WO2023203673A1 - Flying object control system and flying object system - Google Patents

Flying object control system and flying object system Download PDF

Info

Publication number
WO2023203673A1
WO2023203673A1 PCT/JP2022/018270 JP2022018270W WO2023203673A1 WO 2023203673 A1 WO2023203673 A1 WO 2023203673A1 JP 2022018270 W JP2022018270 W JP 2022018270W WO 2023203673 A1 WO2023203673 A1 WO 2023203673A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying
flight command
flying object
flight
aircraft
Prior art date
Application number
PCT/JP2022/018270
Other languages
French (fr)
Japanese (ja)
Inventor
坂野倫祥
丸山一人
後野剛志
別府俊之
本多充
新穂友志
冨田裕貴
山田浩平
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to PCT/JP2022/018270 priority Critical patent/WO2023203673A1/en
Publication of WO2023203673A1 publication Critical patent/WO2023203673A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a collective flying vehicle system and a flying vehicle system.
  • Patent Document 1 describes a multicopter. This multicopter is equipped with a spraying device for spraying fertilizer, water, pesticides, etc.
  • a multicopter cannot be flown with luggage or equipment that exceeds its maximum payload. Therefore, the amount of cargo or spray material that can be carried by one multicopter is limited to the maximum load capacity. Furthermore, the size of the area in which one multicopter can spray the spray material per unit time is determined depending on the spreading width and flight speed of the spray material. However, the spread width and flight speed of the spray material are limited by the specifications of the multicopter.
  • An object of the present invention is to provide a means that allows a flying vehicle to transport heavier supported objects, work over a wider range, and work more efficiently.
  • the flying object control system of the present invention is a flying object control system for flying a plurality of flying objects as a group, and for issuing flight commands for flying the plurality of flying objects as a group.
  • the present invention is characterized by comprising a flight command generation unit that generates a flight command, and a transmission unit that transmits the flight command to the plurality of flying objects.
  • a flight command for flying a plurality of flying objects as a group is generated and transmitted to the plurality of flying objects, so it is possible to fly a plurality of flying objects as a group with a simple configuration. For example, since it is possible to fly as a group with supported objects supported by a plurality of flying objects, it is possible to fly supported objects whose weight exceeds the maximum payload of one flying object.
  • the supported body is a spraying device, it is possible to carry a larger amount of material to be sprayed, so that the spraying work can be carried out over a wider range. For example, if a plurality of flying vehicles equipped with spraying devices fly as a group in a horizontal line, the spread width of the material to be sprayed becomes larger, and the spraying work can be carried out more efficiently.
  • the present invention includes a positioning position acquisition unit that acquires a positioning position of the flying body generated by a satellite positioning device included in the flying body, and the flight command generation unit generates the flight command based on the positioning position. suitable.
  • the flight command is generated based on the measured position, so the flight command becomes appropriate.
  • the flight command generating section can be configured to generate a flight command so that the distance between the plurality of flying objects is appropriate based on the positions of the plurality of flying objects specified by the positioning position.
  • the positional deviation calculating unit calculates the positional deviation of the flying object based on the positioning position acquired by the positioning position acquisition unit, and the flight command generation unit is configured to generate the flight command based on the positional deviation. It is preferable to generate .
  • the positional deviation is calculated based on the measured position
  • the flight command is calculated based on the positional deviation, so the flight command becomes more appropriate.
  • the flight command generation unit can be configured to generate a flight command so that the calculated positional shift becomes smaller.
  • the flight command generation unit generates the flight command so as to cancel the positional shift of the supported object supported by the flying object caused by the positional shift.
  • the flight command is calculated so as to cancel the positional shift of the supported object, so it is possible to maintain the supported object at an appropriate position. Therefore, it becomes possible to carry out the transportation of the supported object, work using the supported object, etc. appropriately.
  • a constraint storage section that stores constraint conditions regarding the relative positions of the plurality of flying objects, and the flight command generation section generates the flight command based on the constraint conditions.
  • the flight command is generated based on the constraint conditions, so the relative positions of the plurality of flying objects are maintained appropriately. Therefore, flight as a group of a plurality of flying objects can be appropriately executed.
  • the present invention includes a specification information storage section that stores specification information indicating the performance and size of the plurality of flying objects, and the flight command generation section generates the flight command based on the specification information. suitable.
  • the flight command is generated based on the constraint conditions, so the flight command is appropriate according to the constraints based on the specification information. Therefore, flight as a group of a plurality of flying objects can be appropriately executed.
  • the flight command generating section generates a divided flight command for flying the plurality of flying objects in a plurality of groups, and the transmitting section transmits the divided flight command to the plurality of flying objects. It is preferable to send it.
  • a division flight command for flying multiple aircraft by dividing them into multiple groups is generated and sent to the multiple aircraft, so flight by multiple groups is realized with a simple configuration.
  • flying in multiple groups has the following advantages: One group can perform a spraying operation on a certain field, and another group can perform a spraying operation on an adjacent field. Therefore, efficient work can be achieved.
  • the flight command generation section and the transmission section are provided in the flying object.
  • the flight command generating section and the transmitting section fly together with the flying object, so the flight of the flying object as a group is appropriately controlled.
  • the flying object system of the present invention includes a plurality of flying objects, a flight command generation unit that generates a flight command for flying the plurality of flying objects as a group, and a flight command generating section that generates a flight command for flying the plurality of flying objects as a group.
  • the present invention is characterized by comprising a transmitter that transmits data to a plurality of the aircraft.
  • a flight command for flying a plurality of flying objects as a group is generated and transmitted to the plurality of flying objects, so it is possible to fly a plurality of flying objects as a group with a simple configuration. For example, since it is possible to fly as a group with supported objects supported by a plurality of flying objects, it is possible to fly supported objects whose weight exceeds the maximum payload of one flying object.
  • the supported body is a spraying device, it is possible to carry a larger amount of material to be sprayed, so that the spraying work can be carried out over a wider range. For example, if a plurality of flying vehicles equipped with spraying devices fly as a group in a horizontal line, the spread width of the material to be sprayed becomes larger, and the spraying work can be carried out more efficiently.
  • a connecting mechanism that connects the plurality of flying objects.
  • the flying objects are connected to each other by the coupling mechanism, various advantages arise when a plurality of flying objects fly as a group. For example, by supplying energy from another flying object to a flying object with low energy remaining, the flight duration can be extended. For example, a crash can be avoided by supporting an aircraft that cannot fly due to a malfunction or the like by another aircraft via a connecting mechanism.
  • a ground device and a ground connection mechanism that connects the ground device and the flying object.
  • the flying object and the ground device are connected by the ground connection mechanism, various advantages arise when a plurality of flying objects fly as a group. For example, if it is possible to supply energy and spray materials from ground equipment to the aircraft, the flight duration and work duration of the aircraft can be extended.
  • the ground device includes an energy source capable of supplying energy to the flying object via the ground connection mechanism.
  • the flight command generation unit generates a movement command for moving the ground device, and that the transmission unit transmits the movement command to the ground device.
  • a movement command for moving the ground device is generated and transmitted to the ground device, so it is possible to move the ground device in a form suitable for flight as a group of aircraft.
  • the flight command generation unit generates a movement command so that the ground device follows the movement of the flying objects as a group, the movement range of the flying objects can be expanded.
  • the flight command generation section and the transmission section are provided in the ground device.
  • control load on the control device of the aircraft can be reduced, and the control system of the aircraft can be easily configured.
  • FIG. 1 is a diagram showing an overview of a swarm aircraft system.
  • FIG. 1 is a side view showing an overview of a swarm aircraft system.
  • FIG. 2 is a functional block diagram showing a control configuration of the swarm flying object system.
  • FIG. 7 is a side view showing a modification of the swarm aircraft system.
  • FIG. 7 is a side view showing a modification of the swarm aircraft system.
  • FIG. 7 is a side view showing a modification of the swarm aircraft system.
  • FIGS. 1 and 2 A swarm aircraft system A is shown in FIGS. 1 and 2.
  • the swarm flying object system A is configured so that a plurality of flying objects B can fly in a group.
  • the flying objects B may form one group, or the flying objects B may form two or more groups.
  • the swarm flying object system A is capable of flying while supporting the supported object C.
  • the supported object C includes, for example, a work device that performs work, luggage, and the like.
  • the work equipment includes, for example, agricultural work equipment that performs agricultural work, civil engineering work equipment that performs civil engineering work, construction work equipment that performs construction work, and the like.
  • the working devices include, for example, the illustrated spreading device 40, snow removal device, harvesting device, collection device, transportation device, mowing device, tilling device, planting device, sowing device, monitoring device, threat device, measuring device, etc. .
  • the swarm flying object system A is capable of carrying out agricultural work in a state in which the supported object C includes agricultural work equipment.
  • the group aircraft system A is capable of performing civil engineering work.
  • the swarm flying vehicle system A is capable of performing construction work.
  • the swarm flying object system A includes a plurality of flying objects B, a flight command generation section 17a (FIG. 3) that generates a flight command for flying the plurality of flying objects B as a group, and a flight command generating section 17a (FIG. 3) that generates a flight command for flying the plurality of flying objects B as a group.
  • a transmitter 17b (FIG. 3) that transmits data to B.
  • the flight command generation section 17a and the transmission section 17b are provided in the control device 15 of the flying object B.
  • Flying as a group means that two or more flying objects B fly cooperatively while forming a group.
  • the plurality of flying objects B fly as a group
  • the plurality of flying objects B fly at the same speed and in the same direction.
  • all the flying objects B may fly the same route, mutually parallel paths, or may fly different flight paths.
  • the group flying object system A includes a connecting mechanism D that connects the flying objects B and the supported object C, and a connecting mechanism E that connects the flying objects B to each other.
  • the connection mechanism D connects the flying object B and the supported object C via the connection mechanism E.
  • the flying object B includes a propulsion device 11, a communication device 12, an energy source 13, a satellite positioning device 14, and a control device 15.
  • the flying object B can fly in a swarm by joining the swarm flying object system A and fly in a group with other flying objects B, or solo flight in which it leaves the swarm flying object system A and flies alone. , is configured so that it is possible.
  • Aircraft B is, for example, a multicopter.
  • the flying objects B belonging to the swarm flying object system A may all be of the same type or may be of different types.
  • the maximum payloads of the flying vehicles B belonging to the swarm flying vehicle system A may be the same or different.
  • the propulsion device 11 is controlled by the control device 15 to generate thrust and cause the aircraft B to fly.
  • Three propulsion devices 11 are arranged at the periphery of the flying object B.
  • the number of propulsion devices 11 may be one, two, or four or more.
  • the propulsion device 11 is a propeller driven by a motor.
  • Energy source 13 is a battery.
  • the propulsion device 11 may be a propeller driven by an engine.
  • the energy source 13 may be a tank of combustion agent used in the engine.
  • the satellite positioning device 14 receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, generates positioning data indicating the position of the flying object B based on the received signal, and transmits it to the control device 15.
  • GNSS Global Navigation Satellite System
  • GPS, QZSS, Galileo, GLONASS, BeiDou, etc. can be used.
  • connection mechanism D includes a communication device 22, an energy source 23, and a control device 25, as shown in FIG.
  • connection mechanism E includes a support 31, a communication device 32, an energy source 33, a control device 35, and a connection body 36.
  • the support body 31 is a structure that extends in a plane in the lateral direction (horizontal direction).
  • the support body 31 has a rectangular shape when viewed in the vertical direction.
  • the support body 31 may be square, rectangular, diamond-shaped, triangular, polygonal, circular, or elliptical in top view.
  • the support body 31 may have a rod shape extending in the lateral direction (horizontal direction).
  • a connection mechanism D is provided at the bottom of the support body 31.
  • the connection mechanism D is configured to be movable with respect to the support body 31.
  • a mechanism for moving the connection mechanism D may be provided on the connection mechanism D or may be provided on the support body 31.
  • the connecting body 36 connects the support body 31 and the flying object B.
  • the connecting body 36 is a deformable wire or a rigid rod-shaped member.
  • the spraying device 40 as the supported body C includes a spray device 41, a communication device 42, an energy source 43, and a control device 45.
  • the spray device 41 is controlled by a control device 45 and sprays substances (pesticides, fertilizers, water, etc.).
  • the swarm flying object system A shown in FIGS. 1 and 2 is in a state where it is hovering (stagnant) above a working area (for example, a farm field), and while moving the spraying device 40 relative to the support 31, Spreading device 40 can be activated. Therefore, it is possible to spread the material to various parts of the work area (field) without moving the swarm flying object system A.
  • a plurality of flying objects B can fly in a group and move to other work sites or bases.
  • these communication devices may be able to communicate with external systems (a farming system, a field management system, a flight control system, etc.) via an external communication network.
  • Wired communication includes a physical connection of a communication line (not shown) between the aircraft B and the connection mechanism D, a physical connection of a communication line (not shown) between the connection mechanism D and the coupling mechanism E, This is realized by a physical connection of a communication line (not shown) between the coupling mechanism E and the spraying device 40.
  • Wireless communication is realized by communication using electromagnetic waves (light, radio waves, infrared waves, etc.). Wireless communication may be achieved via an external communication network (eg, a mobile phone line).
  • an external communication network eg, a mobile phone line
  • wired communication and wireless communication may coexist. Wired communication and wireless communication may be used together.
  • the communication device 22 of the connection mechanism D may be configured to realize communication between the aircraft B. Specifically, the communication device 22 of the connection mechanism D may be configured to relay communications between the communication devices 12 of the aircraft B.
  • the communication device 32 of the coupling mechanism E may be configured to realize communication between the aircraft B. Specifically, the communication device 32 of the coupling mechanism E may be configured to relay communication between the communication devices 12 of the aircraft B.
  • the energy source 13 of the flying object B not only supplies energy to each device of the flying object B, but also supplies energy to other flying objects B, the connection mechanism D, the coupling mechanism E, and the dispersion device 40 (supported object C). It is configured so that it can be supplied.
  • the energy source 23 of the connection mechanism D is capable of supplying energy to the aircraft B, the connection mechanism E, and the dispersion device 40 (supported body C) in addition to supplying energy to each device of the connection mechanism D. It is configured.
  • the energy source 33 of the coupling mechanism E is capable of supplying energy to the aircraft B, the connection mechanism D, and the dispersion device 40 (supported body C) in addition to supplying energy to each device of the coupling mechanism E. It is configured.
  • the energy source 43 of the dispersion device 40 (supported body C) is capable of supplying energy to the aircraft B, the connection mechanism D, and the connection mechanism E in addition to supplying energy to each device of the dispersion device 40. It is configured.
  • Energy supply is achieved through the physical connection of an energy supply body (not shown) between the aircraft B and the connection mechanism D, and the physical connection of the energy supply body (not shown) between the connection mechanism D and the connection mechanism E. This is realized by a physical connection of an energy supply body (not shown) between the connection mechanism E and the dispersion device 40.
  • the energy supply body is, for example, a power line or a fuel pipe. Energy supply may be realized by wireless power transfer technology.
  • the control device 15 of the aircraft B is a so-called ECU, and includes a memory (HDD, nonvolatile RAM, etc., not shown) that stores programs corresponding to functional units described later, and a CPU (not shown) that executes the programs. It is equipped with. The functions of each functional unit are realized by executing the program by the CPU. That is, the control device 15 includes a non-transitory recording medium that stores a program.
  • the control device 15 of the aircraft B includes an individual management section 16 and a group management section 17.
  • the individual management unit 16 mainly controls the operation of the aircraft B in which the individual flight control unit 16a is provided.
  • the group management unit 17 mainly controls the overall operation of the group aircraft system A.
  • the individual management section 16 includes an individual flight control section 16a, a state management section 16b, and a reference storage section 16c.
  • the group management section 17 includes a flight command generation section 17a, a transmission section 17b, a flight plan storage section 17c, a positioning position acquisition section 17d, a positional deviation calculation section 17e, a constraint storage section 17f, and a specification information storage section 17g.
  • the aircraft B operates in a master mode in which the group management section 17 (flight command generation section 17a) functions and issues a flight command, and in a master mode in which the group management section 17 (flight command generation section 17a) does not function and issues a flight command. It is configured to be able to switch between a slave mode and a slave mode in which it receives and flies based on flight commands.
  • the flying object B in the master mode will be referred to as the master flying object B1.
  • the flying object B in slave mode is referred to as slave flying object B2.
  • the program corresponding to the group management section 17 is not executed (or its execution is stopped), and the functions of the group management section 17 are not realized.
  • the group management section 17 (flight command generation section 17a) is provided in the master flying object B1, which is one of the flying objects B.
  • the group management unit 17 can transfer the group management unit 17 (flight command generation unit 17a) from one aircraft B to another aircraft B. For example, if an abnormality occurs in the master flying object B1 (such as insufficient remaining energy source 13 or failure of the propulsion device 11, etc.), the group management section 17 transfers the group management section 17 from the master flying object B1 to the slave flying object B2. Move to. In other words, the group management section 17 stops the function of the group management section 17 of the master flying object B1. Master air vehicle B1 thereafter functions as slave air vehicle B2. The group management section 17 causes the group management section 17 of one slave aircraft B2 to function. The slave air vehicle B2 thereafter functions as the master air vehicle B1.
  • the control device 25 of the connection mechanism D is an ECU, similar to the control device 15 of the aircraft B.
  • the control device 25 controls the connection mechanism D.
  • the control device 25 transmits information such as the remaining amount of the energy source 23 and the state of connection between the connection mechanism D, the connection mechanism E, and the spraying device 40 (supported body C) to other control devices via the communication device 22. Send to.
  • the control device 35 of the coupling mechanism E is an ECU, similar to the control device 15 of the aircraft B.
  • the control device 35 controls the coupling mechanism E.
