WO2023203672A1 - Flying body system - Google Patents

Flying body system Download PDF

Info

Publication number
WO2023203672A1
WO2023203672A1 PCT/JP2022/018269 JP2022018269W WO2023203672A1 WO 2023203672 A1 WO2023203672 A1 WO 2023203672A1 JP 2022018269 W JP2022018269 W JP 2022018269W WO 2023203672 A1 WO2023203672 A1 WO 2023203672A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
aircraft
flying
flying object
energy source
Prior art date
Application number
PCT/JP2022/018269
Other languages
French (fr)
Japanese (ja)
Inventor
坂野倫祥
丸山一人
後野剛志
別府俊之
本多充
新穂友志
冨田裕貴
山田浩平
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to PCT/JP2022/018269 priority Critical patent/WO2023203672A1/en
Publication of WO2023203672A1 publication Critical patent/WO2023203672A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/66Mooring attachments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D3/00Aircraft adaptations to facilitate towing or being towed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight

Definitions

  • the present invention relates to an aircraft system.
  • Patent Document 1 discloses an aircraft support device equipped with a spraying device for spraying pesticides and the like as an example of agricultural work.
  • the aircraft support device described in Patent Document 1 includes a position information acquisition unit that acquires the position of the aircraft, a dispersion information acquisition unit that acquires information regarding dispersion, and a display unit that displays the area and surroundings of the field. We are prepared. This display section displays the movement trajectory of the aircraft and also displays the spraying range over which the spraying device has sprayed. This facilitates work management.
  • Patent Document 1 Although the support device for the aircraft described in Patent Document 1 facilitates work management, there is a concern that the capacity of the battery mounted on the aircraft may be insufficient in the case of a vast field. It would be possible to use a large flying vehicle equipped with a large-capacity battery, but large flying vehicles would create areas where work cannot be done, reducing work efficiency.
  • One aspect of the flying object system according to the present invention is that it includes a flying object that can perform a predetermined task and an energy supply body that can supply energy to the flying object.
  • the flying object system includes a flying object that performs a predetermined task, such as spraying pesticides, and an energy supply body that supplies energy to the flying object.
  • a flying object that performs a predetermined task, such as spraying pesticides
  • an energy supply body that supplies energy to the flying object.
  • the flying object is used exclusively for work, and the energy supply body functions as an energy supplier to the flying object.
  • the energy supply body may be an energy source flying vehicle equipped with an energy source capable of supplying energy to the flying vehicle.
  • the energy source flying object may be any one of the plurality of flying objects.
  • the energy source flying vehicle may be a support flying vehicle that can fly by assisting the flying vehicle.
  • the flying vehicle can be made smaller, and the energy source flying vehicle (support flying vehicle) can be made larger.
  • the flying vehicle can be converted into This allows the aircraft to work in narrow spaces where it would be difficult to work with a normal aircraft.
  • the number of flying objects can be changed depending on the work location.
  • the energy control unit may further include an energy control unit that controls the operation of the energy source aircraft, and the energy control unit may replace the energy source aircraft when the storage amount of the energy source becomes less than or equal to a predetermined value.
  • the energy source aircraft may be capable of performing the predetermined work or a work different from the predetermined work.
  • the energy supply body may be a movable energy supply vehicle.
  • the energy supply body may be a movable working device.
  • the energy supply body is constituted by a working device such as a material carrier, for example.
  • a connecting aircraft may be provided that connects the energy supply body and the aircraft by wire.
  • the connecting aircraft may be supplied with energy from the energy supply body.
  • connection control unit that controls the flight position of the connection aircraft based on the relative position of the flight main body and the energy supply body and the position of the artificial object.
  • connection control unit By providing the connection control unit in this way, it is possible to set a flight route that detours around interfering objects.
  • the connecting mechanism may be provided to connect a plurality of the flying objects, and the energy supply body may be the connecting mechanism equipped with an energy source that supplies energy to the flying objects.
  • the flying object has a flight main body that obtains energy and flies, a working part that performs the predetermined work, and a connection mechanism that connects the flying main body and the working part, and the
  • the energy supply body may be the working part or the connection mechanism equipped with an energy source that supplies energy to the flight main body.
  • connection mechanism may include a buoyant part that can lift the working part.
  • the buoyancy part in the connection mechanism the buoyancy of the flight main body can be assisted, so it is possible to lift the working part of a heavy object while saving the amount of energy supplied to the flight main body.
  • connection mechanism may include a working energy source that can supply energy to the working part.
  • the energy supply body is the working section of at least one of the flying objects, and may supply energy to the working sections of other flying objects.
  • the energy supply body may supply energy to the flying object through non-contact power supply.
  • One aspect of the flying object system according to the present invention includes an energy supplying body that supplies energy, and a buoyant flying vehicle that flies using buoyancy due to thermal energy generated by the energy supplying body.
  • the energy supply body may be an energy source mounted on the buoyant flying vehicle.
  • the energy supply body may supply energy to the working device.
  • the invention also includes a working device that can perform a predetermined work, and a connection mechanism that connects the working device and the buoyant flying object, and the energy supply body is an energy source mounted on the connection mechanism. Also good.
  • the energy may be fuel supplied to the internal combustion engine or electric power generated by the internal combustion engine.
  • FIG. 1 is a block diagram of an aircraft system according to a first embodiment.
  • FIG. 1 is a perspective view showing an outline of an aircraft system according to a first embodiment.
  • FIG. 1 is a conceptual diagram of an aircraft system according to a first embodiment. It is a conceptual diagram which shows the modification of a flying object.
  • FIG. 2 is a block diagram of an aircraft system according to a second embodiment.
  • FIG. 7 is a perspective view of the flying object according to the second embodiment during work.
  • FIG. 7 is a perspective view of the flying object according to the second embodiment while it is on standby.
  • FIG. 2 is a conceptual diagram of an aircraft system according to a second embodiment.
  • It is a conceptual diagram which shows the modification 1 of the flying object system based on a 1st embodiment and a 2nd embodiment.
  • It is a conceptual diagram which shows the modification 2 of the flying object system based on 2nd embodiment.
  • FIG. 3 is a block diagram of an aircraft system according to a third embodiment. It is a
  • the flying object system 100 includes a flying object 1 that can perform predetermined work such as agricultural work, and an energy supply body 2 that can supply energy to the flying object 1.
  • the flying object 1 in this embodiment is composed of a small drone.
  • a drone is an unmanned aerial vehicle with rotary wings, and may be an electric-powered type that rotates the rotor blades using electricity supplied from a battery, etc., or an engine-driven type or internal combustion engine that rotates the rotor blades by operating an internal combustion engine using fuel. Examples include a power-driven type in which the rotor blades are rotated by electric power supplied from a generator operated by a generator, and a hybrid type in which these types are combined.
  • the energy supply body 2 includes an energy source including a power source supplied from a battery or a generator operated by an internal combustion engine, a fuel source for operating the internal combustion engine, and the like.
  • the flying object 1 performs predetermined operations such as spraying pesticides, fertilizers, water, etc., photographing, monitoring, harvesting, collecting, pollination, supplying materials and energy, transporting, mowing, and tilling. , planting work, sowing work, snow removal work, intimidation work, measurement work, etc., and in this embodiment, the predetermined work will be described as an example of spraying work, which is one of the agricultural works.
  • the energy supply body 2 can perform the same predetermined work as the flight vehicle 1 or a different work, and in this embodiment, the energy supply body 2 is capable of performing the same predetermined work as the flight vehicle 1 or a different work. The work will be explained as an example.
  • the flight object system 100 includes a flight object 1 (corresponding to a flight main body) that is powered by electric power using a battery, and an energy-powered aircraft equipped with a cassette-type battery that supplies power to the flight object 1. It is equipped with a source aircraft 2A (corresponding to the energy supply body 2, equivalent to the flight main body).
  • the energy source aircraft 2A is constructed of the same model as the aircraft 1, and is capable of accommodating energy to a plurality of aircraft 1.
  • the flying object 1 and the energy source flying object 2A have a plurality of (three in this embodiment) rotary blades B, and by rotating these rotary blades B by the driving force of a motor (not shown) or the like, Generates lift and propulsion (see also Figures 2 and 3).
  • the flying object 1 and the energy source flying object 2A are connected by a connecting mechanism 3 (corresponding to the energy supplying object 2).
  • the coupling mechanism 3 connects the plurality of flying objects 1 to each other.
  • the aircraft system 100 also includes a suspension work device 5 (corresponding to a work section) that performs a predetermined work, a flight object 1, an energy source flight object 2A (coupling mechanism 3), and a suspension work device 5 (energy supply A connection mechanism 4 (corresponding to the energy supply body 2) is provided.
  • a suspension work device 5 corresponding to a work section
  • the flying object 1 includes a first power receiving section 11, a first communication section 12, a first working section 13, a first satellite positioning device 14, a first control section 15, and a first storage section 16.
  • the first control section 15 includes a first energy control section 15a, a first state acquisition section 15b, a first group flight control section 15c, a first individual flight control section 15d, and a first work control section 15e. are doing.
  • the energy source aircraft 2A includes an energy source 21, a second communication section 22, a second working section 23, a second satellite positioning device 24, a second control section 25, and a second storage section 26.
  • the second control unit 25 includes a second energy control unit 25a (corresponding to an energy control unit), a second state acquisition unit 25b, a second group flight control unit 25c, a second individual flight control unit 25d, and a second state acquisition unit 25b. It has a work control section 25e.
  • the connecting mechanism 3 is formed of a frame body 30 that connects the plurality of flying objects 1 (see also FIGS. 2 and 3).
  • This coupling mechanism 3 includes an energy source 31 (corresponding to the energy supply body 2), a communication device 32, and a control device 33. Note that at least one of the energy source 31, the communication device 32, and the control device 33 may be omitted.
  • connection mechanism 4 the connection mechanism 3 and a plurality of (four in this embodiment) wires 44 are connected to the lower part of the frame body 40 (see also FIGS. 2 and 3).
  • the connection mechanism 4 includes an energy source 41 (corresponding to a working energy source), a communication device 42, and a control device 43. Note that at least one of the energy source 41, the communication device 42, and the control device 43 may be omitted.
  • the hanging work device 5 has a spray device 50 that includes a camera, a tank for storing the spray material, a pump and a nozzle for spraying the spray material, etc. (see also FIGS. 2 and 3).
  • This hanging work device 5 includes an energy source 51, a communication device 52, and a control device 53. Note that at least one of the energy source 51, the communication device 52, and the control device 53 may be omitted. Further, the hanging work device 5 may include a spray material storage tank or the like made of a heavy object for supplying the spray material to the first working section 13 and the second working section 23 .
