JP2009062466A - Method for preparing finely pulverized organic pigment - Google Patents

Method for preparing finely pulverized organic pigment Download PDF

Info

Publication number
JP2009062466A
JP2009062466A JP2007232174A JP2007232174A JP2009062466A JP 2009062466 A JP2009062466 A JP 2009062466A JP 2007232174 A JP2007232174 A JP 2007232174A JP 2007232174 A JP2007232174 A JP 2007232174A JP 2009062466 A JP2009062466 A JP 2009062466A
Authority
JP
Japan
Prior art keywords
pigment
organic pigment
group
weight
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007232174A
Other languages
Japanese (ja)
Inventor
Masatoshi Momose
雅俊 百瀬
Takuya Kotani
卓也 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2007232174A priority Critical patent/JP2009062466A/en
Publication of JP2009062466A publication Critical patent/JP2009062466A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a finely pulverized organic pigment that can be suitably used for solving such problems as a large energy consumption, the quality limitations of glossiness, tinting strength, etc. and the mingling of impurities between lots, that used to be problems of conventional kneaders. <P>SOLUTION: The method for preparing a fine pulverized organic pigment comprises kneading a mixture containing a 1-30 pts.wt. water soluble inorganic salt and a 0.1-7 pts.wt. water soluble organic liquid relative to a 1 pts.wt. organic pigment in a planetary mixer having plural blades that makes a planetary movement, wherein the energy in the range of 0.06-0.72 Kw/Kg per unit weight (Kg) of the pigment is charged into the mixture. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発色用の粉体の粒子が微細でかつ均一な粒子径に整粒され、ビヒクルに対して分散性が極めて良好な有機顔料を得る際に、結晶転移を伴う微細有機顔料の製造方法に関するものである。さらに詳しくは、本発明は、水性フレキソインキ、着色材、水性分散体等のビヒクル中に発色用の粉体の粒子が分散した場合、良好な光沢、高着色力、透明性等を与え、更にはインクジェット用インキやカラーフィルター等のより微細な有機顔料粒子を求められる用途においても、優れた適性を与える微細有機顔料の製造方法に関する。 The present invention relates to the production of fine organic pigments with crystal transition when obtaining organic pigments in which the particles of color developing powder are finely sized to a uniform particle size and have extremely good dispersibility with respect to the vehicle. It is about the method. More specifically, the present invention provides good gloss, high coloring power, transparency, and the like when particles of color developing powder are dispersed in a vehicle such as an aqueous flexo ink, a coloring material, and an aqueous dispersion. Relates to a method for producing a fine organic pigment that provides excellent suitability even in applications requiring finer organic pigment particles such as ink jet inks and color filters.

フタロシアニン顔料に代表される有機顔料は微細化することで色調が美しいこと、着色力が大きいこと、耐候性、耐熱性等の諸性能が良好である機能を発揮し、色材工業の分野において多量に、しかも広範に使用されている。顔料を微細化処理する方法として、現在広く用いられている方法には、ソルベントソルトミリング法がある。 Organic pigments typified by phthalocyanine pigments have fine color tones, high tinting strength, functions such as weather resistance, heat resistance, etc., and a large amount in the color material industry. In addition, it is widely used. A solvent salt milling method is currently widely used as a method for refining a pigment.

ソルベントソルトミリング法は、粗大な顔料粒子を、塩化ナトリウムや硫酸ナトリウム等の無機塩類と、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等の粘性の高い水溶性有機溶剤の存在下で、ニーダー等により機械的に摩砕して微細化する方法である。ソルベントソルトミリング法は、顔料粒子を微細化、整粒するのに有効な方法であるが、インクジェットやカラーフィルターにおいてより高い性能発揮を実現させるためには、従来のソルトミリング法で得られていた顔料よりもより微細かつ整粒された顔料を用いる必要性がある。   In the solvent salt milling method, coarse pigment particles are mechanically treated by a kneader or the like in the presence of inorganic salts such as sodium chloride and sodium sulfate and highly viscous water-soluble organic solvents such as ethylene glycol, diethylene glycol and polyethylene glycol. It is a method to grind and refine. The solvent salt milling method is an effective method for refining and sizing pigment particles, but in order to achieve higher performance in inkjet and color filters, it was obtained by the conventional salt milling method. There is a need to use finer and sized pigments than pigments.

また、従来のバッチ式ニーダー等では、バッチ式に由来する生産スケールの制約、品質のロット毎のバラツキ、開放型であるための異物混入や粉塵発生による作業環境の汚染等の問題があった。
特開平7−53889号公報
In addition, the conventional batch type kneader and the like have problems such as restrictions on the production scale derived from the batch type, variations in quality for each lot, contamination of the working environment due to foreign matter contamination and dust generation due to the open type.
Japanese Patent Laid-Open No. 7-53889

ソルベントソルトミリング法は工業的に有利であるものの、従来広く用いられているニーダーでは有機顔料の微細化に対して多大なエネルギーを使用することや微細化レベルにも限界があった。さらに得られた微細有機顔料に対して水性フレキソインキ、着色材、水性分散体、等のビヒクル中に分散して使用する場合においても展色物への光沢、着色力、透明性等の向上は常に要求される課題であった。更には、インクジェット用インキやカラーフィルター等の用途においては、より微細な顔料粒子が求められるが、前述の方法でこれを得るのは困難であり、多大なエネルギーと時間を要していた。また、ニーダーでは回転軸部に混練物が浸入することまた間隙部等の洗浄性が低いことから、次ロット運転時に前ロットの混練物が混入し、夾雑物の発生等が起こりやすいという問題点があり、多種多様な製品の生産に不向きであった。   Although the solvent salt milling method is industrially advantageous, the kneader that has been widely used conventionally has a limit in the use of a great deal of energy for the miniaturization of organic pigments and the level of miniaturization. Furthermore, even when the fine organic pigment obtained is dispersed in a vehicle such as an aqueous flexo ink, a coloring material, an aqueous dispersion, etc., the gloss, coloring power, transparency, etc. of the color-extended product are improved. It was always a challenge. Furthermore, finer pigment particles are required for applications such as inkjet inks and color filters, but it is difficult to obtain these by the above-described method, and a great deal of energy and time are required. In addition, the kneader has the problem that the kneaded material enters the rotating shaft and the cleaning properties of the gaps and the like are low, so that the kneaded material of the previous lot is mixed during the next lot operation, and the generation of contaminants is likely to occur. It was unsuitable for the production of a wide variety of products.

本発明は、かかる状況に鑑みなされたものであって、従来のニーダーにおいて課題として挙げられる多大なエネルギーの消費、光沢、着色力等品位および微細化レベルの限界、ロット間の夾雑物混入等を解決する顔料の製造方法を提供することを目的としている。   The present invention has been made in view of such a situation, and includes the consumption of enormous energy, gloss, coloring power and the like, and limitations on the level of refinement, contamination contamination between lots, etc. It aims at providing the manufacturing method of the pigment which solves.

