WO2023203830A1 - Air conditioning system and air conditioning method - Google Patents

Air conditioning system and air conditioning method Download PDF

Info

Publication number
WO2023203830A1
WO2023203830A1 PCT/JP2023/003432 JP2023003432W WO2023203830A1 WO 2023203830 A1 WO2023203830 A1 WO 2023203830A1 JP 2023003432 W JP2023003432 W JP 2023003432W WO 2023203830 A1 WO2023203830 A1 WO 2023203830A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
person
air conditioning
information
autonomous mobile
Prior art date
Application number
PCT/JP2023/003432
Other languages
French (fr)
Japanese (ja)
Inventor
佐知 田中
昭義 大平
征義 吉田
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2023203830A1 publication Critical patent/WO2023203830A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/80Electric charge

Definitions

  • the present invention relates to air conditioning systems and the like.
  • Patent Document 1 states, ⁇ Before changing the state of a first device that is different from the electronic device, an electronic device obtains approval for changing the state from a first person around the electronic device. and the state of the first device is changed based on the approval obtained.”
  • Patent Document 2 describes an environment adjustment system that includes "a questioning unit that causes a robot to ask questions about the environment of the area to people staying in the area.”
  • Patent Document 1 when changing the state of the first device (air conditioner), the user needs to give approval to the electronic device (robot), which is time-consuming for the user. Furthermore, the technique described in Patent Document 2 requires the user to answer questions from the robot, which is time-consuming for the user. As described above, both of Patent Documents 1 and 2 place a burden on the user when changing the air conditioning control, so there is room for improvement.
  • an object of the present invention is to provide an air conditioning system and the like that places less burden on the user when changing air conditioning control.
  • an air conditioning system includes an air conditioner that communicates with an autonomous mobile body, and the autonomous mobile body adjusts the temperature and humidity around the person in the air conditioned room. Generate environmental information that associates the detected value of at least one of the above with the position information of the autonomous mobile object, and generate human information that includes at least one of the imaging results and audio measurement results of the person in the air-conditioned room.
  • the air conditioner changes air conditioning control based on the analysis results of the environmental information and the human information.
  • FIG. 1 is an explanatory diagram of an air conditioning system according to a first embodiment.
  • FIG. 2 is an explanatory diagram of an autonomous mobile body in the air conditioning system according to the first embodiment.
  • FIG. 1 is a functional block diagram of an air conditioning system according to a first embodiment.
  • FIG. 2 is an explanatory diagram of feature amounts extracted by the server of the air conditioning system according to the first embodiment. It is a flowchart which shows each processing of an air conditioner and an autonomous mobile object in an air conditioning system concerning a 1st embodiment. It is a flowchart which shows each processing of an air conditioner and an autonomous mobile object in an air conditioning system concerning a 1st embodiment.
  • FIG. 2 is an explanatory diagram of an air conditioning system according to a second embodiment.
  • FIG. 1 is an explanatory diagram of an air conditioning system according to a first embodiment.
  • FIG. 2 is an explanatory diagram of an autonomous mobile body in the air conditioning system according to the first embodiment.
  • FIG. 1 is a functional block diagram of an air conditioning
  • FIG. 2 is an explanatory diagram of an air conditioning system according to a second embodiment.
  • FIG. 2 is a functional block diagram of an air conditioning system according to a second embodiment.
  • FIG. 7 is a front view of an indoor unit of an air conditioning system according to a modification of the second embodiment. It is an explanatory view of an air conditioning system concerning a 3rd embodiment.
  • FIG. 3 is a functional block diagram of an air conditioning system according to a third embodiment. It is a flow chart which shows each processing of an air conditioner, a server, and an autonomous mobile object in an air conditioning system concerning a 3rd embodiment. It is a flow chart which shows each processing of an air conditioner, a server, and an autonomous mobile object in an air conditioning system concerning a 3rd embodiment.
  • FIG. 1 is an explanatory diagram of an air conditioning system 100 according to the first embodiment.
  • an autonomous mobile body 20 transmits data such as the temperature and humidity surrounding a person M1 in a room R1 (air-conditioned room) and the imaging results of the person M1 to an air conditioner 10.
  • the air conditioning system 100 includes an air conditioner 10 and an autonomous mobile body 20.
  • the air conditioner 10 is a device that air-conditions the room R1.
  • the air conditioner 10 also has a function of communicating with the autonomous mobile body 20 in a predetermined manner.
  • the communication method between the air conditioner 10 and the autonomous mobile body 20 may be, for example, infrared communication or another method.
  • the air conditioner 10 includes an outdoor unit (not shown) installed outdoors and an indoor unit U1 installed in the room R1.
  • the outdoor unit (not shown) and the indoor unit U1 are connected via refrigerant piping and are also connected via power lines and communication lines.
  • the building B1 including the room R1 shown in FIG. 1 may be, for example, a residence, an office, a hotel, or a facility for the elderly.
  • the air conditioner 10 includes a server 11.
  • the server 11 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded to the RAM, and the CPU executes various processes.
  • the server 11 analyzes the person M1's preferences regarding air conditioning based on the image data and audio data received from the autonomous mobile body 20, as well as the temperature and humidity around the person M1. Based on the analysis result of the server 11, the air conditioner 10 performs air conditioning control.
  • the autonomous mobile body 20 is a robot that autonomously moves within the room R1.
  • an autonomous mobile body 20 for example, in addition to a robot vacuum cleaner, a pet robot, a care robot, a service robot, and a household robot are used.
  • the autonomous mobile body 20 may have other functions such as air purification that collects fine particles in the air.
  • FIG. 2 is an explanatory diagram of the autonomous mobile body 20.
  • the autonomous mobile body 20 includes an image sensor 21, an audio sensor 22, a temperature/humidity sensor 23, a control board 24, a distance sensor 25, a drive wheel 26, and a main body 27.
  • the image sensor 21 is a camera that generates predetermined imaging data.
  • the image sensor 21 may generate image data by photoelectrically converting light incident on an image sensor (not shown).
  • a CCD sensor Charge Coupled Device
  • CMOS sensor Complementary Metal Oxide Semiconductor
  • the image sensor 21 may be one that is sensitive to infrared rays or other radio wave intensities.
  • the image sensor 21 is installed on the top surface of the main body 27.
  • a spherical camera with a relatively wide angle of view as such an image sensor 21, it is possible to obtain an overall image of the surroundings of the autonomous mobile body 20.
  • its installation position and number can be changed as appropriate.
  • the voice sensor 22 is a sensor that measures the voice of the person M1.
  • a sensor that extracts sounds in the audible range may be used, or a sensor that extracts sound waves outside the audible range, such as ultrasonic waves or low frequencies, may be used.
  • the temperature and humidity sensor 23 is a sensor that detects the temperature and humidity around the autonomous mobile body 20.
  • the temperature and humidity sensor 23 has, for example, a temperature detection element (not shown) and a humidity detection element (not shown) mounted on a substrate (not shown). . Note that the type of each element described above is not particularly limited.
  • control board 24 includes electronic circuits such as a CPU, ROM, RAM, and various interfaces.
  • the control board 24 has a function of transmitting each data acquired by the image sensor 21, the audio sensor 22, and the temperature/humidity sensor 23 to the air conditioner 10 (see FIG. 1) together with the position information of the autonomous mobile object 20. are doing. Further, the control board 24 drives the motor 28 (see FIG. 3) of the drive wheel 26 in a predetermined manner based on the measurement result of the distance sensor 25 and the like in addition to the signal received from the air conditioner 10.
  • the distance sensor 25 is a sensor that measures the distance to an object or wall surface.
  • a distance sensor 25 for example, an optical TOF (Time-of-Flight) sensor, a laser type sensor, or an ultrasonic type sensor may be used.
  • the drive wheels 26 are wheels used for running the autonomous mobile body 20, and are connected to the rotating shaft of a motor 28 (see FIG. 3).
  • the main body 27 is a housing body in which sensors such as the image sensor 21, the control board 24, the drive wheels 26, and the like are installed. Then, based on the measurement results of the distance sensor 25, the autonomous mobile object 20 estimates the shape and floor plan of the room R1 (see FIG. 1), and also estimates the self-position (the position of the autonomous mobile object 20). It is designed to run inside.
  • the autonomous mobile body 20 also has a function of recognizing the person M1 in the room R1 (see FIG. 1) based on the imaging result of the image sensor 21. For example, the autonomous mobile body 20 recognizes the person M1 in the room R1 based on the shape of the head, the color of the skin, the size of the eyes, the distance between the eyes, the width of the lips, the body shape, etc. Alternatively, the autonomous mobile body 20 may recognize a moving object in the room R1 as a person M1.
  • the autonomous mobile body 20 moves close to the person M1, and the temperature and humidity sensor 23 detects the temperature and humidity of the air around the person M1.
  • “surroundings" of a person is, for example, a range within 2 meters from the person, but is not limited to this.
  • the server 11 may recognize the person M1.
  • the autonomous mobile body 20 transmits each data acquired by the image sensor 21, the audio sensor 22, and the temperature/humidity sensor 23 to the air conditioner 10 together with the position information of the autonomous mobile body 20.
  • the position information of the autonomous mobile body 20 when the autonomous mobile body 20 moves close to the person M1 also indicates the approximate position of the person M1.
  • the air conditioner 10 starts to perform predetermined air conditioning control based on the position information of the autonomous mobile body 20 (that is, the position information of the person M1) that is associated with the temperature, humidity, etc. around the person M1. ing.
  • the autonomous mobile body 20 becomes, so to speak, the limbs of the air conditioner 10, and detects the temperature and humidity around the person M1 in addition to the imaging results and audio of the person M1 in the room R1.
  • conventional air conditioners also use infrared sensors to obtain the surface temperature of the people in the room to control the air conditioning. .
  • the set temperature of the air conditioner often deviates from the temperature of the person's surroundings. Further, even if the temperature around the person becomes equal to the set temperature, the person may feel uncomfortable if the set temperature does not suit the person's preference.
  • the autonomous mobile body 20 transmits data including temperature and humidity of the person M1 in addition to image data and audio data of the person M1 (see FIG. 1) to the air conditioner 10.
  • the reference numeral for person M1 may be omitted as appropriate.
  • FIG. 3 is a functional block diagram of the air conditioning system 100.
  • the control board 24 of the autonomous mobile body 20 includes a storage section 24a, a control section 24b, and a communication section 24c as functional components.
  • the storage unit 24a also stores detection values of the image sensor 21, audio sensor 22, temperature/humidity sensor 23, and distance sensor 25, as well as data received from the air conditioner 10. Ru.
  • control unit 24b when the control unit 24b receives a driving instruction from the air conditioner 10 via the communication unit 24c, the control unit 24b drives the motor 28 of the drive wheel 26 (see FIG. 2) in a predetermined manner.
  • the control unit 24b also converts the data acquired by the image sensor 21, the audio sensor 22, and the temperature/humidity sensor 23 into positional information of the autonomous mobile body 20 (for example, positional information when temperature/humidity around the person is detected). , and is transmitted to the air conditioner 10 via the communication unit 24c.
  • the communication unit 24c performs predetermined communication with the air conditioner 10.
  • the air conditioner 10 includes the server 11 described above, as well as a compressor 12, an expansion valve 13, an indoor fan 14, an outdoor fan 15, and a predetermined sensor 16.
  • Examples of such a sensor 16 include an indoor temperature sensor and an outdoor temperature sensor.
  • the air conditioner 10 includes an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and the like. The refrigerant is then circulated in a well-known refrigeration cycle.
  • the server 11 includes a storage section 11a, a control section 11b, and a communication section 11c.
  • the storage unit 11a stores predetermined programs in advance, as well as data received from the autonomous mobile body 20 and analysis results based on this data.
  • map information of the room R1 may be stored in the storage unit 24a. This map information may be given in advance, or may be created while the autonomous mobile body 20 travels through the room R1 (see FIG. 1).
  • the map information includes information indicating the shape and floor plan of the room R1.
  • the control unit 11b analyzes the data received from the autonomous mobile body 20, and changes the air conditioning control in a predetermined manner based on the analysis result.
  • the control unit 11b also transmits and receives data to and from the user's information terminal 30 via the communication unit 11c.
  • the data collected by the server 11 may be transmitted to the information terminal 30 via the communication unit 11c of the air conditioner 10, and the user may check the data on the display screen of the information terminal 30.
  • an information terminal 30 for example, a mobile phone, a smartphone, a tablet, or a wearable terminal is used.
  • the communication unit 11c not only communicates with the autonomous mobile body 20 but also communicates with the user's information terminal 30.
  • FIG. 4 is an explanatory diagram of feature amounts extracted by the server of the air conditioning system (see FIG. 3 as appropriate).
  • the server 11 collects features such as facial expressions, level of happiness, anger, sadness, amount of smile (numerical value indicating degree of smile), and complexion, as feature values of human expression. Extract the amount.
  • the server 11 may extract feature quantities such as a person's body temperature, amount of perspiration, and blood flow based on the imaging data.
  • the server 11 also provides features of the person's body based on the imaging data acquired by the image sensor 21, such as the person's physique, posture, body movement speed, shaking during movement, and muscle tension. Extract. Note that muscle tension is estimated from the way a person's posture changes. As other features related to the human body, the server 11 may extract, for example, the speed of movement of the human limbs and the tremors of the human body.
  • the server 11 also stores voice volume, voice quality (voice pitch/frequency), voice tremor, and voice tremor as human voice features based on the voice data (conversation sounds/life sounds) acquired by the voice sensor 22. Extract etc. Note that, from the viewpoint of privacy protection, it is preferable that the server 11 not analyze the content of people's conversations, but it is permissible to extract words such as "hot” and "cold.”
  • feature quantities such as a person's facial information, physique, and voice quality based on imaging data are used as "personal information" that indicates who the person is.
  • human information includes facial expressions, physical features, and voice features that indicate how a person feels about air conditioning (pleasant/uncomfortable, hot, cold, etc.). That's what it means.
  • Such "personal information” includes, for example, the level of happiness, anger, sadness, amount of smiles, complexion, body temperature, amount of sweat, blood flow, body posture, movement speed, blurring when moving, muscle tension, and voice. Includes loudness and trembling of voice.
  • "human information” may include human emotions (emotions quantified based on information such as facial expressions and voice), and multiple feature quantities may be used as appropriate. It's okay.
  • the "person information” includes the imaging results of the image sensor 21 and the measurement results of the audio sensor 22 in the autonomous mobile body 20 (see FIG. 2).
  • the server 11 acquires the temperature and humidity values around the person based on the detected values of the temperature and humidity sensor 23.
  • the server 11 estimates the floor plan of the building B1 (see FIG. 1) including the room R1 (see FIG. 1) based on the distance data acquired by the distance sensor 25, and also estimates the floor plan of the building B1 (see FIG. 1) that includes the room R1 (see FIG. 1). Estimate the position of (self-position).
  • the “environmental information” includes information indicating the floor plan of the building B1 and the self-position of the autonomous mobile body 20 based on the measured value of the distance sensor 25, in addition to the detected value of the temperature/humidity sensor 23.
  • the server 11 generates "preference information" regarding air conditioning for a person based on "person information” and "environmental information". For example, the server 11 may collect numerical values indicating whether the person in the room R1 (see FIG. 1) feels hot or cold, information about the temperature and humidity around the person, and the position of the autonomous mobile object 20. ⁇ Preference information'' is generated by associating with . "Preference information” is data indicating how a person feels about the air-conditioned environment. In addition to heat and cold, the "preference information” also includes comfort regarding the volume of air conditioned air, whether the air conditioned air hits the person (or not), and the direction of the wind.
  • the server 11 generates "preference information" indicating how a person feels about the current air conditioning environment, based on "person information” and "environment information.”
  • the server 11 may register in advance "personal information" such as a person's face, physique, and voice quality, so that the server 11 can recognize who is in the room R1 (see Figure 1). good.
  • "personal information” such as a person's face, physique, and voice quality
  • the server 11 can grasp who is in the room R1 (see FIG. 1), where they are, and what type of air conditioning they prefer.
  • the "preference information” generated by the server 11 is stored in the storage unit 11a in association with the "personal information". Note that the generation of "personal information" is not particularly essential, so it can be omitted.
  • the server 11 may associate "date and time information" with "person information”. As such "date and time information”, for example, the date and time when "person information” is generated is used. By associating "person information" with “date and time information,” the server 11 associates a person's "preference information” regarding air conditioning with seasons and time zones.
  • the server 11 may associate a person's "preference information" regarding air conditioning with the location where the person is (living room, kitchen, dining room, bedroom, etc.) and the type of activity. For example, people often prefer different air conditioning environments when they are cooking in the kitchen and when they are relaxing in the living room. Furthermore, the air conditioning environment that a person prefers is often different depending on when the person is exercising and when the person is relaxing.
  • the server 11 classifies people's "preference information" regarding air conditioning in association with season, time of day, location, and behavior, making it possible to provide detailed and comfortable air conditioning.
  • the server 11 may compare the "personal information” and estimate whether the information before or after the change is more comfortable for the person. For example, if the temperature around a person in room R1 changes, and the person's condition changes, the server can determine whether they are more comfortable before or after the temperature change based on their facial expressions, body temperature, and blood flow. By estimating 11, a person's “preference information” can be updated (changed). In this way, “preference information” may be updated based on changes in "environmental information” and "person information” due to changes in air conditioning control. As a result, the server 11 learns people's reactions to changes in the air-conditioned environment, so that a comfortable air-conditioned environment can be provided in a relatively short time.
  • the air conditioner 10 may change the air conditioning control based on the reaction of the person when the autonomous mobile body 20 takes a predetermined action toward the person.
  • the server 11 may determine whether the person feels comfortable with the wind. You can also do this. If there is a high possibility that a person feels that the wind is comfortable, there is a high possibility that the person likes being exposed to the wind. Therefore, the air conditioner 10 can improve the comfort of air conditioning by controlling the air conditioning so that the conditioned air hits the person.
  • Air conditioning system processing> 5A and 5B are flowcharts showing the respective processes of the air conditioner and the autonomous mobile body (see also FIG. 3 as appropriate).
  • a command to start operation is transmitted to the air conditioner 10 from the remote controller (not shown) or the information terminal 30 (see FIG. 3).
  • the air conditioner 10 drives the compressor 12 and the like to perform a predetermined air conditioning operation. That is, the air conditioner 10 controls the compressor 12, the expansion valve 13, the indoor fan 14, and the outdoor fan 15 based on a predetermined operating mode and set temperature.
  • the set temperature of the air conditioner is often set with a remote control (not shown), but it may also be set by operating the information terminal 30 (see FIG. 3) such as a smartphone, or if a predetermined initial setting is set. may be used.
  • step S102 the air conditioner 10 issues a travel instruction to the autonomous mobile body 20.
  • a travel instruction signal is transmitted from the server 11 (see FIG. 3) of the air conditioner 10 to the control board 24 (see FIG. 3) of the autonomous mobile body 20.
  • step S103 the autonomous mobile body 20 receives a travel instruction signal from the air conditioner 10.
  • step S104 the autonomous mobile body 20 determines whether map information exists for the building B1 (see FIG. 1) that includes the room R1 (see FIG. 1). For example, if map information is provided in advance or if map information has already been created based on data acquired while the autonomous mobile body 20 is running (S104: Yes), the autonomous mobile body 20 processes The process proceeds to step S105.
  • step S105 the autonomous mobile body 20 travels in the room R1 in a predetermined manner based on the map information. Note that the way the autonomous mobile body 20 moves in the room R1 varies depending on the purpose of the autonomous mobile body 20 (robot vacuum cleaner, pet robot, service robot, etc.).
  • step S104 the process of the autonomous mobile body 20 proceeds to step S106.
  • step S106 the autonomous mobile body 20 travels in the room R1 in a predetermined manner, measures the shape of the room R1, etc. based on the detection results of the distance sensor 25 and the image sensor 21, and generates map information.
  • the entity that generates the map information may be the server 11 (see FIG. 3).
  • the autonomous mobile body 20 can travel within the room R1.
  • step S107 the autonomous mobile body 20 determines whether or not a person is detected. That is, the autonomous mobile body 20 determines whether or not there is a person in the room R1 based on the detection results of the image sensor 21 and the audio sensor 22. If no person is detected in step S107 (S107: No), the process of the autonomous mobile body 20 returns to step S105. Moreover, when a person is detected in step S107 (S107: Yes), the process of the autonomous mobile body 20 proceeds to step S108.
  • step S108 the autonomous mobile body 20 acquires the temperature and humidity around the person and its own position information in addition to image and audio data.
  • the autonomous mobile body 20 uses an image sensor 21 to obtain image data of a person, and uses an audio sensor 22 to obtain audio data.
  • the autonomous mobile body 20 uses the temperature and humidity sensor 23 to obtain the temperature and humidity around the person.
  • the autonomous mobile body 20 acquires position information of the autonomous mobile body 20 based on the measured value of the distance sensor 25 as well as map information.
  • the autonomous mobile body 20 generates "environmental information” in which the position information of the autonomous mobile body 20 is associated with the detected values of the temperature and humidity around the person in the room R1 (air-conditioned room), and also Generates "person information” that includes imaging results and sound measurement results of people in air-conditioned rooms.
