WO2023203789A1 - METHOD FOR PRODUCING ε-FORM COPPER PHTHALOCYANINE PIGMENT COMPOSITION - Google Patents

METHOD FOR PRODUCING ε-FORM COPPER PHTHALOCYANINE PIGMENT COMPOSITION Download PDF

Info

Publication number
WO2023203789A1
WO2023203789A1 PCT/JP2022/030850 JP2022030850W WO2023203789A1 WO 2023203789 A1 WO2023203789 A1 WO 2023203789A1 JP 2022030850 W JP2022030850 W JP 2022030850W WO 2023203789 A1 WO2023203789 A1 WO 2023203789A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper phthalocyanine
pigment composition
type copper
producing
type
Prior art date
Application number
PCT/JP2022/030850
Other languages
French (fr)
Japanese (ja)
Inventor
成美 奥村
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Publication of WO2023203789A1 publication Critical patent/WO2023203789A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0014Influencing the physical properties by treatment with a liquid, e.g. solvents
    • C09B67/0016Influencing the physical properties by treatment with a liquid, e.g. solvents of phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • C09B67/0026Crystal modifications; Special X-ray patterns of phthalocyanine pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a method for producing an ⁇ -type copper phthalocyanine pigment composition.
  • the ⁇ -type copper phthalocyanine pigment is a pigment with a reddish blue tone that is clear and has strong coloring power, and has excellent light resistance and heat resistance. Taking advantage of these properties, ⁇ -type copper phthalocyanine pigments are used in a wide range of fields such as paints and plastics, and are also useful as pigments for forming blue colors in color filters for liquid crystals.
  • ⁇ -type copper phthalocyanine As a general method for producing ⁇ -type copper phthalocyanine, a method is known in which ⁇ -type copper phthalocyanine is subjected to solvent salt milling together with a phthalocyanine derivative (Patent Document 1). Furthermore, phthalimidomethylated phthalocyanine and the like are known as phthalocyanine derivatives used in solvent salt milling (Patent Documents 1 and 2).
  • Patent Document 3 a method of phthalimidomethylating phthalocyanine in sulfuric acid is known (Patent Document 3).
  • xylene sulfonic acid which is an acidic surfactant, is added after the reaction is completed.
  • Patent No. 4097053 Japanese Patent Application Publication No. 2002-121420 US Patent No. 2,855,403
  • phthalimidomethylated copper phthalocyanine produced by reaction in concentrated sulfuric acid can be obtained in the form of a strongly aggregated powder. Since phthalimidomethylated copper phthalocyanine hardly dissolves in water-soluble organic solvents such as diethylene glycol used in solvent salt milling, it is difficult to uniformly mix it with ⁇ -type copper phthalocyanine even by solvent salt milling proposed in Patent Document 1. took a long time.
  • ⁇ -type copper phthalocyanine produced in sulfuric acid also has strong aggregation properties. Therefore, when strongly aggregated ⁇ -type copper phthalocyanine is subjected to solvent salt milling, it tends to undergo crystal transition from ⁇ -type to ⁇ -type in a non-uniform state. As a result, the resulting pigment particles tend to be non-uniform, resulting in problems such as decreased performance as a coloring material and a large amount of ⁇ -type particles mixed in. In particular, when used as a coloring agent for liquid crystal color filters, color properties such as brightness and contrast tend to be insufficient.
  • the present invention has been made in view of the problems of the prior art, and its object is to provide coloring for color filters used in liquid crystals, etc., which have excellent color characteristics such as contrast and brightness.
  • An object of the present invention is to provide a simple method for producing ⁇ -type copper phthalocyanine, which is useful as an agent.
  • the following method for producing an ⁇ -type copper phthalocyanine pigment composition is provided.
  • a method for producing an ⁇ -type copper phthalocyanine pigment composition comprising the step of solvent salt milling a mixture containing phthalocyanine to obtain a pigment composition.
  • ⁇ -type copper phthalocyanine which has excellent color properties such as contrast and brightness and is useful as a coloring agent for color filters used in liquid crystals and the like.
  • One embodiment of the method for producing the ⁇ -type copper phthalocyanine pigment composition of the present invention (hereinafter also simply referred to as "the production method") is to treat phthalimidomethylated copper phthalocyanine with a nonionic surfactant to form the treated phthalimide.
  • a step of obtaining methylated copper phthalocyanine (step (1)) and a step of solvent salt milling a mixture containing ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, and treated phthalimidomethylated copper phthalocyanine to obtain a pigment composition. (Step (2)).
  • Step (1) A step of obtaining methylated copper phthalocyanine
  • step (2) a step of solvent salt milling a mixture containing ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, and treated phthalimidomethylated copper phthalocyanine to obtain a pigment composition.
  • step (1) phthalimidomethylated copper phthalocyanine (hereinafter also referred to as "PIM copper phthalocyanine”) is treated with a nonionic surfactant to obtain treated PIM copper phthalocyanine.
  • PIM copper phthalocyanine phthalimidomethylated copper phthalocyanine
  • a nonionic surfactant By treating the PIMized copper phthalocyanine with a nonionic surfactant, the strong aggregation of the PIMized copper phthalocyanine can be alleviated, unlike the case where the PIMized copper phthalocyanine is treated with a surfactant other than the nonionic surfactant. This makes it possible to improve the processing efficiency of solvent salt milling in the subsequent step (step (2)), and to easily produce an ⁇ -type copper phthalocyanine pigment composition with excellent color properties such as contrast and brightness. I can do it.
  • PIMized copper phthalocyanine can be produced according to a known method using copper phthalocyanine as a raw material. For example, as disclosed in US Pat. No. 2,855,403, PIMized copper phthalocyanine can be obtained by reacting copper phthalocyanine and methylol phthalimide in sulfuric acid. Note that phthalimide and paraformaldehyde may be used instead of methylol phthalimide.
  • nonionic surfactant Commercially available products can be used as the nonionic surfactant.
  • specific examples of nonionic surfactants include glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, sucrose fatty acid ester, fatty acid alkanolamide, polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ether, and polyoxyalkylene fatty acid ester.
  • Oxyalkylene polystyrylphenyl ether and the like can be mentioned.
  • polyoxyalkylene alkyl ether polyoxyalkylene alkylphenyl ether, and polyoxyalkylene polystyrylphenyl ether are preferred, and polyoxyalkylene polystyrylphenyl ether is particularly preferred.
  • the process for producing PIM copper phthalocyanine includes, for example, a reaction process in concentrated sulfuric acid, a precipitation process in water, a filtration/washing process, and a drying process. Among these, it is preferable to treat the PIM copper phthalocyanine with a nonionic surfactant after the filtration/washing process and before the drying process.
  • Specific methods for treating PIMized copper phthalocyanine with a nonionic surfactant include, for example, (i) a method of adding a nonionic surfactant into the system in the production process of PIMized copper phthalocyanine; ii) A method of adding an aqueous solution of a nonionic surfactant into the system; (iii) A method of adding an emulsion obtained by mixing a nonionic surfactant, a water-insoluble solvent, and water into the system; etc. can be mentioned.
  • the above emulsion is added to a slurry prepared by peptizing PIMized copper phthalocyanine in water, and the emulsion is brought into contact with the PIMized copper phthalocyanine (contact with a nonionic surfactant).
  • PIMized copper phthalocyanine in the slurry forms strong aggregates.
  • water-insoluble organic solvent it is preferable to use at least one selected from the group consisting of toluene, xylene, ethyl acetate, and butyl acetate, and it is particularly preferable to use xylene.
  • the treatment of PIMized copper phthalocyanine with a nonionic surfactant is preferably carried out under heating conditions.
  • the uniformity of the treatment can be further improved by bringing the PIMized copper phthalocyanine into contact with a nonionic surfactant under heating conditions.
  • the temperature during treatment is preferably 60 to 100°C, more preferably 80 to 90°C.
  • Step (2) a mixture containing ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, and treated PIMized copper phthalocyanine is subjected to solvent salt milling to obtain a pigment composition.
  • the treated PIMized copper phthalocyanine is PIMized copper phthalocyanine that has been treated with a nonionic surfactant in the above-mentioned step (1), so that strong aggregation is alleviated. Therefore, by subjecting the mixture containing this treated PIMized copper phthalocyanine to solvent salt milling, the crystal transition from ⁇ type to ⁇ type is promoted, resulting in an ⁇ type copper phthalocyanine pigment composition with excellent color properties such as contrast and brightness. can be manufactured more efficiently.
  • Solvent salt milling usually involves kneading a mixture containing ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, and treated PIMized copper phthalocyanine using a kneader in the presence of a water-soluble organic solvent and an inorganic salt. and by grinding.
  • kneading machines include kneaders, planetary mixers, and Miracle K. C. K (trade name, manufactured by Asada Steel Co., Ltd.), Trimix (trade name, manufactured by Inoue Seisakusho Co., Ltd.), etc. can be used.
  • ⁇ -type copper phthalocyanine can be produced according to a known method using crude copper phthalocyanine containing ⁇ -type copper phthalocyanine.
  • methods for producing ⁇ -type copper phthalocyanine include (i) an acid pasting method in which crude copper phthalocyanine is dissolved in sulfuric acid and a sulfuric acid solution is injected into water to precipitate; (ii) using a ball mill, etc.
  • Examples include a dry milling method in which crude copper phthalocyanine is dry-milled; (iii) a solvent salt milling method in which crude copper phthalocyanine is kneaded with an inorganic salt and a water-soluble organic solvent in a kneader such as a kneader; and the like.
  • (i) acid pasting method is preferred because it yields a more highly purified and fine ⁇ -type copper phthalocyanine.
  • the concentration of sulfuric acid used in the acid pasting method is preferably 70 to 100% by mass. If the concentration of sulfuric acid is less than 70% by mass, crude copper phthalocyanine may be difficult to dissolve sufficiently, and ⁇ -type copper phthalocyanine may be easily mixed into the resulting precipitate. Furthermore, since the particle size of the obtained ⁇ -type copper phthalocyanine tends to increase, the subsequent solvent salt milling may also result in slightly insufficient refinement. On the other hand, if the concentration of sulfuric acid is too high, a portion of the ⁇ -type copper phthalocyanine produced may be easily sulfonated. Therefore, in consideration of the purity, particle size, etc. of the obtained ⁇ -type copper phthalocyanine, it is more preferable that the concentration of sulfuric acid used in the acid pasting method is 95 to 98% by mass.