  • the control device 35 transmits information such as the remaining amount of the energy source 33 and the state of connection between the coupling mechanism E, the flying object B, and the connection mechanism D to other control devices via the communication device 32.
  • the control device 45 of the dispersion device 40 (supported body C) is an ECU like the control device 15 of the flying object B. Control device 45 controls spraying device 40 .
  • the control device 45 transmits information such as the state of the spray device 41, the remaining amount of the spray material, the remaining amount of the energy source 43, and the state of connection between the spray device 40 and the connection mechanism D to other devices via the communication device 42. Send to control device.
  • the individual flight control unit 16a controls the propulsion device 11 to control the flight of the aircraft B in which the individual flight control unit 16a is provided.
  • the individual flight control unit 16a is configured to be switchable between a group flight mode in which the aircraft B flies in a group with other flying objects B, and a solo flight mode in which it flies alone.
  • the individual flight control unit 16a controls the flight of the aircraft B based on the flight command transmitted from the group management unit 17.
  • the flight command is a flight instruction for causing the flying objects B belonging to the group flying object system A to fly in a group.
  • the flight command may be different for each flying object B, or may be the same.
  • the individual flight control unit 16a controls the flight of the aircraft B based on the group reference position and group reference direction transmitted from the group management unit 17.
  • the individual flight control unit 16a may control the flight of the aircraft B so that the positional relationship between the aircraft B on which the individual flight control unit 16a is provided and the group reference position is maintained.
  • the group reference position and group reference direction will be described later.
  • the individual flight control unit 16a controls the flight of the flying object B based on a preset reference position and reference direction.
  • the reference position is, for example, the gravity center position or geometric center position of the flying object B.
  • the reference direction is, for example, the forward direction of the flying object B.
  • the reference position and reference direction are set in advance and stored in the reference storage section 16c of the flying object B.
  • the individual flight control unit 16a causes the flying object B to fly autonomously based on the positioning data generated by the satellite positioning device 14.
  • the state management unit 16b manages the state of the aircraft B in which the state management unit 16b is installed.
  • the state management unit 16b stores, for example, the operating state and presence or absence of an abnormality of the propulsion device 11, the operating state and presence or absence of an abnormality of the communication device 12, the remaining amount of the energy source 13, the operating state and presence or absence of an abnormality, and the operation state of the satellite positioning device 14.
  • the operating state and the presence or absence of abnormalities are detected and recorded, and this information is transmitted to the master flying object B1.
  • the reference storage unit 16c stores the reference position and reference direction used by the individual flight control unit 16a in the solo flight mode.
  • the reference storage section 16c also stores the group reference position and group reference direction transmitted from the group management section 17.
  • the flight command generation unit 17a generates a flight command for causing the plurality of flying objects B to fly as a group. Flight commands will be discussed later.
  • the transmitter 17b controls the communication device 12 to transmit the flight command generated by the flight command generator 17a to the aircraft B.
  • the flight plan storage unit 17c stores the flight plan of the group aircraft system A.
  • the flight plan is a flight plan for a group flight, and includes at least the flight path of the group aircraft system A.
  • the flight command generation unit 17a may generate a flight command so that the swarm flying object system A flies along the flight path.
  • the flight command generation unit 17a may generate the flight command based on the positioning data and flight route generated by the satellite positioning device 14. In this case, the swarm aircraft system A flies autonomously.
  • the flight plan may include a work plan for the work device included in the supported body C.
  • the work plan of the work equipment is determined based on the location where the work equipment will perform the work (for example, the position of the field to be worked on, the position in the field where the work will be performed, etc.), and/or the content of the work (for example, the operation intensity of the work equipment, the operation time, etc.). , operation interval, etc.).
  • the flight command generation unit 17a may generate a flight command so that the work plan included in the flight plan can be executed.
  • the flight command generation unit 17a may generate a work instruction for a work device for the supported body C.
  • the transmitter 17b may transmit the work instruction generated by the flight instruction generator 17a to the supported body C.
  • the flight command generation unit 17a generates a command based on at least one of the positional relationship between the plurality of flying objects B belonging to the swarm flying object system A, and the positional relationship between the flying object B and the supported object C (spreading device 40). , may generate a flight command.
  • the flight command generation unit 17a may generate the flight command based on at least one of the group reference position and the group reference direction.
  • the group reference position and the group reference direction are positions and directions that serve as a reference when a plurality of flying objects B belonging to the group flying object system A fly in a group.
  • the group reference position is, for example, the center of gravity or geometric center position of the plurality of flying objects B, the center of gravity or geometric center position of the plurality of flying objects B, the connection mechanism D, and the coupling mechanism E, or the entire group flying object system A. or the center of gravity or geometric center of the master flying object B1.
  • the group reference direction is, for example, the forward direction of the master flying object B1, the forward direction of the supported body C, the forward direction of the connecting mechanism D, or the forward direction of the connecting mechanism E.
  • the group reference position and the group reference direction are set in advance and stored in the flight plan storage section 17c of the master flying object B1.
  • the positioning position acquisition unit 17d acquires positioning data (positioning position of the flight vehicle B) generated by the satellite positioning device 14 included in the flight vehicle B.
  • the positioning position acquisition unit 17d acquires positioning data of all the flying objects B belonging to the swarm flying object system A over time.
  • the flight command generation unit 17a generates a flight command based on the positioning data acquired by the positioning position acquisition unit 17d.
  • the positional deviation calculation unit 17e calculates the positional deviation of the aircraft B based on the positioning data acquired by the positioning position acquisition unit 17d.
  • the positional deviation is the difference between the ideal position of the aircraft B (for example, the position of the aircraft B indicated by the flight command) and the actual position of the aircraft B.
  • the positional deviation calculation unit 17e calculates the positional deviation based on the difference between the target position of the aircraft B indicated by the flight command and the measured position of the aircraft B indicated by the positioning data.
  • the positional deviation calculation unit 17e may calculate the positional deviation based on the amount of change over time in the positioning data acquired by the positioning position acquisition unit 17d.
  • the flight command generation unit 17a generates a flight command based on the positional deviation calculated by the positional deviation calculation unit 17e. For example, the flight command generating unit 17a generates a flight command so that the flying object B moves by the same amount in the opposite direction to the positional deviation that has occurred in the flying object B.
  • the flight command generation unit 17a may generate the flight command so as to cancel the positional shift of the supported body C.
  • FIG. 1 a state in which three aircraft B are blown by a strong wind X and the position of the aircraft B has shifted is shown. Being pulled by these flying objects B, there is a possibility that the coupling mechanism E, the connecting mechanism D, and the supported body C may be displaced.
  • the flight command generation unit 17a generates a flight command (flight of vector Y) to eliminate the positional deviation as a flight command for the three aircraft B with positional deviation, and generates a flight command (flight of vector Y) for the three aircraft B in which the positional deviation has occurred.
  • a flight command (flight of vector Z) to fly so as to cancel the positional deviation of the supported body C is generated as a flight command.
  • the constraint storage unit 17f stores constraints regarding the relative positions of the plurality of flying objects B.
  • the constraint conditions include, for example, the upper limit or lower limit of the relative distance of the flying object B, the positional relationship of the flying object B in the group, the allowable movement range of the flying object B in the group, and the like.
  • the flight command generation unit 17a generates a flight command based on the constraint conditions. For example, the flight command generation unit 17a generates a flight command so that the flying object B is arranged along the positional relationship indicated by the constraint conditions.
  • the constraint conditions may be determined in advance or may be determined by the group management unit 17.
  • the specification information storage unit 17g stores specification information indicating the performance and size of the plurality of flying objects B.
  • the specification information includes, for example, the width, depth, height, mass, maximum speed, cruising distance, operating time, etc. of the flying object B.
  • the flight command generation unit 17a generates a flight command based on the specification information.
  • the flight command generating unit 17a generates a flight command based on the size of the flying object B indicated by the specification information so that the flying objects B do not come into contact with each other.
  • the specification information may be stored in advance in the specification information storage section 17g.
  • the specification information storage unit 17g may acquire specification information from the control device 15 of the aircraft B via the communication device 12.
  • the flight command generation unit 17a may generate a divided flight command for flying the plurality of flying objects B in a plurality of groups.
  • the transmitter 17b may transmit the divided flight command to the plurality of flying objects B.
  • the flight command generation unit 17a may cause a first group to which a plurality of flying objects B belongs to fly supporting a first supported object C, and a second group to which a plurality of flying objects B belong to a second group to which a plurality of flying objects B belong to to fly while supporting a first supported object C.
  • a divided flight command may be generated to fly while supporting the supported object C.
  • one swarm aircraft system A can perform two actions.
  • one swarm flying object system A can perform agricultural work in two fields at the same time.
  • the number of flying objects B belonging to the first group may be one.
  • the number of flying objects B belonging to the second group may be one. Note that when the flying object B is divided into a plurality of groups and flies according to the divided flight command, the flight command generation unit 17a generates a flight command for each group, and the transmission unit 17b transmits the flight command.
  • the first group may perform the work of dispersing the medicine
  • the second group may perform the work of suppressing unnecessary diffusion of the medicine.
  • the first group sprays chemicals near private houses, work vehicles, and operators (hereinafter referred to as "private houses, etc.”), and the second group suppresses the scattering of chemicals toward private houses, etc. You may do some work.
  • the second group may be located between the first group and a private house, etc., and the wind from the propulsion device 11 may be used to suppress the medicine from flowing toward the private house.
  • the illustrated example group flying object system A includes a large flying object B4 and a small flying object B5 as flying objects B.
  • a connecting body 36 (wire) and a winch 37 as a connecting mechanism E connects the large flying object B4 and the small flying object B5.
  • the small flying object B5 is configured to be connectable to a fixing device 70 fixed on the ground.
  • the fixing device 70 is, for example, a hook that engages with the small flying object B5.
  • a group management unit 17 is provided in the large flying object B4. According to the flight command generated by the flight command generation unit 17a, the large flying object B4 and the small flying object B5 fly in a group.
  • the connecting body 36 suppresses displacement of the large flying object B4 due to disturbances such as wind, so the large flying object B4 can be kept at a predetermined work position. It becomes easier to stagnate. Further, by adjusting the length of the connecting body 36 (wire) using the winch 37, the large flying object B4 can be precisely controlled to a predetermined working position. In addition, since the small flying object B5 can be separated from the fixing device 70 and moved together with the large flying object B4, it is easy for the group flying object system A to move to another work place (field, etc.). .
  • the illustrated example swarm flying object system A includes a buoyant body 81 .
  • the buoyancy body 81 is connected to the support body 31 and provides buoyancy to the support body 31.
  • the buoyant body 81 is, for example, a balloon or a balloon.
  • FIG. 3 of embodiment A modification of the embodiment is shown in FIG.
  • the illustrated example swarm flying object system A includes a ground device J and a ground connection mechanism K that connects the ground device J and the flying object B.
  • One large flying object B6 as the flying object B and five small flying objects B7 as the flying objects B are connected in one row by a connecting body 36 of the connecting mechanism E.
  • Connector 36 is a deformable wire.
  • the terminal small flying object B7 and the ground equipment J are connected by a ground connection mechanism K.
  • the ground connection mechanism K is a deformable wire.
  • the large flying object B6 supports the spraying device 40, which is the supported body C, and executes the spraying work.
  • a group management section 17 is provided in the large flying object B6.
  • the ground device J includes a communication device 92, an energy source 93, a satellite positioning device 94, and a control device 95.
  • the ground device J is configured to be self-propelled under control from the control device 95.
  • the flight command generation unit 17a is configured to generate a movement command for moving the ground device J.
  • the transmitter 17b transmits a movement command to the ground device J.
  • the ground device J travels based on the movement command received via the communication device 92.
  • the ground device J may be configured to be capable of autonomous travel based on positioning data generated by the satellite positioning device 94.
  • the energy source 93 is configured to be able to supply energy to the flying object B and the dispersion device 40 (supported object C) via the ground connection mechanism K.
  • the energy source 93 is, for example, a storage battery or a generator.
  • Energy source 93 may be configured to be powered by a terrestrial power grid.
  • the group management section 17 (flight command generation section 17a and transmission section 17b) may be provided in the control device 95 of the ground device J.
  • the ground equipment J may be a device or equipment fixedly installed on the ground.
  • the ground device J may be configured to be able to supply spray materials, work materials, etc. to the supported body C (spreading device 40) via the ground connection mechanism K.
  • the swarm flying object system A may be configured to be usable for purposes such as driving away birds and animals, security, and crime prevention.
  • the supported body C may be a monitoring device that can recognize birds, animals, or suspicious persons from photographed images, an intimidation device that emits sound or light to intimidate birds, animals, or suspicious persons, or a notification device that notifies the presence of birds, animals, or suspicious persons, etc. May include.
  • the swarm aircraft system A may be configured to be able to cope with weather conditions that adversely affect flight, such as strong winds, lightning strikes, and rainfall.
  • the swarm flying object system A may include a sensor that observes the weather, an acquisition unit that acquires information indicating the weather and a weather forecast via communication, and the like.
  • the group management unit 17 may be configured to change the flight plan, take an evacuation flight to a safe area, make an emergency landing, etc., depending on the weather or weather forecast.
  • the flying object B and the coupling mechanism E may be configured such that the relative positions of the two can be changed while the two are coupled.
  • the connection mechanism E the connection body 36 may be movable with respect to the support body 31. This makes it possible to change the relative positions of the plurality of aircraft B while the swarm aircraft system A is flying.
  • the swarm flying vehicle system A may be configured to cancel the operation noise of the propulsion device 11 of the flying vehicle B.
  • the operations of the plurality of propulsion devices 11 may be controlled so that their operating sounds cancel each other out.
  • the swarm aircraft system A may be provided with a muffling device that generates a sound (noise canceling sound) that cancels the operating sound of the propulsion device 11.
  • the muffling device may be configured to generate noise canceling sound based on the control amount sent to the propulsion device 11.
  • connection mechanism D may be configured to be connectable to various types of supported bodies C, various types of connection mechanisms E, and various types of aircraft B.
  • connection mechanism E may be configured to be connectable to various types of flying objects B and various types of connecting mechanisms D.
  • Part or all of the group management section 17 may be provided outside the aircraft B.
  • part or all of the group management unit 17 may be a control device 25 of the connection mechanism D, a control device 25 of the connection mechanism E, a control device 45 of the spraying device 40 (supported body C), or a server installed on the ground. , may be provided on a server on the cloud.
  • a configuration in which the swarm flying object system A does not include the coupling mechanism E is also possible.
  • a plurality of flying objects B belonging to the swarm flying object system A may be separately and independently connected to the supported body C by the connecting mechanism D.
  • a plurality of flying objects B may form a group and fly without being connected to each other. That is, a configuration is also possible in which a plurality of flying objects B fly independently, and a plurality of flying objects B fly as a group.
  • a plurality of supported objects C may be supported by the flying object B.
  • a plurality of flying objects B supporting the supported object C may belong to the group flying object system A.
  • the swarm flying object system A may be configured to be able to fly based on human operation.
  • the flight command generation unit 17a may generate a flight command based on a human operation and transmit it to the individual flight control unit 16a of each flying object B.
  • the flying object B may include a buoyant body (balloon, balloon, etc.) that provides buoyancy to the flying object B. This makes it easy to hover (stagnate) the swarm flying object system A at a predetermined work position.
  • a buoyant body balloon, balloon, etc.
  • the flight command generation unit 17a may be configured to generate a flight command that can cancel out a disturbance based on predictive information of a disturbance that the flying object B may receive in the future.
  • the flight command generation unit 17a may generate a flight command to change the course to the east based on the prediction information.
  • the flight command generation unit 17a may generate a flight command to land before the time based on the prediction information.
  • the prediction information by the group management unit 17 may be acquired based on the weather forecast for the area where the flight is scheduled, for example, or may be acquired based on past weather information on the area where the flight is scheduled.
  • the information may be obtained from the reconnaissance aircraft B, or may be obtained from ground facilities or work vehicles in the planned flight area.
  • the flight command generation unit 17a may generate a flight command that specifies the direction of the flying object B.
  • the flight command generation unit 17a may generate a flight command so that the plurality of flying objects B face the same direction. For example, when a plurality of flying objects B are each equipped with a camera, a flight command may be generated so that the cameras take the same direction of photography or so that the cameras face one subject.
  • the flight command generation unit 17a may generate a flight command so that the plurality of flying objects B have a specific layout (positional relationship). For example, a flight command may be generated so that a plurality of flying objects B are lined up horizontally or vertically.
  • the constraint information stored in the constraint storage unit 17f may include information that defines the layout (positional relationship) of the aircraft B.
  • the present invention is applicable to an aircraft control system that flies a plurality of aircraft as a group or an aircraft system that includes a plurality of aircraft.
  • Satellite positioning device 17a Flight command generation section 17b: Transmission section 17d: Positioning position acquisition section 17e: Positional deviation calculation section 17f: Constraint condition storage section 17g: Specification information storage section 93: Energy source A: Group flying object System (Flight Control System, Aircraft System) B: Flight object C: Supported body D: Connection mechanism E: Connection mechanism J: Ground equipment K: Ground connection mechanism