  • step S109 the autonomous mobile body 20 transmits data to the air conditioner 10. That is, the autonomous mobile object 20 transmits data including "person information” (imaging data and audio data) and “environmental information” (temperature and humidity around the person and the position of the autonomous mobile object 20) to the communication unit 24c (Fig. (see) to the server 11 of the air conditioner 10.
  • step S110 the air conditioner 10 receives data from the autonomous mobile body 20 via the communication unit 11c of the server 11 (see FIG. 3).
  • the autonomous mobile body 20 may approach the person again and detect the temperature, humidity, etc. around the person.
  • the autonomous mobile object 20 is a cleaning robot
  • the temperature and humidity around the person may be detected.
  • the temperature and humidity may be constantly detected while the vehicle is running.
  • the air conditioner 10 uses feature quantities such as facial information, level of happiness, anger, romance, and voice volume (see FIG. Reference).
  • the air conditioner 10 generates and stores "preference information” and the like. That is, the air conditioner 10 associates the facial expressions and voice features of the person in the room R1 with the temperature and humidity of the person's surroundings and the position information of the autonomous mobile object 20 (that is, the position information of the person). "Preference information” is generated.
  • the air conditioner 10 may generate "personal information” for identifying a person based on the person's facial information. The "preference information” and "personal information” generated in this manner are stored in the server 11.
  • step S113 the air conditioner 10 determines whether the temperature and humidity are equal to the set value (or within a predetermined range including the set value). For example, the air conditioner 10 determines whether the temperature around the person is equal to the set temperature of the air conditioner. Note that the same applies to the humidity around the person. As described above, by moving the autonomous mobile body 20 close to the person, accurate values of the temperature and humidity around the person can be obtained. If the temperature and humidity are different from the set values in step S113 (S113: No), the process of the air conditioner 10 proceeds to step S114.
  • step S114 the air conditioner 10 performs predetermined air conditioning control. That is, the air conditioner 10 controls the compressor 12 and the like so that the temperature and humidity around the person approaches the set value. Note that the temperature and humidity around a person is directly related to the comfort of the air conditioner that the person feels. Therefore, in the first embodiment, the air conditioner 10 performs predetermined air conditioning control so that the temperature and humidity around the person reach a predetermined set value. After performing the process of step S114, the process of the air conditioner 10 returns to step S113.
  • step S115 the air conditioner 10 determines whether the person is comfortable. That is, the air conditioner 10 determines whether the person in the room R1 feels comfortable with the air conditioning based on the "preference information" ("person information" and "environment information") stored in the server 40. judge. If it is determined in step S115 that the person does not feel comfortable with the air conditioning (S115: No), the process of the air conditioner 10 proceeds to step S116.
  • the air conditioner 10 changes the setting values related to air conditioning. For example, if a person in room R1 sweats a lot and has a high body temperature, there is a high possibility that the person feels hot. In such a case, the air conditioner 10 lowers the set temperature of the air conditioner so that the room R1 becomes cooler. Further, for example, if the person in room R1 is shaking or has stiff muscles, there is a high possibility that the person is feeling cold. In such a case, the air conditioner 10 increases the set temperature of the air conditioner so that the room R1 becomes warmer.
  • step S117 the air conditioner 10 performs air conditioning control in a predetermined manner based on the changed setting value.
  • the air conditioner 10 may change the air volume and direction of the conditioned air based on the "preference information" of the person in the room R1. For example, if a person likes being exposed to conditioned air, the air conditioner 10 adjusts the air volume and direction so that the conditioned air is directed primarily toward the person.
  • the air conditioner 10 changes the air conditioning control in a predetermined manner based on the analysis results of "environmental information" and "person information".
  • the above analysis results include "preference information” regarding air conditioning of the person in room R1 (air conditioned room). After performing the process of step S117, the process of the air conditioner 10 returns to step S115.
  • step S115 the process of the air conditioner 10 proceeds to step S118.
  • step S118 the air conditioner 10 stores the set values and the like. In other words, the air conditioner 10 sends to the server 11 the set temperature when the person is likely to feel comfortable, as well as "person information", “environmental information”, and "personal information” at that time. Store. These data are used appropriately when the server 11 recognizes a person in the room R1 (a person who previously found the air conditioning comfortable) during the next air conditioning operation. Further, the previously learned operating conditions may be applied as the operating conditions such as the set temperature in step S101.
  • step S119 the air conditioner 10 performs air conditioning control in a predetermined manner. That is, the air conditioner 10 continues to control the air conditioning at a set temperature or the like that the person feels comfortable with.
  • the air conditioner 10 and the autonomous mobile body 20 end the series of processes (END).
  • the server 11 analyzes "preference information" regarding air conditioning based on "person information” and "environmental information”, and changes air conditioning control based on the analysis result.
  • the person in the room R1 can enjoy a comfortable air-conditioned environment without being particularly conscious of the need to change the set temperature. Further, since there is no particular need for the person in the room R1 to actively perform a predetermined operation or answer questions from the autonomous mobile object 20, the person hardly feels bothered.
  • the autonomous mobile body 20 not only acquires image data and audio data of the person, but also detects the temperature and humidity around the person and transmits the detected data to the air conditioner 10. In this way, the autonomous mobile body 20 functions as if it were the limbs of the air conditioner 10, so that the temperature and humidity around the person can be set to a predetermined temperature and humidity that makes the person feel comfortable.
  • the autonomous mobile object 20 may perform its original functions such as cleaning the room R1 or snuggle up to people and be petted, while also performing the necessary functions.
  • the air conditioner 10 since there is no particular need for the air conditioner 10 to have a means of communication with an external server (not shown), processing can be simplified and costs can be reduced. can be achieved.
  • the second embodiment differs from the first embodiment in that one air conditioner 10A and one air conditioner 10B are installed in the living room R2 (see FIG. 6A) and the washroom R3 (see FIG. 6A). Further, in the second embodiment, a server 40 (see FIG. 6) is provided outside a building BA1 (see FIG. 6A) including a living room R2 and a washroom R3, and this server 40 is connected to the air conditioners 10A, 10B and autonomous
  • This embodiment differs from the first embodiment in that communication is performed with a washer/dryer 50 in addition to the moving body 20. Note that other aspects are the same as those in the first embodiment. Therefore, the parts that are different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.
  • FIG. 6A and 6B are explanatory diagrams of an air conditioning system 100A according to the second embodiment.
  • FIG. 6A is an explanatory diagram when the living room R2 (first air-conditioned room) and washroom R3 (second air-conditioned room) are viewed from the side
  • FIG. 6B is a plan view.
  • the building BA1 is provided with a living room R2 and a washroom R3 adjacent to each other.
  • an indoor unit UA first indoor unit
  • the air conditioner 10A is installed in the living room R2 (first air conditioned room
  • an indoor unit UB second indoor unit of another air conditioner 10B and a washer/dryer 50 (home appliance) are installed.
  • the air conditioning system 100A includes an autonomous mobile body 20, air conditioners 10A and 10B, a washer/dryer 50, and a server 40.
  • the autonomous mobile body 20 is configured to move in a predetermined manner between the living room R2 and the washroom R3.
  • the server 40 is provided outside the building BA1, and communicates with the autonomous mobile body 20, as well as with the air conditioners 10A and 10B, as well as with the washer/dryer 50. communicate.
  • the washer/dryer 50 (home appliance) includes a sensor 51 that detects at least the temperature around the washer/dryer 50.
  • the detected value of the sensor 51 is transmitted to the server 40 via a communication section (not shown) of a control board (not shown) of the washer/dryer 50 .
  • the server 40 adds the position information of the washer/dryer 50 (home appliance) and the detected value of the sensor 51 to the "environmental information" received from the autonomous mobile body 20, and then analyzes the person's preferences regarding air conditioning. Note that the position information of the washer/dryer 50 may be stored in the server 40 in advance. The analysis results of the server 40 are reflected in the air conditioning control of the air conditioners 10A and 10B.
  • FIG. 7 is a functional block diagram of the air conditioning system 100A.
  • the control board 24 of the autonomous mobile body 20 includes a communication section 24c that communicates with the server 40.
  • "environmental information” including the detected value of the temperature/humidity sensor 23 and the position information of the autonomous mobile object 20 is transmitted via the communication unit 24c. The information is transmitted from the autonomous mobile body 20 to the server 40.
  • the autonomous mobile body 20 may transmit predetermined position information indicating whether the autonomous mobile body 20 is in the living room R2 or the washroom R3 to the server 40. This makes it possible to control, for example, stopping the air conditioning in the living room R2 when a person is in the washroom R3, so that it is possible to prevent the air conditioning from being performed unnecessarily.
  • the washer/dryer 50 shown in FIG. 7 has a function of communicating with the server 30. Then, the detected values of the temperature and humidity around the washer/dryer 50 are transmitted from the washer/dryer 50 to the server 40 .
  • the server 40 generates analysis results such as "preference information” based on the "environmental information” and "person information” received from the autonomous mobile body 20, and transmits the analysis results to the air conditioners 10A and 10B. Note that the temperature and humidity around the washer/dryer 50 may be added to the "environmental information”.
  • the air conditioner 10A includes a communication unit 11Ac that communicates with the server 40.
  • the other air conditioner 10B also includes a communication unit 11Bc that communicates with the server 40.
  • These air conditioners 10A and 10B perform predetermined air conditioning control based on the analysis results of the server 40.
  • FIG. 7 shows the case where no particular communication is performed between the autonomous mobile body 20 and the air conditioners 10A, 10B, there is no communication between the autonomous mobile body 20 and the air conditioners 10A, 10B. Communication may be performed using
  • Air conditioning system processing> For example, if the detected value (temperature around the home appliance) of the sensor 51 of the washer/dryer 50 (see FIG. 6A) is outside the predetermined range, the server 40 moves the autonomous mobile object 20 to the washroom R3 (air-conditioned room, 2 air-conditioned room) to generate "person information" and "environmental information". That is, when the temperature in the washroom R3 exceeds a predetermined value or falls below another predetermined value, the server 40 causes the autonomous mobile body 20 to detect the temperature etc. around the person in the washroom R3. . For example, when the temperature of the washroom R3 is above a predetermined value and a person looks hot, the air conditioner 10B of the washroom R3 autonomously starts cooling operation (or changes the set temperature of the cooling operation). lower).
  • the air conditioner 10B autonomously cools the air conditioner before moving the autonomous mobile object 20 to the washroom R3. It may also be possible to start driving. This can prevent people from getting heatstroke in the washroom R3. Moreover, when the autonomous mobile body 20 is a cleaning robot, cleaning of the living room R2 and the like can be continued as is.
  • the absolute value of the difference between the temperature of living room R2 (first air-conditioned room) included in “environmental information” and the temperature of washroom R3 (second air-conditioned room) included in “environmental information” is greater than or equal to a predetermined value.
  • the air conditioner 10A (first indoor unit) and the air conditioner 10B (second indoor unit) performs air conditioning operation so as to reduce the absolute value of the above-mentioned difference. good.
  • the air conditioner 10B of the washroom R3 may autonomously start heating operation to raise the temperature of the washroom R3. This can prevent heat shock from occurring when a person moves from the living room R2 to the washroom R3.
  • the server 40 moves the autonomous mobile body 20 to the washroom R3 (air-conditioned room), and displays "person information” and "environmental information”. information” may be generated. For example, suppose that a person performs operations such as opening and closing the door (not shown) of the washer/dryer 50 or pressing a predetermined button while the autonomous mobile body 20 is in the living room R2.
  • the server 40 determines that there is a person in the washroom R3 where the washer/dryer 50 is installed, and the server 40 determines that there is a person in the washroom R3 where the washer/dryer 50 is installed, ” and “environmental information”, a predetermined command signal is transmitted to the autonomous mobile body 20 .
  • the air conditioner 10B provided in the washroom R3 can perform comfortable air conditioning in a relatively short time based on the temperature and humidity around the person. Note that even if a home appliance such as the washer/dryer 50 is installed in an air conditioning room and the server 40 uses information about this home appliance, the home appliance may not be particularly included in the air conditioning system 100A.
  • the server 40 analyzes which room the person is in and what situation the person is in, and based on the analysis results, the air conditioners 10A and 10B in each room are controls the air conditioning. Therefore, even in situations where people move from room to room, the air conditioning system 100A can provide a comfortable air-conditioned environment.
  • FIG. 8 is a front view of the indoor unit U2 of the air conditioning system according to a modification of the second embodiment.
  • the indoor unit U2 of the air conditioner 10C includes an imaging unit 29 that images the air-conditioned room.
  • an imaging unit 29 for example, a CCD sensor or a CMOS sensor may be used, or a sensor sensitive to infrared rays or other radio wave intensity may be used.
  • Data including the imaging results of the imaging unit 29 is then transmitted from the air conditioner 10C to the server 40 (see FIG. 6A).
  • the air conditioner 10C moves the autonomous mobile object 20 (see FIG. 6A) to the air-conditioned room. It is moved to generate "person information" and "environmental information.” Thereby, the air conditioner 10C can provide comfortable air conditioning in a relatively short time even when a person moves from the washroom R3 to the living room R2.
  • the air conditioner 10C may be made to image the person's face.
  • the air conditioner 10C transmits a predetermined command signal to the autonomous mobile body 20 via the server 40, and causes the autonomous mobile body 20 to image the person's face.
  • the autonomous mobile body 20 may acquire voice data and the temperature and humidity around the person.
  • the third embodiment differs from the first embodiment in that a server 40 (see FIG. 9) is provided outside the building B1 (see FIG. 9). Further, the third embodiment differs from the first embodiment in that when the server 40 determines that there is a risk of heat stroke for a person in the room R1, the air conditioner 10D lowers the set temperature. There is. Note that other aspects are the same as those in the first embodiment. Therefore, the parts that are different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.
  • FIG. 9 is an explanatory diagram of an air conditioning system 100D according to the third embodiment.
  • a server 40 is provided outside a building B1 that includes a room R1.
  • the server 40 may constitute a predetermined cloud system.
  • the air conditioner 10D and the autonomous mobile body 20 are configured to communicate with each other. Further, the server 40 is configured to perform predetermined communication with the autonomous mobile body 20 and the air conditioner 10D.
  • the air conditioner 10D includes a control board 17.
  • FIG. 10 is a functional block diagram of the air conditioning system 100D.
  • the autonomous mobile body 20 includes a communication unit 24c that communicates with the air conditioner 10D and the server 40.
  • the control board 17 of the air conditioner 10D includes a storage section 17a, a control section 17b, and a communication section 17c.
  • the storage unit 17a stores predetermined programs and detected values of the sensor 16 as well as data received from the autonomous mobile body 20 and the server 40.
  • the control unit 17b controls the compressor 12, the expansion valve 13, the indoor fan 14, and the outdoor fan 15 based on the analysis result of the server 40.
  • the communication unit 17c performs predetermined communication with the autonomous mobile body 20 and the server 40.
  • the server 40 analyzes people's preferences regarding air conditioning based on the data received from the autonomous mobile body 20, and transmits the analysis results to the air conditioner 10D. Further, the server 40 provides "person information” and “environmental information” to the information terminal 30 in response to a request signal from the information terminal 30. The air conditioner 10D performs air conditioning control in a predetermined manner based on the analysis result of the server 40.
  • FIGS. 11A and 11B are flowcharts showing the respective processes of the air conditioner, the server, and the autonomous mobile body (see also FIG. 10 as appropriate). It is assumed that at the time of "START" in FIG. 11A, a command to start operation is transmitted from the remote control (not shown) or the information terminal 30 (see FIG. 3) to the air conditioner 10D.
  • the air conditioner 10D drives the compressor 12 and the like to perform a predetermined air conditioning operation.
  • the server 40 transmits a travel instruction signal to the autonomous mobile body 20. For example, the server 40 issues a travel instruction to the autonomous mobile body 20 when air conditioning operation is started in the air conditioner 10D.
  • step S203 the autonomous mobile body 20 receives a travel instruction from the server 40, and in step S204, the autonomous mobile body 20 travels in the room R1 in a predetermined manner.
  • step S205 the autonomous mobile body 20 collects data such as the temperature and humidity around the person and its own location information in addition to image data and audio data of the person. get.
  • step S207 the autonomous mobile body 20 transmits the above-mentioned data to the server 40. Furthermore, if a person is not detected in step S205 (S204: No), the autonomous mobile body 20 transmits person absence information to the server 40 in step S207.
  • step S208 the server 40 receives data from the autonomous mobile body 20, and proceeds to the process of step S209 in FIG. 11B.
  • step S209 of FIG. 11B the server 40 collects feature quantities such as the person's face information, level of happiness, anger, romance, and voice volume (see FIG. 4) based on the image/audio data received from the autonomous mobile object 20. Extract.
  • step S210 the server 40 generates and stores "preference information” etc. (see FIG. 4).
  • the server 40 makes a determination regarding heatstroke. For example, the server 40 determines whether or not a person in the room R1 is at risk of suffering from heatstroke based on the temperature and humidity around the person in the room R1, complexion, body temperature, amount of perspiration, blood flow, and the like. Then, in step S212, the server 40 transmits the determination result regarding heatstroke to the air conditioner 10D.
  • step S213 the air conditioner 10D receives data from the server 40.
  • step S214 the air conditioner 10D determines whether there is a risk that the person in the room R1 will suffer from heatstroke. That is, the air conditioner 10D determines whether or not it has received information from the server 40 indicating that the person in the room R1 is at risk of suffering from heat stroke.
  • step S214 if there is a risk that the person in room R1 may suffer from heatstroke (S214: Yes), the air conditioner 10D changes the air conditioning set value (for example, the set temperature) (S215) and controls the air conditioning. This is carried out in a predetermined manner (S216). After performing the process of step S216, the process of the air conditioner 10D returns to step S214.
  • the air conditioning set value for example, the set temperature
  • the air conditioner 10D may autonomously start cooling operation. Furthermore, the air conditioner 10D may lower the set temperature for cooling operation. In addition, the air conditioner 10D may increase the volume of the conditioned air or change the direction of the air so that the cool conditioned air hits the person. This can prevent people in the room R1 from getting heat stroke.
  • step S214 if there is no risk that the person in the room R1 will suffer from heat stroke (S214: No), the air conditioner 10D performs predetermined air conditioning control in step S217. Although not particularly shown in FIG. 11B, the air conditioner 10D may stop air conditioning operation when no one is present. Thereby, the power consumption of the air conditioner 10D can be reduced.
  • FIGS. 11A and 11B can be applied not only to heat stroke but also to control for preventing hypothermia and heat shock.
  • data indicating an appropriate temperature range that takes the person's physical condition into account is sent from the information terminal 30 (see FIG. 10) to the server 40 (see FIG. 10).
  • the information may also be stored in the server 40.
  • the air conditioner 10D performs predetermined air conditioning control so that the temperature around the person in the room R1 is maintained within an appropriate temperature range.
  • the server 40 determines whether the person in the room R1 is at risk of suffering from heat stroke based on the data acquired by the autonomous mobile object 20, and based on the determination result,
  • the air conditioner 10 changes air conditioning control. This can prevent people in the room R1 from becoming unwell, such as heatstroke.
  • the air conditioner 10 changes the set temperature of the air conditioner, the air volume of the air conditioner, and the direction of the air conditioner based on "preference information” regarding air conditioning of the person in the room R1 (air conditioned room). Although explained above, it is not limited to this. That is, the air conditioner 10 may change at least one of the air conditioning set temperature, the air volume, and the wind direction based on the "preference information.”
  • the case where the number of rooms is two has been described, but the number of rooms may be three or more. Even in such a case, there is no particular need for the user to prepare multiple autonomous mobile bodies 20, and data acquired by one autonomous mobile body 20 can be shared by multiple air conditioners.
  • the washer/dryer 50 see FIG. 6A
  • the type of home appliance is not limited to this.
  • other types of home appliances such as refrigerators and microwave ovens may be used as long as they are equipped with sensors that detect the temperature or humidity of the surrounding air.
  • the washer/dryer 50 may be omitted from the second embodiment.
  • each embodiment can be combined as appropriate.
  • the first embodiment (see FIG. 1) and the second embodiment (see FIG. 6A) may be combined, or the second embodiment (see FIG. 6A) and the third embodiment (see FIG. 9) may be combined. You may also combine them.
  • a program for causing a computer to execute the air conditioning method described in each embodiment can be provided via a communication line, or can be written on a recording medium such as a CD-ROM and distributed.
  • the embodiments are described in detail to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to those having all the configurations described. Furthermore, it is possible to add, delete, or replace some of the configurations of the embodiments with other configurations. Further, the mechanisms and configurations described above are those considered necessary for explanation, and not all mechanisms and configurations are necessarily shown in the product.
  • Air conditioner 11 Server 20 Autonomous mobile object 21 Image sensor 22 Audio sensor 23 Temperature/humidity sensor 24 Control board 29 Imaging unit 30 Information terminal 40 Server 50 Washer/dryer (home appliance) 51 Sensor 100, 100A, 100D Air conditioning system M1 Person R1 Room (air conditioned room) R2 living room (air conditioned room, 1st air conditioned room) R3 Washroom (air-conditioned room, second air-conditioned room) UA indoor unit (1st indoor unit) UB indoor unit (second indoor unit)