本発明の微細有機顔料の製造方法は、複数のブレードが遊星運動するプラネタリー型ミキサーにて混練する際、有機顔料1重量部に対し、水溶性無機塩を1〜30重量部、水溶性有機液体を0.1〜7重量部以下含む混合物を、顔料単位重量(Kg)当たり0.06〜0.72Kw/Kgの範囲でエネルギーを投入することを特徴とする微細有機顔料の製造方法である。
更には、複数のブレード数が3である遊星運動するプラネタリー型ミキサーにて混練することを特徴とすることである。
更には、有機顔料と水溶性無機塩と水溶性有機液体との混合物に、樹脂を含有させることを特徴とすることである。
更には、有機顔料と水溶性無機塩と水溶性有機液体との混合物に、顔料誘導体を含有させることを特徴とすることである。
The method for producing a fine organic pigment according to the present invention comprises 1-30 parts by weight of a water-soluble inorganic salt and 1 part by weight of a water-soluble organic salt per 1 part by weight of the organic pigment when kneading with a planetary mixer in which a plurality of blades move in a planetary motion. It is a method for producing a fine organic pigment, wherein a mixture containing 0.1 to 7 parts by weight or less of a liquid is charged with energy in a range of 0.06 to 0.72 Kw / Kg per pigment unit weight (Kg). .
Furthermore, kneading is carried out by a planetary type mixer having a planetary motion in which the number of blades is three.
Furthermore, a resin is contained in a mixture of an organic pigment, a water-soluble inorganic salt, and a water-soluble organic liquid.
Furthermore, a pigment derivative is contained in a mixture of an organic pigment, a water-soluble inorganic salt, and a water-soluble organic liquid.

本発明によれば、従来のニーダーを用いたソルトミリング製法に比べ複数のブレード遊星運動するプラネタリー型ミキサーにて混練する際、顔料単位重量(Kg)当たり0.06〜0.72Kw/Kgのエネルギーを投入することで微細な有機顔料を得ることができる。0.06Kw/Kgよりも少ないエネルギーを投入した際、微細な有機顔料を得ることができない。一方、0.72Kw/Kgよりも多いエネルギーを投入した際、混練物の温度上昇に伴い微細な有機顔料を得ることができない。更に、エネルギー効率(単位顔料重量当たりの実効積算電力量)の視点からも効率的に微細な顔料を得ることができる。得られた微細有機顔料を水性フレキソインキ、着色材、水性分散体、等のビヒクル中に分散して使用した場合、展色物に良好な光沢と着色力、透明性の向上等を図ることができる。更にはインクジェット用インキやカラーフィルター等のより微細な顔料粒子を求められる用途においても、優れた適性を与える。 According to the present invention, 0.06 to 0.72 Kw / Kg per pigment unit weight (Kg) when kneaded by a planetary mixer with a plurality of blades in planetary motion as compared with a salt milling method using a conventional kneader. By applying energy, a fine organic pigment can be obtained. When energy less than 0.06 Kw / Kg is input, a fine organic pigment cannot be obtained. On the other hand, when more energy than 0.72 Kw / Kg is input, a fine organic pigment cannot be obtained as the temperature of the kneaded product increases. Furthermore, a fine pigment can be efficiently obtained also from the viewpoint of energy efficiency (effective integrated electric energy per unit pigment weight). When the obtained fine organic pigment is dispersed in a vehicle such as an aqueous flexo ink, a coloring material, an aqueous dispersion, etc., it can improve the gloss, coloring power, transparency, etc. of the developed product. it can. Furthermore, excellent aptitude is imparted even in applications requiring finer pigment particles such as inkjet inks and color filters.


以下、本発明の実施の形態について説明する。

Embodiments of the present invention will be described below.

本発明で使用するプラネタリー型ミキサーを図面に基づいて説明する。プラネタリー型ミキサー本体(1)は、モータ等の駆動源(図示略)により適宜の伝達機構を介して遊星運動する複数本の駆動軸(2)(図面内での例は2本)を有し、該駆動軸(2)にはタンク(3)内に挿入されるようそれぞれブレード(4)が取り付けられている。タンク内に処理材料を投入し、ブレードを降下させて図1に示すような状態にセットし、タンク内で複数本のブレードを遊星運動させると、ブレードとタンクの内壁、底壁間および複数本のブレード間でそれぞれ剪断力を処理材料に与える。       A planetary mixer used in the present invention will be described with reference to the drawings. The planetary mixer main body (1) has a plurality of drive shafts (2) (two examples in the drawing) that perform planetary movement via a suitable transmission mechanism by a drive source (not shown) such as a motor. The drive shaft (2) is attached with a blade (4) so as to be inserted into the tank (3). When the processing material is put into the tank, the blade is lowered and set in a state as shown in FIG. 1, and a plurality of blades are planetarily moved in the tank, the blade and the inner wall of the tank, between the bottom wall and the plurality of blades A shearing force is applied to the treated material between the blades.

本発明のプラネタリー型ミキサーの具体例としては、例えば、プラネタリーミキサー、スパイラルミキサー、トリミックス(井上製作所製)があり、トリミックスは大きな剪断力を与えることが可能なことから本発明の目的を達成するのに望ましい。以下、このような混合機によって摩砕混練処理が施される混練組成物について詳細に説明する。
混練組成物に用いられる有機顔料を以下に、カラーインデックス番号で示す。尚、本発明で混練組成物に用いられる有機顔料は以下に示す番号に制限されず、混練機中で微細有機顔料を得る際に結晶転移が起こるものであれば、この限りではない。
Specific examples of the planetary mixer of the present invention include, for example, a planetary mixer, a spiral mixer, and a trimix (manufactured by Inoue Seisakusho), and the trimix can provide a large shearing force. Is desirable to achieve. Hereinafter, the kneaded composition subjected to the milling and kneading process by such a mixer will be described in detail.
The organic pigments used in the kneaded composition are indicated by color index numbers below. The organic pigment used in the kneaded composition in the present invention is not limited to the numbers shown below, and is not limited as long as crystal transition occurs when obtaining a fine organic pigment in a kneader.

青色着色組成物には、例えばC.I. Pigment Blue15:6等の青色顔料を用いることができる。青色着色組成物には、C.I. Pigment Violet23等の紫色顔料を併用することができる。   For the blue coloring composition, for example, a blue pigment such as C.I. Pigment Blue 15: 6 can be used. A purple pigment such as C.I. Pigment Violet 23 can be used in combination with the blue coloring composition.

シアン色着色組成物には、例えばC.I. Pigment Blue15:6等の青色顔料を用いることができる。   For the cyan coloring composition, for example, a blue pigment such as C.I. Pigment Blue 15: 6 can be used.