Abstract

A flying object control system (A) that causes a plurality of flying objects (B) to fly as a group comprises a flight command generation unit that generates flight commands for causing the plurality of flying objects (B) to fly as a group, and a transmission unit that transmits the flight commands to the flying objects (B).

Description

飛行体制御システムおよび飛行体システムAircraft control systems and airborne systems
 本発明は、集合飛行体システムおよび飛行体システムに関する。 The present invention relates to a collective flying vehicle system and a flying vehicle system.
 特許文献1には、マルチコプターが記載されている。このマルチコプターは、肥料、水、農薬等を散布する散布装置を備えている。 Patent Document 1 describes a multicopter. This multicopter is equipped with a spraying device for spraying fertilizer, water, pesticides, etc.
特開2020-104814号公報Japanese Patent Application Publication No. 2020-104814
 マルチコプターは、最大積載量を超える荷物や装置を搭載して飛行することができない。従って、1台のマルチコプターが運搬できる荷物や散布物の量は、最大積載量に制限される。また、1台のマルチコプターが単位時間当たりに散布物を散布可能な領域の広さは、散布物の散布幅及び飛行速度に応じて決まる。しかし、散布物の散布幅及び飛行速度は、マルチコプターのスペックに制限される。 A multicopter cannot be flown with luggage or equipment that exceeds its maximum payload. Therefore, the amount of cargo or spray material that can be carried by one multicopter is limited to the maximum load capacity. Furthermore, the size of the area in which one multicopter can spray the spray material per unit time is determined depending on the spreading width and flight speed of the spray material. However, the spread width and flight speed of the spray material are limited by the specifications of the multicopter.
 本発明の目的は、飛行体による、より重い被支持体の運搬や、より広い範囲での作業、より能率的な作業などを実現可能な手段を提供することにある。 An object of the present invention is to provide a means that allows a flying vehicle to transport heavier supported objects, work over a wider range, and work more efficiently.
 上述した課題を解決する手段として、本発明の飛行体制御システムは、複数の飛行体を一群として飛行させる飛行体制御システムであって、複数の前記飛行体を一群として飛行させるための飛行指令を生成する飛行指令生成部と、前記飛行指令を複数の前記飛行体へ送信する送信部と、を備えることを特徴とする。 As a means for solving the above-mentioned problems, the flying object control system of the present invention is a flying object control system for flying a plurality of flying objects as a group, and for issuing flight commands for flying the plurality of flying objects as a group. The present invention is characterized by comprising a flight command generation unit that generates a flight command, and a transmission unit that transmits the flight command to the plurality of flying objects.
 本構成によれば、複数の飛行体を一群として飛行させるための飛行指令が生成され、複数の飛行体へ送信されるので、簡易な構成により複数の飛行体を一群として飛行させることができる。例えば、複数の飛行体に被支持体を支持させた状態で一群として飛行させることができるので、1つの飛行体の最大積載量を超える重量の被支持体を飛行させることができる。被支持体が散布装置の場合、より多い散布物を搭載することができるので、より広い範囲で散布作業を実行することができる。例えば、散布装置を搭載した複数の飛行体が横一列に並んだ一群として飛行すれば、散布物の散布幅が大きくなり、散布作業を能率的に実行することができる。 According to this configuration, a flight command for flying a plurality of flying objects as a group is generated and transmitted to the plurality of flying objects, so it is possible to fly a plurality of flying objects as a group with a simple configuration. For example, since it is possible to fly as a group with supported objects supported by a plurality of flying objects, it is possible to fly supported objects whose weight exceeds the maximum payload of one flying object. When the supported body is a spraying device, it is possible to carry a larger amount of material to be sprayed, so that the spraying work can be carried out over a wider range. For example, if a plurality of flying vehicles equipped with spraying devices fly as a group in a horizontal line, the spread width of the material to be sprayed becomes larger, and the spraying work can be carried out more efficiently.
 本発明において、前記飛行体が備える衛星測位装置が生成した前記飛行体の測位位置を取得する測位位置取得部を備え、前記飛行指令生成部は、前記測位位置に基づいて前記飛行指令を生成すると好適である。 The present invention includes a positioning position acquisition unit that acquires a positioning position of the flying body generated by a satellite positioning device included in the flying body, and the flight command generation unit generates the flight command based on the positioning position. suitable.
 本構成によれば、測位位置に基づいて飛行指令が生成されるので、飛行指令が適切なものとなる。例えば、測位位置により特定される複数の飛行体の位置に基づき、複数の飛行体の間隔が適切になるように飛行指令を生成するよう、飛行指令生成部を構成することができる。 According to this configuration, the flight command is generated based on the measured position, so the flight command becomes appropriate. For example, the flight command generating section can be configured to generate a flight command so that the distance between the plurality of flying objects is appropriate based on the positions of the plurality of flying objects specified by the positioning position.
 本発明において、前記測位位置取得部が取得した前記測位位置に基づいて前記飛行体の位置ずれを算出する位置ずれ算出部を備え、前記飛行指令生成部は、前記位置ずれに基づいて前記飛行指令を生成すると好適である。 In the present invention, the positional deviation calculating unit calculates the positional deviation of the flying object based on the positioning position acquired by the positioning position acquisition unit, and the flight command generation unit is configured to generate the flight command based on the positional deviation. It is preferable to generate .
 本構成によれば、測位位置に基づいて位置ずれが算出され、位置ずれに基づいて飛行指令が算出されるので、飛行指令が更に適切なものとなる。例えば、突風により飛行体に位置ずれが生じた場合に、算出された位置ずれが小さくなるように飛行指令を生成するよう、飛行指令生成部を構成することができる。 According to this configuration, the positional deviation is calculated based on the measured position, and the flight command is calculated based on the positional deviation, so the flight command becomes more appropriate. For example, when a positional shift occurs in the flying object due to a gust of wind, the flight command generation unit can be configured to generate a flight command so that the calculated positional shift becomes smaller.
 本発明において、前記飛行指令生成部は、前記位置ずれにより生じる前記飛行体に支持される被支持体の位置ずれを打ち消すように前記飛行指令を生成すると好適である。 In the present invention, it is preferable that the flight command generation unit generates the flight command so as to cancel the positional shift of the supported object supported by the flying object caused by the positional shift.
 例えば、突風により一部又は全部の飛行体に位置ずれが生じた場合、飛行体に支持される被支持体にも位置ずれが生じる可能性がある。本構成によれば、被支持体の位置ずれを打ち消すように飛行指令が算出されるので、被支持体を適切な位置に保つことが可能となる。従って、被支持体の運搬や被支持体を用いた作業等を適切に実行することが可能となる。 For example, if some or all of the flying objects are displaced due to a gust of wind, there is a possibility that the supported objects supported by the flying objects will also be displaced. According to this configuration, the flight command is calculated so as to cancel the positional shift of the supported object, so it is possible to maintain the supported object at an appropriate position. Therefore, it becomes possible to carry out the transportation of the supported object, work using the supported object, etc. appropriately.
 本発明において、複数の前記飛行体の相対位置に関する制約条件を記憶する制約条件記憶部を備え、前記飛行指令生成部は、前記制約条件に基づいて前記飛行指令を生成すると好適である。 In the present invention, it is preferable that a constraint storage section is provided that stores constraint conditions regarding the relative positions of the plurality of flying objects, and the flight command generation section generates the flight command based on the constraint conditions.
 本構成によれば、制約条件に基づいて飛行指令が生成されるので、複数の飛行体の相対位置が適切に保たれる。従って、複数の飛行体の一群としての飛行を適切に実行することができる。 According to this configuration, the flight command is generated based on the constraint conditions, so the relative positions of the plurality of flying objects are maintained appropriately. Therefore, flight as a group of a plurality of flying objects can be appropriately executed.
 本発明において、複数の前記飛行体の性能及び大きさを示す諸元情報を記憶する諸元情報記憶部を備え、前記飛行指令生成部は、前記諸元情報に基づいて前記飛行指令を生成すると好適である。 The present invention includes a specification information storage section that stores specification information indicating the performance and size of the plurality of flying objects, and the flight command generation section generates the flight command based on the specification information. suitable.
 本構成によれば、制約条件に基づいて飛行指令が生成されるので、飛行指令が諸元情報による制約に応じた適切なものとなる。従って、複数の飛行体の一群としての飛行を適切に実行することができる。 According to this configuration, the flight command is generated based on the constraint conditions, so the flight command is appropriate according to the constraints based on the specification information. Therefore, flight as a group of a plurality of flying objects can be appropriately executed.
 本発明において、前記飛行指令生成部は、複数の前記飛行体を複数の群に分けて飛行させるための分割飛行指令を生成し、前記送信部は、前記分割飛行指令を複数の前記飛行体へ送信すると好適である。 In the present invention, the flight command generating section generates a divided flight command for flying the plurality of flying objects in a plurality of groups, and the transmitting section transmits the divided flight command to the plurality of flying objects. It is preferable to send it.
 本構成によれば、複数の飛行体を複数の群に分けて飛行させるための分割飛行指令が生成され、複数の飛行体へ送信されるので、簡素な構成により複数の群による飛行を実現することができる。複数の群による飛行は、例えば次の利点がある。1つの群がある圃場での散布作業を実行し、他の群が隣接する圃場での散布作業を実行することができる。従って、能率的な作業を実現することができる。 According to this configuration, a division flight command for flying multiple aircraft by dividing them into multiple groups is generated and sent to the multiple aircraft, so flight by multiple groups is realized with a simple configuration. be able to. For example, flying in multiple groups has the following advantages: One group can perform a spraying operation on a certain field, and another group can perform a spraying operation on an adjacent field. Therefore, efficient work can be achieved.
 本発明において、前記飛行指令生成部及び前記送信部が前記飛行体に設けられていると好適である。 In the present invention, it is preferable that the flight command generation section and the transmission section are provided in the flying object.
 本構成によれば、飛行指令生成部及び送信部が飛行体と共に飛行するので、飛行体の一群としての飛行が適切に制御される。 According to this configuration, the flight command generating section and the transmitting section fly together with the flying object, so the flight of the flying object as a group is appropriately controlled.
 上述した課題を解決する手段として、本発明の飛行体システムは、複数の飛行体と、複数の前記飛行体を一群として飛行させるための飛行指令を生成する飛行指令生成部と、前記飛行指令を複数の前記飛行体へ送信する送信部と、を備えることを特徴とする。 As a means for solving the above-mentioned problems, the flying object system of the present invention includes a plurality of flying objects, a flight command generation unit that generates a flight command for flying the plurality of flying objects as a group, and a flight command generating section that generates a flight command for flying the plurality of flying objects as a group. The present invention is characterized by comprising a transmitter that transmits data to a plurality of the aircraft.
 本構成によれば、複数の飛行体を一群として飛行させるための飛行指令が生成され、複数の飛行体へ送信されるので、簡易な構成により複数の飛行体を一群として飛行させることができる。例えば、複数の飛行体に被支持体を支持させた状態で一群として飛行させることができるので、1つの飛行体の最大積載量を超える重量の被支持体を飛行させることができる。被支持体が散布装置の場合、より多い散布物を搭載することができるので、より広い範囲で散布作業を実行することができる。例えば、散布装置を搭載した複数の飛行体が横一列に並んだ一群として飛行すれば、散布物の散布幅が大きくなり、散布作業を能率的に実行することができる。 According to this configuration, a flight command for flying a plurality of flying objects as a group is generated and transmitted to the plurality of flying objects, so it is possible to fly a plurality of flying objects as a group with a simple configuration. For example, since it is possible to fly as a group with supported objects supported by a plurality of flying objects, it is possible to fly supported objects whose weight exceeds the maximum payload of one flying object. When the supported body is a spraying device, it is possible to carry a larger amount of material to be sprayed, so that the spraying work can be carried out over a wider range. For example, if a plurality of flying vehicles equipped with spraying devices fly as a group in a horizontal line, the spread width of the material to be sprayed becomes larger, and the spraying work can be carried out more efficiently.
 本発明において、複数の前記飛行体同士を連結する連結機構を備えると好適である。 In the present invention, it is preferable to include a connecting mechanism that connects the plurality of flying objects.
 本構成によれば、飛行体同士が連結機構で連結されるので、複数の飛行体が一群として飛行する際に様々な利点が生じる。例えば、エネルギー残量の少ない飛行体へ他の飛行体からエネルギーを供給することにより、飛行継続時間を延長することができる。例えば、故障等により飛行できない飛行体を、連結機構を介して他の飛行体が支持することにより、墜落を回避することができる。 According to this configuration, since the flying objects are connected to each other by the coupling mechanism, various advantages arise when a plurality of flying objects fly as a group. For example, by supplying energy from another flying object to a flying object with low energy remaining, the flight duration can be extended. For example, a crash can be avoided by supporting an aircraft that cannot fly due to a malfunction or the like by another aircraft via a connecting mechanism.
 本発明において、地上装置と、前記地上装置と前記飛行体とを接続する地上接続機構と、を備えると好適である。 In the present invention, it is preferable to include a ground device and a ground connection mechanism that connects the ground device and the flying object.
 本構成によれば、飛行体と地上装置とが地上接続機構によって接続されるので、複数の飛行体が一群として飛行する際に様々な利点が生じる。例えば、地上装置から飛行体へエネルギーや散布物を供給可能にした場合は、飛行体の飛行継続時間や作業継続時間を延長することができる。 According to this configuration, since the flying object and the ground device are connected by the ground connection mechanism, various advantages arise when a plurality of flying objects fly as a group. For example, if it is possible to supply energy and spray materials from ground equipment to the aircraft, the flight duration and work duration of the aircraft can be extended.
 本発明において、前記地上装置は、前記地上接続機構を介して前記飛行体にエネルギーを供給可能なエネルギー源を備えると好適である。 In the present invention, it is preferable that the ground device includes an energy source capable of supplying energy to the flying object via the ground connection mechanism.