  • Each functional unit of the first control unit 15, second control unit 25, and control devices 33, 43, and 53 described above is configured by hardware or software with a CPU at its core, or by cooperation between hardware and software. There is.
  • the control functions below have the same configuration.
  • the first power receiving unit 11 of the aircraft 1 is composed of a battery that stores a predetermined capacity, and the amount of stored power is acquired by the first state acquisition unit 15b, and the first power receiving unit 11 of the aircraft 1 is The amount of electricity is controlled.
  • the amount of electricity stored (remaining capacity) in the first power receiving unit 11 is stored in the first storage unit 16 and configured to be transmittable to the second communication unit 22 of the energy source aircraft 2A via the first communication unit 12. .
  • the first power receiving unit 11 in this embodiment exchanges power with the first power receiving unit 11 of another aircraft 1 and the energy source 21 of the energy source aircraft 2A via wires (for example, a cable built into the coupling mechanism 3).
  • non-contact power supply such as an electromagnetic induction method or a magnetic resonance method may also be used.
  • the first communication unit 12 of the flying object 1 is configured with a communication interface capable of wired or wireless communication with the first communicating unit 12 of another flying object 1 and the second communication unit 22 of the energy source flying object 2A.
  • the first working section 13 of the aircraft 1 is composed of a camera and the like. The operation of this first working section 13 is controlled by a first working control section 15e. Note that the first working section 13 may be equipped with an energy source, a communication device, and a control device.
  • the first satellite positioning device 14 of the flight object 1 receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, and determines its own position information (positioning information including latitude and longitude) based on the received signal. It generates positioning data shown and sends it to the first state acquisition unit 15b. That is, the first satellite positioning device 14 can detect its own position information using GNSS, which includes GPS, QZSS, Gallileo, and the like.
  • the position information of the flying object 1 detected by the first satellite positioning device 14 is stored in the first storage unit 16 in association with the time of detection, and is also transmitted to the coupling mechanism 3 via the first communication unit 12. It is configured such that it can be transmitted to the communication device 32 of the energy source aircraft 2A and the second communication unit 22 of the energy source aircraft 2A.
  • GNSS Global Navigation Satellite System
  • the first energy control unit 15a of the aircraft 1 controls the amount of energy of its own first power receiving unit 11. For example, the first energy control unit 15a determines that the amount of electricity stored in the first power receiving unit 11 acquired by the first state acquisition unit 15b is equal to or less than a set value (a value obtained by multiplying the power value at which the first power receiving unit 11 can fly by a safety factor). When this occurs, the energy source aircraft 2A is requested to supply energy, or the other aircraft 1 is requested to accommodate energy. In addition, the first energy control unit 15a may be configured to select the own aircraft from one group of aircraft when the amount of electricity stored in the first power receiving unit 11 acquired by the first state acquisition unit 15b becomes equal to or less than a set value. 1 and issues an instruction to the first solo flight control unit 15d to depart from the aircraft and fly to a predetermined charging location or landing location.
  • a set value a value obtained by multiplying the power value at which the first power receiving unit 11 can fly by a safety factor
  • the first status acquisition unit 15b of the aircraft 1 acquires the energy status (charge amount, remaining capacity, etc.) of the first power receiving unit 11, its own flight status, and surrounding environment information.
  • the first status acquisition unit 15b also includes altitude information of the flying object 1 if the flying object 1 is equipped with a barometric pressure sensor, and flight attitude and speed sensor of the flying object 1 if the flying object 1 is equipped with a gyro sensor.
  • Various conditions that affect the flight of the aircraft 1 are acquired, such as the flight speed of the aircraft 1 if it is equipped with a wind speed sensor or a wind direction sensor, and the surrounding wind conditions if it is equipped with a wind speed sensor or a wind direction sensor.
  • the first collective flight control section 15c of the flying object 1 causes the plurality of flying objects 1 and the energy source flying object 2A to fly cooperatively based on the flight plan stored in the first storage section 16.
  • the cooperative flight instruction generated by the first collective flight control unit 15c is a flight instruction for causing the flying object 1 and the energy source flying object 2A belonging to the flying object system 100 to fly cooperatively.
  • This flight instruction set is generated based on the positional relationship between the plurality of flying objects 1 and the energy source flying object 2A belonging to the flying object system 100.
  • the first gathering flight control unit 15c may generate a cooperative flight instruction based on at least one of the gathering reference position and the gathering reference direction.
  • the assembly reference position and assembly reference direction are positions and directions that serve as a reference when the flying object 1 and the energy source flying object 2A belonging to the flying object system 100 perform cooperative flight.
  • the flight plan stored in the first storage unit 16 may include a work plan for the first work unit 13. This work plan determines the location where the first work unit 13 performs the work (for example, the position of the field to be worked on, the position where the work is performed in the field, etc.), and/or the work content (for example, the operating strength of the work equipment, the operation time, operation interval, etc.).
  • the first solo flight control unit 15d of the flying object 1 controls the solo flight of the flying object 1 when the flying object 1 leaves the group of the plurality of flying objects 1 and the energy source flying object 2A.
  • the first solo flight control unit 15d uses its own current position information detected by the first satellite positioning device 14 and standby position information such as a predetermined charging place or landing place stored in the first storage unit 16. Based on this, the robot calculates a solo flight path and flies itself solo.
  • the first work control unit 15e of the aircraft 1 controls the operation of the suspension work device 5 and the first work unit 13 that execute predetermined work.
  • the first work control unit 15e in this embodiment controls the operation of a pump and nozzle for dispersing substances and the operation of a camera. In performing this control, the first work control unit 15e performs the hanging work so as to obtain an optimal spraying position, taking into consideration, for example, surrounding environment information, field shape information, relative positional relationship with other flying objects 1, etc. Activate the device 5.
  • the first storage unit 16 of the aircraft 1 is composed of a non-transitory storage medium mounted on the aircraft 1, and stores the program of the first control unit 15, its own status information, flight plan and work. Remembers plans etc.
  • the energy source 21 of the aircraft 2A is composed of a replaceable cassette battery or the like.
  • This energy source 21 is a flight energy source supplied for the flight of a plurality of flying objects 1, a working energy source for operating the first working section 13 of the flying object 1 and the suspended working device 5, and a working energy source for making itself fly. It can be utilized as a driving energy source and a working energy source for operating the second working section 23 and the hanging working device 5. If the energy source 21 is a replaceable cassette battery, it can be replaced at a predetermined replacement location when the energy source aircraft 2A runs out of power.
  • the second communication unit 22 of the energy source aircraft 2A is capable of wired or wireless communication with the communication device 32 of the first communication unit 12 of the aircraft 1, and can communicate with a computer, tablet, mobile terminal, etc. installed on the ground. It is composed of a management device (not shown) consisting of a management device (not shown) and a communication interface capable of wireless communication.
  • the second working section 23 of the energy source aircraft 2A is composed of a camera, a tank for storing a spray material, a pump and a nozzle for spraying the spray material, and the like. The operation of this second working section 23 is controlled by a second working control section 25e.
  • the second satellite positioning device 24 of the energy source flight vehicle 2A has the same configuration as the first satellite positioning device 14 of the flight vehicle 1, so a description thereof will be omitted.
  • the second storage unit 26 of the energy source aircraft 2A is composed of a non-temporary storage medium mounted on itself, and stores the program of the second control unit 25, its own state information, and energy plan. , flight plans, work plans, etc.
  • the energy plan is information such as the amount of electricity stored in the first power receiving unit 11, a setting value for starting charging, the amount of energy stored in the energy source 21, and a predetermined value that is a threshold value at which other aircraft 1 can be charged.
  • the second energy control unit 25a of the energy source aircraft 2A receives the energy status (charge amount, remaining capacity, etc.) of the first power receiving unit 11 of each aircraft 1 via the second communication unit 22, Controls own energy source 21.
  • the second energy control unit 25a supplies energy to the aircraft 1, for example, where the amount of electricity stored in the first power receiving unit 11 acquired by the second state acquisition unit 25b has become equal to or less than a set value.
  • This energy supply may be a wired power supply via a cable or a non-contact power supply.
  • the second energy control unit 25a controls the energy source aircraft 2A to It may be replaced with another flying object 1 having the largest amount or a new energy source flying object 2A. That is, the energy source flying object 2A is any one of the plurality of flying objects 1. Further, the second energy control unit 25a disconnects all the flying objects 1, for example, when the storage amount of the energy source 21 becomes less than a predetermined value (a value obtained by multiplying the power value at which the self can fly by a safety factor). You can also fly each one independently to the charging point.
  • a predetermined value a value obtained by multiplying the power value at which the self can fly by a safety factor
  • the second status acquisition unit 25b of the energy source aircraft 2A acquires the energy status (charge amount, remaining capacity, etc.) of the first power receiving unit 11 in each aircraft 1 via the second communication unit 22, and also Acquires the energy status (charge amount, remaining capacity, etc.) of the aircraft, its own flight status, and surrounding environment information.
  • the second status acquisition unit 25b also provides altitude information of the energy source aircraft 2A if the energy source aircraft 2A is equipped with a barometric pressure sensor, and information about the flight of the energy source aircraft 2A if the energy source aircraft 2A is equipped with a gyro sensor.
  • the second collective flight control section 25c, the second individual flight control section 25d, and the second work control section 25e of the energy source aircraft 2A are the first collective flight control section 15c and the first Since the configuration is similar to that of the solo flight control section 15d and the first work control section 15e, a description thereof will be omitted.
  • a master-slave relationship may be established between the first group flight control section 15c and the second group flight control section 25c, or a plurality of flight objects
  • a master-slave relationship may be established between the first set flight control units 15c.
  • the coupling mechanism 3 includes a frame body 30, an energy source 31, a communication device 32, and a control device 33.
  • the aircraft system 100 also includes a coupling guide member F that guides coupling of the coupling mechanism 3, the aircraft 1, and the energy source aircraft 2A.
  • the frame body 40 of the connection mechanism 4 is connected to the upper part of the frame body 30, and the flying object 1 and the energy source flying object 2A are connected to the lower part of the frame body 30.
  • four flying objects 1 and one energy source flying object 2A are connected near five vertices of a frame body 30 that is pentagonal in plan view.
  • the connection mechanism 4 includes a frame body 40, an energy source 41, a communication device 42, a control device 43, and a wire 44.
  • a wire 44 and a connecting mechanism 3 are connected to the lower part of the frame body 40.
