して、変形を起こし始める温度をいい、例えば、JIS K7191-1に準じた試験方法により求めることができる。 (4) As a drying step, the dispersion medium of the dispersion liquid sprayed on the substrate is removed. For example, a film containing potassium tantalate particles is formed on the surface of the substrate by vaporizing the dispersion medium by irradiating light such as infrared rays or heating. The heating temperature can be set in consideration of the boiling point of the solvent, the softening point of the substrate, and other physical characteristics that affect the physical characteristics of the film. The softening point of the substrate referred to here means a temperature at which the substrate softens and begins to deform when the substrate is heated, and can be obtained by, for example, a test method according to JIS K7191-1.
 (4)工程の後、必要に応じて、親水性付与といった基材の改質を行う目的でUV照射工程等を行ってもよい。 After the step (4), if necessary, a UV irradiation step or the like may be performed for the purpose of modifying the base material such as imparting hydrophilicity.
 ここで、本実施形態に係る製造方法において使用できる成膜装置の一例を説明する。 Here, an example of a film forming apparatus that can be used in the manufacturing method according to the present embodiment will be described.
 図1は、本実施形態におけるミスト法を用いた成膜装置の一例を示す概念図である。 FIG. 1 is a conceptual diagram showing an example of a film forming apparatus using the mist method in the present embodiment.
 成膜装置1は、タンタル酸カリウム粒子を含む分散液をミスト化させる第1槽、ミストを均一化させるミストトラップである第2槽、基板10に対してミストを噴霧する第3槽を有する。 The film forming apparatus 1 has a first tank for mistizing a dispersion liquid containing potassium tantalate particles, a second tank which is a mist trap for homogenizing the mist, and a third tank for spraying mist on the substrate 10.
 第1槽には、上述したタンタル酸カリウム粒子を含む分散液Sが収容される。 The first tank contains the dispersion liquid S containing the above-mentioned potassium tantalate particles.
 第1槽には、ミストの流路を形成するためのエアー20がフローされている。 Air 20 for forming a mist flow path is flowing in the first tank.
 第1槽は、超音波振動子30を備える。超音波振動子30により、タンタル酸カリウム粒子を含む分散液がミスト化される。ミストの粒径は、特に限定されないが、10μm以下(例えば1~10μm)であることが好ましい。第1槽で発生したミストは、第1層に設けられた管を経由して第2槽に搬送される。第2槽では、余分なミストが槽の下部に溜まり、粒子径がより均一化されたミストが第2槽に設けられた管を経由して第3層に搬送される。第2槽から第3槽へは、5μm以下(例えば1~5μm)の粒子径のミストが搬送されるよう構成されることが好ましい。 The first tank is equipped with an ultrasonic vibrator 30. The ultrasonic transducer 30 mistizes the dispersion liquid containing the potassium tantalate particles. The particle size of the mist is not particularly limited, but is preferably 10 μm or less (for example, 1 to 10 μm). The mist generated in the first tank is conveyed to the second tank via a pipe provided in the first layer. In the second tank, excess mist collects in the lower part of the tank, and the mist having a more uniform particle size is conveyed to the third layer via a pipe provided in the second tank. It is preferable that the mist having a particle size of 5 μm or less (for example, 1 to 5 μm) is conveyed from the second tank to the third tank.