Abstract

Provided is an air conditioning system with which the burden on a user is reduced when air conditioning control is changed. An air conditioning system (100) comprises an air conditioner (10) that establishes communication with an autonomous mobile body (20). The autonomous mobile body (20) generates environment information, in which position information of the autonomous mobile body (20) is associated with the detected value of the temperature and/or the humidity around a person (M) who is in a room (R1), and also generates person information which includes imaging results and/or voice measurement results of the person (M) in the room (R1). The air conditioner (10) changes air conditioning control on the basis of the results of the analysis of the environment information and the person information.

Description

空調システム及び空調方法Air conditioning system and air conditioning method
 本発明は、空調システム等に関する。 The present invention relates to air conditioning systems and the like.
 人とロボットとの間のコミュニケーションの結果に基づいて、空調制御を変更する技術が知られている。例えば、特許文献1には、「電子機器は、当該電子機器とは異なる第1機器の状態を変更する前に、当該状態を変更することに対する了承を電子機器の周囲にいる第1人物から得て、当該了承を得たことに基づいて第1機器の状態を変更する」ことが記載されている。
 また、特許文献2には、「エリアに滞在する人物に対して、エリアの環境に対する質問をロボットに行わせる質問部」を備える環境調整システムについて記載されている。
Techniques are known for changing air conditioning control based on the results of communication between humans and robots. For example, Patent Document 1 states, ``Before changing the state of a first device that is different from the electronic device, an electronic device obtains approval for changing the state from a first person around the electronic device. and the state of the first device is changed based on the approval obtained."
Further, Patent Document 2 describes an environment adjustment system that includes "a questioning unit that causes a robot to ask questions about the environment of the area to people staying in the area."
特開2016-83740号公報JP2016-83740A 特開2019-207039号公報JP 2019-207039 Publication
 特許文献1に記載の技術では、第1機器(エアコン)の状態を変更する際、ユーザが電子機器(ロボット)に了承を与える必要があるため、ユーザにとって手間がかかる。また、特許文献2に記載の技術では、ロボットからの質問に対してユーザが答える必要があるため、ユーザにとって手間がかかる。このように、特許文献1,2のいずれにおいても、空調制御を変更する際にユーザに負担がかかるため、改善の余地がある。 In the technique described in Patent Document 1, when changing the state of the first device (air conditioner), the user needs to give approval to the electronic device (robot), which is time-consuming for the user. Furthermore, the technique described in Patent Document 2 requires the user to answer questions from the robot, which is time-consuming for the user. As described above, both of Patent Documents 1 and 2 place a burden on the user when changing the air conditioning control, so there is room for improvement.
 そこで、本発明は、空調制御を変更する際のユーザの負担が少ない空調システム等を提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioning system and the like that places less burden on the user when changing air conditioning control.
 前記した課題を解決するために、本発明に係る空調システムは、自律移動体との間で通信を行う空気調和機を備え、前記自律移動体は、空調室にいる人の周囲の温度及び湿度のうち少なくとも一方の検出値に当該自律移動体の位置情報を対応付けた環境情報を生成するとともに、前記空調室にいる人の撮像結果及び音声の測定結果のうち少なくとも一方を含む人情報を生成し、前記空気調和機は、前記環境情報及び前記人情報の分析結果に基づいて、空調制御を変更することとした。 In order to solve the above-mentioned problems, an air conditioning system according to the present invention includes an air conditioner that communicates with an autonomous mobile body, and the autonomous mobile body adjusts the temperature and humidity around the person in the air conditioned room. Generate environmental information that associates the detected value of at least one of the above with the position information of the autonomous mobile object, and generate human information that includes at least one of the imaging results and audio measurement results of the person in the air-conditioned room. However, the air conditioner changes air conditioning control based on the analysis results of the environmental information and the human information.
 本発明によれば、空調制御を変更する際のユーザの負担が少ない空調システム等を提供できる。 According to the present invention, it is possible to provide an air conditioning system, etc. that places less burden on the user when changing air conditioning control.
第1実施形態に係る空調システムの説明図である。FIG. 1 is an explanatory diagram of an air conditioning system according to a first embodiment. 第1実施形態に係る空調システムにおける自律移動体の説明図である。FIG. 2 is an explanatory diagram of an autonomous mobile body in the air conditioning system according to the first embodiment. 第1実施形態に係る空調システムの機能ブロック図である。FIG. 1 is a functional block diagram of an air conditioning system according to a first embodiment. 第1実施形態に係る空調システムのサーバで抽出される特徴量の説明図である。FIG. 2 is an explanatory diagram of feature amounts extracted by the server of the air conditioning system according to the first embodiment. 第1実施形態に係る空調システムにおける、空気調和機及び自律移動体のそれぞれの処理を示すフローチャートである。It is a flowchart which shows each processing of an air conditioner and an autonomous mobile object in an air conditioning system concerning a 1st embodiment. 第1実施形態に係る空調システムにおける、空気調和機及び自律移動体のそれぞれの処理を示すフローチャートである。It is a flowchart which shows each processing of an air conditioner and an autonomous mobile object in an air conditioning system concerning a 1st embodiment. 第2実施形態に係る空調システムの説明図である。FIG. 2 is an explanatory diagram of an air conditioning system according to a second embodiment. 第2実施形態に係る空調システムの説明図である。FIG. 2 is an explanatory diagram of an air conditioning system according to a second embodiment. 第2実施形態に係る空調システムの機能ブロック図である。FIG. 2 is a functional block diagram of an air conditioning system according to a second embodiment. 第2実施形態の変形例に係る空調システムの室内機の正面図である。FIG. 7 is a front view of an indoor unit of an air conditioning system according to a modification of the second embodiment. 第3実施形態に係る空調システムの説明図である。It is an explanatory view of an air conditioning system concerning a 3rd embodiment. 第3実施形態に係る空調システムの機能ブロック図である。FIG. 3 is a functional block diagram of an air conditioning system according to a third embodiment. 第3実施形態に係る空調システムにおける、空気調和機、サーバ、及び自律移動体のそれぞれの処理を示すフローチャートである。It is a flow chart which shows each processing of an air conditioner, a server, and an autonomous mobile object in an air conditioning system concerning a 3rd embodiment. 第3実施形態に係る空調システムにおける、空気調和機、サーバ、及び自律移動体のそれぞれの処理を示すフローチャートである。It is a flow chart which shows each processing of an air conditioner, a server, and an autonomous mobile object in an air conditioning system concerning a 3rd embodiment.
≪第1実施形態≫
<空調システムの構成>
 図1は、第1実施形態に係る空調システム100の説明図である。
 図1に示す空調システム100は、部屋R1(空調室)にいる人M1の周囲の温湿度や人M1の撮像結果等のデータを自律移動体20が空気調和機10に送信し、このデータの分析結果に基づいて、空気調和機10が所定の空調制御を行うシステムである。図1に示すように、空調システム100は、空気調和機10と、自律移動体20と、を含んで構成されている。空気調和機10は、部屋R1の空調を行う機器である。また、空気調和機10は、自律移動体20との間で所定に通信を行う機能も有している。空気調和機10と自律移動体20との間の通信方式は、例えば、赤外線通信であってもよいし、他の方式であってもよい。
≪First embodiment≫
<Air conditioning system configuration>
FIG. 1 is an explanatory diagram of an air conditioning system 100 according to the first embodiment.
In the air conditioning system 100 shown in FIG. 1, an autonomous mobile body 20 transmits data such as the temperature and humidity surrounding a person M1 in a room R1 (air-conditioned room) and the imaging results of the person M1 to an air conditioner 10. This is a system in which the air conditioner 10 performs predetermined air conditioning control based on the analysis results. As shown in FIG. 1, the air conditioning system 100 includes an air conditioner 10 and an autonomous mobile body 20. The air conditioner 10 is a device that air-conditions the room R1. The air conditioner 10 also has a function of communicating with the autonomous mobile body 20 in a predetermined manner. The communication method between the air conditioner 10 and the autonomous mobile body 20 may be, for example, infrared communication or another method.
 空気調和機10は、屋外に設置される室外機(図示せず)と、部屋R1に設置される室内機U1と、を備えている。室外機(図示せず)と室内機U1とは、冷媒配管を介して接続されるとともに、電力線・通信線を介して接続されている。図1に示す部屋R1を含む建物B1は、例えば、住宅であってもよいし、オフィスやホテル、高齢者施設であってもよい。 The air conditioner 10 includes an outdoor unit (not shown) installed outdoors and an indoor unit U1 installed in the room R1. The outdoor unit (not shown) and the indoor unit U1 are connected via refrigerant piping and are also connected via power lines and communication lines. The building B1 including the room R1 shown in FIG. 1 may be, for example, a residence, an office, a hotel, or a facility for the elderly.
 図1に示すように、空気調和機10は、サーバ11を備えている。サーバ11は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。サーバ11は、自律移動体20から受信する撮像データや音声データの他、人M1の周囲の温湿度等に基づいて、空調に関する人M1の好みを分析する。このようなサーバ11の分析結果に基づいて、空気調和機10が空調制御を行うようになっている。 As shown in FIG. 1, the air conditioner 10 includes a server 11. Although not shown, the server 11 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded to the RAM, and the CPU executes various processes. The server 11 analyzes the person M1's preferences regarding air conditioning based on the image data and audio data received from the autonomous mobile body 20, as well as the temperature and humidity around the person M1. Based on the analysis result of the server 11, the air conditioner 10 performs air conditioning control.
 自律移動体20は、部屋R1の中を自律的に移動するロボットである。このような自律移動体20として、例えば、ロボット掃除機の他、ペットロボットや介護ロボット、サービスロボット、家庭用ロボットが用いられる。なお、空気中の微粒子を集塵する空気清浄といった他の機能を自律移動体20が有するようにしてもよい。 The autonomous mobile body 20 is a robot that autonomously moves within the room R1. As such an autonomous mobile body 20, for example, in addition to a robot vacuum cleaner, a pet robot, a care robot, a service robot, and a household robot are used. Note that the autonomous mobile body 20 may have other functions such as air purification that collects fine particles in the air.
 図2は、自律移動体20の説明図である。
 図2に示すように、自律移動体20は、画像センサ21と、音声センサ22と、温湿度センサ23と、制御基板24と、距離センサ25と、駆動輪26と、本体27と、を備えている。画像センサ21は、所定の撮像データを生成するカメラである。例えば、撮像素子(図示せず)に入射する光を光電変換することで、画像センサ21が撮像データを生成するようにしてもよい。前記した撮像素子として、CCDセンサ(Charge Coupled Device)やCMOSセンサ(Complementary Metal Oxide Semiconductor)等が用いられる。なお、画像センサ21として、赤外線やその他の電波強度に感度を有するものが用いられてもよい。
FIG. 2 is an explanatory diagram of the autonomous mobile body 20.
As shown in FIG. 2, the autonomous mobile body 20 includes an image sensor 21, an audio sensor 22, a temperature/humidity sensor 23, a control board 24, a distance sensor 25, a drive wheel 26, and a main body 27. ing. The image sensor 21 is a camera that generates predetermined imaging data. For example, the image sensor 21 may generate image data by photoelectrically converting light incident on an image sensor (not shown). As the image pickup device described above, a CCD sensor (Charge Coupled Device), a CMOS sensor (Complementary Metal Oxide Semiconductor), or the like is used. Note that the image sensor 21 may be one that is sensitive to infrared rays or other radio wave intensities.
 図2の例では、本体27の上面に画像センサ21が設置されている。このような画像センサ21として、画角が比較的広角である全天球カメラを用いることで、自律移動体20の周囲の全体的な画像を取得できる。なお、画像センサ21の種類の他、その設置位置や個数は、適宜に変更可能である。
 音声センサ22は、人M1の音声等を測定するセンサである。このような音声センサ22として、可聴域の音声を抽出するものが用いられてもよいし、また、超音波や低周波といった可聴域外の音波を抽出するものが用いられてもよい。
In the example of FIG. 2, the image sensor 21 is installed on the top surface of the main body 27. By using a spherical camera with a relatively wide angle of view as such an image sensor 21, it is possible to obtain an overall image of the surroundings of the autonomous mobile body 20. In addition to the type of image sensor 21, its installation position and number can be changed as appropriate.
The voice sensor 22 is a sensor that measures the voice of the person M1. As such a sound sensor 22, a sensor that extracts sounds in the audible range may be used, or a sensor that extracts sound waves outside the audible range, such as ultrasonic waves or low frequencies, may be used.
 温湿度センサ23は、自律移動体20の周囲の温度や湿度を検出するセンサである。温湿度センサ23は、例えば、温度検出用の素子(図示せず)と、湿度検出用の別の素子(図示せず)と、が基板(図示せず)に実装された構成になっている。なお、前記した各素子の種類は、特に限定されるものではない。 The temperature and humidity sensor 23 is a sensor that detects the temperature and humidity around the autonomous mobile body 20. The temperature and humidity sensor 23 has, for example, a temperature detection element (not shown) and a humidity detection element (not shown) mounted on a substrate (not shown). . Note that the type of each element described above is not particularly limited.
 制御基板24は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成されている。制御基板24は、画像センサ21、音声センサ22、及び温湿度センサ23で取得された各データを、自律移動体20の位置情報とともに、空気調和機10(図1参照)に送信する機能を有している。また、制御基板24は、空気調和機10から受信する信号の他、距離センサ25の測定結果等に基づいて、駆動輪26のモータ28(図3参照)を所定に駆動させる。 Although not shown, the control board 24 includes electronic circuits such as a CPU, ROM, RAM, and various interfaces. The control board 24 has a function of transmitting each data acquired by the image sensor 21, the audio sensor 22, and the temperature/humidity sensor 23 to the air conditioner 10 (see FIG. 1) together with the position information of the autonomous mobile object 20. are doing. Further, the control board 24 drives the motor 28 (see FIG. 3) of the drive wheel 26 in a predetermined manner based on the measurement result of the distance sensor 25 and the like in addition to the signal received from the air conditioner 10.
 距離センサ25は、物体や壁面までの距離を測定するセンサである。このような距離センサ25として、例えば、光学式のTOF(Time-of-Flight)センサが用いられてもよいし、また、レーザ式や超音波式のセンサが用いられてもよい。
 駆動輪26は、自律移動体20の走行に用いられる車輪であり、モータ28(図3参照)の回転軸に連結されている。本体27は、画像センサ21等の各センサや制御基板24、駆動輪26等が設置される収容体である。そして、距離センサ25の測定結果に基づいて、自律移動体20が部屋R1(図1参照)の形状や間取りを推定するとともに、自己位置(自律移動体20の位置)を推定しながら部屋R1の中を走行するようになっている。
The distance sensor 25 is a sensor that measures the distance to an object or wall surface. As such a distance sensor 25, for example, an optical TOF (Time-of-Flight) sensor, a laser type sensor, or an ultrasonic type sensor may be used.
The drive wheels 26 are wheels used for running the autonomous mobile body 20, and are connected to the rotating shaft of a motor 28 (see FIG. 3). The main body 27 is a housing body in which sensors such as the image sensor 21, the control board 24, the drive wheels 26, and the like are installed. Then, based on the measurement results of the distance sensor 25, the autonomous mobile object 20 estimates the shape and floor plan of the room R1 (see FIG. 1), and also estimates the self-position (the position of the autonomous mobile object 20). It is designed to run inside.
 また、自律移動体20は、画像センサ21の撮像結果に基づいて、部屋R1(図1参照)にいる人M1を認識する機能も有している。例えば、自律移動体20は、部屋R1にいる人M1の頭部の形状や皮膚の色、目の大きさ、両目間の距離、唇の横幅、体型等に基づいて、人M1を認識する。その他、自律移動体20が、部屋R1の中の移動物体を人M1として認識するようにしてもよい。 The autonomous mobile body 20 also has a function of recognizing the person M1 in the room R1 (see FIG. 1) based on the imaging result of the image sensor 21. For example, the autonomous mobile body 20 recognizes the person M1 in the room R1 based on the shape of the head, the color of the skin, the size of the eyes, the distance between the eyes, the width of the lips, the body shape, etc. Alternatively, the autonomous mobile body 20 may recognize a moving object in the room R1 as a person M1.
 そして、自律移動体20は、人M1の近くまで移動し、温湿度センサ23によって、人M1の周囲の空気の温湿度を検出する。ここで、人の「周囲」とは、例えば、人からの距離が2m以内の範囲であるが、これに限定されるものではない。また、自律移動体20に代えて、サーバ11(図1参照)が人M1を認識するようにしてもよい。 Then, the autonomous mobile body 20 moves close to the person M1, and the temperature and humidity sensor 23 detects the temperature and humidity of the air around the person M1. Here, "surroundings" of a person is, for example, a range within 2 meters from the person, but is not limited to this. Further, instead of the autonomous mobile body 20, the server 11 (see FIG. 1) may recognize the person M1.
 自律移動体20は、画像センサ21、音声センサ22、及び温湿度センサ23によって取得した各データを、自律移動体20の位置情報とともに空気調和機10に送信する。ここで、自律移動体20が人M1の近くまで移動したときの自律移動体20の位置情報は、人M1のおよその位置も示している。そして、人M1の周囲の温湿度等に対応付けられている自律移動体20の位置情報(つまり、人M1の位置情報)に基づいて、空気調和機10が所定に空調制御を行うようになっている。 The autonomous mobile body 20 transmits each data acquired by the image sensor 21, the audio sensor 22, and the temperature/humidity sensor 23 to the air conditioner 10 together with the position information of the autonomous mobile body 20. Here, the position information of the autonomous mobile body 20 when the autonomous mobile body 20 moves close to the person M1 also indicates the approximate position of the person M1. Then, the air conditioner 10 starts to perform predetermined air conditioning control based on the position information of the autonomous mobile body 20 (that is, the position information of the person M1) that is associated with the temperature, humidity, etc. around the person M1. ing.
 このように、自律移動体20が、いわば空気調和機10の手足となって、部屋R1にいる人M1の撮像結果や音声の他、人M1の周囲の温湿度を検出するようにしている。
 なお、これまでの空気調和機では、室内機に吸い込まれる空気の温度を温度センサで検出する他、部屋にいる人の表面温度を赤外線センサ等で取得して、空調制御を行うようにしていた。この場合、人の周囲の空気の温度の正確な値を検出することが困難であるため、空調の設定温度が、人の周囲の温度から乖離することが多かった。また、仮に、人の周囲の温度が設定温度に等しくなった場合でも、その設定温度が人の好みに合わないときには、人が不快に感じることもあった。