  • a hanging work device 5 is connected to the lower end of the wire 44. In other words, the hanging work device 5 is suspended by the wire 44 of the connection mechanism 4.
  • the connection mechanism 4 includes a mechanism (for example, a winch) that changes the length of the wire 44, a mechanism that disconnects the wire 44 from the hanging device 5, and a mechanism that disconnects the frame body 40 and the wire 44. may be provided.
  • the connecting mechanism 3 and the connecting mechanism 4 may be configured as an integrated structure.
  • the coupling guide member F is provided across the coupling mechanism 3, the flying object 1, and the energy source flying object 2A.
  • the coupling guide member F may be a member that guides the coupling mechanism 3, the aircraft 1, and the energy source aircraft 2A so that they are coupled in a predetermined positional relationship and orientation.
  • a groove may be formed on one coupling guide member F, and a rib that can engage with the groove may be formed on the other coupling guide member F.
  • the coupling guide member F may include connectors for communication lines, power lines, fuel pipes, and the like.
  • One coupling guide member F may be provided with a hollow cone that widens toward the tip, and the other coupling guide member F may be provided with a rod-shaped portion that can enter into the interior of the hollow cone. In this case, when the rod-shaped portion enters the inside of the hollow cone, the rod-shaped portion is guided to the center of the hollow cone by the inner wall of the hollow cone, making it easier to connect the coupling guide members F to each other.
  • connection mechanism 4 is configured with a hot air balloon or a balloon filled with a gas such as helium that has a specific gravity smaller than air, and has a buoyant part 45 that can lift the hanging work device 5. You may have one.
  • the buoyancy portion 45 may generate buoyancy by expanding due to thermal energy generated by the energy source 41.
  • the thermal energy generated by the energy source 41 refers to thermal energy generated by exhaust heat when the energy source 41 is a battery or a generator, or from exhaust gas when the energy source 41 is an internal combustion engine.
  • the buoyant force that the buoyant part 45 receives in the air is greater than the gravitational force that the buoyant part 45 receives on the earth. That is, the buoyancy part 45 alone has a buoyancy force greater than gravity, and generates an upward force in the air. As a result, an upward force can be applied to the entire aircraft 1 or the energy source aircraft 2A, and the load on the entire aircraft 1 or the energy source aircraft 2A, which needs to be supported by lift, can be alleviated.
  • the flying object 1 or the energy source flying object 2A when the flying object 1 or the energy source flying object 2A is operated to generate a pressing force that can cause the flying object 1 or the energy source flying object 2A to descend downward, the flying object 1 or the energy source flying object 2A In this case, the downward pressing force and the upward lifting force by the buoyant portion 45 can be made to compete with each other. This makes it easier to accurately control the rising or descending speed at a low speed when the flying object 1 or the energy source flying object 2A takes off or lands.
  • the flying object system 100 includes a connecting flying object 6 that connects the energy supplying object 2 and the flying object 1 with a cable Ca (an example of a wired wire) made of a wire or the like. It's okay.
  • the connection aircraft 6 includes a third power receiving section 61, a third communication section 62, a third satellite positioning device 63, and a connection control section 64.
  • the third power receiving unit 61 of the connecting aircraft 6 is composed of a battery that stores a predetermined capacity, and can be supplied with power from the energy supply unit 2 via the cable Ca. A non-contact power supply such as a magnetic field resonance method may also be used.
  • the third communication unit 62 of the connecting aircraft 6 is configured with a communication interface capable of wired or wireless communication with the first communication unit 12 of the aircraft 1 and the energy supply body 2.
  • the third satellite positioning device 63 of the connecting flight object 6 has the same configuration as the first satellite positioning device 14 of the flight object 1, so a description thereof will be omitted.
  • connection control unit 64 of the connection flying object 6 controls its own flight position based on the relative position of the flying object 1 and the energy supplying object 2 and the position of the artificial object.
  • the connection control unit 64 guides the cable Ca to avoid fixed objects such as telephone poles and trees and moving objects such as work vehicles, and assists the flying object 1 in the working position. Thereby, the flying object 1 can set a flight route that bypasses the interfering object, and work efficiency can be improved.
  • the third communication units 62 of the connecting aircraft 6 are configured to be able to communicate with each other by wired or wireless communication.
  • the energy source 21 of the energy source aircraft 2A is configured to be capable of supplying energy to the coupling mechanism 3, the connection mechanism 4, and the suspension work device 5 in addition to supplying energy to the aircraft 1 and the connecting aircraft 6.
  • the energy source 31 of the coupling mechanism 3 has its energy amount managed by the control device 33, and is configured to be able to supply energy to the flying object 1, the connecting flying object 6, the connecting mechanism 4, and the hanging work device 5.
  • the energy source 41 of the connection mechanism 4 has its energy amount managed by the control device 43, and is configured to be able to supply energy to the flying object 1, the connecting flying object 6, the connecting mechanism 3, and the hanging work device 5.
  • the energy source 51 of the hanging work device 5 has its energy amount managed by the control device 53, and the energy source 51 of the hanging work device 5 is managed by the control device 53. It is configured so that it can supply energy to
  • the flying object system 100 includes a flying object 1 (corresponding to a flight main body) configured with an electric power drive type using a battery, and a flying object 1 capable of flying with assistance of the flying object 1.
  • the aircraft is equipped with a supporting flight body 2C (corresponding to the energy supply body 2, equivalent to the flight main body).
  • the flying object 1 in this embodiment is a small drone, and the support flying object 2C is a large drone, a balloon (buoyant flying object), or the like.
  • the flying object 1 includes a first power receiving section 11, a first communication section 12, a first working section 13, a first satellite positioning device 14, a first control section 15, and a first storage section 16. There is.
  • the first control section 15 includes a first energy control section 15a, a first state acquisition section 15b, a first solo flight control section 15d, and a first work control section 15e. These configurations are the same as those of the flying object 1 according to the first embodiment described above, so a description thereof will be omitted.
  • the support flying object 2C includes a connecting mechanism 27 that connects itself and the flying object 1, and a working device 29.
  • the coupling mechanism 27 includes a second control section 28, an energy source 27a composed of a large-capacity battery, a communication device 27b, a coupling guide member 27c, a second satellite positioning device 27d, and a second storage section 27e. have.
  • the second control unit 28 includes a second energy control unit 28a (corresponding to an energy control unit), a second state acquisition unit 28b, a flight combination control unit 28c, a cooperative flight control unit 28d, and a second independent flight control unit. 28e, and a second work control section 28f.
  • the flying object 1 includes a first main body portion 1A, a first leg portion 1B that can be engaged with the coupling guide member 27c and protrudes downward from the first main body portion 1A, and a first leg portion 1B that can be opened and closed. It has a plurality of (three in FIG. 8) first arm portions 1C that protrude laterally from the first main body portion 1A.
  • a first rotor blade 1Ca is connected to each of these first arm portions 1C, and lift and propulsive force are generated by rotating these first rotor blades 1Ca by the driving force of a motor (not shown) or the like.
  • a first working section 13 is connected across the first main body section 1A and the first arm section 1C.
  • a first power receiving section 11, a first communication section 12, a first satellite positioning device 14, a first control section 15, and a first storage section 16 are housed in the first main body section 1A.
  • connection mechanism 27 of the support flight object 2C is a mechanism that connects itself and the plurality of flight objects 1, and includes a second main body portion 27A that supports the plurality of flight objects 1; It has a plurality of (two in FIG. 6) second leg parts 27B that are formed in a U-shape and protrude from the second main body part 27A as supporting legs that land on the ground. Further, a working device 29 is connected to the coupling mechanism 27 on the inside of the second leg portion 27B and on the lower side of the second main body portion 27A. A plurality of (six in FIG. 6) second rotary blades 27Aa are connected to the second main body portion 27A, and by rotating these second rotary blades 27Aa by the driving force of a motor (not shown) or the like, Generates lift and propulsion.
  • the second main body portion 27A accommodates a second control portion 28, an energy source 27a, a communication device 27b, a second satellite positioning device 27d, and a second storage portion 27e. Further, the second main body portion 27A is provided with a coupling guide member 27c that guides the coupling between the plurality of flying objects 1 and the support flying object 2C.
  • the coupling guide member 27c in this embodiment includes a mechanism for gripping the first leg portion 1B of the flying object 1, and has a hollow conical shape with a tapered groove and a larger accommodation groove than the first leg portion 1B. It is formed.
  • the coupling guide member 27c may include a connector for a communication line, a power line, a fuel pipe, or the like, or may be a groove or the like that couples to a rib formed on the aircraft 1.
  • the energy source 27a of the support aircraft 2C is composed of a replaceable cassette battery or the like.
  • This energy source 27a is a flight energy source supplied for the flight of the flying object 1, a working energy source for operating the first working section 13 of the flying object 1, a driving energy source for making itself fly, and a working device 29. It can be used as a work energy source for operation. If the energy source 27a is a replaceable cassette battery, it can be replaced at a predetermined replacement location when the amount of power is insufficient.
  • the communication device 27b of the support flight object 2C is capable of wired or wireless communication with the first communication unit 12 of the flight object 1, and is a management device (comprising a computer, tablet, mobile terminal, etc.) installed on the ground. (not shown) and a communication interface capable of wireless communication.
  • the working device 29 of the support aircraft 2C is composed of agricultural working devices such as a camera capable of photographing the state of the field and a spray material storage tank made up of heavy objects. This working device 29 may be directly fixed to the second main body portion 27A, or may be suspended by a wire or the like like the hanging working device 5 shown in FIG.
  • the operation of the work device 29 in this embodiment is controlled by the second work control section 28f, but the work device 29 may have a built-in communication device, a control device, an energy source, and the like.
  • the second satellite positioning device 27d of the support flight object 2C receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, and obtains its own position information (positioning information including latitude and longitude) based on the received signal. positioning data indicating this is generated and transmitted to the second state acquisition unit 28b.
  • the second satellite positioning device 27d can detect its own position information (positioning information including latitude and longitude) using GNSS including GPS, QZSS, Gallileo, and the like.
  • the position information of the support aircraft 2C detected by the second satellite positioning device 27d is stored in the second storage unit 27e in association with the time of detection, and is also transmitted to the management device via the communication device 27b. configured to be possible.
  • the second storage unit 27e of the support aircraft 2C is composed of a non-temporary storage medium mounted on the support aircraft 2C, and stores the program of the second control unit 28, its own status information, flight plan, etc. It stores the cooperative flight plan, energy plan, work plan, etc. of the flying object 1.