 第3槽には基板10が配置され、第2槽から搬送されたミストが基板に噴霧される。第3槽では所定時間、基板10に対してミストが噴霧される。そして、基板10に付着したミストの分散媒が気化することによって、基板10の表面にタンタル酸カリウム粒子を含む膜が形成される。なお、噴霧後一定時間が経過すると、ミストが気化するよりも先に新たなミストが基板10上に付着することにより、液滴化した分散液が流れ落ち、基板10上に均一な膜が形成されなくなる。基板10に対してミストの噴霧を停止する時間は、タンタル酸カリウムの微粒子を含むミストが液化して基板10から流れ落ちる時点であってもよいし、所望する膜厚の膜が基板10上に形成された時点であってもよい。 The substrate 10 is arranged in the third tank, and the mist conveyed from the second tank is sprayed on the substrate. In the third tank, mist is sprayed on the substrate 10 for a predetermined time. Then, the dispersion medium of the mist adhering to the substrate 10 is vaporized to form a film containing potassium tantalate particles on the surface of the substrate 10. After a certain period of time has passed after spraying, new mist adheres to the substrate 10 before the mist evaporates, so that the dispersed dispersion liquid that has become droplets flows down and a uniform film is formed on the substrate 10. It disappears. The time for stopping the spraying of the mist on the substrate 10 may be the time when the mist containing the fine particles of potassium tantalate liquefies and flows down from the substrate 10, or a film having a desired film thickness is formed on the substrate 10. It may be at the time when it was done.
 第3槽において、基板10を過度に加熱すると、軟化により変形してしまう可能性がある。そのため、第3槽では、基板の軟化点より低い温度の下でミストが噴霧され、膜が形成されることが好ましい。また、ミスト噴霧時に基板10を所定温度以上に加熱すると、基板10に付着したタンタル酸カリウムの微粒子が凝集して膜の均一性が悪化する。このため、さらに好ましくは、40℃以下(例えば10~40℃)の温度下でミストが噴霧され、膜が形成されるよう構成する。 If the substrate 10 is heated excessively in the third tank, it may be deformed due to softening. Therefore, in the third tank, it is preferable that the mist is sprayed at a temperature lower than the softening point of the substrate to form a film. Further, when the substrate 10 is heated to a predetermined temperature or higher during mist spraying, the fine particles of potassium tantalate adhering to the substrate 10 aggregate and the uniformity of the film deteriorates. Therefore, more preferably, the mist is sprayed at a temperature of 40 ° C. or lower (for example, 10 to 40 ° C.) to form a film.
 基板10に対し選択的に膜を形成する場合、予め基板10に対して選択的に撥水膜を形成することにより、相対的に親水性を有する領域にのみミストを配置させる。この際、基板10が水平に配置されていると、相対的に撥水性を有する領域に付着したミストが撥水されにくくなり、選択的に膜を形成させることができない場合がある。このため、第3槽では、水平面に対して傾斜した基板10に対してミストを噴霧させることが好ましい。 When the film is selectively formed on the substrate 10, the water-repellent film is selectively formed on the substrate 10 in advance so that the mist is arranged only in the region having relatively hydrophilicity. At this time, if the substrate 10 is arranged horizontally, the mist adhering to the relatively water-repellent region becomes difficult to repel water, and it may not be possible to selectively form a film. Therefore, in the third tank, it is preferable to spray the mist on the substrate 10 inclined with respect to the horizontal plane.
 同様に、第3槽では、ミストの噴霧方向に直交する面に対して傾斜した基板10に対してミストが噴霧されることが好ましい。ミストの噴霧の勢いで、相対的に撥水性を有する領域に付着した余分な微粒子を除去するためである。 Similarly, in the third tank, it is preferable that the mist is sprayed on the substrate 10 that is inclined with respect to the plane orthogonal to the spraying direction of the mist. This is to remove excess fine particles adhering to the relatively water-repellent region by the force of mist spraying.
 なお、成膜装置は、第2槽のミストトラップを省略してもよい。 The film forming apparatus may omit the mist trap in the second tank.
