WO2023204088A1 - マイクロ分析チップ - Google Patents

マイクロ分析チップ Download PDF

Info

Publication number
WO2023204088A1
WO2023204088A1 PCT/JP2023/014600 JP2023014600W WO2023204088A1 WO 2023204088 A1 WO2023204088 A1 WO 2023204088A1 JP 2023014600 W JP2023014600 W JP 2023014600W WO 2023204088 A1 WO2023204088 A1 WO 2023204088A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
porous base
ion
channel
flow path
Prior art date
Application number
PCT/JP2023/014600
Other languages
English (en)
French (fr)
Inventor
晴信 前田
毅 山本
啓司 宮▲崎▼
慎 深津
正典 田中
淳 三浦
風花 榎戸
顕久 松川
靖数 井上
克市 阿部
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023204088A1 publication Critical patent/WO2023204088A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a microanalysis chip in which a microchannel is formed inside a porous base material.
  • microanalysis chips that utilize micro-sized microchannels to efficiently perform biochemical analysis within one chip have been attracting attention in a wide range of fields. Specifically, it is attracting attention not only in biochemistry research, but also in various fields such as medicine, drug discovery, healthcare, the environment, and food.
  • micrometer-sized microchannels were formed on glass or silicon using photolithography and molds, and sample pretreatment, stirring, mixing, reaction, and detection were performed on a single chip.
  • An analysis chip has been developed. As a result, the testing system has become more compact, faster analysis, and the amount of specimen and waste fluid has been reduced.
  • Electrochemical analysis measures the potential between electrodes immersed in a sample to be analyzed, and is widely used in fields such as medicine and the environment.
  • Traditional electrochemical analysis is performed by technicians using sophisticated equipment, which limits the field and resources in which measurements can be made.
  • it is inexpensive and easy to handle for use in developing countries where medical equipment is insufficient, remote areas, medical care at disaster sites, and airports where it is necessary to stop the spread of infectious diseases at the border.
  • Non-Patent Document 1 proposes a filter paper-based device for measuring the concentration of Na and K ions.
  • This device is made on a piece of filter paper and has a dispensing part for dispensing the specimen, and the dispensed specimen permeates from the dispensing part to the working electrode and reference electrode areas. This makes it possible to electrically connect both electrodes and measure the potential difference.
  • KCl ion crystals are deposited on the reference electrode, and during measurement, the KCl ion crystals dissolve into the sample, increasing the Cl ions in the reference electrode area. Maintain the concentration and obtain a stable reference electrode potential.
  • a K ion selection membrane formed to cover the working electrode selects only the ions to be measured, making it possible to measure them without being influenced by other ions.
  • Patent Document 1 proposes a microanalysis chip for electrochemical analysis.
  • This device has a two-layer structure, with the upper layer having a dispensing part for dispensing the sample, and the dispensed sample substantially permeates through the thickness of the porous hydrophilic layer, allowing the dispensing sample to pass through the thickness of the porous hydrophilic layer. Penetrates the top surface of the electrode assembly. Then, by electrically connecting a plurality of electrodes, electrochemical measurements can be performed.
  • the above-described configuration may have an unfavorable effect on the measurement accuracy of the sample concentration. Specifically, there may be undesirable effects on the measurement sensitivity of electrolyte concentration, ion selectivity of specific ions, potential stability during measurement, etc. The reason for this is that the contact area between the sample and the ion selective membrane is insufficient or the contact is unstable.
  • Non-Patent Document 1 it was necessary to precisely control the formation conditions of the ion-selective membrane in order to obtain good measurement accuracy. Specifically, it was necessary to make it easier for the ion selective membrane to penetrate into the voids of the porous base material so that the contact area between the porous base material and the ion selective membrane within the porous base material was increased. However, Non-Patent Document 1 did not disclose details of a method for controlling penetration. Furthermore, if the area of the ion-selective membrane is increased in order to increase the area of the interface between the ion-selective membrane and the porous substrate, the flow path device will become larger.
  • the porous hydrophilic layer supplies the analyte by contacting the top surface of the electrode assembly.
  • the substrate supporting the electrode assembly does not have a flow path through which the specimen can permeate, the flow rate of the specimen due to capillary action is low, and the time from dispensing to the end of measurement may be long.
  • sample contact at the side portion of the electrode assembly without a flow path becomes unstable, which may have an undesirable effect on the measured potential.
  • the present disclosure aims to provide a microanalysis chip that can quickly obtain good electrolyte concentration measurement sensitivity, ion selectivity, and potential stability.
  • a microanalysis chip configured by laminating a first porous base material and a second porous base material, Inside the first porous base material, a first channel chamber, a second channel chamber, and a first channel connecting the first channel chamber and the second channel chamber are formed by a channel wall. and A reference electrode is arranged in the first channel chamber, A working electrode is arranged in the second channel chamber, A microanalysis characterized in that the second porous base material is arranged on the surface of the first porous base material so as to overlap at least a part of the area where the working electrode is formed. Tips provided.
  • microanalysis chip with excellent electrolyte concentration measurement sensitivity, ion selectivity, and potential time stability.
  • FIG. 1 is a simplified cross-sectional view showing the configuration of a microanalysis chip P1 according to Example 1.
  • FIG. Channel chamber 1, channel chamber 2, channel 3, channel wall 5, dispensing section 6, reference electrode 7, working electrode 8, ion selective membrane 9, and ion crystal of the microanalysis chip P1 according to Example 1 10 is a diagram schematically showing the relative positional relationship and size relationship of 10.
  • FIG. 2 is a simplified cross-sectional view showing the configuration of a microanalysis chip P2 according to Comparative Example 1.
  • FIG. This is an example of measurement results in Example 1 and Comparative Example 1. This is an example of measurement results in Example 1 and Comparative Example 1.
  • FIG. 3 is a simple cross-sectional view showing the filtration effect of Example 1.
  • FIG. 3 is a simple cross-sectional view showing the filtration effect of Comparative Example 1.
  • FIG. 3 is a simplified cross-sectional view showing the configuration of a microanalysis chip P3 according to Comparative Example 2.
  • FIG. 3 is an image diagram showing the time course of the behavior of the specimen after dispensing in Example 1 and Comparative Example 1.
  • 2 is a simplified cross-sectional view showing the configuration of a microanalysis chip P2 according to Modification 1 of Example 1.
  • a microanalysis chip according to the present invention for solving the above-mentioned problems will be described based on the following embodiments. Note that the embodiments described below are merely examples, and the technical scope of the present invention is not intended to be limited thereto.
  • FIG. 1 schematically shows a cross-sectional view of the microanalysis chip P1 at the line segment AA in FIG.
  • FIG. 2 shows a channel chamber 1, a channel chamber 2, a channel 3, a channel wall 5, a dispensing section 6, a reference electrode 7, a working electrode 8, an ion selective membrane 9, a microanalysis chip P1 according to Example 1, The relative positional relationship and size relationship of the ionic crystals 10 are simply shown.
  • the microanalysis chip P1 is composed of a porous base material S1 and a porous base material S2.