In this way, the autonomous mobile body 20 becomes, so to speak, the limbs of the air conditioner 10, and detects the temperature and humidity around the person M1 in addition to the imaging results and audio of the person M1 in the room R1.
In addition to detecting the temperature of the air sucked into the indoor unit with a temperature sensor, conventional air conditioners also use infrared sensors to obtain the surface temperature of the people in the room to control the air conditioning. . In this case, since it is difficult to detect an accurate value of the temperature of the air around the person, the set temperature of the air conditioner often deviates from the temperature of the person's surroundings. Further, even if the temperature around the person becomes equal to the set temperature, the person may feel uncomfortable if the set temperature does not suit the person's preference.
 そこで、第1実施形態では、自律移動体20が人M1(図1参照)の撮像データや音声データの他、人M1の温湿度を含むデータを空気調和機10に送信し、空気調和機10が空調に関する人M1の好みを分析して、空調制御を所定に変更するようにしている。これによって、空調の快適性が高められる他、人M1がリモコン等の操作や自律移動体20へのアクション(質問に対する回答等)を行う必要がなくなるため、空調制御を変更する際の人M1の負担を軽減できる。
 以下の説明では、人M1(図1参照)の符号を適宜に省略することがあるものとする。
Therefore, in the first embodiment, the autonomous mobile body 20 transmits data including temperature and humidity of the person M1 in addition to image data and audio data of the person M1 (see FIG. 1) to the air conditioner 10. analyzes person M1's preferences regarding air conditioning and changes the air conditioning control in a predetermined manner. This not only improves the comfort of the air conditioning, but also eliminates the need for the person M1 to operate a remote control or take actions (answers to questions, etc.) to the autonomous mobile object 20. It can reduce the burden.
In the following description, the reference numeral for person M1 (see FIG. 1) may be omitted as appropriate.
<空調システムの制御構成>
 図3は、空調システム100の機能ブロック図である。
 図3に示すように、自律移動体20の制御基板24は、機能的な構成として、記憶部24aと、制御部24bと、通信部24cと、を備えている。記憶部24aには、所定のプログラムが予め格納されている他、画像センサ21や音声センサ22、温湿度センサ23、距離センサ25の各検出値や、空気調和機10から受信したデータが格納される。
<Control configuration of air conditioning system>
FIG. 3 is a functional block diagram of the air conditioning system 100.
As shown in FIG. 3, the control board 24 of the autonomous mobile body 20 includes a storage section 24a, a control section 24b, and a communication section 24c as functional components. In addition to storing a predetermined program in advance, the storage unit 24a also stores detection values of the image sensor 21, audio sensor 22, temperature/humidity sensor 23, and distance sensor 25, as well as data received from the air conditioner 10. Ru.
 制御部24bは、例えば、空気調和機10から通信部24cを介して走行指示を受信した場合、駆動輪26(図2参照)のモータ28を所定に駆動させる。また、制御部24bは、画像センサ21、音声センサ22、及び温湿度センサ23によって取得されたデータを自律移動体20の位置情報(例えば、人の周囲の温湿度を検出したときの位置情報)に対応付けて、通信部24cを介して、空気調和機10に送信する。通信部24cは、空気調和機10との間で所定に通信を行う。 For example, when the control unit 24b receives a driving instruction from the air conditioner 10 via the communication unit 24c, the control unit 24b drives the motor 28 of the drive wheel 26 (see FIG. 2) in a predetermined manner. The control unit 24b also converts the data acquired by the image sensor 21, the audio sensor 22, and the temperature/humidity sensor 23 into positional information of the autonomous mobile body 20 (for example, positional information when temperature/humidity around the person is detected). , and is transmitted to the air conditioner 10 via the communication unit 24c. The communication unit 24c performs predetermined communication with the air conditioner 10.
 空気調和機10は、前記したサーバ11を備える他、圧縮機12と、膨張弁13と、室内ファン14と、室外ファン15と、所定のセンサ16を備えている。このようなセンサ16として、例えば、室内温度センサや室外温度センサが挙げられる。また、図3には図示していないが、空気調和機10は、室内熱交換器や室外熱交換器、四方弁等を備えている。そして、周知の冷凍サイクルで冷媒が循環するようになっている。 The air conditioner 10 includes the server 11 described above, as well as a compressor 12, an expansion valve 13, an indoor fan 14, an outdoor fan 15, and a predetermined sensor 16. Examples of such a sensor 16 include an indoor temperature sensor and an outdoor temperature sensor. Although not shown in FIG. 3, the air conditioner 10 includes an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and the like. The refrigerant is then circulated in a well-known refrigeration cycle.
 図3に示すように、サーバ11は、記憶部11aと、制御部11bと、通信部11cと、を備えている。記憶部11aには、所定のプログラムが予め格納されている他、自律移動体20から受信したデータや、このデータに基づく分析結果が格納される。その他、部屋R1(図1参照)の地図情報が記憶部24aに格納されるようにしてもよい。この地図情報は、予め与えられていてもよいし、また、自律移動体20が部屋R1(図1参照)を走行する過程で作成されてもよい。地図情報には、部屋R1の形状や間取りを示す情報が含まれている。 As shown in FIG. 3, the server 11 includes a storage section 11a, a control section 11b, and a communication section 11c. The storage unit 11a stores predetermined programs in advance, as well as data received from the autonomous mobile body 20 and analysis results based on this data. In addition, map information of the room R1 (see FIG. 1) may be stored in the storage unit 24a. This map information may be given in advance, or may be created while the autonomous mobile body 20 travels through the room R1 (see FIG. 1). The map information includes information indicating the shape and floor plan of the room R1.
 制御部11bは、自律移動体20から受信したデータを分析し、その分析結果に基づいて、空調制御を所定に変更する。また、制御部11bは、通信部11cを介して、ユーザの情報端末30との間でデータの送受信を行う。例えば、サーバ11が収集したデータを空気調和機10の通信部11cを介して情報端末30に送信し、情報端末30の表示画面でユーザが確認するようにしてもよい。このような情報端末30として、例えば、携帯電話やスマートフォン、タブレット、ウェアラブル端末が用いられる。通信部11cは、自律移動体20との間で通信を行う他、ユーザの情報端末30との間でも通信を行う。 The control unit 11b analyzes the data received from the autonomous mobile body 20, and changes the air conditioning control in a predetermined manner based on the analysis result. The control unit 11b also transmits and receives data to and from the user's information terminal 30 via the communication unit 11c. For example, the data collected by the server 11 may be transmitted to the information terminal 30 via the communication unit 11c of the air conditioner 10, and the user may check the data on the display screen of the information terminal 30. As such an information terminal 30, for example, a mobile phone, a smartphone, a tablet, or a wearable terminal is used. The communication unit 11c not only communicates with the autonomous mobile body 20 but also communicates with the user's information terminal 30.
 図4は、空調システムのサーバで抽出される特徴量の説明図である(適宜、図3を参照)。
 サーバ11は、画像センサ21で取得された撮像データに基づき、人の表情の特徴量として、顔の表情の他、喜怒哀楽のレベル、笑顔量(笑顔の度合いを示す数値)、顔色といった特徴量を抽出する。また、画像センサ21が赤外線に感度を有している場合には、撮像データに基づいて、人の体温や発汗量、血流量といった特徴量をサーバ11が抽出するようにしてもよい。
FIG. 4 is an explanatory diagram of feature amounts extracted by the server of the air conditioning system (see FIG. 3 as appropriate).
Based on the image data acquired by the image sensor 21, the server 11 collects features such as facial expressions, level of happiness, anger, sadness, amount of smile (numerical value indicating degree of smile), and complexion, as feature values of human expression. Extract the amount. Furthermore, if the image sensor 21 is sensitive to infrared rays, the server 11 may extract feature quantities such as a person's body temperature, amount of perspiration, and blood flow based on the imaging data.
 また、サーバ11は、画像センサ21で取得された撮像データに基づく人の身体の特徴量として、人の体格の他、姿勢、身体の移動速度、移動の際のブレ、筋肉の緊張といった特徴量を抽出する。なお、筋肉の緊張については、人の姿勢の変化の仕方等から推定される。人の身体に関するその他の特徴量として、例えば、人の手足の挙動速度や身体の震えをサーバ11が抽出するようにしてもよい。 The server 11 also provides features of the person's body based on the imaging data acquired by the image sensor 21, such as the person's physique, posture, body movement speed, shaking during movement, and muscle tension. Extract. Note that muscle tension is estimated from the way a person's posture changes. As other features related to the human body, the server 11 may extract, for example, the speed of movement of the human limbs and the tremors of the human body.
 また、サーバ11は、音声センサ22で取得された音声データ(会話音・生活音)に基づく人の声の特徴量として、声の大きさ、声質(声の高さ・周波数)、声の震え等を抽出する。なお、人の会話の内容については、サーバ11が分析しないようにすることがプライバシー保護の観点から好ましいが、「暑い」や「寒い」といった言葉を抽出する程度であれば許容される。 In addition, the server 11 also stores voice volume, voice quality (voice pitch/frequency), voice tremor, and voice tremor as human voice features based on the voice data (conversation sounds/life sounds) acquired by the voice sensor 22. Extract etc. Note that, from the viewpoint of privacy protection, it is preferable that the server 11 not analyze the content of people's conversations, but it is permissible to extract words such as "hot" and "cold."
 図4に示すように、撮像データに基づく人の顔情報や体格、声質といった特徴量は、その人が誰であるかを示す「個人情報」として用いられる。また、人の表情や身体の特徴量、及び声の特徴量のうち、人が空調をどのように感じているか(快・不快、暑い、寒い等)を示す指標となるものを「人情報」という。 As shown in FIG. 4, feature quantities such as a person's facial information, physique, and voice quality based on imaging data are used as "personal information" that indicates who the person is. In addition, human information includes facial expressions, physical features, and voice features that indicate how a person feels about air conditioning (pleasant/uncomfortable, hot, cold, etc.). That's what it means.
 このような「人情報」には、例えば、喜怒哀楽のレベル、笑顔量、顔色、体温、発汗量、血流量、身体の姿勢、移動速度、移動の際のブレ、筋肉の緊張、声の大きさ、声の震えが含まれる。その他、「人情報」として、人の感情(表情や音声などの情報に基づいて感情を数値化したもの)が含まれていてもよいし、また、複数の特徴量が適宜に用いられるようにしてもよい。また、自律移動体20(図2参照)における画像センサ21の撮像結果や、音声センサ22の測定結果も「人情報」に含まれるものとする。 Such "personal information" includes, for example, the level of happiness, anger, sadness, amount of smiles, complexion, body temperature, amount of sweat, blood flow, body posture, movement speed, blurring when moving, muscle tension, and voice. Includes loudness and trembling of voice. In addition, "human information" may include human emotions (emotions quantified based on information such as facial expressions and voice), and multiple feature quantities may be used as appropriate. It's okay. Furthermore, the "person information" includes the imaging results of the image sensor 21 and the measurement results of the audio sensor 22 in the autonomous mobile body 20 (see FIG. 2).
 前記したように、サーバ11(図3参照)は、温湿度センサ23の検出値に基づいて、人の周囲の温度・湿度の値を取得する。また、サーバ11は、距離センサ25で取得された距離のデータに基づいて、部屋R1(図1参照)を含む建物B1(図1参照)の間取りを推定する他、部屋R1における自律移動体20の位置(自己位置)を推定する。なお、人の周囲の温湿度や部屋R1の温湿度分布を示す情報を「環境情報」という。「環境情報」には、温湿度センサ23の検出値の他、距離センサ25の測定値に基づく建物B1の間取りや自律移動体20の自己位置を示す情報が含まれる。 As described above, the server 11 (see FIG. 3) acquires the temperature and humidity values around the person based on the detected values of the temperature and humidity sensor 23. In addition, the server 11 estimates the floor plan of the building B1 (see FIG. 1) including the room R1 (see FIG. 1) based on the distance data acquired by the distance sensor 25, and also estimates the floor plan of the building B1 (see FIG. 1) that includes the room R1 (see FIG. 1). Estimate the position of (self-position). Note that information indicating the temperature and humidity around the person and the temperature and humidity distribution in the room R1 is referred to as "environmental information." The "environmental information" includes information indicating the floor plan of the building B1 and the self-position of the autonomous mobile body 20 based on the measured value of the distance sensor 25, in addition to the detected value of the temperature/humidity sensor 23.
 図4に示すように、サーバ11は、「人情報」及び「環境情報」に基づいて、人の空調に関する「好み情報」を生成する。例えば、サーバ11は、部屋R1(図1参照)にいる人が暑いと感じているか、それとも寒いと感じているかの度合いを示す数値を、人の周囲の温湿度や自律移動体20の位置情報に対応付けることで、「好み情報」を生成する。「好み情報」とは、人が空調環境をどのように感じているかを示すデータである。なお、「好み情報」には、暑さ・寒さの他、空調風の風量に関する快適さや、人に空調風が当たる(又は空調風が当たらない)こと、風向きに関する快適さも含まれている。 As shown in FIG. 4, the server 11 generates "preference information" regarding air conditioning for a person based on "person information" and "environmental information". For example, the server 11 may collect numerical values indicating whether the person in the room R1 (see FIG. 1) feels hot or cold, information about the temperature and humidity around the person, and the position of the autonomous mobile object 20. ``Preference information'' is generated by associating with . "Preference information" is data indicating how a person feels about the air-conditioned environment. In addition to heat and cold, the "preference information" also includes comfort regarding the volume of air conditioned air, whether the air conditioned air hits the person (or not), and the direction of the wind.
 例えば、画像データに基づく笑顔量が比較的大きい場合には、人が空調環境を快適に感じている可能性が高い。また、人の発汗量が多く、その体温が高い場合には、人が暑いと感じている可能性が高い。その他、人の身体の震えや筋肉のこわばりが生じている場合には、人が寒いと感じている可能性が高い。このようにサーバ11は、「人情報」と「環境情報」とに基づいて、人が現在の空調環境をどう感じているかを示す「好み情報」を生成する。 For example, if the amount of smiling faces based on image data is relatively large, there is a high possibility that the person feels comfortable in the air-conditioned environment. Furthermore, if a person sweats a lot and their body temperature is high, there is a high possibility that the person feels hot. In addition, if a person's body is shaking or their muscles are stiff, there is a high possibility that the person feels cold. In this way, the server 11 generates "preference information" indicating how a person feels about the current air conditioning environment, based on "person information" and "environment information."
 その他、人の顔や体格、声質といった「個人情報」をサーバ11が事前に登録することで、部屋R1(図1参照)にいる人が誰であるかをサーバ11が認識するようにしてもよい。「好み情報」と「個人情報」とが対応付けられることで、部屋R1(図1参照)にいる人が誰であって、どの場所でどのような空調を好むのかをサーバ11が把握できる。サーバ11が生成した「好み情報」は、「個人情報」に対応付けられて、記憶部11aに格納される。なお、「個人情報」の生成は、特に必須ではないため、省略することも可能である。 In addition, the server 11 may register in advance "personal information" such as a person's face, physique, and voice quality, so that the server 11 can recognize who is in the room R1 (see Figure 1). good. By associating "preference information" with "personal information," the server 11 can grasp who is in the room R1 (see FIG. 1), where they are, and what type of air conditioning they prefer. The "preference information" generated by the server 11 is stored in the storage unit 11a in association with the "personal information". Note that the generation of "personal information" is not particularly essential, so it can be omitted.
 また、サーバ11が、「人情報」に「日時情報」を対応付けるようにしてもよい。このような「日時情報」として、例えば、「人情報」が生成された日付・時刻が用いられる。サーバ11は、「人情報」に「日時情報」を対応付けることで、空調に関する人の「好み情報」を、季節や時間帯に対応付ける。 Additionally, the server 11 may associate "date and time information" with "person information". As such "date and time information", for example, the date and time when "person information" is generated is used. By associating "person information" with "date and time information," the server 11 associates a person's "preference information" regarding air conditioning with seasons and time zones.
 その他にも、サーバ11が、空調に関する人の「好み情報」を、人がいる場所(リビング、キッチン、ダイニング、寝室等)や行動の種類に対応付けるようにしてもよい。例えば、人がキッチンで料理をしているときと、リビングでくつろいでいるときとでは、人が好む空調環境が異なることが多い。また、人が運動しているときと、リラックスしているときとでは、人が好む空調環境が異なることが多い。人の空調に関する「好み情報」を季節や時間帯、場所や行動に対応付けてサーバ11が分類することで、快適な空調をきめ細やかに行うことができる。 In addition, the server 11 may associate a person's "preference information" regarding air conditioning with the location where the person is (living room, kitchen, dining room, bedroom, etc.) and the type of activity. For example, people often prefer different air conditioning environments when they are cooking in the kitchen and when they are relaxing in the living room. Furthermore, the air conditioning environment that a person prefers is often different depending on when the person is exercising and when the person is relaxing. The server 11 classifies people's "preference information" regarding air conditioning in association with season, time of day, location, and behavior, making it possible to provide detailed and comfortable air conditioning.
 また、空調制御の変更に伴って、部屋R1(図1参照)の温湿度等の環境情報が変化した場合、環境情報が変化する前の「人情報」と、環境情報が変化した後の「人情報」と、をサーバ11が比較し、変化前・変化後のいずれが人にとって快適であるかを推定するようにしてもよい。例えば、部屋R1にいる人の周囲の温度が変化した場合において、その人の状態が変化したときには、その表情や体温や血流から、温度の変化前・変化後のどちらが快適であるかをサーバ11が推定することで、人の「好み情報」を更新(変更)できる。このように、空調制御の変更に伴う「環境情報」及び「人情報」の変化に基づいて、「好み情報」が更新されるようにしてもよい。これによって、空調環境の変化に対する人の反応がサーバ11で学習されるため、快適な空調環境を比較的短時間で提供できる。 In addition, if environmental information such as temperature and humidity of room R1 (see Figure 1) changes due to changes in air conditioning control, "person information" before the environmental information changes and "person information" after the environmental information changes. The server 11 may compare the "personal information" and estimate whether the information before or after the change is more comfortable for the person. For example, if the temperature around a person in room R1 changes, and the person's condition changes, the server can determine whether they are more comfortable before or after the temperature change based on their facial expressions, body temperature, and blood flow. By estimating 11, a person's "preference information" can be updated (changed). In this way, "preference information" may be updated based on changes in "environmental information" and "person information" due to changes in air conditioning control. As a result, the server 11 learns people's reactions to changes in the air-conditioned environment, so that a comfortable air-conditioned environment can be provided in a relatively short time.