  • the energy plan is information such as the amount of electricity stored in the first power receiving unit 11, a setting value for starting charging, the amount of storage in the energy source 27a, and a predetermined value that is a threshold value at which the aircraft 1 can be charged.
  • the second energy control unit 28a of the support aircraft 2C controls its own energy according to the energy state (charge amount, remaining capacity, etc.) of the first power receiving unit 11 in each aircraft 1 received via the communication device 27b. source 27a.
  • the second energy control unit 28a supplies energy to the aircraft 1, for example, where the amount of electricity stored in the first power receiving unit 11, which is acquired by the second state acquisition unit 28b, is equal to or less than a set value.
  • This energy supply may be a wired power supply via the cable Cb or a non-contact power supply.
  • the second energy control unit 28a may, for example, change the support aircraft 2C when the storage amount of the energy source 27a becomes less than a predetermined value (a value obtained by multiplying the power value at which the aircraft itself can fly by a safety factor).
  • a predetermined value a value obtained by multiplying the power value at which the aircraft itself can fly by a safety factor.
  • all the flying objects 1 may be separated and each flying object 1 may be flown independently.
  • the second state acquisition unit 28b of the support flight object 2C obtains the energy state (charge amount, remaining capacity, etc.) of the first power receiving unit 11 of each flight object 1 and the first satellite positioning device 14 via the communication device 27b.
  • the position information of each detected flying object 1 is acquired.
  • the second status acquisition unit 28b acquires the energy status (charging amount, remaining capacity, etc.) of the energy source 27a and its own position information detected by the second satellite positioning device 27d.
  • the second status acquisition unit 28b provides altitude information of the support aircraft 2C if the support aircraft 2C is equipped with a barometric pressure sensor, and flight attitude and speed of the support aircraft 2C if it is equipped with a gyro sensor.
  • Various conditions that affect the flight of the support aircraft 2C are acquired, such as the flight speed of the support aircraft 2C if it is equipped with a sensor, and the surrounding wind conditions if it is equipped with a wind speed sensor or a wind direction sensor.
  • the flight connection control unit 28c of the support flight object 2C controls the flight of the flight object 1 so that the plurality of flight objects 1 and the coupling mechanism 27 can be connected with the same position and orientation.
  • the flight connection control unit 28c uses the current position information of the flying object 1 detected by the first satellite positioning device 14 and the current position information of the support flying object 2C detected by the second satellite positioning device 21d. Calculates the relative position of the flying object 1 and the support flying object 2C, and controls the combination of the plurality of flying objects 1 and the supporting flying object 2C based on the flight plan of the flying object 1 stored in the second storage unit 27e. do.
  • a mark may be provided on the coupling guide member 27c, and the flight coupling control section 28c may control the coupling while recognizing this mark with a camera mounted on the aircraft 1. Further, the flight combination control unit 28c may change the allocation of the joining positions of the plurality of flying objects 1, or may change the joining attitude of the plurality of flying objects 1, such as changing from side-by-side to vertical arrangement. .
  • the cooperative flight control unit 28d of the support flying object 2C controls the plurality of flying objects 1 to fly cooperatively.
  • This cooperative flight control unit 28d is based on, for example, the current position information of each flying object 1 detected by the first satellite positioning device 14 and the cooperative flight plan of the flying object 1 stored in the second storage unit 27e. to control the flight organization of the plurality of flying objects 1.
  • a plurality of aircraft 1 can be sprayed all at once while flying in a horizontal row (such as a single line or a V-shaped formation), or the flow of the sprayed spray can be confirmed with the camera of the work device 29, and the aircraft 1 can be You can change the organization of.
  • the cooperative flight control unit 28d may generate a cooperative flight instruction based on at least one of the cooperative reference position and the cooperative reference direction.
  • the coordination reference position and coordination reference direction are positions and directions that serve as references when the plurality of flying objects 1 fly in coordination.
  • the flight plan stored in the second storage unit 26 may include a work plan for the first work unit 13 and the work device 29. This work plan determines the location where the first work unit 13 performs the work (for example, the position of the field to be worked on, the position where the work is performed in the field, etc.), and/or the work content (for example, the operating strength of the work equipment, the operation time, operation interval, etc.).
  • the second independent flight control unit 28e of the support aircraft 2C executes control to cause some of the aircraft 1 to leave a group of multiple aircraft 1.
  • the second solo flight control unit 28e based on the current position information of the aircraft 1 detected by the first satellite positioning device 14 and the flight plan of the aircraft 1 stored in the second storage unit 27e, A solo flight path is calculated and the flying object 1 is made to fly solo.
  • the second solo flight control unit 28e may generate the solo flight instruction based on at least one of the single reference position and the single reference direction.
  • the individual reference position and the individual reference direction are positions and directions that serve as references when the plurality of flying objects 1 fly alone.
  • the second work control unit 28f of the support aircraft 2C is a working device 29 that includes a camera capable of photographing the state of the field, a spray device including a tank for storing a spray material, a pump and a nozzle for dispersing the spray material, and the like. control the operation of The second work control unit 28f controls the work device 29, for example, to photograph the state of the field and the state of spraying.
  • the second work control section 28f may control the operation of the work device 29, which is a heavy object. For example, when the work device 29 is provided with a large-capacity spray material storage tank, the operation of a pump or the like that supplies the spray material to the first working section 13 of the aircraft 1 is controlled.
  • FIG. 6 shows a perspective view of the flying object 1 of the flying object system 100 in operation
  • FIG. 7 shows the flying object 1 of the flying object system 100.
  • a standby perspective view is shown.
  • the plurality of flying objects 1 are wired to the support flying object 2C using a cable Cb.
  • This cable Cb includes a communication line connecting the communication device 27b of the support flight object 2C and the first communication section 12 of the flight object 1, and a communication line connecting the energy source 27a of the support flight object 2C and the first power receiving section 11 of the flight object 1. It can accommodate power lines connecting the building or pipelines for distributing fuel or spray materials.
  • the flight connection control unit 28c of the support flight object 2C controls the flight of the flight object 1 so that the plurality of flight objects 1 and the coupling mechanism 27 are connected, and The first arm portion 1C is changed to a closed position. Thereby, a plurality of aircraft 1 can be moved to a predetermined work place at once using the energy source 27a of the support aircraft 2C.
  • the connecting mechanism 3 and the connecting mechanism 27 may connect a plurality of flying objects 1 while being separated from each other in the vertical direction.
  • the connection modes shown in FIGS. 2 and 7 are suitable when the space in the horizontal direction is large and the space in the vertical direction is small.
  • a connection mode in which a plurality of flying objects 1 are connected while being spaced apart from each other in the vertical direction is suitable when the space in the left-right direction is small and the space in the vertical direction is large.
  • the horizontal connection shown in FIGS. 2 and 7 and the three-dimensional connection in which the plurality of flying objects 1 are spaced apart from each other in the vertical direction may be configured to be mutually changeable.
  • the flying object system 100 in this embodiment may include the connecting mechanism 4, the suspension work device 5, and the connecting flying object 6 in the first embodiment.
  • the buoyancy part 45 shown in FIG. 4 may also be provided in the support aircraft 2C in this embodiment.
  • the flying object system 100 includes a movable energy supply vehicle 2B (corresponding to the energy supplying object 2) and a flying object 1 (also a support flying object 2C), which are constructed of wires or the like.
  • a connecting flying object 6 connected by a cable Ca (an example of a wired wire) may be provided.
  • the energy supply vehicle 2B is a ground vehicle including a power supply vehicle, a fuel vehicle, etc., but may also be a flying vehicle.
  • the flying object system 100 connects a movable working vehicle 2D (corresponding to the energy supply body 2, equivalent to the working device) and the flying object 1 (the supporting flying object 2C is also possible) using wires, etc. They may be connected by a cable Cc (an example of a wired wire).
  • the work vehicle 2D may be a material transport vehicle that transports materials (seedlings, fuel, fertilizer, medicine, etc.) to the agricultural work machine 7, a tractor, a rice transplanter, a farm work machine 7 such as a combine harvester or a rice paddy machine, a GPS base station, etc. good.
  • the work vehicle 2D is a ground vehicle, but may also be a flying vehicle.
  • the flying object 1 receives power from the working vehicle 2D via the cable Cc, and moves back and forth between the working vehicle 2D and the agricultural machine 7.
  • the agricultural machine 7 is a rice transplanter
  • one set of seedlings for one replenishment of seedlings from the agricultural machine 7 is placed on the loading platform of the working vehicle 2D, and if the seedlings are transported from the working vehicle 2D to the agricultural machine 7 at once, it is difficult to use the human resources. Labor saving and time efficiency can be achieved at the same time.
  • attachment and detachment of materials may be performed by a person, and the work vehicle 2D to the agricultural machine 7 may fly by itself, or may be operated by a person using a remote controller or the like.
  • the flying object 1 flies and replenishes the seedlings even when the agricultural machine 7 is running, rice planting work can be continued without stopping.
  • the flying object system 100 includes an energy supply body 2 that supplies energy, and a buoyant flight body 8 that flies using the thermal energy generated by the energy supply body 2. It is equipped with The energy supply body 2 in this embodiment is comprised of an engine-driven generator, and the buoyant flying object 8 is comprised of a large balloon or the like.
  • the aircraft system 100 includes a work device 9 that can perform predetermined work, and an energy management device 10 that manages thermal energy generated by the energy supply body 2.
  • the energy supply body 2 is comprised of a generator that operates an internal combustion engine using fuel to generate electricity. That is, the energy supply body 2 has an energy source 20a that includes a power source supplied from a battery or a generator operated by an internal combustion engine, a fuel source for operating the internal combustion engine, and the like. Moreover, the energy supply body 2 has a heat supply part 20b that directly supplies the thermal energy generated by the energy source 20a to the buoyant aircraft 8. Thermal energy generated by the energy source 20a is thermal energy generated by exhaust heat generated by the energy source 20a and exhaust gas from the internal combustion engine.
  • the heat supply section 20b may be a heat exchange type mechanism that heats helium gas or the like via a medium such as cooling water, or a heat generation type mechanism using generated electric power.
  • the energy supply body 2 has a communication unit 20c capable of wired or wireless communication with the buoyant flying body 8 and the working device 9.
  • the buoyant aircraft 8 has a buoyancy section 81, an energy control section 82, and a connection mechanism 83.
  • the connection mechanism 83 accommodates an energy source 83a, a communication device 83b, and a satellite positioning device 83c. Further, in this embodiment, the energy supply body 2 is housed in the connection mechanism 83.