  • ⁇ -type copper phthalocyanine one produced according to a known method may be used, or a commercially available product may be used.
  • Known methods for producing ⁇ -type copper phthalocyanine include the solvent method disclosed in Japanese Patent Publication No. 57-35210; the method of dry grinding followed by solvent treatment disclosed in Japanese Patent No. 3030880; and the method disclosed in Japanese Patent Publication No. 64-7108. Examples include a method of micronizing ⁇ -type copper phthalocyanine obtained by the disclosed copper phthalocyanine synthesis using solvent salt milling.
  • water-soluble organic solvent it is preferable to use a high boiling point solvent from the viewpoints of safety and workability.
  • water-soluble organic solvents include diethylene glycol, glycerin, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2-methoxyethanol, 2-butoxyethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene Examples include glycol, triethylene glycol monomethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
  • the inorganic salt it is preferable to use a water-soluble inorganic salt.
  • the inorganic salt it is preferable to use sodium chloride, potassium chloride, sodium sulfate, magnesium sulfate, and the like.
  • Solvent salt milling is preferably carried out at 50 to 150°C, more preferably 70 to 140°C.
  • solvent salt milling is carried out under a temperature condition of less than 50° C.
  • the crystal transition from ⁇ type to ⁇ type may be somewhat insufficient.
  • solvent salt milling is performed under a temperature condition of over 150° C., the performance as a coloring material may tend to deteriorate slightly due to crystal growth.
  • Solvent salt milling is preferably carried out at 50 to 80°C.
  • the amount of ⁇ -type copper phthalocyanine relative to 100 parts by mass of ⁇ -type copper phthalocyanine is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass. If the amount of ⁇ -type copper phthalocyanine is less than 5 parts by mass per 100 parts by mass of ⁇ -type copper phthalocyanine, it may take some time for crystal transition from ⁇ -type to ⁇ -type, and ⁇ -type crystals may be formed. It may become easier. On the other hand, if the amount of the ⁇ -type copper phthalocyanine is more than 50 parts by mass based on 100 parts by mass of the ⁇ -type copper phthalocyanine, the productivity may decrease slightly, which may be industrially disadvantageous.
  • the amount of the water-soluble organic solvent is preferably 50 to 500 parts by mass with respect to a total of 100 parts by mass of ⁇ -type copper phthalocyanine and ⁇ -type copper phthalocyanine.
  • the water-soluble organic solvent may be added in its entirety at the initial stage of solvent salt milling, or may be added in stages depending on the progress of refinement.
  • the amount of the inorganic salt is preferably 200 to 2,000 parts by mass based on a total of 100 parts by mass of the ⁇ -type copper phthalocyanine and the ⁇ -type copper phthalocyanine, and the amount of the inorganic salt is preferably 200 to 2,000 parts by mass. It may be adjusted as appropriate depending on the degree. The larger the amount of the inorganic salt added, the finer the ⁇ -type copper phthalocyanine pigment composition can be obtained.
  • the amount of treated PIM copper phthalocyanine is preferably 1 to 20 parts by mass relative to 100 parts by mass of ⁇ -type copper phthalocyanine.
  • the treated PIMized copper phthalocyanine may be charged at the initial stage of solvent salt milling, or may be charged in advance during the process of producing ⁇ -type copper phthalocyanine. From the viewpoint of processing PIM copper phthalocyanine more uniformly, it is possible to dissolve the treated PIM copper phthalocyanine in sulfuric acid together with the crude copper phthalocyanine used as a raw material when producing ⁇ -type copper phthalocyanine by the acid pasting method described above. preferable.
  • the time required for solvent salt milling varies depending on the temperature, the amount of materials charged, etc., but is preferably 2 to 20 hours, and may be adjusted taking into account the progress of crystal transition and refinement.
  • a powdered pigment composition that can be used as a coloring material can be obtained by peptizing the kneaded material obtained by solvent salt milling in water, followed by filtration, washing, drying, and pulverization. It is preferable to repeat filtration and water washing until the water-soluble organic solvent and inorganic salt contained in the kneaded product are completely removed.
  • the drying temperature may be, for example, 70 to 120° C., and a box dryer, band dryer, spray dryer, etc. can be used.
  • a mortar, hammer mill, disc mill, pin mill, jet mill, etc. can be used to crush the dried lumps into powder.
  • Step (3) The pigment composition obtained by the solvent salt milling described above can be used as the desired ⁇ -type copper phthalocyanine pigment composition.
  • the manufacturing method of the present embodiment further includes a step (step (3)) of subjecting the pigment composition obtained in step (2) above to solvent salt milling again.
  • solvent salt milling is preferably carried out at 50 to 80°C, more preferably solvent salt milling is carried out at 50 to 70°C.
  • the obtained ⁇ -type copper phthalocyanine pigment composition may be treated with pigment derivatives such as various phthalocyanine derivatives depending on the purpose.
  • pigment derivatives include sulfonic acid derivatives of metal-free or metal phthalocyanines, N-(dialkylamino)methyl derivatives of metal-free or metal phthalocyanines, N-(dialkylaminoalkyl)sulfonic acid amide derivatives of metal-free or metal phthalocyanines, etc. be able to.
  • the pigment derivative may be added during the manufacturing process of the ⁇ -type copper phthalocyanine pigment composition, or may be added to the obtained ⁇ -type copper phthalocyanine pigment composition. Among these, it is preferable to add a pigment derivative when peptizing the wet cake obtained after solvent salt milling in water. When adding the pigment derivative, an acid or alkali may be added to adjust the pH, if necessary.
  • the ⁇ -type copper phthalocyanine pigment composition it may be treated with a pigment dispersant.
  • a pigment dispersant a commercially available product can be used.
  • Commercially available pigment dispersants include the following trade names: DISPERBYK-130, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBY K-180, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-2022, DISPERBYK-2050, DISPERBYK-2055, DISP ERBYK-2059, DISPERBYK-2070, DISPERBYK-2151, DISPERBYK-2064 (and above, BYK); EF
  • the process of producing the ⁇ -type copper phthalocyanine pigment composition it may be treated with various resins.
  • resins include acrylic resins; urethane resins; alkyd resins; natural rosins such as wood rosin, gum rosin, and tall oil rosin; modified rosins such as polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, and maleated rosin. and rosin derivatives such as rosin amine, lime rosin, alkylene oxide-added rosin, rosin-modified alkyd resin, and rosin-modified phenol.
  • pigment dispersants that are water-soluble or can be uniformly dispersed in water may be treated in the same manner as for the pigment derivatives described above.
  • Pigment dispersants and the like that can be dissolved in organic solvents may be added during solvent salt milling.
  • An emulsion was prepared by mixing 10 parts of xylene, 1 part of polyoxyalkylene polystyrylphenyl ether, and 50 parts of water using a disper. The prepared emulsion was added to the slurry and stirred at 90°C for 1 hour. After cooling to 60° C., the mixture was filtered, dried, and pulverized to obtain 100 parts of PIM copper phthalocyanine. The obtained PIMized copper phthalocyanine is a treated PIMized copper phthalocyanine treated with a nonionic surfactant.
  • Example 1 ⁇ Production of ⁇ -type copper phthalocyanine pigment composition> (Example 1) 58 parts of crude copper phthalocyanine (including ⁇ -type copper phthalocyanine) produced by a conventional method and 3 parts of the treated PIM copper phthalocyanine obtained in Production Example 1 were added to 400 parts of 98% sulfuric acid, and the mixture was heated at 80°C for 3 hours. A sulfuric acid solution was obtained by stirring. After pouring the obtained sulfuric acid solution into 8,000 parts of ice water, the generated precipitate was filtered, washed with water, dried, and crushed to obtain 58 parts of a co-precipitate of ⁇ -type copper phthalocyanine and PIMized copper phthalocyanine. Ta.
  • Example 2 9 parts of the ⁇ -type copper phthalocyanine pigment composition obtained in Example 1, 90 parts of pulverized salt obtained by pulverizing with a pulverizer, and 21 parts of diethylene glycol were placed in a kneader and kneaded at 60° C. for 18 hours. During the kneading, 0.5 part of diethylene glycol was added in several portions as needed to obtain an appropriate viscosity. After peptizing the obtained kneaded material in water, 98% sulfuric acid was added in an amount to give a sulfuric acid concentration of 2%, and the mixture was stirred at 90° C. for 1 hour to obtain a slurry. The obtained slurry was filtered, washed with water, dried, and crushed to obtain 10 parts of an ⁇ -type copper phthalocyanine pigment composition.
  • Comparative example 1 22 parts of an ⁇ -type copper phthalocyanine pigment composition was prepared in the same manner as in Example 1 above, except that the untreated PIM copper phthalocyanine obtained in Comparative Production Example 1 was used in place of the treated PIM copper phthalocyanine. I got it.
  • Example 2 The ⁇ -type copper phthalocyanine pigment composition obtained in Example 1 was replaced with the ⁇ -type copper phthalocyanine pigment composition obtained in Comparative Example 1 in the same manner as in Example 2 described above. 10 parts of a phthalocyanine pigment composition were obtained.
  • a CF coloring agent was applied to a glass plate using a spin coater. After prebaking at 90°C for 2 minutes, post-baking was performed at 230°C for 30 minutes to obtain a glass substrate for measurement.
  • ⁇ -type copper phthalocyanine composition of the present invention According to the method for producing an ⁇ -type copper phthalocyanine composition of the present invention, ⁇ -type copper phthalocyanine useful as a coloring agent for color filters used in liquid crystals and the like can be easily produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a convenient method for producing ε-form copper phthalocyanine that exhibits excellent color characteristics, e.g., contrast and brightness, and that is useful as, inter alia, a colorant for the color filters used with, e.g., liquid crystals. The method for producing an ε-form copper phthalocyanine pigment composition comprises: a step for treating a phthalimidomethylated copper phthalocyanine with a nonionic surfactant to obtain a treated phthalimidomethylated copper phthalocyanine; and a step for obtaining a pigment composition by the solvent salt milling of a mixture comprising α-form copper phthalocyanine, ε-form copper phthalocyanine, and the treated phthalimidomethylated copper phthalocyanine.