 本構成によれば、地上装置から飛行体へエネルギーを供給可能であるから、飛行体の飛行継続時間を延長することができる。 According to this configuration, since energy can be supplied from the ground device to the flying object, the flight duration of the flying object can be extended.
 本発明において、前記飛行指令生成部は、前記地上装置を移動させるための移動指令を生成し、前記送信部は、前記移動指令を前記地上装置へ送信すると好適である。 In the present invention, it is preferable that the flight command generation unit generates a movement command for moving the ground device, and that the transmission unit transmits the movement command to the ground device.
 本構成によれば、地上装置を移動させるための移動指令が生成され、地上装置へ送信されるので、飛行体の一群としての飛行に適する形態で地上装置を移動させることが可能となる。例えば、飛行指令生成部が、一群としての飛行体の移動に地上装置が追従するように移動指令を生成すれば、飛行体の移動範囲を拡大することができる。 According to this configuration, a movement command for moving the ground device is generated and transmitted to the ground device, so it is possible to move the ground device in a form suitable for flight as a group of aircraft. For example, if the flight command generation unit generates a movement command so that the ground device follows the movement of the flying objects as a group, the movement range of the flying objects can be expanded.
 本発明において、前記飛行指令生成部及び前記送信部が、前記地上装置に設けられていると好適である。 In the present invention, it is preferable that the flight command generation section and the transmission section are provided in the ground device.
 本構成によれば、飛行体の制御装置の制御負荷を低減することができ、飛行体の制御系を簡易に構成することが可能となる。 According to this configuration, the control load on the control device of the aircraft can be reduced, and the control system of the aircraft can be easily configured.
群状飛行体システムの概要を示す図である。FIG. 1 is a diagram showing an overview of a swarm aircraft system. 群状飛行体システムの概要を示す側面図である。FIG. 1 is a side view showing an overview of a swarm aircraft system. 群状飛行体システムの制御構成を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a control configuration of the swarm flying object system. 群状飛行体システムの変形例を示す側面図である。FIG. 7 is a side view showing a modification of the swarm aircraft system. 群状飛行体システムの変形例を示す側面図である。FIG. 7 is a side view showing a modification of the swarm aircraft system. 群状飛行体システムの変形例を示す側面図である。FIG. 7 is a side view showing a modification of the swarm aircraft system.
 以下、本発明に係る飛行体制御システムおよび飛行体システムの実施の形態である群状飛行体システムAについて、図面に基づいて説明する。なお、本発明は、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。 Hereinafter, a group aircraft system A, which is an embodiment of an aircraft control system and an aircraft system according to the present invention, will be described based on the drawings. Note that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit thereof.
〔飛行体システムの概要〕
 図1、図2に、群状飛行体システムAが示されている。群状飛行体システムAは、複数の飛行体Bが群をなす状態で飛行可能なように構成されている。群状飛行体システムAにおいて、飛行体Bが1つの群を形成してもよいし、飛行体Bが2つ以上の群を形成してもよい。
[Overview of the aircraft system]
A swarm aircraft system A is shown in FIGS. 1 and 2. The swarm flying object system A is configured so that a plurality of flying objects B can fly in a group. In the swarm flying object system A, the flying objects B may form one group, or the flying objects B may form two or more groups.
 群状飛行体システムAは、被支持体Cを支持した状態で飛行可能である。被支持体Cは、例えば、作業を行う作業装置や、荷物などを含む。作業装置は、例えば、農作業を行う農作業装置や、土木作業を行う土木作業装置、建設作業を行う建設作業装置などを含む。
作業装置は、例えば、図示される散布装置40や、除雪装置、収穫装置、採取装置、運搬装置、草刈装置、耕耘装置、植付装置、播種装置、監視装置、威嚇装置、測定装置などを含む。
The swarm flying object system A is capable of flying while supporting the supported object C. The supported object C includes, for example, a work device that performs work, luggage, and the like. The work equipment includes, for example, agricultural work equipment that performs agricultural work, civil engineering work equipment that performs civil engineering work, construction work equipment that performs construction work, and the like.
The working devices include, for example, the illustrated spreading device 40, snow removal device, harvesting device, collection device, transportation device, mowing device, tilling device, planting device, sowing device, monitoring device, threat device, measuring device, etc. .
 被支持体Cとして農作業装置を含む状態で、群状飛行体システムAは、農作業を実行することが可能である。被支持体Cとして土木作業装置を含む状態で、群状飛行体システムAは、土木作業を実行することが可能である。被支持体Cとして建設作業装置を含む状態で、群状飛行体システムAは、建設作業を実行することが可能である。 The swarm flying object system A is capable of carrying out agricultural work in a state in which the supported object C includes agricultural work equipment. In a state where the supported object C includes a civil engineering work device, the group aircraft system A is capable of performing civil engineering work. With the construction work device included as the supported object C, the swarm flying vehicle system A is capable of performing construction work.
 群状飛行体システムAは、複数の飛行体Bと、複数の飛行体Bを一群として飛行させるための飛行指令を生成する飛行指令生成部17a(図3)と、飛行指令を複数の飛行体Bへ送信する送信部17b(図3)と、を備える。本実施形態では、飛行指令生成部17a及び送信部17bは、飛行体Bの制御装置15に設けられている。 The swarm flying object system A includes a plurality of flying objects B, a flight command generation section 17a (FIG. 3) that generates a flight command for flying the plurality of flying objects B as a group, and a flight command generating section 17a (FIG. 3) that generates a flight command for flying the plurality of flying objects B as a group. A transmitter 17b (FIG. 3) that transmits data to B. In this embodiment, the flight command generation section 17a and the transmission section 17b are provided in the control device 15 of the flying object B.
 一群としての飛行とは、2つ以上の飛行体Bが、群を形成した状態で、協調して飛行することを意味する。換言すれば、複数の飛行体Bが一群として飛行するとき、複数の飛行体Bは同じ速度で同じ方向に飛行する。飛行体Bが一群として飛行するとき、全ての飛行体Bが同じ経路、または互いに平行な経路を飛行してもよいし、異なる飛行経路を飛行してもよい。 Flying as a group means that two or more flying objects B fly cooperatively while forming a group. In other words, when the plurality of flying objects B fly as a group, the plurality of flying objects B fly at the same speed and in the same direction. When the flying objects B fly as a group, all the flying objects B may fly the same route, mutually parallel paths, or may fly different flight paths.
 群状飛行体システムAは、飛行体Bと被支持体Cとを接続する接続機構Dと、飛行体B同士を連結する連結機構Eと、を備える。接続機構Dは、連結機構Eを介して、飛行体Bと被支持体Cとを接続する。 The group flying object system A includes a connecting mechanism D that connects the flying objects B and the supported object C, and a connecting mechanism E that connects the flying objects B to each other. The connection mechanism D connects the flying object B and the supported object C via the connection mechanism E.
 飛行体Bは、図2、図3に示されるように、推進装置11、通信装置12、エネルギー源13、衛星測位装置14、及び制御装置15を備える。飛行体Bは、群状飛行体システムAに合流して他の飛行体Bと群をなす状態で飛行する群状飛行と、群状飛行体システムAから離脱して単独で飛行する単独飛行と、が可能なように構成されている。飛行体Bは、例えばマルチコプターである。群状飛行体システムAに属する飛行体Bは、全て同じ種類であってもよいし、異なる種類であってもよい。群状飛行体システムAに属する飛行体Bの最大積載量(ペイロード)は、同一でもよいし、異なってもよい。 As shown in FIGS. 2 and 3, the flying object B includes a propulsion device 11, a communication device 12, an energy source 13, a satellite positioning device 14, and a control device 15. The flying object B can fly in a swarm by joining the swarm flying object system A and fly in a group with other flying objects B, or solo flight in which it leaves the swarm flying object system A and flies alone. , is configured so that it is possible. Aircraft B is, for example, a multicopter. The flying objects B belonging to the swarm flying object system A may all be of the same type or may be of different types. The maximum payloads of the flying vehicles B belonging to the swarm flying vehicle system A may be the same or different.
 推進装置11は、制御装置15により制御されて、推力を発生し、飛行体Bを飛行させる。3つの推進装置11が飛行体Bの周縁部に配置される。推進装置11の数は、1つ、2つ、又は4つ以上であってもよい。 The propulsion device 11 is controlled by the control device 15 to generate thrust and cause the aircraft B to fly. Three propulsion devices 11 are arranged at the periphery of the flying object B. The number of propulsion devices 11 may be one, two, or four or more.
 本実施形態では、推進装置11はモータ駆動されるプロペラである。エネルギー源13は、バッテリーである。 In this embodiment, the propulsion device 11 is a propeller driven by a motor. Energy source 13 is a battery.
 推進装置11がエンジン駆動されるプロペラであってもよい。エネルギー源13がエンジンに用いられる燃焼剤のタンクであってもよい。 The propulsion device 11 may be a propeller driven by an engine. The energy source 13 may be a tank of combustion agent used in the engine.
 衛星測位装置14は、人工衛星からのGNSS(Global Navigation Satellite System)の信号を受信して、受信した信号に基づいて飛行体Bの位置を示す測位データを生成し、制御装置15へ送信する。GNSSとしては、GPS、QZSS、Galileo、GLONASS、BeiDou、等を利用可能である。 The satellite positioning device 14 receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, generates positioning data indicating the position of the flying object B based on the received signal, and transmits it to the control device 15. As GNSS, GPS, QZSS, Galileo, GLONASS, BeiDou, etc. can be used.
 接続機構Dは、図3に示されるように、通信装置22、エネルギー源23、及び制御装置25を備える。 The connection mechanism D includes a communication device 22, an energy source 23, and a control device 25, as shown in FIG.
 連結機構Eは、図2、図3に示されるように、支持体31、通信装置32、エネルギー源33、制御装置35、及び連結体36を備える。 As shown in FIGS. 2 and 3, the connection mechanism E includes a support 31, a communication device 32, an energy source 33, a control device 35, and a connection body 36.
 支持体31は、横方向(水平方向)に面状に延びる構造体である。支持体31は、上下方向視で四角形である。支持体31が、上面視で、正方形や長方形、菱形、三角形や多角形、円形、楕円形であってもよい。支持体31が横方向(水平方向)に延びる棒状であってもよい。支持体31の下部に、接続機構Dが設けられる。接続機構Dは、支持体31に対して移動可能なように構成されている。接続機構Dを移動させる機構は、接続機構Dに設けられてもよいし、支持体31に設けられてもよい。 The support body 31 is a structure that extends in a plane in the lateral direction (horizontal direction). The support body 31 has a rectangular shape when viewed in the vertical direction. The support body 31 may be square, rectangular, diamond-shaped, triangular, polygonal, circular, or elliptical in top view. The support body 31 may have a rod shape extending in the lateral direction (horizontal direction). A connection mechanism D is provided at the bottom of the support body 31. The connection mechanism D is configured to be movable with respect to the support body 31. A mechanism for moving the connection mechanism D may be provided on the connection mechanism D or may be provided on the support body 31.
 連結体36は、支持体31と飛行体Bとを連結する。連結体36は、変形可能なワイヤや、剛性を備える棒状部材である。 The connecting body 36 connects the support body 31 and the flying object B. The connecting body 36 is a deformable wire or a rigid rod-shaped member.
 被支持体Cとしての散布装置40は、スプレー装置41、通信装置42、エネルギー源43、及び制御装置45を備える。スプレー装置41は、制御装置45に制御され、散布物(農薬、肥料、水など)を散布する。 The spraying device 40 as the supported body C includes a spray device 41, a communication device 42, an energy source 43, and a control device 45. The spray device 41 is controlled by a control device 45 and sprays substances (pesticides, fertilizers, water, etc.).
 図1、図2に示される群状飛行体システムAは、作業地(例えば圃場)の上空でホバリング飛行(停滞)している状態で、散布装置40を支持体31に対して移動させながら、散布装置40を作動させることができる。従って、群状飛行体システムAを移動させなくても、作業地(圃場)の各所に散布物を散布することが可能となる。そして群状飛行体システムAは、複数の飛行体Bが群をなす状態で飛行して、他の作業地や拠点へ移動することができる。 The swarm flying object system A shown in FIGS. 1 and 2 is in a state where it is hovering (stagnant) above a working area (for example, a farm field), and while moving the spraying device 40 relative to the support 31, Spreading device 40 can be activated. Therefore, it is possible to spread the material to various parts of the work area (field) without moving the swarm flying object system A. In the swarm flying object system A, a plurality of flying objects B can fly in a group and move to other work sites or bases.
〔通信装置〕
 夫々の飛行体Bの通信装置12、接続機構Dの通信装置22、連結機構Eの通信装置32、及び散布装置40(被支持体C)の通信装置42は、有線通信または無線通信により互いに通信可能なように構成されている。なお、これらの通信装置が、外部の通信ネットワークを介して、外部のシステム(営農システム、圃場管理システム、飛行制御システムなど)と通信可能であってもよい。
〔Communication device〕
The communication device 12 of each flying object B, the communication device 22 of the connection mechanism D, the communication device 32 of the coupling mechanism E, and the communication device 42 of the dispersion device 40 (supported body C) communicate with each other by wired communication or wireless communication. configured so that it is possible. Note that these communication devices may be able to communicate with external systems (a farming system, a field management system, a flight control system, etc.) via an external communication network.
 有線通信は、飛行体Bと接続機構Dとの間の通信線(図示省略)の物理的な接続、接続機構Dと連結機構Eとの間の通信線(図示省略)の物理的な接続、及び連結機構Eと散布装置40との間の通信線(図示省略)の物理的な接続により実現される。 Wired communication includes a physical connection of a communication line (not shown) between the aircraft B and the connection mechanism D, a physical connection of a communication line (not shown) between the connection mechanism D and the coupling mechanism E, This is realized by a physical connection of a communication line (not shown) between the coupling mechanism E and the spraying device 40.
 無線通信は、電磁波(光、電波、赤外線等)を用いた通信により実現される。無線通信が、外部の通信ネットワーク(例えば、携帯電話回線)を介して実現されてもよい。 Wireless communication is realized by communication using electromagnetic waves (light, radio waves, infrared waves, etc.). Wireless communication may be achieved via an external communication network (eg, a mobile phone line).
 群状飛行体システムAにおいて、有線通信と無線通信とが混在してもよい。有線通信と無線通信とが併用されてもよい。 In the swarm aircraft system A, wired communication and wireless communication may coexist. Wired communication and wireless communication may be used together.
 接続機構Dの通信装置22が、飛行体Bの間の通信を実現するように構成されてもよい。詳しくは、接続機構Dの通信装置22が、飛行体Bの通信装置12の間の通信を中継するように構成されてもよい。 The communication device 22 of the connection mechanism D may be configured to realize communication between the aircraft B. Specifically, the communication device 22 of the connection mechanism D may be configured to relay communications between the communication devices 12 of the aircraft B.