  • the porous base material S1 and the porous base material S2 are laminated in the thickness direction.
  • the porous base material S1 has a first channel region surrounded by a channel wall 5.
  • the channel pattern in the porous base material S1 is composed of a channel chamber 1 (first channel chamber), a channel chamber 2 (second channel chamber), and a channel 3.
  • Channel 3 (first channel) connects channel chamber 1 (first channel chamber) and channel chamber 2 (second channel chamber).
  • a reference electrode 7 is arranged in the flow path chamber 1, and an ionic crystal 10 having analyte solubility is arranged on the surface of the reference electrode 7.
  • a working electrode 8 is arranged in the flow path chamber 2.
  • the porous base material S2 has a dispensing section 6 for dispensing the specimen, and a channel 4 (second channel) connecting the dispensing section 6 and the region where the working electrode 8 is formed.
  • the flow path 4 is provided so as to overlap at least a portion of the area where the working electrode 8 is formed on the surface of the porous base material S1.
  • the upper surface of the porous substrate S2, at least the position connecting the dispensing part 6 and the working electrode 8, be covered with a regulating member 11 that does not allow the specimen to penetrate.
  • a regulating member 11 that does not allow the specimen to penetrate.
  • the lower surface of the porous base material S1 and the upper surface of the porous base material S2 are each covered by a regulating member 11.
  • porous base material a paper material was used as the porous base material, but the porous base material is not limited to a paper material.
  • the porous base material may be any material that generates capillary action with respect to liquid, and may have a porous structure such as open cells or nanofibers, etc. inside, and may include resins, glass, inorganic substrates, fabrics, etc. , metal paper, etc. may also be used.
  • a porous substrate with a large thickness or a large porosity is suitable for rapid measurement because of the large flow rate of the sample due to capillary action.
  • the same paper base material was used as both the porous base material S1 and the porous base material S2, but the combination is not limited to this.
  • a flow path area similar to that of this embodiment may be formed by folding back one porous base material S1.
  • different materials may be used for the porous base material S1 and the porous base material S2, and depending on the combination of materials, it is possible to give the device effects such as sample flow rate control and sample filtration.
  • a channel pattern (channel wall) was formed by heat fixing after disposing a hydrophobic resin, but the method of forming the channel pattern is not limited to this. It is only necessary to form the flow channel pattern, and in addition to cutting the paper porous base material and leaving only the channel shape, the channel walls may be formed using a wax printer.
  • the regulating member may be any material as long as it does not allow the specimen to penetrate.
  • a specific example is a laminate film made of PET (polyethylene terephthalate).
  • a reference electrode 7 is arranged in the flow path chamber 1 (first flow path chamber).
  • the reference electrode 7 is covered with an ionic crystal 10 on its top and side surfaces.
  • the reference electrode 7 has a lead wire that is continuously extended from the inside of the channel chamber 1 to the top of the channel wall 5 as a contact point during measurement.
  • a working electrode 8 is arranged in the flow path chamber 2 (second flow path chamber).
  • the working electrode 8 has an upper surface and side surfaces covered with an ion selective membrane 9 containing a component having ion selectivity.
  • the working electrode 8 has a lead wire that extends continuously from the inside of the channel chamber 2 onto the channel wall 5 .
  • one channel chamber (first channel chamber) for the reference electrode 7 and one channel chamber (second channel chamber) for the working electrode 8 were used.
  • the number of flow path chambers is not limited to this. If there are multiple ions whose concentration is to be measured, the number of working electrodes and channel chambers may be increased by the number of ion species.
  • the porous base material S2 has a dispensing section 6 and a flow path 4.
  • the dispensing section 6 is arranged so as to overlap the channel 3 of the porous base material S1.
  • the flow path 4 is arranged so as to overlap the flow path 3 and the ion selective membrane 9.
  • the flow path 4 of the porous base material S2 does not necessarily need to cover the entire upper surface of the working electrode 8; for example, in a working electrode with good wettability of the sample, it is necessary to cover a part of the upper surface of the working electrode. The same effects as in this embodiment can be obtained.
  • Example 1 ⁇ Flow path configuration>
  • porous substrates S1 and S2 made of paper and having a thickness L1 of 0.1 mm and a porosity of 50% were used.
  • Porosity (%) (true density - apparent density) / true density x 100
  • the apparent density (g/cm 3 ) was calculated using the following formula.
  • Apparent density (g/cm 3 ) Basic weight (g/m 2 )/Thickness (mm) ⁇ 1000
  • porous substrate S1 After a hydrophobic resin was placed on the surface of the porous substrate S1, it was thermally fixed to form a channel pattern as a channel wall 5 through which the specimen could not penetrate.
  • the porous substrate S2 was arranged to overlap the channel 3 and the ion selective membrane 9.
  • the porous base material S1 and the porous base material S2 are covered with a regulating member that does not allow the specimen to penetrate, and in this example, a laminate film made of PET (polyethylene terephthalate) was used as the regulating member.
  • the sizes of the flow path chambers 1 and 2 and the dispensing section 6 were as follows.
  • sample an aqueous solution containing NaCl, which is an ion to be measured, and KCl, which is a coexisting ion, was used.
  • a reference electrode 7 made of Ag/AgCl was provided in the flow path chamber 1. 3.5 mg of KCl ion crystal was placed on the reference electrode 7 as the ion crystal 10.
  • a working electrode 8 mainly made of carbon was provided in the flow path chamber 2.
  • a working electrode 8 made of a conductive polymer such as PEDOT:PSS (a dispersion of polyethylenedioxythiophene and polystyrene sulfonic acid) may be used.
  • materials such as Ag/AgCl, which have been conventionally used for the base of reference electrodes, may be used.
  • the size of the working electrode 8 was as follows.
  • a Na ion selective membrane 9 was formed to cover the working electrode 8.
  • the ion selective membrane 9 is made of the following material.
  • Ion selective material Bis (12-crown-4) 3.0% by mass
  • Anion scavenger Potassium tetrakis (4-chlorophenyl) borate 0.5% by mass o-nitrophenyl octyl ether (o-nitrophenyl octyl ether) 64.0% by mass
  • the reference electrode 7, the working electrode 8, and the ion selective membrane 9 were formed with the shapes, sizes, materials, etc. described above, but they are not limited to these.
  • a KCl ionic crystal was used as the ionic crystal 10.
  • the material of the ionic crystal 10 may be any material containing Cl ions, and is not limited to KCl ion crystal.
  • the mass of the ionic crystal 10 to be placed is not limited to this, as long as the mass of the KCl ion crystal becomes a saturated solution when dissolved in pure water having a volume equivalent to that of the solution in the channel chamber 1.
  • the ion selective membrane 9 was provided in this embodiment, the ion selective membrane 9 is not necessarily necessary when measuring the total amount of ions in a sample.
  • the sample is dispensed into the dispensing section 6 on the porous base material S2
  • the sample is transferred to the flow path chamber 1 direction and the flow path chamber 2 direction by capillary action on the paper porous base materials S1 and S2 according to the flow path pattern. Penetrate in both directions at the same time.
  • ions contained in the sample are selected by the ion selection membrane 9 in the flow path chamber 2, and the measurement potential of the working electrode 8 necessary for electrolyte concentration measurement is stabilized. do.