Description

ε型銅フタロシアニン顔料組成物の製造方法Method for producing ε-type copper phthalocyanine pigment composition
 本発明は、ε型銅フタロシアニン顔料組成物の製造方法に関する。 The present invention relates to a method for producing an ε-type copper phthalocyanine pigment composition.
 ε型銅フタロシアニン顔料は、鮮明で着色力が強く、耐光性及び耐熱性に優れた赤味の青色の色調を有する顔料である。ε型銅フタロシアニン顔料は、これらの特性を生かして塗料やプラスチック等の幅広い分野で用いられており、液晶用カラーフィルターのブルー色形成用の顔料としても有用である。 The ε-type copper phthalocyanine pigment is a pigment with a reddish blue tone that is clear and has strong coloring power, and has excellent light resistance and heat resistance. Taking advantage of these properties, ε-type copper phthalocyanine pigments are used in a wide range of fields such as paints and plastics, and are also useful as pigments for forming blue colors in color filters for liquid crystals.
 ε型銅フタロシアニンの一般的な製造方法としては、α型銅フタロシアニンをフタロシアニン誘導体とともにソルベントソルトミリングする方法が知られている(特許文献1)。また、ソルベントソルトミリングする際に用いられるフタロシアニン誘導体としては、フタルイミドメチル化フタロシアニン等が知られている(特許文献1及び2)。 As a general method for producing ε-type copper phthalocyanine, a method is known in which α-type copper phthalocyanine is subjected to solvent salt milling together with a phthalocyanine derivative (Patent Document 1). Furthermore, phthalimidomethylated phthalocyanine and the like are known as phthalocyanine derivatives used in solvent salt milling (Patent Documents 1 and 2).
 フタルイミドメチル化フタロシアニンを製造する方法としては、例えば、フタロシアニンを硫酸中でフタルイミドメチル化する方法が知られている(特許文献3)。この方法では、酸性の界面活性剤であるキシレンスルホン酸を反応終了後に添加する。 As a method for producing phthalimidomethylated phthalocyanine, for example, a method of phthalimidomethylating phthalocyanine in sulfuric acid is known (Patent Document 3). In this method, xylene sulfonic acid, which is an acidic surfactant, is added after the reaction is completed.
特許4097053号公報Patent No. 4097053 特開2002-121420号公報Japanese Patent Application Publication No. 2002-121420 米国特許第2855403号明細書US Patent No. 2,855,403
 特許文献3で提案された方法では、濃硫酸中で反応して生成したフタルイミドメチル化銅フタロシアニンを、強く凝集した粉体の状態で得ることができる。フタルイミドメチル化銅フタロシアニンは、ソルベントソルトミリングに用いられるジエチレングリコール等の水溶性有機溶剤にはほとんど溶解しないため、特許文献1等で提案されたソルベントソルトミリングによってもα型銅フタロシアニンと均一に混合するには長時間を要していた。 In the method proposed in Patent Document 3, phthalimidomethylated copper phthalocyanine produced by reaction in concentrated sulfuric acid can be obtained in the form of a strongly aggregated powder. Since phthalimidomethylated copper phthalocyanine hardly dissolves in water-soluble organic solvents such as diethylene glycol used in solvent salt milling, it is difficult to uniformly mix it with α-type copper phthalocyanine even by solvent salt milling proposed in Patent Document 1. took a long time.
 また、フタルイミドメチル化銅フタロシアニンと同様に硫酸中で製造されるα型銅フタロシアニンも凝集性が強い。このため、強く凝集したα型銅フタロシアニンをソルベントソルトミリングすると、α型からε型へと不均一な状態で結晶転移しやすい。その結果、得られる顔料粒子が不均一になりやすく、色材としての性能が低下したり、β型のものが多く混入したりする等の課題が生じていた。なかでも、液晶用カラーフィルターの着色剤として用いるような場合には、明度やコントラスト等の色特性が不十分になりやすかった。 In addition, like phthalimidomethylated copper phthalocyanine, α-type copper phthalocyanine produced in sulfuric acid also has strong aggregation properties. Therefore, when strongly aggregated α-type copper phthalocyanine is subjected to solvent salt milling, it tends to undergo crystal transition from α-type to ε-type in a non-uniform state. As a result, the resulting pigment particles tend to be non-uniform, resulting in problems such as decreased performance as a coloring material and a large amount of β-type particles mixed in. In particular, when used as a coloring agent for liquid crystal color filters, color properties such as brightness and contrast tend to be insufficient.
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、コントラスト及び明度等の色特性に優れた、液晶等に用いられるカラーフィルター用の着色剤等として有用なε型銅フタロシアニンの簡便な製造方法を提供することにある。 The present invention has been made in view of the problems of the prior art, and its object is to provide coloring for color filters used in liquid crystals, etc., which have excellent color characteristics such as contrast and brightness. An object of the present invention is to provide a simple method for producing ε-type copper phthalocyanine, which is useful as an agent.
 すなわち、本発明によれば、以下に示すε型銅フタロシアニン顔料組成物の製造方法が提供される。
 [1]フタルイミドメチル化銅フタロシアニンを非イオン性界面活性剤で処理して、処理済みフタルイミドメチル化銅フタロシアニンを得る工程と、α型銅フタロシアニン、ε型銅フタロシアニン、及び前記処理済みフタルイミドメチル化銅フタロシアニンを含有する混合物をソルベントソルトミリングして、顔料組成物を得る工程と、を有するε型銅フタロシアニン顔料組成物の製造方法。
 [2]前記混合物が、前記処理済みフタルイミドメチル化銅フタロシアニン及びβ型銅フタロシアニンを含有する硫酸溶液を水に注入して析出させた析出物である前記[1]に記載のε型銅フタロシアニン顔料組成物の製造方法。
 [3]前記非イオン性界面活性剤、水不溶性有機溶剤、及び水を含有する乳化物を前記フタルイミドメチル化銅フタロシアニンに接触させて、前記処理済みフタルイミドメチル化銅フタロシアニンを得る前記[1]又は[2]に記載のε型銅フタロシアニン顔料組成物の製造方法。
 [4]前記水不溶性有機溶剤が、トルエン、キシレン、酢酸エチル、及び酢酸ブチルからなる群より選択される少なくとも一種である前記[3]に記載のε型銅フタロシアニン顔料組成物の製造方法。
 [5]前記混合物を、ジエチレングリコール及びプロピレングリコールの少なくともいずれかの水溶性有機溶剤の存在下でソルベントソルトミリングして、前記顔料組成物を得る前記[1]~[4]のいずれかに記載のε型銅フタロシアニン顔料組成物の製造方法。
 [6]前記顔料組成物を再度ソルベントソルトミリングする工程をさらに有する前記[1]~[5]のいずれかに記載のε型銅フタロシアニン顔料組成物の製造方法。
That is, according to the present invention, the following method for producing an ε-type copper phthalocyanine pigment composition is provided.
[1] A step of treating phthalimidomethylated copper phthalocyanine with a nonionic surfactant to obtain treated phthalimidomethylated copper phthalocyanine, α-type copper phthalocyanine, ε-type copper phthalocyanine, and the treated phthalimidomethylated copper phthalocyanine. A method for producing an ε-type copper phthalocyanine pigment composition, comprising the step of solvent salt milling a mixture containing phthalocyanine to obtain a pigment composition.
[2] The ε-type copper phthalocyanine pigment according to the above [1], wherein the mixture is a precipitate precipitated by pouring into water a sulfuric acid solution containing the treated phthalimidomethylated copper phthalocyanine and β-type copper phthalocyanine. Method for producing the composition.
[3] Contacting the emulsion containing the nonionic surfactant, water-insoluble organic solvent, and water with the phthalimidomethylated copper phthalocyanine to obtain the treated phthalimidomethylated copper phthalocyanine [1] or The method for producing an ε-type copper phthalocyanine pigment composition according to [2].
[4] The method for producing an ε-type copper phthalocyanine pigment composition according to [3] above, wherein the water-insoluble organic solvent is at least one selected from the group consisting of toluene, xylene, ethyl acetate, and butyl acetate.
[5] The method according to any one of [1] to [4] above, wherein the pigment composition is obtained by subjecting the mixture to solvent salt milling in the presence of a water-soluble organic solvent of at least one of diethylene glycol and propylene glycol. A method for producing an ε-type copper phthalocyanine pigment composition.
[6] The method for producing an ε-type copper phthalocyanine pigment composition according to any one of [1] to [5] above, further comprising the step of subjecting the pigment composition to solvent salt milling again.
 本発明によれば、コントラスト及び明度等の色特性に優れた、液晶等に用いられるカラーフィルター用の着色剤等として有用なε型銅フタロシアニンの簡便な製造方法を提供することができる。 According to the present invention, it is possible to provide a simple method for producing ε-type copper phthalocyanine, which has excellent color properties such as contrast and brightness and is useful as a coloring agent for color filters used in liquid crystals and the like.
<ε型銅フタロシアニン顔料組成物の製造方法>
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明のε型銅フタロシアニン顔料組成物の製造方法(以下、単に「製造方法」とも記す)の一実施形態は、フタルイミドメチル化銅フタロシアニンを非イオン性界面活性剤で処理して、処理済みフタルイミドメチル化銅フタロシアニンを得る工程(工程(1))と、α型銅フタロシアニン、ε型銅フタロシアニン、及び処理済みフタルイミドメチル化銅フタロシアニンを含有する混合物をソルベントソルトミリングして、顔料組成物を得る工程(工程(2))と、を有する。以下、本実施形態の製造方法の詳細について説明する。
<Method for producing ε-type copper phthalocyanine pigment composition>
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. One embodiment of the method for producing the ε-type copper phthalocyanine pigment composition of the present invention (hereinafter also simply referred to as "the production method") is to treat phthalimidomethylated copper phthalocyanine with a nonionic surfactant to form the treated phthalimide. A step of obtaining methylated copper phthalocyanine (step (1)) and a step of solvent salt milling a mixture containing α-type copper phthalocyanine, ε-type copper phthalocyanine, and treated phthalimidomethylated copper phthalocyanine to obtain a pigment composition. (Step (2)). The details of the manufacturing method of this embodiment will be explained below.