 その他にも、例えば、自律移動体20が人に所定のアクションを起こした場合の人の反応に基づいて、空気調和機10が空調制御を変更するようにしてもよい。例えば、自律移動体20がファン等(図示せず)の機器を備え、人に向けて所定の風を吹き出したとき、人がその風を心地よいと感じているか否かをサーバ11が判定するようにしてもよい。風が心地よいと人が感じている可能性が高い場合には、その人は風を当てられることを好む可能性が高い。したがって、空気調和機10は、その人に空調風が当たるように空調制御を行うことで、空調の快適性を高めることができる。 In addition, for example, the air conditioner 10 may change the air conditioning control based on the reaction of the person when the autonomous mobile body 20 takes a predetermined action toward the person. For example, when the autonomous mobile body 20 is equipped with a device such as a fan (not shown) and blows out a predetermined wind toward a person, the server 11 may determine whether the person feels comfortable with the wind. You can also do this. If there is a high possibility that a person feels that the wind is comfortable, there is a high possibility that the person likes being exposed to the wind. Therefore, the air conditioner 10 can improve the comfort of air conditioning by controlling the air conditioning so that the conditioned air hits the person.
<空調システムの処理>
 図5A、図5Bは、空気調和機及び自律移動体のそれぞれの処理を示すフローチャートである(適宜、図3も参照)。
 なお、図5Aの「START」時には、リモコン(図示せず)又は情報端末30(図3参照)から空気調和機10に運転開始の指令が送信されるものとする。
 ステップS101において空気調和機10は、圧縮機12等を駆動して、所定の空調運転を行う。すなわち、空気調和機10は、所定の運転モードや設定温度に基づいて、圧縮機12、膨張弁13、室内ファン14、及び室外ファン15を制御する。なお、空調の設定温度はリモコン(図示せず)で設定されることが多いが、スマートフォン等の情報端末30(図3参照)の操作で設定されてもよいし、また、所定の初期設定が用いられてもよい。
<Air conditioning system processing>
5A and 5B are flowcharts showing the respective processes of the air conditioner and the autonomous mobile body (see also FIG. 3 as appropriate).
Note that at the time of "START" in FIG. 5A, a command to start operation is transmitted to the air conditioner 10 from the remote controller (not shown) or the information terminal 30 (see FIG. 3).
In step S101, the air conditioner 10 drives the compressor 12 and the like to perform a predetermined air conditioning operation. That is, the air conditioner 10 controls the compressor 12, the expansion valve 13, the indoor fan 14, and the outdoor fan 15 based on a predetermined operating mode and set temperature. Note that the set temperature of the air conditioner is often set with a remote control (not shown), but it may also be set by operating the information terminal 30 (see FIG. 3) such as a smartphone, or if a predetermined initial setting is set. may be used.
 ステップS102において空気調和機10は、自律移動体20に走行指示を出す。その結果、空気調和機10のサーバ11(図3参照)から自律移動体20の制御基板24(図3参照)に走行指示の信号が送信される。
 ステップS103において自律移動体20は、空気調和機10から走行指示の信号を受信する。
In step S102, the air conditioner 10 issues a travel instruction to the autonomous mobile body 20. As a result, a travel instruction signal is transmitted from the server 11 (see FIG. 3) of the air conditioner 10 to the control board 24 (see FIG. 3) of the autonomous mobile body 20.
In step S103, the autonomous mobile body 20 receives a travel instruction signal from the air conditioner 10.
 ステップS104において自律移動体20は、部屋R1(図1参照)を含む建物B1(図1参照)の地図情報が存在するか否かを判定する。例えば、地図情報が予め提供されている場合や、自律移動体20の走行中に取得したデータに基づいて既に地図情報が作成されている場合には(S104:Yes)、自律移動体20の処理はステップS105に進む。
 ステップS105において自律移動体20は、地図情報に基づいて、部屋R1の中を所定に走行する。なお、部屋R1の中の走行の仕方は、自律移動体20の用途(ロボット掃除機、ペットロボット、サービスロボット等)によってさまざまである。
In step S104, the autonomous mobile body 20 determines whether map information exists for the building B1 (see FIG. 1) that includes the room R1 (see FIG. 1). For example, if map information is provided in advance or if map information has already been created based on data acquired while the autonomous mobile body 20 is running (S104: Yes), the autonomous mobile body 20 processes The process proceeds to step S105.
In step S105, the autonomous mobile body 20 travels in the room R1 in a predetermined manner based on the map information. Note that the way the autonomous mobile body 20 moves in the room R1 varies depending on the purpose of the autonomous mobile body 20 (robot vacuum cleaner, pet robot, service robot, etc.).
 また、ステップS104において地図情報がない場合(S104:No)、自律移動体20の処理はステップS106に進む。ステップS106において自律移動体20は、部屋R1を所定に走行し、距離センサ25や画像センサ21の検出結果に基づいて、部屋R1の形状等を測定し、地図情報を生成する。なお、地図情報を生成する主体は、サーバ11(図3参照)であってもよい。また、空気調和機10からの走行指示が特にない場合でも、自律移動体20は、部屋R1の中の走行することが可能である。 Furthermore, if there is no map information in step S104 (S104: No), the process of the autonomous mobile body 20 proceeds to step S106. In step S106, the autonomous mobile body 20 travels in the room R1 in a predetermined manner, measures the shape of the room R1, etc. based on the detection results of the distance sensor 25 and the image sensor 21, and generates map information. Note that the entity that generates the map information may be the server 11 (see FIG. 3). Furthermore, even if there is no specific travel instruction from the air conditioner 10, the autonomous mobile body 20 can travel within the room R1.
 次に、ステップS107において自律移動体20は、人を検知したか否かを判定する。すなわち、自律移動体20は、画像センサ21や音声センサ22の検出結果に基づいて、部屋R1の中に人がいるか否かを判定する。ステップS107において人を検知していない場合(S107:No)、自律移動体20の処理はステップS105に戻る。また、ステップS107において人を検知した場合(S107:Yes)、自律移動体20の処理はステップS108に進む。 Next, in step S107, the autonomous mobile body 20 determines whether or not a person is detected. That is, the autonomous mobile body 20 determines whether or not there is a person in the room R1 based on the detection results of the image sensor 21 and the audio sensor 22. If no person is detected in step S107 (S107: No), the process of the autonomous mobile body 20 returns to step S105. Moreover, when a person is detected in step S107 (S107: Yes), the process of the autonomous mobile body 20 proceeds to step S108.
 ステップS108において自律移動体20は、画像・音声のデータの他、人の周囲の温湿度や、自身の位置情報を取得する。より詳しく説明すると、自律移動体20は、画像センサ21で人の撮像データを取得するとともに、音声センサ22で音声データを取得する。また、自律移動体20は、温湿度センサ23を用いて、人の周囲の温湿度を取得する。また、自律移動体20は、距離センサ25の測定値の他、地図情報に基づいて、自律移動体20の位置情報を取得する。そして、自律移動体20は、部屋R1(空調室)にいる人の周囲の温度及び湿度の検出値に自律移動体20の位置情報を対応付けた「環境情報」を生成するとともに、部屋R1(空調室)にいる人の撮像結果及び音声の測定結果を含む「人情報」を生成する。 In step S108, the autonomous mobile body 20 acquires the temperature and humidity around the person and its own position information in addition to image and audio data. To explain in more detail, the autonomous mobile body 20 uses an image sensor 21 to obtain image data of a person, and uses an audio sensor 22 to obtain audio data. Furthermore, the autonomous mobile body 20 uses the temperature and humidity sensor 23 to obtain the temperature and humidity around the person. Furthermore, the autonomous mobile body 20 acquires position information of the autonomous mobile body 20 based on the measured value of the distance sensor 25 as well as map information. Then, the autonomous mobile body 20 generates "environmental information" in which the position information of the autonomous mobile body 20 is associated with the detected values of the temperature and humidity around the person in the room R1 (air-conditioned room), and also Generates "person information" that includes imaging results and sound measurement results of people in air-conditioned rooms.
 ステップS109において自律移動体20は、空気調和機10にデータを送信する。すなわち、自律移動体20は、「人情報」(撮像データや音声データ)及び「環境情報」(人の周囲の温湿度や自律移動体20の位置)を含むデータを、通信部24c(図3参照)を介して、空気調和機10のサーバ11に送信する。
 ステップS110において空気調和機10は、サーバ11の通信部11c(図3参照)を介して、自律移動体20からデータを受信する。
In step S109, the autonomous mobile body 20 transmits data to the air conditioner 10. That is, the autonomous mobile object 20 transmits data including "person information" (imaging data and audio data) and "environmental information" (temperature and humidity around the person and the position of the autonomous mobile object 20) to the communication unit 24c (Fig. (see) to the server 11 of the air conditioner 10.
In step S110, the air conditioner 10 receives data from the autonomous mobile body 20 via the communication unit 11c of the server 11 (see FIG. 3).
 なお、部屋R1にいる人の周囲の温湿度を検出するために、自律移動体20が人に常時付いて行く必要は特にない。すなわち、自律移動体20が人からいったん離れてから所定時間が経過した後、自律移動体20が再び人に接近し、人の周囲の温湿度等を検出するようにしてもよい。また、例えば、自律移動体20が掃除ロボットである場合には、部屋R1を掃除する過程で自律移動体20が人に接近したときに、人の周囲の温湿度等を検出するようにしてもよいし、走行しながら常に温湿度等を検出してもよい。 Note that in order to detect the temperature and humidity around the person in the room R1, it is not particularly necessary for the autonomous mobile body 20 to always follow the person. That is, after a predetermined period of time has elapsed since the autonomous mobile body 20 once separated from the person, the autonomous mobile body 20 may approach the person again and detect the temperature, humidity, etc. around the person. For example, if the autonomous mobile object 20 is a cleaning robot, when the autonomous mobile object 20 approaches a person in the process of cleaning the room R1, the temperature and humidity around the person may be detected. Alternatively, the temperature and humidity may be constantly detected while the vehicle is running.
 次に、図5BのステップS111において空気調和機10は、自律移動体20から受信した撮像データ及び音声データに基づいて、顔情報や喜怒哀楽のレベル、声の大きさといった特徴量(図4参照)を抽出する。
 ステップS112において空気調和機10は、「好み情報」等を生成し、記憶する。すなわち、空気調和機10は、部屋R1にいる人の表情や声の特徴量に、その人の周囲の温湿度や自律移動体20の位置情報(つまり、人の位置情報)を対応付けた「好み情報」を生成する。また、空気調和機10が人の顔情報に基づいて、その人を特定するための「個人情報」を生成するようにしてもよい。このようにして生成された「好み情報」や「個人情報」は、サーバ11に格納される。
Next, in step S111 in FIG. 5B, the air conditioner 10 uses feature quantities such as facial information, level of happiness, anger, sorrow, and voice volume (see FIG. Reference).
In step S112, the air conditioner 10 generates and stores "preference information" and the like. That is, the air conditioner 10 associates the facial expressions and voice features of the person in the room R1 with the temperature and humidity of the person's surroundings and the position information of the autonomous mobile object 20 (that is, the position information of the person). "Preference information" is generated. Furthermore, the air conditioner 10 may generate "personal information" for identifying a person based on the person's facial information. The "preference information" and "personal information" generated in this manner are stored in the server 11.
 次に、ステップS113において空気調和機10は、温湿度が設定値に等しい(又は設定値を含む所定範囲内である)か否かを判定する。例えば、空気調和機10は、人の周囲の温度が、空調の設定温度に等しくなっているか否かを判定する。なお、人の周囲の湿度についても同様である。前記したように、自律移動体20が人の近くに移動することで、人の周囲の温湿度の正確な値を取得できる。ステップS113において温湿度が設定値とは異なっている場合(S113:No)、空気調和機10の処理はステップS114に進む。 Next, in step S113, the air conditioner 10 determines whether the temperature and humidity are equal to the set value (or within a predetermined range including the set value). For example, the air conditioner 10 determines whether the temperature around the person is equal to the set temperature of the air conditioner. Note that the same applies to the humidity around the person. As described above, by moving the autonomous mobile body 20 close to the person, accurate values of the temperature and humidity around the person can be obtained. If the temperature and humidity are different from the set values in step S113 (S113: No), the process of the air conditioner 10 proceeds to step S114.
 ステップS114において空気調和機10は、所定の空調制御を行う。すなわち、空気調和機10は、人の周囲の温湿度が設定値に近づくように圧縮機12等を制御する。なお、人の周囲の温湿度は、その人が感じる空調の快適さに直接関わっている。そこで、第1実施形態では、人の周囲の温湿度が所定の設定値になるように、空気調和機10が所定の空調制御を行うようにしている。ステップS114の処理を行った後、空気調和機10の処理はステップS113に戻る。 In step S114, the air conditioner 10 performs predetermined air conditioning control. That is, the air conditioner 10 controls the compressor 12 and the like so that the temperature and humidity around the person approaches the set value. Note that the temperature and humidity around a person is directly related to the comfort of the air conditioner that the person feels. Therefore, in the first embodiment, the air conditioner 10 performs predetermined air conditioning control so that the temperature and humidity around the person reach a predetermined set value. After performing the process of step S114, the process of the air conditioner 10 returns to step S113.
 また、ステップS113において温湿度が設定値に等しい場合(S113:Yes)、空気調和機10の処理はステップS115に進む。ステップS115において空気調和機10は、人が快適であるか否かを判定する。すなわち、空気調和機10は、サーバ40に格納されている「好み情報」(「人情報」及び「環境情報」)に基づいて、部屋R1にいる人が空調を快適に感じているか否かを判定する。ステップS115において人が空調を快適に感じていないと判定した場合(S115:No)、空気調和機10の処理はステップS116に進む。 Furthermore, if the temperature and humidity are equal to the set value in step S113 (S113: Yes), the process of the air conditioner 10 proceeds to step S115. In step S115, the air conditioner 10 determines whether the person is comfortable. That is, the air conditioner 10 determines whether the person in the room R1 feels comfortable with the air conditioning based on the "preference information" ("person information" and "environment information") stored in the server 40. judge. If it is determined in step S115 that the person does not feel comfortable with the air conditioning (S115: No), the process of the air conditioner 10 proceeds to step S116.
 ステップS116において空気調和機10は、空調に関する設定値を変更する。例えば、部屋R1にいる人の発汗量が多く、体温が高い場合には、その人が暑いと感じている可能性が高い。このような場合、空気調和機10は、空調の設定温度を下げて、部屋R1が涼しくなるようにする。また、例えば、部屋R1にいる人の身体が震えていたり、筋肉がこわばっていたりする場合には、その人が寒いと感じている可能性が高い。このような場合、空気調和機10は、空調の設定温度を上げて、部屋R1が暖かくなるようにする。 In step S116, the air conditioner 10 changes the setting values related to air conditioning. For example, if a person in room R1 sweats a lot and has a high body temperature, there is a high possibility that the person feels hot. In such a case, the air conditioner 10 lowers the set temperature of the air conditioner so that the room R1 becomes cooler. Further, for example, if the person in room R1 is shaking or has stiff muscles, there is a high possibility that the person is feeling cold. In such a case, the air conditioner 10 increases the set temperature of the air conditioner so that the room R1 becomes warmer.
 ステップS117において空気調和機10は、変更した設定値に基づいて、空調制御を所定に行う。なお、空気調和機10が、部屋R1にいる人の「好み情報」に基づいて、空調風の風量や風向を変更するようにしてもよい。例えば、空調風を当てられることを人が好む場合、空気調和機10は、空調風がその人に重点的に向かうように、風量や風向を調整する。 In step S117, the air conditioner 10 performs air conditioning control in a predetermined manner based on the changed setting value. Note that the air conditioner 10 may change the air volume and direction of the conditioned air based on the "preference information" of the person in the room R1. For example, if a person likes being exposed to conditioned air, the air conditioner 10 adjusts the air volume and direction so that the conditioned air is directed primarily toward the person.
 このように、空気調和機10は、「環境情報」及び「人情報」の分析結果に基づいて、空調制御を所定に変更する。前記した分析結果には、部屋R1(空調室)にいる人の空調に関する「好み情報」が含まれている。ステップS117の処理を行った後、空気調和機10の処理はステップS115に戻る。 In this way, the air conditioner 10 changes the air conditioning control in a predetermined manner based on the analysis results of "environmental information" and "person information". The above analysis results include "preference information" regarding air conditioning of the person in room R1 (air conditioned room). After performing the process of step S117, the process of the air conditioner 10 returns to step S115.
 また、ステップS115において人が空調を快適に感じていると判定した場合(S115:Yes)、空気調和機10の処理はステップS118に進む。
 ステップS118において空気調和機10は、設定値等を記憶する。すなわち、空気調和機10は、人が快適であると感じている可能性が高いときの設定温度の他、そのときの「人情報」、「環境情報」、及び「個人情報」をサーバ11に格納する。これらのデータは、次回の空調運転の際、部屋R1にいる人(以前に空調を快適であると感じた人)をサーバ11が認識した場合に適宜に用いられる。また、ステップS101における設定温度などの運転条件として前回学習した運転条件を適用してもよい。
Further, if it is determined in step S115 that the person feels comfortable with the air conditioning (S115: Yes), the process of the air conditioner 10 proceeds to step S118.
In step S118, the air conditioner 10 stores the set values and the like. In other words, the air conditioner 10 sends to the server 11 the set temperature when the person is likely to feel comfortable, as well as "person information", "environmental information", and "personal information" at that time. Store. These data are used appropriately when the server 11 recognizes a person in the room R1 (a person who previously found the air conditioning comfortable) during the next air conditioning operation. Further, the previously learned operating conditions may be applied as the operating conditions such as the set temperature in step S101.
 次に、ステップS119において空気調和機10は、空調制御を所定に行う。すなわち、空気調和機10は、人が快適であると感じている設定温度等での空調制御を継続する。ステップS119の処理を行った後、空気調和機10や自律移動体20は、一連の処理を終了する(END)。 Next, in step S119, the air conditioner 10 performs air conditioning control in a predetermined manner. That is, the air conditioner 10 continues to control the air conditioning at a set temperature or the like that the person feels comfortable with. After performing the process of step S119, the air conditioner 10 and the autonomous mobile body 20 end the series of processes (END).
<効果>
 第1実施形態によれば、「人情報」及び「環境情報」に基づいて、空調に関する「好み情報」をサーバ11が分析し、その分析結果に基づいて空調制御を変更するようにしている。これによって、部屋R1にいる人が設定温度の変更の必要等を特に意識することなく、快適な空調環境を過ごすことができる。また、部屋R1にいる人が所定の操作を能動的に行ったり、自律移動体20からの質問に答えたりする必要が特にないため、人が煩わしさを感じることがほとんどない。