  • the work device 9 includes an energy source 91, a satellite positioning device 92, a control device 93, and a communication device 94.
  • the buoyancy part 81 generates buoyancy by expanding upon receiving thermal energy generated by the energy source 20a of the energy supply body 2. Furthermore, the buoyancy unit 81 can generate buoyancy using thermal energy generated by the energy source 83a of the buoyant flying object 8 or the lifting force of a propeller or the like. Thereby, the buoyant flying object 8 functions as a stagnant flying object, and can perform work (for example, harvesting work and pollination work) suitable for staying in the air and flying at low speed.
  • the energy control unit 82 selects the energy source 83a of the buoyant aircraft 8 or the energy source 20a of the energy supply body 2 according to the energy state (remaining capacity, etc.) of the energy source 91 in the working device 9 received via the communication device 83b. control. For example, the energy control unit 82 controls the energy source 91 of the working device 9 whose remaining energy level is below a set value from the energy source 83a of the buoyant aircraft 8 or the energy source 20a of the energy supply body 2. Provides energy.
  • This energy supply may be a wired supply via the cable Cd, or may be a non-contact supply (for example, a non-contact power supply).
  • the energy control unit 82 also controls the energy control unit 82 to control the energy source 20a of the energy supply unit 2 received via the energy source 83a of the buoyant aircraft 8 or the communication device 83b to a predetermined value (a power value at which the unit itself can fly). (value multiplied by the safety factor), the buoyant aircraft 8 and energy supply unit 2 may be replaced, energy may be replenished at a predetermined energy replenishment location, or all work equipment may be replaced. 9 may be separated and each may be operated independently. Further, the energy management device 10 may collectively manage the energy of the energy supply body 2, the buoyant flying vehicle 8, and the working device 9.
  • connection mechanism 83 in this embodiment is comprised of a casing that is integrated with the buoyant aircraft 8 so as to connect the working device 9 and the buoyant aircraft 8.
  • the energy supply body 2 is housed in this housing. Further, the housing accommodates an energy source 83a, a communication device 83b, and a satellite positioning device 83c.
  • the connection mechanism 83 may be configured with a casing suspended by a wire or the like, or may be connected to the energy supply body 2 installed on the ground using a cable or the like. Further, when the working device 9 is a flying object, the connecting mechanism 83 may be a mechanism that can take off and land inside the housing.
  • the energy source 83a of the buoyant aircraft 8 includes a combustion device such as a burner, a heat exchange device that heats helium gas or the like through a medium such as cooling water, a heat generating device that uses generated electricity, a power generation device that rotationally drives a propeller, etc. It consists of an internal combustion engine or a power generation device that generates electricity using the driving force of the internal combustion engine. In this embodiment, this energy source 83a can be utilized as the energy supply body 2.
  • the communication device 83b of the buoyant aircraft 8 is capable of wired or wireless communication with the communication unit 20c of the energy supply body 2 and the communication device 94 of the work device 9, and can communicate with a computer, tablet, mobile terminal, etc. installed on the ground.
  • the energy management device 10 is configured with a communication interface capable of wireless communication. Note that the buoyant flying object 8 itself may be provided with a working section that performs a predetermined work.
  • the satellite positioning device 83c of the buoyant aircraft 8 receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, and indicates its own position information (positioning information including latitude and longitude) based on the received signal. Generate positioning data.
  • the satellite positioning device 83c can detect its own position information (positioning information including latitude and longitude) using GNSS including GPS, QZSS, Gallileo, and the like.
  • the position information of the buoyant flying object 8 detected by the satellite positioning device 83c is configured to be associated with the time of detection and can be transmitted to the energy management device 10 via the communication device 83b.
  • the work device 9 includes a flying vehicle such as a drone that can carry out a predetermined work while detecting its own position information using a satellite positioning device 92, a tractor, a rice transplanter, an agricultural machine such as a combine harvester or a rice paddy machine, a material carrier, etc. It consists of ground transportation vehicles such as power supply vehicles and fuel vehicles, and GPS base stations.
  • the energy source 91 of the work device 9 has its energy amount managed by the control device 93, and is configured to be able to supply energy to the buoyant flying object 8, the energy supply body 2, and other work devices 9. Note that the work device 9 connected to the buoyant aircraft 8 by the cable Cd may perform anchor work to support the buoyant aircraft 8.
  • the flying object system 100 in this embodiment is a parent-child type in which the buoyant flying object 8 is a large balloon-type mother ship, and a small drone forming the working device 9 is connected by wire via a cable Cd. Therefore, the buoyant aircraft 8 flying at a slow speed is suitable for towing heavy objects such as batteries and medicines in an energy-saving manner, and the work device 9 can take advantage of its light weight to move quickly around the buoyant aircraft 8 to perform work. can. Furthermore, even if the buoyant flying object 8 is blown away by a disturbance such as wind, the cable Cd acts as a buffer against the disturbance, and the effect on the working device 9 can be suppressed. Note that the buoyant flying object 8 as a stagnant flying object is not limited to a balloon, and a plurality of working devices 9 may be connected by a connecting mechanism 83 using a roof-like stagnant object or the like.
  • the flying object system 100 may be configured to be usable for purposes such as driving away birds and animals, security, and crime prevention.
  • the first working part 13, the second working part 23, the hanging work device 5, or the working device 29 may be a monitoring device that can recognize birds, animals, or suspicious persons from captured images, or a monitoring device that can recognize birds, animals, or suspicious persons by emitting sound or light. It may also include an intimidation device that intimidates, a notification device that notifies the presence of birds, animals, or suspicious persons, and the like.
  • the aircraft system 100 may be configured to be able to cope with weather conditions that adversely affect flight, such as strong winds, lightning strikes, and rainfall.
  • the aircraft system 100 may include a sensor that observes the weather, an acquisition unit that acquires information indicating the weather or a weather forecast via communication, and the like.
  • the aircraft system 100 may be configured to change the flight plan, take an evacuation flight to a safe area, make an emergency landing, etc., depending on the weather or weather forecast.
  • the flying object 1, the energy source flying object 2A, or the support flying object 2C may be configured so that their relative positions can be changed while they are connected.
  • the coupling guide members F, 27c provided in the coupling mechanisms 3, 27 may be configured to be movable. Thereby, while the flying object system 100 is flying, it becomes possible to change the relative positions of the plurality of flying objects 1 and the energy source flying object 2A or the support flying object 2C.
  • the aircraft system 100 may be configured to cancel the operating noise of the rotor blades B, 1Ca, and 27Aa of the aircraft 1, the energy source aircraft 2A, or the support aircraft 2C.
  • the operations of the plurality of rotary blades B, 1Ca, and 27Aa may be controlled so as to cancel out their operating sounds.
  • the aircraft system 100 may be provided with a muffling device that generates a sound (noise canceling sound) that cancels the operating sound of the rotary blades B, 1Ca, and 27Aa.
  • the muffling device may be configured to generate noise canceling sound based on the control amount sent to the rotary blades B, 1Ca, and 27Aa.
  • the devices constituting the flight system 100 may be designed so that they can be used between various types of flight system 100.
  • the coupling mechanisms 3 and 27 may have common specifications so that they can be coupled to various types of aircraft systems 100.
  • the flying object 1, the energy source flying object 2A, or the support flying object 2C may be provided with a buoyant body (balloon, balloon, etc.) that provides buoyancy to itself. This makes it easy to hover (stagnate) the aircraft system 100 at a predetermined work position.
  • a buoyant body balloon, balloon, etc.
  • Flight control of the flying object 1, the energy source flying object 2A, the support flying object 2C, or the buoyancy flying object 8 may be performed using sensor information at the work target area.
  • This sensor information is acquired by a mobile sensor mounted on a smart agricultural machine or a fixed sensor such as a GPS base station.
  • Flight control of the aircraft 1, the energy source aircraft 2A, the support aircraft 2C, or the buoyant aircraft 8 may be coordinated with smart agricultural machines on the supply chain. For example, operation information of a grain dryer may be obtained and flight control may be performed to achieve appropriate harvest timing.
  • the support aircraft 2C controlled the flight of the aircraft 1, but various modifications are possible as long as the support aircraft 2C assists the aircraft 1.
  • the flight of the flying object 1 and the support flying object 2C may be automatically controlled by a management device provided on the ground, or may be manually controlled using a remote controller.
  • a battery is used as an example of the first power receiving unit 11 and the energy sources 21 and 27a, but an internal combustion engine may be used instead.
  • the energy supplied from the energy sources 21, 27a serves as fuel for operating the internal combustion engine.
  • the energy sources 21 and 27a are internal combustion engines, the flight driving force of the flying object 1, the energy source flying object 2A, and the support flying object 2C can be increased.
  • the present invention can be used in an aircraft system equipped with an energy supply body capable of supplying energy.

Abstract

This flying body system comprises a flying body (1) that can execute predetermined work, and an energy supply body (2) that can supply energy to the flying body (1).

Description

飛行体システムair vehicle system
 本発明は、飛行体システムに関する。 The present invention relates to an aircraft system.
 近年、ドローン等の飛行体を用いた農作業の効率化が検討されている。特許文献1には、農作業の一例として農薬等を散布する散布装置が搭載された飛行体の支援装置が開示されている。 In recent years, efforts have been made to improve the efficiency of agricultural work using flying vehicles such as drones. Patent Document 1 discloses an aircraft support device equipped with a spraying device for spraying pesticides and the like as an example of agricultural work.
 特許文献1に記載の飛行体の支援装置は、飛行体の位置を取得する位置情報取得部と、散布に関する情報を取得する散布情報取得部と、圃場の領域及び周囲を表示する表示部とを備えている。この表示部は、飛行体の移動軌跡を表示すると共に、散布装置が散布した散布範囲を表示する。これにより、作業管理を容易化している。 The aircraft support device described in Patent Document 1 includes a position information acquisition unit that acquires the position of the aircraft, a dispersion information acquisition unit that acquires information regarding dispersion, and a display unit that displays the area and surroundings of the field. We are prepared. This display section displays the movement trajectory of the aircraft and also displays the spraying range over which the spraying device has sprayed. This facilitates work management.
国際公開第2020/137242号International Publication No. 2020/137242
 特許文献1に記載の飛行体の支援装置では、作業管理が容易となるものの、広大な圃場の場合、飛行体に搭載されたバッテリーの容量不足が懸念される。大容量のバッテリーを搭載した大型の飛行体を使用すれば良いが、大型の飛行体では作業できないエリアが発生し、作業効率が低下する。 Although the support device for the aircraft described in Patent Document 1 facilitates work management, there is a concern that the capacity of the battery mounted on the aircraft may be insufficient in the case of a vast field. It would be possible to use a large flying vehicle equipped with a large-capacity battery, but large flying vehicles would create areas where work cannot be done, reducing work efficiency.