マゼンタ色着色組成物には、例えばC.I. Pigment Violet23等の紫色顔料および赤色顔料を用いることができる。マゼンタ色組成物には、黄色顔料を併用することができる。   For the magenta coloring composition, for example, a purple pigment and a red pigment such as C.I. Pigment Violet 23 can be used. A yellow pigment can be used in combination with the magenta composition.

赤色着色組成物には、例えばC.I. Pigment Red 7、9、14、41、48:1、48:2、48:3、48:4、81:1、81:2、81:3、97、122、123、146、149、168、177、178、180、184、185、187、192、200、202、208、210、215、216、217、220、223、224、226、227、228、240、246、254、255、264、272等の赤色顔料を用いることができる。赤色着色組成物には、黄色顔料、オレンジ顔料を併用することができる。   Examples of the red coloring composition include CI Pigment Red 7, 9, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 97, 122. 123, 146, 149, 168, 177, 178, 180, 184, 185, 187, 192, 200, 202, 208, 210, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240 Red pigments such as 246, 254, 255, 264, and 272 can be used. A yellow pigment and an orange pigment can be used in combination with the red coloring composition.

本発明で使用する水溶性無機塩としては、特に限定されないが、例えば、食塩(塩化ナトリウム)、塩化カリウム、硫酸ナトリウム、塩化亜鉛、塩化カルシウムまたはこれらの混合物等を挙げることができる。   The water-soluble inorganic salt used in the present invention is not particularly limited, and examples thereof include sodium chloride (sodium chloride), potassium chloride, sodium sulfate, zinc chloride, calcium chloride, and mixtures thereof.

混練組成物中の水溶性無機塩の量は、有機顔料1重量部に対し、1重量部〜30重量部である。水溶性無機塩の量が1重量部未満の場合は、有機顔料を微細化し難く、30重量部を超える場合は、微細化した有機顔料を得ることが可能となるが、有機顔料の微細化処理量が少なくなるため、生産性が低下して工業的には不利となるからである。
また、本発明で使用する水溶性有機液体は、有機顔料と水溶性無機塩とが均一な固まりとなるように加えるもので、水と自由に混和するもの、または自由に混ざらないが工業的に水洗により除去できる溶解度をもつものである。水溶性有機液体は、顔料粒子が成長するものであれば特に限定されないが、混練時に温度が上昇し、有機液体が蒸発し易い状態になるため、安全性の点から高沸点溶剤が好ましい。
混練組成物中の水溶性有機液体の量は、有機顔料1重量部に対し、0.1〜7重量部以下であることが好ましく、水溶性無機塩の量と混練組成物の硬さに応じて選択できる。水溶性無機塩の量が0.1重量部未満の場合は、混練組成物が硬くなりすぎて安全運転し難く、7重量部を超える場合は、混練組成物が軟らかくなりすぎて有機顔料の微細化レベルが低下する。
The amount of the water-soluble inorganic salt in the kneaded composition is 1 to 30 parts by weight with respect to 1 part by weight of the organic pigment. When the amount of the water-soluble inorganic salt is less than 1 part by weight, it is difficult to refine the organic pigment, and when it exceeds 30 parts by weight, it is possible to obtain a refined organic pigment. This is because, since the amount is small, productivity is lowered and industrially disadvantageous.
In addition, the water-soluble organic liquid used in the present invention is added so that the organic pigment and the water-soluble inorganic salt are uniformly solidified, and can be mixed freely with water or not mixed freely, but industrially. It has a solubility that can be removed by washing with water. The water-soluble organic liquid is not particularly limited as long as the pigment particles grow, but a high-boiling solvent is preferable from the viewpoint of safety because the temperature rises during kneading and the organic liquid easily evaporates.
The amount of the water-soluble organic liquid in the kneaded composition is preferably 0.1 to 7 parts by weight or less based on 1 part by weight of the organic pigment, depending on the amount of the water-soluble inorganic salt and the hardness of the kneaded composition. Can be selected. When the amount of the water-soluble inorganic salt is less than 0.1 parts by weight, the kneaded composition becomes too hard to be operated safely, and when it exceeds 7 parts by weight, the kneaded composition becomes too soft and the fineness of the organic pigment The level of conversion decreases.

水溶性有機溶剤としては、2−(メトキシメトキシ)エタノール、2−ブトキシエタノール、2−(イソペンチルオキシ)エタノール、2−(ヘキシルオキシ)エタノール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、液体ポリエチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、低分子量ポリプロピレングリコール、アニリン、ピリジン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、イソプロパノール、n−プロパノール、イソブタノール、n−ブタノール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸イソプロピル、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン等を挙げることができる。   Examples of water-soluble organic solvents include 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono Butyl ether, triethylene glycol, triethylene glycol monomethyl ether, liquid polyethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, low Molecular weight polypropylene glycol, aniline, pyridine, tetrahydrofuran, dioxane, methanol, eta Alcohol, isopropanol, n-propanol, isobutanol, n-butanol, ethylene glycol, propylene glycol, propylene glycol monomethyl ether acetate, ethyl acetate, isopropyl acetate, acetone, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, etc. Can be mentioned.

また必要に応じて2種類以上の溶剤を混合して使用してもよい。
有機顔料と水溶性無機塩と水溶性有機液体との混合物を混練する際には、得られる微細有機顔料を顔料担体へ容易に分散できるようにする目的で、樹脂を添加してもよい。
Moreover, you may mix and use 2 or more types of solvents as needed.
When kneading a mixture of an organic pigment, a water-soluble inorganic salt, and a water-soluble organic liquid, a resin may be added for the purpose of easily dispersing the resulting fine organic pigment in a pigment carrier.

樹脂は、水難溶性で、水溶性有機液体に部分的に溶解するものが好ましく、例えば、ロジン、不均化ロジン、重合ロジン、水素化ロジン、ロジンエステル、ロジンアミン、マレイン化ロジン、フマル化ロジン、ロジン金属塩、ロジン変性フェノール樹脂およびロジン変性マレイン樹脂などのロジン系樹脂、エポキシ樹脂、アクリル樹脂、マレイン酸樹脂、ブチラール樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン樹脂およびポリアミド樹脂などの合成樹脂、繊維素およびゴムなどから誘導された変性樹脂などがあげられるが、特に添加効果と価格の面からロジン系樹脂が好ましい。   The resin is preferably poorly water-soluble and partially soluble in a water-soluble organic liquid, such as rosin, disproportionated rosin, polymerized rosin, hydrogenated rosin, rosin ester, rosinamine, maleated rosin, fumarated rosin, Synthetic resins such as rosin metal salts, rosin resins such as rosin-modified phenolic resins and rosin-modified maleic resins, epoxy resins, acrylic resins, maleic resins, butyral resins, polyester resins, melamine resins, phenolic resins, polyurethane resins and polyamide resins In addition, modified resins derived from fiber, rubber, and the like can be mentioned, and rosin resins are particularly preferable from the viewpoint of the addition effect and cost.