 連結機構Eの通信装置32が、飛行体Bの間の通信を実現するように構成されてもよい。詳しくは、連結機構Eの通信装置32が、飛行体Bの通信装置12の間の通信を中継するように構成されてもよい。 The communication device 32 of the coupling mechanism E may be configured to realize communication between the aircraft B. Specifically, the communication device 32 of the coupling mechanism E may be configured to relay communication between the communication devices 12 of the aircraft B.
〔エネルギー源〕
 飛行体Bのエネルギー源13は、飛行体Bの各装置へのエネルギー供給に加えて、他の飛行体B、接続機構D、連結機構E、及び散布装置40(被支持体C)へのエネルギー供給が可能なように構成されている。
〔Energy source〕
The energy source 13 of the flying object B not only supplies energy to each device of the flying object B, but also supplies energy to other flying objects B, the connection mechanism D, the coupling mechanism E, and the dispersion device 40 (supported object C). It is configured so that it can be supplied.
 接続機構Dのエネルギー源23は、接続機構Dの各装置へのエネルギー供給に加えて、飛行体B、連結機構E、及び散布装置40(被支持体C)へのエネルギー供給が可能なように構成されている。 The energy source 23 of the connection mechanism D is capable of supplying energy to the aircraft B, the connection mechanism E, and the dispersion device 40 (supported body C) in addition to supplying energy to each device of the connection mechanism D. It is configured.
 連結機構Eのエネルギー源33は、連結機構Eの各装置へのエネルギー供給に加えて、飛行体B、接続機構D、及び散布装置40(被支持体C)へのエネルギー供給が可能なように構成されている。 The energy source 33 of the coupling mechanism E is capable of supplying energy to the aircraft B, the connection mechanism D, and the dispersion device 40 (supported body C) in addition to supplying energy to each device of the coupling mechanism E. It is configured.
 散布装置40(被支持体C)のエネルギー源43は、散布装置40の各装置へのエネルギー供給に加えて、飛行体B、接続機構D、及び連結機構Eへのエネルギー供給が可能なように構成されている。 The energy source 43 of the dispersion device 40 (supported body C) is capable of supplying energy to the aircraft B, the connection mechanism D, and the connection mechanism E in addition to supplying energy to each device of the dispersion device 40. It is configured.
 エネルギー供給は、飛行体Bと接続機構Dとの間のエネルギー供給体(図示省略)の物理的な接続、接続機構Dと連結機構Eとの間のエネルギー供給体(図示省略)の物理的な接続、及び連結機構Eと散布装置40との間のエネルギー供給体(図示省略)の物理的な接続により実現される。エネルギー供給体は、例えば、電力線や燃料パイプ等である。エネルギー供給が、無線給電技術により実現されてもよい。 Energy supply is achieved through the physical connection of an energy supply body (not shown) between the aircraft B and the connection mechanism D, and the physical connection of the energy supply body (not shown) between the connection mechanism D and the connection mechanism E. This is realized by a physical connection of an energy supply body (not shown) between the connection mechanism E and the dispersion device 40. The energy supply body is, for example, a power line or a fuel pipe. Energy supply may be realized by wireless power transfer technology.
〔制御に係る構成〕
 飛行体Bの制御装置15は、所謂ECUであって、後述する機能部に対応するプログラムを記憶するメモリ(HDDや不揮発性RAMなど。図示省略)と、当該プログラムを実行するCPU(図示省略)と、を備えている。プログラムがCPUにより実行されることにより、各機能部の機能が実現される。すなわち、制御装置15は、プログラムを記憶した一次的ではない(non-transitory)記録媒体を備える。
[Configuration related to control]
The control device 15 of the aircraft B is a so-called ECU, and includes a memory (HDD, nonvolatile RAM, etc., not shown) that stores programs corresponding to functional units described later, and a CPU (not shown) that executes the programs. It is equipped with. The functions of each functional unit are realized by executing the program by the CPU. That is, the control device 15 includes a non-transitory recording medium that stores a program.
 飛行体Bの制御装置15は、個別管理部16と、群管理部17と、を備える。個別管理部16は、主として、個別飛行制御部16aが設けられている飛行体Bの動作を制御する。群管理部17は、主として、群状飛行体システムAの全体の動作を制御する。 The control device 15 of the aircraft B includes an individual management section 16 and a group management section 17. The individual management unit 16 mainly controls the operation of the aircraft B in which the individual flight control unit 16a is provided. The group management unit 17 mainly controls the overall operation of the group aircraft system A.
 個別管理部16は、個別飛行制御部16a、状態管理部16b、及び基準記憶部16cを備える。 The individual management section 16 includes an individual flight control section 16a, a state management section 16b, and a reference storage section 16c.
 群管理部17は、飛行指令生成部17a、送信部17b、飛行計画記憶部17c、測位位置取得部17d、位置ずれ算出部17e、制約条件記憶部17f、及び諸元情報記憶部17gを備える。 The group management section 17 includes a flight command generation section 17a, a transmission section 17b, a flight plan storage section 17c, a positioning position acquisition section 17d, a positional deviation calculation section 17e, a constraint storage section 17f, and a specification information storage section 17g.
 ここで、飛行体Bは、群管理部17(飛行指令生成部17a)が機能して飛行指令を発信するマスターモードと、群管理部17(飛行指令生成部17a)が機能せず飛行指令を受信して飛行指令に基づいて飛行するスレーブモードと、に切り替え可能に構成されている。以下、マスターモードにある飛行体Bを、マスター飛行体B1と称する。スレーブモードにある飛行体Bを、スレーブ飛行体B2と称する。スレーブ飛行体B2では、群管理部17に対応するプログラムが実行されず(あるいは実行を停止され)、群管理部17の機能が実現されていない。換言すれば、群管理部17(飛行指令生成部17a)は、飛行体Bのうちの一つであるマスター飛行体B1に設けられている。 Here, the aircraft B operates in a master mode in which the group management section 17 (flight command generation section 17a) functions and issues a flight command, and in a master mode in which the group management section 17 (flight command generation section 17a) does not function and issues a flight command. It is configured to be able to switch between a slave mode and a slave mode in which it receives and flies based on flight commands. Hereinafter, the flying object B in the master mode will be referred to as the master flying object B1. The flying object B in slave mode is referred to as slave flying object B2. In the slave aircraft B2, the program corresponding to the group management section 17 is not executed (or its execution is stopped), and the functions of the group management section 17 are not realized. In other words, the group management section 17 (flight command generation section 17a) is provided in the master flying object B1, which is one of the flying objects B.
 群管理部17は、群管理部17(飛行指令生成部17a)を一つの飛行体Bから他の飛行体Bへ移すことができる。例えば、群管理部17は、マスター飛行体B1に異常が生じた場合(エネルギー源13の残量不足、推進装置11等の故障など)、群管理部17をマスター飛行体B1からスレーブ飛行体B2へ移す。換言すれば、群管理部17は、マスター飛行体B1の群管理部17の機能を停止させる。マスター飛行体B1は、以後、スレーブ飛行体B2として機能する。群管理部17は、一つのスレーブ飛行体B2の群管理部17を機能させる。そのスレーブ飛行体B2は、以後、マスター飛行体B1として機能する。 The group management unit 17 can transfer the group management unit 17 (flight command generation unit 17a) from one aircraft B to another aircraft B. For example, if an abnormality occurs in the master flying object B1 (such as insufficient remaining energy source 13 or failure of the propulsion device 11, etc.), the group management section 17 transfers the group management section 17 from the master flying object B1 to the slave flying object B2. Move to. In other words, the group management section 17 stops the function of the group management section 17 of the master flying object B1. Master air vehicle B1 thereafter functions as slave air vehicle B2. The group management section 17 causes the group management section 17 of one slave aircraft B2 to function. The slave air vehicle B2 thereafter functions as the master air vehicle B1.
 接続機構Dの制御装置25は、飛行体Bの制御装置15と同様に、ECUである。制御装置25は、接続機構Dを制御する。制御装置25は、エネルギー源23の残量や、接続機構Dと連結機構E及び散布装置40(被支持体C)との接続の状態などの情報を、通信装置22を介して他の制御装置に送信する。 The control device 25 of the connection mechanism D is an ECU, similar to the control device 15 of the aircraft B. The control device 25 controls the connection mechanism D. The control device 25 transmits information such as the remaining amount of the energy source 23 and the state of connection between the connection mechanism D, the connection mechanism E, and the spraying device 40 (supported body C) to other control devices via the communication device 22. Send to.
 連結機構Eの制御装置35は、飛行体Bの制御装置15と同様に、ECUである。制御装置35は、連結機構Eを制御する。制御装置35は、エネルギー源33の残量や、連結機構Eと飛行体B及び接続機構Dとの接続の状態などの情報を、通信装置32を介して他の制御装置に送信する。 The control device 35 of the coupling mechanism E is an ECU, similar to the control device 15 of the aircraft B. The control device 35 controls the coupling mechanism E. The control device 35 transmits information such as the remaining amount of the energy source 33 and the state of connection between the coupling mechanism E, the flying object B, and the connection mechanism D to other control devices via the communication device 32.
 散布装置40(被支持体C)の制御装置45は、飛行体Bの制御装置15と同様に、ECUである。制御装置45は、散布装置40を制御する。制御装置45は、スプレー装置41の状態や、散布物の残量、エネルギー源43の残量、散布装置40と接続機構Dとの接続の状態などの情報を、通信装置42を介して他の制御装置に送信する。 The control device 45 of the dispersion device 40 (supported body C) is an ECU like the control device 15 of the flying object B. Control device 45 controls spraying device 40 . The control device 45 transmits information such as the state of the spray device 41, the remaining amount of the spray material, the remaining amount of the energy source 43, and the state of connection between the spray device 40 and the connection mechanism D to other devices via the communication device 42. Send to control device.
〔個別管理部の機能〕
 個別飛行制御部16aは、推進装置11を制御して、個別飛行制御部16aが設けられている飛行体Bの飛行を制御する。個別飛行制御部16aは、他の飛行体Bと群飛行する群飛行モードと、単独で飛行する単独飛行モードと、に切り替え可能に構成されている。
[Functions of individual management department]
The individual flight control unit 16a controls the propulsion device 11 to control the flight of the aircraft B in which the individual flight control unit 16a is provided. The individual flight control unit 16a is configured to be switchable between a group flight mode in which the aircraft B flies in a group with other flying objects B, and a solo flight mode in which it flies alone.
 個別飛行制御部16aは、群飛行モードにおいては、群管理部17から送信された飛行指令に基づいて、飛行体Bの飛行を制御する。 In the group flight mode, the individual flight control unit 16a controls the flight of the aircraft B based on the flight command transmitted from the group management unit 17.
 飛行指令は、群状飛行体システムAに属する飛行体Bを群飛行させるための飛行指示である。飛行指令は、飛行体Bごとに異なっていてもよいし、同じでもよい。 The flight command is a flight instruction for causing the flying objects B belonging to the group flying object system A to fly in a group. The flight command may be different for each flying object B, or may be the same.
 また、個別飛行制御部16aは、群飛行モードにおいては群管理部17から送信された群基準位置及び群基準方向に基づいて、飛行体Bの飛行を制御する。個別飛行制御部16aが、個別飛行制御部16aが設けられている飛行体Bと群基準位置との位置関係が保たれるように、飛行体Bの飛行を制御してもよい。群基準位置及び群基準方向については後述する。 Furthermore, in the group flight mode, the individual flight control unit 16a controls the flight of the aircraft B based on the group reference position and group reference direction transmitted from the group management unit 17. The individual flight control unit 16a may control the flight of the aircraft B so that the positional relationship between the aircraft B on which the individual flight control unit 16a is provided and the group reference position is maintained. The group reference position and group reference direction will be described later.
 個別飛行制御部16aは、単独飛行モードにおいては、予め設定された基準位置及び基準方向に基づいて飛行体Bの飛行を制御する。基準位置は、例えば、飛行体Bの重心位置又は幾何中心位置である。基準方向は、例えば、飛行体Bの前方向である。基準位置及び基準方向は、予め設定され、飛行体Bの基準記憶部16cに記憶されている。個別飛行制御部16aは、単独飛行モードにあるとき、衛星測位装置14が生成する測位データに基づいて、飛行体Bを自律飛行させる。 In the solo flight mode, the individual flight control unit 16a controls the flight of the flying object B based on a preset reference position and reference direction. The reference position is, for example, the gravity center position or geometric center position of the flying object B. The reference direction is, for example, the forward direction of the flying object B. The reference position and reference direction are set in advance and stored in the reference storage section 16c of the flying object B. When in the solo flight mode, the individual flight control unit 16a causes the flying object B to fly autonomously based on the positioning data generated by the satellite positioning device 14.
 状態管理部16bは、状態管理部16bが設けられている飛行体Bの状態を管理する。
状態管理部16bは、例えば、推進装置11の動作状態及び異常の有無、通信装置12の動作状態及び異常の有無、エネルギー源13の残量、動作状態及び異常の有無、及び衛星測位装置14の動作状態及び異常の有無を検知・記録すると共に、これらの情報をマスター飛行体B1へ送信する。
The state management unit 16b manages the state of the aircraft B in which the state management unit 16b is installed.
The state management unit 16b stores, for example, the operating state and presence or absence of an abnormality of the propulsion device 11, the operating state and presence or absence of an abnormality of the communication device 12, the remaining amount of the energy source 13, the operating state and presence or absence of an abnormality, and the operation state of the satellite positioning device 14. The operating state and the presence or absence of abnormalities are detected and recorded, and this information is transmitted to the master flying object B1.
 基準記憶部16cは、個別飛行制御部16aが単独飛行モードで用いる基準位置及び基準方向を記憶する。また、基準記憶部16cは、群管理部17から送信された群基準位置及び群基準方向を記憶する。 The reference storage unit 16c stores the reference position and reference direction used by the individual flight control unit 16a in the solo flight mode. The reference storage section 16c also stores the group reference position and group reference direction transmitted from the group management section 17.
〔集合体管理部の機能〕
 飛行指令生成部17aは、複数の飛行体Bを一群として飛行させるための飛行指令を生成する。飛行指令については後述する。
[Functions of the collective management department]
The flight command generation unit 17a generates a flight command for causing the plurality of flying objects B to fly as a group. Flight commands will be discussed later.
 送信部17bは、通信装置12を制御して、飛行指令生成部17aが生成した飛行指令を飛行体Bへ送信する。 The transmitter 17b controls the communication device 12 to transmit the flight command generated by the flight command generator 17a to the aircraft B.
 飛行計画記憶部17cは、群状飛行体システムAの飛行計画を記憶する。飛行計画は、群飛行による飛行の計画であって、群状飛行体システムAの飛行経路を少なくとも含む。
飛行指令生成部17aが、群状飛行体システムAが飛行経路に沿って飛行するように、飛行指令を生成してもよい。飛行指令生成部17aが、衛星測位装置14が生成する測位データ及び飛行経路に基づいて、飛行指令を生成してもよい。この場合、群状飛行体システムAは自律飛行する。