  • the position of the dispensing section 6 is set at the midpoint where the distance from the flow path chamber 1 and the distance from the flow path chamber 2 are approximately equal, but the position of the dispensing section 6 is not limited to this. isn't it.
  • the device can have a filtration function for samples that contain particles of several micrometers, improving sensitivity and selectivity. It may be possible to do so.
  • the KCl ion crystal dissolves in the sample, and the Cl ion concentration in the solution in the channel chamber 1 is saturated.
  • the concentration of the analyte can be measured, and the measurement of the analyte concentration is completed after a predetermined measurement time has elapsed. If the volume of the sample to be dispensed is at least the volume that can reach the channel chambers 1 and 2 through the channel 3 of the porous substrate S2, a sufficient amount of the sample can be brought into contact with the ion selective membrane 9. Therefore, the analyte concentration can be measured between the working electrode 8 and the reference electrode 7 with good accuracy.
  • the microanalysis chip P2 has a porous base material S1, but does not have a porous base material S2.
  • the shapes of the porous substrate S1 and the channel walls were the same as in Example 1.
  • the configurations (shape and size) of the dispensing section 6, reference electrode 7, working electrode 8, ion selective membrane 9, ion crystal 10, etc. were also the same as in Example 1.
  • the dispensing section 6 is formed in the porous base material S1.
  • porous substrate S2 was not used.
  • the sample that reached the flow path chamber 1 dissolved the ionic crystal 10 covering the reference electrode 7 in the same manner as in Example 1, forming a Cl ion solution with a saturated concentration.
  • the sample that has reached the channel chamber 2 comes into contact with the ion selective membrane 9, but the main contact point is at the boundary between the porous base material S1 and the ion selective membrane 9 within the cross section of the porous base material S1.
  • the specimen does not come into contact with the upper surface portion of the ion selective membrane 9. For this reason, sufficient measurement sensitivity and ion selectivity cannot be obtained depending on the permeation state of the ion selective membrane 9 with respect to the porosity of the porous base material S1 and the shape in which the ion selective membrane 9 is arranged within the porous base material S1. There was a case.
  • NaCl was selected as the solution containing the ions to be measured
  • KCl was selected as the solution containing coexisting ions.
  • the NaCl concentration was changed to 5 levels: 100 ⁇ mol/L, 1 mmol/L, 10 mmol/L, 100 mmol/L, and 800 mmol/L.
  • the amount of sample dispensed was 30 ⁇ L to 50 ⁇ L.
  • a commercially available silver-silver chloride electrode (RE-1BP, manufactured by BAS Corporation) was used as the reference electrode.
  • FIGS. 4A and 4B show the relationship between the log Na ion concentration (logC Na + ) and the measured potential (potential after stabilization).
  • Sensitivity represents the slope of the region where the slope of the measured potential with respect to the log Na ion concentration is non-negative and constant.
  • the ion selection coefficient indicates how many orders of magnitude smaller target ions can be detected than the coexisting K ions, and the larger it is in the negative direction, the more desirable it is.
  • the rising point of the non-negative straight line in Example 1 was when the log Na ion concentration was around ⁇ 3 (mol/L).
  • the logarithmic concentration of coexisting ions is ⁇ 2, which indicates that the target Na ion can be measured from a concentration that is one order of magnitude or more lower.
  • FIGS. 5A and 5B there is also a difference in behavior between Example 1 and Comparative Example 1 in the temporal stability of the measured potential. While FIG. 5A shows a stable potential over time in Example 1, FIG. 5B shows rapid changes and continuous gradual changes in potential.
  • Example 1 can quickly and stably supply the analyte necessary for measurement to the ion-selective membrane, has excellent measurement sensitivity, ion selectivity, and time stability of potential, and is effective for electrolyte concentration measurement. It was shown that
  • the interfering particles remain at the interface between the porous base material S2 and the regulating member 11, making it difficult for the interfering particles to diffuse into the inside of the porous base material S1.
  • This configuration is suitable for preventing interfering particles from coming into contact with the ion selective membrane 9.
  • Example 1 when measuring a sample that contains particles that may interfere with electrochemical measurements, by using the configuration as in Example 1, it is possible to filter out interfering particles without pre-treatment of the sample for measurement. possible, and is suitable for measuring electrolyte concentration.
  • FIG. 8 is a simplified cross-sectional view showing the configuration of a microanalysis chip P3 according to Comparative Example 2.
  • the configuration of the microanalysis chip P3 shown in FIG. 8 is modeled on the configuration disclosed in Patent Document 1.
  • the microanalysis chip P3 has a porous base material S1 and a porous base material S2.
  • the porous base material S1 has a structure in which the region other than the region where the reference electrode 7 and the working electrode 8 are formed is filled with a channel wall 5 that cannot be penetrated by the sample.
  • the porous base material S2 has a dispensing section 6 and a flow path 4.
  • the dispensing section 6 is arranged approximately directly above the midpoint between the reference electrode 7 and the working electrode 8 of the porous substrate S1.
  • the channel 4 is arranged so as to overlap the end of the ion crystal 10 on the side of the dispensing section 6 and the ion selective membrane 9 of the working electrode 8 .
  • FIG. 9 shows the time course of the behavior of the specimen after dispensing in Example 1, Comparative Example 1, and Comparative Example 2.
  • ⁇ T1 represents the time required for the sample to fill the flow path area after dispensing before reaching the working electrode
  • ⁇ T2 represents the time required for the analyte that has reached the working electrode to cover the surface of the working electrode and to be able to start measurement
  • ⁇ T3 represents the time from the start of electrochemical measurement until the potential stabilizes and the measurement ends.
  • Table 1 shows the results of the behavior of the specimen over time in Example 1, Comparative Example 1, and Comparative Example 2. The results were determined by measuring the concentration in the five stages described above (the KCl concentration was fixed at 10 mmol/L, and the NaCl concentration was changed to 100 ⁇ mol/L, 1 mmol/L, 10 mmol/L, 100 mmol/L, and 800 mmol/L). ), and the average was taken.
  • Example 1 good sensitivity and ion selectivity were obtained from the stable measurement potential over time. Sensitivity and ion selectivity were calculated in accordance with the aforementioned JIS K0122 ion electrode measurement method general rules.
  • Example 1 it is possible to increase the area of the ion selective membrane 9 that comes into contact with the sample and quickly supply a sufficient amount of the sample that reacts with the ion selective membrane 9 with high purity ( Figure 6). It also has excellent measurement sensitivity, ion selectivity ( Figures 4A and 4B), and temporal stability of the measured potential ( Figures 5A and 5B), and is effective in measuring electrolyte concentrations in a short time and with high precision. It has been shown.
  • FIG. 10 is a cross-sectional view showing the schematic configuration of the microanalysis chip P4.
  • the dispensing section 6 is arranged on the upper surface (substantially directly above) of the working electrode 8.
  • the distance between the reference electrode 7 and the working electrode 8 can be shortened while maintaining good measurement performance such as sensitivity, ion selectivity, and temporal stability, making it possible to downsize the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