混練組成物中の樹脂の量は特に制限はないが、有機顔料1重量部に対し、0.001〜〜1.0重量部以下であることが好ましい。樹脂の量が、0.001重量部未満の場合は、分散効果が得られ難く、1.0重量部を超える場合は、添加した分の分散効果が得られない。
また、樹脂と、顔料担体との性質の差異によって樹脂の量を調整することが好ましい。すなわち、差異が大きい場合は樹脂の量を必要最小限に止めて顔料担体の物性への影響を少なくし、一方、差異が小さい場合は樹脂の量を多くして分散効果を十分に発揮させることが好ましい。
また、有機顔料と水溶性無機塩と水溶性有機液体との混合物を混練する際には、有機顔料の結晶成長や結晶転位を防止する目的で、有機顔料、アントラキノン、アクリドンまたはトリアジンに、塩基性または酸性の置換基、あるいはフタルイミドメチル基を導入した各種誘導体を添加してもよい。なかでも、有機顔料に塩基性または酸性の置換基、あるいはフタルイミドメチル基を導入した顔料誘導体を添加することが好ましい。塩基性の置換基としては、下記式(1)〜(4)で示される置換基が挙げられる。酸性の置換基としては、スルホン酸基及びカルボキシル基が挙げられる。
顔料誘導体としては、微粉砕する有機顔料と同一の構造を母体とする顔料誘導体が好ましいが、母体が異なる構造の顔料誘導体であっても良い。
混練組成物中の顔料誘導体の量は、有機顔料1重量部に対し、0.001〜0.3重量部以下であることが好ましい。顔料誘導体の量が、0.001重量部未満の場合は、添加した効果が得られ難い。また、0.3重量部を超える場合は、添加した分の効果が得られないばかりか、得られる微細有機顔料が顔料誘導体との混合物となることから、有機顔料単独の物性との差異が大きくなる。そのため、このような微細有機顔料を含有する着色組成物を用いて形成されるカラーフィルターは、実用上の品質に問題が起きることがある。
The amount of the resin in the kneaded composition is not particularly limited, but is preferably 0.001 to 1.0 part by weight or less with respect to 1 part by weight of the organic pigment. When the amount of the resin is less than 0.001 part by weight, it is difficult to obtain the dispersion effect, and when it exceeds 1.0 part by weight, the dispersion effect for the added amount cannot be obtained.
Moreover, it is preferable to adjust the amount of resin depending on the difference in properties between the resin and the pigment carrier. In other words, if the difference is large, the amount of resin should be kept to the minimum necessary to reduce the effect on the physical properties of the pigment carrier, while if the difference is small, the amount of resin should be increased to fully exhibit the dispersion effect. Is preferred.
In addition, when kneading a mixture of an organic pigment, a water-soluble inorganic salt, and a water-soluble organic liquid, the organic pigment, anthraquinone, acridone, or triazine may be basic for the purpose of preventing crystal growth or crystal dislocation of the organic pigment. Alternatively, an acidic substituent or various derivatives introduced with a phthalimidomethyl group may be added. Among these, it is preferable to add a pigment derivative having a basic or acidic substituent or a phthalimidomethyl group introduced into an organic pigment. Examples of the basic substituent include substituents represented by the following formulas (1) to (4). Examples of the acidic substituent include a sulfonic acid group and a carboxyl group.
The pigment derivative is preferably a pigment derivative having the same structure as that of the organic pigment to be finely pulverized, but may be a pigment derivative having a structure different from the matrix.
The amount of the pigment derivative in the kneaded composition is preferably 0.001 to 0.3 parts by weight or less with respect to 1 part by weight of the organic pigment. When the amount of the pigment derivative is less than 0.001 part by weight, it is difficult to obtain the added effect. If the amount exceeds 0.3 parts by weight, not only the effect of the added amount can be obtained, but also the resulting fine organic pigment becomes a mixture with the pigment derivative, so the difference between the physical properties of the organic pigment alone is large. Become. Therefore, a color filter formed using a coloring composition containing such a fine organic pigment may cause a problem in practical quality.

Figure 2009062466
Figure 2009062466

(上記式(1)〜(4)において、
Xは、−SO2−、−CO−、−CH2NHCOCH2−、−CH2−または直接結合を表し、nは、1〜10の整数を表し、R1およびR2は、それぞれ独立に、置換されていてもよい炭素数1〜36のアルキル基、置換されていてもよい炭素数2〜36のアルケニル基もしくは置換されていてもよいフェニル基を表すか、またはR1とR2とが結合して更なる窒素、酸素または硫黄原子を含む置換されていてもよい複素環を形成し、R3は、置換されていてもよい炭素数1〜36のアルキル基、置換されていてもよい炭素数2〜36のアルケニル基または置換されていてもよいフェニル基を表し、R4、R5、R6およびR7は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜36のアルキル基、置換されていてもよい炭素数2〜36のアルケニル基または置換されていてもよいフェニル基を表し、Yは、−NR8−Z−NR9−または直接結合を表し、R8およびR9は、それぞれ独立に、水素原子、置換されていてもよい炭素数1〜36のアルキル基、置換されていてもよい炭素数2〜36のアルケニル基または置換されていてもよいフェニル基を表し、Zは、置換されていてもよい炭素数1〜36のアルキレン基、置換されていてもよい炭素数2〜36のアルケニレン基、または置換されていてもよいフェニレン基を表し、Rは、下記式(5)で示される置換基、または下記式(6)で示される置換基を表し、Qは、水酸基、アルコキシル基、下記式(5)で示される置換基または下記式(6)で示される置換基を表す。式(5)および式(6)において、R1〜R7およびnは、上に定義した通りのものである。)
(In the above formulas (1) to (4),
X represents —SO 2 —, —CO—, —CH 2 NHCOCH 2 —, —CH 2 — or a direct bond, n represents an integer of 1 to 10, and R 1 and R 2 each independently represent Represents an optionally substituted alkyl group having 1 to 36 carbon atoms, an optionally substituted alkenyl group having 2 to 36 carbon atoms or an optionally substituted phenyl group, or R 1 and R 2 Are bonded to form an optionally substituted heterocycle containing an additional nitrogen, oxygen or sulfur atom, and R 3 is an optionally substituted alkyl group having 1 to 36 carbon atoms, optionally substituted. R 2 , R 5 , R 6 and R 7 each independently represents a hydrogen atom or an optionally substituted carbon atom, and represents an optionally substituted alkenyl group having 2 to 36 carbon atoms or an optionally substituted phenyl group. ~ 36 alkyl group, optionally substituted carbon number An alkenyl group or an optionally substituted phenyl group of ~ 36, Y is, -NR 8 -Z-NR 9 - or a direct bond, R 8 and R 9 are each independently a hydrogen atom, a substituted Represents an optionally substituted alkyl group having 1 to 36 carbon atoms, an optionally substituted alkenyl group having 2 to 36 carbon atoms, or an optionally substituted phenyl group, and Z is an optionally substituted carbon Represents an alkylene group having 1 to 36, an alkenylene group having 2 to 36 carbon atoms which may be substituted, or a phenylene group which may be substituted, and R represents a substituent represented by the following formula (5), or The substituent represented by the following formula (6) is represented, and Q represents a hydroxyl group, an alkoxyl group, a substituent represented by the following formula (5) or a substituent represented by the following formula (6). In formula (5) and formula (6), R 1 to R 7 and n are as defined above. )