The flight plan storage unit 17c stores the flight plan of the group aircraft system A. The flight plan is a flight plan for a group flight, and includes at least the flight path of the group aircraft system A.
The flight command generation unit 17a may generate a flight command so that the swarm flying object system A flies along the flight path. The flight command generation unit 17a may generate the flight command based on the positioning data and flight route generated by the satellite positioning device 14. In this case, the swarm aircraft system A flies autonomously.
 飛行計画が、被支持体Cが含む作業装置の作業計画を含んでもよい。作業装置の作業計画が、作業装置が作業を行う位置(例えば、作業対象の圃場の位置、圃場における作業を実行する位置など)、及び/又は作業内容(例えば、作業装置の動作強度、動作時間、動作間隔など)を含んでもよい。 The flight plan may include a work plan for the work device included in the supported body C. The work plan of the work equipment is determined based on the location where the work equipment will perform the work (for example, the position of the field to be worked on, the position in the field where the work will be performed, etc.), and/or the content of the work (for example, the operation intensity of the work equipment, the operation time, etc.). , operation interval, etc.).
 飛行指令生成部17aが、飛行計画が含む作業計画が実行可能なように、飛行指令を生成してもよい。飛行指令生成部17aが、被支持体Cの作業装置の作業指示を生成してもよい。送信部17bが、飛行指令生成部17aが生成した作業指示を被支持体Cへ送信してもよい。 The flight command generation unit 17a may generate a flight command so that the work plan included in the flight plan can be executed. The flight command generation unit 17a may generate a work instruction for a work device for the supported body C. The transmitter 17b may transmit the work instruction generated by the flight instruction generator 17a to the supported body C.
 飛行指令生成部17aが、群状飛行体システムAに属する複数の飛行体Bの位置関係、及び飛行体Bと被支持体C(散布装置40)との位置関係のうちの少なくとも一方に基づいて、飛行指令を生成してもよい。飛行指令生成部17aが、群基準位置及び群基準方向のうちの少なくとも一方に基づいて、飛行指令を生成してもよい。 The flight command generation unit 17a generates a command based on at least one of the positional relationship between the plurality of flying objects B belonging to the swarm flying object system A, and the positional relationship between the flying object B and the supported object C (spreading device 40). , may generate a flight command. The flight command generation unit 17a may generate the flight command based on at least one of the group reference position and the group reference direction.
 群基準位置及び群基準方向は、群状飛行体システムAに属する複数の飛行体Bが群飛行する時に基準となる位置及び方向である。群基準位置は、例えば、複数の飛行体Bの重心位置又は幾何中心位置、複数の飛行体B、接続機構D、及び連結機構Eの重心位置又は幾何中心位置、群状飛行体システムAの全体の重心位置又は幾何中心位置、又はマスター飛行体B1の重心位置又は幾何中心位置である。群基準方向は、例えば、マスター飛行体B1の前方向、被支持体Cの前方向、接続機構Dの前方向、又は連結機構Eの前方向である。群基準位置及び群基準方向は、予め設定され、マスター飛行体B1の飛行計画記憶部17cに記憶されている。 The group reference position and the group reference direction are positions and directions that serve as a reference when a plurality of flying objects B belonging to the group flying object system A fly in a group. The group reference position is, for example, the center of gravity or geometric center position of the plurality of flying objects B, the center of gravity or geometric center position of the plurality of flying objects B, the connection mechanism D, and the coupling mechanism E, or the entire group flying object system A. or the center of gravity or geometric center of the master flying object B1. The group reference direction is, for example, the forward direction of the master flying object B1, the forward direction of the supported body C, the forward direction of the connecting mechanism D, or the forward direction of the connecting mechanism E. The group reference position and the group reference direction are set in advance and stored in the flight plan storage section 17c of the master flying object B1.
 測位位置取得部17dは、飛行体Bが備える衛星測位装置14が生成した測位データ(飛行体Bの測位位置)を取得する。測位位置取得部17dは、群状飛行体システムAに属する全ての飛行体Bの測位データを経時的に取得する。飛行指令生成部17aは、測位位置取得部17dが取得した測位データに基づいて飛行指令を生成する。 The positioning position acquisition unit 17d acquires positioning data (positioning position of the flight vehicle B) generated by the satellite positioning device 14 included in the flight vehicle B. The positioning position acquisition unit 17d acquires positioning data of all the flying objects B belonging to the swarm flying object system A over time. The flight command generation unit 17a generates a flight command based on the positioning data acquired by the positioning position acquisition unit 17d.
 位置ずれ算出部17eは、測位位置取得部17dが取得した測位データに基づいて飛行体Bの位置ずれを算出する。位置ずれは、飛行体Bの理想位置(例えば、飛行指令が示す飛行体Bの位置)と飛行体Bの実際の位置との差異である。位置ずれ算出部17eは、飛行指令が示す飛行体Bの目標位置と測位データが示す飛行体Bの測位位置との差異に基づいて、位置ずれを算出する。位置ずれ算出部17eが、測位位置取得部17dが取得する測位データの経時的な変化量に基づいて位置ずれを算出してもよい。 The positional deviation calculation unit 17e calculates the positional deviation of the aircraft B based on the positioning data acquired by the positioning position acquisition unit 17d. The positional deviation is the difference between the ideal position of the aircraft B (for example, the position of the aircraft B indicated by the flight command) and the actual position of the aircraft B. The positional deviation calculation unit 17e calculates the positional deviation based on the difference between the target position of the aircraft B indicated by the flight command and the measured position of the aircraft B indicated by the positioning data. The positional deviation calculation unit 17e may calculate the positional deviation based on the amount of change over time in the positioning data acquired by the positioning position acquisition unit 17d.
 飛行指令生成部17aは、位置ずれ算出部17eが算出した位置ずれに基づいて飛行指令を生成する。例えば、飛行指令生成部17aは、飛行体Bに生じた位置ずれと反対方向に同じ量だけ飛行体Bが移動するように、飛行指令を生成する。 The flight command generation unit 17a generates a flight command based on the positional deviation calculated by the positional deviation calculation unit 17e. For example, the flight command generating unit 17a generates a flight command so that the flying object B moves by the same amount in the opposite direction to the positional deviation that has occurred in the flying object B.
 飛行体Bが理想位置からずれたとき、被支持体Cも理想位置からずれる場合がある。飛行指令生成部17aが、被支持体Cの位置ずれを打ち消すように飛行指令を生成してもよい。図1の中央に、3機の飛行体Bが強風Xに吹かれたため飛行体Bの位置ずれが生じた状態が示されている。これらの飛行体Bに引かれて、連結機構E、接続機構D、及び被支持体Cの位置ずれが生じる可能性がある。飛行指令生成部17aは、位置ずれが生じている3機の飛行体Bに対する飛行指令として位置ずれが解消するように飛行する飛行指令(ベクトルYの飛行)を生成し、他の飛行体Bに対する飛行指令として被支持体Cの位置ずれを打ち消すように飛行する飛行指令(ベクトルZの飛行)を生成する。 When the flying object B deviates from the ideal position, the supported object C may also deviate from the ideal position. The flight command generation unit 17a may generate the flight command so as to cancel the positional shift of the supported body C. In the center of FIG. 1, a state in which three aircraft B are blown by a strong wind X and the position of the aircraft B has shifted is shown. Being pulled by these flying objects B, there is a possibility that the coupling mechanism E, the connecting mechanism D, and the supported body C may be displaced. The flight command generation unit 17a generates a flight command (flight of vector Y) to eliminate the positional deviation as a flight command for the three aircraft B with positional deviation, and generates a flight command (flight of vector Y) for the three aircraft B in which the positional deviation has occurred. A flight command (flight of vector Z) to fly so as to cancel the positional deviation of the supported body C is generated as a flight command.
 制約条件記憶部17fは、複数の飛行体Bの相対位置に関する制約条件を記憶する。制約条件は、例えば、飛行体Bの相対距離の上限または下限、群における飛行体Bの位置関係、群における飛行体Bの移動許容領域などである。飛行指令生成部17aは、制約条件に基づいて飛行指令を生成する。例えば、飛行指令生成部17aは、飛行体Bが、制約条件が示す位置関係に沿って配置されるように、飛行指令を生成する。制約条件は、予め定められてもよいし、群管理部17が決定してもよい。 The constraint storage unit 17f stores constraints regarding the relative positions of the plurality of flying objects B. The constraint conditions include, for example, the upper limit or lower limit of the relative distance of the flying object B, the positional relationship of the flying object B in the group, the allowable movement range of the flying object B in the group, and the like. The flight command generation unit 17a generates a flight command based on the constraint conditions. For example, the flight command generation unit 17a generates a flight command so that the flying object B is arranged along the positional relationship indicated by the constraint conditions. The constraint conditions may be determined in advance or may be determined by the group management unit 17.
 諸元情報記憶部17gは、複数の飛行体Bの性能及び大きさを示す諸元情報を記憶する。諸元情報は、例えば、飛行体Bの幅や奥行き、高さ、質量、最高速度、航続距離、稼働時間などである。飛行指令生成部17aは、諸元情報に基づいて飛行指令を生成する。例えば、飛行指令生成部17aは、諸元情報が示す飛行体Bの大きさに基づいて、飛行体B同士が接触しないように飛行指令を生成する。諸元情報は、予め諸元情報記憶部17gに記憶されてもよい。諸元情報記憶部17gが、通信装置12を介して、飛行体Bの制御装置15から諸元情報を取得してもよい。 The specification information storage unit 17g stores specification information indicating the performance and size of the plurality of flying objects B. The specification information includes, for example, the width, depth, height, mass, maximum speed, cruising distance, operating time, etc. of the flying object B. The flight command generation unit 17a generates a flight command based on the specification information. For example, the flight command generating unit 17a generates a flight command based on the size of the flying object B indicated by the specification information so that the flying objects B do not come into contact with each other. The specification information may be stored in advance in the specification information storage section 17g. The specification information storage unit 17g may acquire specification information from the control device 15 of the aircraft B via the communication device 12.
 飛行指令生成部17aが、複数の飛行体Bを複数の群に分けて飛行させるための分割飛行指令を生成してもよい。送信部17bが、分割飛行指令を複数の飛行体Bへ送信してもよい。例えば、飛行指令生成部17aが、複数の飛行体Bが属する第1の群が第1の被支持体Cを支持して飛行し、複数の飛行体Bが属する第2の群が第2の被支持体Cを支持して飛行するように、分割飛行指令を生成してもよい。この場合、一つの群状飛行体システムAにより2つの行動を実行することができる。例えば、一つの群状飛行体システムAにより、2つの圃場における農作業を同時に実行することができる。第1の群に属する飛行体Bの数が1つでもよい。第2の群に属する飛行体Bの数が1つでもよい。なお、分割飛行指令により飛行体Bが複数の群に分かれて飛行するとき、それぞれの群に対して飛行指令生成部17aが飛行指令を生成し、送信部17bが飛行指令を送信する。 The flight command generation unit 17a may generate a divided flight command for flying the plurality of flying objects B in a plurality of groups. The transmitter 17b may transmit the divided flight command to the plurality of flying objects B. For example, the flight command generation unit 17a may cause a first group to which a plurality of flying objects B belongs to fly supporting a first supported object C, and a second group to which a plurality of flying objects B belong to a second group to which a plurality of flying objects B belong to to fly while supporting a first supported object C. A divided flight command may be generated to fly while supporting the supported object C. In this case, one swarm aircraft system A can perform two actions. For example, one swarm flying object system A can perform agricultural work in two fields at the same time. The number of flying objects B belonging to the first group may be one. The number of flying objects B belonging to the second group may be one. Note that when the flying object B is divided into a plurality of groups and flies according to the divided flight command, the flight command generation unit 17a generates a flight command for each group, and the transmission unit 17b transmits the flight command.
 複数の群による作業の別の例が以下に示される。第1の群が薬剤の散布作業を行ない、第2の群が薬剤の不要な拡散を抑制する作業を行なってもよい。例えば、第1の群が民家や作業車、オペレータ(以下「民家等」と称する。)の近傍で薬剤の散布作業を行ない、第2の群が民家等へ向けての薬剤の飛散を抑制する作業を行なってもよい。例えば、第2の群が第1の群と民家等との間に位置して、推進装置11からの風を用いて薬剤が民家等の方へ流れるのを抑制してもよい。 Another example of working with multiple groups is shown below. The first group may perform the work of dispersing the medicine, and the second group may perform the work of suppressing unnecessary diffusion of the medicine. For example, the first group sprays chemicals near private houses, work vehicles, and operators (hereinafter referred to as "private houses, etc."), and the second group suppresses the scattering of chemicals toward private houses, etc. You may do some work. For example, the second group may be located between the first group and a private house, etc., and the wind from the propulsion device 11 may be used to suppress the medicine from flowing toward the private house.
〔実施形態の変形例1〕
 図4に、実施形態の変形例が示されている。以下の説明では、上述の実施形態と同様の構成には同じ符号を付し、詳しい説明を省略する場合がある。
[Modification 1 of embodiment]
A modification of the embodiment is shown in FIG. In the following description, structures similar to those in the above-described embodiments are denoted by the same reference numerals, and detailed description may be omitted.
 図示例の群状飛行体システムAは、飛行体Bとしての大型飛行体B4及び小型飛行体B5を備える。連結機構Eとしての連結体36(ワイヤ)及びウインチ37が、大型飛行体B4と小型飛行体B5とを連結している。小型飛行体B5は、地上に固定された固定装置70に連結可能に構成されている。固定装置70は、例えば小型飛行体B5と係合するフックである。 The illustrated example group flying object system A includes a large flying object B4 and a small flying object B5 as flying objects B. A connecting body 36 (wire) and a winch 37 as a connecting mechanism E connects the large flying object B4 and the small flying object B5. The small flying object B5 is configured to be connectable to a fixing device 70 fixed on the ground. The fixing device 70 is, for example, a hook that engages with the small flying object B5.
 群管理部17が、大型飛行体B4に設けられている。飛行指令生成部17aが生成する飛行指令により、大型飛行体B4及び小型飛行体B5が群をなす状態で飛行する。 A group management unit 17 is provided in the large flying object B4. According to the flight command generated by the flight command generation unit 17a, the large flying object B4 and the small flying object B5 fly in a group.