<Effect>
According to the first embodiment, the server 11 analyzes "preference information" regarding air conditioning based on "person information" and "environmental information", and changes air conditioning control based on the analysis result. As a result, the person in the room R1 can enjoy a comfortable air-conditioned environment without being particularly conscious of the need to change the set temperature. Further, since there is no particular need for the person in the room R1 to actively perform a predetermined operation or answer questions from the autonomous mobile object 20, the person hardly feels bothered.
 また、第1実施形態によれば、自律移動体20が人の撮像データや音声データを取得する他、人の周囲の温湿度を検出して、空気調和機10に送信する。このように、自律移動体20が、あたかも空気調和機10の手足のように機能することで、人の周囲の温湿度を、人が快適に感じる所定の温湿度にすることができる。 Furthermore, according to the first embodiment, the autonomous mobile body 20 not only acquires image data and audio data of the person, but also detects the temperature and humidity around the person and transmits the detected data to the air conditioner 10. In this way, the autonomous mobile body 20 functions as if it were the limbs of the air conditioner 10, so that the temperature and humidity around the person can be set to a predetermined temperature and humidity that makes the person feel comfortable.
 また、自律移動体20がロボット掃除機やペットロボットといった機能を備えている場合には、普段は部屋R1を清掃したり、人に寄り添って可愛がられたりという本来の機能を果たしながら、必要に応じて「人情報」や「環境情報」を取得できる。したがって、自律移動体20が人の生活の邪魔になったり、必要以上に生活に侵襲したりすることなく、「人情報」や「環境情報」を取得できる。
 また、第1実施形態によれば、空気調和機10が外部サーバ(図示せず)との間の通信手段を有する必要が特にないため、処理の簡素化を図ることができる他、コストの削減を図ることができる。
In addition, if the autonomous mobile object 20 is equipped with functions such as a robot vacuum cleaner or a pet robot, it may perform its original functions such as cleaning the room R1 or snuggle up to people and be petted, while also performing the necessary functions. You can obtain ``person information'' and ``environmental information'' according to your needs. Therefore, "person information" and "environmental information" can be acquired without the autonomous mobile body 20 interfering with people's lives or invading people's lives more than necessary.
Further, according to the first embodiment, since there is no particular need for the air conditioner 10 to have a means of communication with an external server (not shown), processing can be simplified and costs can be reduced. can be achieved.
≪第2実施形態≫
 第2実施形態は、リビングR2(図6A参照)と洗面所R3(図6A参照)に空気調和機10A,10Bが1台ずつ設置される点が、第1実施形態とは異なっている。また、第2実施形態は、リビングR2や洗面所R3を含む建物BA1(図6A参照)の外部にサーバ40(図6参照)が設けられ、このサーバ40が、空気調和機10A,10Bや自律移動体20の他、洗濯乾燥機50との間で通信を行う点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
≪Second embodiment≫
The second embodiment differs from the first embodiment in that one air conditioner 10A and one air conditioner 10B are installed in the living room R2 (see FIG. 6A) and the washroom R3 (see FIG. 6A). Further, in the second embodiment, a server 40 (see FIG. 6) is provided outside a building BA1 (see FIG. 6A) including a living room R2 and a washroom R3, and this server 40 is connected to the air conditioners 10A, 10B and autonomous This embodiment differs from the first embodiment in that communication is performed with a washer/dryer 50 in addition to the moving body 20. Note that other aspects are the same as those in the first embodiment. Therefore, the parts that are different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.
<空調システムの構成>
 図6A、図6Bは、第2実施形態に係る空調システム100Aの説明図である。
 なお、図6AはリビングR2(第1空調室)や洗面所R3(第2空調室)を横から見た場合の説明図であり、図6Bは平面図になっている。図6Aに示すように、建物BA1には、リビングR2と、洗面所R3と、が隣り合うように設けられている。リビングR2(第1空調室)には、空気調和機10Aの室内機UA(第1室内機)が設置されている。洗面所R3(第2空調室)には、別の空気調和機10Bの室内機UB(第2室内機)や洗濯乾燥機50(家電機器)が設置されている。
<Air conditioning system configuration>
6A and 6B are explanatory diagrams of an air conditioning system 100A according to the second embodiment.
Note that FIG. 6A is an explanatory diagram when the living room R2 (first air-conditioned room) and washroom R3 (second air-conditioned room) are viewed from the side, and FIG. 6B is a plan view. As shown in FIG. 6A, the building BA1 is provided with a living room R2 and a washroom R3 adjacent to each other. In the living room R2 (first air conditioned room), an indoor unit UA (first indoor unit) of the air conditioner 10A is installed. In the washroom R3 (second air conditioned room), an indoor unit UB (second indoor unit) of another air conditioner 10B and a washer/dryer 50 (home appliance) are installed.
 空調システム100Aは、自律移動体20と、空気調和機10A,10Bと、洗濯乾燥機50と、サーバ40と、を含んで構成されている。自律移動体20は、リビングR2と洗面所R3との間を所定に移動するようになっている。サーバ40は、建物BA1の外部に設けられ、自律移動体20との間で通信を行うとともに、空気調和機10A,10Bとの間で通信を行う他、洗濯乾燥機50との間でも所定に通信を行う。 The air conditioning system 100A includes an autonomous mobile body 20, air conditioners 10A and 10B, a washer/dryer 50, and a server 40. The autonomous mobile body 20 is configured to move in a predetermined manner between the living room R2 and the washroom R3. The server 40 is provided outside the building BA1, and communicates with the autonomous mobile body 20, as well as with the air conditioners 10A and 10B, as well as with the washer/dryer 50. communicate.
 洗濯乾燥機50(家電機器)は、この洗濯乾燥機50の周囲の温度を少なくとも検出するセンサ51を備えている。センサ51の検出値は、洗濯乾燥機50の制御基板(図示せず)の通信部(図示せず)を介して、サーバ40に送信される。 The washer/dryer 50 (home appliance) includes a sensor 51 that detects at least the temperature around the washer/dryer 50. The detected value of the sensor 51 is transmitted to the server 40 via a communication section (not shown) of a control board (not shown) of the washer/dryer 50 .
 サーバ40は、自律移動体20から受信する「環境情報」に、洗濯乾燥機50(家電機器)の位置情報及びセンサ51の検出値を加えた上で、空調に関する人の好みを分析する。なお、洗濯乾燥機50の位置情報が、サーバ40に予め記憶されるようにしてもよい。サーバ40の分析結果は、空気調和機10A,10Bの空調制御に反映される。 The server 40 adds the position information of the washer/dryer 50 (home appliance) and the detected value of the sensor 51 to the "environmental information" received from the autonomous mobile body 20, and then analyzes the person's preferences regarding air conditioning. Note that the position information of the washer/dryer 50 may be stored in the server 40 in advance. The analysis results of the server 40 are reflected in the air conditioning control of the air conditioners 10A and 10B.
<空調システムの制御構成>
 図7は、空調システム100Aの機能ブロック図である。
 図7に示すように、自律移動体20の制御基板24は、サーバ40との間で通信を行う通信部24cを備えている。そして、画像センサ21や音声センサ22で取得される「人情報」の他、温湿度センサ23の検出値や自律移動体20の位置情報とを含む「環境情報」が、通信部24cを介して自律移動体20からサーバ40に送信されるようになっている。
<Control configuration of air conditioning system>
FIG. 7 is a functional block diagram of the air conditioning system 100A.
As shown in FIG. 7, the control board 24 of the autonomous mobile body 20 includes a communication section 24c that communicates with the server 40. In addition to the "person information" acquired by the image sensor 21 and the audio sensor 22, "environmental information" including the detected value of the temperature/humidity sensor 23 and the position information of the autonomous mobile object 20 is transmitted via the communication unit 24c. The information is transmitted from the autonomous mobile body 20 to the server 40.
 なお、自律移動体20がリビングR2にいるのか、それとも洗面所R3にいるのかを示す所定の位置情報を、自律移動体20がサーバ40に送信するようにしてもよい。これによって、例えば、人が洗面所R3にいる場合にはリビングR2の空調を停止させておくといった制御が可能になるため、空調が無駄に行われることを抑制できる。
 図7に示す洗濯乾燥機50は、サーバ30との間で通信を行う機能を有している。そして、洗濯乾燥機50の周囲の温度や湿度の検出値が、洗濯乾燥機50からサーバ40に送信されるようになっている。
Note that the autonomous mobile body 20 may transmit predetermined position information indicating whether the autonomous mobile body 20 is in the living room R2 or the washroom R3 to the server 40. This makes it possible to control, for example, stopping the air conditioning in the living room R2 when a person is in the washroom R3, so that it is possible to prevent the air conditioning from being performed unnecessarily.
The washer/dryer 50 shown in FIG. 7 has a function of communicating with the server 30. Then, the detected values of the temperature and humidity around the washer/dryer 50 are transmitted from the washer/dryer 50 to the server 40 .
 サーバ40は、自律移動体20から受信した「環境情報」及び「人情報」に基づいて、「好み情報」等の分析結果を生成し、この分析結果を空気調和機10A,10Bに送信する。なお、「環境情報」に洗濯乾燥機50の周囲の温度や湿度が加えられるようにしてもよい。 The server 40 generates analysis results such as "preference information" based on the "environmental information" and "person information" received from the autonomous mobile body 20, and transmits the analysis results to the air conditioners 10A and 10B. Note that the temperature and humidity around the washer/dryer 50 may be added to the "environmental information".
 空気調和機10Aは、サーバ40との間で通信を行う通信部11Acを備えている。同様に、他方の空気調和機10Bも、サーバ40との間で通信を行う通信部11Bcを備えている。これらの空気調和機10A,10Bは、サーバ40の分析結果に基づいて、空調制御を所定に行う。なお、図7の例では、自律移動体20と空気調和機10A,10Bとの間では通信が特に行われない場合を示しているが、自律移動体20と空気調和機10A,10Bとの間で通信が行われるようにしてもよい。 The air conditioner 10A includes a communication unit 11Ac that communicates with the server 40. Similarly, the other air conditioner 10B also includes a communication unit 11Bc that communicates with the server 40. These air conditioners 10A and 10B perform predetermined air conditioning control based on the analysis results of the server 40. In addition, although the example of FIG. 7 shows the case where no particular communication is performed between the autonomous mobile body 20 and the air conditioners 10A, 10B, there is no communication between the autonomous mobile body 20 and the air conditioners 10A, 10B. Communication may be performed using
<空調システムの処理>
 例えば、洗濯乾燥機50(図6A参照)のセンサ51の検出値(家電機器の周囲の温度)が所定範囲外である場合、サーバ40が、自律移動体20を洗面所R3(空調室、第2空調室)に移動させて、「人情報」及び「環境情報」を生成させるようにしてもよい。すなわち、洗面所R3の温度が所定値を超えている場合や、別の所定値を下回っている場合、サーバ40は、洗面所R3にいる人の周囲の温度等を自律移動体20に検出させる。例えば、洗面所R3の温度が所定値以上である場合において、人が暑そうにしているときには、洗面所R3の空気調和機10Bが自律的に冷房運転を開始する(又は冷房運転の設定温度を下げる)ようにしてもよい。
<Air conditioning system processing>
For example, if the detected value (temperature around the home appliance) of the sensor 51 of the washer/dryer 50 (see FIG. 6A) is outside the predetermined range, the server 40 moves the autonomous mobile object 20 to the washroom R3 (air-conditioned room, 2 air-conditioned room) to generate "person information" and "environmental information". That is, when the temperature in the washroom R3 exceeds a predetermined value or falls below another predetermined value, the server 40 causes the autonomous mobile body 20 to detect the temperature etc. around the person in the washroom R3. . For example, when the temperature of the washroom R3 is above a predetermined value and a person looks hot, the air conditioner 10B of the washroom R3 autonomously starts cooling operation (or changes the set temperature of the cooling operation). lower).
 例えば、自律移動体20がリビングR2にいる場合において、洗面所R3の温度が所定値以上であるときには、自律移動体20を洗面所R3に移動させる前に、空気調和機10Bが自律的に冷房運転を開始するようにしてもよい。これによって、洗面所R3で人が熱中症になってしまうことを防止できる。また、自律移動体20が掃除ロボットである場合には、リビングR2等の掃除をそのまま継続できる。 For example, when the autonomous mobile object 20 is in the living room R2 and the temperature of the washroom R3 is higher than a predetermined value, the air conditioner 10B autonomously cools the air conditioner before moving the autonomous mobile object 20 to the washroom R3. It may also be possible to start driving. This can prevent people from getting heatstroke in the washroom R3. Moreover, when the autonomous mobile body 20 is a cleaning robot, cleaning of the living room R2 and the like can be continued as is.
 また、「環境情報」に含まれるリビングR2(第1空調室)の温度と、「環境情報」に含まれる洗面所R3(第2空調室)の温度と、の差の絶対値が所定値以上である場合、空気調和機10A(第1室内機)及び空気調和機10B(第2室内機)のうち少なくとも一方が、前記した差の絶対値を小さくするように空調運転を行うようにしてもよい。例えば、自律移動体20がリビングR2及び洗面所R3のそれぞれの温度を検出し、リビングR2の温度に対して、洗面所R3の温度が所定値以上低かったとする。このような場合、洗面所R3の空気調和機10Bが暖房運転を自律的に開始して、洗面所R3の温度を上げるようにしてもよい。これによって、人がリビングR2から洗面所R3に移動した際にヒートショックを起こすことを防止できる。 In addition, the absolute value of the difference between the temperature of living room R2 (first air-conditioned room) included in "environmental information" and the temperature of washroom R3 (second air-conditioned room) included in "environmental information" is greater than or equal to a predetermined value. In this case, even if at least one of the air conditioner 10A (first indoor unit) and the air conditioner 10B (second indoor unit) performs air conditioning operation so as to reduce the absolute value of the above-mentioned difference. good. For example, suppose that the autonomous mobile body 20 detects the respective temperatures of the living room R2 and the washroom R3, and that the temperature of the washroom R3 is lower than the temperature of the living room R2 by a predetermined value or more. In such a case, the air conditioner 10B of the washroom R3 may autonomously start heating operation to raise the temperature of the washroom R3. This can prevent heat shock from occurring when a person moves from the living room R2 to the washroom R3.
 また、洗濯乾燥機50(家電機器)に対して所定の操作が行われた場合、サーバ40が、自律移動体20を洗面所R3(空調室)に移動させて、「人情報」及び「環境情報」を生成させるようにしてもよい。例えば、自律移動体20がリビングR2にいるときに、人が洗濯乾燥機50のドア(図示せず)の開閉や、所定のボタンの押下といった操作を行ったとする。このような操作を示す信号が洗濯乾燥機50からサーバ40に送信された場合、サーバ40は、洗濯乾燥機50が設けられた洗面所R3に人がいると判定し、その人の「人情報」や「環境情報」を取得するように、自律移動体20に所定の指令信号を送信する。これによって、洗面所R3に設けられた空気調和機10Bが、人の周囲の温湿度に基づいて、比較的短時間で快適な空調を行うことができる。
 なお、洗濯乾燥機50等の家電機器が空調室に設置され、この家電機器の情報をサーバ40が利用する場合でも、家電機器が空調システム100Aには特に含まれないこともある。
In addition, when a predetermined operation is performed on the washer/dryer 50 (home appliance), the server 40 moves the autonomous mobile body 20 to the washroom R3 (air-conditioned room), and displays "person information" and "environmental information". information" may be generated. For example, suppose that a person performs operations such as opening and closing the door (not shown) of the washer/dryer 50 or pressing a predetermined button while the autonomous mobile body 20 is in the living room R2. When a signal indicating such an operation is transmitted from the washer/dryer 50 to the server 40, the server 40 determines that there is a person in the washroom R3 where the washer/dryer 50 is installed, and the server 40 determines that there is a person in the washroom R3 where the washer/dryer 50 is installed, ” and “environmental information”, a predetermined command signal is transmitted to the autonomous mobile body 20 . Thereby, the air conditioner 10B provided in the washroom R3 can perform comfortable air conditioning in a relatively short time based on the temperature and humidity around the person.
Note that even if a home appliance such as the washer/dryer 50 is installed in an air conditioning room and the server 40 uses information about this home appliance, the home appliance may not be particularly included in the air conditioning system 100A.
<効果>
 第2実施形態によれば、人がどの部屋にいるのか、また、人がどのような状況であるかをサーバ40が分析し、その分析結果に基づいて、各部屋の空気調和機10A,10Bが空調制御を行うようにしている。したがって、人が部屋を移動するような状況でも、空調システム100Aによって快適な空調環境を提供できる。
<Effect>
According to the second embodiment, the server 40 analyzes which room the person is in and what situation the person is in, and based on the analysis results, the air conditioners 10A and 10B in each room are controls the air conditioning. Therefore, even in situations where people move from room to room, the air conditioning system 100A can provide a comfortable air-conditioned environment.
≪第2実施形態の変形例≫
 図8は、第2実施形態の変形例に係る空調システムの室内機U2の正面図である。
 図8に示すように、空気調和機10Cの室内機U2は、空調室を撮像する撮像部29を備えている。このような撮像部29として、例えば、CCDセンサやCMOSセンサが用いられてもよいし、また、赤外線やその他の電波強度に感度を有するセンサが用いられてもよい。そして、空気調和機10Cからサーバ40(図6A参照)に、撮像部29の撮像結果を含むデータが送信されるようになっている。
<<Modification of the second embodiment>>
FIG. 8 is a front view of the indoor unit U2 of the air conditioning system according to a modification of the second embodiment.
As shown in FIG. 8, the indoor unit U2 of the air conditioner 10C includes an imaging unit 29 that images the air-conditioned room. As such an imaging unit 29, for example, a CCD sensor or a CMOS sensor may be used, or a sensor sensitive to infrared rays or other radio wave intensity may be used. Data including the imaging results of the imaging unit 29 is then transmitted from the air conditioner 10C to the server 40 (see FIG. 6A).
 例えば、撮像部29の撮像結果に基づいて、リビングR2(空調室:図6A参照)にいる人が検知された場合、空気調和機10Cは、自律移動体20(図6A参照)を空調室に移動させて、「人情報」及び「環境情報」を生成させる。これによって、空気調和機10Cは、人が洗面所R3からリビングR2に移動した場合でも、快適な空調を比較的短時間で行うことができる。 For example, if a person in the living room R2 (air-conditioned room: see FIG. 6A) is detected based on the imaging result of the imaging unit 29, the air conditioner 10C moves the autonomous mobile object 20 (see FIG. 6A) to the air-conditioned room. It is moved to generate "person information" and "environmental information." Thereby, the air conditioner 10C can provide comfortable air conditioning in a relatively short time even when a person moves from the washroom R3 to the living room R2.