 そこで、作業効率を高めることが可能な飛行体システムが望まれている。 Therefore, there is a need for an aircraft system that can improve work efficiency.
 本発明に係る飛行体システムの一態様は、所定の作業を実施可能な飛行体と、前記飛行体にエネルギーを供給可能なエネルギー供給体と、を備えた点にある。 One aspect of the flying object system according to the present invention is that it includes a flying object that can perform a predetermined task and an energy supply body that can supply energy to the flying object.
 本構成に係る飛行体システムは、例えば農薬散布といった所定の作業を行う飛行体と、この飛行体にエネルギーを供給するエネルギー供給体とを備えている。つまり、飛行体は作業専用とし、エネルギー供給体は飛行体へのエネルギー供給役として機能する。 The flying object system according to this configuration includes a flying object that performs a predetermined task, such as spraying pesticides, and an energy supply body that supplies energy to the flying object. In other words, the flying object is used exclusively for work, and the energy supply body functions as an energy supplier to the flying object.
 このため、飛行体がエネルギー不足となって、作業が中断したり、作業むらが生じたりすることが防止される。よって、作業効率を高めることが可能な飛行体システムを提供できる。 This prevents the aircraft from running out of energy and causing interruptions in work or uneven work. Therefore, it is possible to provide an aircraft system that can improve work efficiency.
 また、前記エネルギー供給体は、前記飛行体にエネルギーを供給可能なエネルギー源を搭載したエネルギー源飛行体であっても良い。 Furthermore, the energy supply body may be an energy source flying vehicle equipped with an energy source capable of supplying energy to the flying vehicle.
 このようにエネルギー源飛行体を設ければ、機動性が増すため、作業効率が向上する。 Providing an energy source aircraft in this way increases maneuverability and improves work efficiency.
 また、前記エネルギー源飛行体は、複数の前記飛行体の何れかであっても良い。 Furthermore, the energy source flying object may be any one of the plurality of flying objects.
 このように、複数の飛行体間で融通し合えば、エネルギー不足となった飛行体を離脱させる必要がない。 In this way, by accommodating multiple aircraft, there is no need to disengage aircraft that run out of energy.
 また、前記エネルギー源飛行体は、前記飛行体を援助して飛行可能なサポート飛行体であっても良い。 Furthermore, the energy source flying vehicle may be a support flying vehicle that can fly by assisting the flying vehicle.
 このように、飛行体は作業専用とし、エネルギー源飛行体(サポート飛行体)は飛行体へのサポート役として機能させれば、飛行体を小型化し、エネルギー源飛行体(サポート飛行体)を大型化することができる。このため、通常の飛行体では作業が難しい狭隘な場所でも、飛行体で作業することができる。また、作業場所に応じて飛行体の台数も変更することが可能となる。 In this way, if the flying vehicle is dedicated to work and the energy source flying vehicle (support flying vehicle) functions as a support to the flying vehicle, the flying vehicle can be made smaller, and the energy source flying vehicle (support flying vehicle) can be made larger. can be converted into This allows the aircraft to work in narrow spaces where it would be difficult to work with a normal aircraft. Furthermore, the number of flying objects can be changed depending on the work location.
 また、前記エネルギー源飛行体の作動を制御するエネルギー制御部を備え、前記エネルギー制御部は、前記エネルギー源の貯留量が所定値以下となったとき、前記エネルギー源飛行体を交代させても良い。 The energy control unit may further include an energy control unit that controls the operation of the energy source aircraft, and the energy control unit may replace the energy source aircraft when the storage amount of the energy source becomes less than or equal to a predetermined value. .
 このように、エネルギー源飛行体のエネルギー残量が少なくなった場合に新たなエネルギー源飛行体に交代すれば、エネルギー供給のために作業が停止するといった不都合がない。 In this way, if the energy source aircraft is replaced with a new energy source aircraft when its remaining energy becomes low, there will be no inconvenience such as work stopping for energy supply.
 また、前記エネルギー源飛行体は、前記所定の作業又は前記所定の作業とは異なる作業を実施可能であっても良い。 Furthermore, the energy source aircraft may be capable of performing the predetermined work or a work different from the predetermined work.
 このように、小型の飛行体に適した作業と大型のエネルギー源飛行体に適した作業とを区分して実施すれば、作業効率が向上する。 In this way, work efficiency can be improved by separately performing work suitable for small aircraft and work suitable for large energy source aircraft.
 また、前記エネルギー供給体は、移動可能なエネルギー供給車であっても良い。 Furthermore, the energy supply body may be a movable energy supply vehicle.
 このようにエネルギー供給車から飛行体にエネルギーを供給すれば、エネルギー不足となるおそれがない。 By supplying energy to the flying object from the energy supply vehicle in this way, there is no risk of energy shortage.
 また、前記エネルギー供給体は、移動可能な作業装置であっても良い。 Furthermore, the energy supply body may be a movable working device.
 このようにエネルギー供給体を例えば資材運搬車等の作業装置で構成すれば、効率的である。 It is efficient if the energy supply body is constituted by a working device such as a material carrier, for example.
 また、前記エネルギー供給体と前記飛行体とを有線で連結する連結用飛行体を備えても良い。 Additionally, a connecting aircraft may be provided that connects the energy supply body and the aircraft by wire.
 このように連結用飛行体を設ければ、有線が干渉物に引っかかるといった不都合を防止できる。 By providing the connecting aircraft in this way, it is possible to prevent the inconvenience of the cable getting caught in an interfering object.
 また、前記連結用飛行体は、前記エネルギー供給体からエネルギーが供給されても良い。 Furthermore, the connecting aircraft may be supplied with energy from the energy supply body.
 このように、連結用飛行体にもエネルギー供給体からエネルギーを供給すれば、合理的である。 In this way, it would be reasonable to supply energy to the connecting aircraft from the energy supply body.
 また、前記飛行本体と前記エネルギー供給体との相対位置及び人工物の位置に基づいて前記連結用飛行体の飛行位置を制御する連結制御部を備えても良い。 Furthermore, it may include a connection control unit that controls the flight position of the connection aircraft based on the relative position of the flight main body and the energy supply body and the position of the artificial object.
 このように連結制御部を設ければ、干渉物を迂回した飛行ルートを設定できる。 By providing the connection control unit in this way, it is possible to set a flight route that detours around interfering objects.
 また、複数の前記飛行体を連結する連結機構を備え、前記エネルギー供給体は、前記飛行体にエネルギーを供給するエネルギー源を搭載した前記連結機構であっても良い。 Moreover, the connecting mechanism may be provided to connect a plurality of the flying objects, and the energy supply body may be the connecting mechanism equipped with an energy source that supplies energy to the flying objects.
 このように、複数の飛行体を連結する連結機構にエネルギー源を搭載すれば、複数の飛行体に対して効率的にエネルギー供給ができる。 In this way, by mounting an energy source on the connection mechanism that connects multiple aircraft, energy can be efficiently supplied to the multiple aircraft.
 また、前記飛行体は、エネルギーを得て飛行する飛行本体と、前記所定の作業を実施する作業部と、前記飛行本体と前記作業部とを接続する接続機構と、を有しており、前記エネルギー供給体は、前記飛行本体にエネルギーを供給するエネルギー源を搭載した前記作業部又は前記接続機構であっても良い。 Further, the flying object has a flight main body that obtains energy and flies, a working part that performs the predetermined work, and a connection mechanism that connects the flying main body and the working part, and the The energy supply body may be the working part or the connection mechanism equipped with an energy source that supplies energy to the flight main body.
 このように、作業部や接続機構にエネルギー源を搭載すれば、重心を低くして作業効率が向上する。 In this way, by mounting an energy source on the working part or connecting mechanism, the center of gravity can be lowered and work efficiency can be improved.
 また、前記接続機構は、前記作業部を持ち上げ可能な浮力部を有しても良い。 Furthermore, the connection mechanism may include a buoyant part that can lift the working part.
 このように、接続機構に浮力部を設ければ、飛行本体の浮力をアシストできるため、飛行本体に供給するエネルギー量を節約しながら、重量物の作業部を持ち上げることができる。 In this way, by providing the buoyancy part in the connection mechanism, the buoyancy of the flight main body can be assisted, so it is possible to lift the working part of a heavy object while saving the amount of energy supplied to the flight main body.
 また、前記接続機構は、前記作業部にエネルギーを供給可能な作業用エネルギー源を有しても良い。 Furthermore, the connection mechanism may include a working energy source that can supply energy to the working part.
 このように、接続機構に作業用エネルギー源を設ければ、作業部へのエネルギー供給が安定する。 In this way, by providing a working energy source in the connection mechanism, the energy supply to the working part is stabilized.
 また、前記エネルギー供給体は、少なくとも1つの前記飛行体の前記作業部であり、他の前記飛行体の前記作業部にエネルギーを供給しても良い。 Furthermore, the energy supply body is the working section of at least one of the flying objects, and may supply energy to the working sections of other flying objects.
 このように、作業部間でエネルギーを融通し合えば、作業が中断したり、作業むらが生じたりすることが防止される。 In this way, by accommodating energy between working sections, interruptions in work and uneven work can be prevented.
 また、前記エネルギー供給体は、非接触給電により前記飛行体にエネルギーを供給しても良い。 Furthermore, the energy supply body may supply energy to the flying object through non-contact power supply.
 このように、非接触給電により飛行本体にエネルギーを供給すれば、飛行体との接続をワイヤレスにすることが可能となるため、飛行体にワイヤが絡まるといった不都合を防止できる。 In this way, by supplying energy to the flight body through non-contact power supply, it becomes possible to connect to the flight body wirelessly, thereby preventing inconveniences such as wires becoming entangled with the flight body.
 本発明に係る飛行体システムの一態様は、エネルギーを供給するエネルギー供給体と、前記エネルギー供給体で生成された熱エネルギーによる浮力を用いて飛行する浮力飛行体と、を備えた点にある。 One aspect of the flying object system according to the present invention includes an energy supplying body that supplies energy, and a buoyant flying vehicle that flies using buoyancy due to thermal energy generated by the energy supplying body.
 本構成のように、エネルギー供給体で生成された熱エネルギーを浮力飛行体の浮力として活用すれば、エネルギーを有効活用することができる。 As in this configuration, if the thermal energy generated by the energy supply body is used as buoyancy for the buoyant aircraft, energy can be used effectively.