第一多孔質基材と第二多孔質基材とが積層されて構成されるマイクロ分析チップであって、該第一多孔質基材の内部には流路壁によって、第一流路室、第二流路室、該第一流路室と該第二流路室とを繋ぐ第一流路、が形成されており、該第一流路室には、参照電極が配置され、該第二流路室には、作用電極が配置されており、該第二多孔質基材は、該第一多孔質基材の表面において、該作用電極が形成されている領域の少なくとも一部分に重なるように配置されている、ことを特徴とする。

Description

マイクロ分析チップ
 本発明は、多孔質基材の内部にマイクロ流路を形成したマイクロ分析チップに関するものである。
 近年、マイクロサイズの微細流路を利用して、生化学における分析を1つのチップ内で効率的に行うことができるマイクロ分析チップが、幅広い分野で注目されている。具体的には、生化学の研究はもとより、医療、創薬、ヘルスケア、環境、食品などの各分野において注目されている。
 1990年代前半にフォトリソグラフィ法や金型などを用いて、ガラスやシリコン上にマイクロメータサイズの微細流路を形成し、サンプルの前処理、攪拌、混合、反応、検出を1チップ上で行うマイクロ分析チップが開発された。その結果、検査システムの小型化や迅速な分析、ならびに検体や廃液の低減などが実現された。
 電気化学分析は、分析対象となる検体に浸漬した電極間の電位を計測するものであり、医療や環境などの分野において広く使用されている。従来の電気化学分析は、技術者によって高度な機器を用いて行われるため、測定を行うフィールドやリソースがある程度制限される。しかし、医療設備が十分ではない途上国や、僻地や、災害現場での医療や、感染症の拡がりを水際で食い止める必要がある空港などでの使用のために、安価で、取り扱いが容易で、使い捨て可能な、電気化学分析用のマイクロ分析チップに対するニーズが存在する。
 非特許文献1では、Naイオン及びKイオンの濃度測定用の濾紙ベースのデバイスが提案されている。このデバイスは一枚の濾紙上に作製されており、検体を分注するための分注部を持ち、分注された検体が分注部から作用電極及び参照電極それぞれの領域へと浸透することによって、両電極を電気的に接続し、電位差測定が可能となる。また前記デバイスでは、参照電極において安定した電位を得るために、KClイオン結晶を参照電極上に堆積させており、測定時においてKClイオン結晶が検体へ溶解することで参照電極領域のClイオンを高濃度に保持し、安定した参照電極の電位を得る。さらに、作用電極を覆うように形成したKイオン選択膜によって測定対象のイオンのみを選択し、他のイオンの影響を受けずに測定できるようにしている。
 特許文献1では、電気化学分析用マイクロ分析チップが提案されている。このデバイスは二層構造であり、上層部分に検体を分注するための分注部を持ち、分注された検体が多孔性親水性の層の厚みを実質的に透過し、下層基板上の電極アセンブリの上面に浸透する。そして、複数の電極間を電気的に接続し、電気化学測定が可能となる。
米国特許出願公開第2012/0181184号明細書
Nipapan Ruecha, Orawon Chailapakul, Koji Suzuki and Daniel Chitterio『Fully Inkjet-Printed Paper-Based Potentiometric Ion-Sensing Devices』Analytical Chemistry August 29, 2017 Published, 89, PP.10608-10616
 しかしながら、先述のような構成では、検体濃度の測定精度に好ましくない影響が出る場合がある。具体的には、電解質濃度の測定感度、特定イオンのイオン選択性、測定時における電位安定性等に好ましくない影響が出る場合がある。その原因としては、検体とイオン選択膜との接触面積が不十分あるいは接触が不安定である点が挙げられる。
 非特許文献1に開示の構成では、良好な測定精度を得るために、イオン選択膜の形成条件を精密に制御する必要があった。具体的には、多孔質基材内における多孔質基材とイオン選択膜との接触面積が大きくなるように、多孔質基材の空隙部にイオン選択膜を浸透しやすくする必要があった。しかしながら、非特許文献1には浸透を制御する方法の詳細は開示されていなかった。また、イオン選択膜と多孔質基材との境界面の面積を大きくするためにイオン選択膜の面積を大きくすると、流路デバイスの大型化を招いてしまう。
 特許文献1に開示の構成では、多孔質親水性層が電極アセンブリの上面に接触することにより検体を供給する。しかし、電極アセンブリを支持する基板内に、検体が浸透可能な流路を有さないため、毛細管現象による検体流量が少なく、分注から測定終了までの時間が長くなることがあった。また、流路のない電極アセンブリの側面部分での検体接触が不安定になり、測定電位に好ましくない影響を与える場合があった。
 本開示では上記課題に鑑み、良好な電解質濃度の測定感度、イオン選択性、電位安定性を迅速に得ることが可能なマイクロ分析チップを提供することを目的とする。
 上記目的を達成するために、本開示の一態様によれば、
 第一多孔質基材と第二多孔質基材とが積層されて構成されるマイクロ分析チップであって、
 該第一多孔質基材の内部には流路壁によって、第一流路室、第二流路室、該第一流路室と該第二流路室とを繋ぐ第一流路、が形成されており、
 該第一流路室には、参照電極が配置され、
 該第二流路室には、作用電極が配置されており、
 該第二多孔質基材は、該第一多孔質基材の表面において、該作用電極が形成されている領域の少なくとも一部分に重なるように配置されている、ことを特徴とするマイクロ分析チップが提供される。
 本開示の一態様によれば、電解質濃度の測定感度、イオン選択性、電位の時間安定性に優れたマイクロ分析チップを提供することが可能になる。
実施例1にかかるマイクロ分析チップP1の構成を示す簡略的な断面図である。 実施例1にかかるマイクロ分析チップP1の流路室1、流路室2、流路3、流路壁5、分注部6、参照電極7、作用電極8、イオン選択膜9、及びイオン結晶10の相対的な位置関係及び大小関係を簡略的に示す図である。 比較例1にかかるマイクロ分析チップP2の構成を示す簡略的な断面図である。 実施例1及び比較例1における測定結果の一例である。 実施例1及び比較例1における測定結果の一例である。 実施例1及び比較例1における測定結果の一例である。 実施例1及び比較例1における測定結果の一例である。 実施例1の濾過効果を示す簡略的な断面図である。 比較例1の濾過効果を示す簡略的な断面図である。 比較例2にかかるマイクロ分析チップP3の構成を示す簡略的な断面図である。 実施例1及び比較例1における分注後の検体の振る舞いの時間推移を示すイメージ図である。 実施例1の変形例1にかかるマイクロ分析チップP2の構成を示す簡略的な断面図である。
 本明細書中、数値範囲を表す「XX以上YY以下」及び「XX~YY」との記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味している。また、数値範囲が段階的に記載されている場合においては、各数値範囲の上限及び下限の任意に組み合わせを開示しているものである。
 上述した課題を解決するための本発明に係るマイクロ分析チップについて、以下の実施の形態に基づいて説明する。なお、以下に示す実施の形態は一例であって、本発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 図1は、図2の線分A-Aの位置におけるマイクロ分析チップP1の断面図を簡略的に示したものである。
 図2は実施例1に係るマイクロ分析チップP1の流路室1、流路室2、流路3、流路壁5、分注部6、参照電極7、作用電極8、イオン選択膜9、及びイオン結晶10の相対的な位置関係及び大小関係を簡略的に示したものである。
 マイクロ分析チップP1は、多孔質基材S1、及び多孔質基材S2から構成される。多孔質基材S1と多孔質基材S2とは厚さ方向に積層されている。
 多孔質基材S1は、流路壁5に囲まれた第一流路領域を有する。多孔質基材S1内の流路パターンは、流路室1(第一流路室)、流路室2(第二流路室)及び流路3から構成される。流路3(第一流路)は流路室1(第一流路室)と流路室2(第二流路室)との間をつなぐ。
 流路室1には、参照電極7が配置され、参照電極7の表面には、検体可溶性を有するイオン結晶10が配置されている。
 流路室2には、作用電極8が配置されている。
 多孔質基材S2は、検体を分注するための分注部6と、分注部6と作用電極8が形成されている領域とを繋ぐ流路4(第二流路)とを有する。