 また、ミストの発生方法については、上述の超音波振動子30を用いて発生させるほか、液滴を噴霧する細管に直接電圧をかけてミストを発生させる静電式、圧力を加え流速を増加させたガスを液体と衝突させることによって、発生したミストを飛散させる加圧式、高速回転しているディスク上に液滴を滴下し、発生したミストを遠心力によって飛散させる回転ディスク式、マイクロサイズの孔を有するオリフィス板に液滴を通すが、その際に圧電素子等によって振動を加えることによって液滴を切断することで、マイクロサイズの液滴を発生させるオリフィス振動式等を用いることができる。ミストの発生方法については、コストやパフォーマンス等に応じて適宜これらの方法を選択する。また、上述した方法を複数組み合わせてミストを発生させてもよい。 As for the method of generating mist, in addition to generating it using the above-mentioned ultrasonic transducer 30, an electrostatic type that directly applies a voltage to a thin tube for spraying droplets to generate mist, and applying pressure to increase the flow velocity. Pressurized type that scatters the generated mist by colliding the generated gas with the liquid, rotating disc type that drops droplets on a disk rotating at high speed and disperses the generated mist by centrifugal force, micro-sized holes An orifice vibration type or the like that generates micro-sized droplets can be used by passing the liquid droplets through the orifice plate having the above, and cutting the droplets by applying vibration with a piezoelectric element or the like at that time. As for the mist generation method, these methods are appropriately selected according to the cost, performance, and the like. Further, a plurality of the above-mentioned methods may be combined to generate mist.
 上述した製造方法によって得られる膜の好適例は、平均粒子径が100nm以下であるタンタル酸カリウム粒子を含む膜である。かかる膜は、後述する反射防止膜等に好適に使用できる。 A preferable example of the film obtained by the above-mentioned production method is a film containing potassium tantalate particles having an average particle size of 100 nm or less. Such a film can be suitably used as an antireflection film or the like described later.
 また、本実施形態に係る膜は、タンタル酸カリウム粒子が樹脂材料中に分散されてなる膜であってもよい。樹脂材料の成分は、膜の用途に応じて好適なものを選択することができる。樹脂材料としては、例えば、ポリメタクリル酸メチル樹脂等が挙げられる。 Further, the film according to the present embodiment may be a film in which potassium tantalate particles are dispersed in a resin material. As the component of the resin material, a suitable one can be selected according to the application of the film. Examples of the resin material include polymethylmethacrylate resin and the like.
<反射防止膜> <Anti-reflective coating>
 本実施形態に係る膜の好適例は、タンタル酸カリウム粒子を含む膜であることから、例えば、光の散乱を抑制する光学薄膜として好適に使用できる。よって、本実施形態に係る膜は、反射防止膜を構成する層として好適に使用できる。このような反射防止膜は、単層構造でもよいし、2層以上の多層構造であってもよい。例えば、本実施形態に係る膜を少なくとも1層含む反射防止膜としてもよい。 Since a preferred example of the film according to the present embodiment is a film containing potassium tantalate particles, it can be suitably used as, for example, an optical thin film that suppresses light scattering. Therefore, the film according to the present embodiment can be suitably used as a layer constituting the antireflection film. Such an antireflection film may have a single-layer structure or a multi-layer structure having two or more layers. For example, it may be an antireflection film containing at least one layer of the film according to the present embodiment.
 本実施形態に係る反射防止膜は、例えば、カメラや顕微鏡等の各種光学装置の光学レンズなどの光学素子の表面に設けることができる。かかる反射防止膜を備えた光学レンズなどの光学素子は表面反射が抑制されるため、迷光を除去できる。 The antireflection film according to this embodiment can be provided on the surface of an optical element such as an optical lens of various optical devices such as a camera and a microscope. Since the surface reflection of an optical element such as an optical lens provided with such an antireflection film is suppressed, stray light can be removed.
 以下の実施例及び比較例により本発明を更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to the following examples.
<測定方法> <Measurement method>
・XRD測定:
 測定装置として多目的X線回折装置(リガク社製「Ultima-IV」)を使用し、線源はCuKα、出力は40kV、40mA、検出器は「D/teX Ultra」の条件で測定した。
・ XRD measurement:
A multipurpose X-ray diffractometer (“Ultima-IV” manufactured by Rigaku Co., Ltd.) was used as a measuring device, the radiation source was CuKα, the output was 40 kV, 40 mA, and the detector was “D / teX Ultra”.