Figure 2009062466
Figure 2009062466

顔料誘導体を構成する有機顔料としては、例えば、ジケトピロロピロール系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料、フタロシアニン系顔料、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系玩弄、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、金属錯体系顔料が挙げられる。また、上記に示した混練組成物に用いられる顔料でもよい。   Examples of organic pigments constituting the pigment derivative include diketopyrrolopyrrole pigments, azo pigments such as azo, disazo, polyazo, phthalocyanine pigments, diaminodianthraquinone, anthrapyrimidine, flavantrons, anthanthrone, indanthrone, Anthraquinone pigments such as pyranthrone, violanthrone, quinacridone pigments, dioxazine pigments, perinone toys, perylene pigments, thioindigo pigments, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, selenium pigments, metal complexes Systemic pigments are mentioned. Moreover, the pigment used for the kneading | mixing composition shown above may be sufficient.

また、アントラキノン誘導体およびアクリドン誘導体を構成するアントラキノンおよびアクリドンは、メチル基、エチル基等のアルキル基、アミノ基、ニトロ基、水酸基、またはメトキシ基、エトキシ基等のアルコキシ基、または塩素等のハロゲン等の置換基を有していてもよいアントラキノンおよびアクリドンである。   Anthraquinone derivatives and acridone derivatives constituting anthraquinone derivatives and acridone derivatives are alkyl groups such as methyl and ethyl groups, amino groups, nitro groups, hydroxyl groups, alkoxy groups such as methoxy groups, ethoxy groups, halogens such as chlorine, etc. Anthraquinone and acridone which may have the following substituents:

また、トリアジン誘導体を構成するトリアジンは、メチル基、エチル基等のアルキル基、アミノ基またはジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基等のアルキルアミノ基、ニトロ基、水酸基、またはメトキシ基、エトキシ基、ブトキシ基等のアルコキシ基、塩素等のハロゲン、またはメチル基、メトキシ基、アミノ基、ジメチルアミノ基、水酸基等で置換されていてもよいフェニル基またはメチル基、エチル基、メトキシ基、エトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ニトロ基、水酸基等で置換されていてもよいフェニルアミノ基等の置換基を有していてもよい1,3,5−トリアジンである。   The triazine constituting the triazine derivative is an alkyl group such as a methyl group or an ethyl group, an amino group or a dimethylamino group, an alkylamino group such as a diethylamino group or a dibutylamino group, a nitro group, a hydroxyl group, a methoxy group or an ethoxy group. , An alkoxy group such as a butoxy group, a halogen such as chlorine, or a phenyl group or a methyl group optionally substituted with a methyl group, a methoxy group, an amino group, a dimethylamino group, a hydroxyl group, an ethyl group, a methoxy group, an ethoxy group 1,3,5-triazine which may have a substituent such as phenylamino group which may be substituted with amino group, dimethylamino group, diethylamino group, nitro group, hydroxyl group and the like.

塩基性の置換基を有する顔料誘導体、アントラキノン誘導体およびアクリドン誘導体は、種々の合成経路で合成することができる。例えば、有機顔料、アントラキノンまたはアクリドンに、下記式(7)〜(10)で表される置換基を導入した後、該置換基と反応して一般式(1)〜(4)で表される置換基を形成するアミン成分、例えば、N,N−ジメチルアミノプロピルアミン、N−メチルピペラジン、ジエチルアミンまたは4−[4−ヒドロキシ−6−[3−(ジブチルアミノ)プロピルアミノ]−1,3,5−トリアジン−2−イルアミノ]アニリン等を反応させることによって得られる。
式(7) −SO2Cl
式(8) −COCl
式(9) −CH2NHCOCH2Cl
式(10) −CH2Cl
一般式(7)〜(10)と上記アミン成分の反応時には、一般式(7)〜(10)の一部が加水分解して、塩素が水酸基に置換したものが混在していてもよい。その場合、一般式(7)、一般式(8)はそれぞれスルホン酸基、カルボン酸基となるが、何れも遊離酸のままでもよく、また、1〜3価の金属または上記のモノアミンとの塩であってもよい。
Pigment derivatives, anthraquinone derivatives and acridone derivatives having basic substituents can be synthesized by various synthetic routes. For example, after introducing a substituent represented by the following formulas (7) to (10) into an organic pigment, anthraquinone or acridone, it reacts with the substituent and is represented by the general formulas (1) to (4). Amine components that form substituents such as N, N-dimethylaminopropylamine, N-methylpiperazine, diethylamine or 4- [4-hydroxy-6- [3- (dibutylamino) propylamino] -1,3 It can be obtained by reacting 5-triazin-2-ylamino] aniline or the like.
Formula (7) —SO 2 Cl
Formula (8) -COCl
Formula (9) —CH 2 NHCOCH 2 Cl
Equation (10) -CH 2 Cl
At the time of reaction of the general formulas (7) to (10) and the amine component, a part of the general formulas (7) to (10) may be hydrolyzed so that chlorine is substituted with a hydroxyl group. In that case, the general formula (7) and the general formula (8) are a sulfonic acid group and a carboxylic acid group, respectively, but both may be a free acid, and may be a 1 to 3 valent metal or the above monoamine. It may be a salt.

有機顔料がアゾ系顔料である場合は、一般式(1)〜(4)で表される置換基をあらかじめジアゾ成分またはカップリング成分に導入し、その後カップリング反応を行うことによって塩基性基を有するアゾ系顔料誘導体を製造することもできる。   When the organic pigment is an azo pigment, a basic group is introduced by introducing a substituent represented by the general formulas (1) to (4) into a diazo component or a coupling component in advance and then performing a coupling reaction. An azo pigment derivative having the same can also be produced.