 流路4は、多孔質基材S1の表面において、作用電極8が形成されている領域の少なくとも一部分に重なるように設けられている。
 多孔質基材S2の上面であって、少なくとも分注部6と作用電極8との間を繋ぐ位置は、検体が浸透しない規制部材11によって覆われていることが好ましい。なぜなら、例えば、後述の妨害粒子の濾過に有利に作用する場合や、検体の外気への露出面積を減らすことで外気起因の影響を少なくすることができ、測定電位が安定しやすくなる場合があるからである。
 多孔質基材S1の下面と多孔質基材S2の上面とはそれぞれ規制部材11によって覆われていることが好ましい。
 <多孔質基材>
 下記の実施例においては、多孔質基材として紙製のものを使用したが、多孔質基材は紙製のものに限定されない。多孔質基材は液体に対し毛細管現象を発生させるものであればよく、内部に連泡並びにナノファイバー等、網目状の構造等の多孔質を有するものでも良く、樹脂、ガラス、無機基板、布地、金属紙、などを用いても良い。例えば、多孔質基材の厚さが厚いものや空隙率が大きいものは、毛細管現象による検体流量が多いため迅速な測定に好適である。
 また、下記の実施例においては、多孔質基材S1及び多孔質基材S2はともに同じ紙製の基材を1枚ずつ使用したが、この組み合わせに限るものではない。1枚の多孔質基材S1を折り返すことにより本実施例と同等の流路領域を形成しても良い。また、多孔質基材S1と多孔質基材S2とで異なる材質のものを使用しても良く、材料の組み合わせによっては検体の流量制御や検体の濾過等の効果をデバイスに持たせることが可能な場合がある。
 <流路壁>
 下記の実施例においては、疎水性樹脂を配置したのち熱定着によって流路パターン(流路壁)を形成したが、流路パターンの形成方法はこれに限るものではない。流路パターンとなるように形成できればよく、紙製多孔質基材をカットし流路形状のみを残すカッティングする手法の他、流路壁をワックスプリンタで形成しても良い。
 <規制部材>
 規制部材は、検体が浸透しないものであればよい。
 具体的には、PET(ポリエチレンテレフタレート)によるラミネートフィルムが挙げられる。
 流路室1(第一流路室)には参照電極7が配置されている。参照電極7は、上面及び側面をイオン結晶10に覆われている。参照電極7は、測定時の接点として流路室1内から流路壁5の上へと、電極が連続的に延長したリード線を有する。
 流路室2(第二流路室)には、作用電極8が配置されている。作用電極8は、上面及び側面を、イオン選択性を有する成分を含むイオン選択膜9に覆われている。作用電極8は、流路室2内から流路壁5の上へと、電極が連続的に延長したリード線を有する。
 下記の実施例においては、参照電極7用の流路室(第一流路室)と作用電極8用の流路室(第二流路室)がそれぞれ1つずつであるものを使用したが、流路室の個数はこれに限定されない。濃度測定したいイオンが複数ある場合は、そのイオン種の数だけ作用電極および流路室を増やしても良い。
 多孔質基材S2は、分注部6と流路4とを有する。分注部6は多孔質基材S1の流路3に重なるように配置されている。流路4は流路3及びイオン選択膜9に重なるように配置されている。多孔質基材S2の流路4は、必ずしも作用電極8の上面の全てを覆っている必要は無く、例えば検体の濡れ性が良い作用電極においては、作用電極の上面の一部分を覆っていれば本実施形態と同様の効果を得られる。
 [実施例1]
 <流路の構成>
 実施例1では、厚さL1=0.1mm、空隙率が50%の紙製の多孔質基材S1及び多孔質基材S2を使用した。
 なお、空隙率(%)は、下記の式を用いて算出した。
  空隙率(%)=(真密度-見掛け密度)/真密度×100
 また、見掛け密度(g/cm)は、下記の式を用いて算出した。
  見掛け密度(g/cm)=坪量(g/m)/厚さ(mm)×1000
 多孔質性基材S1の表面に疎水性樹脂を配置した後、熱定着することによって、検体が浸透不可能な流路壁5として流路パターンを形成した。多孔質基材S2は流路3及びイオン選択膜9に重ねて配置した。多孔質基材S1及び多孔質基材S2は、周囲を検体が浸透しない規制部材で覆われており、本実施例においては規制部材としてPET(ポリエチレンテレフタラート)によるラミネートフィルムを使用した。
 流路室1、2及び分注部6のサイズは、以下のとおりとした。
 流路室1:L11=6mm、L12=6mm
 流路室2:L21=6mm、L22=6mm
 分注部6:直径3mmの円
 分注部6の中心からイオン結晶10までの最短距離L41:7mm
 分注部6の中心からイオン選択膜9までの最短距離L42:6.5mm
 流路3の幅L31:3mm、流路4の幅L43:3mm
 <検体>
 検体は、測定対象イオンであるNaClと共存イオンであるKClを含む水溶液を使用した。
 <電極の処方>
 実施例1に係る電極の処方について説明する。
 流路室1にはAg/AgClを用いた参照電極7を設けた。参照電極7上にイオン結晶10としてKClイオン結晶を3.5mg配置した。
 参照電極7のサイズは、以下のとおりとした。
 参照電極7:L71=4mm、L72=4mm
 一方、流路室2にはカーボンを主材料とした作用電極8を設けた。なお、該カーボン電極の代わりにPEDOT:PSS(ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の分散体)のような導電性高分子による作用電極8を用いてもよい。また従来から参照電極のベースに用いられているAg/AgClのような材料を使用してもよい。
 作用電極8のサイズは、以下のとおりとした。
 作用電極8:L81=5.5mm、L82=5.5mm
 作用電極8を覆うように、Naイオン選択膜9を形成した。イオン選択膜9は、下記の材料によって形成されている。
イオン選択材料:Bis(12-crоwn-4)     3.0質量%
アニオン排除剤:Potassium tetrakis (4-chlorophenyl) borate        0.5質量%
o-ニトロフェニルオクチルエーテル(o-nitrophenyl octyl ether)     64.0質量%
ポリ塩化ビニル     32.5質量%
 本実施例においては、参照電極7と作用電極8とイオン選択膜9とを、上記のような形状やサイズ、材料などで形成したが、これに限るものではない。
 <イオン結晶>
 参照電極7を覆うように、イオン結晶10を形成した。
 本実施例においては、イオン結晶10として、KClイオン結晶を使用した。しかし、イオン結晶10の材料はClイオンを含むものであれば良く、KClイオン結晶に限るものではない。配置するイオン結晶10の質量は、流路室1の溶液と同等の体積を持つ純水に対してKClイオン結晶を溶かした際に飽和溶液となる質量の範囲でこれに限るものではない。
 また、本実施例においてはイオン選択膜9を設けたが、検体中のイオン総量を測定する場合などにおいては、必ずしもイオン選択膜9は必要ではない。
 <検体の浸透>
 検体の浸透について説明する。
 検体は、多孔質基材S2上の分注部6に分注された後、流路パターンに従って紙製の多孔質基材S1及びS2を毛細管現象によって、流路室1方向及び流路室2方向の両方向に同時に浸透する。
 分注された検体が、流路室1に浸透する間に、流路室2では検体に含まれるイオンがイオン選択膜9によって選択され、電解質濃度測定に必要な作用電極8の測定電位が安定する。
 本実施例においては、分注部6の位置は流路室1からの距離と流路室2からの距離とが略等しい中点地点としたが、分注部6の位置はこれに限るものではない。イオン選択膜に対する分注部の位置や多孔質基材の材質によっては、検体内に数μm程度の微粒子を含むような検体に対し、濾過機能をデバイスに持たせ、感度や選択性等を向上させることが可能な場合がある。
 <検体濃度の測定>
 検体濃度の測定について説明する。
 検体が浸透し、参照電極7を覆うイオン結晶10に到達すると、KClイオン結晶が検体に溶け、流路室1内の溶液中のClイオン濃度が飽和する。この時、作用電極8の測定電位が安定していれば、検体の濃度測定は可能となり、所定の測定時間の経過によって検体濃度の測定が終了する。検体の分注体積が多孔質基材S2の流路3を介して流路室1及び流路室2に到達可能な体積以上であれば、イオン選択膜9に十分な量の検体を接触させて、作用電極8と参照電極7との間で検体濃度を良好な精度で測定できる。
 [比較例1]
 実施例1の効果をより詳しく説明するために、図3を用いて、比較例1について説明する。
 <流路の構成>