 小型飛行体B5が固定装置70に連結された状態においては、風などの外乱による大型飛行体B4の位置ずれが連結体36(ワイヤ)により抑制されるので、大型飛行体B4を所定の作業位置に停滞させることが容易になる。また、ウインチ37によって連結体36(ワイヤ)の長さを調節することにより、大型飛行体B4を所定の作業位置に精密に制御することができる。加えて、小型飛行体B5は、固定装置70から分離して大型飛行体B4と共に移動可能であるから、群状飛行体システムAが他の作業場所(圃場など)へ移動することが容易である。 When the small flying object B5 is connected to the fixing device 70, the connecting body 36 (wire) suppresses displacement of the large flying object B4 due to disturbances such as wind, so the large flying object B4 can be kept at a predetermined work position. It becomes easier to stagnate. Further, by adjusting the length of the connecting body 36 (wire) using the winch 37, the large flying object B4 can be precisely controlled to a predetermined working position. In addition, since the small flying object B5 can be separated from the fixing device 70 and moved together with the large flying object B4, it is easy for the group flying object system A to move to another work place (field, etc.). .
〔実施形態の変形例2〕
 図5に、実施形態の変形例が示されている。図示例の群状飛行体システムAは、浮力体81を備える。浮力体81は、支持体31に接続され、支持体31に浮力を付与する。浮力体81は、例えば、風船や気球である。
[Modification 2 of embodiment]
A modification of the embodiment is shown in FIG. The illustrated example swarm flying object system A includes a buoyant body 81 . The buoyancy body 81 is connected to the support body 31 and provides buoyancy to the support body 31. The buoyant body 81 is, for example, a balloon or a balloon.
〔実施形態の変形例3〕
 図6に、実施形態の変形例が示されている。図示例の群状飛行体システムAは、地上装置Jと、地上装置Jと飛行体Bとを接続する地上接続機構Kと、を備える。飛行体Bとしての1機の大型飛行体B6、及び飛行体Bとしての5機の小型飛行体B7が、連結機構Eの連結体36によって1列に連結されている。連結体36は、変形可能なワイヤである。
末端の小型飛行体B7と地上装置Jとが、地上接続機構Kによって接続されている。地上接続機構Kは、変形可能なワイヤである。大型飛行体B6は、被支持体Cである散布装置40を支持し、散布作業を実行している。群管理部17が、大型飛行体B6に設けられている。
[Variation 3 of embodiment]
A modification of the embodiment is shown in FIG. The illustrated example swarm flying object system A includes a ground device J and a ground connection mechanism K that connects the ground device J and the flying object B. One large flying object B6 as the flying object B and five small flying objects B7 as the flying objects B are connected in one row by a connecting body 36 of the connecting mechanism E. Connector 36 is a deformable wire.
The terminal small flying object B7 and the ground equipment J are connected by a ground connection mechanism K. The ground connection mechanism K is a deformable wire. The large flying object B6 supports the spraying device 40, which is the supported body C, and executes the spraying work. A group management section 17 is provided in the large flying object B6.
 地上装置Jは、通信装置92、エネルギー源93、衛星測位装置94、及び制御装置95を備える。地上装置Jは、制御装置95からの制御により自走可能に構成されている。
本実施形態では、飛行指令生成部17aは、地上装置Jを移動させるための移動指令を生成するように構成されている。送信部17bは、移動指令を地上装置Jへ送信する。地上装置Jは、通信装置92を介して受信した移動指令に基づいて走行する。地上装置Jが、衛星測位装置94が生成する測位データに基づいて自律走行が可能なように構成されてもよい。
The ground device J includes a communication device 92, an energy source 93, a satellite positioning device 94, and a control device 95. The ground device J is configured to be self-propelled under control from the control device 95.
In this embodiment, the flight command generation unit 17a is configured to generate a movement command for moving the ground device J. The transmitter 17b transmits a movement command to the ground device J. The ground device J travels based on the movement command received via the communication device 92. The ground device J may be configured to be capable of autonomous travel based on positioning data generated by the satellite positioning device 94.
 エネルギー源93は、地上接続機構Kを介して飛行体Bや散布装置40(被支持体C)にエネルギーを供給可能なように構成されている。エネルギー源93は、例えば、蓄電池や発電機である。エネルギー源93が、地上の電力網から電力供給を受けることができるように構成されてもよい。 The energy source 93 is configured to be able to supply energy to the flying object B and the dispersion device 40 (supported object C) via the ground connection mechanism K. The energy source 93 is, for example, a storage battery or a generator. Energy source 93 may be configured to be powered by a terrestrial power grid.
 群管理部17(飛行指令生成部17a及び送信部17b)が、地上装置Jの制御装置95に設けられてもよい。 The group management section 17 (flight command generation section 17a and transmission section 17b) may be provided in the control device 95 of the ground device J.
 地上装置Jが、地上に固定的に設置される装置や設備であってもよい。 The ground equipment J may be a device or equipment fixedly installed on the ground.
 地上装置Jが、地上接続機構Kを介して被支持体C(散布装置40)に、散布物や作業資材等を供給可能なように構成されてもよい。 The ground device J may be configured to be able to supply spray materials, work materials, etc. to the supported body C (spreading device 40) via the ground connection mechanism K.
〔他の変形例〕
(1)群状飛行体システムAが、鳥や動物の追い払いや警備、防犯等の用途に使用可能なように構成されてもよい。例えば、被支持体Cが、撮影画像により鳥獣や不審者を認識可能な監視装置、音や光を発して鳥獣や不審者を威嚇する威嚇装置、鳥獣や不審者の存在を報知する報知装置等を含んでもよい。
[Other variations]
(1) The swarm flying object system A may be configured to be usable for purposes such as driving away birds and animals, security, and crime prevention. For example, the supported body C may be a monitoring device that can recognize birds, animals, or suspicious persons from photographed images, an intimidation device that emits sound or light to intimidate birds, animals, or suspicious persons, or a notification device that notifies the presence of birds, animals, or suspicious persons, etc. May include.
(2)群状飛行体システムAが、強風、落雷、降雨など飛行に悪影響を及ぼす天候に対処可能なように構成されてもよい。例えば、群状飛行体システムAが、天候を観測するセンサや、天候や天候の予報を示す情報を通信を介して取得する取得部などを備えてもよい。
群管理部17が、天候又は天候の予報に応じて、飛行計画の変更や、安全区域への避難飛行、不時着等を行なうように構成されてもよい。
(2) The swarm aircraft system A may be configured to be able to cope with weather conditions that adversely affect flight, such as strong winds, lightning strikes, and rainfall. For example, the swarm flying object system A may include a sensor that observes the weather, an acquisition unit that acquires information indicating the weather and a weather forecast via communication, and the like.
The group management unit 17 may be configured to change the flight plan, take an evacuation flight to a safe area, make an emergency landing, etc., depending on the weather or weather forecast.
(3)飛行体B及び連結機構Eが、両者が連結した状態で両者の相対位置が変更可能なように構成されてもよい。例えば、連結機構Eにおいて、連結体36が支持体31に対して移動可能であってもよい。これにより、群状飛行体システムAが飛行しているときに、複数の飛行体Bの相対位置を変更することが可能となる。 (3) The flying object B and the coupling mechanism E may be configured such that the relative positions of the two can be changed while the two are coupled. For example, in the connection mechanism E, the connection body 36 may be movable with respect to the support body 31. This makes it possible to change the relative positions of the plurality of aircraft B while the swarm aircraft system A is flying.
(4)群状飛行体システムAが、飛行体Bの推進装置11の作動音を打ち消すよう構成されてもよい。例えば、複数の推進装置11が、互いに作動音を打ち消すように動作制御されてもよい。例えば、推進装置11の作動音を打ち消す音(ノイズキャンセル音)を発生する消音装置が群状飛行体システムAに設けられてもよい。その消音装置が、推進装置11へ送られる制御量に基づいてノイズキャンセル音を生成するように構成されてもよい。 (4) The swarm flying vehicle system A may be configured to cancel the operation noise of the propulsion device 11 of the flying vehicle B. For example, the operations of the plurality of propulsion devices 11 may be controlled so that their operating sounds cancel each other out. For example, the swarm aircraft system A may be provided with a muffling device that generates a sound (noise canceling sound) that cancels the operating sound of the propulsion device 11. The muffling device may be configured to generate noise canceling sound based on the control amount sent to the propulsion device 11.
(5)群状飛行体システムAを構成する装置が、様々な形態の群状飛行体システムAの間で流用可能なように設計されてもよい。例えば、接続機構Dが、様々な形態の被支持体Cや、様々な形態の連結機構E、様々な形態の飛行体Bに接続可能なように構成されてもよい。連結機構Eが、様々な形態の飛行体Bや様々な形態の接続機構Dに連結可能なように構成されてもよい。 (5) The devices constituting the swarm aircraft system A may be designed so that they can be used among various forms of the swarm aircraft system A. For example, the connection mechanism D may be configured to be connectable to various types of supported bodies C, various types of connection mechanisms E, and various types of aircraft B. The connecting mechanism E may be configured to be connectable to various types of flying objects B and various types of connecting mechanisms D.
(6)群管理部17の一部又は全部が、飛行体Bの外部に設けられてもよい。例えば、群管理部17の一部又は全部が、接続機構Dの制御装置25や、連結機構Eの制御装置25、散布装置40(被支持体C)の制御装置45、地上に設置されたサーバ、クラウド上のサーバに設けられてもよい。 (6) Part or all of the group management section 17 may be provided outside the aircraft B. For example, part or all of the group management unit 17 may be a control device 25 of the connection mechanism D, a control device 25 of the connection mechanism E, a control device 45 of the spraying device 40 (supported body C), or a server installed on the ground. , may be provided on a server on the cloud.
(7)群状飛行体システムAが、連結機構Eを備えない形態も可能である。例えば、群状飛行体システムAに属する複数の飛行体Bが、別個独立に、接続機構Dにより被支持体Cに接続されてもよい。例えば、複数の飛行体Bが、互いに連結されない状態で、群を形成して飛行してもよい。すなわち、複数の飛行体Bが独立して飛行し、且つ、複数の飛行体Bが一群を形成して飛行する形態も可能である。複数の被支持体Cが飛行体Bに支持されてもよい。被支持体Cを支持する飛行体Bが、群状飛行体システムAに複数属してもよい。 (7) A configuration in which the swarm flying object system A does not include the coupling mechanism E is also possible. For example, a plurality of flying objects B belonging to the swarm flying object system A may be separately and independently connected to the supported body C by the connecting mechanism D. For example, a plurality of flying objects B may form a group and fly without being connected to each other. That is, a configuration is also possible in which a plurality of flying objects B fly independently, and a plurality of flying objects B fly as a group. A plurality of supported objects C may be supported by the flying object B. A plurality of flying objects B supporting the supported object C may belong to the group flying object system A.
(8)群状飛行体システムAが、人為操作に基づいて飛行可能なように構成されてもよい。例えば、飛行指令生成部17aが、人為操作に基づいて飛行指令を生成し、各飛行体Bの個別飛行制御部16aに送信してもよい。 (8) The swarm flying object system A may be configured to be able to fly based on human operation. For example, the flight command generation unit 17a may generate a flight command based on a human operation and transmit it to the individual flight control unit 16a of each flying object B.
(9)飛行体Bが、飛行体Bに浮力を付与する浮力体(気球、風船など)を備えてもよい。これにより、群状飛行体システムAを所定の作業位置にホバリング飛行(停滞)させることが容易になる。 (9) The flying object B may include a buoyant body (balloon, balloon, etc.) that provides buoyancy to the flying object B. This makes it easy to hover (stagnate) the swarm flying object system A at a predetermined work position.
(10)飛行指令生成部17aが、将来に飛行体Bが受ける可能性のある外乱の予測情報に基づいて、その外乱を打ち消しうる飛行指令を生成するように構成されてもよい。 (10) The flight command generation unit 17a may be configured to generate a flight command that can cancel out a disturbance based on predictive information of a disturbance that the flying object B may receive in the future.
 例えば、群管理部17が、ある時間の経過後に東向きの風を受ける旨の予測情報を取得したとする。飛行指令生成部17aが、当該予測情報に基づいて、東寄りに進路を変更する旨の飛行指令を生成してもよい。 For example, assume that the group management unit 17 acquires prediction information indicating that the wind will blow eastward after a certain period of time. The flight command generation unit 17a may generate a flight command to change the course to the east based on the prediction information.
 例えば、群管理部17が、ある時刻に強い雨が降る旨の予測情報を取得したとする。飛行指令生成部17aが、当該予測情報に基づいて、当該時刻の前に着陸する旨の飛行指令を生成してもよい。 For example, assume that the group management unit 17 has acquired prediction information indicating that it will rain heavily at a certain time. The flight command generation unit 17a may generate a flight command to land before the time based on the prediction information.
 群管理部17による予測情報は、例えば、飛行予定地域の天気予報に基づいて取得されてもよいし、飛行予定地域の過去の気象情報に基づいて取得されてもよいし、先行して飛行する偵察用の飛行体Bから取得されてもよいし、飛行予定地域の地上施設や作業車から取得されてもよい。 The prediction information by the group management unit 17 may be acquired based on the weather forecast for the area where the flight is scheduled, for example, or may be acquired based on past weather information on the area where the flight is scheduled. The information may be obtained from the reconnaissance aircraft B, or may be obtained from ground facilities or work vehicles in the planned flight area.
(11)飛行指令生成部17aが、飛行体Bの向きを指定する飛行指令を生成してもよい。飛行指令生成部17aが、複数の飛行体Bが同じ方向を向くように、飛行指令を生成してもよい。例えば、複数の飛行体Bがそれぞれカメラを備える場合、カメラの撮影方向が同じになるように、又はカメラが一つの被写体の方を向くように、飛行指令が生成されてもよい。 (11) The flight command generation unit 17a may generate a flight command that specifies the direction of the flying object B. The flight command generation unit 17a may generate a flight command so that the plurality of flying objects B face the same direction. For example, when a plurality of flying objects B are each equipped with a camera, a flight command may be generated so that the cameras take the same direction of photography or so that the cameras face one subject.
(12)飛行指令生成部17aが、複数の飛行体Bが特定のレイアウト(位置関係)となるよう、飛行指令を生成してもよい。例えば、複数の飛行体Bが水平方向や鉛直方向に並ぶように飛行指令が生成されてもよい。制約条件記憶部17fに記憶された制約情報が、飛行体Bのレイアウト(位置関係)を規定する情報を含んでもよい。 (12) The flight command generation unit 17a may generate a flight command so that the plurality of flying objects B have a specific layout (positional relationship). For example, a flight command may be generated so that a plurality of flying objects B are lined up horizontally or vertically. The constraint information stored in the constraint storage unit 17f may include information that defines the layout (positional relationship) of the aircraft B.
 本発明は、複数の飛行体を一群として飛行させる飛行体制御システム又は複数の飛行体を備える飛行体システムに適用可能である。 The present invention is applicable to an aircraft control system that flies a plurality of aircraft as a group or an aircraft system that includes a plurality of aircraft.
14  :衛星測位装置
17a :飛行指令生成部
17b :送信部
17d :測位位置取得部
17e :位置ずれ算出部
17f :制約条件記憶部
17g :諸元情報記憶部
93  :エネルギー源
A   :群状飛行体システム(飛行体制御システム、飛行体システム)
B   :飛行体
C   :被支持体
D   :接続機構
E   :連結機構
J   :地上装置
K   :地上接続機構
 