また、特定の塩基性基を有するトリアジン誘導体も、種々の合成経路で合成することができる。例えば、塩化シアヌルを出発原料とし、塩化シアヌルの少なくとも1つの塩素に一般式(1)〜(4)で表される置換基を形成するアミン成分、例えば、N,N−ジメチルアミノプロピルアミンまたはN−メチルピペラジン等を反応させ、次いで塩化シアヌルの残りの塩素と種々のアミンまたはアルコール等を反応させることによって得られる。   Triazine derivatives having a specific basic group can also be synthesized by various synthetic routes. For example, starting from cyanuric chloride, an amine component that forms a substituent represented by the general formulas (1) to (4) on at least one chlorine of cyanuric chloride, such as N, N-dimethylaminopropylamine or N It is obtained by reacting methylpiperazine or the like and then reacting the remaining chlorine of cyanuric chloride with various amines or alcohols.

塩基性の置換基を有する誘導体の具体例を以下に示すが、これらに限定されるわけではない。これらの誘導体は、単独でまたは2種類以上を混合して用いることができる。   Specific examples of the derivative having a basic substituent are shown below, but are not limited thereto. These derivatives can be used alone or in admixture of two or more.

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

Figure 2009062466
Figure 2009062466

本発明におけるミキサーの運転時における温度条件において、結晶転移と、摩砕及び、水溶性有機溶剤との接触による粒子制御を、いずれも効果的に進行させるため、混練温度は、0〜150℃、特には30〜90℃が好ましい。特に混練摩砕初期段階で70〜90℃の範囲内で混練摩砕処理することで転移させ、その後40〜69℃範囲内で混練摩砕処理することで微細化させることが品質上好ましい。
混練組成物は初期に全量投入する必要はなく、混練組成物の硬さの状況もしくは混練開始後に混練組成物の微細化および整粒度に応じて、水溶性有機溶剤および水溶性無機塩を適宜投入しても良い。
In the temperature condition at the time of operation of the mixer in the present invention, in order to effectively advance the particle transition by contact with the crystal transition, grinding, and water-soluble organic solvent, the kneading temperature is 0 to 150 ° C., 30-90 degreeC is especially preferable. In particular, it is preferable in terms of quality to be transferred by kneading and grinding in the range of 70 to 90 ° C. in the initial stage of kneading and grinding, and then refined by kneading and grinding in the range of 40 to 69 ° C.
It is not necessary to add the entire amount of the kneaded composition in the initial stage, and a water-soluble organic solvent and a water-soluble inorganic salt are appropriately added depending on the hardness of the kneaded composition or after the start of kneading, depending on the refinement and particle size of the kneaded composition. You may do it.

混練後の混練組成物は常法により処理される。すなわち、混練組成物を水または鉱酸水溶液で処理し、濾過、水洗により水溶性無機塩および水溶性有機溶剤を除去し微細有機顔料を単離する。得られた微細有機顔料はこのまま湿潤状態で使用することも、乾燥・粉砕により粉末状態で使用することも可能である。必要に応じて樹脂、界面活性剤、その他の添加剤を混練後に加えてもよい。   The kneaded composition after kneading is processed by a conventional method. That is, the kneaded composition is treated with water or an aqueous mineral acid solution, and the fine organic pigment is isolated by removing the water-soluble inorganic salt and the water-soluble organic solvent by filtration and washing with water. The obtained fine organic pigment can be used in a wet state as it is, or in a powder state by drying and pulverization. If necessary, a resin, a surfactant and other additives may be added after kneading.

本発明による方法で製造された微細有機顔料の用途は特に限定されないが、一般に用いられる色材用途に加えて、高い光沢や着色力、透明性等を要求される用途にも使うことができ、インクジェット用インキやカラーフィルター等の用途にも適用できる。   The use of the fine organic pigment produced by the method according to the present invention is not particularly limited, but in addition to commonly used color materials, it can be used for applications that require high gloss, coloring power, transparency, It can also be applied to uses such as inkjet inks and color filters.