 マイクロ分析チップP2は、多孔質基材S1を有するが、多孔質基材S2は有しない。マイクロ分析チップP2において、多孔質基材S1及び流路壁の形状は実施例1と同じとした。分注部6、参照電極7、作用電極8、イオン選択膜9、イオン結晶10等の構成(形状及びサイズ)も実施例1と同じとした。ただし、分注部6は多孔質基材S1に形成されている。前記のとおり、多孔質基材S2は使用しなかった。
 <検体の浸透>
 分注された検体は分注部6から、流路室1側方向と、流路室2側方向の両方向に同時に浸透し始め、流路室1と流路室2とに同時に到達した。
 流路室1に到達した検体は、実施例1と同様に参照電極7を覆うイオン結晶10を溶かし、飽和濃度のClイオン溶液を形成した。
 一方、流路室2に到達した検体は、イオン選択膜9に接したが、主に接触するのは多孔質基材S1の断面内における多孔質基材S1とイオン選択膜9との境界位置においてであり、比較例1ではイオン選択膜9の側面部分に該当する。検体は、イオン選択膜9の上面部分には接触しない。このため、多孔質基材S1の空隙率に対するイオン選択膜9の浸透状態や、イオン選択膜9を多孔質基材S1内に配置する形状によっては十分な測定感度やイオン選択性が得られない場合があった。
 [実施例1の効果]
 [比較例1に対する実施例1の優位な点]
 比較例1に対する実施例1の優位な点について、3点説明する。
 <検体濃度の測定>
 電解質濃度測定方法としてJIS K0122 イオン電極測定方法通則に規定されている混合溶液法で測定を行った。
 測定対象イオンを含む溶液をNaClとし、共存イオンを含む溶液としてKClを選択した。
 KClの濃度を10mmol/Lに固定したうえで、NaClの濃度を100μmol/L、1mmol/L、10mmol/L、100mmol/L、800mmol/Lの5段階に変化させた。検体分注量は30μL~50μLとした。本測定に関しては、作用電極8における多孔質基材S2の効果を比較するために、参照電極側は、市販の銀塩化銀電極(RE-1BP、BAS株式会社)を用いた。
 図4A、図4Bに測定結果を示す。図4A、図4Bは、対数Naイオン濃度(logCNa )と測定電位(安定後電位)の関係を示す。
 感度は対数Naイオン濃度に対する測定電位の傾きが非負で一定となる領域の傾きを表す。イオン選択係数は共存Kイオンに対し、何桁小さい目的イオンが検出できるかを示しており、負方向に大きいほど望ましい。
 図4Aに示すように実施例1における非負の直線立ち上がり点は対数Naイオン濃度が-3(mol/L)近傍であった。本実施例においては共存イオンの対数濃度は-2であるため、1桁以上小さい濃度から対象とするNaイオンが測定できることを示している。
 一方、図4Bに示すように、比較例1では測定電位が立ち上がる領域を定めづらく、イオン選択係数と感度の決定も不安定であった。
 また、図5A、図5Bに示すように、測定電位の時間安定性においても実施例1と比較例1との間に挙動の違いが見られる。図5Aは実施例1が安定した電位の時間推移を示しているのに対し、図5Bでは電位の急激な変化や継続的な緩やかな変化が見られる。
 これより、実施例1では測定に必要な検体を迅速かつ安定的にイオン選択膜に供給することができ、測定感度、イオン選択性、電位の時間安定性に優れ、電解質濃度測定に有効であることが示された。
 <妨害粒子の濾過>
 妨害粒子の濾過について説明する。
 電解質濃度測定を妨害し得る粒子を含むような検体の場合、一般的に妨害粒子がイオン選択膜に触れないことが安定した電位測定のために望ましい。
 実施例1で用いたマイクロ分析チップP1及び比較例1で用いたマイクロ分析チップP2に対し、個数平均粒径8μm程度のスチレンアクリルを主成分とする粒子61を含んだ検体を30μL~50μL分注した場合の断面の概略図をそれぞれ図6、図7に示す。分注後の妨害粒子(粒子61)は実施例1、比較例1ともに分注部を有する多孔質基材と規制部材との界面近傍に滞留する様子が観察された。
 図6に示すように実施例1のマイクロ分析チップP1においては、多孔質基材S2と規制部材11の界面に妨害粒子が滞留するため、多孔質基材S1内部のまで妨害粒子が拡散しづらく、イオン選択膜9に妨害粒子が接触することを防ぐ構成としては好適である。
 一方、図7に示すように比較例1のマイクロ分析チップP2においては、分注部6とイオン選択膜9との距離によっては、妨害粒子が浸透によりイオン選択膜9の表面に到達し、電気化学測定に影響が出る場合があった。
 このため、電気化学測定を妨害し得る粒子を含むような検体の測定においては、実施例1のような構成を用いることで、検体の測定前処理をすることなく、妨害粒子を濾過することが可能であり、電解質濃度測定として好適である。
 [比較例2]
 図8は、比較例2にかかるマイクロ分析チップP3の構成を示す簡略的な断面図である。図8に示すマイクロ分析チップP3の構成は、特許文献1に開示の構成を模したものである
 <流路の構成>
 マイクロ分析チップP3は、多孔質基材S1及び多孔質基材S2を有する。
 多孔質基材S1は参照電極7及び作用電極8が形成される領域以外の領域を検体が浸透不可能な流路壁5で埋めた構成である。
 多孔質基材S2は分注部6と流路4とを有する。分注部6は多孔質基材S1の参照電極7と作用電極8との中間点の略真上に配置されている。流路4はイオン結晶10の分注部6側の端部と作用電極8のイオン選択膜9に重なるように配置されている。
 <測定時間の短縮>
 測定時間の短縮について説明する。
 図9に、実施例1、比較例1、及び比較例2の分注後の検体の振る舞いの時間推移を示す。
 ΔT1は分注後の検体が作用電極への到達までに流路領域を満たす時間を表し、
 ΔT2は作用電極に到達した検体が作用電極の表面を覆い、測定開始可能となるために要する時間を表し、
 ΔT3は電気化学測定を開始してから電位が安定し測定を終了するまでの時間を表す。
 表1に、実施例1、比較例1、及び比較例2における検体の振る舞いの時間推移結果を示す。結果は前述の5段階の濃度測定(KClの濃度を10mmol/Lに固定したうえで、NaClの濃度を100μmol/L、1mmol/L、10mmol/L、100mmol/L、800mmol/Lの5段階に変化させた。)の際に計測し、平均をとったものである。
 実施例1においては、多孔質基材S2に流路が形成されている分、流路体積を大きくすることができ、比較例1及び比較例2よりも流路内に浸透する検体流量を多くすることができる。これにより、実施例1は、比較例1及び比較例2と比較して、ΔT1、ΔT2、及びΔT3の各時間全てで時間短縮を実現し、合計の測定時間T(=ΔT1+ΔT2+ΔT3)を短縮できることが示された。
Figure JPOXMLDOC01-appb-T000001
 表2に比較例1及び比較例2に対する実施例1の優位な点をまとめる。
 実施例1では時間経過に対して安定した測定電位から、良好な感度及びイオン選択性が得られた。感度及びイオン選択性は前述のJIS K0122 イオン電極測定方法通則に則り算出した。
 一方で、比較例1ではイオン濃度を変えた各測定(KClの濃度を10mmol/Lに固定したうえで、NaClの濃度を100μmol/L、1mmol/L、10mmol/L、100mmol/L、800mmol/Lの5段階に変化させた。)におけるイオン選択性が一定ではなく、濃度測定が不安定になる場合があることが示された。
 比較例2では、実施例1よりも電位の時間変化が不安定であり、合計の測定時間も長くなった。
 また、実施例1の構成では検体と接触するイオン選択膜9の面積を大きくしつつ、イオン選択膜9と反応する検体を、高純度かつ十分な量を迅速に供給することが可能である(図6)。そして、測定感度およびイオン選択性(図4A、図4B)、測定電位の時間安定性(図5A、図5B)に優れ、電解質濃度測定を短時間で精度良く行うことに対して有効であることが示された。
Figure JPOXMLDOC01-appb-T000002
 [実施例1の変形例1]
 実施例1の変形例1におけるマイクロ分析チップP4に関して説明する。
 図10は、マイクロ分析チップP4の概略構成を示す断面図である。本変形例では分注部6を作用電極8の上面(略真上)に配置している。
 これにより、感度、イオン選択性、時間安定性等の良好な測定性能を有しながら、参照電極7と作用電極8の距離を短くすることができ、デバイスを小型化することが可能となる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2022年4月23日提出の日本国特許出願特願2022-071207を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (5)