(工程(1))
 工程(1)では、フタルイミドメチル化銅フタロシアニン(以下、「PIM化銅フタロシアニン」とも記す)を非イオン性界面活性剤で処理して、処理済みPIM化銅フタロシアニンを得る。PIM化銅フタロシアニンを非イオン性界面活性剤で処理することによって、非イオン性界面活性剤以外の界面活性剤で処理した場合と異なり、PIM化銅フタロシアニンの強い凝集性を緩和することができる。これにより、その後の工程(工程(2))におけるソルベントソルトミリングの処理効率を向上させることが可能となり、コントラスト及び明度等の色特性に優れたε型銅フタロシアニン顔料組成物を簡便に製造することができる。
(Step (1))
In step (1), phthalimidomethylated copper phthalocyanine (hereinafter also referred to as "PIM copper phthalocyanine") is treated with a nonionic surfactant to obtain treated PIM copper phthalocyanine. By treating the PIMized copper phthalocyanine with a nonionic surfactant, the strong aggregation of the PIMized copper phthalocyanine can be alleviated, unlike the case where the PIMized copper phthalocyanine is treated with a surfactant other than the nonionic surfactant. This makes it possible to improve the processing efficiency of solvent salt milling in the subsequent step (step (2)), and to easily produce an ε-type copper phthalocyanine pigment composition with excellent color properties such as contrast and brightness. I can do it.
 PIM化銅フタロシアニンは、銅フタロシアニンを原料として用いる公知の方法にしたがって製造することができる。例えば、米国特許第2855403号明細書で開示されているように、銅フタロシアニンとメチロールフタルイミドを硫酸中で反応させることによって、PIM化銅フタロシアニンを得ることができる。なお、メチロールフタルイミドに代えて、フタルイミドとパラホルムアルデヒドを用いてもよい。 PIMized copper phthalocyanine can be produced according to a known method using copper phthalocyanine as a raw material. For example, as disclosed in US Pat. No. 2,855,403, PIMized copper phthalocyanine can be obtained by reacting copper phthalocyanine and methylol phthalimide in sulfuric acid. Note that phthalimide and paraformaldehyde may be used instead of methylol phthalimide.
 非イオン性界面活性剤としては、市販品を用いることができる。非イオン性界面活性剤の具体例としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンポリスチリルフェニルエーテル等を挙げることができる。なかでも、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンポリスチリルフェニルエーテルが好ましく、ポリオキシアルキレンポリスチリルフェニルエーテルが特に好ましい。 Commercially available products can be used as the nonionic surfactant. Specific examples of nonionic surfactants include glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, sucrose fatty acid ester, fatty acid alkanolamide, polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ether, and polyoxyalkylene fatty acid ester. Oxyalkylene polystyrylphenyl ether and the like can be mentioned. Among these, polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ether, and polyoxyalkylene polystyrylphenyl ether are preferred, and polyoxyalkylene polystyrylphenyl ether is particularly preferred.
 PIM化銅フタロシアニンの製造工程中で、PIM化銅フタロシアニンを非イオン性界面活性剤で処理することが好ましい。PIM化銅フタロシアニンの製造工程は、例えば、濃硫酸中での反応工程、水中での析出工程、ろ過・水洗工程、及び乾燥工程を含む。なかでも、ろ過・水洗工程の後であって、乾燥工程の前に、PIM化銅フタロシアニンを非イオン性界面活性剤で処理することが好ましい。 During the production process of PIMized copper phthalocyanine, it is preferable to treat the PIMized copper phthalocyanine with a nonionic surfactant. The process for producing PIM copper phthalocyanine includes, for example, a reaction process in concentrated sulfuric acid, a precipitation process in water, a filtration/washing process, and a drying process. Among these, it is preferable to treat the PIM copper phthalocyanine with a nonionic surfactant after the filtration/washing process and before the drying process.
 非イオン性界面活性剤でPIM化銅フタロシアニンを処理する具体的な方法としては、例えば、PIM化銅フタロシアニンの製造工程で、(i)非イオン性界面活性剤を系中に添加する方法;(ii)非イオン性界面活性剤の水溶液を系中に添加する方法;(iii)非イオン性界面活性剤、水不溶性溶剤、及び水を混合して得られる乳化物を系中に添加する方法;等を挙げることができる。なかでも、PIM化銅フタロシアニンを水中に解膠して調製したスラリーに上記の乳化物を添加して、PIM化銅フタロシアニンに乳化物を接触させる(非イオン性界面活性剤を接触させる)ことが好ましい。スラリー中のPIM化銅フタロシアニンは強固な凝集体を形成している。PIM化銅フタロシアニンと親和性が高く、濡れ性の良好な水不溶性溶剤を用いて調製した乳化物の状態で非イオン性界面活性剤をPIM化銅フタロシアニンに接触させることで、非イオン性界面活性剤によってPIM化銅フタロシアニンをより均一に処理することができる。 Specific methods for treating PIMized copper phthalocyanine with a nonionic surfactant include, for example, (i) a method of adding a nonionic surfactant into the system in the production process of PIMized copper phthalocyanine; ii) A method of adding an aqueous solution of a nonionic surfactant into the system; (iii) A method of adding an emulsion obtained by mixing a nonionic surfactant, a water-insoluble solvent, and water into the system; etc. can be mentioned. Among these, the above emulsion is added to a slurry prepared by peptizing PIMized copper phthalocyanine in water, and the emulsion is brought into contact with the PIMized copper phthalocyanine (contact with a nonionic surfactant). preferable. PIMized copper phthalocyanine in the slurry forms strong aggregates. By bringing a nonionic surfactant into contact with PIM copper phthalocyanine in the form of an emulsion prepared using a water-insoluble solvent with high affinity and good wettability for PIM copper phthalocyanine, nonionic surfactant PIMized copper phthalocyanine can be treated more uniformly by the agent.
 水不溶性有機溶剤としては、トルエン、キシレン、酢酸エチル、及び酢酸ブチルからなる群より選択される少なくとも一種を用いることが好ましく、キシレンを用いることが特に好ましい。 As the water-insoluble organic solvent, it is preferable to use at least one selected from the group consisting of toluene, xylene, ethyl acetate, and butyl acetate, and it is particularly preferable to use xylene.
 非イオン性界面活性剤によるPIM化銅フタロシアニンの処理は、加熱条件下で実施することが好ましい。加熱条件下でPIM化銅フタロシアニンに非イオン性界面活性剤を接触させて処理することで、処理の均一性をより向上させることができる。処理時の温度は、60~100℃とすることが好ましく、80~90℃とすることがさらに好ましい。 The treatment of PIMized copper phthalocyanine with a nonionic surfactant is preferably carried out under heating conditions. The uniformity of the treatment can be further improved by bringing the PIMized copper phthalocyanine into contact with a nonionic surfactant under heating conditions. The temperature during treatment is preferably 60 to 100°C, more preferably 80 to 90°C.
(工程(2))
 工程(2)では、α型銅フタロシアニン、ε型銅フタロシアニン、及び処理済みPIM化銅フタロシアニンを含有する混合物をソルベントソルトミリングして、顔料組成物を得る。処理済みPIM化銅フタロシアニンは、前述の工程(1)において非イオン性界面活性剤で処理されたPIM化銅フタロシアニンであるため、強い凝集性が緩和されている。したがって、この処理済みPIM化銅フタロシアニンを含む混合物をソルベントソルトミリングすることで、α型からε型への結晶転移が促進され、コントラスト及び明度等の色特性に優れたε型銅フタロシアニン顔料組成物をより効率的に製造することができる。
(Step (2))
In step (2), a mixture containing α-type copper phthalocyanine, ε-type copper phthalocyanine, and treated PIMized copper phthalocyanine is subjected to solvent salt milling to obtain a pigment composition. The treated PIMized copper phthalocyanine is PIMized copper phthalocyanine that has been treated with a nonionic surfactant in the above-mentioned step (1), so that strong aggregation is alleviated. Therefore, by subjecting the mixture containing this treated PIMized copper phthalocyanine to solvent salt milling, the crystal transition from α type to ε type is promoted, resulting in an ε type copper phthalocyanine pigment composition with excellent color properties such as contrast and brightness. can be manufactured more efficiently.
 ソルベントソルトミリングは、通常、α型銅フタロシアニン、ε型銅フタロシアニン、及び処理済みPIM化銅フタロシアニンを含有する混合物を、水溶性有機溶剤及び無機塩の存在下、混錬機を使用して混錬及び摩砕することによって実施される。混練機としては、ニーダー、プラネタリーミキサー、ミラクルK.C.K(商品名、浅田鉄鋼社製)、トリミックス(商品名、井上製作所社製)等を使用することができる。 Solvent salt milling usually involves kneading a mixture containing α-type copper phthalocyanine, ε-type copper phthalocyanine, and treated PIMized copper phthalocyanine using a kneader in the presence of a water-soluble organic solvent and an inorganic salt. and by grinding. Examples of kneading machines include kneaders, planetary mixers, and Miracle K. C. K (trade name, manufactured by Asada Steel Co., Ltd.), Trimix (trade name, manufactured by Inoue Seisakusho Co., Ltd.), etc. can be used.