以下、実施例および従来法による比較例を挙げて本発明を詳しく説明する。但し、本発明はこれらの実施例の範囲に限定されるものではない。なお、実施例中、「部」とは重量部を表し、「%」は重量%を表す。
実施例および比較例の中で、粒子径の測定は、透過型顕微鏡による粒子観察とその画像中の粒子の円相当径を測定・解析することにより行った。
(実施例1)
α型銅フタロシアニンを3〜6%含むε型銅フタロシアニン顔料5000部、塩化ナトリウム50000部、ジエチレングリコール10000部を150000容量部のブレード数3のトリミックス(井上製作所製)に投入し、混合物を磨砕して微細化したε型銅フタロシアニン顔料を製造した。運転条件としては、摩砕温度は70℃で公転13rpm、自転40rpmで稠密な塊状(ドウ)に保持しながら12時間混練した。混練時の顔料単位重量(Kg)当たりの負荷動力は常時0.50kWであった。ここで得られた混練組成物のうち6800部を70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥した。得られた顔料は、X線回折測定(CuKα1線)によりブラッグ角2θ(許容範囲±0.2度)=9.2度に最も強いピークを有するε型銅フタロシアニン顔料であった。得られたε型銅フタロシアニン顔料を透過型電子顕微鏡(TEM)で観察し画像を解析して粒子径を測定したところ、個数平均径24nmであり、以下に示す比較例1で得られたε型銅フタロシアニン顔料に比較してより微細化していた。また、顔料単位重量(Kg)当たりの実効電力量が6.0kWHであり、混練時の冷却効率を表す総括伝熱係数と冷却面積の積は170W/H・Kであった。
(実施例2)
α型銅フタロシアニンを3〜6%含むε型銅フタロシアニン顔料5000部、塩化ナトリウム50000部、ジエチレングリコール10000部を150000容量部のブレード数3のトリミックス(井上製作所製)に投入し、混合物を磨砕して微細化したε型銅フタロシアニン顔料を製造した。運転条件としては、摩砕温度は70℃で公転13rpm、自転40rpmで稠密な塊状(ドウ)に保持しながら5時間混練した後、ジエチレングリコール3000部を追加し、かつ混練物の温度を50℃に低下させ、公転12rpm、自転35rpmで稠密な塊状(ドウ)に保持しながらさらに7時間混練した。混練時の顔料単位重量(Kg)当たりの負荷動力は、冷却前は常時0.50kW、冷却後は常時0.06kWであった。ここで得られた混練組成物のうち6800部を70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥した。得られた顔料は、X線回折測定(CuKα1線)によりブラッグ角2θ(許容範囲±0.2度)=9.2度に最も強いピークを有するε型銅フタロシアニン顔料であった。得られたε型銅フタロシアニン顔料をTEMで観察し画像を解析して粒子径を測定したところ、個数平均径22nmであり、以下に示す比較例1の製法で得られたε型銅フタロシアニン顔料に比較してより微細化していた。また、顔料単位重量(Kg)当たりの実効電力量は2.9kWHであり、混練時の冷却効率を表す総括伝熱係数と冷却面積の積は190W/H・Kであった。
(実施例3)
α型銅フタロシアニンを3〜6%含むε型銅フタロシアニン顔料(5000部、塩化ナトリウム50000部、ジエチレングリコール9000部を150000容量部のブレード数3のトリミックス(井上製作所製)に投入し、混合物を磨砕して微細化したε型銅フタロシアニン顔料を製造した。運転条件としては、摩砕温度は70℃で公転13rpm、自転40rpmで稠密な塊状(ドウ)に保持しながら12時間混練した。混練時の顔料単位重量(Kg)当たりの負荷動力は常時0.72kWであった。ここで得られた混練組成物のうち6800部を70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥した。得られた顔料は、X線回折測定(CuKα1線)によりブラッグ角2θ(許容範囲±0.2度)=9.2度に最も強いピークを有するε型銅フタロシアニン顔料であった。得られたε型銅フタロシアニン顔料をTEMで観察し画像を解析して粒子径を測定したところ、個数平均径23nmであり、以下に示す比較例1の製法で得られたε型銅フタロシアニン顔料に比較してより微細化していた。また、顔料単位重量(Kg)当たりの実効電力量は7.2kWHであり、混練時の冷却効率を表す総括伝熱係数と冷却面積の積は170W/H・Kであった。
(比較例1)
α型銅フタロシアニンを3〜6%含むε型銅フタロシアニン5000部、塩化ナトリウム50000部、ジエチレングリコール7500部を150000容量部の双腕型ニーダーに仕込み、70℃で稠密な塊状(ドウ)に保持しながら10時間混練した。混練時の顔料単位重量(Kg)当たりの負荷動力は常時0.89kWであった。ここで得られた混練組成物のうち6800部を70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥し顔料を得た。得られた顔料は、X線回折測定(CuKα1線)によりブラッグ角2θ(許容範囲±0.2度)=9.2度に最も強いピークを有するε型銅フタロシアニン顔料であり、TEMで観察し画像を解析して粒子径を測定したところ、個数平均径25nmであった。また、顔料単位重量(Kg)当たりの実効電力量は8.9kWHであり、実施例1と比較して48%高いため、生産性が低く、混練時の冷却効率を表す総括伝熱係数と冷却面積の積は140W/H・Kであり、実施例1と比較して82%の冷却効率であった。
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples according to conventional methods. However, the present invention is not limited to the scope of these examples. In the examples, “parts” represents parts by weight, and “%” represents% by weight.
In Examples and Comparative Examples, the particle diameter was measured by observing particles with a transmission microscope and measuring and analyzing the equivalent circle diameter of particles in the image.
Example 1
5,000 parts of ε-type copper phthalocyanine pigment containing 3 to 6% α-type copper phthalocyanine, 50000 parts of sodium chloride, and 10000 parts of diethylene glycol are put into a 150,000 capacity part trimix (manufactured by Inoue Seisakusho) and the mixture is ground. Thus, a refined ε-type copper phthalocyanine pigment was produced. As the operating conditions, the milling temperature was 70 ° C., the revolution was 13 rpm, the rotation was 40 rpm, and the mixture was kneaded for 12 hours while maintaining a dense lump. The load power per pigment unit weight (Kg) during kneading was always 0.50 kW. 6800 parts of the kneaded composition obtained here was taken out to 20000 parts of 1% aqueous sulfuric acid solution at 70 ° C., stirred for 1 hour with heat, filtered, washed with water, and dried. The obtained pigment was an ε-type copper phthalocyanine pigment having a strongest peak at a Bragg angle 2θ (acceptable range ± 0.2 degrees) = 9.2 degrees according to X-ray diffraction measurement (CuKα1 line). When the obtained ε-type copper phthalocyanine pigment was observed with a transmission electron microscope (TEM), the image was analyzed and the particle diameter was measured, the number average diameter was 24 nm, and the ε-type obtained in Comparative Example 1 shown below. Compared to copper phthalocyanine pigment, it was made finer. The effective electric energy per pigment unit weight (Kg) was 6.0 kWh, and the product of the overall heat transfer coefficient representing the cooling efficiency during kneading and the cooling area was 170 W / H · K.
(Example 2)
5,000 parts of ε-type copper phthalocyanine pigment containing 3 to 6% α-type copper phthalocyanine, 50000 parts of sodium chloride, and 10000 parts of diethylene glycol are put into a 150,000 capacity part trimix (manufactured by Inoue Seisakusho) and the mixture is ground. Thus, a refined ε-type copper phthalocyanine pigment was produced. As operating conditions, the milling temperature was 70 ° C., revolving at 13 rpm, and rotating at 40 rpm while kneading for 5 hours while maintaining a dense lump (dough), then adding 3000 parts of diethylene glycol, and the temperature of the kneaded product to 50 ° C. The mixture was lowered and kneaded for an additional 7 hours while maintaining a dense lump at 12 rpm for revolution and 35 rpm for rotation. The load power per pigment unit weight (Kg) during kneading was always 0.50 kW before cooling, and was always 0.06 kW after cooling. 6800 parts of the kneaded composition obtained here was taken out to 20000 parts of 1% aqueous sulfuric acid solution at 70 ° C., stirred for 1 hour with heat, filtered, washed with water, and dried. The obtained pigment was an ε-type copper phthalocyanine pigment having a strongest peak at a Bragg angle 2θ (acceptable range ± 0.2 degrees) = 9.2 degrees according to X-ray diffraction measurement (CuKα1 line). The obtained ε-type copper phthalocyanine pigment was observed with TEM, and the particle size was measured by analyzing the image. The number-average diameter was 22 nm, and the ε-type copper phthalocyanine pigment obtained by the production method of Comparative Example 1 shown below was used. Compared with it, it was made finer. The effective electric energy per pigment unit weight (Kg) was 2.9 kWh, and the product of the overall heat transfer coefficient representing the cooling efficiency during kneading and the cooling area was 190 W / H · K.
(Example 3)
ε-type copper phthalocyanine pigment containing 3 to 6% α-type copper phthalocyanine (5000 parts, 50000 parts of sodium chloride, 9000 parts of diethylene glycol is charged into a 150,000 volume part trimix (manufactured by Inoue Seisakusho) and the mixture is polished. The ε-type copper phthalocyanine pigment was crushed and refined, and as operating conditions, the milling temperature was 70 ° C., the revolution was 13 rpm, the rotation was 40 rpm, and the mixture was kneaded for 12 hours while maintaining a dense lump. The load power per pigment unit weight (Kg) was always 0.72 kW, and 6800 parts of the kneaded composition obtained here was taken out to 20000 parts of 1% aqueous sulfuric acid solution at 70 ° C. The obtained pigment was subjected to X-ray diffraction measurement (CuKα1 line) and Bragg angle 2θ (acceptable range ± 0.2 degrees). It was an ε-type copper phthalocyanine pigment having the strongest peak at 9.2 ° C. When the obtained ε-type copper phthalocyanine pigment was observed with a TEM and the image was analyzed to measure the particle diameter, the number average diameter was 23 nm. The ε-type copper phthalocyanine pigment obtained by the production method of Comparative Example 1 shown below was further refined, and the effective electric power per pigment unit weight (Kg) was 7.2 kWh. The product of the overall heat transfer coefficient representing the cooling efficiency and the cooling area was 170 W / H · K.
(Comparative Example 1)
5,000 parts of ε-type copper phthalocyanine containing 3-6% α-type copper phthalocyanine, 50000 parts of sodium chloride, and 7500 parts of diethylene glycol are charged into a 150,000-volume part double-arm kneader and kept in a dense lump at 70 ° C. Kneaded for 10 hours. The load power per pigment unit weight (Kg) during kneading was always 0.89 kW. 6800 parts of the kneaded composition obtained here was taken out in 20000 parts of 1% aqueous sulfuric acid solution at 70 ° C., stirred for 1 hour with heat, filtered, washed with water and dried to obtain a pigment. The obtained pigment is an ε-type copper phthalocyanine pigment having a strongest peak at a Bragg angle 2θ (acceptable range ± 0.2 degrees) = 9.2 degrees by X-ray diffraction measurement (CuKα1 line). When the particle diameter was measured by analyzing the image, the number average diameter was 25 nm. Further, the effective electric energy per pigment unit weight (Kg) is 8.9 kWh, which is 48% higher than that of Example 1, so that the productivity is low and the overall heat transfer coefficient and the cooling representing the cooling efficiency at the time of kneading. The product of the area was 140 W / H · K, and the cooling efficiency was 82% as compared with Example 1.