  1.  第一多孔質基材と第二多孔質基材とが積層されて構成されるマイクロ分析チップであって、
     該第一多孔質基材の内部には流路壁によって、第一流路室、第二流路室、該第一流路室と該第二流路室とを繋ぐ第一流路、が形成されており、
     該第一流路室には、参照電極が配置され、
     該第二流路室には、作用電極が配置されており、
     該第二多孔質基材は、該第一多孔質基材の表面において、該作用電極が形成されている領域の少なくとも一部分に重なるように配置されている、ことを特徴とするマイクロ分析チップ。
  2.  前記作用電極は、イオン選択性を有する成分を含むイオン選択膜で覆われている請求項1に記載のマイクロ分析チップ。
  3.  前記第二多孔質基材は、検体を分注するための分注部を有する請求項1に記載のマイクロ分析チップ。
  4.  前記第二多孔質基材の上面であって、少なくとも前記分注部と前記作用電極との間を繋ぐ位置に検体が浸透しない規制部材を配置する請求項1又は2に記載のマイクロ分析チップ。
  5.  前記参照電極の表面には、検体可溶性を有するイオン結晶が配置されている請求項1に記載のマイクロ分析チップ。
PCT/JP2023/014600 2022-04-23 2023-04-10 マイクロ分析チップ WO2023204088A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071207A JP2023160684A (ja) 2022-04-23 2022-04-23 マイクロ分析チップ
JP2022-071207 2022-04-23