 また、前記エネルギー供給体は、前記浮力飛行体に搭載されたエネルギー源であっても良い。 Furthermore, the energy supply body may be an energy source mounted on the buoyant flying vehicle.
 このように、浮力飛行体にエネルギー源を搭載すれば、浮力飛行体単独で全て賄えるため、効率的である。 In this way, if an energy source is mounted on a buoyant flying vehicle, it is efficient because the buoyant flying vehicle alone can provide all the energy.
 また、所定の作業を実施可能な作業装置を備え、前記エネルギー供給体は、前記作業装置にエネルギーを供給しても良い。 Furthermore, it may include a working device that can perform a predetermined work, and the energy supply body may supply energy to the working device.
 このように、作業装置にエネルギー供給体からエネルギーを供給すれば、作業装置にエネルギー源を設ける必要がなく、利便性が高い。 In this way, if energy is supplied to the working device from the energy supply body, there is no need to provide an energy source to the working device, which is highly convenient.
 また、所定の作業を実施可能な作業装置と、前記作業装置と前記浮力飛行体とを接続する接続機構と、を備え、前記エネルギー供給体は、前記接続機構に搭載されたエネルギー源であっても良い。 The invention also includes a working device that can perform a predetermined work, and a connection mechanism that connects the working device and the buoyant flying object, and the energy supply body is an energy source mounted on the connection mechanism. Also good.
 このように、作業部や接続機構にエネルギー源を搭載すれば、重心を低くして作業効率が向上する。 In this way, by mounting an energy source on the working part or connecting mechanism, the center of gravity can be lowered and work efficiency can be improved.
 また、前記エネルギーは、内燃機関に供給される燃料、又は、内燃機関により発電した電力であっても良い。 Furthermore, the energy may be fuel supplied to the internal combustion engine or electric power generated by the internal combustion engine.
 このように、エネルギーを内燃機関に供給される燃料、又は、内燃機関により発電した電力で構成すれば、安定的にエネルギーを供給することができる。 In this way, by configuring energy with fuel supplied to the internal combustion engine or electric power generated by the internal combustion engine, energy can be stably supplied.
第一実施形態に係る飛行体システムのブロック図である。FIG. 1 is a block diagram of an aircraft system according to a first embodiment. 第一実施形態に係る飛行体システムの概要を示す斜視図である。FIG. 1 is a perspective view showing an outline of an aircraft system according to a first embodiment. 第一実施形態に係る飛行体システムの概念図である。FIG. 1 is a conceptual diagram of an aircraft system according to a first embodiment. 飛行体の変形例を示す概念図である。It is a conceptual diagram which shows the modification of a flying object. 第二実施形態に係る飛行体システムのブロック図である。FIG. 2 is a block diagram of an aircraft system according to a second embodiment. 第二実施形態に係る飛行体が作業中の斜視図である。FIG. 7 is a perspective view of the flying object according to the second embodiment during work. 第二実施形態に係る飛行体が待機中の斜視図である。FIG. 7 is a perspective view of the flying object according to the second embodiment while it is on standby. 第二実施形態に係る飛行体システムの概念図である。FIG. 2 is a conceptual diagram of an aircraft system according to a second embodiment. 第一実施形態及び第二実施形態に係る飛行体システムの変形例1を示す概念図である。It is a conceptual diagram which shows the modification 1 of the flying object system based on a 1st embodiment and a 2nd embodiment. 第二実施形態に係る飛行体システムの変形例2を示す概念図である。It is a conceptual diagram which shows the modification 2 of the flying object system based on 2nd embodiment. 第三実施形態に係る飛行体システムのブロック図である。FIG. 3 is a block diagram of an aircraft system according to a third embodiment. 第三実施形態に係る飛行体システムの概念図である。It is a conceptual diagram of the flying object system concerning a third embodiment.
 以下に、本発明に係る飛行体システムの実施形態について、図面に基づいて説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。 Embodiments of the aircraft system according to the present invention will be described below based on the drawings. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof.
 図1及び図5に示すように、飛行体システム100は、農作業等の所定の作業を実施可能な飛行体1と、飛行体1にエネルギーを供給可能なエネルギー供給体2とを備えている。本実施形態における飛行体1は、小型のドローンで構成されている。ドローンとは、回転翼を有する無人航空機であり、バッテリー等から供給された電力により回転翼を回転させる電力駆動式や、燃料により内燃機関を作動させて回転翼を回転させるエンジン駆動式又は内燃機関により作動させた発電機から供給された電力により回転翼を回転させる電力駆動式又はこれらを組み合わせたハイブリッド式が挙げられる。エネルギー供給体2は、バッテリーや内燃機関により作動させた発電機等から供給された電力源、内燃機関を作動させる燃料源等で構成されるエネルギー源を備えている。 As shown in FIGS. 1 and 5, the flying object system 100 includes a flying object 1 that can perform predetermined work such as agricultural work, and an energy supply body 2 that can supply energy to the flying object 1. The flying object 1 in this embodiment is composed of a small drone. A drone is an unmanned aerial vehicle with rotary wings, and may be an electric-powered type that rotates the rotor blades using electricity supplied from a battery, etc., or an engine-driven type or internal combustion engine that rotates the rotor blades by operating an internal combustion engine using fuel. Examples include a power-driven type in which the rotor blades are rotated by electric power supplied from a generator operated by a generator, and a hybrid type in which these types are combined. The energy supply body 2 includes an energy source including a power source supplied from a battery or a generator operated by an internal combustion engine, a fuel source for operating the internal combustion engine, and the like.
 飛行体1は、所定の作業として、農薬,肥料,水等の散布作業、撮影,監視作業、収穫作業、採取作業、受粉作業、資材やエネルギー等の供給作業、運搬作業、草刈作業、耕耘作業、植付作業、播種作業、除雪作業、威嚇作業、測定作業等を実施することが可能であり、本実施形態では、所定の作業として農作業の一つである散布作業を一例として説明する。また、エネルギー供給体2は、飛行体1と同様の所定の作業又は異なる作業を実施することが可能であり、本実施形態では、飛行体1を補完する作業として、飛行体1へのエネルギー供給作業を一例として説明する。 The flying object 1 performs predetermined operations such as spraying pesticides, fertilizers, water, etc., photographing, monitoring, harvesting, collecting, pollination, supplying materials and energy, transporting, mowing, and tilling. , planting work, sowing work, snow removal work, intimidation work, measurement work, etc., and in this embodiment, the predetermined work will be described as an example of spraying work, which is one of the agricultural works. In addition, the energy supply body 2 can perform the same predetermined work as the flight vehicle 1 or a different work, and in this embodiment, the energy supply body 2 is capable of performing the same predetermined work as the flight vehicle 1 or a different work. The work will be explained as an example.
[第一実施形態]
 本実施形態に係る飛行体システム100は、バッテリーを用いた電力駆動式で構成される飛行体1(飛行本体に相当)、及び、飛行体1に電力を供給するカセット式バッテリーが搭載されたエネルギー源飛行体2A(エネルギー供給体2に相当、飛行本体に相当)を備えている。このエネルギー源飛行体2Aは、飛行体1と同一の機種で構成されており、複数の飛行体1にエネルギーを融通することが可能である。飛行体1及びエネルギー源飛行体2Aは、複数(本実施形態では3つ)の回転翼Bを有しており、これら回転翼Bをモータ(不図示)等の駆動力により回転させることによって、揚力及び推進力を発生させる(図2~図3も参照)。これら飛行体1及びエネルギー源飛行体2Aは、連結機構3(エネルギー供給体2に相当)により連結されている。換言すると、本実施形態ではエネルギー源飛行体2Aが飛行体1と同一の機種であることから、連結機構3は、複数の飛行体1どうしを互いに連結している。
[First embodiment]
The flight object system 100 according to the present embodiment includes a flight object 1 (corresponding to a flight main body) that is powered by electric power using a battery, and an energy-powered aircraft equipped with a cassette-type battery that supplies power to the flight object 1. It is equipped with a source aircraft 2A (corresponding to the energy supply body 2, equivalent to the flight main body). The energy source aircraft 2A is constructed of the same model as the aircraft 1, and is capable of accommodating energy to a plurality of aircraft 1. The flying object 1 and the energy source flying object 2A have a plurality of (three in this embodiment) rotary blades B, and by rotating these rotary blades B by the driving force of a motor (not shown) or the like, Generates lift and propulsion (see also Figures 2 and 3). The flying object 1 and the energy source flying object 2A are connected by a connecting mechanism 3 (corresponding to the energy supplying object 2). In other words, in this embodiment, since the energy source flying object 2A is the same model as the flying object 1, the coupling mechanism 3 connects the plurality of flying objects 1 to each other.
 また、飛行体システム100は、所定の作業を実施する吊下作業装置5(作業部に相当)と、飛行体1及びエネルギー源飛行体2A(連結機構3)と吊下作業装置5(エネルギー供給体2に相当)とを接続する接続機構4(エネルギー供給体2に相当)と、を備えている。 The aircraft system 100 also includes a suspension work device 5 (corresponding to a work section) that performs a predetermined work, a flight object 1, an energy source flight object 2A (coupling mechanism 3), and a suspension work device 5 (energy supply A connection mechanism 4 (corresponding to the energy supply body 2) is provided.
 飛行体1は、第一受電部11と、第一通信部12と、第一作業部13と、第一衛星測位装置14と、第一制御部15と、第一記憶部16とを備えている。第一制御部15は、第一エネルギー制御部15aと、第一状態取得部15bと、第一集合飛行制御部15cと、第一単独飛行制御部15dと、第一作業制御部15eとを有している。 The flying object 1 includes a first power receiving section 11, a first communication section 12, a first working section 13, a first satellite positioning device 14, a first control section 15, and a first storage section 16. There is. The first control section 15 includes a first energy control section 15a, a first state acquisition section 15b, a first group flight control section 15c, a first individual flight control section 15d, and a first work control section 15e. are doing.
 エネルギー源飛行体2Aは、エネルギー源21と、第二通信部22と、第二作業部23と、第二衛星測位装置24と、第二制御部25と、第二記憶部26とを備えている。第二制御部25は、第二エネルギー制御部25a(エネルギー制御部に相当)と、第二状態取得部25bと、第二集合飛行制御部25cと、第二単独飛行制御部25dと、第二作業制御部25eとを有している。 The energy source aircraft 2A includes an energy source 21, a second communication section 22, a second working section 23, a second satellite positioning device 24, a second control section 25, and a second storage section 26. There is. The second control unit 25 includes a second energy control unit 25a (corresponding to an energy control unit), a second state acquisition unit 25b, a second group flight control unit 25c, a second individual flight control unit 25d, and a second state acquisition unit 25b. It has a work control section 25e.
