JP5320361B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5320361B2
JP5320361B2 JP2010198454A JP2010198454A JP5320361B2 JP 5320361 B2 JP5320361 B2 JP 5320361B2 JP 2010198454 A JP2010198454 A JP 2010198454A JP 2010198454 A JP2010198454 A JP 2010198454A JP 5320361 B2 JP5320361 B2 JP 5320361B2
Authority
JP
Japan
Prior art keywords
sound
air conditioner
sound source
activity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010198454A
Other languages
Japanese (ja)
Other versions
JP2012057817A (en
Inventor
義典 飯塚
義明 能登谷
秀行 松島
貴郎 上田
真和 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010198454A priority Critical patent/JP5320361B2/en
Publication of JP2012057817A publication Critical patent/JP2012057817A/en
Application granted granted Critical
Publication of JP5320361B2 publication Critical patent/JP5320361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner saving electricity while considering amenity. <P>SOLUTION: The air conditioner includes an infrared sensor for detecting a movement amount of a person in a room, a sound sensor for detecting indoor sound, a setting section for setting indoor set temperature, and a control section for controlling operation. The air conditioner includes an activity amount determination section for determining an activity amount of the person in the room according to the detection result of the infrared sensor and a kind of a sound source determined based on the detection result of the sound sensor. A target value defined based on the set temperature is changed based on the determined activity amount of the person in the room determined by the activity amount determination section. This invention can provide the air conditioner saving electricity while considering amenity. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は空気調和機の省エネ運転制御に関する。   The present invention relates to energy-saving operation control of an air conditioner.

空気調和機は、熱交換器により加熱,冷却,除湿等した空気を、ファンにより室内に送風することで、室内環境を調節する。近年、地球温暖化防止の観点から空気調和機に対する省エネ運転の要望が強い。そこで、種々のセンサを利用して、快適性に配慮しながら省エネ運転するような空気調和機の運転制御が提案されている。   An air conditioner adjusts the indoor environment by blowing air heated, cooled, or dehumidified by a heat exchanger into a room using a fan. In recent years, there is a strong demand for energy-saving operation for air conditioners from the viewpoint of preventing global warming. Therefore, operation control of an air conditioner that uses various sensors to perform energy-saving operation while considering comfort has been proposed.

特許文献1、は気温,湿度,輻射温度,風量,風向,可視光,赤外光,音,時刻,カレンダーの何れかを取り込むセンサを備え、使用者の意思,活動量,代謝量,着衣量の何れかの情報を学習し空調を行うパターン分類装置,環境認識装置、及び空気調和機について開示する。   Patent Document 1 is equipped with a sensor that takes in any one of temperature, humidity, radiation temperature, air volume, wind direction, visible light, infrared light, sound, time, and calendar, and the user's intention, activity, metabolism, and clothing A pattern classification device, an environment recognition device, and an air conditioner that learn any of the above information and perform air conditioning are disclosed.

特許文献2は、音センサを備え、音の変化量が大きいときは人の活動が活発であると判断し、音の変化量が小さいときは人の活動が少ないと判断して、設定温度を変更する空気調和機を開示する。   Patent Document 2 includes a sound sensor. When the amount of change in sound is large, it is determined that human activity is active, and when the amount of change in sound is small, it is determined that human activity is low. An air conditioner to be changed is disclosed.

特許文献3は、在室者の活動量,季節,時刻及び気象条件に応じた快適な温湿度を記憶すると共に、視覚情報認識手段で在室者の活動量を推測し、室内を快適な温湿度に制御する活動量センシングによる空気調和装置について開示する。   Patent Document 3 memorizes comfortable temperature and humidity according to the amount of activity, season, time, and weather conditions of the occupant, and estimates the amount of activity of the occupant with visual information recognition means, thereby ensuring a comfortable temperature in the room. Disclosed is an air conditioner using active mass sensing controlled to humidity.

特許文献4は、月,曜日,時刻を得るカレンダー機能を備え、熱画像から在室者の人数,位置,姿勢,動きを抽出し、部屋用途設定手段で設定された用途に応じて、生活シーンを不在,睡眠,団欒,学び,寛ぎ,活動的家事,起床,就寝,入室,退室に推定する生活シーン推定装置及び空気調和機について開示する。   Patent Document 4 has a calendar function for obtaining the month, day of the week, and time, extracts the number, position, posture, and movement of the occupants from the thermal image, and changes the life scene according to the use set by the room use setting means. Disclosed are a living scene estimation device and an air conditioner for estimating the absence, sleep, group, learning, relaxation, active housework, getting up, going to bed, entering the room, leaving the room.

特許文献5は、月,曜日,時刻を得るカレンダー機能を備え、熱画像から在室者の人数,位置,姿勢,動きを抽出し、部屋用途設定手段で設定された用途に応じて、生活シーンを不在,睡眠,団欒,学び,寛ぎ,活動的家事の状態的生活シーン又は起床,就寝,入室,退室の状態変化生活シーンに推定する生活シーン推定装置及び空気調和機について開示する。   Patent Document 5 has a calendar function for obtaining the month, day of the week, and time, extracts the number, position, posture, and movement of the occupants from the thermal image, and changes the life scene according to the use set by the room use setting means. A life scene estimation apparatus and an air conditioner for estimating a state life scene of absence, sleep, group, learning, relaxation, active housework or state change life scene of getting up, sleeping, entering a room, leaving a room are disclosed.

しかしながら、特許文献1では、音の情報についての具体的な処理手順は開示していない。また、使用者の意思表示に基づいて代謝量を変化させる。特許文献2では、音の変化量だけで人の活動が活発か否かを判断しており、音の種類を判別しないため、人の動きか否かを正確に判断することは難しい。特許文献3〜5では、音の情報に関して開示しておらず、従って、音の情報を活動量の推定に利用することも開示していない。   However, Patent Document 1 does not disclose a specific processing procedure for sound information. Further, the metabolic rate is changed based on the user's intention display. In Patent Document 2, it is difficult to accurately determine whether or not a person is moving because whether or not a person's activity is active is determined only by the amount of change in sound and the type of sound is not determined. Patent Documents 3 to 5 do not disclose sound information, and therefore do not disclose the use of sound information for activity amount estimation.

特開平6−60049号公報JP-A-6-60049 特開平5−172380号公報JP-A-5-172380 特開平4−121542号公報JP-A-4-121542 特開平5−118612号公報Japanese Patent Laid-Open No. 5-118612 特開平5−118613号公報Japanese Patent Laid-Open No. 5-118613

本発明は、快適性を考慮しつつ、節電をはかる空気調和機を提供することを課題とする。   An object of the present invention is to provide an air conditioner that saves power while considering comfort.

本発明の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部とを備え、赤外線センサの検出結果及び音センサの検出結果に応じて、在室者の活動量を判定する活動量判定部を有し、活動量判定部で判定された在室者の活動判定量を基に、設定温度に基づいて定められた目標値を変更する。   An air conditioner according to the present invention includes an infrared sensor that detects the amount of movement of a room occupant, a sound sensor that detects indoor sounds, a setting unit that sets indoor temperature settings, and a control unit that controls operation. An activity amount determination unit that determines the amount of activity of the occupant according to the detection result of the infrared sensor and the detection result of the sound sensor, and the activity determination amount of the occupant determined by the activity amount determination unit Based on the set temperature, the target value determined based on the set temperature is changed.

本発明によれば、快適性を考慮しつつ、節電をはかる空気調和機を提供することができる。   According to the present invention, it is possible to provide an air conditioner that saves power while considering comfort.

空気調和機の構成図。The block diagram of an air conditioner. 空気調和機室内機の断面図。Sectional drawing of an air conditioner indoor unit. 室内機の正面図。The front view of an indoor unit. 活動内容と活動量の関係を示す図。The figure which shows the relationship between activity content and activity amount. 室内機の制御部ブロック図。The control part block diagram of an indoor unit. 室内音の周波数分析例1。Example 1 of frequency analysis of room sound. 室内音の周波数分析例2。Example 2 of frequency analysis of room sound. 音源判定ブロック図。Sound source determination block diagram. 一次判定前段説明図。Explanatory drawing before primary determination. 一次判定要部説明図。Primary determination main part explanatory drawing. 一次判定の要部フロー図。The principal part flowchart of primary determination. 二次判定説明図。Secondary determination explanatory drawing. 二次判定の要部フロー図。The principal part flowchart of a secondary determination. 周囲音による補正説明図。Correction explanatory drawing by ambient sound. 周囲音による補正説明図。Correction explanatory drawing by ambient sound. 反応検出区分判定説明図。Reaction detection classification determination explanatory drawing. 組み合わせ活動量判定図。Combination activity amount determination diagram. 活動量判定説明図。Activity amount determination explanatory drawing. 温度シフト値の例。Example of temperature shift value. 輻射量判定説明図。Radiation amount determination explanatory drawing.

以下、本発明に係る空気調和機について、壁掛型の空気調和機を例にして説明する。まず、空気調和機の全体構成について図1〜図3を用いて説明する。図1は空気調和機の構成図である。図2は空気調和機室内機の断面図である。図3は室内機の正面図である。   Hereinafter, an air conditioner according to the present invention will be described by taking a wall-mounted air conditioner as an example. First, the whole structure of an air conditioner is demonstrated using FIGS. 1-3. FIG. 1 is a configuration diagram of an air conditioner. FIG. 2 is a cross-sectional view of the air conditioner indoor unit. FIG. 3 is a front view of the indoor unit.

図1に示す空気調和機1は、室内機2と室外機3とを接続配管4で繋いで構成される。室内機2は、別体のリモートコントローラ(以下「リモコン」という。)5からの赤外線の操作信号を受信する室内送受信部16を備える。   An air conditioner 1 shown in FIG. 1 is configured by connecting an indoor unit 2 and an outdoor unit 3 with a connection pipe 4. The indoor unit 2 includes an indoor transmission / reception unit 16 that receives an infrared operation signal from a separate remote controller (hereinafter referred to as “remote controller”) 5.

図2に示すように、室内機2は、筐体ベース6の中央部に熱交換器7を備える。熱交換器7の空気流下流には熱交換器7の幅と略等しい長さの横流ファン方式の室内送風機8を配置する。また、熱交換器7の下方には露受皿9を配置する。熱交換器7及び室内送風機8等は、化粧枠10で覆われるとともに、化粧枠10の前面にはフロントパネル11が取り付けられる。   As shown in FIG. 2, the indoor unit 2 includes a heat exchanger 7 at the center of the housing base 6. A cross flow fan type indoor blower 8 having a length substantially equal to the width of the heat exchanger 7 is disposed downstream of the air flow of the heat exchanger 7. A dew tray 9 is disposed below the heat exchanger 7. The heat exchanger 7 and the indoor blower 8 are covered with a decorative frame 10, and a front panel 11 is attached to the front surface of the decorative frame 10.

室内機2上方には、室内空気を吸込む空気吸込口12を備える。室内機2下方には、温湿度が調整された空気を吹出す空気吹出口13を備える。室内送風機8により、空気吸込口12から吸込まれた室内空気は、熱交換器7及び室内送風機8を通って室内送風機8の長さに略等しい幅の吹出風路8aに流れ込む。その後、吹出風路8aの空気は、吹出風路8aに位置する左右風向板14により左右方向が偏向され、空気吹出口13に位置する上下風向板15により上下方向が偏向されて、空気吹出口13から室内に吹出される。   Above the indoor unit 2, an air inlet 12 for sucking room air is provided. Below the indoor unit 2, an air outlet 13 that blows out air with adjusted temperature and humidity is provided. The indoor air sucked from the air suction port 12 by the indoor blower 8 flows through the heat exchanger 7 and the indoor blower 8 into the blowout air passage 8 a having a width substantially equal to the length of the indoor blower 8. Thereafter, the air in the blowout air passage 8a is deflected in the left-right direction by the left and right airflow direction plates 14 located in the blowout airway 8a, and the vertical direction is deflected by the up-and-down airflow direction plate 15 located in the air blowout port 13. 13 is blown into the room.

上下風向板15の奥には、焦電型赤外線センサ17,サーモパイルを使用した輻射センサ18、及びマイクロフォン等を使用した音センサ19を搭載する。   A pyroelectric infrared sensor 17, a radiation sensor 18 using a thermopile, and a sound sensor 19 using a microphone or the like are mounted in the back of the vertical wind direction plate 15.

次に、焦電型赤外線センサと音センサとを組み合わせて、在室者の活動量を細分化して検知する方法について、図4〜図15を用いて説明する。本実施例においては、焦電型の赤外線センサと音センサを組み合わせて、在室者の活動をこれまでより細分化し、在室者の快適性に配慮しながら、さらなる省エネ運転をする。   Next, a method for subdividing and detecting the amount of activity of a room occupant by combining a pyroelectric infrared sensor and a sound sensor will be described with reference to FIGS. In the present embodiment, a pyroelectric infrared sensor and a sound sensor are combined to further subdivide the activities of the occupants and further save energy while considering the comfort of the occupants.

焦電型赤外線センサを使用して在室者の活動量を検出し、活動量が大きい場合は室温を低めに調節し、活動量が小さい場合は室温を高めに調節することにより、在室者の快適性に配慮しながら、省エネ運転をすることができる。しかしながら、焦電型赤外線センサのみを用いて在室者の活動量を多段階に分類するのは、検出誤差やセンサに向かう方向の動きに対してセンサの感度が鈍くなるという特性等から、センサの数を増加させる必要があり、コストアップとなる。   The amount of activity of a resident is detected using a pyroelectric infrared sensor. If the amount of activity is large, the room temperature is adjusted to be lower, and if the amount of activity is small, the occupant is adjusted to a higher room temperature. Energy-saving operation can be performed while considering the comfort of the car. However, using only a pyroelectric infrared sensor to classify the amount of activity of the occupants in multiple stages is due to the fact that the sensitivity of the sensor becomes dull with respect to detection errors and movement in the direction toward the sensor. It is necessary to increase the number of devices, which increases the cost.

図4は活動内容と活動量の関係である。人の活動量を表す単位としてMETを用いており、活動内容とその活動内容に対応するMET値を示している。図4の左欄に、焦電型赤外線センサを1個のみを使用した場合の活動量の区分例を示す。このように、焦電型赤外線センサを1個のみ使用した場合、活動量の区分は細分化できても大,中,小の3区分程度である。これ以上細分化しても、上述の理由により精度は低い。図4の右欄に、本発明の方法による活動量の区分例を示す。本発明によれば、活動量をより細分化できるので、在室者の活動量に応じた空調により快適性に配慮しつつ、さらなる省エネ運転が可能となる。尚、本発明による活動量の区分の方法については後述する。   FIG. 4 shows the relationship between the activity content and the activity amount. MET is used as a unit representing the amount of human activity, and shows the activity content and the MET value corresponding to the activity content. The left column of FIG. 4 shows an example of activity amount classification when only one pyroelectric infrared sensor is used. In this way, when only one pyroelectric infrared sensor is used, the activity amount is divided into three categories of large, medium, and small even if it can be subdivided. Even if it is further subdivided, the accuracy is low for the reasons described above. The right column of FIG. 4 shows an example of classification of activity amounts according to the method of the present invention. According to the present invention, since the amount of activity can be further subdivided, further energy-saving operation can be performed while considering comfort by air conditioning according to the amount of activity of the occupants. The method for classifying the active mass according to the present invention will be described later.

次に、本発明の空気調和機の制御の概要について、図5を用いて説明する。図5は室内機の制御部ブロック図である。   Next, an outline of control of the air conditioner of the present invention will be described with reference to FIG. FIG. 5 is a block diagram of the control unit of the indoor unit.

図5において、空気調和機1は内部に制御部20を備え、各種センサからの情報やリモコン5からの指示に応じて、室内機2及び室外機3を制御する。室内900からの情報は、室温センサ25,湿度センサ26,輻射センサ18,リモコン周囲温度センサ27,リモコン位置センサ28,焦電型赤外線センサ17,音センサ19等により制御部20内部のマイコン(図示せず)に取込まれる。これらのマイコンに取込まれた情報に基づいて、空気調和機1が制御される。   In FIG. 5, the air conditioner 1 includes a control unit 20 inside, and controls the indoor unit 2 and the outdoor unit 3 in accordance with information from various sensors and instructions from the remote controller 5. Information from the room 900 is obtained from a microcomputer (see FIG. 5) by a room temperature sensor 25, a humidity sensor 26, a radiation sensor 18, a remote control ambient temperature sensor 27, a remote control position sensor 28, a pyroelectric infrared sensor 17, a sound sensor 19, and the like. (Not shown). The air conditioner 1 is controlled based on the information captured by these microcomputers.

焦電型赤外線センサ17及び音センサ19の情報から、活動量判定部35は、在室者の活動量を図4の右欄に例示したように多段階に区分して、温度シフト値設定部36に伝える。   From the information of the pyroelectric infrared sensor 17 and the sound sensor 19, the activity amount determination unit 35 classifies the activity amount of the occupants in multiple stages as illustrated in the right column of FIG. Tell to 36.

温度シフト値設定部36は、活動量判定部35からの活動量情報の他、上述の各種センサや制御部20内部に備えられたカレンダー機能29からの情報に基づいて温度シフト値を演算し、目標室温設定部37に伝える。   The temperature shift value setting unit 36 calculates a temperature shift value based on information from the calendar function 29 provided in the various sensors and the control unit 20 in addition to the activity amount information from the activity amount determination unit 35, Tell the target room temperature setting unit 37.

目標室温設定部37は、温度シフト値設定部36からの温度シフト値情報と室温設定部38からの設定室温情報に基づいて目標室温を演算し、空調能力制御部45に伝える。   The target room temperature setting unit 37 calculates the target room temperature based on the temperature shift value information from the temperature shift value setting unit 36 and the set room temperature information from the room temperature setting unit 38 and transmits the target room temperature to the air conditioning capability control unit 45.

空調能力制御部45は、目標室温設定部37からの目標室温や室温センサ25からの吸込空気温度情報等から、圧縮機回転数設定部46,室内送風機回転数設定部47,室外送風機回転数設定部48で圧縮機回転数,室内送風機回転数,室外送風機回転数を設定し、圧縮機,室内送風機8,室外送風機56を制御する。   The air conditioning capacity control unit 45 sets the compressor rotation speed setting unit 46, the indoor fan rotation speed setting unit 47, and the outdoor fan rotation speed setting based on the target room temperature from the target room temperature setting unit 37, the intake air temperature information from the room temperature sensor 25, and the like. The compressor 48, the indoor fan rotation speed, and the outdoor fan rotation speed are set by the unit 48, and the compressor, the indoor fan 8, and the outdoor fan 56 are controlled.

空気調和機の暖房能力及び冷房能力は、空気調和機の吸込空気温度と設定温度に基づいて制御される。しかしながら、一般に、室内の高所に据付けられた空気調和機の吸込空気温度は、使用者が位置する室内の床から顔の高さまでの居住空間の温度より高くなる。従って、この温度差を補正するため、設定温度に所定値(温度シフト値)を上乗せした上乗せ設定温度を目標温度にして、吸込空気温度が、上乗せ設定温度(目標温度)に近づくように空気調和機を制御する。所定値としては、空気調和機の構造や運転モード(暖房/冷房/除湿)により相違するが、−1〜5度程度である。   The heating capacity and cooling capacity of the air conditioner are controlled based on the intake air temperature and the set temperature of the air conditioner. However, in general, the intake air temperature of an air conditioner installed at a high place in the room is higher than the temperature of the living space from the floor in the room where the user is located to the height of the face. Therefore, in order to correct this temperature difference, the air conditioning is performed so that the intake air temperature approaches the additional set temperature (target temperature), with the set temperature obtained by adding a predetermined value (temperature shift value) to the set temperature as the target temperature. Control the machine. The predetermined value is about -1 to 5 degrees, although it varies depending on the structure of the air conditioner and the operation mode (heating / cooling / dehumidification).

空気調和機は室内の温度(及び湿度)を制御することにより快適性を保持する。人の温熱感覚は温度,湿度,気流,輻射,着衣量及び活動量の影響を受ける。室内に居る人の行動が変わると、湿度,気流,輻射,着衣量等の条件が同じでも、その人の温熱感覚は変わる。従って、快適性を維持するためには、温度(及び湿度)等をその人の行動に応じて変える必要がある。   Air conditioners maintain comfort by controlling indoor temperature (and humidity). Human thermal sensation is affected by temperature, humidity, airflow, radiation, clothing and activity. If the behavior of a person in the room changes, the thermal sensation of the person changes even if the conditions such as humidity, airflow, radiation, and amount of clothes are the same. Therefore, in order to maintain comfort, it is necessary to change temperature (and humidity) etc. according to the action of the person.

空気調和機が備える人検知機能から在室者の活動量の情報を得ることができる。この在室者の活動量の情報に応じて室温を変更することにより、在室者の快適性を維持することができる。家庭用の空気調和機では、在室者の動きを検知する人検知機能として、焦電型の赤外線センサが採用されている。   Information on the amount of activity of the occupants can be obtained from the human detection function of the air conditioner. The comfort of the occupants can be maintained by changing the room temperature in accordance with the information on the amount of activity of the occupants. In a home air conditioner, a pyroelectric infrared sensor is employed as a human detection function for detecting the movement of a room occupant.

焦電型の赤外線センサとは、誘電率の大きな結晶体や樹脂が温度変化によって電荷を生じる焦電効果を利用したセンサであり、人から発する赤外線を非接触で検知することができる。焦電型赤外線センサの前にフレネルレンズを設置し、赤外線を断続的にセンサに入力することで、人の動きを検出することができる。従って、焦電型赤外線センサのみで人検知を行った場合は、在室者に動きが生じるとセンサの出力が変化して、在室者が動いたことを検知する。一方、在室者に動きが無い場合は、センサの出力が変化しないため、在室者に動きが無いことを検知する。   The pyroelectric infrared sensor is a sensor using a pyroelectric effect in which a crystal or resin having a large dielectric constant generates a charge due to a temperature change, and can detect infrared rays emitted from a person without contact. A person's movement can be detected by installing a Fresnel lens in front of the pyroelectric infrared sensor and intermittently inputting infrared light into the sensor. Therefore, when human detection is performed using only the pyroelectric infrared sensor, when the occupant moves, the output of the sensor changes to detect that the occupant has moved. On the other hand, when there is no movement in the occupant, the sensor output does not change, and therefore it is detected that there is no movement in the occupant.

しかしながら、在室者の動きの有無だけでは、在室者がどの程度の活動量であるかを判別することはできない。そこで、在室者の活動量を判別するために、焦電型赤外線センサを複数個設け、在室者の動きが大きい場合は、複数の焦電型赤外線センサが反応し、在室者の動きが小さい場合は、一つのセンサのみが反応することで、在室者の活動量の大,小を判別する方法がある。   However, it is not possible to determine how much activity the occupant is based on the presence or absence of the occupant's movement. Therefore, in order to determine the amount of activity of the occupants, a plurality of pyroelectric infrared sensors are provided, and if the occupant's movement is large, the multiple pyroelectric infrared sensors react and the occupant's movement Is small, there is a method of determining whether the activity amount of the occupant is large or small by reacting only one sensor.

しかしながら、このような方法では、焦電型赤外線センサが複数個必要であり、コストアップの要因となる。また、センサが複数個あっても、在室者の動きがセンサの検知可能な動きよりも小さい場合や、同じ様な動作の場合は、活動量の判別ができないという問題がある。つまり、焦電型赤外線センサのみで人検知を行った場合は、活動量の判別に限界があることがわかる。   However, such a method requires a plurality of pyroelectric infrared sensors, which increases the cost. In addition, even if there are a plurality of sensors, there is a problem that the amount of activity cannot be determined when the motion of the occupant is smaller than the motion that can be detected by the sensor or when the motion is similar. That is, it can be seen that there is a limit to the determination of the amount of activity when human detection is performed using only the pyroelectric infrared sensor.