 また、撮像部29の撮像結果に基づいて、リビングR2(空調室:図6A参照)にいる人が検知された場合において、撮像部29からはその人の顔が見えない場合、空気調和機10Cが、自律移動体20にその人の顔を撮像させるようにしてもよい。例えば、撮像部29の視野では、リビングR2(図6A参照)にいる人が後ろ向きで、その顔を撮像できなかったとする。このような場合、空気調和機10Cは、サーバ40を介して自律移動体20に所定の指令信号を送信し、人の顔を撮像させる。さらに、音声データや人の周囲の温湿度を自律移動体20が取得するようにしてもよい。このように自律移動体20が用いられることで、人の顔画像等の分析結果に基づいて、快適性の高い空調を提供できる。 Furthermore, when a person in the living room R2 (air conditioned room: see FIG. 6A) is detected based on the imaging result of the imaging unit 29, and the person's face cannot be seen from the imaging unit 29, the air conditioner 10C However, the autonomous mobile body 20 may be made to image the person's face. For example, suppose that a person in the living room R2 (see FIG. 6A) is facing backwards and their face cannot be imaged in the field of view of the imaging unit 29. In such a case, the air conditioner 10C transmits a predetermined command signal to the autonomous mobile body 20 via the server 40, and causes the autonomous mobile body 20 to image the person's face. Furthermore, the autonomous mobile body 20 may acquire voice data and the temperature and humidity around the person. By using the autonomous mobile body 20 in this manner, it is possible to provide highly comfortable air conditioning based on the analysis results of a person's face image and the like.
≪第3実施形態≫
 第3実施形態は、建物B1(図9参照)の外部にサーバ40(図9参照)が設けられる点が、第1実施形態とは異なっている。また、第3実施形態は、部屋R1にいる人が熱中症になるおそれがあるとサーバ40が判定した場合、空気調和機10Dが設定温度を低くする点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
≪Third embodiment≫
The third embodiment differs from the first embodiment in that a server 40 (see FIG. 9) is provided outside the building B1 (see FIG. 9). Further, the third embodiment differs from the first embodiment in that when the server 40 determines that there is a risk of heat stroke for a person in the room R1, the air conditioner 10D lowers the set temperature. There is. Note that other aspects are the same as those in the first embodiment. Therefore, the parts that are different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.
<空調システムの構成>
 図9は、第3実施形態に係る空調システム100Dの説明図である。
 図9に示すように、部屋R1を含む建物B1の外部にサーバ40が設けられている。なお、サーバ40が、所定のクラウドシステムを構成するようにしてもよい。空気調和機10Dと自律移動体20とは、相互に通信を行うようになっている。また、サーバ40は、自律移動体20や空気調和機10Dとの間で所定に通信を行うようになっている。図9に示すように、空気調和機10Dは、制御基板17を備えている。
<Air conditioning system configuration>
FIG. 9 is an explanatory diagram of an air conditioning system 100D according to the third embodiment.
As shown in FIG. 9, a server 40 is provided outside a building B1 that includes a room R1. Note that the server 40 may constitute a predetermined cloud system. The air conditioner 10D and the autonomous mobile body 20 are configured to communicate with each other. Further, the server 40 is configured to perform predetermined communication with the autonomous mobile body 20 and the air conditioner 10D. As shown in FIG. 9, the air conditioner 10D includes a control board 17.
<空調システムの制御構成>
 図10は、空調システム100Dの機能ブロック図である。
 図10に示すように、自律移動体20は、空気調和機10Dやサーバ40との間で通信を行う通信部24cを備えている。また、空気調和機10Dの制御基板17は、記憶部17aと、制御部17bと、通信部17cと、を備えている。記憶部17aには、所定のプログラムやセンサ16の検出値の他、自律移動体20やサーバ40から受信したデータが格納される。制御部17bは、サーバ40の分析結果に基づいて、圧縮機12、膨張弁13、室内ファン14、及び室外ファン15を制御する。通信部17cは、自律移動体20やサーバ40との間で所定に通信を行う。
<Control configuration of air conditioning system>
FIG. 10 is a functional block diagram of the air conditioning system 100D.
As shown in FIG. 10, the autonomous mobile body 20 includes a communication unit 24c that communicates with the air conditioner 10D and the server 40. Further, the control board 17 of the air conditioner 10D includes a storage section 17a, a control section 17b, and a communication section 17c. The storage unit 17a stores predetermined programs and detected values of the sensor 16 as well as data received from the autonomous mobile body 20 and the server 40. The control unit 17b controls the compressor 12, the expansion valve 13, the indoor fan 14, and the outdoor fan 15 based on the analysis result of the server 40. The communication unit 17c performs predetermined communication with the autonomous mobile body 20 and the server 40.
 サーバ40は、自律移動体20から受信したデータに基づいて、空調に関する人の好みを分析し、その分析結果を空気調和機10Dに送信する。また、サーバ40は、情報端末30からの要求信号に応じて、「人情報」や「環境情報」を情報端末30に提供する。空気調和機10Dは、サーバ40の分析結果に基づいて、空調制御を所定に行う。 The server 40 analyzes people's preferences regarding air conditioning based on the data received from the autonomous mobile body 20, and transmits the analysis results to the air conditioner 10D. Further, the server 40 provides "person information" and "environmental information" to the information terminal 30 in response to a request signal from the information terminal 30. The air conditioner 10D performs air conditioning control in a predetermined manner based on the analysis result of the server 40.
 図11A、図11Bは、空気調和機、サーバ、及び自律移動体のそれぞれの処理を示すフローチャートである(適宜、図10も参照)。
 なお、図11Aの「START」時に、リモコン(図示せず)又は情報端末30(図3参照)から空気調和機10Dに運転開始の指令が送信されるものとする。
 ステップS201において空気調和機10Dは、圧縮機12等を駆動して、所定の空調運転を行う。ステップS202においてサーバ40は、自律移動体20に走行指示の信号を送信する。例えば、サーバ40は、空気調和機10Dで空調運転が開始された場合に自律移動体20に走行指示を出す。
FIGS. 11A and 11B are flowcharts showing the respective processes of the air conditioner, the server, and the autonomous mobile body (see also FIG. 10 as appropriate).
It is assumed that at the time of "START" in FIG. 11A, a command to start operation is transmitted from the remote control (not shown) or the information terminal 30 (see FIG. 3) to the air conditioner 10D.
In step S201, the air conditioner 10D drives the compressor 12 and the like to perform a predetermined air conditioning operation. In step S202, the server 40 transmits a travel instruction signal to the autonomous mobile body 20. For example, the server 40 issues a travel instruction to the autonomous mobile body 20 when air conditioning operation is started in the air conditioner 10D.
 ステップS203において自律移動体20は、サーバ40から走行指示を受信し、ステップS204において部屋R1を所定に走行する。次に、ステップS205において人を検知した場合(S205:Yes)、ステップS206において自律移動体20は、人の画像データや音声データの他、人の周囲の温湿度や自己の位置情報といったデータを取得する。そして、ステップS207において自律移動体20は、前記したデータをサーバ40に送信する。また、ステップS205において人を検知していない場合(S204:No)、ステップS207において自律移動体20は、人の不在情報をサーバ40に送信する。 In step S203, the autonomous mobile body 20 receives a travel instruction from the server 40, and in step S204, the autonomous mobile body 20 travels in the room R1 in a predetermined manner. Next, when a person is detected in step S205 (S205: Yes), in step S206, the autonomous mobile body 20 collects data such as the temperature and humidity around the person and its own location information in addition to image data and audio data of the person. get. Then, in step S207, the autonomous mobile body 20 transmits the above-mentioned data to the server 40. Furthermore, if a person is not detected in step S205 (S204: No), the autonomous mobile body 20 transmits person absence information to the server 40 in step S207.
 なお、自律移動体20の周囲の温湿度や自律移動体20の位置情報が、前記した不在情報に付加されるようにしてもよい。これによって、サーバ40が、部屋R1の温度分布を把握できる。ステップS208においてサーバ40は、自律移動体20からデータを受信し、図11BのステップS209の処理に進む。 Note that the temperature and humidity around the autonomous mobile body 20 and the position information of the autonomous mobile body 20 may be added to the above-mentioned absence information. This allows the server 40 to grasp the temperature distribution in the room R1. In step S208, the server 40 receives data from the autonomous mobile body 20, and proceeds to the process of step S209 in FIG. 11B.
 図11BのステップS209においてサーバ40は、自律移動体20から受信した画像・音声のデータに基づいて、人の顔情報や喜怒哀楽のレベル、声の大きさといった特徴量(図4参照)を抽出する。ステップS210においてサーバ40は、「好み情報」等(図4参照)を生成し、記憶する。 In step S209 of FIG. 11B, the server 40 collects feature quantities such as the person's face information, level of happiness, anger, sorrow, and voice volume (see FIG. 4) based on the image/audio data received from the autonomous mobile object 20. Extract. In step S210, the server 40 generates and stores "preference information" etc. (see FIG. 4).
 次に、ステップS211においてサーバ40は、熱中症に関する判定を行う。例えば、サーバ40は、部屋R1にいる人の周囲の温湿度や、顔色、体温、発汗量、血流量等に基づいて、人が熱中症になるおそれがあるか否かを判定する。そして、ステップS212においてサーバ40は、熱中症に関する判定結果を空気調和機10Dに送信する。 Next, in step S211, the server 40 makes a determination regarding heatstroke. For example, the server 40 determines whether or not a person in the room R1 is at risk of suffering from heatstroke based on the temperature and humidity around the person in the room R1, complexion, body temperature, amount of perspiration, blood flow, and the like. Then, in step S212, the server 40 transmits the determination result regarding heatstroke to the air conditioner 10D.
 ステップS213において空気調和機10Dは、サーバ40からデータを受信する。
 ステップS214において空気調和機10Dは、部屋R1にいる人が熱中症になるおそれがあるか否かを判定する。つまり、空気調和機10Dは、部屋R1にいる人が熱中症になるおそれがあることを示す情報をサーバ40から受信したか否かを判定する。ステップS214において、部屋R1にいる人が熱中症になるおそれがある場合(S214:Yes)、空気調和機10Dは、空調の設定値(例えば、設定温度)を変更し(S215)、空調制御を所定に行う(S216)。ステップS216の処理を行った後、空気調和機10Dの処理はステップS214に戻る。
In step S213, the air conditioner 10D receives data from the server 40.
In step S214, the air conditioner 10D determines whether there is a risk that the person in the room R1 will suffer from heatstroke. That is, the air conditioner 10D determines whether or not it has received information from the server 40 indicating that the person in the room R1 is at risk of suffering from heat stroke. In step S214, if there is a risk that the person in room R1 may suffer from heatstroke (S214: Yes), the air conditioner 10D changes the air conditioning set value (for example, the set temperature) (S215) and controls the air conditioning. This is carried out in a predetermined manner (S216). After performing the process of step S216, the process of the air conditioner 10D returns to step S214.
 例えば、部屋R1(空調室)にいる人の周囲の温度が所定値以上である場合、空気調和機10Dが、自律的に冷房運転を開始するようにしてもよい。また、空気調和機10Dが、冷房運転の設定温度を下げるようにしてもよい。その他、空気調和機10Dが空調風の風量を増加させたり、涼しい空調風が人に当たるように風向を変更したりしてもよい。これによって、部屋R1にいる人が熱中症になることを防止できる。 For example, if the temperature around a person in room R1 (air conditioned room) is above a predetermined value, the air conditioner 10D may autonomously start cooling operation. Furthermore, the air conditioner 10D may lower the set temperature for cooling operation. In addition, the air conditioner 10D may increase the volume of the conditioned air or change the direction of the air so that the cool conditioned air hits the person. This can prevent people in the room R1 from getting heat stroke.
 また、ステップS214において、部屋R1にいる人が熱中症になるおそれがない場合(S214:No)、ステップS217において空気調和機10Dは、空調制御を所定に行う。また、図11Bでは特に示していないが、人が不在の場合には、空気調和機10Dが空調運転を停止するようにしてもよい。これによって、空気調和機10Dの消費電力量を削減できる。 Furthermore, in step S214, if there is no risk that the person in the room R1 will suffer from heat stroke (S214: No), the air conditioner 10D performs predetermined air conditioning control in step S217. Although not particularly shown in FIG. 11B, the air conditioner 10D may stop air conditioning operation when no one is present. Thereby, the power consumption of the air conditioner 10D can be reduced.
 なお、図11A、図11Bに示す一連の処理は、熱中症に限らず、低体温症やヒートショックを防止するための制御にも適用できる。また、部屋R1にいる人が所定の疾患を有している場合、人の体調を考慮した適切な温度範囲を示すデータが情報端末30(図10参照)からサーバ40(図10参照)に送信され、サーバ40に格納されるようにしてもよい。この場合において空気調和機10Dは、部屋R1にいる人の周囲の温度が適切な温度範囲が保たれるように、所定の空調制御を行う。 Note that the series of processes shown in FIGS. 11A and 11B can be applied not only to heat stroke but also to control for preventing hypothermia and heat shock. Additionally, if a person in room R1 has a predetermined disease, data indicating an appropriate temperature range that takes the person's physical condition into account is sent from the information terminal 30 (see FIG. 10) to the server 40 (see FIG. 10). The information may also be stored in the server 40. In this case, the air conditioner 10D performs predetermined air conditioning control so that the temperature around the person in the room R1 is maintained within an appropriate temperature range.
<効果>
 第3実施形態によれば、自律移動体20で取得したデータに基づいて、部屋R1にいる人が熱中症になるおそれがあるか否かをサーバ40が判定し、その判定結果に基づいて、空気調和機10が空調制御を変更する。これによって、部屋R1にいる人が熱中症等の体調不良を起こすことを防止できる。
<Effect>
According to the third embodiment, the server 40 determines whether the person in the room R1 is at risk of suffering from heat stroke based on the data acquired by the autonomous mobile object 20, and based on the determination result, The air conditioner 10 changes air conditioning control. This can prevent people in the room R1 from becoming unwell, such as heatstroke.
≪変形例≫
 以上、本発明に係る空調システム100等について各実施形態で説明したが、これらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、自律移動体20(図1参照)の温湿度センサ23によって、部屋R1にいる人の周囲の温度及び湿度の両方が検出される場合について説明したが、これに限らない。すなわち、空調室にいる人の周囲の温度及び湿度のうち一方が検出されるようにしてもよい。
≪Modification example≫
Although the air conditioning system 100 and the like according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various changes can be made.
For example, in each embodiment, a case has been described in which the temperature and humidity sensor 23 of the autonomous mobile body 20 (see FIG. 1) detects both the temperature and humidity around a person in the room R1, but the invention is not limited to this. . That is, one of the temperature and humidity around the person in the air-conditioned room may be detected.
 また、各実施形態では、人の撮像結果及び音声の測定結果の両方が「人情報」に含まれる場合について説明したが、これに限らない。すなわち、人の撮像結果及び音声の測定結果のうち一方が「人情報」に含まれるようにしてもよい。
 また、各実施形態では、空気調和機10が、部屋R1(空調室)にいる人の空調に関する「好み情報」に基づいて、空調の設定温度、空調風の風量、及び風向を変更する場合について説明したが、これに限らない。すなわち、空気調和機10が「好み情報」に基づいて、空調の設定温度、空調風の風量、及び風向のうち少なくとも一つを変更するようにしてもよい。
Further, in each embodiment, a case has been described in which "person information" includes both a person's imaging result and a voice measurement result, but the present invention is not limited to this. That is, one of the imaging result and the sound measurement result of the person may be included in the "person information."
Further, in each embodiment, the air conditioner 10 changes the set temperature of the air conditioner, the air volume of the air conditioner, and the direction of the air conditioner based on "preference information" regarding air conditioning of the person in the room R1 (air conditioned room). Although explained above, it is not limited to this. That is, the air conditioner 10 may change at least one of the air conditioning set temperature, the air volume, and the wind direction based on the "preference information."
 また、第2実施形態では、部屋の数が2つである場合について説明したが、部屋の数は3つ以上であってもよい。このような場合でも、ユーザが複数の自律移動体20を用意する必要は特になく、1台の自律移動体20で取得したデータを複数の空気調和機で共有することが可能である。
 また、第2実施形態では、洗面所R3(図6A参照)に洗濯乾燥機50(図6A参照)が設けられる場合について説明したが、家電機器の種類はこれに限定されるものではない。例えば、周囲の空気の温度又は湿度を検出するセンサが設けられた家電製品であれば、冷蔵庫や電子レンジといった他の種類の家電製品が用いられてもよい。また、第2実施形態から洗濯乾燥機50(図6A参照)が省略されてもよい。
Further, in the second embodiment, the case where the number of rooms is two has been described, but the number of rooms may be three or more. Even in such a case, there is no particular need for the user to prepare multiple autonomous mobile bodies 20, and data acquired by one autonomous mobile body 20 can be shared by multiple air conditioners.
Further, in the second embodiment, a case has been described in which the washer/dryer 50 (see FIG. 6A) is provided in the washroom R3 (see FIG. 6A), but the type of home appliance is not limited to this. For example, other types of home appliances such as refrigerators and microwave ovens may be used as long as they are equipped with sensors that detect the temperature or humidity of the surrounding air. Further, the washer/dryer 50 (see FIG. 6A) may be omitted from the second embodiment.
 また、各実施形態は、適宜に組み合わせることができる。例えば、第1実施形態(図1参照)と第2実施形態(図6A参照)とを組み合わせてもよいし、また、第2実施形態(図6A参照)と第3実施形態(図9参照)とを組み合わせてもよい。 Furthermore, each embodiment can be combined as appropriate. For example, the first embodiment (see FIG. 1) and the second embodiment (see FIG. 6A) may be combined, or the second embodiment (see FIG. 6A) and the third embodiment (see FIG. 9) may be combined. You may also combine them.
 また、各実施形態で説明した空調方法をコンピュータに実行させるためのプログラムは、通信回線を介して提供することもできるし、CD-ROM等の記録媒体に書き込んで配布することも可能である。 Further, a program for causing a computer to execute the air conditioning method described in each embodiment can be provided via a communication line, or can be written on a recording medium such as a CD-ROM and distributed.
 また、実施形態は本開示を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Further, the embodiments are described in detail to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to those having all the configurations described. Furthermore, it is possible to add, delete, or replace some of the configurations of the embodiments with other configurations.
Further, the mechanisms and configurations described above are those considered necessary for explanation, and not all mechanisms and configurations are necessarily shown in the product.
 10,10A,10B,10C 空気調和機
 11 サーバ
 20 自律移動体
 21 画像センサ
 22 音声センサ
 23 温湿度センサ
 24 制御基板
 29 撮像部
 30 情報端末
 40 サーバ
 50 洗濯乾燥機(家電機器)
 51 センサ
 100,100A,100D 空調システム
 M1 人
 R1 部屋(空調室)
 R2 リビング(空調室、第1空調室)
 R3 洗面所(空調室、第2空調室)
 UA 室内機(第1室内機)
 UB 室内機(第2室内機)
 