 α型銅フタロシアニンは、β型銅フタロシアニンを含む粗製銅フタロシアニンを用いる公知の方法にしたがって製造することができる。α型銅フタロシアニンを製造する方法の具体例としては、(i)粗製銅フタロシアニンを硫酸に溶解させた硫酸溶液を水に注入して析出させるアシッドペースティング法;(ii)ボールミル等を使用して粗製銅フタロシアニンを乾式摩砕するドライミリング法;(iii)粗製銅フタロシアニンをニーダー等の混練機中で無機塩及び水溶性有機溶剤とともに混錬するソルベントソルトミリング法;等を挙げることができる。なかでも、より高純度で微細なα型銅フタロシアニンが得られることから、(i)アシッドペースティング法が好ましい。 α-type copper phthalocyanine can be produced according to a known method using crude copper phthalocyanine containing β-type copper phthalocyanine. Specific examples of methods for producing α-type copper phthalocyanine include (i) an acid pasting method in which crude copper phthalocyanine is dissolved in sulfuric acid and a sulfuric acid solution is injected into water to precipitate; (ii) using a ball mill, etc. Examples include a dry milling method in which crude copper phthalocyanine is dry-milled; (iii) a solvent salt milling method in which crude copper phthalocyanine is kneaded with an inorganic salt and a water-soluble organic solvent in a kneader such as a kneader; and the like. Among them, (i) acid pasting method is preferred because it yields a more highly purified and fine α-type copper phthalocyanine.
 アシッドペースティング法で用いる硫酸の濃度は、70~100質量%であることが好ましい。硫酸の濃度が70質量%未満であると、粗製銅フタロシアニンが十分に溶解しにくくなり、得られる析出物にβ型銅フタロシアニンが混入しやすくなることがある。また、得られるα型銅フタロシアニンの粒径が大きくなりやすいため、その後のソルベントソルトミリングによっても微細化がやや不十分になる場合がある。一方、硫酸の濃度が高すぎると、生成するα型銅フタロシアニンの一部がスルホン化されやすくなる場合がある。したがって、得られるα型銅フタロシアニンの純度や粒径等を考慮すると、アシッドペースティング法で用いる硫酸の濃度は、95~98質量%であることがさらに好ましい。 The concentration of sulfuric acid used in the acid pasting method is preferably 70 to 100% by mass. If the concentration of sulfuric acid is less than 70% by mass, crude copper phthalocyanine may be difficult to dissolve sufficiently, and β-type copper phthalocyanine may be easily mixed into the resulting precipitate. Furthermore, since the particle size of the obtained α-type copper phthalocyanine tends to increase, the subsequent solvent salt milling may also result in slightly insufficient refinement. On the other hand, if the concentration of sulfuric acid is too high, a portion of the α-type copper phthalocyanine produced may be easily sulfonated. Therefore, in consideration of the purity, particle size, etc. of the obtained α-type copper phthalocyanine, it is more preferable that the concentration of sulfuric acid used in the acid pasting method is 95 to 98% by mass.
 ε型銅フタロシアニンは、公知の方法にしたがって製造したものを用いてもよく、市販品を用いてもよい。ε型銅フタロシアニンの公知の製造方法としては、特公昭57-35210公報で開示されたソルベント法;特許第3030880号公報で開示された乾式摩砕後に溶剤処理する方法;特公昭64-7108公報で開示された銅フタロシアニン合成で得たε型銅フタロシアニンをソルベントソルトミリングで微細化する方法;等を挙げることができる。 As the ε-type copper phthalocyanine, one produced according to a known method may be used, or a commercially available product may be used. Known methods for producing ε-type copper phthalocyanine include the solvent method disclosed in Japanese Patent Publication No. 57-35210; the method of dry grinding followed by solvent treatment disclosed in Japanese Patent No. 3030880; and the method disclosed in Japanese Patent Publication No. 64-7108. Examples include a method of micronizing ε-type copper phthalocyanine obtained by the disclosed copper phthalocyanine synthesis using solvent salt milling.
 水溶性有機溶剤としては、安全性及び作業性等の観点から、高沸点溶剤を用いることが好ましい。水溶性有機溶剤の具体例としては、ジエチレングリコール、グリセリン、プロピレングリコール、液体ポリエチレングリコール、液体ポリプロピレングリコール、2-メトキシエタノール、2-ブトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル等を挙げることができる。なかでも、ジエチレングリコール及びプロピレングリコールの少なくともいずれかの水溶性有機溶剤の存在下で混合物をソルベントソルトミリングすることが好ましい。 As the water-soluble organic solvent, it is preferable to use a high boiling point solvent from the viewpoints of safety and workability. Specific examples of water-soluble organic solvents include diethylene glycol, glycerin, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2-methoxyethanol, 2-butoxyethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene Examples include glycol, triethylene glycol monomethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether. Among these, it is preferable to subject the mixture to solvent salt milling in the presence of a water-soluble organic solvent of at least one of diethylene glycol and propylene glycol.
 無機塩としては、水溶性無機塩を用いることが好ましい。無機塩の具体例としては、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸マグネシウム等を用いることが好ましい。 As the inorganic salt, it is preferable to use a water-soluble inorganic salt. As specific examples of the inorganic salt, it is preferable to use sodium chloride, potassium chloride, sodium sulfate, magnesium sulfate, and the like.
 ソルベントソルトミリングは、50~150℃で実施することが好ましく、70~140℃で実施することがさらに好ましい。50℃未満の温度条件下でソルベントソルトミリングすると、α型からε型への結晶転移がやや不十分となる場合がある。一方、150℃超の温度条件下でソルベントソルトミリングすると、結晶成長によって色材としての性能がやや低下しやすくなる場合がある。 Solvent salt milling is preferably carried out at 50 to 150°C, more preferably 70 to 140°C. When solvent salt milling is carried out under a temperature condition of less than 50° C., the crystal transition from α type to ε type may be somewhat insufficient. On the other hand, when solvent salt milling is performed under a temperature condition of over 150° C., the performance as a coloring material may tend to deteriorate slightly due to crystal growth.
 α型からε型への結晶転移と、結晶成長の抑制とをより高い次元で両立し、さらに微細なε型銅フタロシアニン顔料組成物を得るには、120~140℃でソルベントソルトミリングした後、50~80℃でソルベントソルトミリングすることが好ましい。 In order to achieve both crystal transition from α type to ε type and suppression of crystal growth at a higher level, and to obtain a finer ε type copper phthalocyanine pigment composition, after solvent salt milling at 120 to 140°C, Solvent salt milling is preferably carried out at 50 to 80°C.
 α型銅フタロシアニン100質量部に対する、ε型銅フタロシアニンの量は、5~50質量部とすることが好ましく、10~30質量部とすることがさらに好ましい。ε型銅フタロシアニンの量が、α型銅フタロシアニン100質量部に対して5質量部未満であると、α型からε型への結晶転移にやや時間を要する場合があるとともに、β型結晶が生じやすくなることがある。一方、ε型銅フタロシアニンの量が、α型銅フタロシアニン100質量部に対して50質量部超であると、生産性がやや低下し、工業的に不利になる場合がある。 The amount of ε-type copper phthalocyanine relative to 100 parts by mass of α-type copper phthalocyanine is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass. If the amount of ε-type copper phthalocyanine is less than 5 parts by mass per 100 parts by mass of α-type copper phthalocyanine, it may take some time for crystal transition from α-type to ε-type, and β-type crystals may be formed. It may become easier. On the other hand, if the amount of the ε-type copper phthalocyanine is more than 50 parts by mass based on 100 parts by mass of the α-type copper phthalocyanine, the productivity may decrease slightly, which may be industrially disadvantageous.
 α型銅フタロシアニンとε型銅フタロシアニンの合計100質量部に対する、水溶性有機溶剤の量は、50~500質量部とすることが好ましい。水溶性有機溶剤は、ソルベントソルトミリングの初期段階で全量仕込んでもよく、微細化の進行具合に応じて段階的に仕込んでもよい。 The amount of the water-soluble organic solvent is preferably 50 to 500 parts by mass with respect to a total of 100 parts by mass of α-type copper phthalocyanine and ε-type copper phthalocyanine. The water-soluble organic solvent may be added in its entirety at the initial stage of solvent salt milling, or may be added in stages depending on the progress of refinement.
 α型銅フタロシアニンとε型銅フタロシアニンの合計100質量部に対する、無機塩の量は、200~2,000質量部とすることが好ましく、得ようとするε型銅フタロシアニン顔料組成物の微細化の程度に応じて適宜調整すればよい。無機塩の添加量が多いほど、より微細なε型銅フタロシアニン顔料組成物を得ることができる。 The amount of the inorganic salt is preferably 200 to 2,000 parts by mass based on a total of 100 parts by mass of the α-type copper phthalocyanine and the ε-type copper phthalocyanine, and the amount of the inorganic salt is preferably 200 to 2,000 parts by mass. It may be adjusted as appropriate depending on the degree. The larger the amount of the inorganic salt added, the finer the ε-type copper phthalocyanine pigment composition can be obtained.
 α型銅フタロシアニン100質量部に対する、処理済みPIM化銅フタロシアニンの量は、1~20質量部とすることが好ましい。処理済みPIM化銅フタロシアニンは、ソルベントソルトミリングの初期段階で仕込んでもよく、α型銅フタロシアニンを製造する過程で予め仕込んでおいてもよい。PIM化銅フタロシアニンをより均一に処理する観点から、前述のアシッドペースティング法によってα型銅フタロシアニンを製造する際に、原料として用いる粗製銅フタロシアニンとともに処理済みPIM化銅フタロシアニンを硫酸に溶解させることが好ましい。 The amount of treated PIM copper phthalocyanine is preferably 1 to 20 parts by mass relative to 100 parts by mass of α-type copper phthalocyanine. The treated PIMized copper phthalocyanine may be charged at the initial stage of solvent salt milling, or may be charged in advance during the process of producing α-type copper phthalocyanine. From the viewpoint of processing PIM copper phthalocyanine more uniformly, it is possible to dissolve the treated PIM copper phthalocyanine in sulfuric acid together with the crude copper phthalocyanine used as a raw material when producing α-type copper phthalocyanine by the acid pasting method described above. preferable.