本実施例の空気調和機では、近年採用されている焦電型の赤外線センサを用いて在室者の動きを検知すると共に、室内等で発生している音を音センサで検知する。在室者が動くと、一般にはその動きに伴った音が発生する。これを、空気調和機が据付けられた室内の種々の情景を予測しておくことで、赤外線センサの検出結果と音センサの検出結果から、在室者の活動量をより正確に把握することが可能となる。   In the air conditioner of the present embodiment, the motion of a room occupant is detected using a pyroelectric infrared sensor that has been adopted in recent years, and the sound generated in the room or the like is detected by a sound sensor. When the occupant moves, generally a sound accompanying the movement is generated. By predicting various scenes in the room where the air conditioner is installed, it is possible to more accurately grasp the amount of activity of the occupants from the detection results of the infrared sensor and the sound sensor. It becomes possible.

空気調和機を運転している室内で発生する音には種々のものがある。具体的には、空気調和機自身の音,在室者同士が会話している音,在室者がデスクワークや裁縫,軽い片付け等に伴う音,掃除機,調理器,理美容器等の機器操作により発生する音,テレビジョン,ラジオ,オーディオ機器等の音声,音楽,効果音等、また、時計,鑑賞魚水槽のポンプの音等無人の場合でも発生する音等がある。   There are various sounds generated in the room where the air conditioner is operated. Specifically, the sound of the air conditioner itself, the sound of people in the room talking to each other, the sound of people in the room accompanying deskwork, sewing, light tidying up, vacuum cleaners, cooking equipment, hairdressing equipment, etc. There are sounds generated by operation, sounds of television, radio, audio equipment, music, sound effects, etc., and sounds generated even in the case of an unattended person such as clocks, sounds of appreciation fish tank pumps, etc.

これらの音は、在室者の活動に伴う音と在室者の活動に関係の無い音に分けることができる。在室者の活動に関係の無い音には、空気調和機自身の音,テレビジョン,ラジオ,オーディオ機器の音声,音楽,効果音,時計,鑑賞魚水槽のポンプの音等がある。在室者の活動に伴う音には、会話,デスクワーク,裁縫,軽い片付け,掃除機,調理器,理美容器等の音がある。   These sounds can be divided into sounds associated with the activities of the occupants and sounds unrelated to the activities of the occupants. Sounds irrelevant to the activities of occupants include the sound of the air conditioner itself, the sound of the television, radio, audio equipment, music, sound effects, clock, sound of the appreciation fish tank pump. Sounds associated with the activities of people in the room include sounds of conversation, desk work, sewing, light tidying up, vacuum cleaners, cookers, hairdressing instruments, and the like.

在室者の活動に関係の無い音のうち、時計,鑑賞魚水槽のポンプの音等、無人の場合でも発生する音は、空気調和機を据付けた部屋の環境音ともいうべき音である。このような部屋の環境音に空気調和機自身の運転音を加えた音は、他の音と区別する必要がある。   Among sounds that are not related to the activities of occupants, sounds that occur even in the absence of people, such as clocks and appreciation fish tank pump sounds, should be referred to as environmental sounds in the room where the air conditioner is installed. The sound obtained by adding the operation sound of the air conditioner itself to the environmental sound of the room needs to be distinguished from other sounds.

在室者の活動に関係の無い音のうち、テレビジョン,ラジオ,オーディオ機器の音声,音楽,効果音も、空気調和機自身の音とは別の在室者の活動に関係の無い音として他の音と区別する必要がある。   Of the sounds that are not related to the activities of the occupants, the sound, music, and sound effects of television, radio, and audio equipment are also unrelated to the activities of the occupants that are different from the sound of the air conditioner itself. It is necessary to distinguish it from other sounds.

また、在室者の活動に伴う音のうち掃除機を使うとき等の重家事用機器群を使う場合は、在室者が活発に動いている。従って、適正な空気調和をする必要から、このような音は他の音と区別する必要がある。   In addition, when using a heavy household equipment group such as when using a vacuum cleaner among the sounds accompanying the activities of the occupants, the occupants are actively moving. Therefore, such sound needs to be distinguished from other sounds because it is necessary to perform proper air conditioning.

一方、在室者の活動に伴う音のうち会話の音は、音センサを使用して在室者の活動量をきめ細かく区分する要となるものである。つまり、会話の声が小さければ静かに休養している状態と判断でき、会話の声が大きく途切れなく続く場合は、在室者の活動量も増えるという傾向を活用できるので、他の音と区別して把握する必要がある。   On the other hand, the conversational sound among the sounds accompanying the activities of the occupants is a key to finely classify the amount of activities of the occupants using the sound sensor. In other words, if the voice of the conversation is low, it can be determined that the person is quietly resting, and if the voice of the conversation continues uninterruptedly, the tendency of the resident's activity to increase can be utilized. It is necessary to grasp separately.

在室者の活動に伴う音のうち調理機器,理美容機器,デスクワーク用機器等の軽家事用機器群を使う場合は、在室者は軽く動きながら軽家事用機器群を使用する。従って、重家事用機器群を使う場合や、静かな声で会話しながら休養している時とは区別する必要がある。   When using light household equipment such as cooking equipment, hairdressing and beauty equipment, deskwork equipment, etc., among the sounds accompanying the activities of the people in the room, the residents use the light household equipment group while moving lightly. Therefore, it is necessary to distinguish from the case of using a group of equipment for heavy housework or when taking a rest while talking in a quiet voice.

以上から、判別すべき音源の種類は空気調和機自身,テレビジョン等の放送受信機器群,掃除機等の重家事用機器群,調理機器等の軽家事用機器群、及び在室者の会話となる。これらに判別できない音源は中間的な動きと音を有しているので軽家事用機器群に区分する。   From the above, the types of sound sources to be identified are the air conditioner itself, broadcast receiving equipment such as television, heavy household equipment such as vacuum cleaners, light household equipment such as cooking equipment, and resident conversations. It becomes. Sound sources that cannot be distinguished from these have intermediate movements and sounds, so they are classified into light household equipment groups.

これらの音源の種類と図4に記載の活動量METの値との関係は以下の通りである。つまり、テレビ・音楽鑑賞…1.0MET,屋内の掃除…3.0METs,調理…2.0METs,会話・電話…1.0〜1.8METs(会話・電話について図4に記載はないが、他の資料を参照した。)。空気調和機自身は在室者の活動量に変化を与えないので、音源の種類による在室者の活動量の大小は、「重家事用機器群≧軽家事用機器群≧会話≧放送受信機器群≧空気調和機自身」の順になる。   The relationship between the types of these sound sources and the value of the activity amount MET shown in FIG. 4 is as follows. In other words, TV / music appreciation ... 1.0 MET, indoor cleaning ... 3.0 METs, cooking ... 2.0 METs, conversation / telephone ... 1.0-1.8 METs (conversation / telephone is not shown in FIG. 4, but other (Refer to the document.) Since the air conditioner itself does not change the amount of activity of the occupants, the amount of activity of the occupants depending on the type of sound source can be expressed as “heavy household equipment group ≧ light household equipment group ≧ conversation ≥ broadcast receiving equipment. The order is “group ≧ air conditioner itself”.

次に、音センサと焦電型赤外線センサとにより在室者の活動量を判定する方法について説明する。まず、本実施例においては、在室者の行動とその時の室内の音を次の2パターンに分ける。
1:在室者が活動していて、活動に伴う音が発生している場合は、体内発熱の変化が大きくなる。以下、この活動に伴う音を発する音源の種類を「温感変動大音源」という。
2:在室者の活動はあるが、活動に伴う音がほとんど発生していない場合は、体内発熱の変化が小さい。以下、この活動に伴わない音を発する音源の種類を「温感変動小音源」という。
Next, a method for determining the amount of activity of a room occupant using a sound sensor and a pyroelectric infrared sensor will be described. First, in this embodiment, the behavior of the occupant and the sound in the room at that time are divided into the following two patterns.
1: When the occupant is active and the sound accompanying the activity is generated, the change in fever in the body becomes large. In the following, the type of sound source that emits sound associated with this activity is referred to as a “high-temperature fluctuation sound source”.
2: If there is activity in the room but there is almost no sound accompanying the activity, the change in fever in the body is small. In the following, the type of sound source that emits sound not associated with this activity is referred to as a “low-temperature fluctuation sound source”.

室内の音が温感変動小音源によるものである場合は、焦電型の赤外線センサの検出結果を複数の段階に区分し、段階に応じて在室者の活動量を判定して空気調和機を制御する。また、室内の音が温感変動大音源によるものである場合は、音の量が大きければ、活動が活発になっていると判断し、温感変動小音源の場合に赤外線センサの検出結果から判定した在室者の活動量よりも大きい活動量であると判定して、空気調和機を制御する。このように、音センサの検出結果に基づいて、室内の音源を温感変動小音源の集団と温感変動大音源の集団に分けることで、在室者の活動量をより多くの区分に細分化できる。従って、よりきめ細かな制御で、快適性に考慮しながら空気調和機を節電することができる。   If the sound in the room is from a sound source with small fluctuations in temperature, the detection result of the pyroelectric infrared sensor is divided into multiple stages, and the amount of activity of the occupants is determined according to the stage, and the air conditioner To control. Also, if the sound in the room is from a sound source with a large sense of temperature fluctuation, if the amount of sound is large, it is determined that the activity is active. It is determined that the amount of activity is greater than the determined amount of activity of the occupant, and the air conditioner is controlled. In this way, by dividing the sound sources in the room into groups of small sound sources with small temperature fluctuations and large sound sources with large temperature fluctuations based on the detection results of the sound sensor, the amount of activity of the occupants can be subdivided into more categories. Can be Therefore, it is possible to save power in the air conditioner while taking into consideration comfort with finer control.

温感変動小音源としては、上述のように、空気調和機自身やテレビジョン,ラジオ等の放送受信機器群の集団が挙げられる。在室者の動きを伴う温感変動大音源としては、在室者自身が相互に交わす会話の他、家事を支援する掃除機,健康促進機器やジューサー,ミキサーなどの調理器具、ドライヤー,シェーバー等の理容機器等の集団が挙げられる。この場合、空気調和機自身や会話は単独の音源であるが、説明の便宜上、空気調和機自身や会話も群と表現する。   As described above, examples of the small temperature fluctuation sound source include a group of broadcast receivers such as an air conditioner itself, a television, and a radio. In addition to the conversations that the occupants themselves exchange with each other, there are also vacuum cleaners, health promotion devices, juicers, mixers, and other cooking utensils, dryers, shavers, etc. Group of barber equipment. In this case, the air conditioner itself and the conversation are independent sound sources, but for convenience of explanation, the air conditioner itself and the conversation are also expressed as a group.

これらの温感変動大音源の集団は総じて内部に電動機を備え、使用者の力,速さ等を支援する。これらの中でも、使用者の力を必要とする掃除機,健康促進機器等の重家事用機器群は、使用者自体も大きな活動を強いられ、持続時間も比較的長い。重家事用機器群以外の使用者に大きな活動を強いない機器群と前述した音源の群以外のものを便宜上、軽家事用機器群と言うこととする。   These groups of large temperature fluctuation sound sources generally have electric motors inside to support the user's power and speed. Among these, heavy household appliances such as vacuum cleaners and health promotion appliances that require the user's power are forced to perform large activities by the users themselves and have a relatively long duration. For the sake of convenience, a device group that does not impose great activity on users other than the heavy household device group and the above-described sound source group are referred to as a light household device group.

このように、空気調和機自身と放送受信機器群を温感変動小音源の集団とし、会話,重家事用機器群や軽家事用機器群を温感変動大音源の集団とすることで、音センサの検出結果に基づいて、室内の音源の群を判定し、判定した音源の群に応じて、音源を温感変動小音源の集団と温感変動大音源の集団に分けることができる。これにより、在室者の活動量をより多くの区分に細分化し、よりきめ細かな制御で、快適性に考慮しながら空気調和機を節電することができる。   In this way, by making the air conditioner itself and the broadcast receiving device group a group of small thermal sensation fluctuation sound sources, and the conversation, heavy household equipment group and light household equipment group as a group of large sensation fluctuation sound source, A group of sound sources in the room can be determined based on the detection result of the sensor, and the sound sources can be divided into a group of small sound sources with a large thermal sensation and a group of sound sources with large thermal sensations according to the determined sound source group. As a result, the amount of activity of the occupants can be subdivided into a larger number of sections, and the air conditioner can be saved with more detailed control while considering comfort.

このことから、音を周波数によって複数の周波数帯に区分して、各周波数帯で音の大きさ,連続性,不規則性,規則性,断続の間隔等を適切な指標で評価することで、比較的安価に、簡単な方法で音源の種類を推定できることがわかる。   From this, by dividing the sound into multiple frequency bands according to the frequency, and evaluating the loudness, continuity, irregularity, regularity, interval of intermittentness, etc. with appropriate indicators in each frequency band, It can be seen that the type of sound source can be estimated by a simple method at a relatively low cost.

在室者の活動に伴う音の例として、掃除機の音と人の声を周波数分析した結果を図6(b)及び図7(a)に示す。掃除機の音は、低い周波数の音から高い周波数の音まで満遍なく含むことがわかる。また、人の声は、高い周波数の音が小さく、1kHz付近の低い周波数の音が他の部分より大きいことがわかる。この他、掃除機の音は連続的であり、人の会話は不規則かつ断続的であることがわかる。   FIG. 6B and FIG. 7A show the results of frequency analysis of the sound of a vacuum cleaner and the voice of a person as an example of the sound accompanying the activities of the occupants. It can be seen that the sound of the vacuum cleaner includes even from low frequency sound to high frequency sound. It can also be seen that the human voice has a low high-frequency sound and a low-frequency sound near 1 kHz is larger than the other parts. In addition, it can be seen that the sound of the vacuum cleaner is continuous, and that human conversation is irregular and intermittent.

在室者の活動に関係の無い音の例として、空気調和機自身の音とテレビジョンの声を周波数分析した結果を図6(a)及び図7(b)に示す。空気調和機自身の音は低い周波数の音も高い周波数の音も総じて小さいことがわかる。また、テレビジョンの音は、低い周波数の他に高い周波数の音も含み、人の声の場合に比べて、4kHz以上の高い周波数の音が特に大きいことがわかる。   FIG. 6A and FIG. 7B show the result of frequency analysis of the sound of the air conditioner itself and the voice of the television as an example of the sound not related to the activities of the occupants. It can be seen that the sound of the air conditioner itself is generally low in both low and high frequency sounds. Moreover, it can be seen that the sound of television includes a high frequency sound in addition to a low frequency, and a high frequency sound of 4 kHz or more is particularly loud compared to a human voice.

以下に、各音源群の特徴を考慮した各音源群の判別方法について述べる。まず、在室者の活動に伴う音が発生しない場合、無人の室内でも発生する柱時計の音,観賞魚水槽の循環ポンプの音,空気調和機自身の音等のみが検知され、室内の音の大きさは最小となる。この場合、低い周波数の音も、高い周波数の音も低いレベルで連続的かつ規則的に検出される。従って、室内の音を音センサで検出した結果が、所定のレベル未満でかつ規則的に連続する場合は、音源の群を空気調和機自身と判定する。   A method for discriminating each sound source group in consideration of the characteristics of each sound source group will be described below. First, if no sound is generated due to the activities of the occupants, only the sound of the wall clock, the sound of the circulation pump of the ornamental fish tank, the sound of the air conditioner itself, etc., detected even in an unattended room are detected. The size of is minimal. In this case, both low frequency sounds and high frequency sounds are detected continuously and regularly at a low level. Therefore, when the result of detecting the sound in the room with the sound sensor is less than a predetermined level and regularly continues, the group of sound sources is determined as the air conditioner itself.

在室者が掃除機により清掃中等の場合、室内の音は会話の声もテレビジョンの音も聞こえず掃除機だけの音が聞こえる。この場合、低い周波数の音も、高い周波数の音も、高いレベルで連続的かつ規則的であり、音のレベルの変化がほとんどない。従って、室内の音を音センサで検出した結果が、所定のレベル以上でかつほぼ同じレベルで規則的に連続する場合は、音源の群を重家事用機器群と判定する。   When the occupant is cleaning with a vacuum cleaner, the sound in the room can be heard only from the vacuum cleaner, not the voice of conversation or television. In this case, both the low frequency sound and the high frequency sound are continuous and regular at a high level, and there is almost no change in the sound level. Accordingly, when the result of detecting the sound in the room by the sound sensor is regularly continuous at a level equal to or higher than a predetermined level and substantially the same level, the group of sound sources is determined as the heavy household equipment group.

人の会話には不規則性があり、また、低い周波数の音が多く、更に、長い中断があるのが一般的である。従って、在室者がテレビジョンやラジオ等を視聴している場合や在室者同士で会話をしている場合、上述の空気調和機自身や重家事用機器群の音と区別することが可能となる。一方、音源がテレビジョンやラジオ等の放送受信機器群のものか、在室者同士の会話であるかの判別は困難である。しかしながら、テレビジョンやラジオ等からの音源の場合、現実の会話と違って、長い間沈黙が続くことはない。また、途中に入るコマーシャルや効果音等で現実の会話には登場しない高い周波数の音が入る。従って、これらの特徴を組み合わせることにより、放送受信機器群と会話とを判別することができる。   There are irregularities in human conversation, there are many low-frequency sounds, and there are generally long interruptions. Therefore, when the occupants are watching television or radio, or when the occupants are having a conversation with each other, it can be distinguished from the sound of the above-mentioned air conditioner itself or heavy household equipment group. It becomes. On the other hand, it is difficult to determine whether the sound source is a group of broadcast receiving devices such as a television or radio or a conversation between occupants. However, in the case of a sound source from a television or radio, the silence does not continue for a long time unlike actual conversation. In addition, high-frequency sounds that do not appear in actual conversation due to commercials and sound effects that enter the middle. Therefore, by combining these features, it is possible to distinguish between the broadcast receiving device group and the conversation.

また、上述したように、以上の判別手順により空気調和機自身,重家事用機器群,放送受信機器群又は会話の何れにも判別されなかった音源は、軽家事用機器群と判別する。   Further, as described above, a sound source that has not been discriminated by any of the air conditioner itself, the heavy household equipment group, the broadcast receiving equipment group, or the conversation by the above discrimination procedure is discriminated as a light household equipment group.

本実施例における具体的な音源の判別手法は上述の考察を考慮して、次の通りとなる。
1.空気調和機に備えられた音センサにより、空気調和機の運転中に、室内の音を、低い周波数帯の音と高い周波数帯の音に分離して抽出する。
2.分離した音を、周波数帯毎に、所定のサンプリング周期で所定時間サンプリングする。低い周波数帯での音の検出回数の割合(BP)と高い周波数帯での音の検出回数の割合(HP)とを算出し、サンプリング結果とする。
3.上記サンプリングを複数回(m回、実施例では10回)行い、各回のサンプリング結果BP1〜BPm,HP1〜HPmを得る。
4.音のレベルは、BP1〜BPm,HP1〜HPmの大きさで判断する。
5.音の連続性は、全てのサンプリング結果が音源の群毎に定めた所定の閾値以上であるか否かで判断する。上記4の判定法に変えてこの判定法を用いてもよい。
6.音の規則性は、サンプリング結果の上限,下限とサンプリング結果の平均値との差が、音源の群毎に定めた判定幅以内であるか否かで判断する。
7.音の不規則性は、サンプリング結果が音源の群毎に定めた所定の判定閾値以上である回数が、音源の群毎に定めた所定の下限回数閾値以上、且つ、上限回数閾値以下で、更に、判定閾値以上である回の連続が途中で中断するか否かで判断する。
8.音の長い中断があるか否かは、サンプリング結果が音源の群毎に定めた所定の閾値BT,HT以上である回数が、音源の群毎に定めた所定の上限回数閾値BJ,HJ以下で且つ、閾値BT,HT以上である回の連続が途中で中断するか否かと、サンプリング結果の上限,下限とサンプリング結果の平均値との差が音源の群毎に定めた所定の判定幅閾値BX,HXを超えるか否かで判断する。
The specific sound source discrimination method in the present embodiment is as follows in consideration of the above consideration.
1. The sound sensor provided in the air conditioner separates and extracts the room sound into a low frequency band sound and a high frequency band sound during operation of the air conditioner.
2. The separated sound is sampled for a predetermined time at a predetermined sampling period for each frequency band. The ratio of the number of sound detections in the low frequency band (BP) and the ratio of the number of sound detections in the high frequency band (HP) are calculated and used as the sampling result.
3. The sampling is performed a plurality of times (m times, 10 times in the embodiment), and the sampling results BP1 to BPm and HP1 to HPm are obtained for each time.
4). The sound level is determined by the magnitudes of BP1 to BPm and HP1 to HPm.
5. The continuity of sound is determined by whether or not all sampling results are equal to or greater than a predetermined threshold value determined for each group of sound sources. This determination method may be used instead of the above determination method 4.
6). The regularity of the sound is determined by whether or not the difference between the upper and lower limits of the sampling result and the average value of the sampling result is within the determination range determined for each group of sound sources.
7). The irregularity of the sound is such that the number of times the sampling result is equal to or greater than a predetermined determination threshold defined for each group of sound sources is equal to or greater than a predetermined lower limit threshold defined for each sound source group and equal to or less than an upper limit count threshold. Judgment is made based on whether or not a series of times equal to or greater than the determination threshold is interrupted.
8). Whether or not there is a long sound interruption is determined by whether the number of times the sampling result is equal to or greater than a predetermined threshold value BT, HT determined for each group of sound sources is equal to or less than a predetermined upper limit number threshold value BJ, HJ defined for each sound source group. In addition, a predetermined determination threshold value BX in which whether or not a series of times equal to or higher than the thresholds BT and HT is interrupted and the difference between the upper limit and lower limit of the sampling result and the average value of the sampling result is determined for each sound source group , HX or not is judged.

以上の手順を組み合わせて、音源の種類を判定する。例えば、1,2の手順で得たサンプリング結果を基に、3でBP1〜BPm,HP1〜HPmの大きさが全て空気調和機判定閾値BPa,HPa未満であれば、音源を空気調和機自身と判定し、BP1〜BPm,HP1〜HPmの値の大きさが全て重家事用機器判定閾値BPh,HPh以上であれば、音源の種類を重家事用機器群の候補とする。次に、4で音源の種類が重家事用機器群の候補となり、6でサンプリング結果の上限,下限とサンプリング結果の平均値との差が、重家事用機器群の判定幅BWc,HWc以内であれば、音源の種類を重家事用機器群と判定する。尚、図では重家事用機器群の代表として電気掃除機を例に挙げている。4,6で空気調和機自身でも重家事用機器群でもないと判定された場合は、次に、7でサンプリング結果が放送受信機器判定閾値BPt,HPt以上である回数が、放送受信機器群の下限回数閾値BLt,HLt以上で且つ上限回数閾値BHt,HHt以下で、更に、放送受信機器判定閾値BPt,HPt以上である回の連続が途中で中断している場合は、音源の種類を放送受信機器群と判定する。尚、図では放送受信機器群の代表としてテレビジョンを例に挙げている。7で放送受信機器でもないと判定された場合は、次に、同じ7の手順でサンプリング結果が会話判定閾値BPs,HPs以上である回数が、会話の下限回数閾値BLs,HLs以上で且つ上限回数閾値BHs,HHs以下で、更に、会話判定閾値BPs,HPs以上である回の連続が途中で中断している場合は、音源の種類を会話と判定する。以上で会話でもないと判定された場合は、音源の種類を軽家事用機器群と判定する。尚、図では軽家事用機器群をその他と記載している。   The type of sound source is determined by combining the above procedures. For example, if the size of BP1 to BPm, HP1 to HPm is less than the air conditioner determination thresholds BPa and HPa in 3, based on the sampling results obtained in steps 1 and 2, the sound source is the air conditioner itself. If the values of BP1 to BPm and HP1 to HPm are all equal to or greater than the heavy housework device determination thresholds BPh and HPh, the type of the sound source is set as a candidate for the heavy housework device group. Next, at 4 the type of sound source becomes a candidate for heavy household equipment group, and at 6 the difference between the upper and lower limits of the sampling result and the average value of the sampling result is within the judgment widths BWc and HWc of the heavy household equipment group. If there is, the type of the sound source is determined as the heavy household equipment group. In the figure, a vacuum cleaner is taken as an example as a representative of the heavy household equipment group. 4 and 6, if it is determined that the air conditioner itself is not a heavy household equipment group, then the number of times that the sampling result is equal to or greater than the broadcast receiving apparatus determination thresholds BPt and HPt in 7 If the lower limit number of times threshold value BLt, HLt or more and the upper limit number of times threshold value BHt, HHt or less, and further the series of times exceeding the broadcast receiving device determination threshold value BPt, HPt is interrupted, the type of the sound source is broadcasted. Judge as device group. In the figure, a television is taken as an example of a representative broadcast receiving device group. If it is determined in step 7 that the sampling result is not a broadcast receiving device, the number of times that the sampling result is equal to or higher than the conversation determination thresholds BPs and HPs in the same step 7 is equal to or higher than the lower limit number thresholds BLs and HLs of the conversation and the upper limit number If the number of consecutive times that are equal to or lower than the threshold values BHs and HHs and that are equal to or higher than the conversation determination threshold values BPs and HPs is interrupted, the type of the sound source is determined to be conversation. If it is determined that it is not a conversation, the type of sound source is determined to be a light household equipment group. In the figure, the light household equipment group is described as other.