Publications (1)

Publication Number Publication Date
WO2023204088A1 true WO2023204088A1 (ja) 2023-10-26

Family

ID=88420047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014600 WO2023204088A1 (ja) 2022-04-23 2023-04-10 マイクロ分析チップ

Country Status (2)

Country Link
JP (1) JP2023160684A (ja)
WO (1) WO2023204088A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229894A (ja) * 1996-02-15 1997-09-05 Bayer Ag 選択性が向上し、感度が強化された電気化学的センサー
JP2001500259A (ja) * 1996-09-13 2001-01-09 ユーエスエフ・フィルトレイション・アンド・セパレイションズ・グループ・インコーポレイテッド 分析セル
US20160033438A1 (en) * 2013-03-15 2016-02-04 President And Fellows Of Harvard College Paper-Based Reference Electrode And Potentiometric Ion Sensing
WO2023054095A1 (ja) * 2021-09-28 2023-04-06 キヤノン株式会社 マイクロ分析チップ、電解質濃度測定システムおよび電解質濃度測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229894A (ja) * 1996-02-15 1997-09-05 Bayer Ag 選択性が向上し、感度が強化された電気化学的センサー
JP2001500259A (ja) * 1996-09-13 2001-01-09 ユーエスエフ・フィルトレイション・アンド・セパレイションズ・グループ・インコーポレイテッド 分析セル
US20160033438A1 (en) * 2013-03-15 2016-02-04 President And Fellows Of Harvard College Paper-Based Reference Electrode And Potentiometric Ion Sensing
WO2023054095A1 (ja) * 2021-09-28 2023-04-06 キヤノン株式会社 マイクロ分析チップ、電解質濃度測定システムおよび電解質濃度測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JACLYN ADKINS; KATHERINE BOEHLE; CHARLES HENRY: "Electrochemical paper‐based microfluidic devices", ELECTROPHORESIS, VERLAG CHEMIE, HOBOKEN, USA, vol. 36, no. 16, 15 May 2015 (2015-05-15), Hoboken, USA, pages 1811 - 1824, XP071502993, ISSN: 0173-0835, DOI: 10.1002/elps.201500084 *

Also Published As

Publication number Publication date
JP2023160684A (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
US10871464B2 (en) Ion-selective electrode, method of manufacture thereof, and cartridge
WO2023054095A1 (ja) マイクロ分析チップ、電解質濃度測定システムおよび電解質濃度測定方法
US9885683B2 (en) Ion-selective electrode
US8211283B2 (en) Microfabricated liquid junction reference electrode
JPH03503677A (ja) 参照電極
US20160033438A1 (en) Paper-Based Reference Electrode And Potentiometric Ion Sensing
US20140054170A1 (en) Biosensor device
JP2014095675A (ja) 電気化学的センサおよびセンサヘッド
JP5227313B2 (ja) イオン微量分析の方法、デバイス及びシステム
WO2023204088A1 (ja) マイクロ分析チップ
US20230114495A1 (en) Microfluidic devices comprising electrochemical sensors
US20160195491A1 (en) Ion selective electrode
Adil et al. Self-Calibrated Ion-Selective Electrodes
WO2023034192A1 (en) Self-calibrated electrochemical sensors
US20150219589A1 (en) Micro-fluidic ion-selective sensor and measurement of an analyte using the same
US20140174923A1 (en) Ion selective electrode
Masadome et al. Microfluidic polymer chip with an embedded ion-selective electrode detector for nitrate-ion assay in environmental samples
JP2014006086A (ja) イオンセンサおよびイオンセンサの製造方法
Kihara et al. Rapid and precise coulometric determination and separation of redox inert ions based on electrolysis for ion transfer at the aqueous| organic solution interface
WO2023054092A1 (ja) マイクロ分析チップ
JP3121813U (ja) 塩素イオンセンサ、その製造方法及びそのセンサを用いた生化学自動分析装置
JP4216846B2 (ja) 微小電気化学測定用電極および電気化学測定法
Wang et al. Self-Calibrated Ion-Selective Electrodes
WO2023199694A1 (ja) マイクロ分析チップ
RU2665792C1 (ru) Чувствительный элемент для определения концентрации компонента газовой среды

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791737

Country of ref document: EP

Kind code of ref document: A1