 ソルベントソルトミリングに要する時間は、温度や材料の仕込み量等に応じて変動するが、2~20時間とすることが好ましく、結晶転移や微細化の進行状況を勘案して調整すればよい。ソルベントソルトミリングして得た混練物を水中で解膠した後、ろ過、水洗、乾燥、及び粉砕等することで、色材として使用可能な粉末状の顔料組成物を得ることができる。ろ過及び水洗は、混練物に含まれる水溶性有機溶剤と無機塩を完全に除去するまで繰り返し実施することが好ましい。乾燥温度は、例えば、70~120℃とすればよく、箱型乾燥機、バンド乾燥機、スプレードライヤー等を使用することができる。乾燥して得られる塊状物を粉砕して粉末状にするには、乳鉢、ハンマーミル、ディスクミル、ピンミル、ジェットミル等を使用することができる。 The time required for solvent salt milling varies depending on the temperature, the amount of materials charged, etc., but is preferably 2 to 20 hours, and may be adjusted taking into account the progress of crystal transition and refinement. A powdered pigment composition that can be used as a coloring material can be obtained by peptizing the kneaded material obtained by solvent salt milling in water, followed by filtration, washing, drying, and pulverization. It is preferable to repeat filtration and water washing until the water-soluble organic solvent and inorganic salt contained in the kneaded product are completely removed. The drying temperature may be, for example, 70 to 120° C., and a box dryer, band dryer, spray dryer, etc. can be used. A mortar, hammer mill, disc mill, pin mill, jet mill, etc. can be used to crush the dried lumps into powder.
(工程(3))
 上記のソルベントソルトミリングによって得られる顔料組成物を、目的とするε型銅フタロシアニン顔料組成物とすることができる。また、より微細であるとともに、さらにコントラスト及び明度等の色特性に優れたε型銅フタロシアニン顔料組成物を得るには、上記のソルベントソルトミリングによって得た顔料組成物を再度ソルベントソルトミリングすることが好ましい。すなわち、本実施形態の製造方法は、上記の工程(2)で得た顔料組成物を再度ソルベントソルトミリングする工程(工程(3))をさらに有することが好ましい。この工程(3)では、50~80℃でソルベントソルトミリングすることが好ましく、50~70℃でソルベントソルトミリングすることがさらに好ましい。
(Step (3))
The pigment composition obtained by the solvent salt milling described above can be used as the desired ε-type copper phthalocyanine pigment composition. In addition, in order to obtain an ε-type copper phthalocyanine pigment composition that is finer and has excellent color properties such as contrast and brightness, it is necessary to perform solvent salt milling again on the pigment composition obtained by the above solvent salt milling. preferable. That is, it is preferable that the manufacturing method of the present embodiment further includes a step (step (3)) of subjecting the pigment composition obtained in step (2) above to solvent salt milling again. In this step (3), solvent salt milling is preferably carried out at 50 to 80°C, more preferably solvent salt milling is carried out at 50 to 70°C.
(その他)
 得られたε型銅フタロシアニン顔料組成物を、用途に応じて各種のフタロシアニン誘導体等の顔料誘導体で処理してもよい。フタロシアニン誘導体としては、無金属又は金属フタロシアニンのスルホン酸誘導体、無金属又は金属フタロシアニンのN-(ジアルキルアミノ)メチル誘導体、無金属又は金属フタロシアニンのN-(ジアルキルアミノアルキル)スルホン酸アミド誘導体等を挙げることができる。顔料誘導体は、ε型銅フタロシアニン顔料組成物の製造過程で添加してもよいし、得られたε型銅フタロシアニン顔料組成物に添加してもよい。なかでも、ソルベントソルトミリング後に得られるウエットケーキを水に解膠する際に顔料誘導体を添加することが好ましい。顔料誘導体を添加する際には、必要に応じて酸やアルカリを添加してpHを調整してもよい。
(others)
The obtained ε-type copper phthalocyanine pigment composition may be treated with pigment derivatives such as various phthalocyanine derivatives depending on the purpose. Examples of phthalocyanine derivatives include sulfonic acid derivatives of metal-free or metal phthalocyanines, N-(dialkylamino)methyl derivatives of metal-free or metal phthalocyanines, N-(dialkylaminoalkyl)sulfonic acid amide derivatives of metal-free or metal phthalocyanines, etc. be able to. The pigment derivative may be added during the manufacturing process of the ε-type copper phthalocyanine pigment composition, or may be added to the obtained ε-type copper phthalocyanine pigment composition. Among these, it is preferable to add a pigment derivative when peptizing the wet cake obtained after solvent salt milling in water. When adding the pigment derivative, an acid or alkali may be added to adjust the pH, if necessary.
 ε型銅フタロシアニン顔料組成物を製造する過程で、顔料分散剤で処理してもよい。顔料分散剤としては、批判品を用いることができる。顔料分散剤の市販品としては、以下商品名で、DISPERBYK-130、DISPERBYK-161、DISPERBYK-162、DISPERBYK-163、DISPERBYK-170、DISPERBYK-171、DISPERBYK-174、DISPERBYK-180、DISPERBYK-182、DISPERBYK-183、DISPERBYK-184、DISPERBYK-185、DISPERBYK-2000、DISPERBYK-2001、DISPERBYK-2022、DISPERBYK-2050、DISPERBYK-2055、DISPERBYK-2059、DISPERBYK-2070、DISPERBYK-2151、DISPERBYK-2064(以上、BYK社製);EFKA46、EFKA47、EFKA452、EFKALP4008、EFKA4009、EFKALP4010、EFKALP4050、EFKALP4055、EFKA400、EFKA401、EFKA402、EFKA403、EFKA450、EFKA451、EFKA453、EFKA4540、EFKA4550、EFKALP4560、EFKA120、EFKA150、EFKA1501、EFKA1502、EFKA1503(以上、BASF社);ソルスパース3000、ソルスパース9000、ソルスパース13240、ソルスパース13650、ソルスパース13940、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース21000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース36000、ソルスパース37000、ソルスパース38000、ソルスパース41000、ソルスパース42000、ソルスパース43000、ソルスパース46000、ソルスパース54000、ソルスパース71000(以上、ルブリゾール社製);アジスパーPB711、アジスパーPB821、アジスパーPB822、アジスパーPB814、アジスパーPN411、アジスパーPA111(以上、味の素社製);等を挙げることができる。 In the process of producing the ε-type copper phthalocyanine pigment composition, it may be treated with a pigment dispersant. As the pigment dispersant, a commercially available product can be used. Commercially available pigment dispersants include the following trade names: DISPERBYK-130, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBY K-180, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-2022, DISPERBYK-2050, DISPERBYK-2055, DISP ERBYK-2059, DISPERBYK-2070, DISPERBYK-2151, DISPERBYK-2064 (and above, BYK); EFKA46, EFKA47, EFKA452, EFKALP4008, EFKA4009, EFKALP4010, EFKALP4050, EFKALP4055, EFKA400, EFKA401, EFKA402, EFKA403, EFKA450 , EFKA451, EFKA453, EFKA4540, EFKA4550, EFKALP4560, EFKA120, EFKA150, EFKA1501, EFKA1502, EFKA1503 (Basf): Solspars 3000, Solspars 9000, Solspars 13240, Solspars 13650, Solspars 13940, Solspars 17000, Solspars 18000, Solspars 20000, Solspars 21000, Solspars 20000, Solspars 24000, Solspars 26000, Solspars 270 00, Solsparse 28000, Solsparse 32000, Solsperse 36000, Solsperse 37000, Solsperse 38000, Solsperse 41000, Solsperse 42000, Solsperse 43000, Solsperse 46000, Solsperse 54000, Solsperse 71000 (manufactured by Lubrizol); Ajisper PB711, Ajisper PB821, Ajisper PB82 2. Ajisper PB814, Ajisper PN411 , Ajisper PA111 (manufactured by Ajinomoto Co., Ltd.); and the like.
 ε型銅フタロシアニン顔料組成物を製造する過程で、各種の樹脂で処理してもよい。樹脂としては、アクリル系樹脂;ウレタン系樹脂;アルキッド系樹脂;ウッドロジン、ガムロジン、トール油ロジン等の天然ロジン;重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジン等の変性ロジン;ロジンアミン、ライムロジン、アルキレンオキシド付加ロジン、ロジン変性アルキド樹脂、ロジン変性フェノール等のロジン誘導体;等を挙げることができる。 In the process of producing the ε-type copper phthalocyanine pigment composition, it may be treated with various resins. Examples of resins include acrylic resins; urethane resins; alkyd resins; natural rosins such as wood rosin, gum rosin, and tall oil rosin; modified rosins such as polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, and maleated rosin. and rosin derivatives such as rosin amine, lime rosin, alkylene oxide-added rosin, rosin-modified alkyd resin, and rosin-modified phenol.
 顔料分散剤や樹脂で処理する方法としては、水溶性又は水に均一に分散しうる顔料分散剤等については、前述の顔料誘導体と同様の方法で処理すればよい。また、有機溶剤に溶解しうる顔料分散剤等については、ソルベントソルトミリングの際に添加すればよい。 As for the method of treating with pigment dispersants and resins, pigment dispersants that are water-soluble or can be uniformly dispersed in water may be treated in the same manner as for the pigment derivatives described above. Pigment dispersants and the like that can be dissolved in organic solvents may be added during solvent salt milling.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples. Note that "parts" and "%" in Examples and Comparative Examples are based on mass unless otherwise specified.
<PIM化銅フタロシアニンの製造>
(製造例1)
 常法により製造された粗製銅フタロシアニン70部、フタルイミド52部、及びパラホルムアルデヒド20部を98%硫酸400部に添加し、撹拌して溶解させた後、80℃で3時間反応させて反応液を得た。得られた反応液を氷水8,000部に注いだ後、生成した析出物をろ過及び水洗してウエットケーキを得た。得られたウエットケーキを水1,000部中に解膠した後に撹拌して、均一なスラリーを得た。
<Production of PIM copper phthalocyanine>
(Manufacturing example 1)
70 parts of crude copper phthalocyanine, 52 parts of phthalimide, and 20 parts of paraformaldehyde produced by a conventional method were added to 400 parts of 98% sulfuric acid, stirred to dissolve, and then reacted at 80°C for 3 hours to dissolve the reaction solution. Obtained. After pouring the obtained reaction solution into 8,000 parts of ice water, the generated precipitate was filtered and washed with water to obtain a wet cake. The obtained wet cake was peptized in 1,000 parts of water and stirred to obtain a uniform slurry.