次に、上記の各音源を判別する方法について図8〜図11を用いて詳細に説明する。図8は音源判定ブロック図である。図9は一次判定前段説明図である。図10は一次判定要部説明図である。   Next, a method for discriminating each sound source will be described in detail with reference to FIGS. FIG. 8 is a sound source determination block diagram. FIG. 9 is an explanatory diagram before the primary determination. FIG. 10 is an explanatory diagram of a primary determination main part.

音源の種類の判定は、一次判定と二次判定の2段階で行われる。室内の音信号は音センサ19のマイクロフォンで捉えられ、電気信号に変換され、増幅されて複数の周波数帯(実施例では2つの周波数帯)に分離される。電気信号に変換され増幅された信号は、周波数5kHz以下の低い周波数の音を通過させるバンドパスフィルター(又はローパスフィルタ)と4kHz以上の高い周波数の音を通過させるハイパスフィルター(又はバンドパスフィルター)で分離され、デジタル化されて制御部に内蔵されるマイコンに伝達される。   The determination of the type of sound source is performed in two stages: primary determination and secondary determination. The sound signal in the room is captured by the microphone of the sound sensor 19, converted into an electric signal, amplified, and separated into a plurality of frequency bands (in the embodiment, two frequency bands). The signal converted into an electric signal and amplified is a bandpass filter (or low-pass filter) that passes a low frequency sound of 5 kHz or less and a high-pass filter (or bandpass filter) that passes a high frequency sound of 4 kHz or more. It is separated, digitized and transmitted to the microcomputer built in the control unit.

次に、上記の音検出結果を使用した一次判定のフローについて図11を用いて説明する。図11は一次判定の要部フロー図である。重家事用機器群を電気掃除機,放送受信機器群をテレビジョン,軽家事用機器群をその他とした。以下同様である。   Next, a primary determination flow using the sound detection result will be described with reference to FIG. FIG. 11 is a main part flow diagram of the primary determination. The heavy household equipment group is a vacuum cleaner, the broadcast receiving equipment group is a television, and the light household equipment group is other. The same applies hereinafter.

ステップS10で一次判定を開始し、ステップS12で電気信号に変換され、デジタル化された音信号をマイコン内に取り込む。ステップS13で、マイコンは、このデジタル信号を、所定のサンプリング周期(実施例では500μs)で、所定のサンプリング区間(実施例では2秒間)、サンプリングする。ステップS15でサンプリング区間が終了する。その後、ステップS16で、サンプリングしたデータ中の音検出データの割合を周波数帯毎に演算し、低い周波数帯の音検出割合BPnと高い周波数帯の音検出割合HPnのサンプリング結果を得る。ステップS20でサンプリング期間が終了するまで、サンプリング結果を得ることを所定回数(実施例では10回)繰返し、低い周波数帯のサンプリング結果BP1〜BPmと高い周波数帯のサンプリング結果HP1〜HPm(mは所定の複数回中のサンプリング区間の数)を得る。   In step S10, primary determination is started, and in step S12, a sound signal converted into an electric signal and digitized is taken into the microcomputer. In step S13, the microcomputer samples the digital signal in a predetermined sampling period (2 seconds in the embodiment) at a predetermined sampling period (500 μs in the embodiment). In step S15, the sampling period ends. Thereafter, in step S16, the ratio of the sound detection data in the sampled data is calculated for each frequency band, and the sampling result of the sound detection ratio BPn in the low frequency band and the sound detection ratio HPn in the high frequency band is obtained. Until the sampling period ends in step S20, obtaining a sampling result is repeated a predetermined number of times (10 times in the embodiment), and sampling results BP1 to BPm in a low frequency band and sampling results HP1 to HPm (m is a predetermined value) in a high frequency band. The number of sampling intervals in a plurality of times.

ステップS20で所定の複数回のサンプリング区間が終了すると、ステップS25で音源が空気調和機であるか否かを判定する。具体的にはサンプリング結果BP1〜BPm,HP1〜HPmと空気調和機判定閾値BPa,HPaを比較する。比較の結果、低い周波数帯のサンプリング結果BP1〜BPmが全て、低い周波数帯の空気調和機判定閾値BPa未満で、且つ、高い周波数帯のサンプリング結果HP1〜HPmが全て、高い周波数帯の空気調和機判定閾値HPa未満の場合は、ステップS26で音源の種類を空気調和機自身と一次判定する。ステップS46でこの判定結果が蓄積され、ステップS50で一次判定を終了する。   When a predetermined plurality of sampling sections are completed in step S20, it is determined in step S25 whether or not the sound source is an air conditioner. Specifically, the sampling results BP1 to BPm and HP1 to HPm are compared with the air conditioner determination thresholds BPa and HPa. As a result of the comparison, the sampling results BP1 to BPm in the low frequency band are all lower than the air conditioner determination threshold BPa in the low frequency band, and the sampling results HP1 to HPm in the high frequency band are all in the high frequency band. If it is less than the determination threshold HPa, the type of the sound source is primarily determined as the air conditioner itself in step S26. The determination result is accumulated in step S46, and the primary determination is terminated in step S50.

ステップS25で音源が空気調和機自身と判定されなかった場合は、ステップS30に進み、音源が重家事用機器であるか否かを判定する。具体的にはサンプリング結果BP1〜BPm,HP1〜HPmと重家事用機器判定閾値BPh,HPhとを比較する。比較の結果、低い周波数帯のサンプリング結果BP1〜BPmが全て、低い周波数帯の重家事用機器判定閾値BPh以上で、且つ、高い周波数帯のサンプリング結果HP1〜HPmが全て、高い周波数帯の重家事用機器判定閾値HPh以上の場合は、ステップS31に進み判定処理を続行する。   If it is not determined in step S25 that the sound source is the air conditioner itself, the process proceeds to step S30, in which it is determined whether the sound source is a heavy household appliance. Specifically, the sampling results BP1 to BPm and HP1 to HPm are compared with the heavy household equipment determination threshold values BPh and HPh. As a result of comparison, the sampling results BP1 to BPm in the low frequency band are all higher than the low frequency band heavy household equipment determination threshold BPh, and the sampling results HP1 to HPm in the high frequency band are all in the high frequency band. If it is equal to or greater than the appliance determination threshold HPh, the process proceeds to step S31 and the determination process is continued.

ステップS31では周波数帯毎にサンプリング結果BP1〜BPm,HP1〜HPmの平均値BPmean,HPmeanを求める。更に、周波数帯毎のサンプリング結果BP1〜BPm,HP1〜HPmの最大値BPmax,HPmaxと最小値BPmin,HPminを抽出する。抽出したBPmax,HPmaxが平均値BPm,HPmに重家事用機器判定幅BWh,HWhを加えた値以下で、抽出したBPmin,HPminが平均値BPm,HPmから重家事用機器判定幅BWh,HWhを減じた値以上である場合は、ステップS32で音源を重家事用機器群と一次判定する。ステップS46でこの判定結果が蓄積され、ステップS50で一次判定を終了する。   In step S31, average values BPmean and HPmean of the sampling results BP1 to BPm and HP1 to HPm are obtained for each frequency band. Further, the maximum values BPmax and HPmax and the minimum values BPmin and HPmin of the sampling results BP1 to BPm and HP1 to HPm for each frequency band are extracted. The extracted BPmax and HPmax are equal to or less than the average value BPm and HPm plus the heavy household equipment determination widths BWh and HWh, and the extracted BPmin and HPmin are the heavy household equipment determination widths BWh and HWh from the average values BPm and HPm. If it is equal to or greater than the subtracted value, the sound source is primarily determined as a heavy household equipment group in step S32. The determination result is accumulated in step S46, and the primary determination is terminated in step S50.

ステップS30又はステップS31で重家事用機器群と判定されなかった場合は、ステップS35に進み、音源が放送受信機器であるか否かを判定する。具体的にはサンプリング結果BP1〜BPm,HP1〜HPmと放送受信機器判定閾値BPt,HPtとを比較する。比較の結果、周波数帯毎に、サンプリング結果BP1〜BPm,HP1〜HPmが、放送受信機器判定閾値BPt,HPt以上の回数NBPt,NHPtが、放送受信機器の下限回数閾値BLt,HLt以上で、且つ、放送受信機器の上限回数閾値BHt,HHt以上の場合は、ステップS36に進み判定処理を続行する。ステップS36では周波数帯毎に、放送受信機器判定閾値BPt,HPt以上である回の連続が途中で中断しているか否かを判定し、この判定基準を満たす場合は、ステップS37で音源を放送受信機器群と一次判定する。ステップS46でこの判定結果が蓄積され、ステップS50で一次判定を終了する。   If it is not determined in step S30 or step S31 that the device group is for heavy housework, the process proceeds to step S35 to determine whether the sound source is a broadcast receiving device. Specifically, the sampling results BP1 to BPm and HP1 to HPm are compared with the broadcast receiving device determination threshold values BPt and HPt. As a result of the comparison, for each frequency band, the sampling results BP1 to BPm, HP1 to HPm are equal to or greater than the broadcast reception device determination thresholds BPt and HPt. If it is equal to or greater than the upper limit number thresholds BHt and HHt of the broadcast receiving device, the process proceeds to step S36 and the determination process is continued. In step S36, for each frequency band, it is determined whether or not a series of times equal to or higher than the broadcast receiving device determination thresholds BPt and HPt is interrupted. If this determination criterion is satisfied, broadcast reception of the sound source is performed in step S37. Primary determination is made with the device group. The determination result is accumulated in step S46, and the primary determination is terminated in step S50.

ステップS35又はステップS36で放送受信機器群と判定されなかった場合は、ステップS40に進み、会話判定を行う。具体的にはサンプリング結果BP1〜BPm,HP1〜HPmと会話判定閾値BPs,HPsを比較する。比較の結果、周波数帯毎に、サンプリング結果BP1〜BPm,HP1〜HPmが、会話判定閾値BPs,HPs以上で有る回数NBPs,NHPsが、会話の下限回数閾値BLs,HLs以上で、且つ、会話の上限回数閾値BHs,HHs以上の場合は、ステップS41に進み判定処理を続行する。ステップS41では周波数帯毎に、会話判定閾値BPs,HPs以上である回の連続が途中で中断しているか否かを判定する。ステップS46でこの判定結果が蓄積され、ステップS50で一次判定を終了する。   If it is not determined as the broadcast receiving device group in step S35 or step S36, the process proceeds to step S40, and conversation determination is performed. Specifically, the sampling results BP1 to BPm and HP1 to HPm are compared with the conversation determination threshold values BPs and HPs. As a result of the comparison, for each frequency band, the sampling results BP1 to BPm, HP1 to HPm are the conversation determination threshold values BPs and HPs are equal to or greater than the number of times NBPs and NHPs are equal to or greater than the conversation lower limit frequency threshold BLs and HLs, and If it is equal to or greater than the upper limit number thresholds BHs and HHs, the process proceeds to step S41 and the determination process is continued. In step S41, it is determined for each frequency band whether or not the series of times equal to or greater than the conversation determination thresholds BPs and HPs is interrupted. The determination result is accumulated in step S46, and the primary determination is terminated in step S50.

ステップS40又はステップS41で会話と判定されなかった場合はステップS45に進み、音源を軽家事用機器群と一次判定する。ステップS46でこの判定結果が蓄積され、ステップS50で一次判定を終了する。尚、会話の声が大きく、また、話し声が途切れなく続くと、ステップS40又はステップS41で会話と判定されなくなるが、このような場合、会話をしている人の活動量も増え、調理機器,理美容機器,デスクワーク用機器等の軽家事用機器群を使う場合と同程度の活動量になるので、音源を軽家事用機器群の使用とすることができる。   If it is not determined to be a conversation in step S40 or step S41, the process proceeds to step S45, and the sound source is primarily determined as a light household equipment group. The determination result is accumulated in step S46, and the primary determination is terminated in step S50. If the conversation is loud and the conversation continues without interruption, it is not determined as conversation in step S40 or step S41. In such a case, the amount of activity of the person who is talking increases, Since the amount of activity is the same as when using a group of light housework devices such as a hairdressing beauty machine and a deskwork device, the sound source can be used for the light housework device group.

次に、音源の二次判定フローについて図12,図13を用いて説明する。図12は二次判定説明図である。図13は二次判定の要部フロー図である。一次判定(ステップS10〜S50)を複数回(実施例では3回)繰返し、その後の二次判定により音源を確定する。図13は、一次判定処理の抜粋と二次判定処理を含めた音源判定の手順を示す。   Next, the sound source secondary determination flow will be described with reference to FIGS. FIG. 12 is an explanatory diagram for secondary determination. FIG. 13 is a main part flow diagram of the secondary determination. The primary determination (steps S10 to S50) is repeated a plurality of times (three times in the embodiment), and the sound source is determined by the subsequent secondary determination. FIG. 13 shows a sound source determination procedure including an excerpt of the primary determination process and a secondary determination process.

ステップS1で音源の判定を開始する。ステップS10〜S50で一次判定を行い、ステップS55で最終の一次判定が終了したか否かを判断する。最終の一次判定が終了していない場合は、ステップS10に戻って一次判定を繰り返す。最終の一次判定が終了している場合は、ステップS56に進んで二次判定を開始する。   In step S1, sound source determination is started. A primary determination is performed in steps S10 to S50, and it is determined in step S55 whether or not the final primary determination has been completed. If the final primary determination has not ended, the process returns to step S10 and the primary determination is repeated. If the final primary determination has been completed, the process proceeds to step S56 to start the secondary determination.

まず、ステップS57で、二次判定では複数回の一次判定の結果から、出現頻度が最大の音源を抽出する。次に、ステップS60で出現頻度が最大の音源が複数あるか否かを判断する。出現頻度が最大の音源が複数ない場合、ステップS61に進んで、出現頻度が最大の音源を室内の音源と二次判定する。その後、ステップS70で二次判定を終了し、ステップS80で音源判定を終了する。   First, in step S57, in the secondary determination, a sound source having the highest appearance frequency is extracted from the result of the primary determination multiple times. Next, in step S60, it is determined whether there are a plurality of sound sources having the maximum appearance frequency. If there are not a plurality of sound sources with the maximum appearance frequency, the process proceeds to step S61, and the sound source with the maximum appearance frequency is secondarily determined to be an indoor sound source. Thereafter, the secondary determination is ended in step S70, and the sound source determination is ended in step S80.

出現頻度が最大の音源が複数ある場合は、ステップS62に進んで、予め定めてある音源選択の優先度に基づいて、出現頻度が最大の音源の中から最も優先度の高い音源を室内の音源と二次判定する。その後、ステップS70で二次判定を終了し、ステップS80で音源判定を終了する。この場合、音源選択の優先度は空気調和機自身,重家事用機器群,放送受信機器群,会話,軽家事用機器群の順に定める。このように優先度を定めることにより、発明者の検討結果から、音源群選択の精度が向上することがわかった。特に、放送受信機器群を会話より優先させることで、大半の音源選択が適正になされ音源群選択の精度がより向上することが明らかになった。   If there are a plurality of sound sources with the highest appearance frequency, the process proceeds to step S62, and the sound source with the highest priority is selected from among the sound sources with the highest appearance frequency based on the predetermined priority of sound source selection. And secondary determination. Thereafter, the secondary determination is ended in step S70, and the sound source determination is ended in step S80. In this case, the priority of sound source selection is determined in the order of the air conditioner itself, the heavy household equipment group, the broadcast receiving equipment group, the conversation, and the light household equipment group. It was found that the accuracy of sound source group selection is improved from the results of the inventor's examination by determining the priority in this way. In particular, it has been clarified that, by giving priority to the broadcast receiving device group over the conversation, most of the sound source selections are made appropriately and the accuracy of the sound source group selection is further improved.

なお、本実施例においては、一次判定の結果から出現頻度が最大の音源を室内音源として二次判定した。しかしながら、一次判定の結果に適切な重み付け(例えば、時系列的に近い順に重み付けする等)をして積算し、積算結果が最大となる音源群を室内音源として二次判定してもよい。   In the present embodiment, the sound source having the highest appearance frequency is determined as the indoor sound source from the result of the primary determination. However, the result of the primary determination may be integrated with appropriate weighting (for example, weighting in order of time series, etc.), and the sound source group that maximizes the integration result may be subjected to secondary determination as an indoor sound source.

サンプリング結果から音源を判定するための判定閾値について図14,図15を用いて説明する。図14は周囲音による補正説明図である。図15(A)は周囲音による補正説明図、図15(b)は判定閾値の補正例である。   A determination threshold for determining a sound source from the sampling result will be described with reference to FIGS. FIG. 14 is an explanatory diagram of correction by ambient sound. FIG. 15A is an explanatory diagram of correction by ambient sound, and FIG. 15B is an example of correction of a determination threshold value.

在室者が静かにしているときでも、室内には、時計,鑑賞魚水槽のポンプの音等様々な音が発生する。従って、音センサからの信号に基づいて空気調和機を制御する場合は、在室者が静かにしているとき音と空気調和機自身の音を合わせた音の影響を考慮する必要がある。このため、本実施例の空気調和機では、運転開始時に、在室者が静かにしているとき音を前述の方法で判定する。   Even when the occupants are quiet, various sounds are generated in the room, such as the clock and the sound of the appreciation fish tank pump. Therefore, when controlling the air conditioner based on the signal from the sound sensor, it is necessary to consider the influence of the sound that is the sum of the sound and the sound of the air conditioner itself when the occupant is quiet. For this reason, in the air conditioner of a present Example, a sound is determined by the above-mentioned method when the occupant is quiet at the time of an operation start.

サンプリング結果の平均を“初期値”とし、空気調和機自身に定めてある“基準値”(同様な環境で運転したときのサンプリング結果の平均値に略一致する)と比較する。「基準値<初期値」の場合で、音源の判定結果が空気調和機自身の場合は、室内を静かにしていても空気調和機自身の音以外の室内の環境音が判定結果に影響していると考え、各音源の判定閾値を補正する。音源の判定結果が空気調和機自身以外の音源群の場合は、空気調和機自身や環境音とはいえない有意な音が発生していると判断し、各音源の判定閾値は補正しない。初期値と基準値を比較した結果が「基準値≧初期値」の場合は、現在の判定閾値で各音源を識別して判定できるので、各音源の判定閾値は補正しない。   The average of the sampling results is set as an “initial value” and compared with a “reference value” (approximately equal to the average value of the sampling results when operated in a similar environment) set for the air conditioner itself. If the reference value is less than the initial value and the result of the sound source is the air conditioner itself, the environmental sound in the room other than the sound of the air conditioner itself affects the judgment result even if the room is quiet. The threshold value for each sound source is corrected. When the determination result of the sound source is a sound source group other than the air conditioner itself, it is determined that a significant sound that cannot be said to be the air conditioner itself or the environmental sound is generated, and the determination threshold value of each sound source is not corrected. When the result of comparing the initial value and the reference value is “reference value ≧ initial value”, each sound source can be identified and determined by the current determination threshold value, and therefore the determination threshold value of each sound source is not corrected.

次に、図14を用いて音源判定閾値の補正について説明する。ステップS100で空気調和機の運転を開始する。ステップS101で、空気調和機を据付けて最初の運転と判断した場合は、静粛な状態で運転又は停止して音センサで基準環境音を測定する基準環境音測定期間(実施例では静粛な状態で運転又は停止して1分間)に測定し、空気調和機の記憶装置に時間帯毎に記憶されている当初値を基準値に代入する。   Next, correction of the sound source determination threshold will be described with reference to FIG. In step S100, the operation of the air conditioner is started. In step S101, when it is determined that the air conditioner is installed and the first operation, the reference environmental sound measurement period in which the reference environmental sound is measured by the sound sensor after being operated or stopped in a quiet state (in a quiet state in the embodiment). 1 minute after operation or stop), and the initial value stored for each time zone in the storage device of the air conditioner is substituted for the reference value.

ステップS105で、音源判定閾値の補正を開始する。ステップS106で、基準環境音測定期間に音センサで基準環境音を測定して初期値とする。ステップS107で現在の時間帯の基準値を読み出し、ステップS108で基準値と初期値とを比較する。初期値が基準値以下の場合(基準値≧初期値)は、ステップS111で現時間帯の基準値に当初値を代入し、判定閾値を補正しないで、ステップS120で音源判定閾値補正を終了する。   In step S105, correction of the sound source determination threshold value is started. In step S106, the reference environmental sound is measured by the sound sensor during the reference environmental sound measurement period and set as an initial value. In step S107, the reference value of the current time zone is read, and in step S108, the reference value is compared with the initial value. If the initial value is less than or equal to the reference value (reference value ≧ initial value), the initial value is substituted into the reference value for the current time zone in step S111, and the sound source determination threshold value correction is terminated in step S120 without correcting the determination threshold value. .

ステップS108で初期値が基準値を超えた場合(基準値<初期値)は、ステップS115に進んで、基準環境音測定期間に音センサで測定して得たサンプリング結果から、音源の種類が空気調和機自身であるか判定する。音源の種類が空気調和機自身以外であると判定された場合は、図15(a)のように、判定閾値を補正しないで、ステップS120で音源判定閾値補正を終了する。ステップS115で音源の種類が空気調和機自身であると判定した場合は、ステップS116に進み、図15(a)のように、判定閾値を補正する。ステップS117に進んで、図15(b)のように、現時間帯の基準値に初期値を代入し、ステップS120で音源判定閾値補正を終了する。   If the initial value exceeds the reference value in step S108 (reference value <initial value), the process proceeds to step S115, and the type of the sound source is air based on the sampling result obtained by measuring with the sound sensor during the reference environmental sound measurement period. Judge whether it is the harmony machine itself. If it is determined that the type of the sound source is other than the air conditioner itself, the sound source determination threshold value correction is terminated in step S120 without correcting the determination threshold value as shown in FIG. If it is determined in step S115 that the type of sound source is the air conditioner itself, the process proceeds to step S116, and the determination threshold is corrected as shown in FIG. Proceeding to step S117, as shown in FIG. 15B, the initial value is substituted into the reference value for the current time zone, and the sound source determination threshold value correction is terminated at step S120.

次に、焦電型赤外線センサの働きについて、図16を用いて説明する。図16は反応検出区分判定説明図である。   Next, the operation of the pyroelectric infrared sensor will be described with reference to FIG. FIG. 16 is an explanatory diagram of reaction detection category determination.

焦電型赤外線センサはフレネルレンズとともに用いられ、室内からの赤外線量の変化を捕らえる。室内で活発な動きがあるときは焦電型赤外線センサの反応量は大きく、静かな動きのときには反応量は小さい。焦電型赤外線センサからの信号は、人の動きを抽出するバンドパスフィルターを通して増幅され、デジタル化されて制御部に内蔵されるマイコンに伝達される。   A pyroelectric infrared sensor is used together with a Fresnel lens to capture a change in the amount of infrared rays from the room. When there is an active movement in the room, the reaction amount of the pyroelectric infrared sensor is large, and when the movement is quiet, the reaction amount is small. The signal from the pyroelectric infrared sensor is amplified through a band-pass filter that extracts human movement, digitized, and transmitted to a microcomputer built in the control unit.