・ICP測定:
 測定装置としてICP発光分光分析装置(パーキンエルマー社製「Optima 3300」)を使用した。
・ ICP measurement:
An ICP emission spectroscopic analyzer (“Optima 3300” manufactured by PerkinElmer) was used as the measuring device.
・TEM測定:
 測定装置として透過型電子顕微鏡(TEM;日立製作所社製「JEM-2100」)を使用し、120k(12万)倍の倍率条件で測定した。
・ TEM measurement:
A transmission electron microscope (TEM; "JEM-2100" manufactured by Hitachi, Ltd.) was used as a measuring device, and measurement was performed under a magnification condition of 120 k (120,000) times.
・粒子の形状評価:
 粒子のTEM画像を、画像処理ソフトウェア「imageJ 1.51j8」を用いて画像処理した。具体的には、1ピクセルのスケールを実際の画像と対応するように処理し、画像を2値化した。
・ Particle shape evaluation:
The TEM image of the particles was image-processed using the image processing software "imageJ 1.51j8". Specifically, the scale of 1 pixel was processed so as to correspond to the actual image, and the image was binarized.
 その上で、平均粒子径は以下の手法に準拠して求めた。まず、サンプルを遠心分離にかけて粒子を抽出した。そして、当該粒子を、倍率120k倍(12万倍)のTEMによって観察した場合に、その1視野に存在する粒子を測定の対象とし、各粒子の長軸と短軸の算術平均を当該粒子の粒子径とし、各粒子の粒子径の算術平均を「平均粒子径」とした。なお、「長軸」とは、当該粒子の最も長い軸をいい、「短軸」とは、当該粒子の最も短い軸をいう。また、1視野中に粒子の一部分のみが視認される粒子は、対象から除外した。 Then, the average particle size was calculated according to the following method. First, the sample was centrifuged to extract particles. Then, when the particles are observed by TEM at a magnification of 120 k times (120,000 times), the particles existing in one field of view are targeted for measurement, and the arithmetic mean of the major axis and the minor axis of each particle is taken as the particle. The particle size was defined, and the arithmetic mean of the particle size of each particle was defined as the "average particle size". The "major axis" means the longest axis of the particle, and the "minor axis" means the shortest axis of the particle. In addition, particles in which only a part of the particles were visible in one field of view were excluded from the target.
<実施例1~24>
 10Mの水酸化カリウム水溶液5mLに、表1に示す濃度となるよう酸化タンタル(五酸化タンタル、Ta)及びエチレングリコール5mLをさらに加えて、高温加圧酸分解容器(Parr社製)を用いて表1の条件で加熱した。加熱後、タンタル酸カリウム(KTaO)が得られているかどうかを上述した測定によって確認するとともに、上述した方法に基づきその平均粒子径を求めた。
<Examples 1 to 24>
To 5 mL of a 10 M potassium hydroxide aqueous solution , further add tantalum pentoxide (tantalum pentoxide, Ta 2 O 5 ) and 5 mL of ethylene glycol to the concentrations shown in Table 1, and add a high-temperature pressurized acid decomposition vessel (manufactured by Parr). It was heated under the conditions shown in Table 1. After heating, it was confirmed by the above-mentioned measurement whether or not potassium tantalate (KTaO 3 ) was obtained, and the average particle size was determined based on the above-mentioned method.
<比較例1>
 エチレングリコールを加えなかった点以外は、実施例7と同様の条件で粒子の製造を試みた。その結果、タンタル酸カリウム粒子の平均粒径は101nmであった。
<Comparative example 1>
The production of particles was attempted under the same conditions as in Example 7 except that ethylene glycol was not added. As a result, the average particle size of the potassium tantalate particles was 101 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上より、本実施例によれば、平均粒子径が小さいタンタル酸カリウム粒子を効率よく製造できることが少なくとも確認された。 From the above, it was at least confirmed that according to this example, potassium tantalate particles having a small average particle size can be efficiently produced.
1…成膜装置、10…基板、20…エアー、30…超音波振動子、S…原料溶液 1 ... film formation device, 10 ... substrate, 20 ... air, 30 ... ultrasonic vibrator, S ... raw material solution