 キシレン10部、ポリオキシアルキレンポリスチリルフェニルエーテル1部、及び水50部を、ディスパーを用いて混合して乳化物を調製した。調製した乳化物をスラリーに添加し、90℃で1時間撹拌した。60℃まで放冷した後、ろ過、乾燥、及び粉砕して、PIM化銅フタロシアニン100部を得た。得られたPIM化銅フタロシアニンは、非イオン性界面活性剤で処理した処理済みPIM化銅フタロシアニンである。 An emulsion was prepared by mixing 10 parts of xylene, 1 part of polyoxyalkylene polystyrylphenyl ether, and 50 parts of water using a disper. The prepared emulsion was added to the slurry and stirred at 90°C for 1 hour. After cooling to 60° C., the mixture was filtered, dried, and pulverized to obtain 100 parts of PIM copper phthalocyanine. The obtained PIMized copper phthalocyanine is a treated PIMized copper phthalocyanine treated with a nonionic surfactant.
(比較製造例1)
 常法により製造された粗製銅フタロシアニン70部、フタルイミド52部、及びパラホルムアルデヒド20部を98%硫酸400部に添加し、撹拌して溶解させた後、80℃で3時間反応させて反応液を得た。得られた反応液を氷水8,000部に注いだ後、生成した析出物をろ過、水洗、乾燥、及び粉砕して、PIM化銅フタロシアニン105部を得た。得られたPIM化銅フタロシアニンは、非イオン性界面活性剤で処理していない未処理のPIM化銅フタロシアニンである。
(Comparative manufacturing example 1)
70 parts of crude copper phthalocyanine, 52 parts of phthalimide, and 20 parts of paraformaldehyde produced by a conventional method were added to 400 parts of 98% sulfuric acid, stirred to dissolve, and then reacted at 80°C for 3 hours to dissolve the reaction solution. Obtained. After pouring the obtained reaction solution into 8,000 parts of ice water, the generated precipitate was filtered, washed with water, dried, and pulverized to obtain 105 parts of PIM copper phthalocyanine. The obtained PIMized copper phthalocyanine is untreated PIMized copper phthalocyanine that has not been treated with a nonionic surfactant.
<ε型銅フタロシアニン顔料組成物の製造>
(実施例1)
 常法により製造された粗製銅フタロシアニン(β型銅フタロシアニンを含む)58部、及び製造例1で得た処理済みPIM化銅フタロシアニン3部を98%硫酸400部に添加し、80℃で3時間撹拌して硫酸溶液を得た。得られた硫酸溶液を氷水8,000部に注いた後、生成した析出物をろ過、水洗、乾燥、及び粉砕して、α型銅フタロシアニンとPIM化銅フタロシアニンとの共析出物58部を得た。
<Production of ε-type copper phthalocyanine pigment composition>
(Example 1)
58 parts of crude copper phthalocyanine (including β-type copper phthalocyanine) produced by a conventional method and 3 parts of the treated PIM copper phthalocyanine obtained in Production Example 1 were added to 400 parts of 98% sulfuric acid, and the mixture was heated at 80°C for 3 hours. A sulfuric acid solution was obtained by stirring. After pouring the obtained sulfuric acid solution into 8,000 parts of ice water, the generated precipitate was filtered, washed with water, dried, and crushed to obtain 58 parts of a co-precipitate of α-type copper phthalocyanine and PIMized copper phthalocyanine. Ta.
 得られた共析出物18部、ε型銅フタロシアニン5部、粉砕機で粉砕して得た粉砕塩80部、及びプロピレングリコール18部をニーダーに仕込み、140℃で16時間混練した。ニーダーを冷却し、さらに70℃で6時間混練して混練物を得た。なお、混練の途中で適切な粘度になるように、プロピレングリコール0.5部を数回に分けて適宜添加した。得られた混練物を水中で解膠した後、硫酸濃度2%となる量の98%硫酸を添加し、90℃で1時間撹拌してスラリーを得た。得られたスラリーをろ過、水洗、乾燥、及び粉砕して、ε型銅フタロシアニン顔料組成物22部を得た。 18 parts of the obtained co-precipitate, 5 parts of ε-type copper phthalocyanine, 80 parts of ground salt obtained by grinding with a grinder, and 18 parts of propylene glycol were placed in a kneader and kneaded at 140°C for 16 hours. The kneader was cooled and the mixture was further kneaded at 70° C. for 6 hours to obtain a kneaded product. During the kneading process, 0.5 part of propylene glycol was added in several portions as needed to obtain an appropriate viscosity. After peptizing the obtained kneaded material in water, 98% sulfuric acid was added in an amount to give a sulfuric acid concentration of 2%, and the mixture was stirred at 90° C. for 1 hour to obtain a slurry. The obtained slurry was filtered, washed with water, dried, and crushed to obtain 22 parts of an ε-type copper phthalocyanine pigment composition.
(実施例2)
 実施例1で得たε型銅フタロシアニン顔料組成物9部、粉砕機で粉砕して得た粉砕塩90部、及びジエチレングリコール21部をニーダーに仕込み、60℃で18時間混錬した。なお、混練の途中で適切な粘度になるように、ジエチレングリコール0.5部を数回に分けて適宜添加した。得られた混練物を水中で解膠した後、硫酸濃度2%となる量の98%硫酸を添加し、90℃で1時間撹拌してスラリーを得た。得られたスラリーをろ過、水洗、乾燥、及び粉砕して、ε型銅フタロシアニン顔料組成物10部を得た。
(Example 2)
9 parts of the ε-type copper phthalocyanine pigment composition obtained in Example 1, 90 parts of pulverized salt obtained by pulverizing with a pulverizer, and 21 parts of diethylene glycol were placed in a kneader and kneaded at 60° C. for 18 hours. During the kneading, 0.5 part of diethylene glycol was added in several portions as needed to obtain an appropriate viscosity. After peptizing the obtained kneaded material in water, 98% sulfuric acid was added in an amount to give a sulfuric acid concentration of 2%, and the mixture was stirred at 90° C. for 1 hour to obtain a slurry. The obtained slurry was filtered, washed with water, dried, and crushed to obtain 10 parts of an ε-type copper phthalocyanine pigment composition.
(比較例1)
 処理済みPIM化銅フタロシアニンに代えて、比較製造例1で得た未処理のPIM化銅フタロシアニンを用いたこと以外は、前述の実施例1と同様にして、ε型銅フタロシアニン顔料組成物22部を得た。
(Comparative example 1)
22 parts of an ε-type copper phthalocyanine pigment composition was prepared in the same manner as in Example 1 above, except that the untreated PIM copper phthalocyanine obtained in Comparative Production Example 1 was used in place of the treated PIM copper phthalocyanine. I got it.
(比較例2)
 実施例1で得たε型銅フタロシアニン顔料組成物に代えて、比較例1で得たε型銅フタロシアニン顔料組成物を用いたこと以外は、前述の実施例2と同様にして、ε型銅フタロシアニン顔料組成物10部を得た。
(Comparative example 2)
The ε-type copper phthalocyanine pigment composition obtained in Example 1 was replaced with the ε-type copper phthalocyanine pigment composition obtained in Comparative Example 1 in the same manner as in Example 2 described above. 10 parts of a phthalocyanine pigment composition were obtained.
<評価>
(CF用着色剤の調製)
 製造したε型銅フタロシアニン顔料組成物9部、顔料分散剤(商品名「DISPERBYK2000」、BYK社製)7部、バインダー樹脂(商品名「SPC-2000」、昭和電工社製、酸性基を有するアクリル樹脂)7部、プロピレングリコール-1-モノメチルエーテル-2-アセテート30部、及びn-ブタノール6部を密閉容器に仕込んだ。0.5mmジルコニアビーズを添加し、分散機(商品名「Disperser DAS200」、LAU社製)を使用して5時間分散処理し、分散液を得た。得られた分散液8部、バインダー樹脂(商品名「SPC-2000」、昭和電工社製、酸性基を有するアクリル樹脂)1部、及びプロピレングリコール-1-モノメチルエーテル-2-アセテート3部を配合し、ディスパーを用いて混合してCF用着色剤を得た。
<Evaluation>
(Preparation of colorant for CF)
9 parts of the produced ε-type copper phthalocyanine pigment composition, 7 parts of a pigment dispersant (trade name "DISPERBYK2000", manufactured by BYK), binder resin (trade name "SPC-2000", manufactured by Showa Denko Co., Ltd., acrylic having an acidic group) 7 parts of resin), 30 parts of propylene glycol-1-monomethylether-2-acetate, and 6 parts of n-butanol were charged into a closed container. 0.5 mm zirconia beads were added and dispersed for 5 hours using a dispersion machine (trade name "Disperser DAS200", manufactured by LAU) to obtain a dispersion. 8 parts of the obtained dispersion, 1 part of binder resin (trade name "SPC-2000", manufactured by Showa Denko Co., Ltd., acrylic resin having an acidic group), and 3 parts of propylene glycol-1-monomethyl ether-2-acetate were blended. The mixture was mixed using a disper to obtain a coloring agent for CF.
(測定用ガラス基板の作製)
 スピンコーターを使用してCF用着色剤をガラス板に塗布した。90℃で2分間プリベークした後、230℃で30分間ポストベークして、測定用ガラス基板を得た。
(Preparation of glass substrate for measurement)
A CF coloring agent was applied to a glass plate using a spin coater. After prebaking at 90°C for 2 minutes, post-baking was performed at 230°C for 30 minutes to obtain a glass substrate for measurement.
(コントラストの測定)
 コントラストテスター(商品名「CT-1BS」、壺坂電機社製)を使用して、測定用ガラス基板のy=0.14におけるコントラストを測定した。結果を表1に示す。なお、表1に示す「コントラスト」の値は、実施例1のコントラストを基準(100)とする相対値である。
(Measurement of contrast)
Using a contrast tester (trade name "CT-1BS", manufactured by Tsubosaka Electric Co., Ltd.), the contrast of the glass substrate for measurement at y=0.14 was measured. The results are shown in Table 1. Note that the "contrast" values shown in Table 1 are relative values with the contrast of Example 1 as a reference (100).
(明度の測定)
 分光光度計(商品名「U-3310」、日立製作所社製)を使用して、測定用ガラス基板のy=0.14における明度Yを測定した。結果を表1に示す。
(Measurement of brightness)
Using a spectrophotometer (trade name "U-3310", manufactured by Hitachi, Ltd.), the brightness Y at y=0.14 of the glass substrate for measurement was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 本発明のε型銅フタロシアニン組成物の製造方法によれば、液晶等に用いられるカラーフィルター用の着色剤等として有用なε型銅フタロシアニンを簡便に製造することができる。