マイコンはこのデジタル信号を所定のサンプリング周期(実施例では10ms)でサンプリング区間(実施例では60秒間)の間、サンプリングする。サンプリングしたデータ中の反応検出データの割合を演算し、反応検出割合Pxを得る。この反応検出割合Pxが室内での動きの量が小さいかどうかを判別する静判定閾値Pb未満の場合は、反応の検出区分を反応小に区分する。反応検出割合Pxが室内の動きの量が大きいかどうかを判別する動判定閾値Pv以上の場合は、反応の検出区分を反応大に区分する。反応検出割合Pxが静判定閾値Pb以上で、動判定閾値Pv未満の場合は、反応の検出区分を反応中に区分する。   The microcomputer samples this digital signal at a predetermined sampling period (10 ms in the embodiment) for a sampling period (60 seconds in the embodiment). The ratio of the reaction detection data in the sampled data is calculated to obtain a reaction detection ratio Px. When the reaction detection ratio Px is less than the static determination threshold value Pb for determining whether or not the amount of motion in the room is small, the reaction detection section is divided into small reactions. When the reaction detection ratio Px is equal to or greater than the motion determination threshold value Pv for determining whether or not the amount of indoor motion is large, the reaction detection section is divided into reaction large. When the reaction detection ratio Px is equal to or greater than the static determination threshold value Pb and less than the motion determination threshold value Pv, the reaction detection category is classified as a reaction.

次に、焦電型赤外線センサと音センサとの組み合わせで、活動量を細分化して判定する方法について図17,図18を用いて説明する。図17は組み合わせ活動量判定図である。図18は活動量判定説明図である。   Next, a method for subdividing and determining the amount of activity using a combination of a pyroelectric infrared sensor and a sound sensor will be described with reference to FIGS. FIG. 17 is a combination activity amount determination diagram. FIG. 18 is an explanatory diagram of activity amount determination.

活動量判定部は、同じ時刻に得られた上述の反応の検出区分と音源判定の結果を組み合わせて、図17のように在室者の活動量を細分化する。このように、反応の検出区分が同じでも、音源が在室者の活動に伴う温感変動大音源集団の場合は、音源が在室者の活動に関係のない温感変動小音源集団の場合よりも活動量を大きく判定する。これにより、活動量の区分は従来の3段階から5〜6段階になるので、従来よりもきめ細かい制御とすることができる。   The activity amount determination unit subdivides the activity amount of the occupant as shown in FIG. 17 by combining the above-described reaction detection category and the sound source determination result obtained at the same time. Thus, even if the reaction detection category is the same, if the sound source is a large sound source group with warmth fluctuations accompanying the activities of the occupants, The amount of activity is judged larger than. As a result, the activity amount classification is changed from the conventional three steps to five to six steps, so that finer control than the conventional one can be achieved.

図17の例では、焦電型赤外線センサによる反応の検出区分が反応大で、音源の種類が重家事用機器群,会話及び軽家事用機器群からなる温感変動大音源集団の場合、活動量を最大とする。また、焦電型赤外線センサによる反応の検出区分が反応静で、音源が空気調和機自身及び放送受信機器群からなる温感変動小音源集団の場合、活動量を最小とする。マトリックスの他の部分は、マトリックス中の同じ反応検出区分での活動量の大小が「温感変動小音源集団≦温感変動大音源集団」であって、同じ音源集団での活動量の大小が「反応静<反応中<反応大」の関係となるように活動量を定める。このように、活動量を細分化して、在室者の活動量を推定し、きめ細かく、空気調和機を制御することで、快適性に配慮しながら、空気調和機を省エネ運転することができる。   In the example of FIG. 17, in the case where the detection classification of the reaction by the pyroelectric infrared sensor is large in response and the type of sound source is a group of sound sources with a large sense of warmth consisting of heavy household equipment, conversation and light household equipment, Maximize the amount. In addition, when the detection category of the reaction by the pyroelectric infrared sensor is static, and the sound source is a group of sound sources with small temperature fluctuations consisting of the air conditioner itself and the broadcast receiving device group, the amount of activity is minimized. In the other parts of the matrix, the amount of activity in the same reaction detection section in the matrix is “warmth variation small sound source group ≦ warmth variation large sound source group”, and the amount of activity in the same sound source group is The amount of activity is determined so that the relationship of “static response <under response <high response” is established. Thus, by subdividing the amount of activity, estimating the amount of activity of the occupants, and finely controlling the air conditioner, the air conditioner can be operated in an energy-saving manner while considering comfort.

このような活動量の判定を、図18に示すように、複数回繰り返す。この複数回の判定結果に対して、時系列的に近い回ほど大きく重み付けして積算する。積算結果に基づいて、最大となる活動量の区分を在室者の活動量と判定する。   Such determination of the amount of activity is repeated a plurality of times as shown in FIG. With respect to the determination results of a plurality of times, the times closer in time series are weighted and integrated. Based on the integration result, the maximum activity amount category is determined as the activity amount of the resident.

図17では、活動量の細分化を2段階にして、簡略に判定する方法を採用した。しかしながら、例えば、温感変動大音源集団中を更に細分化し、同じ反応検出区分での活動量の大小を「温感変動小音源集団≦会話≦軽家事用機器群≦重家事用機器群」と順序付け、より多くの活動量の区分に分けてもよい。各種センサから在室者の温熱感覚をどの程度正確に推定できるかによって、細分化の程度を決定する。   In FIG. 17, a method of simply determining the activity amount in two stages is adopted. However, for example, the temperature fluctuation large sound source group is further subdivided, and the amount of activity in the same reaction detection category is expressed as “warm fluctuation small sound source group ≦ conversation ≦ light household equipment group ≦ heavy household equipment group”. Ordering may be divided into more active mass categories. The degree of subdivision is determined by how accurately the thermal sensation of the occupant can be estimated from various sensors.

上述のように、細分化された活動量の情報に基づいて空気調和機を制御する。つまり、冷房時に在室者の活動量が小さい場合、在室者が静かにしていて、代謝が不活発な状態なので、体内発熱が少なくなり、在室者の温熱感覚も寒い側に変化する。この場合、室温を若干上げても、快適性は許容範囲内に留まるので、室温を若干上げた分、省エネ運転になる。一方、暖房時に在室者の活動量が大きい場合、在室者が活発に動いていて、代謝が活発な状態なので、体内発熱が多くなり、在室者の温熱感覚も暑い側に変化する。この場合、室温を若干下げても、快適性は許容範囲内に留まるので、室温を若干下げた分、省エネ運転になる。   As described above, the air conditioner is controlled based on the subdivided activity amount information. That is, if the occupant's activity amount is small during cooling, the occupant is quiet and the metabolism is inactive, so the fever in the body decreases, and the occupant's thermal sensation changes to the cold side. In this case, even if the room temperature is slightly increased, the comfort remains within the allowable range, so that the energy saving operation is performed by increasing the room temperature slightly. On the other hand, when the amount of activity of the occupant is large during heating, the occupant is actively moving and the metabolism is active, so the body fever increases, and the occupant's thermal sensation changes to the hot side. In this case, even if the room temperature is slightly lowered, the comfort remains within the allowable range, so that the energy saving operation is performed by the amount that the room temperature is slightly lowered.

次に、吸込空気温度の調整について図19を用いて説明する。図19は温度シフト値の例である。   Next, the adjustment of the intake air temperature will be described with reference to FIG. FIG. 19 shows an example of the temperature shift value.

空気調和機の使用者の周囲をスポット的に空調し省エネをはかるため、使用者の近くに置かれているリモコンの位置で温度を検知し、その周囲の使用者の居る空間を中心に空調することができる。このとき、空気調和機の吸込空気温度と設定温度に基づいて、空気調和機の暖房能力及び冷房能力が制御される。しかし、室内の高所に据付けられた空気調和機の吸込空気温度は、使用者が居る室内の床から顔の高さまでの居住空間の温度より高くなる。この温度差を補正するため、吸込空気温度が設定温度に所定の値(温度シフト値)を上乗せした上乗せ設定温度に近づくように空気調和機を制御する。所定の値としては空気調和機の構造や、暖房,冷房等の運転モードにより相違するが、−1〜5度程度である。   In order to save energy by spot air-conditioning around the user of the air conditioner, temperature is detected at the position of the remote control placed near the user, and air conditioning is performed mainly in the space where the surrounding user is located be able to. At this time, the heating capacity and the cooling capacity of the air conditioner are controlled based on the intake air temperature and the set temperature of the air conditioner. However, the intake air temperature of the air conditioner installed at a high place in the room is higher than the temperature of the living space from the floor in the room where the user is located to the height of the face. In order to correct this temperature difference, the air conditioner is controlled so that the intake air temperature approaches the set temperature obtained by adding a predetermined value (temperature shift value) to the set temperature. The predetermined value is about −1 to 5 degrees, although it varies depending on the structure of the air conditioner and the operation mode such as heating and cooling.

しかしながら、一般的に、居住空間であっても、部屋の中央と窓際では温度が異なる。従って、上述のように、上乗せ設定温度に吸込空気温度を近づけるように空気調和機を制御しても、使用者の周囲が快適にならない場合がある。このような場合は、使用者がリモコンを用いて設定温度を上下させることにより、快適な状態(温度)を模索し、選定する必要がある。   However, in general, even in a living space, the temperature differs between the center of the room and the window. Therefore, as described above, even if the air conditioner is controlled so that the intake air temperature approaches the additional set temperature, the user's surroundings may not be comfortable. In such a case, it is necessary for the user to search and select a comfortable state (temperature) by raising and lowering the set temperature using the remote controller.

室内が快適な状態から不快な状態に変化すると、使用者は、許容できる快適の範囲を外れたと認識し、空気調和機の設定を設定しなおす。しかし、その都度、空気調和機の設定を変えなければならず、煩雑である。また、その際、空気調和機の設定を必要以上に変更する(冷房時の設定温度を低くしすぎる/暖房時の設定温度を高くしすぎる)と、消費電力が増加し、省エネ運転にならない。他方、不快な状態から快適な状態に変化しても、快適な範囲に入った時点で、快適な範囲であると認識することは困難であり、結局、室内が快適な状態から不快な状態に変化してしまう場合がある。   When the room changes from a comfortable state to an unpleasant state, the user recognizes that the acceptable comfort range has been exceeded, and resets the settings of the air conditioner. However, the setting of the air conditioner must be changed each time, which is complicated. At that time, if the setting of the air conditioner is changed more than necessary (the setting temperature at the time of cooling is too low / the setting temperature at the time of heating is too high), the power consumption increases and the energy saving operation does not occur. On the other hand, even if it changes from an uncomfortable state to a comfortable state, it is difficult to recognize that it is within the comfortable range when it enters the comfortable range. It may change.

本発明では、焦電型赤外線センサと音センサの検出結果から在室者の活動量を従来以上に細分化し、細分化した活動量に応じて、在室者の快適性に配慮しながら、上記の温度シフト値をきめ細かに修正する。これにより、在室者がその都度設定を変える手間も省いて、さらに、空気調和機の省エネ運転を可能にする。   In the present invention, the activity amount of the occupant is subdivided more than conventional from the detection results of the pyroelectric infrared sensor and the sound sensor, and according to the subdivided activity amount, while considering the comfort of the occupant, Correct the temperature shift value of. Thereby, the occupant can save time and labor for changing the setting each time, and further enables energy-saving operation of the air conditioner.

次に、輻射センサの働きについて図20を用いて説明する。図20(a)は輻射量判定説明図、図20(b)は輻射量判定ブロック図である。輻射センサとしてサーモパイルを使用し、室内の床,壁等からの赤外線量を計測し、輻射温度を得る。室内の壁,床等が日光で暖められたり、他の暖冷房機等により温度が室温と乖離すると、在室者の温熱感覚が変わるので、室温を変化させて、省エネ運転を行う。   Next, the function of the radiation sensor will be described with reference to FIG. FIG. 20A is a radiation amount determination explanatory diagram, and FIG. 20B is a radiation amount determination block diagram. A thermopile is used as a radiation sensor, and the amount of infrared rays from the floor, wall, etc. is measured to obtain the radiation temperature. When the indoor walls and floors are warmed by sunlight, or when the temperature deviates from the room temperature due to other air conditioners or the like, the thermal sensation of the occupants changes, so the room temperature is changed and energy saving operation is performed.

輻射センサからの信号を適宜に増幅、バンドパスフィルターを通し、デジタル化してマイコンに伝達する。マイコンはこのデジタル信号を所定のサンプリング周期でサンプリング区間の間、サンプリングし、室温センサからの信号と組み合わせて、輻射温度と室温との温度差を演算する。このサンプリング及び演算を複数回行い、複数回の平均値を演算して輻射温度差とする。   The signal from the radiation sensor is appropriately amplified, passed through a band pass filter, digitized, and transmitted to the microcomputer. The microcomputer samples this digital signal at a predetermined sampling period during a sampling interval, and calculates the temperature difference between the radiation temperature and the room temperature in combination with the signal from the room temperature sensor. This sampling and calculation are performed a plurality of times, and the average value of the plurality of times is calculated to obtain a radiation temperature difference.

冷房時に、輻射温度差が負となった場合は、壁や床の温度が室温より低く、在室者の温熱感覚が寒い側に変わる。従って、その分、室温を若干上げても快適性を維持でき、また、室温を若干上げた分、省エネ運転になる。暖房時に、輻射温度差が正となった場合は、壁や床の温度が室温より高く、在室者の温熱感覚が暑い側に変わる。従って、その分、室温を若干下げても快適性を維持でき、室温を若干下げた分、省エネ運転になる。   When the radiation temperature difference becomes negative during cooling, the temperature of the wall or floor is lower than room temperature, and the thermal sensation of the occupants changes to the cold side. Therefore, the comfort can be maintained even if the room temperature is slightly increased, and the energy saving operation is performed by increasing the room temperature slightly. When the radiation temperature difference becomes positive during heating, the temperature of the wall or floor is higher than the room temperature, and the thermal sensation of the occupants changes to the hot side. Therefore, the comfort can be maintained even if the room temperature is slightly lowered, and the energy saving operation is performed by reducing the room temperature slightly.

一方、人の温熱感覚には、気流も大きな影響を及ぼす。同じ温度でも、気流が強い場合は弱い場合よりも温熱感覚が増大され、気流を涼しく感じるときはより涼しく感じ、気流を暖かく感じるときにはより暖かく感じる。   On the other hand, airflow has a great influence on human thermal sensation. Even at the same temperature, when the airflow is strong, the thermal sensation is increased than when it is weak, and when the airflow is felt cool, it feels cooler, and when it feels warmer, it feels warmer.

本実施例の空気調和機は、リモコンの位置を検出する機能を備え、空気調和機とリモコンとの距離を認識することができる。この機能を利用して、使用者の居るリモコン近くの気流の状態を推定する。リモコンの位置が空気調和機から遠い場合は、空気調和機からの気流は弱く、リモコンの近くに居る使用者も空気調和機からは弱い気流を感じる。反対に、リモコンの位置が空気調和機から近い場合は、空気調和機からの気流は強く、リモコンの近くに居る使用者も空気調和機からは強い気流を感じ、空気調和機からの冷温風を強く感じる。つまり、冷房の場合は室温を若干上げても快適性は許容範囲内に留まり、また、暖房の場合は室温を若干下げても快適性の許容範囲内に留まるので、冷房,暖房ともに、空気調和機は省エネ運転になる。   The air conditioner of the present embodiment has a function of detecting the position of the remote controller, and can recognize the distance between the air conditioner and the remote controller. Using this function, the state of airflow near the remote control where the user is located is estimated. When the position of the remote control is far from the air conditioner, the airflow from the air conditioner is weak, and a user near the remote control feels a weak airflow from the air conditioner. On the other hand, when the remote control is close to the air conditioner, the airflow from the air conditioner is strong, and the user near the remote control feels a strong airflow from the air conditioner. I feel strongly. In other words, in the case of cooling, comfort remains within the allowable range even if the room temperature is slightly increased, and in the case of heating, comfort remains within the allowable range of comfort even if the room temperature is slightly decreased. The machine will be energy saving.

本実施例の空気調和機のリモコン位置の検出機能を活用して、リモコンが位置する方向に向けて空調された空気を送る機能と、リモコンが位置する方向以外の方向に風を向ける機能を更に備える。これにより、外の非空調空間から部屋に入室した当初、集中的に冷風・温風にあたりたいというニーズに応えることができる。また、直接風に当たるのは回避したいが、リモコンが位置する領域の周囲の緩やかな風で、穏やかな空調を望む人々のニーズにも応えることができる。   Utilizing the remote controller position detection function of the air conditioner of this embodiment, the function of sending air conditioned toward the direction in which the remote controller is located and the function of directing the wind in directions other than the direction in which the remote controller is located Prepare. As a result, it is possible to meet the needs of concentrating on cold and hot air when entering the room from outside non-air-conditioned space. In addition, it is possible to avoid the direct wind, but the gentle wind around the area where the remote control is located can meet the needs of people who want a gentle air conditioning.

また、本実施例の空気調和機は、リモコンに温度センサを設け、リモコン周囲の温度を検出し、リモコン周囲温度が設定温度になるように制御される。この場合、冷暖房負荷が小さい条件で運転したときには、リモコン周囲温度が設定温度を通り過ぎて冷え過ぎ、又は暖め過ぎの状態になる場合がある。これは、空気調和機の据付け位置や家具等の配置,風向の設定、あるいは、局部的な冷たい又は暖かい隙間風や熱負荷等で、空気調和がバランスよく行われなくなったときに生じる。このようなときにも、冷房時に、リモコン周囲温度が設定温度より低すぎるときには、室温を若干上げても快適性は許容範囲に留まるので、室温を若干上げて空気調和機を省エネ運転にする。また、暖房時に、リモコン周囲温度が設定温度より高すぎる時には、室温を若干下げても快適性は許容範囲に留まるので、室温を若干下げて空気調和機を省エネ運転にする。   Further, the air conditioner of the present embodiment is provided with a temperature sensor in the remote controller, detects the temperature around the remote controller, and is controlled so that the remote controller ambient temperature becomes the set temperature. In this case, when the vehicle is operated under a condition where the heating / cooling load is small, the ambient temperature of the remote controller may pass through the set temperature and become too cold or too warm. This occurs when air conditioning is not performed in a well-balanced manner due to the installation position of the air conditioner, the arrangement of furniture, etc., the setting of the wind direction, or a local cold or warm air gap or heat load. Even in such a case, if the ambient temperature of the remote controller is too lower than the set temperature during cooling, the comfort remains within the allowable range even if the room temperature is slightly increased. In addition, when the ambient temperature of the remote control is too higher than the set temperature during heating, the comfort remains within the allowable range even if the room temperature is slightly lowered, so the air conditioner is put into energy saving operation by slightly lowering the room temperature.

なお、在室者の活動量が大きい場合は、在室者が室内を動き回っていて、リモコンの近くに居ない可能性が高い。一般に、活動量は体内発熱に直接関係するので、温熱感覚への影響が大きい。しかし、気流は、体内で発熱した熱量の発散に影響するだけであり、空気調和のような1m/s程度の風速では、温熱感覚への影響は、活動量の影響に比べて小さい。また、室温も体内で発熱した熱量の発散に影響するだけであり、空気調和のように数度以内の室温の変化では、温熱感覚への影響は、活動量の影響に比べて小さい。このため、活動量が所定の区分以上(実施例では、活動量「大」以上)である場合は、リモコン位置やリモコン周囲温度と設定温度との温度差に応じて、目標室温を変えるように制御することはあまり意味がない。   When the occupant has a large amount of activity, the occupant is moving around the room and is not likely to be near the remote control. In general, the amount of activity is directly related to fever in the body, so it has a great influence on the thermal sensation. However, the airflow only affects the divergence of the amount of heat generated in the body. At a wind speed of about 1 m / s such as air conditioning, the influence on the thermal sensation is smaller than the influence of the activity amount. In addition, room temperature only affects the divergence of the amount of heat generated in the body, and when the room temperature changes within a few degrees like air conditioning, the effect on the thermal sensation is smaller than the effect of the amount of activity. For this reason, when the activity amount is equal to or more than a predetermined category (in the embodiment, the activity amount is “large” or more), the target room temperature is changed according to the temperature difference between the remote control position or the remote control ambient temperature and the set temperature. It doesn't make much sense to control.

本実施例の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部とを備え、赤外線センサの検出結果及び音センサの検出結果に応じて、在室者の活動量を判定する活動量判定部を有し、活動量判定部で判定された在室者の活動判定量を基に、設定温度に基づいて定められた目標値を変更する。これにより、音センサの検出結果を基に音源の種類を判定し、判定した音源の種類と在室者の動きの量を組み合わせて在室者の活動量を判定することで、在室者の活動量を精度よく判定できる。従って、在室者の活動量に応じてより適正に空気調和機を制御できるので、在室者の快適性を考慮しつつ、空気調和機をより省エネ運転することができる。   The air conditioner of the present embodiment includes an infrared sensor that detects the amount of movement of the occupants, a sound sensor that detects indoor sounds, a setting unit that sets indoor temperature settings, and a control unit that controls operation. An activity amount determination unit that determines the amount of activity of the occupant according to the detection result of the infrared sensor and the detection result of the sound sensor, and the activity determination amount of the occupant determined by the activity amount determination unit Based on the above, the target value determined based on the set temperature is changed. Thus, the type of the sound source is determined based on the detection result of the sound sensor, and the amount of activity of the occupant is determined by combining the determined type of the sound source and the amount of movement of the occupant. The amount of activity can be determined accurately. Therefore, since the air conditioner can be controlled more appropriately according to the amount of activity of the occupants, the air conditioner can be operated more energy-saving while considering the comfort of the occupants.

また、本実施例の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部とを備え、赤外線センサの検出結果、及び音センサの検出結果に基づいて判定された音源の種類に応じて、在室者の活動量を判定する活動量判定部を有し、活動量判定部で判定された在室者の活動判定量を基に、設定温度に基づいて定められた目標値を変更する。これにより、音源の種類を温感変動大音源か温感変動小音源かに判定することができ、判定された音源の種類と在室者の動きの大小に応じて、在室者の活動量を精度よく判定できる。従って、在室者の活動量に応じてより適正に空気調和機を制御できるので、在室者の快適性を考慮しつつ、空気調和機をより省エネ運転することができる。   In addition, the air conditioner of the present embodiment includes an infrared sensor that detects the amount of movement of the occupant, a sound sensor that detects the sound in the room, a setting unit that sets the indoor set temperature, and a control that controls the operation. An activity amount determination unit that determines the amount of activity of the resident in accordance with the detection result of the infrared sensor and the type of the sound source determined based on the detection result of the sound sensor. The target value determined based on the set temperature is changed based on the activity determination amount of the occupant determined in the section. As a result, it is possible to determine whether the type of the sound source is a large source of warmth variation or a small source of temperature variation, and the amount of activity of the resident according to the type of the determined sound source and the size of the occupant's movement. Can be accurately determined. Therefore, since the air conditioner can be controlled more appropriately according to the amount of activity of the occupants, the air conditioner can be operated more energy-saving while considering the comfort of the occupants.