Claims (15)

  1.  (A)タンタルを含む酸化物と、(B)水酸化カリウム又は塩化カリウムの少なくともいずれかであるカリウム化合物と、(C)エチレングリコール、メタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群より選ばれる少なくとも1種のアルコール類と、(D)水と、を含む混合物を加熱する加熱工程を含む、
    タンタル酸カリウム粒子の製造方法。
    A group consisting of (A) an oxide containing tantalum, (B) a potassium compound which is at least one of potassium hydroxide or potassium chloride, and (C) ethylene glycol, methanol, ethanol, 1-propanol, and 2-propanol. A heating step of heating a mixture containing at least one alcohol selected from the above and (D) water is included.
    A method for producing potassium tantalate particles.
  2.  前記加熱工程において、150℃以上で加熱する、
    請求項1に記載の製造方法。
    In the heating step, heating is performed at 150 ° C. or higher.
    The manufacturing method according to claim 1.
  3.  前記加熱工程において、30分以上210分以下で加熱する、
    請求項1又は2に記載の製造方法。
    In the heating step, heating is performed in 30 minutes or more and 210 minutes or less.
    The manufacturing method according to claim 1 or 2.
  4.  前記(A)タンタルを含む酸化物は、酸化タンタル(Ta)である、
    請求項1~3のいずれか一項に記載の製造方法。
    The oxide containing (A) tantalum is tantalum oxide (Ta 2 O 5 ).
    The manufacturing method according to any one of claims 1 to 3.
  5.  前記(B)カリウム化合物は、水酸化カリウムである、
    請求項1~4のいずれか一項に記載の製造方法。
    The potassium compound (B) is potassium hydroxide.
    The manufacturing method according to any one of claims 1 to 4.
  6.  前記(C)アルコール類は、エチレングリコールである、
    請求項1~5のいずれか一項に記載の製造方法。
    The (C) alcohols are ethylene glycol.
    The manufacturing method according to any one of claims 1 to 5.
  7.  前記加熱工程は、常圧よりも高い圧力で行われる、
    請求項1~6のいずれか一項に記載の製造方法。
    The heating step is performed at a pressure higher than normal pressure.
    The manufacturing method according to any one of claims 1 to 6.
  8.  前記(A)タンタルを含む酸化物に対する前記(B)カリウム化合物のモル比(B/A)が5以上300以下である、
    請求項1~7のいずれか一項に記載の製造方法。
    The molar ratio (B / A) of the potassium compound (B / A) to the oxide containing (A) tantalum is 5 or more and 300 or less.
    The manufacturing method according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか一項に記載の製造方法によりタンタル酸カリウム粒子を得る工程と、
     前記タンタル酸カリウム粒子を含む分散液をミスト化するミスト化工程と、
     ミスト化した前記分散液を基板に供給する供給工程と、
     前記供給工程後に、前記基板上に存在する前記分散液を乾燥させる乾燥工程と、を含む、
    タンタル酸カリウム粒子を含む膜の製造方法。
    A step of obtaining potassium tantalate particles by the production method according to any one of claims 1 to 8.
    The mist-forming step of mist-forming the dispersion liquid containing the potassium tantalate particles, and
    A supply process for supplying the mist-ized dispersion liquid to the substrate, and
    After the supply step, a drying step of drying the dispersion liquid existing on the substrate is included.
    A method for producing a film containing potassium tantalate particles.
  10.  平均粒子径が、100nm以下である、
    タンタル酸カリウム粒子。
    The average particle size is 100 nm or less.
    Potassium tantalate particles.
  11.  請求項10に記載のタンタル酸カリウム粒子を含む、
    膜。
    The potassium tantalate particles according to claim 10 are included.
    film.
  12.  前記タンタル酸カリウム粒子が樹脂材料中に分散されてなる、
    請求項11に記載の膜。
    The potassium tantalate particles are dispersed in the resin material.
    The film according to claim 11.
  13.  請求項11又は12に記載の膜を少なくとも1層含む、
    反射防止膜。
    The film comprising at least one layer according to claim 11 or 12.
    Anti-reflection film.
  14.  請求項13に記載の反射防止膜を備える、光学素子。 An optical element comprising the antireflection film according to claim 13.
  15.  請求項14に記載の光学素子を備える、光学装置。 An optical device including the optical element according to claim 14.
PCT/JP2021/010351 2020-03-19 2021-03-15 Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus WO2021187412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508343A JPWO2021187412A1 (en) 2020-03-19 2021-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020049969 2020-03-19
JP2020-049969 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187412A1 true WO2021187412A1 (en) 2021-09-23