プラネタリー型ミキサーの正面図である。It is a front view of a planetary mixer.

符号の説明Explanation of symbols

・ プラネタリー型ミキサー本体、2.駆動軸、3.タンク、4.ブレード









・ Planetary mixer body. 2. Drive shaft, Tank, 4. blade









Claims (4)

複数のブレードを有する遊星運動するプラネタリー型ミキサーにて混練する際、有機顔料1重量部に対し、水溶性無機塩を1〜30重量部、水溶性有機液体を0.1〜7重量部含む混合物を、顔料単位重量(Kg)当たり0.06〜0.72Kw/Kgの範囲でエネルギーを投入することを特徴とする微細有機顔料の製造方法。 When kneading in a planetary mixer having a plurality of blades, the water-soluble inorganic salt is contained in an amount of 1 to 30 parts by weight and the water-soluble organic liquid is contained in an amount of 0.1 to 7 parts by weight with respect to 1 part by weight of the organic pigment. A method for producing a fine organic pigment, wherein the mixture is charged with energy in the range of 0.06 to 0.72 Kw / Kg per pigment unit weight (Kg). 複数のブレードが3である請求項1に記載の微細有機顔料の製造方法。 The method for producing a fine organic pigment according to claim 1, wherein the plurality of blades is 3. 樹脂を含有させることを特徴とする請求項1または2記載の微細有機顔料の製造方法。 3. A method for producing a fine organic pigment according to claim 1, wherein a resin is contained. 顔料誘導体を含有させることを特徴とする請求項1ないし3いずれかに記載の微細有機顔料の製造方法。 The method for producing a fine organic pigment according to any one of claims 1 to 3, further comprising a pigment derivative.
JP2007232174A 2007-09-07 2007-09-07 Method for preparing finely pulverized organic pigment Pending JP2009062466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232174A JP2009062466A (en) 2007-09-07 2007-09-07 Method for preparing finely pulverized organic pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232174A JP2009062466A (en) 2007-09-07 2007-09-07 Method for preparing finely pulverized organic pigment

Publications (1)

Publication Number Publication Date
JP2009062466A true JP2009062466A (en) 2009-03-26

Family

ID=40557346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232174A Pending JP2009062466A (en) 2007-09-07 2007-09-07 Method for preparing finely pulverized organic pigment

Country Status (1)

Country Link
JP (1) JP2009062466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206687A (en) * 2018-05-28 2019-12-05 Dic株式会社 Method for producing aqueous pigment dispersion
JP2020015893A (en) * 2018-07-17 2020-01-30 Dic株式会社 Method for producing pigment kneaded product and aqueous pigment dispersion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206687A (en) * 2018-05-28 2019-12-05 Dic株式会社 Method for producing aqueous pigment dispersion
JP2020015893A (en) * 2018-07-17 2020-01-30 Dic株式会社 Method for producing pigment kneaded product and aqueous pigment dispersion

Similar Documents

Publication Publication Date Title
JP4738813B2 (en) Method for producing phthalocyanine pigment formulation
JP5114905B2 (en) Pigment, pigment composition and pigment dispersion
JP4407128B2 (en) Pigment dispersant, pigment composition containing the same, and pigment dispersion
KR101398360B1 (en) Preparation method of α-type crystal transformation dichlorodiketopyrrolopyrrole pigment, α-type crystal transformation dichlorodiketopyrrolopyrrole pigment produced therefrom and colored composition using the same
JP5678519B2 (en) Fine yellow pigment composition, pigment dispersion containing the fine yellow pigment composition, and method for producing the fine yellow pigment composition
CN1834165A (en) Pigment dispersing agent, pigment composition and pigment dispersion
JP4473392B2 (en) Gamma Phase Quinacridone Mixed Crystal Pigment
JP4983061B2 (en) Pigment dispersant, pigment composition using the same, and pigment dispersion
JP5176417B2 (en) Method for producing violet pigment
KR20090122183A (en) Finely divided epsilon-copper phthalocyanine composition (pigment blue 15:6) for use as pigment
JP2008074987A (en) Pigment additive, pigment composition and pigment dispersion
KR20100031617A (en) Fine-particle epsilon copper phthalocyanine pigment preparation
JP2006206737A (en) Pigment composition and pigment dispersion
TWI419941B (en) Process for the production of an ε form phthalocyanine pigment
JP2009062466A (en) Method for preparing finely pulverized organic pigment
JP2008019367A (en) Method for producing fine organic pigment
JP2007277449A (en) Method for producing fine organic pigment
JP4824178B2 (en) Method for producing perylene-3,4,9,10-tetracarboxylic acid diimide in the form of transparent pigment
JP2006306996A (en) Production method of pigment composition
JP2007100008A (en) METHOD FOR PREPARING epsilon-PHTHALOCYANINE PIGMENT
KR100341980B1 (en) Conversion of crude phthalocyanine blue from red to green shade in an aqueous environment
JP2008274062A (en) alpha-COPPER PHTHALOCYANINE PIGMENT, METHOD FOR PRODUCING THE SAME AND COLORED COMPOSITION PRODUCED BY USING THE SAME
JPH0826242B2 (en) Method for producing β-type copper phthalocyanine pigment
JP5534325B2 (en) Method for producing copper phthalocyanine pigment composition and method for producing printing ink
JP2002121413A (en) Method of producing cerulean pigment