また、本実施例の空気調和機は、圧縮機と室内送風機と空気調和機の吸込空気温度を検出する吸込温度検出部とを有し、暖房時、活動判定量が大きいほど目標温度をより低い温度に変更し、冷房時、活動判定量が小さいほど、目標温度をより高い温度に変更し、吸込空気温度が目標温度となるように、少なくとも圧縮機の回転数又は送風機の回転数を制御する。音センサの検出結果と赤外線センサの検出結果を基に、活動量を多段階に判別し、在室者の活動量が大きい場合は活動シフト値を小さくし、在室者の活動量が小さい場合は活動シフト値を大きくする。これを温度シフト値として設定温度に上乗せし、吸込空気温度が上乗せ設定温度である目標温度になるように、圧縮機回転数,送風機回転数を変化させ、圧縮機能力,吹出温度,吹出風量等を調整する。これにより、暖房時は活動量が大きいほど吸込空気温度が設定温度より低めに調整され、冷房時は活動量が小さいほど吸込空気温度が設定温度より高めに調整される。従って、在室者の活動量に応じてより適正に空気調和機を制御できるので、在室者の快適性を考慮しつつ、空気調和機をより省エネ運転することができる。   Moreover, the air conditioner of a present Example has a suction temperature detection part which detects the suction air temperature of a compressor, an indoor air blower, and an air conditioner, and a target temperature is lower, so that an activity determination amount is large at the time of heating Change to temperature, during cooling, change the target temperature to a higher temperature as the activity determination amount is smaller, and control at least the compressor speed or the fan speed so that the intake air temperature becomes the target temperature . Based on the detection result of the sound sensor and the detection result of the infrared sensor, the amount of activity is determined in multiple stages, the activity shift value is decreased when the activity amount of the resident is large, and the activity amount of the occupant is small Increases the activity shift value. This is added to the set temperature as a temperature shift value, and the compressor rotational speed and blower rotational speed are changed so that the intake air temperature reaches the target temperature that is the additional set temperature. Adjust. As a result, the suction air temperature is adjusted to be lower than the set temperature as the amount of activity increases during heating, and the suction air temperature is adjusted to be higher than the set temperature as the amount of activity decreases during cooling. Therefore, since the air conditioner can be controlled more appropriately according to the amount of activity of the occupants, the air conditioner can be operated more energy-saving while considering the comfort of the occupants.

また、本実施例の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部とを備え、赤外線センサの検出結果に基づいて区分された赤外線センサの反応区分、及び音センサの検出結果に基づいて判定された音源の種類に応じて、在室者の活動量を判定する活動量判定部を有し、活動量判定部で判定された在室者の活動判定量を基に、設定温度に基づいて定められた目標値を変更する。室内から焦電型赤外線センサに到達する赤外線を、所定のサンプリング周期で所定時間サンプリングし、赤外線の検出回数の割合(Px)を算出し、サンプリング結果とする。このサンプリング結果が静判定閾値未満の場合、反応の検出量の区分(反応の検出区分)を「反応静」と区分する。サンプリング結果が静判定閾値以上の場合は、サンプリング結果を強判定閾値と比較する。サンプリング結果が強判定閾値以上の場合は、反応の検出区分を「反応強」と区分する。サンプリング結果が強判定閾値未満の場合は、反応の検出区分を「反応中」と区分する。更に、音源の種類を温感変動大音源か温感変動小音源かに判定する。判定した音源の種類と在室者の反応検出区分を組み合わせて在室者の活動量を他段階に判別する。これにより、在室者の活動量に応じてより適正に空気調和機を制御できるので、在室者の快適性を考慮しつつ、空気調和機をより省エネ運転することができる。   In addition, the air conditioner of the present embodiment includes an infrared sensor that detects the amount of movement of the occupant, a sound sensor that detects the sound in the room, a setting unit that sets the indoor set temperature, and a control that controls the operation. The activity amount of the occupant is determined according to the reaction classification of the infrared sensor that is classified based on the detection result of the infrared sensor and the type of the sound source that is determined based on the detection result of the sound sensor. An activity amount determination unit is included, and the target value determined based on the set temperature is changed based on the activity determination amount of the occupant determined by the activity amount determination unit. Infrared rays that reach the pyroelectric infrared sensor from the room are sampled at a predetermined sampling period for a predetermined time, and the ratio (Px) of the number of detection times of infrared rays is calculated as a sampling result. When the sampling result is less than the static determination threshold, the reaction detection amount classification (reaction detection classification) is classified as “reaction static”. If the sampling result is equal to or greater than the static determination threshold, the sampling result is compared with the strong determination threshold. When the sampling result is equal to or higher than the strong determination threshold, the reaction detection classification is classified as “reaction strong”. When the sampling result is less than the strong determination threshold, the reaction detection category is classified as “in response”. Furthermore, the type of the sound source is determined to be a warm sound fluctuation large sound source or a warm feeling fluctuation small sound source. The amount of activity of the room occupant is determined in another stage by combining the determined type of sound source and the reaction detection category of the room occupant. Thereby, since an air conditioner can be controlled more appropriately according to the amount of activity of the occupants, the air conditioner can be operated more energy-saving while considering the comfort of the occupants.

また、本実施例の空気調和機は、圧縮機と、室内送風機と、空気調和機本体と双方向に通信可能なリモコンと、を有し、圧縮機を運転することなしに、リモコンの位置が空気調和機から近いほど、且つ、在室者の活動判定量が小さいほど、室内送風機の回転数を小さくして、このリモコンに向けて送風運転する。冷房するほどではないが、少し風にあたりたいときなどに、例えば、リモコンの特定ボタンを押すだけで、空気調和機がリモコン位置を検知し、リモコン位置に向けて、空気調和機から遠いほど強い風を送り、且つ、使用者の活動量が大きいほど強い風を送る。このように制御することで、送風だけの省エネ運転で、使用者の活動に応じた適度の涼感を提供することができる。   In addition, the air conditioner of the present embodiment has a compressor, an indoor fan, and a remote controller capable of bidirectional communication with the air conditioner body, and the position of the remote controller can be adjusted without operating the compressor. The closer to the air conditioner and the smaller the activity determination amount of the occupant is, the smaller the number of revolutions of the indoor blower is, and the air blowing operation is performed toward the remote controller. For example, when the air conditioner detects the remote control position only by pressing a specific button on the remote control, and the remote control position is farther away from the air conditioner, the wind is stronger when you want to hit the wind a little. And the stronger the user's activity, the stronger the wind. By controlling in this way, the moderate cool feeling according to a user's activity can be provided by the energy-saving operation only of ventilation.

また、本実施例の空気調和機は、活動量判定部における在室者の活動量の判定を複数回繰り返し、各回で判定した在室者の活動量に対して時系列的に近い回ほど大きく重み付けし、重み付けされた各回の判定結果を積算した積算値に基づいて、在室者の活動量を二次判定する。これにより、活動量判定部における在室者の活動量の判定を複数回繰り返すので、室内の長期的な変化を反映でき、短期的な変化に基づく誤動作を回避できる。また、一次判定区間毎に一次判定して室内の状況を把握するので、室内の情報を平準化して、情報の偏りがなく正確に捉えることができる。また、一次判定区間内でのデータは一次判定にしか使われず、一次判定では唯一の結果を選択する。従って、一次判定区間内で複数の一次判定候補のデータが拮抗していて、一次判定の結果が変わる場合にも、複数の一次判定の結果を基にした二次判定は、優勢な一次判定候補に安定して維持される。このように、判定の精度を向上させつつ、且つ、判定期間をより長くするので(短時間で繰り返し判定結果が変更されることがないので)、室内の快適性が損なわれることがない。また、現在から一番近い一次判定結果が最も重視されるので、一時的に新しい活動をしたが、直ぐに別の活動をした場合は、重み付けされた現在の活動での一次判定結果が積算されて二次判定となる。このように、活動量変化の傾向を確実に捉え、適切に在室者の活動量を把握し、きめ細かな制御で快適性に配慮しながら省エネ運転をすることができる。   In addition, the air conditioner of the present embodiment repeats the determination of the amount of activity of the occupants in the activity amount determination unit a plurality of times, and the larger the number of times closer to the occupant's activity amount determined in each time in time series. The activity amount of the occupant is secondarily determined based on an integrated value obtained by weighting and integrating each weighted determination result. Thereby, since the determination of the activity amount of the occupant in the activity amount determination unit is repeated a plurality of times, a long-term change in the room can be reflected, and a malfunction based on a short-term change can be avoided. Moreover, since the primary determination is performed for each primary determination section and the indoor situation is grasped, the indoor information can be leveled so that the information can be accurately grasped without any bias. The data in the primary determination section is used only for the primary determination, and the primary determination selects only one result. Therefore, even when the data of a plurality of primary determination candidates antagonize within the primary determination section and the result of the primary determination changes, the secondary determination based on the results of the plurality of primary determinations is the dominant primary determination candidate. Stably maintained. As described above, the determination accuracy is improved and the determination period is made longer (since the determination result is not repeatedly changed in a short time), the comfort in the room is not impaired. In addition, since the primary judgment result closest to the present is the most important, a new activity was temporarily performed, but if another activity was performed immediately, the primary judgment result of the weighted current activity is accumulated. Secondary determination. In this way, it is possible to reliably grasp the trend of activity amount change, properly grasp the activity amount of the occupants, and perform energy-saving operation while taking comfort into consideration with fine control.

また、本実施例の空気調和機は、活動量判定部は音源の種類を温感変動大音源の集団と温感変動小音源の集団に分け、音源の種類が温感変動大音源の集団に属する場合の活動判定量を、赤外線センサの反応区分が同一の区分であって音源の種類が温感変動小音源の集団に属する場合の活動判定量以上とする。在室者の活動が活発になると活動に伴う音が増加することを考慮し、赤外線センサの検出結果に基づいて区分された在室者の動き量が同一の区分であっても、温感変動大音源の場合は、在室者の活動が活発になって温熱感覚が暑い方に移るので、活動判定量を大きめにして、空調温度をより低めにする。これにより、快適性に配慮しつつ、きめ細かな運転で省エネすることができる。   In addition, in the air conditioner of the present embodiment, the activity amount determination unit divides the types of sound sources into a group of sound sources with large thermal sensation variation and a group of sound sources with small thermal sensation variation, and the type of sound source becomes a group of sound sources with large thermal sensation variation. The activity determination amount in the case of belonging is set to be equal to or more than the activity determination amount in the case where the response classification of the infrared sensor is the same category and the type of the sound source belongs to the group of small sound sources with a sense of warmth. Considering that the sound accompanying the activity increases when the activity of the occupant becomes active, even if the movement amount of the occupant categorized based on the detection result of the infrared sensor is the same category, temperature fluctuation In the case of a large sound source, the occupant's activities become active and the thermal sensation shifts to the hotter side, so the activity determination amount is increased and the air conditioning temperature is lowered. Thereby, it is possible to save energy by careful operation while considering comfort.

また、本実施例の空気調和機は、温感変動小音源の集団に空気調和機自身及び放送受信機器群を含み、温感変動大音源の集団に重家事用機器群及び会話を含む。つまり、在室者の活動を伴わない空気調和機自身及び放送受信機器群の場合は、音源の種類を温感変動小音源に区分する。在室者の大きな活動を伴う掃除機,健康促進機器等の重家事用機器群、在室者の大きな活動は伴わないジューサー,ミキサーなどの調理器具、ドライヤー,シェーバー等の理容機器などの軽家事用機器群や在室者同士の会話の場合は、音源の種類を温感変動大音源に区分する。このように区分することで、在室者の活動量を適切に判定して、きめ細かな制御で快適性に配慮しながら、省エネ運転することができる。   In addition, the air conditioner of the present embodiment includes the air conditioner itself and the broadcast receiving device group in the group of small temperature sensation fluctuation sound sources, and the group of heavy housework and conversation in the group of large sound sensation fluctuation sound sources. That is, in the case of the air conditioner itself and the broadcast receiving device group not accompanied by the activities of the occupants, the type of the sound source is classified into a sound source with a small temperature fluctuation. Light household affairs such as vacuum cleaners with large activities of occupants, equipment for heavy housekeeping such as health promotion equipment, cooking equipment such as juicers and mixers without occupant's large activities, barber equipment such as dryers, shavers, etc. In the case of a conversation between a group of equipment and people in the room, the type of sound source is divided into a sound source with a large temperature fluctuation. By classifying in this way, it is possible to appropriately determine the amount of activity of the occupants and to perform energy-saving operation while taking comfort into consideration with fine control.

また、本実施例の空気調和機は、放送受信機器群にテレビジョン,ラジオを含み、重家事用機器群に電気掃除機を含む。   Moreover, the air conditioner of a present Example contains a television and radio in a broadcast receiving apparatus group, and contains a vacuum cleaner in a heavy household equipment group.

在室者が静かにテレビジョンやラジオを聴いているときは、室内の音は在室者の活動を伴わない。従って、テレビジョンやラジオの音に応じて空気調和機を制御する必要はない。このため、テレビジョンやラジオの音は温感変動小音源集団の放送受信機器群に区分する。また、在室者が掃除機を使用しているときは、在室者は大きな活動をしているので、空気調和機を適切に制御する必要がある。このため、掃除機を温感変動大音源集団の重家事用機器群に区分する。このように区分することで、在室者の活動量を適切に判定して、きめ細かな制御で快適性に配慮しながら、省エネ運転することができる。   When the resident is quietly listening to television or radio, the sound in the room is not accompanied by the activity of the occupant. Therefore, it is not necessary to control the air conditioner according to the sound of the television or radio. For this reason, the sound of television and radio is classified into the broadcast receiving device group of the small group of thermal fluctuation small sound sources. In addition, when the occupant is using the vacuum cleaner, the occupant is performing a large activity, and thus it is necessary to appropriately control the air conditioner. For this reason, the vacuum cleaner is divided into a heavy household equipment group of a warm sound fluctuation large sound source group. By classifying in this way, it is possible to appropriately determine the amount of activity of the occupants and to perform energy-saving operation while taking comfort into consideration with fine control.

また、実施例の空気調和機は、活動量判定部は、音センサの検出結果を複数の周波数帯に分離し、周波数帯毎の検出回数及び周波数帯の組み合わせに基づいて、音源を判定する。これにより、音源の種類を確実に判定でき、在室者の動き量を検出する赤外線センサの検出結果と組み合わせて、在室者の活動量の判定精度をさらに向上させることができる。従って、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御することができる。   In the air conditioner of the embodiment, the activity amount determination unit separates the detection result of the sound sensor into a plurality of frequency bands, and determines the sound source based on the number of detections for each frequency band and the combination of the frequency bands. Thereby, the kind of sound source can be determined with certainty, and in combination with the detection result of the infrared sensor that detects the amount of movement of the occupant, the determination accuracy of the amount of activity of the occupant can be further improved. Therefore, the air conditioner can be controlled more finely according to the amount of activity of the occupants.

また、本実施例の空気調和機は、複数の周波数帯として1〜4kHzの周波数帯及び5〜12kHzの周波数帯を含む。低い周波数(1〜4kHz)の音が多く含まれる人の声と、高い周波数(5〜12kHz)の音が多く含まれる掃除機等の機械音とを区別することができ、音源の種類を確実に判定することが可能となる。これにより、音源の種類を確実に判定でき、在室者の動き量を検出する赤外線センサの検出結果と組み合わせて、在室者の活動量の判定精度をさらに向上させることができる。従って、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御することができる。   The air conditioner of the present embodiment includes a frequency band of 1 to 4 kHz and a frequency band of 5 to 12 kHz as a plurality of frequency bands. It is possible to distinguish between human voices that contain a lot of low-frequency (1 to 4 kHz) sounds and machine sounds such as vacuum cleaners that contain a lot of high-frequency (5 to 12 kHz) sounds. Can be determined. Thereby, the kind of sound source can be determined with certainty, and in combination with the detection result of the infrared sensor that detects the amount of movement of the occupant, the determination accuracy of the amount of activity of the occupant can be further improved. Therefore, the air conditioner can be controlled more finely according to the amount of activity of the occupants.

また、本実施例の空気調和機は、活動量判定部は、音センサの検出結果を複数の周波数帯に分離し、所定のサンプリング周期で所定時間サンプリングし、サンプリング結果として音の検出回数の割合を周波数帯毎に求めることを複数回行い、これらの複数回のサンプリング結果に基づいて音源の種類を判定する。これにより、低い周波数の音が多く含まれる人の声と、高い周波数の音が多く含まれる掃除機等の機械音とを区別することができ、音源の種類を確実に判定することが可能となる。また、サンプリングを複数回実施するので、室内の音源の種類の長期的な変化を反映でき、短期的な変化に基づく誤動作が減少する。また、判定までの時間を複数のサンプリング区間に分け、サンプリング区間毎にサンプリング結果を得て室内の状況を把握するので、室内の情報を平準化して把握できるので、情報の偏りをなくして、情報を正確に把握することができる。また、サンプリング区間内でのデータはその区間のサンプリング結果にしか使われず、1つのサンプリング区間では唯一のサンプリング結果を算出するので、判定までの複数のサンプリング結果の大きさ,バラツキや集中の度合いが音源の種類の特徴を表すようになり、音源の種類の判定に有益な情報を提供する。このように、音源の種類の変化の傾向を確実に把握して、在室者の動き量を検出する赤外線センサの検出結果と組み合わせて、在室者の活動量を適切に判定し、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御し、快適性に配慮しながら、省エネ運転することができる。   Further, in the air conditioner of the present embodiment, the activity amount determination unit separates the detection result of the sound sensor into a plurality of frequency bands, samples for a predetermined time at a predetermined sampling period, and the ratio of the number of times of sound detection as the sampling result For each frequency band is determined a plurality of times, and the type of the sound source is determined based on the sampling results of the plurality of times. As a result, it is possible to distinguish between a human voice that contains a lot of low-frequency sounds and a machine sound such as a vacuum cleaner that contains a lot of high-frequency sounds, and it is possible to reliably determine the type of sound source. Become. In addition, since sampling is performed a plurality of times, long-term changes in the type of sound source in the room can be reflected, and malfunctions based on short-term changes are reduced. In addition, the time to judgment is divided into a plurality of sampling sections, and the sampling results are obtained for each sampling section to grasp the indoor situation, so the information in the room can be leveled and grasped. Can be grasped accurately. In addition, the data within the sampling interval is used only for the sampling result of that interval, and since only one sampling result is calculated in one sampling interval, the size, variation, and degree of concentration of multiple sampling results up to the determination It represents the characteristics of the sound source type and provides information useful for determining the sound source type. In this way, the tendency of changes in the type of sound source is reliably grasped and combined with the detection result of the infrared sensor that detects the amount of movement of the occupant, the amount of activity of the occupant is appropriately determined, The air conditioner can be controlled more finely according to the amount of activity of the person, and energy-saving operation can be performed while considering comfort.

また、本実施例の空気調和機は、全ての周波数帯で、全てのサンプリング結果が周波数帯毎に定めた空気調和機判定閾値未満の場合は、音源の種類を空気調和機自身と判定する。これにより、予め、空気調和機自身だけを運転した時のサンプリング結果より、少し大きい値を空気調和機判定閾値として用いることで、室内で発生している音が、空気調和機自身が発生している音以外に、少しばかりの環境音(時計や鑑賞魚水槽のポンプの音等)であることがわかり、音源を空気調和機自身と判定することができる。これにより、音源を正確に把握して、赤外線センサの検出結果と組み合わせて、在室者の活動量を適切に判定できる。従って、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御し、快適性に配慮しながら、省エネ運転することができる。   Moreover, the air conditioner of a present Example determines the kind of sound source as the air conditioner itself in all the frequency bands, when all the sampling results are less than the air conditioner determination threshold defined for every frequency band. Thus, by using a slightly larger value as the air conditioner determination threshold value in advance than the sampling result when only the air conditioner itself is operated, the sound generated in the room is generated by the air conditioner itself. It can be seen that there are a few environmental sounds (such as clocks and appreciation fish tank pump sounds) in addition to the sound that is present, and the sound source can be determined as the air conditioner itself. Thereby, a sound source can be grasped | ascertained correctly and it can combine with the detection result of an infrared sensor, and can determine the amount of activity of an in-room person appropriately. Therefore, the air conditioner can be controlled more finely according to the amount of activity of the occupants and energy-saving operation can be performed while considering comfort.

また、本実施例の空気調和機は、周波数帯毎に、全てのサンプリング結果が重家事用機器判定閾値以上で、サンプリング結果の平均値と各サンプリング結果との差が重家事用機器判定幅以内の場合は、音源の種類を重家事用機器群と判定する。これにより、使用者の力や速さを支援するため、運転音が比較的大きく、また、一定の大きさで連続した音を発する掃除機等の重家事用機器を判別することができる。このように、室内で一定以上の大きな音がしていて、その音が一定で連続している場合は、在室者が掃除機等のモータを応用した機器を使用して、室内で動きの大きい家事をしていると推定する。予め、掃除機等大きな音のサンプリング結果より少し小さい値を重家事用機器判定閾値として用い、その音のバラツキの程度で重家事用機器判定幅を決める。これにより、音源の種類を正確に把握して、赤外線センサの検出結果と組み合わせて、在室者の活動量を適切に判定できる。従って、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御し、快適性に配慮しながら、省エネ運転することができる。なお、本実施例では、音が一定の大きさであることを、サンプリング結果の平均値と各サンプリング結果との差が重家事用機器判定幅以内であることで判定している。しかしながら、他の判定法として、例えば、突発的な音で誤判定を招かないように、サンプリング結果の平均値とサンプリング結果の最小値との差が重家事用機器判定幅以内で、サンプリング結果の平均値が重家事用機器平均閾値以下であるように定めてもよい。   In addition, the air conditioner of the present embodiment, for each frequency band, all sampling results are equal to or greater than the heavy household equipment judgment threshold, and the difference between the average value of the sampling results and each sampling result is within the heavy household equipment judgment width In the case of, the type of sound source is determined as the heavy household equipment group. Thereby, in order to support a user's power and speed, it is possible to distinguish heavy household equipment such as a vacuum cleaner that produces a relatively loud driving sound and a continuous sound at a constant volume. In this way, if there is a loud sound above a certain level in the room and the sound is constant and continuous, the occupant can use a device such as a vacuum cleaner to move the room. Presume that you are doing a big housework. A value slightly smaller than the sampling result of a loud sound such as a vacuum cleaner is used in advance as the heavy housework device determination threshold, and the heavy housework device determination range is determined based on the degree of variation in the sound. Thereby, the type of sound source can be accurately grasped and combined with the detection result of the infrared sensor, the amount of activity of the resident can be appropriately determined. Therefore, the air conditioner can be controlled more finely according to the amount of activity of the occupants and energy-saving operation can be performed while considering comfort. In the present embodiment, it is determined that the sound is of a certain volume because the difference between the average value of the sampling results and each sampling result is within the heavy household equipment determination range. However, as another determination method, for example, the difference between the average value of the sampling results and the minimum value of the sampling results is within the heavy household equipment determination range so as not to cause an erroneous determination due to a sudden sound. The average value may be set to be equal to or less than the heavy household equipment average threshold.

また、本実施例の空気調和機は、周波数帯毎に、サンプリング結果が放送受信機器判定閾値以上である回数が、放送受信機器の下限回数閾値以上、且つ、放送受信機器の上限回数閾値以下であって、サンプリング結果が放送受信機器判定閾値以上である回の連続が、途中で中断する場合は、音源の種類を放送受信機器群と判定する。これにより、テレビジョン等の放送受信機器の音声や在室者同士の会話において発生する数秒以上の中断によって、重家事用機器や軽家事用機器と区別することができる。なお、放送受信機器の音声には、在室者同士の会話では発生しない、高い周波数の音(音楽や効果音等)が含まれる。従って、これにより、放送受信機器の音声と在室者同士の会話とを判別することができる。また、在室者同士の会話では数十秒の長い中断があるのが普通で、放送受信機器の音声ではこのような長い中断はないこと等を考慮するので、音判別の精度をさらに向上させることができる。このように、放送受信機器判定閾値,下限回数閾値,上限回数閾値を適切に定め、判定閾値以上である回の連続が、途中で中断することを検知することで、音源の種類を正確に把握して、赤外線センサの検出結果と組み合わせて、在室者の活動量を適切に判定し、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御し、快適性に配慮しながら、省エネ運転することができる。   Further, in the air conditioner of the present embodiment, the number of times that the sampling result is equal to or greater than the broadcast reception device determination threshold for each frequency band is greater than or equal to the lower limit threshold value of the broadcast reception device and less than or equal to the upper limit frequency threshold of the broadcast reception device. If the series of times when the sampling result is equal to or greater than the broadcast receiving device determination threshold is interrupted, the type of the sound source is determined as the broadcast receiving device group. Thereby, it can be distinguished from heavy household equipment and light household equipment by the interruption of several seconds or more that occurs in the voice of a broadcast receiving device such as a television or in the conversation between occupants. Note that the sound of the broadcast receiving device includes high-frequency sounds (music, sound effects, etc.) that do not occur in conversations between occupants. Therefore, it is possible to discriminate between the voice of the broadcast receiving device and the conversation between the occupants. In addition, it is normal for conversations between occupants to have a long interruption of several tens of seconds, and in consideration of the fact that there is no such a long interruption in the sound of a broadcast receiving device, the accuracy of sound discrimination is further improved. be able to. In this way, the broadcast reception device determination threshold, lower limit threshold, and upper limit threshold are appropriately determined, and the type of sound source is accurately grasped by detecting that the sequence of times greater than or equal to the determination threshold is interrupted. In combination with the detection result of the infrared sensor, the amount of activity of the occupant is appropriately determined, and the air conditioner is controlled more precisely according to the amount of activity of the occupant, while considering comfort, Energy saving operation is possible.