 
According to the method for producing an ε-type copper phthalocyanine composition of the present invention, ε-type copper phthalocyanine useful as a coloring agent for color filters used in liquid crystals and the like can be easily produced.

Claims (6)

  1.  フタルイミドメチル化銅フタロシアニンを非イオン性界面活性剤で処理して、処理済みフタルイミドメチル化銅フタロシアニンを得る工程と、
     α型銅フタロシアニン、ε型銅フタロシアニン、及び前記処理済みフタルイミドメチル化銅フタロシアニンを含有する混合物をソルベントソルトミリングして、顔料組成物を得る工程と、
    を有するε型銅フタロシアニン顔料組成物の製造方法。
    treating the phthalimidomethylated copper phthalocyanine with a nonionic surfactant to obtain a treated phthalimidomethylated copper phthalocyanine;
    Solvent salt milling a mixture containing α-type copper phthalocyanine, ε-type copper phthalocyanine, and the treated phthalimidomethylated copper phthalocyanine to obtain a pigment composition;
    A method for producing an ε-type copper phthalocyanine pigment composition.
  2.  前記混合物が、前記処理済みフタルイミドメチル化銅フタロシアニン及びβ型銅フタロシアニンを含有する硫酸溶液を水に注入して析出させた析出物である請求項1に記載のε型銅フタロシアニン顔料組成物の製造方法。 The production of the ε-type copper phthalocyanine pigment composition according to claim 1, wherein the mixture is a precipitate obtained by pouring into water a sulfuric acid solution containing the treated phthalimidomethylated copper phthalocyanine and β-type copper phthalocyanine. Method.
  3.  前記非イオン性界面活性剤、水不溶性有機溶剤、及び水を含有する乳化物を前記フタルイミドメチル化銅フタロシアニンに接触させて、前記処理済みフタルイミドメチル化銅フタロシアニンを得る請求項1に記載のε型銅フタロシアニン顔料組成物の製造方法。 The ε type according to claim 1, wherein the treated phthalimidomethylated copper phthalocyanine is obtained by contacting the emulsion containing the nonionic surfactant, water-insoluble organic solvent, and water with the phthalimidomethylated copper phthalocyanine. A method for producing a copper phthalocyanine pigment composition.
  4.  前記水不溶性有機溶剤が、トルエン、キシレン、酢酸エチル、及び酢酸ブチルからなる群より選択される少なくとも一種である請求項3に記載のε型銅フタロシアニン顔料組成物の製造方法。 The method for producing an ε-type copper phthalocyanine pigment composition according to claim 3, wherein the water-insoluble organic solvent is at least one selected from the group consisting of toluene, xylene, ethyl acetate, and butyl acetate.
  5.  前記混合物を、ジエチレングリコール及びプロピレングリコールの少なくともいずれかの水溶性有機溶剤の存在下でソルベントソルトミリングして、前記顔料組成物を得る請求項1~4のいずれか一項に記載のε型銅フタロシアニン顔料組成物の製造方法。 The ε-type copper phthalocyanine according to any one of claims 1 to 4, wherein the pigment composition is obtained by subjecting the mixture to solvent salt milling in the presence of a water-soluble organic solvent of at least one of diethylene glycol and propylene glycol. A method for producing a pigment composition.
  6.  前記顔料組成物を再度ソルベントソルトミリングする工程をさらに有する請求項1~4のいずれか一項に記載のε型銅フタロシアニン顔料組成物の製造方法。

     
    The method for producing an ε-type copper phthalocyanine pigment composition according to any one of claims 1 to 4, further comprising the step of subjecting the pigment composition to solvent salt milling again.

PCT/JP2022/030850 2022-04-20 2022-08-15 METHOD FOR PRODUCING ε-FORM COPPER PHTHALOCYANINE PIGMENT COMPOSITION WO2023203789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069175A JP7110511B1 (en) 2022-04-20 2022-04-20 Method for producing ε-type copper phthalocyanine pigment composition
JP2022-069175 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023203789A1 true WO2023203789A1 (en) 2023-10-26

Family

ID=82656889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030850 WO2023203789A1 (en) 2022-04-20 2022-08-15 METHOD FOR PRODUCING ε-FORM COPPER PHTHALOCYANINE PIGMENT COMPOSITION

Country Status (3)

Country Link
JP (1) JP7110511B1 (en)
TW (1) TWI806782B (en)
WO (1) WO2023203789A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855403A (en) * 1956-02-16 1958-10-07 American Cyanamid Co Nonflocculating, noncrystallizing phthalocyanine pigments
JP2000109720A (en) * 1998-10-05 2000-04-18 Toyo Ink Mfg Co Ltd Production of copper phthalocyanine pigment
JP2002121420A (en) * 2000-08-07 2002-04-23 Dainippon Ink & Chem Inc Copper phthalocyanine pigment and method for producing the same
JP2007009007A (en) * 2005-06-29 2007-01-18 Dainippon Ink & Chem Inc epsilon-TYPE COPPER PHTHALOCYANINE PIGMENT COMPOSITION AND METHOD FOR PRODUCING THE SAME
JP4097053B2 (en) * 1999-03-08 2008-06-04 東洋インキ製造株式会社 Method for producing coloring composition for color filter and method for producing color filter
JP2010244028A (en) * 2009-03-17 2010-10-28 Fujifilm Corp Colored curable composition, color filter, and method for producing color filter
JP2012032833A (en) * 2011-10-28 2012-02-16 Toyo Ink Sc Holdings Co Ltd Coloring composition for color filter, and color filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234009A (en) * 2004-02-17 2005-09-02 Dainippon Ink & Chem Inc Blue pigment composition for color filter, its manufacturing method, and color filter containing the same in blue pixel portion
US7905952B2 (en) * 2007-02-07 2011-03-15 Basf Se Blue phthalocyanine pigment composition and its preparation
EP2039727A1 (en) * 2007-09-18 2009-03-25 SOLVAY (Société Anonyme) Preparation of epsilon copper phthalocyanine of small primary particle size and narrow particle size distribution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855403A (en) * 1956-02-16 1958-10-07 American Cyanamid Co Nonflocculating, noncrystallizing phthalocyanine pigments
JP2000109720A (en) * 1998-10-05 2000-04-18 Toyo Ink Mfg Co Ltd Production of copper phthalocyanine pigment
JP4097053B2 (en) * 1999-03-08 2008-06-04 東洋インキ製造株式会社 Method for producing coloring composition for color filter and method for producing color filter
JP2002121420A (en) * 2000-08-07 2002-04-23 Dainippon Ink & Chem Inc Copper phthalocyanine pigment and method for producing the same
JP2007009007A (en) * 2005-06-29 2007-01-18 Dainippon Ink & Chem Inc epsilon-TYPE COPPER PHTHALOCYANINE PIGMENT COMPOSITION AND METHOD FOR PRODUCING THE SAME
JP2010244028A (en) * 2009-03-17 2010-10-28 Fujifilm Corp Colored curable composition, color filter, and method for producing color filter
JP2012032833A (en) * 2011-10-28 2012-02-16 Toyo Ink Sc Holdings Co Ltd Coloring composition for color filter, and color filter

Also Published As

Publication number Publication date
TW202342648A (en) 2023-11-01
JP7110511B1 (en) 2022-08-01
JP2023159499A (en) 2023-11-01
TWI806782B (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP2008074987A (en) Pigment additive, pigment composition and pigment dispersion
JP2006335920A (en) Manufacturing method of fine organic pigment
KR100459619B1 (en) Production of Pigments
JP7110511B1 (en) Method for producing ε-type copper phthalocyanine pigment composition
JPS6050833B2 (en) Method for producing pigment composition
JP2006328262A (en) Production method for fine quinacridone pigment
KR100341980B1 (en) Conversion of crude phthalocyanine blue from red to green shade in an aqueous environment
JP2000290578A (en) Preparation of water-based pigment dispersion
JPH0826242B2 (en) Method for producing β-type copper phthalocyanine pigment
WO2021220497A1 (en) Method for producing halogenated zinc phthalocyanine pigment
JP2007100008A (en) METHOD FOR PREPARING epsilon-PHTHALOCYANINE PIGMENT
JPH0633353B2 (en) Method of preparing organic pigment
JP2003041173A (en) Method for producing printing ink and printing ink
TWI836134B (en) Manufacturing method of zinc halide phthalocyanin pigment
JP2003231829A (en) Method for producing printing ink
JP6819824B1 (en) Manufacturing method of halogenated zinc phthalocyanine pigment
JP2008019367A (en) Method for producing fine organic pigment
JP2003049102A (en) Method for producing printing ink
JP5534325B2 (en) Method for producing copper phthalocyanine pigment composition and method for producing printing ink
JP2003335997A (en) Method for producing copper phthalocyanine pigment composition for printing ink and method for producing printing ink
JP6819826B1 (en) Halogenated zinc phthalocyanine pigment and its manufacturing method
JP6819823B1 (en) Manufacturing method of halogenated zinc phthalocyanine pigment
JP2009062466A (en) Method for preparing finely pulverized organic pigment
JP2002121413A (en) Method of producing cerulean pigment
WO2022049686A1 (en) Method for manufacturing color filter pigment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938588

Country of ref document: EP

Kind code of ref document: A1