10, 10A, 10B, 10C Air conditioner 11 Server 20 Autonomous mobile object 21 Image sensor 22 Audio sensor 23 Temperature/humidity sensor 24 Control board 29 Imaging unit 30 Information terminal 40 Server 50 Washer/dryer (home appliance)
51 Sensor 100, 100A, 100D Air conditioning system M1 Person R1 Room (air conditioned room)
R2 living room (air conditioned room, 1st air conditioned room)
R3 Washroom (air-conditioned room, second air-conditioned room)
UA indoor unit (1st indoor unit)
UB indoor unit (second indoor unit)

Claims (11)

  1.  自律移動体との間で通信を行う空気調和機を備え、
     前記自律移動体は、空調室にいる人の周囲の温度及び湿度のうち少なくとも一方の検出値に当該自律移動体の位置情報を対応付けた環境情報を生成するとともに、前記空調室にいる人の撮像結果及び音声の測定結果のうち少なくとも一方を含む人情報を生成し、
     前記空気調和機は、前記環境情報及び前記人情報の分析結果に基づいて、空調制御を変更する空調システム。
    Equipped with an air conditioner that communicates with autonomous mobile objects,
    The autonomous mobile body generates environmental information in which position information of the autonomous mobile body is associated with detected values of at least one of the temperature and humidity surrounding the person in the air-conditioned room, and Generate human information including at least one of the imaging results and the audio measurement results,
    The air conditioner is an air conditioning system that changes air conditioning control based on the analysis results of the environmental information and the human information.
  2.  前記分析結果には、前記空調室にいる人の空調に関する好み情報が含まれ、
     前記空気調和機は、前記好み情報に基づいて、空調の設定温度、空調風の風量及び風向のうち少なくとも一つを変更すること
     を特徴とする請求項1に記載の空調システム。
    The analysis result includes preference information regarding air conditioning of the person in the air conditioning room,
    The air conditioning system according to claim 1, wherein the air conditioner changes at least one of an air conditioning set temperature, an air volume, and a wind direction of the air conditioner based on the preference information.
  3.  前記分析結果には、前記空調室にいる人の空調に関する好み情報が含まれ、
     前記空調制御の変更に伴う前記環境情報及び前記人情報の変化に基づいて、前記好み情報が更新されること
     を特徴とする請求項1に記載の空調システム。
    The analysis result includes preference information regarding air conditioning of the person in the air conditioning room,
    The air conditioning system according to claim 1, wherein the preference information is updated based on changes in the environmental information and the personal information due to changes in the air conditioning control.
  4.  前記自律移動体との間で通信を行うとともに、前記空気調和機との間で通信を行うサーバを備え、
     前記サーバは、前記自律移動体から受信した前記環境情報及び前記人情報に基づいて、前記分析結果を生成し、当該分析結果を前記空気調和機に送信すること
     を特徴とする請求項1に記載の空調システム。
    A server that communicates with the autonomous mobile body and communicates with the air conditioner,
    The server generates the analysis result based on the environment information and the person information received from the autonomous mobile body, and transmits the analysis result to the air conditioner. air conditioning system.
  5.  前記空調室には、前記サーバとの間で通信を行う家電機器が設けられ、
     前記家電機器は、当該家電機器の周囲の温度を少なくとも検出するセンサを有し、
     前記サーバは、前記家電機器の周囲の温度が所定範囲外である場合、前記自律移動体を前記空調室に移動させ、前記人情報及び前記環境情報を生成させること
     を特徴とする請求項4に記載の空調システム。
    The air-conditioned room is provided with home appliances that communicate with the server,
    The home appliance has a sensor that detects at least the temperature around the home appliance,
    According to claim 4, the server moves the autonomous mobile object to the air-conditioned room and generates the human information and the environmental information when the temperature around the home appliance is outside a predetermined range. Air conditioning system as described.
  6.  前記空調室には、前記サーバとの間で通信を行う家電機器が設けられ、
     前記サーバは、前記家電機器に対して所定の操作が行われた場合、前記自律移動体を前記空調室に移動させ、前記人情報及び前記環境情報を生成させること
     を特徴とする請求項4に記載の空調システム。
    The air-conditioned room is provided with home appliances that communicate with the server,
    5. The server moves the autonomous mobile object to the air-conditioned room and generates the person information and the environment information when a predetermined operation is performed on the home appliance. Air conditioning system as described.
  7.  前記空気調和機は、前記空調室を撮像する撮像部を備え、
     前記撮像部の撮像結果に基づいて、前記空調室にいる人が検知された場合、前記空気調和機は、前記自律移動体を前記空調室に移動させ、前記人情報及び前記環境情報を生成させること
     を特徴とする請求項1に記載の空調システム。
    The air conditioner includes an imaging unit that captures an image of the air conditioned room,
    When a person in the air conditioned room is detected based on the imaging result of the imaging unit, the air conditioner moves the autonomous mobile object to the air conditioning room and generates the person information and the environment information. The air conditioning system according to claim 1, characterized in that:
  8.  前記空気調和機は、前記空調室を撮像する撮像部を備え、
     前記撮像部の撮像結果に基づいて、前記空調室にいる人が検知された場合において、前記撮像部からは当該人の顔が見えない場合、前記空気調和機は、前記自律移動体に当該人の顔を撮像させること
     を特徴とする請求項1に記載の空調システム。
    The air conditioner includes an imaging unit that captures an image of the air conditioned room,
    When a person in the air-conditioned room is detected based on the imaging result of the imaging unit and the person's face cannot be seen from the imaging unit, the air conditioner detects the person in the autonomous mobile body. The air conditioning system according to claim 1, wherein the air conditioning system captures an image of the face of the person.
  9.  前記空調室にいる人の周囲の温度が所定値以上である場合、前記空気調和機は、冷房運転を開始する、又は、冷房運転の設定温度を下げる
     を特徴とする請求項1に記載の空調システム。
    The air conditioner according to claim 1, wherein when the temperature around the person in the air conditioned room is equal to or higher than a predetermined value, the air conditioner starts cooling operation or lowers a set temperature of cooling operation. system.
  10.  前記空調室には、第1室内機が設けられる第1空調室と、第2室内機が設けられる第2空調室と、が含まれ、
     前記第1空調室と、前記第2空調室と、は隣り合っており、
     前記環境情報に含まれる前記第1空調室の温度と、前記環境情報に含まれる前記第2空調室の温度と、の差の絶対値が所定値以上である場合、前記第1室内機及び第2室内機のうち少なくとも一方は、前記差の絶対値を小さくするように空調運転を行うこと
     を特徴とする請求項1に記載の空調システム。
    The air-conditioned room includes a first air-conditioned room in which a first indoor unit is provided, and a second air-conditioned room in which a second indoor unit is provided,
    The first air conditioning room and the second air conditioning room are adjacent to each other,
    If the absolute value of the difference between the temperature of the first air conditioned room included in the environmental information and the temperature of the second air conditioned room included in the environment information is a predetermined value or more, the first indoor unit and the second air conditioned room The air conditioning system according to claim 1, wherein at least one of the two indoor units performs air conditioning operation so as to reduce the absolute value of the difference.
  11.  自律移動体との間で通信を行う空気調和機に関する空調方法であって、
     前記自律移動体は、空調室にいる人の周囲の温度及び湿度のうち少なくとも一方の検出値に当該自律移動体の位置情報を対応付けた環境情報を生成するとともに、前記空調室にいる人の撮像結果及び音声の測定結果のうち少なくとも一方を含む人情報を生成し、
     前記空気調和機は、前記環境情報及び前記人情報の分析結果に基づいて、空調制御を変更する空調方法。
     
    An air conditioning method for an air conditioner that communicates with an autonomous mobile object,
    The autonomous mobile body generates environmental information in which position information of the autonomous mobile body is associated with detected values of at least one of the temperature and humidity surrounding the person in the air-conditioned room, and Generate human information including at least one of the imaging results and the audio measurement results,
    The air conditioning method includes changing air conditioning control in the air conditioner based on an analysis result of the environmental information and the human information.
PCT/JP2023/003432 2022-04-22 2023-02-02 Air conditioning system and air conditioning method WO2023203830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070487 2022-04-22
JP2022070487A JP2023160264A (en) 2022-04-22 2022-04-22 Air conditioning system and air conditioning method

Publications (1)

Publication Number Publication Date
WO2023203830A1 true WO2023203830A1 (en) 2023-10-26

Family

ID=88419524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003432 WO2023203830A1 (en) 2022-04-22 2023-02-02 Air conditioning system and air conditioning method

Country Status (2)

Country Link
JP (1) JP2023160264A (en)
WO (1) WO2023203830A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279059A (en) * 2002-03-22 2003-10-02 Toto Ltd Bathroom air-conditioning system
JP2012042073A (en) * 2010-08-16 2012-03-01 Tokyo Electric Power Co Inc:The Local environment preservation device
JP2015021666A (en) * 2013-07-18 2015-02-02 シャープ株式会社 Air conditioning system and self-propelled equipment
JP2019130208A (en) * 2018-02-02 2019-08-08 クラリオン株式会社 Ingestion support apparatus, ingestion support system, and control method for ingestion support apparatus
JP2019207039A (en) * 2018-05-28 2019-12-05 株式会社日立ビルシステム Environment adjusting system and environment adjusting method
WO2020262733A1 (en) * 2019-06-27 2020-12-30 엘지전자 주식회사 Artificial intelligence-based air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279059A (en) * 2002-03-22 2003-10-02 Toto Ltd Bathroom air-conditioning system
JP2012042073A (en) * 2010-08-16 2012-03-01 Tokyo Electric Power Co Inc:The Local environment preservation device
JP2015021666A (en) * 2013-07-18 2015-02-02 シャープ株式会社 Air conditioning system and self-propelled equipment
JP2019130208A (en) * 2018-02-02 2019-08-08 クラリオン株式会社 Ingestion support apparatus, ingestion support system, and control method for ingestion support apparatus
JP2019207039A (en) * 2018-05-28 2019-12-05 株式会社日立ビルシステム Environment adjusting system and environment adjusting method
WO2020262733A1 (en) * 2019-06-27 2020-12-30 엘지전자 주식회사 Artificial intelligence-based air conditioner

Also Published As

Publication number Publication date
JP2023160264A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11022333B2 (en) Control for device in a predetermined space area
CA2849007C (en) Building automation system control with motion sensing
JP5787858B2 (en) Air conditioning control system, air conditioning control method and program
CN111919070B (en) Fragrance delivery system
JP6068280B2 (en) Air conditioner
JP6271294B2 (en) Air conditioner
JP2012057814A (en) Air conditioner
CN110822616A (en) Automatic air conditioner adjusting method and device
JP2016217709A (en) Air conditioner
JP2012057816A (en) Air conditioner
JP7204840B2 (en) Air-conditioning control device, air-conditioning system, air-conditioning control method and program
WO2023035678A1 (en) Method and apparatus for controlling air conditioner, and air conditioner and storage medium
CN111954784A (en) Method and system for air conditioning
WO2023203830A1 (en) Air conditioning system and air conditioning method
JP6914279B2 (en) Control device, air conditioner, air conditioning system and air conditioning control method
JP5320361B2 (en) Air conditioner
CN112433600A (en) Information processing apparatus, storage medium, and information processing method
KR101074300B1 (en) Resident&#39;s activity based air-conditioner control method
EP3992987A1 (en) System and method for continously sharing behavioral states of a creature
Lu et al. Comfort-based integrative HVAC system with non-intrusive sensing in office buildings
JP7254346B2 (en) Information processing device and program
JP7319868B2 (en) Environment building support system
JP5325855B2 (en) Air conditioner
KR20150004575A (en) Blowing system of position tracking and customize air blowing method using blowing system of position tracking
WO2024004465A1 (en) Environment control system, environment adjustment system, environment control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791486

Country of ref document: EP

Kind code of ref document: A1