また、本実施例の空気調和機は、周波数帯毎に、サンプリング結果が会話判定閾値以上である回数が、会話の下限回数閾値以上、且つ、会話の上限回数閾値以下であって、サンプリング結果が会話判定閾値以上である回の連続が、途中で中断する場合は、音源の種類を会話と判定する。これにより、会話判定閾値,下限回数閾値,上限回数閾値を放送受信機器とは異なる適切な値に定めることで、放送受信機器と会話を識別する。このように、音源の種類を正確に把握することで、赤外線センサの検出結果と組み合わせて、在室者の活動量を適切に判定し、在室者の活動量に合わせて、空気調和機をよりきめ細かく制御し、快適性に配慮しながら、省エネ運転することができる。   Further, in the air conditioner of this embodiment, the number of times that the sampling result is greater than or equal to the conversation determination threshold is greater than or equal to the lower limit threshold of conversation and less than or equal to the upper limit threshold of conversation for each frequency band, and the sampling result is When a series of times equal to or greater than the conversation determination threshold is interrupted, the sound source type is determined to be conversation. Thus, the conversation determination threshold value, the lower limit number threshold value, and the upper limit number threshold value are set to appropriate values different from the broadcast receiving device, thereby identifying the conversation with the broadcast receiving device. In this way, by accurately grasping the type of sound source, in combination with the detection result of the infrared sensor, the amount of activity of the occupant is appropriately determined, and the air conditioner is adjusted according to the amount of activity of the occupant. It is possible to perform energy-saving operation while controlling more finely and considering comfort.

また、本実施例の空気調和機は、活動量判定部は音源の判定を複数回繰返し、複数回の判定において出現頻度が最大の音源群を室内の音源と判定する。これにより、最終的な二次判定までの時間を長くしたので、室内の長期的な変化を反映でき、短期的な変化に基づく誤動作が減少する。また、二次判定までの時間を複数の一次判定区間に分け、一次判定区間毎に一次判定して室内の状況を把握するので、室内の情報を平準化して把握でき、情報の偏りをなくして、情報を正確に把握することができる。また、一次判定区間内でのデータは一次判定にしか使われず、一次判定では唯一の結果を選択する。従って、一次判定区間内で複数の一次判定候補のデータが拮抗していて一次判定の結果が変わる場合にも、複数の一次判定の結果を基にした二次判定は優勢な一次判定候補に安定して維持される。このように、確実な判定ができる十分な判定区間と、室内の快適性を損なわない穏やかな変化を確保できる制御間隔とが両立する時間間隔で二次判定を行うので、室内の快適性が損なわれることはない。きめ細かな制御で快適性に配慮しながら省エネ運転することができる。   In the air conditioner of the present embodiment, the activity amount determination unit repeats the determination of the sound source a plurality of times, and determines the sound source group having the highest appearance frequency as the indoor sound source in the plurality of determinations. Thereby, since the time until the final secondary determination is lengthened, a long-term change in the room can be reflected, and malfunctions based on the short-term change are reduced. In addition, since the time until the secondary determination is divided into a plurality of primary determination sections and the primary determination is performed for each primary determination section to grasp the indoor situation, the indoor information can be leveled and grasped, and the information bias is eliminated. , Can accurately grasp the information. The data in the primary determination section is used only for the primary determination, and the primary determination selects only one result. Therefore, even when the data of a plurality of primary determination candidates antagonize within the primary determination section and the result of the primary determination changes, the secondary determination based on the results of the plurality of primary determinations is stable to the dominant primary determination candidate. Maintained. As described above, since the secondary determination is performed at a time interval in which a sufficient determination interval in which a reliable determination can be made and a control interval that can ensure a gentle change that does not impair indoor comfort is performed, indoor comfort is impaired. It will never be. It is possible to perform energy-saving operation while taking into consideration comfort with fine control.

また、本実施例の空気調和機は、活動量判定部は、音源の判定を複数回繰返し、この判定結果に重み付けし、その重み付けした結果を音源の群毎に積算し、積算値が最大の音源の群を室内の音源の種類と判定する。これにより、前述のように、室内の情報を平準化して把握でき、情報の偏りをなくして、情報を正確に把握することができる。また、各回の判定結果に適宜な重み付けをすることで、より適切に空気調和機を制御することができる。例えば、時系列的に近い回ほど大きく重み付けした場合、現在から一番近い一次判定結果が最も重視される。従って、一時的に新しい活動をしたが、直ぐに別の活動をした場合は、重み付けされた現在の活動での一次判定結果が積算されて二次判定となる。このように、活動量変化の傾向を確実に捉え、適切に在室者の活動量を把握し、きめ細かな制御で快適性に配慮しながら省エネ運転をすることができる。   Further, in the air conditioner of the present embodiment, the activity amount determination unit repeats the determination of the sound source a plurality of times, weights the determination result, integrates the weighted result for each group of sound sources, and the integrated value is the maximum. The group of sound sources is determined as the type of sound source in the room. Thereby, as described above, the information in the room can be leveled and grasped, and the information can be grasped accurately without any information bias. Moreover, an air conditioner can be controlled more appropriately by appropriately weighting each determination result. For example, when the weight is increased as the time is closer in time series, the primary determination result closest to the present time is most important. Therefore, when a new activity is temporarily performed but another activity is immediately performed, the primary determination result of the weighted current activity is added up to be a secondary determination. In this way, it is possible to reliably grasp the trend of activity amount change, properly grasp the activity amount of the occupants, and perform energy-saving operation while taking comfort into consideration with fine control.

また、本実施例の空気調和機は、活動量判定部は、複数の音源の群に選択順位を定め、出現頻度又は積算値が最大の音源の群が複数の場合には、選択順位の高い音源の群を室内の音源の種類と判定する。これにより、空気調和機の制御が滞ることなく連続して省エネ運転が行われ、空調が中断して、快適性が損なわれることが無い。   Further, in the air conditioner of this embodiment, the activity amount determination unit determines the selection order for a plurality of sound source groups, and when there are a plurality of sound source groups having the maximum appearance frequency or integrated value, the selection order is high. The group of sound sources is determined as the type of sound source in the room. Thereby, the energy-saving operation is continuously performed without delaying the control of the air conditioner, the air conditioning is interrupted, and the comfort is not impaired.

また、本実施例の空気調和機は、活動量判定部が判定する室内の音源の群として、空気調和機自身,重家事用機器群,放送受信機器群、及び会話を含む。このように音源の種類を判別することで、在室者の活動をより詳細且つ正確に把握することができる。従って、快適性と省エネ性に配慮して空気調和機を運転することができる。   Moreover, the air conditioner of a present Example contains the air conditioner itself, the heavy household equipment group, the broadcast receiving apparatus group, and conversation as a group of the indoor sound source which an active mass determination part determines. By discriminating the type of sound source in this way, it is possible to grasp the activities of the occupants more in detail and accurately. Therefore, the air conditioner can be operated in consideration of comfort and energy saving.

また、本実施例の空気調和機は、放送受信機器群の選択順位を会話の選択順位より高く設定する。放送受信機器群と会話で出現頻度又は積算値が同点で最大となった場合は、放送受信機器群を音源の種類と判定する。放送受信機器群による人の会話と現実の会話とを区別することは難しい。しかしながら、出現頻度又は積算値が同点である場合は、現実の会話では生じない高い周波数帯の音(音楽や効果音)を含む可能性があり、この場合、音源の種類を放送受信機器群と判定するのが合理的である。このように、選択順位を定めることにより、合理的に音源の種類を判定できるので、赤外線センサの検出結果と組み合わせて在室者の活動量を把握し、きめ細かな制御で快適性に配慮しながら省エネ運転することができる。   Moreover, the air conditioner of a present Example sets the selection order of a broadcast receiving apparatus group higher than the selection order of conversation. When the appearance frequency or the integrated value becomes the maximum at the same point in conversation with the broadcast receiving device group, the broadcast receiving device group is determined as the type of the sound source. It is difficult to distinguish between a person's conversation by a broadcast receiving device group and an actual conversation. However, if the appearance frequency or the integrated value is the same, there is a possibility of including a high frequency band sound (music or sound effect) that does not occur in actual conversation. In this case, the type of the sound source is the same as the broadcast receiving device group. It is reasonable to judge. In this way, it is possible to rationally determine the type of sound source by determining the selection order, so that the amount of activity of the occupants is grasped in combination with the detection result of the infrared sensor, and the comfort is controlled with fine control Energy saving operation is possible.

また、本実施例の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部とを備え、音センサの検出結果を基に、音源の種類を判定する判定閾値を設け、空気調和機を据付けた室内での基準環境音測定期間における音センサの検出結果である基準環境初期値に応じて判定閾値を補正する閾値補正部と、赤外線センサの検出結果、及び音センサの検出結果に応じて、在室者の活動量を判定する活動量判定部を有し、活動量判定部で判定された在室者の活動判定量を基に、設定温度に基づいて定められた目標値を変更する。これにより、空気調和機を据付けた部屋で、空気調和機を運転又は停止時に発生する音を把握することができる。空気調和機運転時には、空気調和機自身の音と、使用者がいないときでも音を発生する時計や観賞魚水槽の循環ポンプ音等が検出される。また、空気調和機停止時には、時計や観賞魚水槽の循環ポンプ音等が検出される。具体的には、空気調和機運転開始から所定時間又は空気調和機停止中の所定時間(例えば1分間)の音センサの検出値(以下「基準環境初期値」という。)を基準値と比較する。空気調和機据付後、最初の運転又は停止である場合、基準値として、製造段階で制御部の記憶素子に記録した運転時又は停止時の音センサの検出値(以下「基準環境当初値」という。)を用いる。通常、基準値<初期値となる。「基準環境当初値≧基準環境初期値」の場合は、判定閾値を補正しない。空気調和機運転時の結果から判定閾値を補正する場合、更に、音源の種類が空気調和機自身であることを音センサのサンプリング結果が示している場合は、音源の種類を判定する判定閾値を補正する。音源の種類が空気調和機自身以外であることを音センサのサンプリング結果が示している場合は、空気調和機自身以外の会話やテレビジョンの音等が検出されていることを示し、静粛な状態での運転ではないので判定閾値は補正しない。また、空気調和機停止中の結果から判定閾値を補正する場合、更に、「基準環境初期値≦基準環境当初値+標準環境音差」の場合に、音源の種類を判定する判定閾値を補正する。ここで、標準環境音差とは、環境音のバラツキの幅を示す値であり、予め、製造段階で制御部の記憶素子に記録する。「基準環境当初値+標準環境音差<基準環境初期値」の場合、空気調和機自身以外の会話やテレビジョンの音等が検出されており、静粛な状態での運転ではないので、判定閾値は補正しない。このように、音源の種類を判定する判定閾値を補正することで、空気調和機を据付けた部屋の音環境に合わせて、音源の種類を温感変動大音源の種類か温感変動小音源の種類かに適切に判定することができる。従って、赤外線センサの検出結果と組み合わせて在室者の活動量を精度よく判定し、きめ細かな制御で快適性に配慮しながら、省エネに貢献できる。   In addition, the air conditioner of the present embodiment includes an infrared sensor that detects the amount of movement of the occupant, a sound sensor that detects the sound in the room, a setting unit that sets the indoor set temperature, and a control that controls the operation. A reference threshold value that is a detection result of the sound sensor during a reference environmental sound measurement period in a room where the air conditioner is installed, and is provided with a determination threshold value for determining the type of the sound source based on the detection result of the sound sensor. A threshold correction unit that corrects the determination threshold according to the value, and an activity amount determination unit that determines the amount of activity of the occupant according to the detection result of the infrared sensor and the detection result of the sound sensor. The target value determined based on the set temperature is changed based on the activity determination amount of the occupant determined in the section. Thereby, it is possible to grasp the sound generated when the air conditioner is operated or stopped in the room where the air conditioner is installed. During operation of the air conditioner, the sound of the air conditioner itself, the clock that generates sound even when there is no user, the circulating pump sound of the ornamental fish tank, and the like are detected. Further, when the air conditioner is stopped, a circulating pump sound of a clock or an aquarium fish tank is detected. Specifically, the detected value of the sound sensor (hereinafter referred to as “reference environment initial value”) for a predetermined time from the start of the air conditioner operation or for a predetermined time (for example, 1 minute) while the air conditioner is stopped is compared with a reference value. . In the case of the first operation or stop after the installation of the air conditioner, as a reference value, the sound sensor detection value at the time of operation or stop recorded in the storage element of the control unit in the manufacturing stage (hereinafter referred to as “reference environment initial value”) .). Usually, the reference value <the initial value. When “reference environment initial value ≧ reference environment initial value”, the determination threshold value is not corrected. When correcting the determination threshold from the result of the air conditioner operation, and further when the sound sensor sampling result indicates that the type of the sound source is the air conditioner itself, the determination threshold for determining the type of the sound source is set. to correct. If the sound sensor sampling result indicates that the type of sound source is something other than the air conditioner itself, it means that conversation other than the air conditioner itself, TV sound, etc. are detected, and it is quiet The determination threshold value is not corrected because the operation is not performed at the time. Further, when the determination threshold is corrected from the result of the air conditioner being stopped, the determination threshold for determining the type of the sound source is further corrected when “reference environment initial value ≦ reference environment initial value + standard environment sound difference”. . Here, the standard environmental sound difference is a value indicating the width of the variation of the environmental sound, and is recorded in advance in the storage element of the control unit at the manufacturing stage. In the case of “reference environment initial value + standard environment sound difference <reference environment initial value”, since a conversation other than the air conditioner itself, television sound, etc. are detected and the operation is not in a quiet state, the determination threshold value Is not corrected. In this way, by correcting the determination threshold for determining the type of sound source, the type of sound source can be selected from the type of the large sound source of the thermal fluctuation or the type of the small sound source of the thermal fluctuation according to the sound environment of the room where the air conditioner is installed. It can be determined appropriately for the type. Therefore, the amount of activity of the occupants can be accurately determined in combination with the detection result of the infrared sensor, and it is possible to contribute to energy saving while taking into consideration comfort through fine control.

また、本実施例の空気調和機は、基準環境初期値が所定の基準値以上であり且つ音源の種類が空気調和機自身と判定される場合、又は、基準環境初期値がこの基準値に所定の標準環境音差を加えた値以下である場合に、判定閾値を補正する。静粛な状態での運転又は停止中の音センサの検出結果を得ることができるので、音源の種類を判定するための判定閾値を適正に補正できる。これにより、空気調和機を据付けた部屋の音環境に合わせて、音源の種類を適切に判定することができる、従って、赤外線センサの検出結果と組み合わせて在室者の活動量を把握し、きめ細かな制御で快適性に配慮しながら省エネ運転することができる。   In the air conditioner of the present embodiment, the reference environment initial value is equal to or greater than the predetermined reference value and the type of the sound source is determined to be the air conditioner itself, or the reference environment initial value is set to the reference value. If the value is equal to or less than the value obtained by adding the standard environmental sound difference, the determination threshold value is corrected. Since the detection result of the sound sensor during operation or in a quiet state can be obtained, the determination threshold value for determining the type of the sound source can be corrected appropriately. As a result, the type of sound source can be determined appropriately according to the sound environment of the room where the air conditioner is installed. It is possible to perform energy-saving operation while taking comfort into consideration with simple control.

また、本実施例の空気調和機は、判定閾値を補正した場合は基準値を基準環境初期値に変更して新しい基準値とする。空気調和機が据付けられている部屋の音環境が変化した場合でも、変化した音環境に適合するように、新しい基準値が決まる。この基準値を記憶装置に記憶し、次回の運転開始時には前回の基準値に代わり新しい基準値を用いる。この新しい基準値に基づいて音源の種類を判定する判定閾値を補正することで、音源の種類を適切に判定することができる。従って、赤外線センサの検出結果と組み合わせて在室者の活動量を把握し、よりきめ細かな制御で快適性に配慮しながら省エネ運転することができる。   Moreover, the air conditioner of a present Example changes a reference value into a reference | standard environment initial value, and makes it a new reference value, when the determination threshold value is correct | amended. Even if the sound environment of the room where the air conditioner is installed changes, a new reference value is determined so as to adapt to the changed sound environment. This reference value is stored in the storage device, and the new reference value is used instead of the previous reference value at the start of the next operation. The sound source type can be appropriately determined by correcting the determination threshold value for determining the sound source type based on the new reference value. Therefore, the amount of activity of the occupants can be grasped in combination with the detection result of the infrared sensor, and the energy-saving operation can be performed while considering the comfort with finer control.

また、本実施例の空気調和機は、1日を複数の時間帯に区分し、基準環境初期値が検出された時間帯における基準値のみを基準環境初期値に変更して、この時間帯における新しい基準値とする。空気調和機を据付けてある部屋の音環境が時間帯により変化した場合でも、変化した音環境に適合するように判定閾値が補正され、音源の種類を適切に判定することができ、赤外線センサの検出結果と組み合わせて在室者の活動量を把握し、きめ細かな制御で快適性に配慮しながら省エネ運転することができる。   Further, the air conditioner of the present embodiment divides one day into a plurality of time zones, changes only the reference value in the time zone in which the reference environment initial value is detected to the reference environment initial value, and in this time zone Use the new reference value. Even if the sound environment of the room where the air conditioner is installed changes according to the time zone, the determination threshold is corrected to match the changed sound environment, and the type of sound source can be determined appropriately. The amount of activity of the occupants can be ascertained in combination with the detection results, and energy-saving operation can be performed while taking comfort into consideration with fine control.

また、本実施例の空気調和機は、吸込空気温度を検出する吸込温度検出部を備え、活動量判定部で判定された在室者の活動判定量を基に設定温度に基づいて定められた目標値を変更し、吸込空気温度が目標温度になるように制御する。室内から焦電型赤外線センサに到達する赤外線を、所定のサンプリング周期で所定時間サンプリングし、赤外線の検出回数の割合(Px)を算出し、サンプリング結果とする。このサンプリング結果が静判定閾値未満の場合、反応の検出量の区分(反応の検出区分)を「反応静」と区分する。サンプリング結果が静判定閾値以上の場合は、サンプリング結果を強判定閾値と比較する。サンプリング結果が強判定閾値以上の場合は、反応の検出区分を「反応強」と区分する。サンプリング結果が強判定閾値未満の場合は、反応の検出区分を「反応中」と区分する。更に、音源の種類を温感変動大音源か温感変動小音源かに判定する。判定した音源の種類と在室者の反応検出区分を組み合わせて在室者の活動量を他段階に判別する。暖房時は活動量が大きいほど、吸込空気温度を設定温度より低めに調整し、冷房時は活動量が小さいほど、吸込空気温度を設定温度より高めに調整する。これにより、在室者の活動量に応じてより適正に空気調和機を制御できるので、在室者の快適性を考慮しつつ、空気調和機をより省エネ運転することができる。   Moreover, the air conditioner of the present embodiment includes a suction temperature detection unit that detects the suction air temperature, and is determined based on the set temperature based on the activity determination amount of the occupant determined by the activity amount determination unit. The target value is changed and controlled so that the intake air temperature becomes the target temperature. Infrared rays that reach the pyroelectric infrared sensor from the room are sampled at a predetermined sampling period for a predetermined time, and the ratio (Px) of the number of detection times of infrared rays is calculated as a sampling result. When the sampling result is less than the static determination threshold, the reaction detection amount classification (reaction detection classification) is classified as “reaction static”. If the sampling result is equal to or greater than the static determination threshold, the sampling result is compared with the strong determination threshold. When the sampling result is equal to or higher than the strong determination threshold, the reaction detection classification is classified as “reaction strong”. When the sampling result is less than the strong determination threshold, the reaction detection category is classified as “in response”. Furthermore, the type of the sound source is determined to be a warm sound fluctuation large sound source or a warm feeling fluctuation small sound source. The amount of activity of the room occupant is determined in another stage by combining the determined type of sound source and the reaction detection category of the room occupant. As the amount of activity increases during heating, the intake air temperature is adjusted to be lower than the set temperature. During cooling, as the amount of activity decreases, the intake air temperature is adjusted to be higher than the set temperature. Thereby, since an air conditioner can be controlled more appropriately according to the amount of activity of the occupants, the air conditioner can be operated more energy-saving while considering the comfort of the occupants.

また、本実施例の空気調和機は、活動判定量に応じて活動シフト値を定め、活動シフト値を温度シフト値として、吸込空気温度が設定温度に温度シフト値を上乗せした上乗せ設定温度になるように制御する。活動量を音センサの検出結果と赤外線センサの検出結果を基に、例えば、大きい順に、最大,大,中,小及び最小のように多段階に判別し、活動量が大きいほど小さい活動シフト値として定め、これを温度シフト値として設定温度に上乗せし、吸込空気温度が上乗せ設定温度になるように制御する。これにより、暖房時は活動量が大きいほど吸込空気温度が設定温度より低めに調整され、冷房時は活動量が小さいほど吸込空気温度が設定温度より高めに調整される。従って、快適性に配慮しつつ、きめ細かく空気調和機を制御することで省エネ運転することができる。   In the air conditioner of this embodiment, the activity shift value is determined according to the activity determination amount, the activity shift value is set as the temperature shift value, and the intake air temperature becomes the set temperature obtained by adding the temperature shift value to the set temperature. To control. Based on the detection result of the sound sensor and the detection result of the infrared sensor, for example, the activity amount is discriminated in multiple steps from the largest to the largest, large, medium, small and minimum, and the activity shift value is smaller as the activity amount is larger. This is added to the set temperature as a temperature shift value, and the intake air temperature is controlled to be added to the set temperature. As a result, the suction air temperature is adjusted to be lower than the set temperature as the amount of activity increases during heating, and the suction air temperature is adjusted to be higher than the set temperature as the amount of activity decreases during cooling. Therefore, it is possible to perform an energy saving operation by controlling the air conditioner finely while considering the comfort.