Family

ID=77770923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010351 WO2021187412A1 (en) 2020-03-19 2021-03-15 Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus

Country Status (2)

Country Link
JP (1) JPWO2021187412A1 (en)
WO (1) WO2021187412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204235A1 (en) * 2022-04-21 2023-10-26 Dic株式会社 Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079013A (en) * 2001-06-02 2001-08-22 태원필 Synthesis of nanosized potassium tantalum oxide(KTaO3) sol-particle
CN101602524A (en) * 2009-07-07 2009-12-16 桂林理工大学 A kind of hydrothermal synthesis method of potassium tantalite powder
JP2011247918A (en) * 2010-05-24 2011-12-08 Kri Inc Low refractive index film and antireflection film
CN102854222A (en) * 2012-09-27 2013-01-02 吉林大学 Moisture-sensitive sensor based on potassium tantalite sensitive membrane and preparation method thereof
JP2015124159A (en) * 2013-12-25 2015-07-06 東ソー株式会社 Tantalum oxo-alkoxo complex, method of producing the same, and method of making tantalum oxide film
JP2017178738A (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 METHOD FOR PRODUCING KTaO3 NANOPARTICLE AND METHOD FOR MANUFACTURING SEMICONDUCTOR THIN FILM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079013A (en) * 2001-06-02 2001-08-22 태원필 Synthesis of nanosized potassium tantalum oxide(KTaO3) sol-particle
CN101602524A (en) * 2009-07-07 2009-12-16 桂林理工大学 A kind of hydrothermal synthesis method of potassium tantalite powder
JP2011247918A (en) * 2010-05-24 2011-12-08 Kri Inc Low refractive index film and antireflection film
CN102854222A (en) * 2012-09-27 2013-01-02 吉林大学 Moisture-sensitive sensor based on potassium tantalite sensitive membrane and preparation method thereof
JP2015124159A (en) * 2013-12-25 2015-07-06 東ソー株式会社 Tantalum oxo-alkoxo complex, method of producing the same, and method of making tantalum oxide film
JP2017178738A (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 METHOD FOR PRODUCING KTaO3 NANOPARTICLE AND METHOD FOR MANUFACTURING SEMICONDUCTOR THIN FILM

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. MAKAROVA; P. BYKOV; J. DRAHOKOUPIL; M. CERNANSKY; Z. DLABACEK; A. DEJNEKA; L. JASTRABIK; V. TREPAKOV;: "Solvothermal synthesis of nanocrystalline KTaO: Effect of solvent dielectric constant", MATERIALS RESEARCH BULLETIN, ELSEVIER, KIDLINGTON., GB, vol. 47, no. 7, 16 March 2012 (2012-03-16), GB , pages 1768 - 1773, XP028485131, ISSN: 0025-5408, DOI: 10.1016/j.materresbull.2012.03.028 *
WANG XIAOHUI; ZHENG SHILI; ZHANG YI: "A novel method to prepare ultrafine potassium tantalate powders", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 62, no. 8, 2008, AMSTERDAM, NL , pages 1212 - 1214, XP029141223, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2007.08.014 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204235A1 (en) * 2022-04-21 2023-10-26 Dic株式会社 Tantalic acid salt particles, method for producing tantalic acid salt particles, resin composition, and molded object

Also Published As

Publication number Publication date
JPWO2021187412A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
TWI280896B (en) Maskless direct write of copper using an annular aerosol jet
TWI764479B (en) Mist generating device, mist film-forming device, and mist generating method
JP2021501710A (en) Modular printhead assembly for plasma jet printing
WO2021187412A1 (en) Method for producing potassium tantalate particles, method for producing film, potassium tantalate particles, film, antireflective film, optical element, and optical apparatus
US20120263938A1 (en) Method of producing porous metal oxide films using template assisted electrostatic spray deposition
TW200807520A (en) Methods and apparatus for cleaning a substrate
US20200354225A1 (en) Silica particle dispersion and method for producing the same
US20060269463A1 (en) Method for manufacturing metal oxide hollow nanoparticles and metal oxide hollow nanoparticles manufactured by the same
TW200539958A (en) Process for the deposition of uniform layer of particulate material
TWI649444B (en) Droplet coating film forming device and droplet coating film forming method
JP7089537B2 (en) ITO particles, dispersion liquid, production method of ITO particles, production method of dispersion liquid, and production method of ITO film
JP7455166B2 (en) Method for producing ITO particles, dispersion liquid, and ITO film
US20060204758A1 (en) Mesostructured film, mesoporous material film, and production methods for the same
US20170130325A1 (en) Vacuum evaporation method
US20230166980A1 (en) Gallium-doped zinc oxide particles, film containing gallium-doped zinc oxide particles, transparent conductive film, electronic device, and method for producing gallium-doped zinc oxide particles
JP4298605B2 (en) Mesostructured film, mesoporous material film, and manufacturing method thereof
WO2017030151A1 (en) Method for manufacturing matrix
US10981132B2 (en) Aerosolization method for producing solid product particles having desired characteristics from precursor particles
US20230146881A1 (en) Electrospray printer
US20170292185A1 (en) Vacuum evaporation apparatus and method for making patterned film
Duryea et al. Titanium Dioxide Nanomaterial Ink Production Through Laser Ablation Synthesis in Solution for Printed Electronics Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770652

Country of ref document: EP

Kind code of ref document: A1