 
14: Satellite positioning device 17a: Flight command generation section 17b: Transmission section 17d: Positioning position acquisition section 17e: Positional deviation calculation section 17f: Constraint condition storage section 17g: Specification information storage section 93: Energy source A: Group flying object System (Flight Control System, Aircraft System)
B: Flight object C: Supported body D: Connection mechanism E: Connection mechanism J: Ground equipment K: Ground connection mechanism

Claims (14)

  1.  複数の飛行体を一群として飛行させる飛行体制御システムであって、
     複数の前記飛行体を一群として飛行させるための飛行指令を生成する飛行指令生成部と、
     前記飛行指令を複数の前記飛行体へ送信する送信部と、を備える飛行体制御システム。
    An aircraft control system for flying a plurality of aircraft as a group,
    a flight command generation unit that generates a flight command for flying the plurality of flying objects as a group;
    An aircraft control system comprising: a transmitter that transmits the flight command to a plurality of the aircraft.
  2.  前記飛行体が備える衛星測位装置が生成した前記飛行体の測位位置を取得する測位位置取得部を備え、
     前記飛行指令生成部は、前記測位位置に基づいて前記飛行指令を生成する請求項1に記載の飛行体制御システム。
    comprising a positioning position acquisition unit that acquires a positioning position of the flying object generated by a satellite positioning device included in the flying object;
    The flying object control system according to claim 1, wherein the flight command generation unit generates the flight command based on the measured position.
  3.  前記測位位置取得部が取得した前記測位位置に基づいて前記飛行体の位置ずれを算出する位置ずれ算出部を備え、
     前記飛行指令生成部は、前記位置ずれに基づいて前記飛行指令を生成する請求項2に記載の飛行体制御システム。
    comprising a positional deviation calculation unit that calculates a positional deviation of the flying object based on the positioning position acquired by the positioning position acquisition unit,
    The flying object control system according to claim 2, wherein the flight command generation unit generates the flight command based on the positional deviation.
  4.  前記飛行指令生成部は、前記位置ずれにより生じる前記飛行体に支持される被支持体の位置ずれを打ち消すように前記飛行指令を生成する請求項3に記載の飛行体制御システム。 The flying object control system according to claim 3, wherein the flight command generation unit generates the flight command so as to cancel a positional shift of a supported object supported by the flying object caused by the positional shift.
  5.  複数の前記飛行体の相対位置に関する制約条件を記憶する制約条件記憶部を備え、
     前記飛行指令生成部は、前記制約条件に基づいて前記飛行指令を生成する請求項1から4のいずれか1項に記載の飛行体制御システム。
    comprising a constraint storage unit that stores constraint conditions regarding the relative positions of the plurality of flying objects,
    The flying object control system according to any one of claims 1 to 4, wherein the flight command generation unit generates the flight command based on the constraint conditions.
  6.  複数の前記飛行体の性能及び大きさを示す諸元情報を記憶する諸元情報記憶部を備え、
     前記飛行指令生成部は、前記諸元情報に基づいて前記飛行指令を生成する請求項1から5のいずれか1項に記載の飛行体制御システム。
    comprising a specification information storage unit that stores specification information indicating the performance and size of the plurality of flying objects,
    The flying object control system according to any one of claims 1 to 5, wherein the flight command generation unit generates the flight command based on the specification information.
  7.  前記飛行指令生成部は、複数の前記飛行体を複数の群に分けて飛行させるための分割飛行指令を生成し、
     前記送信部は、前記分割飛行指令を複数の前記飛行体へ送信する請求項1から6のいずれか1項に記載の飛行体制御システム。
    The flight command generation unit generates a divided flight command for flying the plurality of flying objects in a plurality of groups,
    The flying object control system according to any one of claims 1 to 6, wherein the transmitter transmits the divided flight command to a plurality of the flying objects.
  8.  前記飛行指令生成部及び前記送信部が前記飛行体に設けられている請求項1から7のいずれか1項に記載の飛行体制御システム。 The flying object control system according to any one of claims 1 to 7, wherein the flight command generation section and the transmitting section are provided in the flying object.
  9.  複数の飛行体と、
     複数の前記飛行体を一群として飛行させるための飛行指令を生成する飛行指令生成部と、
     前記飛行指令を複数の前記飛行体へ送信する送信部と、を備える飛行体システム。
    multiple aircraft,
    a flight command generation unit that generates a flight command for flying the plurality of flying objects as a group;
    A flying object system comprising: a transmitting section that transmits the flight command to a plurality of the flying objects.
  10.  複数の前記飛行体同士を連結する連結機構を備える請求項9に記載の飛行体システム。 The flying object system according to claim 9, further comprising a connecting mechanism that connects the plurality of flying objects.
  11.  地上装置と、
     前記地上装置と前記飛行体とを接続する地上接続機構と、を備える請求項9又は10に記載の飛行体システム。
    ground equipment;
    The flying object system according to claim 9 or 10, comprising: a ground connection mechanism that connects the ground device and the flying object.
  12.  前記地上装置は、前記地上接続機構を介して前記飛行体にエネルギーを供給可能なエネルギー源を備える請求項11に記載の飛行体システム。 The aircraft system according to claim 11, wherein the ground device includes an energy source capable of supplying energy to the aircraft via the ground connection mechanism.
  13.  前記飛行指令生成部は、前記地上装置を移動させるための移動指令を生成し、
     前記送信部は、前記移動指令を前記地上装置へ送信する請求項11又は12に記載の飛行体システム。
    The flight command generation unit generates a movement command for moving the ground device,
    The flying object system according to claim 11 or 12, wherein the transmitter transmits the movement command to the ground device.
  14.  前記飛行指令生成部及び前記送信部が、前記地上装置に設けられている請求項11から13のいずれか1項に記載の飛行体システム。
     
     
    The aircraft system according to any one of claims 11 to 13, wherein the flight command generation unit and the transmission unit are provided in the ground device.

PCT/JP2022/018270 2022-04-20 2022-04-20 Flying object control system and flying object system WO2023203673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018270 WO2023203673A1 (en) 2022-04-20 2022-04-20 Flying object control system and flying object system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018270 WO2023203673A1 (en) 2022-04-20 2022-04-20 Flying object control system and flying object system

Publications (1)

Publication Number Publication Date
WO2023203673A1 true WO2023203673A1 (en) 2023-10-26

Family

ID=88419461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018270 WO2023203673A1 (en) 2022-04-20 2022-04-20 Flying object control system and flying object system

Country Status (1)

Country Link
WO (1) WO2023203673A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674710A (en) * 1985-10-17 1987-06-23 The United States Of America As Represented By The Secretary Of The Air Force Automatic formation turns
WO2018146803A1 (en) * 2017-02-10 2018-08-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Position processing device, flight vehicle, position processing system, flight system, position processing method, flight control method, program, and recording medium
JP2019040309A (en) * 2017-08-23 2019-03-14 株式会社菊池製作所 Flying body and formation flight control method by plurality of flying bodies
JP2019064544A (en) * 2017-10-05 2019-04-25 本田技研工業株式会社 Aerial spraying device, unmanned flying body system and unmanned flying body
JP2020023283A (en) * 2018-08-08 2020-02-13 日本電信電話株式会社 Flight control device, method, and program
KR102280131B1 (en) * 2020-09-21 2021-07-22 (주)팔로우테크닉스 Leader- follow flight control system and method in cluster flight of flight vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674710A (en) * 1985-10-17 1987-06-23 The United States Of America As Represented By The Secretary Of The Air Force Automatic formation turns
WO2018146803A1 (en) * 2017-02-10 2018-08-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Position processing device, flight vehicle, position processing system, flight system, position processing method, flight control method, program, and recording medium
JP2019040309A (en) * 2017-08-23 2019-03-14 株式会社菊池製作所 Flying body and formation flight control method by plurality of flying bodies
JP2019064544A (en) * 2017-10-05 2019-04-25 本田技研工業株式会社 Aerial spraying device, unmanned flying body system and unmanned flying body
JP2020023283A (en) * 2018-08-08 2020-02-13 日本電信電話株式会社 Flight control device, method, and program
KR102280131B1 (en) * 2020-09-21 2021-07-22 (주)팔로우테크닉스 Leader- follow flight control system and method in cluster flight of flight vehicle

Similar Documents

Publication Publication Date Title
US11117663B2 (en) Apparatus and method for unmanned flight
US10296005B2 (en) Apparatus and method for monitoring a field
US20180074518A1 (en) Apparatus and method for unmanned flight task optimization
US20190031346A1 (en) System and method for controlling an unmanned vehicle and releasing a payload from the same
US11420732B2 (en) Aircraft and aircraft control system
US11216015B2 (en) Geographic survey system for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
US20220211026A1 (en) System and method for field treatment and monitoring
US9063544B2 (en) Aerial forest inventory system
JP6583874B1 (en) Delivery system, air vehicle, and controller
US11868144B2 (en) Drone system, drone, plan management apparatus, plan management method for drone system, and plan management program for drone system
US10112700B1 (en) Multi-mode mobility micro air vehicle
WO2017161431A1 (en) Unmanned terrestrial vehicle for agriculture and spraying process using unmanned terrestrial vehicle for agriculture
CN105278546A (en) Agricultural plant protection unmanned aerial vehicle planting control system
CN205121347U (en) Agricultural plant protection unmanned aerial vehicle scatters control system
JP2018195332A (en) Mobile object travel management system
KR20160082773A (en) Drone for aviation disaster prevention
JP6375714B2 (en) Mobile operation management system
WO2023203673A1 (en) Flying object control system and flying object system
WO2023203675A1 (en) Grouped flying object system and flying objects
WO2023203674A1 (en) Flight vehicle unit
RU2788553C1 (en) Unmanned ground surface monitoring system
WO2023203672A1 (en) Flying body system
Hasan et al. Design and Development of an Autonomous Multi-Functional Hexacopter Drone
Miozza et al. An Amphibious Drone for Aerial, Surface, and Underwater Assets and Environmental Remote Monitoring To Support the Sustainability of Unmanned Offshore Converted Platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938476

Country of ref document: EP

Kind code of ref document: A1