また、本実施例の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部と、圧縮機と、送風機と、吸込空気温度を検出する吸込温度検出部と、空気調和機本体と双方向に通信可能なリモコンとを備え、リモコンと空気調和機本体との相対位置が検出可能に構成され、赤外線センサの検出結果に基づいて区分された赤外線センサの反応区分と、音センサの検出結果に基づいて判定された音源の種類に応じて、在室者の活動量を判定する活動量判定部を有し、活動量判定部で判定された在室者の活動判定量に応じて活動シフト値を定め、リモコンの位置に応じて位置シフト値を定め、活動シフト値及び位置シフト値を設定温度に上乗せして吸込空気温度の目標温度とし、吸込空気温度が目標温度になるように制御する。室内から焦電型赤外線センサに到達する赤外線を、所定のサンプリング周期で所定時間サンプリングし、赤外線の検出回数の割合(Px)を算出し、サンプリング結果とする。このサンプリング結果が静判定閾値未満の場合、反応の検出量の区分(反応の検出区分)を「反応静」と区分する。サンプリング結果が静判定閾値以上の場合は、サンプリング結果を強判定閾値と比較する。サンプリング結果が強判定閾値以上の場合は、反応の検出区分を「反応強」と区分する。サンプリング結果が強判定閾値未満の場合は、反応の検出区分を「反応中」と区分する。また、活動量を音センサの検出結果と赤外線センサの検出結果を基に、例えば、大きい順に、最大,大,中,小及び最小のように多段階に判別し、活動量が大きいほど小さい活動シフト値として定め、これを温度シフト値として設定温度に上乗せし、吸込空気温度が上乗せ設定温度になるように制御する。これにより、暖房時は活動量が大きいほど吸込空気温度が設定温度より低めに調整され、冷房時は活動量が小さいほど吸込空気温度が設定温度より高めに調整される。更に、空気調和機からリモコンまでの距離を検出し、冷房時は、空気調和機からリモコンまでの距離が近い程大きい位置シフト値を温度シフト値に加えて吸込空気温度を調節する。また、暖房時は、空気調和機からリモコンまでの距離が近い程小さい位置シフト値を温度シフト値に加えて吸込空気温度を調節する。空気調和機の使用者はリモコンで空気調和機を操作した後に、リモコンを近くに置くので、リモコンが置いてある位置の近くに使用者が居ることが多く、空気調和機からの距離が近ければ、空気調和機からの風を強く感じ、空気調和機からの距離が遠ければ、空気調和機からの風をほとんど感じない。このことは、温熱感覚に影響する気流の強弱を感じているということであり、気流の強弱に応じて温度シフト値に上述の位置シフト値を加えた値を温度シフト値としていることになり、空気調和機からの距離が変わっても、温熱感覚が快適範囲に近づくように空気調和機が制御されることになる。このように、快適性に配慮しつつ、空気調和機からの距離に応じて、きめ細かく、より適正に室温を上下するように空気調和機を制御することで、省エネ運転に貢献できる。   In addition, the air conditioner of the present embodiment includes an infrared sensor that detects the amount of movement of the occupant, a sound sensor that detects the sound in the room, a setting unit that sets the indoor set temperature, and a control that controls the operation. A compressor, a blower, a suction temperature detector for detecting the intake air temperature, and a remote controller capable of bidirectional communication with the air conditioner body, and the relative position between the remote controller and the air conditioner body is detected. The amount of activity of the occupant is determined according to the response classification of the infrared sensor configured based on the detection result of the infrared sensor and the type of the sound source determined based on the detection result of the sound sensor. It has an activity amount determination unit, determines the activity shift value according to the activity determination amount of the occupant determined by the activity amount determination unit, determines the position shift value according to the position of the remote control, the activity shift value and the position shift Suction empty by adding the value to the set temperature The target temperature of the temperature, is controlled so as the suction air temperature becomes the target temperature. Infrared rays that reach the pyroelectric infrared sensor from the room are sampled at a predetermined sampling period for a predetermined time, and the ratio (Px) of the number of detection times of infrared rays is calculated as a sampling result. When the sampling result is less than the static determination threshold, the reaction detection amount classification (reaction detection classification) is classified as “reaction static”. If the sampling result is equal to or greater than the static determination threshold, the sampling result is compared with the strong determination threshold. When the sampling result is equal to or higher than the strong determination threshold, the reaction detection classification is classified as “reaction strong”. When the sampling result is less than the strong determination threshold, the reaction detection category is classified as “in response”. In addition, based on the detection result of the sound sensor and the detection result of the infrared sensor, the activity amount is determined in multiple steps, for example, in the order of maximum, maximum, large, medium, small, and minimum. A shift value is determined, and this is added to the set temperature as a temperature shift value, and the intake air temperature is controlled to be added to the set temperature. As a result, the suction air temperature is adjusted to be lower than the set temperature as the amount of activity increases during heating, and the suction air temperature is adjusted to be higher than the set temperature as the amount of activity decreases during cooling. Further, the distance from the air conditioner to the remote control is detected, and during cooling, the intake air temperature is adjusted by adding a larger position shift value to the temperature shift value as the distance from the air conditioner to the remote control is closer. During heating, the intake air temperature is adjusted by adding a smaller position shift value to the temperature shift value as the distance from the air conditioner to the remote control is closer. After operating the air conditioner with the remote control, the user of the air conditioner places the remote control nearby, so there are many users near the position where the remote control is located, and if the distance from the air conditioner is close If you feel the wind from the air conditioner strongly and the distance from the air conditioner is far, you will hardly feel the wind from the air conditioner. This means that you feel the strength of the airflow that affects the thermal sensation, and the temperature shift value is the value obtained by adding the above-mentioned position shift value to the temperature shift value according to the strength of the airflow, Even if the distance from the air conditioner changes, the air conditioner is controlled so that the thermal sensation approaches the comfortable range. In this way, it is possible to contribute to energy-saving operation by controlling the air conditioner so as to raise and lower the room temperature in a finer and more appropriate manner according to the distance from the air conditioner while considering comfort.

また、本実施例の空気調和機は、リモコンの位置を検出し、自動的に吹出風向をリモコン位置に向ける第1制御と、自動的に空気調和機の吹出風向をリモコン位置から外す第2制御とを有し、第1制御では、冷房運転時は空気調和機からの距離が近いほど位置シフト値を大きくし、暖房運転時は空気調和機からの位置が遠いほど位置シフト値を大きくする。自動的に空気調和機の吹出風向をリモコン位置に向ける第1の制御の場合、室外から入室した際に、集中的に冷風・温風に当たりたいというニーズに応えることができる。また、自動的に空気調和機の吹出風向をリモコン位置から外す第2の制御の場合、直接風に当たるのは回避したいが、周辺からの緩やかな風で、穏やかな空調を望む人々のニーズに応えることができる。また、第1の制御の場合、空気調和機からの距離が近ければ、空気調和機からの風を強く感じ、空気調和機からの距離が遠ければ、空気調和機からの風をほとんど感じない。このことは、温熱感覚に影響する気流の強弱を感じているということであり、気流の強弱に応じて温度シフト値に冷房運転時は空気調和機からの距離が近いほど、暖房運転時は空気調和機からの位置が遠いほど大きな位置シフト値を加えた値を温度シフト値とすることになり、空気調和機からの距離が変わっても、温熱感覚が快適範囲に近づくように空気調和機が制御されることになる。このように、空気調和機からの距離に応じて、きめ細かな制御を行うことで、省エネ運転をはかることができる。   In addition, the air conditioner of the present embodiment detects the position of the remote controller, and automatically controls the first wind direction to the remote control position and the second control to automatically remove the air conditioner wind direction from the remote control position. In the first control, the position shift value is increased as the distance from the air conditioner is shorter during the cooling operation, and the position shift value is increased as the position from the air conditioner is farther during the heating operation. In the case of the first control in which the direction of the blown air from the air conditioner is automatically directed to the remote control position, it is possible to meet the need for intensively hitting cold air and hot air when entering the room from the outside. Also, in the case of the second control that automatically removes the direction of the air blower from the remote control position, you want to avoid hitting the wind directly, but respond to the needs of people who want gentle air conditioning with gentle wind from the surroundings. be able to. In the case of the first control, if the distance from the air conditioner is short, the wind from the air conditioner is felt strongly, and if the distance from the air conditioner is long, the wind from the air conditioner is hardly felt. This means that you feel the strength of the airflow that affects the thermal sensation, and the temperature shift value according to the strength of the airflow is closer to the air conditioner during the cooling operation and the air shift during the heating operation. As the position from the air conditioner increases, the value obtained by adding a larger position shift value becomes the temperature shift value.Even if the distance from the air conditioner changes, the air conditioner moves so that the thermal sensation approaches the comfortable range. Will be controlled. In this way, energy-saving operation can be achieved by performing fine control according to the distance from the air conditioner.

また、本実施例の空気調和機は、活動量が所定値より大きい場合は位置シフト値を0とする。音センサの検出結果と赤外線センサの検出結果を基にした在室者の活動量が、例えば、最大,大の時には、リモコン位置に応じた位置シフト値を0にする。これは、在室者の活動量が大きいときは在室者が室内を動き回っていて、リモコンの位置にじっとしていない可能性が高い。このように、活動量が所定値より大きく在室者がリモコンの位置に存在しないと判断される場合には、リモコン位置に応じた位置シフト値を与える必要がない。なお、位置シフト値を0にするかわりに、活動量が小さい場合の位置シフト値よりも絶対値が小さい位置シフト値とするようにしてもよい。このようにすることで、活動量が大きい時の在室者の動きに応じた現実的な位置シフト値で空気調和機を運転し、快適性に配慮しながら、省エネ運転をはかることができる。   In the air conditioner of this embodiment, the position shift value is set to 0 when the activity amount is larger than a predetermined value. For example, when the amount of activity of the occupant based on the detection result of the sound sensor and the detection result of the infrared sensor is maximum or large, the position shift value corresponding to the remote control position is set to zero. It is highly likely that the occupant is moving around the room when the occupant's activity level is large, and is not swaying the position of the remote control. As described above, when it is determined that the activity amount is larger than the predetermined value and the occupant is not present at the position of the remote controller, it is not necessary to give a position shift value corresponding to the position of the remote controller. Instead of setting the position shift value to 0, a position shift value having an absolute value smaller than the position shift value when the amount of activity is small may be used. By doing in this way, an air conditioner can be drive | operated with the realistic position shift value according to the motion of the occupant when the amount of activity is large, and an energy-saving operation can be aimed at considering comfort.

また、本実施例の空気調和機は、室温が低いほど大きな補正シフト値とし、この補正シフト値を温度シフト値に加える。これにより、暖房運転時は室温が高いほど吸込空気温度が設定温度より低めに調整され、冷房運転時は室温が低いほど吸込空気温度が設定温度より高めに調整される。従って、快適性に配慮しながら、省エネ運転をはかることができる。   Moreover, the air conditioner of a present Example makes it a large correction shift value, so that room temperature is low, and adds this correction shift value to a temperature shift value. Thereby, the suction air temperature is adjusted to be lower than the set temperature as the room temperature is higher during the heating operation, and the suction air temperature is adjusted to be higher than the set temperature as the room temperature is lower during the cooling operation. Therefore, it is possible to carry out energy saving operation while considering comfort.

また、本実施例の空気調和機は、室内の湿度を検出する湿度センサを備え、湿度が低いほど大きな補正シフト値とし、この補正シフト値を温度シフト値に加える。これにより、暖房運転時は湿度が高いほど吸込空気温度が設定温度より低めに調整され、冷房運転時は湿度が低いほど吸込空気温度が設定温度より高めに調整される。従って、快適性に配慮しながら、省エネ運転をはかることができる。   Further, the air conditioner of this embodiment includes a humidity sensor that detects the humidity in the room, and the lower the humidity, the larger the correction shift value, and the correction shift value is added to the temperature shift value. Thereby, the suction air temperature is adjusted to be lower than the set temperature as the humidity is higher during the heating operation, and the suction air temperature is adjusted to be higher than the set temperature as the humidity is lower during the cooling operation. Therefore, it is possible to carry out energy saving operation while considering comfort.

また、実施例の空気調和機は、室内の床面温度及び壁面温度を検出する輻射温度センサを備え、「輻射温度−(マイナス)室内温度」が小さいほど大きな輻射シフト値とし、輻射シフト値を温度シフト値に加える。例えば、輻射温度−室内温度の値により「温度差正」,「温度差小」,「温度差負」に分け、輻射温度−室内温度が大きいほど小さい値を輻射シフト値とし、この輻射シフト値を温度シフト値に加える。これにより、暖房時は輻射温度が高いほど吸込空気温度が設定温度より低めに調整され、冷房時は輻射温度が低いほど吸込空気温度が設定温度より高めに調整される。従って、快適性に配慮しながら、省エネ運転をはかることができる。温熱感覚に影響する輻射温度を空気調和機の制御に取入れることにより、輻射温度−室内温度の違いに応じて輻射シフト値を変えることで、よりきめ細かな制御により省エネ運転をはかることができる。   Moreover, the air conditioner of an Example is equipped with the radiation temperature sensor which detects the floor surface temperature and wall surface temperature of an indoor, and it is set as a large radiation shift value, so that "radiation temperature-(minus) room temperature" is small, and a radiation shift value is set. Add to temperature shift value. For example, it is divided into “temperature difference positive”, “temperature difference small”, and “temperature difference negative” depending on the value of radiation temperature-indoor temperature, and the smaller the radiation temperature-indoor temperature, the smaller the value is taken as the radiation shift value. Is added to the temperature shift value. Thereby, the suction air temperature is adjusted to be lower than the set temperature as the radiation temperature is higher during heating, and the suction air temperature is adjusted to be higher than the set temperature as the radiation temperature is lower during cooling. Therefore, it is possible to carry out energy saving operation while considering comfort. By incorporating the radiation temperature that affects the thermal sensation into the control of the air conditioner, the radiation shift value is changed according to the difference between the radiation temperature and the room temperature, so that energy-saving operation can be achieved with finer control.

また、本実施例の空気調和機は、室内の温度を検出する室温センサ,室内の湿度を検出する湿度センサ,室内の床温及び壁温を検出する輻射センサ、及びカレンダー情報機能の少なくとも何れかを備え、室温,湿度,輻射温度−室温、及びカレンダー情報の少なくとも何れかに応じて、冷房運転時は正の補正シフト値を温度シフト値に加えるとともに、暖房運転時は負の補正シフト値を温度シフト値に加える。これにより、暖房運転時は湿度又は輻射温度が高いほど吸込空気温度が設定温度より低めに調整され、冷房運転時は湿度又は輻射温度が低いほど吸込空気温度が設定温度より高めに調整される。従って、快適性に配慮しながら、省エネ運転をはかることができる。   In addition, the air conditioner of the present embodiment includes at least one of a room temperature sensor that detects indoor temperature, a humidity sensor that detects indoor humidity, a radiation sensor that detects indoor floor temperature and wall temperature, and a calendar information function. According to at least one of room temperature, humidity, radiation temperature-room temperature, and calendar information, a positive correction shift value is added to the temperature shift value during cooling operation, and a negative correction shift value is applied during heating operation. Add to temperature shift value. Thereby, the suction air temperature is adjusted to be lower than the set temperature as the humidity or the radiation temperature is higher during the heating operation, and the suction air temperature is adjusted to be higher than the set temperature as the humidity or the radiation temperature is lower during the cooling operation. Therefore, it is possible to carry out energy saving operation while considering comfort.

また、本実施例の空気調和機は、カレンダー機能に基づいて、厳寒期(例えば2月)に近いほど着衣の量が多く、盛夏(例えば8月)に近いほど着衣の量が少ないと判断する。このとき、着衣量が多いほど小さい値の補正シフト値を温度シフト値に加える。従って、快適性に配慮しながら、省エネ運転をはかることができる。   Moreover, the air conditioner of a present Example judges that the amount of clothes is so large that it is close to a severe cold period (for example, February), and the amount of clothes is so small that it is close to midsummer (for example, August) based on a calendar function. . At this time, the smaller the shift amount, the smaller the correction shift value is added to the temperature shift value. Therefore, it is possible to carry out energy saving operation while considering comfort.

また、本実施例の空気調和機は、冷房運転時の温度シフト値は正の値としその上限を定め、暖房運転時の温度シフト値は負の値としその下限を定める。冷房運転時の温度シフト値に上限を設けることにより、省エネ運転を追及するあまり、設定温度から極端に室温が上がり過ぎて快適な空調から逸脱することを防ぐ。暖房運転時も温度シフト値に下限を設けることにより、設定温度から極端に室温が下がり過ぎて快適な空調から逸脱することを防ぐ。これらは、各々の補正シフト値を温度シフト値に加えると、温度シフト値が大きくなりすぎて、設定温度から乖離する可能性があるためである。このように、快適性に配慮しながら、冷房運転時は吸込空気温度を高めに調整し、暖房運転時は吸込空気温度を低めに調節することにより、省エネ運転をはかる。   In the air conditioner of the present embodiment, the temperature shift value during the cooling operation is a positive value and the upper limit is set, and the temperature shift value during the heating operation is a negative value and the lower limit is set. By providing an upper limit for the temperature shift value during cooling operation, the room temperature is excessively raised from the set temperature and the departure from comfortable air conditioning is prevented because of pursuing energy saving operation. By providing a lower limit to the temperature shift value even during heating operation, it is possible to prevent the room temperature from being excessively lowered from the set temperature and deviating from comfortable air conditioning. These are because if each correction shift value is added to the temperature shift value, the temperature shift value becomes too large and may deviate from the set temperature. In this way, while considering comfort, the intake air temperature is adjusted to be higher during the cooling operation, and the intake air temperature is adjusted to be lower during the heating operation, thereby saving energy.

また、本実施例の空気調和機は、温度シフト値の冷房運転時の上限値及び暖房運転時の下限値は、共に活動量が大きいほど小さく定める。省エネ運転を追及するあまり、在室者の活動量に応じて温度シフト値の上限及び下限を定めることにより、室温が設定温度から極端に乖離して快適な空調から逸脱することを防ぐ。このように、快適性に配慮しながら、冷房運転時は吸込空気温度を高めに調整し、暖房運転時は吸込空気温度を低めに調節することにより、省エネ運転をはかる。   In the air conditioner of the present embodiment, the upper limit value during the cooling operation and the lower limit value during the heating operation of the temperature shift value are both set smaller as the amount of activity increases. In pursuit of energy-saving operation, the upper and lower limits of the temperature shift value are determined according to the amount of activity of the occupants, thereby preventing the room temperature from deviating from the comfortable air conditioning due to extreme deviation from the set temperature. In this way, while considering comfort, the intake air temperature is adjusted to be higher during the cooling operation, and the intake air temperature is adjusted to be lower during the heating operation, thereby saving energy.

また、本実施例の空気調和機は、自動的に空気調和機の吹出風向をリモコン位置に向けるように制御する場合は、ゾーンシフト値を温度シフト値に加える。空調された快適な風を受けているときには、冷房運転時は吸込空気温度を上げ、暖房運転時は吸込空気温度を下げて、省エネ運転する。このように、快適な時だけ、省エネ運転するので快適性に配慮した省エネ運転をすることができる。   Moreover, the air conditioner of a present Example adds a zone shift value to a temperature shift value, when controlling so that the blowing wind direction of an air conditioner may be automatically turned to a remote control position. When receiving a comfortable air-conditioned wind, the intake air temperature is raised during cooling operation, and the intake air temperature is lowered during heating operation to perform energy saving operation. As described above, since the energy-saving operation is performed only when it is comfortable, the energy-saving operation considering the comfort can be performed.

また、本実施例の空気調和機は、赤外線を通信媒体として空気調和機本体と双方向に通信可能なリモコンを備え、このリモコンはリモコン周囲温度を検出するリモコン周囲温度センサを備える。在室者の近くに置かれたリモコンの周囲温度情報が空気調和機本体に送信され、在室者の近くのリモコン周囲の温度を設定室温に調整することができる。これにより、在室者の周囲がスポット的に快適になり、余分な空調エネルギーを消費することがなく省エネ運転をはかることができる。   Further, the air conditioner of the present embodiment includes a remote control capable of bidirectionally communicating with the air conditioner body using infrared as a communication medium, and the remote control includes a remote control ambient temperature sensor for detecting the remote controller ambient temperature. The ambient temperature information of the remote controller placed near the occupant is transmitted to the air conditioner body, and the temperature around the remote controller near the occupant can be adjusted to the set room temperature. As a result, the surroundings of the occupants become comfortable in spots, and energy-saving operation can be performed without consuming excess air-conditioning energy.

また、本実施例の空気調和機は、リモコン周囲温度から設定温度を減じた値に応じたリモコン温度シフト値を温度シフト値に加える。暖房運転時はリモコン周囲温度が高いほど吸込空気温度が設定温度より低めに調整され、冷房運転時はリモコン周囲温度が低いほど吸込空気温度が設定温度より高めに調整される。従って、リモコンの近くにいる在室者の快適性に配慮しつつ、きめ細かく空気調和機を制御することで省エネ運転することができる。   Moreover, the air conditioner of a present Example adds the remote control temperature shift value according to the value which subtracted setting temperature from remote control ambient temperature to a temperature shift value. During the heating operation, the suction air temperature is adjusted to be lower than the set temperature as the remote control ambient temperature is higher, and during the cooling operation, the suction air temperature is adjusted to be higher than the set temperature as the remote control ambient temperature is lower. Therefore, it is possible to perform an energy saving operation by controlling the air conditioner finely while considering the comfort of the occupants near the remote control.

また、本実施例の空気調和機は、冷房運転時の活動シフト値は正の値としその上限を定め、暖房運転時の活動シフト値は負の値としその下限を定める。温熱感覚に影響する活動量,室温,湿度,輻射,着衣量,気流の要素を取込んで、更に、ゾーンシフト値,リモコン温度シフト値も加えて、冷房運転時は快適状態な設定室温より吸込空気温度を高めに調節して省エネ運転をはかる。暖房運転時は快適状態な設定室温より、同様に快適性に配慮しながら、吸込空気温度を低めに調節して省エネ運転をはかる。また、省エネ運転を追及するあまり、設定温度から極端に室温が乖離して快適な空調から逸脱することを防ぐ。このため、快適性を考慮しつつ、節電をはかる空気調和機を提供することができる。   In the air conditioner of the present embodiment, the activity shift value during the cooling operation is a positive value and the upper limit is set, and the activity shift value during the heating operation is a negative value and the lower limit is set. Incorporating factors such as the amount of activity, room temperature, humidity, radiation, clothing, and airflow that affect thermal sensation, and adding the zone shift value and remote control temperature shift value, the air is sucked in from the set room temperature that is comfortable during cooling operation. Adjust the air temperature to make it energy efficient. During heating operation, adjust the intake air temperature to a lower level while considering the comfort in the same way from the comfortable room temperature, and save energy. In addition, too much pursuing energy-saving operation prevents the room temperature from deviating from the set temperature to deviate from comfortable air conditioning. For this reason, it is possible to provide an air conditioner that saves power while considering comfort.

また、本実施例の空気調和機は、温度シフト値を所定回算出し、算出された所定回の温度シフト値の平均値である確定温度シフト値に応じて、吸込空気温度が目標温度になるように制御し、温度シフト値を複数回算出する際に、今回の活動判定量と前回活動判定量との差が所定以上となった場合は、温度シフト値の所定回の算出が完了する前であっても、確定温度シフト値に代えて、今回の活動判定量に対応する温度シフト値に応じて、吸込空気温度が目標温度になるように制御する。制御の変更までの時間を長くして室内の長期的な変化を捉えるので、短期的な変化に基づく温度シフト値の誤変動がなくなる。また、制御の変更までの時間を複数の温度シフト演算区間に分け、温度シフト演算区間毎に温度シフトを演算して室内の状況を把握するので、室内の情報を平準化して捉えることで、情報の偏りがなく情報を正確に捉えることができる。また、温度シフト演算区間内でのデータは温度シフト演算にしか使われず、温度シフト演算では唯一の結果となる。従って、温度シフト演算区間内で複数の温度シフト演算のデータが拮抗して、温度シフト演算の結果が変わる場合にも、複数の温度シフト演算の結果を基にした確定温度シフト値演算では、優勢な温度シフト演算の結果に安定して維持される。また、任意の温度シフト演算区間での温度シフト値が明らかに増加したときには、その温度シフト演算区間に続く温度シフト演算区間が省略され、温度シフト値が明らかに増加した温度シフト演算区間での出力を基に確定温度シフト値を演算する。従って、制御の変更までの時間が短縮され、制御の即応性が確保される。通常は確実性に重きを置いて確実に室内状況を把握できる十分な制御の変更までの時間と、室内の快適性を損なわない穏やかな変化を確保できる制御間隔とが両立する時間間隔で制御の変更を行うので、室内の快適性が損なわれることがない。他方、制御の変更までの時間を複数に分割した温度シフト演算区間の出力が明らかに増加した時には、直ちに制御の変更を行うので、即応性も確保される。このように、通常の穏やかな制御で室内の快適性を維持しながらも、必要に応じて最終判定までの時間を短縮して空気調和機を適時に制御するので、快適性に配慮しながら省エネ運転をはかることができる。   In addition, the air conditioner of the present embodiment calculates the temperature shift value a predetermined number of times, and the intake air temperature becomes the target temperature according to the determined temperature shift value that is an average value of the calculated temperature shift values for the predetermined time. When the temperature shift value is calculated a plurality of times and the difference between the current activity determination amount and the previous activity determination amount is greater than or equal to a predetermined value, the calculation of the predetermined temperature shift value is completed. Even so, instead of the fixed temperature shift value, the intake air temperature is controlled to the target temperature according to the temperature shift value corresponding to the current activity determination amount. Since it takes a long time to change the control and captures a long-term change in the room, erroneous fluctuations in the temperature shift value based on the short-term change are eliminated. In addition, the time until the change of control is divided into multiple temperature shift calculation sections, and the temperature shift is calculated for each temperature shift calculation section to grasp the indoor situation. Information can be accurately captured without any bias. Further, data in the temperature shift calculation section is used only for the temperature shift calculation, and the temperature shift calculation is the only result. Therefore, even when the data of multiple temperature shift calculations compete with each other in the temperature shift calculation interval and the result of the temperature shift calculation changes, the determinate temperature shift value calculation based on the results of the multiple temperature shift calculations is superior. Stable temperature shift calculation results. In addition, when the temperature shift value in any temperature shift calculation interval clearly increases, the temperature shift calculation interval following that temperature shift calculation interval is omitted, and the output in the temperature shift calculation interval in which the temperature shift value has increased clearly is omitted. Based on the above, the deterministic temperature shift value is calculated. Therefore, the time until the control is changed is shortened, and the responsiveness of the control is ensured. Normally, control is performed at a time interval that balances the time required to change the control so that the indoor conditions can be ascertained with emphasis on certainty and the control interval that can ensure a gentle change without impairing the comfort of the room. Since the change is made, the comfort in the room is not impaired. On the other hand, when the output of the temperature shift calculation section obtained by dividing the time until the control change into a plurality of times clearly increases, the control is immediately changed, so that responsiveness is also ensured. In this way, while maintaining indoor comfort with normal gentle control, the time to final judgment is shortened as needed to control the air conditioner in a timely manner, saving energy while considering comfort. You can drive.

また、本実施例の空気調和機は、吹出空気の吹出方向を制御する風向板を備え、輻射温度センサの検知範囲に風向板が存在する場合、風向板の角度に基づいて、輻射温度センサにより検出された輻射温度を補正する。輻射温度センサにより所定の検出範囲内の輻射温度を検出する際に、輻射温度センサの位置によっては、検出範囲内に空気調和機本体の風向板が存在することがある。空気調和機本体の風向板は、空気調和機の吹出口付近に存在しているため、風向板の温度は空気調和機の吹出空気温度の影響を受ける。一般に、暖房運転時においては、空気調和機の吹出空気温度は室温よりも高い温度となるが、床面や壁面の温度は室温よりも低くなる。ここで、輻射温度センサの検知範囲内に風向板が存在する場合、本来の床面や壁面の温度よりも風向板の温度が高いため、輻射温度が高いと検知してしまう。さらに、輻射温度センサの検知範囲内に占める風向板の割合が大きくなれば、風向板の温度の影響は大きくなる。そこで、空気調和機本体の風向板が輻射温度センサの検出範囲内に存在した場合は、風向板の位置に応じて、検出した輻射温度を補正することで、輻射温度の検知の誤差を補正することが可能となる。   In addition, the air conditioner of this embodiment includes a wind direction plate that controls the blowing direction of the blown air, and when the wind direction plate exists in the detection range of the radiation temperature sensor, the Correct the detected radiation temperature. When the radiation temperature sensor detects the radiation temperature within the predetermined detection range, the wind direction plate of the air conditioner body may exist within the detection range depending on the position of the radiation temperature sensor. Since the wind direction plate of the air conditioner main body exists in the vicinity of the air outlet of the air conditioner, the temperature of the wind direction plate is affected by the air temperature of the air conditioner. In general, during the heating operation, the air temperature of the air conditioner is higher than room temperature, but the temperature of the floor and wall surfaces is lower than room temperature. Here, when the wind direction plate exists within the detection range of the radiation temperature sensor, since the temperature of the wind direction plate is higher than the original temperature of the floor or wall surface, it is detected that the radiation temperature is high. Furthermore, if the ratio of the wind direction plate in the detection range of the radiation temperature sensor increases, the influence of the temperature of the wind direction plate increases. Therefore, when the wind direction plate of the air conditioner main body is within the detection range of the radiation temperature sensor, the detected radiation temperature is corrected according to the position of the wind direction plate to correct the detection error of the radiation temperature. It becomes possible.

また、本実施例の空気調和機は、吹出空気の吹出方向を制御する風向板を備え、輻射温度センサの検知範囲に風向板が存在する場合、輻射温度センサの検知範囲外に風向板を移動させてから、輻射温度センサにより輻射温度を検出する。空気調和機本体の風向板が輻射温度センサの検出範囲内に存在する場合は、輻射温度を検出する際に、風向板を一旦輻射温度センサの検出範囲の外に移動させることで、風向板の温度の影響を受けることなく、輻射温度を検出することが可能となる。   In addition, the air conditioner of the present embodiment includes a wind direction plate that controls the blowing direction of the blown air, and moves the wind direction plate outside the detection range of the radiation temperature sensor when the wind direction plate exists in the detection range of the radiation temperature sensor. Then, the radiation temperature is detected by the radiation temperature sensor. If the wind direction plate of the air conditioner body is within the detection range of the radiation temperature sensor, when detecting the radiation temperature, move the wind direction plate once outside the detection range of the radiation temperature sensor. The radiation temperature can be detected without being affected by the temperature.

また、本実施例の空気調和機は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、空気調和された空気を室内に吹き出す室内送風機と、運転を制御する制御部とを備え、赤外線センサの検出結果及び音センサの検出結果に基づいて判定された音源の種類に応じて在室者の活動量を判定する活動量判定部を有し、音センサで判定された音源の種類に応じて室内送風機の回転数を変更する。また、赤外線センサに基づく前記在室者の動き量と音センサに基づく音源の種類との組み合わせに応じて、室内送風機の回転数を変更する。また、音源の種類が会話又は放送受信機器群と判定された場合は、室内送風機の回転数を下げる。また、音源の種類が重家事機器群と判定された場合は、室内送風機の回転数を上げる。なお、音源の判別は前述した手法を採用することができる。   In addition, the air conditioner of the present embodiment includes an infrared sensor that detects the amount of movement of the occupant, a sound sensor that detects the sound in the room, a setting unit that sets the set temperature in the room, and air that has been conditioned An indoor blower that blows the air into the room and a control unit that controls the operation, and determines the amount of activity of the occupant according to the type of the sound source determined based on the detection result of the infrared sensor and the detection result of the sound sensor It has an activity amount determination unit, and changes the rotation speed of the indoor fan according to the type of sound source determined by the sound sensor. Moreover, the rotation speed of an indoor air blower is changed according to the combination of the amount of movement of the occupant based on the infrared sensor and the type of sound source based on the sound sensor. Further, when the type of the sound source is determined to be a conversation or broadcast receiving device group, the number of rotations of the indoor fan is reduced. Moreover, when the kind of sound source is determined to be a heavy housework equipment group, the rotation speed of the indoor fan is increased. It should be noted that the method described above can be adopted for discrimination of the sound source.

音源の種類に応じて室内送風機の回転数を変化させることで、省エネ運転以外に、空気調和機自身の騒音低減や快適性の向上が可能である。例えば、音センサにより判別された音源が会話や放送受信機器群である場合は、室内送風機の回転数を下げることで、空気調和機自身の騒音が低減し、在室者が会話や放送を聞き取り易くなる。この場合、音源の判別によって頻繁に室内送風機の回転数が変動すると、空気調和機自身の騒音が変動し、在室者が不快に感じる。従って、室内送風機回転数を変化させた場合、所定期間は室内送風機回転数を変更しない。   By changing the rotation speed of the indoor blower according to the type of the sound source, it is possible to reduce noise and improve comfort of the air conditioner itself in addition to energy-saving operation. For example, if the sound source identified by the sound sensor is a conversation or broadcast receiving device group, the noise of the air conditioner itself can be reduced by lowering the rotation speed of the indoor blower, and the resident can listen to the conversation or broadcast. It becomes easy. In this case, if the rotational speed of the indoor blower frequently fluctuates due to the determination of the sound source, the noise of the air conditioner itself fluctuates and the occupants feel uncomfortable. Therefore, when the indoor fan rotation speed is changed, the indoor fan rotation speed is not changed for a predetermined period.

また、在室者の動き量と音源の組み合わせに基づいて、室内送風機回転数を変化させることが可能である。室内から焦電型赤外線センサに到達する赤外線を所定のサンプリング周期で所定時間サンプリングし、赤外線の検出回数の割合(Px)を算出し、サンプリング結果とする。このサンプリング結果が静判定閾値未満の場合、反応の検出量の区分(反応の検出区分)を「反応静」と区分する。サンプリング結果が静判定閾値以上の場合は、サンプリング結果を強判定閾値と比較する。サンプリング結果が強判定閾値以上の場合は、反応の検出区分を「反応強」と区分する。サンプリング結果が強判定閾値未満の場合は、反応の検出区分を「反応中」と区分する。焦電型赤外線センサの反応が「反応静」又は「反応中」で、音源が会話又は放送受信機器群で合った場合は、在室者が静かに会話又は放送受信機器を視聴している状態であるので、室内送風機回転数を下げることで、在室者が会話や放送を聞き取り易くする。このように室内の音源を判別することで、在室者の快適性をさらに向上することができる。   Moreover, based on the combination of the amount of movement of the occupants and the sound source, it is possible to change the rotational speed of the indoor fan. Infrared rays that reach the pyroelectric infrared sensor from the room are sampled for a predetermined time at a predetermined sampling period, and the ratio (Px) of the number of detection times of infrared rays is calculated as the sampling result. When the sampling result is less than the static determination threshold, the reaction detection amount classification (reaction detection classification) is classified as “reaction static”. If the sampling result is equal to or greater than the static determination threshold, the sampling result is compared with the strong determination threshold. When the sampling result is equal to or higher than the strong determination threshold, the reaction detection classification is classified as “reaction strong”. When the sampling result is less than the strong determination threshold, the reaction detection category is classified as “in response”. When the response of the pyroelectric infrared sensor is “Reactive” or “Responding” and the sound source matches the conversation or broadcast receiving device group, the person in the room is quietly watching the conversation or broadcast receiving device Therefore, by reducing the rotational speed of the indoor fan, the occupants can easily hear conversations and broadcasts. Thus, by identifying the sound source in the room, the comfort of the occupants can be further improved.

BHs 低い周波数帯での会話の上限回数閾値
BHt 低い周波数帯での放送受信機器の上限回数閾値
BLs 低い周波数帯での会話の下限回数閾値
BLt 低い周波数帯での放送受信機器の下限回数閾値
BP 低い周波数帯での検出回数の割合
BPa 低い周波数帯での空気調和機判定閾値
BPh 低い周波数帯での重家事用機器判定閾値
BPt 低い周波数帯での放送受信機器判定閾値
BWc 低い周波数帯での重家事用機器判定幅
HHs 高い周波数帯での会話の上限回数閾値
HHt 高い周波数帯での放送受信機器の上限回数閾値
HLs 高い周波数帯での会話の下限回数閾値
HLt 高い周波数帯での放送受信機器の下限回数閾値
HP 高い周波数帯での検出回数の割合
HPa 高い周波数帯での空気調和機判定閾値
HPh 高い周波数帯での重家事用機器判定閾値
HPt 高い周波数帯での放送受信機器判定閾値
HWc 高い周波数帯での重家事用機器判定幅
1 空気調和機
2 室内機
3 室外機
4 接続配管
5 リモコン
6 筐体ベース
7 熱交換器
8 室内送風機
8a 吹出風路
9 露受皿
10 化粧枠
11 フロントパネル
12 空気吸込口
13 空気吹出口
14 左右風向板
15 上下風向板
16 室内送受信部
17 焦電型赤外線センサ
18 輻射センサ(サーモパイル)
19 音センサ
20 制御部
25 室温センサ
26 湿度センサ
27 リモコン周囲温度センサ
28 リモコン位置センサ
29 カレンダー機能
35 活動量判定部
36 温度シフト値設定部
37 目標室温設定部
38 室温設定部
45 空調能力制御部
46 圧縮機回転数設定部
47 室内送風機回転数設定部
48 室外送風機回転数設定部
55 圧縮機回転数設定部
56 室外送風機
900 室内
BHs Upper limit number of times threshold of conversation in low frequency band BHt Upper limit number of times threshold of broadcast receiving device in low frequency band BLs Lower limit number of times threshold of conversation in low frequency band BLt Lower limit number of times threshold of broadcast receiving device in low frequency band BP Low Ratio of frequency of detection in frequency band BPa Air conditioner determination threshold BPh in low frequency band Heavy household equipment judgment threshold BPt in low frequency band Broadcast receiving equipment judgment threshold BWc in low frequency band Heavy housework in low frequency band Device determination width HHs Upper limit number of times threshold of conversation in high frequency band HHt Upper limit number of times threshold of broadcast receiving device in high frequency band HLs Lower limit number of times threshold of conversation in high frequency band HLt Lower limit of broadcast receiving device in high frequency band Frequency threshold HP Ratio of number of detections in high frequency band HPa Air conditioner determination threshold HPh in high frequency band Heavy household equipment in high frequency band Equipment judgment threshold HPt Broadcast receiving equipment judgment threshold in high frequency band HWc Equipment judgment width for heavy housework in high frequency band 1 Air conditioner 2 Indoor unit 3 Outdoor unit 4 Connection pipe 5 Remote control 6 Housing base 7 Heat exchanger 8 Indoor blower 8a Outlet air passage 9 Dew tray 10 Decor frame 11 Front panel 12 Air inlet 13 Air outlet 14 Left and right wind direction plate 15 Up and down air direction plate 16 Indoor transmission / reception unit 17 Pyroelectric infrared sensor 18 Radiation sensor (thermopile)
19 Sound sensor 20 Control unit 25 Room temperature sensor 26 Humidity sensor 27 Remote control ambient temperature sensor 28 Remote control position sensor 29 Calendar function 35 Activity amount determination unit 36 Temperature shift value setting unit 37 Target room temperature setting unit 38 Room temperature setting unit 45 Air conditioning capability control unit 46 Compressor rotation speed setting section 47 Indoor fan rotation speed setting section 48 Outdoor fan rotation speed setting section 55 Compressor rotation speed setting section 56 Outdoor fan 900

Claims (16)

在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、運転を制御する制御部と、を備え、
前記赤外線センサの検出結果、及び前記音センサの検出結果に基づいて判定された音源の種類に応じて、在室者の活動量を判定する活動量判定部を有し、
前記活動量判定部で判定された在室者の活動判定量を基に、前記設定温度に基づいて定められた目標値を変更する空気調和機。
An infrared sensor that detects the amount of movement of the occupants, a sound sensor that detects indoor sound, a setting unit that sets the indoor set temperature, and a control unit that controls operation,
According to the detection result of the infrared sensor and the type of the sound source determined based on the detection result of the sound sensor, an activity amount determination unit that determines the amount of activity of the occupants in the room,
An air conditioner that changes a target value determined based on the set temperature based on the activity determination amount of the occupant determined by the activity amount determination unit.
請求項1において、前記活動量判定部は、前記音源の種類を温感変動大音源の集団と温感変動小音源の集団に分け、
前記音源の種類が前記温感変動大音源の集団に属する場合の活動判定量を、前記赤外線センサの反応区分が同一の区分であって前記音源の種類が前記温感変動小音源の集団に属する場合の活動判定量以上とする空気調和機。
In Claim 1, the said active mass determination part divides the kind of said sound source into the group of a warm feeling fluctuation | variation large sound source and the group of a warm feeling fluctuation | variation small sound source,
The activity determination amount when the type of the sound source belongs to the group of the large temperature fluctuation sound sources, the reaction classification of the infrared sensor is the same, and the type of the sound source belongs to the group of the small temperature fluctuation sound sources An air conditioner that exceeds the activity judgment amount.
請求項2において、前記温感変動小音源の集団に空気調和機自身及び放送受信機器群を含み、前記温感変動大音源の集団に重家事用機器群及び会話を含む空気調和機。   The air conditioner according to claim 2, wherein the group of the thermal fluctuation small sound sources includes the air conditioner itself and a broadcast receiving device group, and the group of the thermal fluctuation large sound sources includes the heavy household equipment group and conversation. 請求項3において、前記放送受信機器群にテレビジョン,ラジオを含み、前記重家事用機器群に電気掃除機を含む空気調和機。   4. The air conditioner according to claim 3, wherein the broadcast receiving device group includes a television and a radio, and the heavy housework device group includes a vacuum cleaner. 請求項1又は3において、前記活動量判定部は、前記音センサの検出結果を複数の周波数帯に分離し、前記周波数帯毎の検出回数及び前記周波数帯の組み合わせに基づいて、前記音源を判定する空気調和機。   4. The activity amount determination unit according to claim 1, wherein the activity amount determination unit separates the detection result of the sound sensor into a plurality of frequency bands, and determines the sound source based on the number of detections for each frequency band and the combination of the frequency bands. Air conditioner to do. 請求項5において、前記複数の周波数帯は、1〜4kHzの周波数帯、及び5〜12kHzの周波数帯を含む空気調和機。   6. The air conditioner according to claim 5, wherein the plurality of frequency bands include a frequency band of 1 to 4 kHz and a frequency band of 5 to 12 kHz. 請求項5において、前記活動量判定部は、前記音センサの検出結果を複数の周波数帯に分離し、所定のサンプリング周期で所定時間サンプリングし、サンプリング結果として音の検出回数の割合を前記周波数帯毎に求めることを複数回行い、これらの複数回のサンプリング結果に基づいて音源の種類を判定する空気調和機。   6. The activity amount determination unit according to claim 5, wherein the activity amount determination unit divides the detection result of the sound sensor into a plurality of frequency bands, samples the detection result for a predetermined time at a predetermined sampling period, and sets a ratio of the number of sound detections as the sampling result An air conditioner that performs a plurality of determinations every time and determines the type of the sound source based on the sampling results of the plurality of times. 請求項5において、前記活動量判定部は音源の判定を複数回繰返し、前記複数の判定結果において出現頻度が最大の音源群を室内の音源と判定する空気調和機。   6. The air conditioner according to claim 5, wherein the activity amount determination unit repeats determination of a sound source a plurality of times, and determines a sound source group having the highest appearance frequency among the plurality of determination results as an indoor sound source. 請求項5において、前記活動量判定部は、音源の判定を複数回繰返し、前記複数の判定結果に重み付けし、その重み付けした結果を音源の群毎に積算し、積算値が最大の音源の群を室内の音源の種類と判定する空気調和機。   6. The sound source determination unit according to claim 5, wherein the activity amount determination unit repeats sound source determination a plurality of times, weights the plurality of determination results, integrates the weighted results for each sound source group, and has a maximum integrated value. Is an air conditioner that determines the type of sound source in the room. 請求項8又は9において、前記活動量判定部は、複数の音源の群に選択順位を定め、前記出現頻度又は前記積算値が最大の音源の群が複数の場合には、前記選択順位の高い音源の群を室内の音源の種類と判定する空気調和機。   The activity amount determination unit according to claim 8 or 9, wherein the activity amount determination unit determines a selection order for a plurality of sound source groups, and the plurality of sound source groups having the maximum appearance frequency or the integrated value has a high selection order. An air conditioner that determines a group of sound sources as the type of sound source in the room. 請求項10において、前記活動量判定部が判定する室内の音源の群として、空気調和機自身,重家事用機器群,放送受信機器群、及び会話を含む空気調和機。   The air conditioner according to claim 10, wherein the group of sound sources in the room determined by the activity amount determination unit includes the air conditioner itself, a heavy household equipment group, a broadcast receiving apparatus group, and a conversation. 請求項11において、前記選択順位として放送受信機器群の選択順位を会話の選択順位より高く設定する空気調和機。   The air conditioner according to claim 11, wherein the selection order of the broadcast receiving device group is set higher than the selection order of conversation as the selection order. 在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサと、室内の設定温度を設定する設定部と、空気調和された空気を室内に吹き出す室内送風機と、運転を制御する制御部と、を備え、
前記赤外線センサの検出結果、及び前記音センサの検出結果に基づいて判定された音源の種類に応じて、在室者の活動量を判定する活動量判定部を有し、
前記音センサで判定された音源の種類に応じて、前記室内送風機の回転数を変更する空気調和機。
An infrared sensor that detects the amount of movement of the occupants, a sound sensor that detects the sound in the room, a setting unit that sets the indoor temperature setting, an indoor blower that blows out air-conditioned air, and operation control A control unit,
According to the detection result of the infrared sensor and the type of the sound source determined based on the detection result of the sound sensor, an activity amount determination unit that determines the amount of activity of the occupants in the room,
An air conditioner that changes the number of rotations of the indoor blower according to the type of the sound source determined by the sound sensor.
請求項13において、前記赤外線センサに基づく前記在室者の動き量と前記音センサに基づく音源の種類との組み合わせに応じて、前記室内送風機の回転数を変更する空気調和機。   The air conditioner according to claim 13, wherein the number of rotations of the indoor blower is changed according to a combination of the amount of movement of the occupant based on the infrared sensor and the type of sound source based on the sound sensor. 請求項13又は14において、音源の種類が会話又は放送受信機器群と判定された場合は、前記室内送風機の回転数を下げる空気調和機。   The air conditioner according to claim 13 or 14, wherein when the type of the sound source is determined to be a conversation or broadcast receiving device group, the rotational speed of the indoor blower is reduced. 請求項13又は14において、音源の種類が重家事用機器群と判定された場合は、前記室内送風機の回転数を上げる空気調和機。   The air conditioner according to claim 13 or 14, wherein when the type of the sound source is determined to be a heavy household equipment group, the number of rotations of the indoor blower is increased.
JP2010198454A 2010-09-06 2010-09-06 Air conditioner Active JP5320361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198454A JP5320361B2 (en) 2010-09-06 2010-09-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198454A JP5320361B2 (en) 2010-09-06 2010-09-06 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012057817A JP2012057817A (en) 2012-03-22
JP5320361B2 true JP5320361B2 (en) 2013-10-23

Family

ID=46055138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198454A Active JP5320361B2 (en) 2010-09-06 2010-09-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP5320361B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927660B (en) * 2012-11-30 2014-09-10 四川长虹电器股份有限公司 Intelligent air-conditioner control method and system based on self-adaptive temperature control technique
JP6238792B2 (en) * 2014-03-03 2017-11-29 三菱電機株式会社 Air conditioner
WO2016088353A1 (en) * 2014-12-01 2016-06-09 日本電気株式会社 Environmental control equipment and environmental control system
CN109974225A (en) * 2019-04-09 2019-07-05 珠海格力电器股份有限公司 A kind of air conditioning control method, device, storage medium and air-conditioning
WO2023105564A1 (en) * 2021-12-06 2023-06-15 三菱電機株式会社 Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749879B2 (en) * 1988-02-29 1995-05-31 シャープ株式会社 Air conditioner
JPH024147A (en) * 1988-06-21 1990-01-09 Mitsubishi Electric Corp Control device for air conditioner
JP2808038B2 (en) * 1990-09-11 1998-10-08 株式会社日立製作所 Air conditioner by activity sensing
JP2757670B2 (en) * 1992-02-27 1998-05-25 ダイキン工業株式会社 Air conditioner
JP3007047B2 (en) * 1996-04-19 2000-02-07 建司 高橋 Sound identification device
JP2007315724A (en) * 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd Air conditioner
JP5020222B2 (en) * 2008-12-08 2012-09-05 三菱電機株式会社 Air conditioner
JP5309102B2 (en) * 2010-09-06 2013-10-09 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2012057817A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5309102B2 (en) Air conditioner
JP5325854B2 (en) Air conditioner
JP5517877B2 (en) Air conditioner
US11411764B2 (en) Information providing method and information providing apparatus
JP5646969B2 (en) Air conditioner
JP6061441B2 (en) Air conditioner
KR101291967B1 (en) Air conditioner
JP5216519B2 (en) Air conditioner
JP5320361B2 (en) Air conditioner
KR102373652B1 (en) Method for operating artificial intelligenc air conditioner
JP5422172B2 (en) Air conditioner
JP2013088087A (en) Air conditioner
JP2015206483A (en) air conditioner
JP5325855B2 (en) Air conditioner
JP5325853B2 (en) Air conditioner
JP2013088072A (en) Air conditioner
JP2018119782A (en) Air conditioner
JP2009186135A (en) Air conditioner

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250