 連結機構3は、複数の飛行体1を連結するフレーム体30で形成されている(図2~図3も参照)。この連結機構3は、エネルギー源31(エネルギー供給体2に相当)と、通信装置32と、制御装置33とを有している。なお、エネルギー源31、通信装置32及び制御装置33の少なくとも何れかを省略しても良い。 The connecting mechanism 3 is formed of a frame body 30 that connects the plurality of flying objects 1 (see also FIGS. 2 and 3). This coupling mechanism 3 includes an energy source 31 (corresponding to the energy supply body 2), a communication device 32, and a control device 33. Note that at least one of the energy source 31, the communication device 32, and the control device 33 may be omitted.
 接続機構4は、フレーム体40の下部に、連結機構3及び複数(本実施形態では4つ)のワイヤ44が接続されている(図2~図3も参照)。この接続機構4は、エネルギー源41(作業用エネルギー源に相当)と、通信装置42と、制御装置43とを有している。なお、エネルギー源41、通信装置42及び制御装置43の少なくとも何れかを省略しても良い。 In the connection mechanism 4, the connection mechanism 3 and a plurality of (four in this embodiment) wires 44 are connected to the lower part of the frame body 40 (see also FIGS. 2 and 3). The connection mechanism 4 includes an energy source 41 (corresponding to a working energy source), a communication device 42, and a control device 43. Note that at least one of the energy source 41, the communication device 42, and the control device 43 may be omitted.
 吊下作業装置5は、カメラ、散布物を収容するタンクや散布物を散布するポンプ及びノズル等を含むスプレー装置50を有している(図2~図3も参照)。この吊下作業装置5は、エネルギー源51と、通信装置52と、制御装置53とを有している。なお、エネルギー源51、通信装置52及び制御装置53の少なくとも何れかを省略しても良い。また、吊下作業装置5は、第一作業部13や第二作業部23に、散布物を供給するために重量物で構成される散布物収容タンク等で構成されていても良い。 The hanging work device 5 has a spray device 50 that includes a camera, a tank for storing the spray material, a pump and a nozzle for spraying the spray material, etc. (see also FIGS. 2 and 3). This hanging work device 5 includes an energy source 51, a communication device 52, and a control device 53. Note that at least one of the energy source 51, the communication device 52, and the control device 53 may be omitted. Further, the hanging work device 5 may include a spray material storage tank or the like made of a heavy object for supplying the spray material to the first working section 13 and the second working section 23 .
 上述した第一制御部15、第二制御部25及び制御装置33,43,53の各機能部は、CPUを中核としたハードウェア又はソフトウェア、若しくはハードウェアとソフトウェアの協働にて構成されている。以下、制御機能は、同様の構成である。 Each functional unit of the first control unit 15, second control unit 25, and control devices 33, 43, and 53 described above is configured by hardware or software with a CPU at its core, or by cooperation between hardware and software. There is. The control functions below have the same configuration.
 飛行体1の第一受電部11は、所定の容量を蓄電しているバッテリーで構成されており、第一状態取得部15bにより蓄電量が取得され、第一エネルギー制御部15aにて、自身の電力量が制御される。第一受電部11における蓄電量(残容量)は、第一記憶部16に記憶され、第一通信部12を介してエネルギー源飛行体2Aの第二通信部22に送信可能に構成されている。本実施形態における第一受電部11は、他の飛行体1の第一受電部11やエネルギー源飛行体2Aのエネルギー源21と有線(例えば連結機構3に内蔵したケーブル)を介して電力のやり取り可能であるが、電磁誘導方式や磁界共鳴方式等の非接触給電であっても良い。 The first power receiving unit 11 of the aircraft 1 is composed of a battery that stores a predetermined capacity, and the amount of stored power is acquired by the first state acquisition unit 15b, and the first power receiving unit 11 of the aircraft 1 is The amount of electricity is controlled. The amount of electricity stored (remaining capacity) in the first power receiving unit 11 is stored in the first storage unit 16 and configured to be transmittable to the second communication unit 22 of the energy source aircraft 2A via the first communication unit 12. . The first power receiving unit 11 in this embodiment exchanges power with the first power receiving unit 11 of another aircraft 1 and the energy source 21 of the energy source aircraft 2A via wires (for example, a cable built into the coupling mechanism 3). Although possible, non-contact power supply such as an electromagnetic induction method or a magnetic resonance method may also be used.
 飛行体1の第一通信部12は、他の飛行体1の第一通信部12やエネルギー源飛行体2Aの第二通信部22と有線通信又は無線通信が可能な通信インターフェースで構成されている。飛行体1の第一作業部13は、カメラ等で構成されている。この第一作業部13は、第一作業制御部15eにより作動が制御される。なお、第一作業部13に、エネルギー源、通信装置及び制御装置が備え付けられていても良い。 The first communication unit 12 of the flying object 1 is configured with a communication interface capable of wired or wireless communication with the first communicating unit 12 of another flying object 1 and the second communication unit 22 of the energy source flying object 2A. . The first working section 13 of the aircraft 1 is composed of a camera and the like. The operation of this first working section 13 is controlled by a first working control section 15e. Note that the first working section 13 may be equipped with an energy source, a communication device, and a control device.
 飛行体1の第一衛星測位装置14は、人工衛星からのGNSS(Global Navigation Satellite System)の信号を受信して、受信した信号に基づいて自身の位置情報(緯度,経度を含む測位情報)を示す測位データを生成し、第一状態取得部15bに送信する。つまり、第一衛星測位装置14は、GPS、QZSS、Gallileo等で構成されるGNSSにより、自身の位置情報を検出可能である。この第一衛星測位装置14により検出された飛行体1の位置情報は、検出した時間と対応付けられて、第一記憶部16に記憶されると共に、第一通信部12を介して連結機構3の通信装置32やエネルギー源飛行体2Aの第二通信部22に送信可能に構成されている。 The first satellite positioning device 14 of the flight object 1 receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, and determines its own position information (positioning information including latitude and longitude) based on the received signal. It generates positioning data shown and sends it to the first state acquisition unit 15b. That is, the first satellite positioning device 14 can detect its own position information using GNSS, which includes GPS, QZSS, Gallileo, and the like. The position information of the flying object 1 detected by the first satellite positioning device 14 is stored in the first storage unit 16 in association with the time of detection, and is also transmitted to the coupling mechanism 3 via the first communication unit 12. It is configured such that it can be transmitted to the communication device 32 of the energy source aircraft 2A and the second communication unit 22 of the energy source aircraft 2A.
 飛行体1の第一エネルギー制御部15aは、自身の第一受電部11のエネルギー量を制御する。この第一エネルギー制御部15aは、例えば、第一状態取得部15bにより取得された第一受電部11の蓄電量が設定値(自身が飛行可能な電力値に安全率を乗算した値)以下となったとき、エネルギー源飛行体2Aに対してエネルギーの供給を要求したり、他の飛行体1に対してエネルギーの融通を要求したりする。また、第一エネルギー制御部15aは、例えば、第一状態取得部15bにより取得された第一受電部11の蓄電量が設定値以下となったとき、複数の飛行体1群から自身の飛行体1を離脱させ、所定の充電場所や着陸場所へ飛行するよう第一単独飛行制御部15dに指示を出す。 The first energy control unit 15a of the aircraft 1 controls the amount of energy of its own first power receiving unit 11. For example, the first energy control unit 15a determines that the amount of electricity stored in the first power receiving unit 11 acquired by the first state acquisition unit 15b is equal to or less than a set value (a value obtained by multiplying the power value at which the first power receiving unit 11 can fly by a safety factor). When this occurs, the energy source aircraft 2A is requested to supply energy, or the other aircraft 1 is requested to accommodate energy. In addition, the first energy control unit 15a may be configured to select the own aircraft from one group of aircraft when the amount of electricity stored in the first power receiving unit 11 acquired by the first state acquisition unit 15b becomes equal to or less than a set value. 1 and issues an instruction to the first solo flight control unit 15d to depart from the aircraft and fly to a predetermined charging location or landing location.
 飛行体1の第一状態取得部15bは、第一受電部11のエネルギー状態(充電量や残容量等)、自身の飛行状態、周辺の環境情報を取得する。また、第一状態取得部15bは、飛行体1が気圧センサを搭載している場合は飛行体1の高度情報、ジャイロセンサを搭載している場合は飛行体1の飛行姿勢、速度センサを搭載している場合は飛行体1の飛行速度、風速センサや風向センサを搭載している場合は周辺の風状態といった飛行体1の飛行に影響を及ぼす様々な状態を取得する。 The first status acquisition unit 15b of the aircraft 1 acquires the energy status (charge amount, remaining capacity, etc.) of the first power receiving unit 11, its own flight status, and surrounding environment information. The first status acquisition unit 15b also includes altitude information of the flying object 1 if the flying object 1 is equipped with a barometric pressure sensor, and flight attitude and speed sensor of the flying object 1 if the flying object 1 is equipped with a gyro sensor. Various conditions that affect the flight of the aircraft 1 are acquired, such as the flight speed of the aircraft 1 if it is equipped with a wind speed sensor or a wind direction sensor, and the surrounding wind conditions if it is equipped with a wind speed sensor or a wind direction sensor.
 飛行体1の第一集合飛行制御部15cは、第一記憶部16に記憶された飛行計画に基づいて複数の飛行体1及びエネルギー源飛行体2Aを協調飛行させる。第一集合飛行制御部15cにより生成される協調飛行指示は、飛行体システム100に属する飛行体1及びエネルギー源飛行体2Aを協調飛行させるための飛行指示である。この飛行指示集合は、飛行体システム100に属する複数の飛行体1及びエネルギー源飛行体2Aの位置関係に基づいて生成される。 The first collective flight control section 15c of the flying object 1 causes the plurality of flying objects 1 and the energy source flying object 2A to fly cooperatively based on the flight plan stored in the first storage section 16. The cooperative flight instruction generated by the first collective flight control unit 15c is a flight instruction for causing the flying object 1 and the energy source flying object 2A belonging to the flying object system 100 to fly cooperatively. This flight instruction set is generated based on the positional relationship between the plurality of flying objects 1 and the energy source flying object 2A belonging to the flying object system 100.
 第一集合飛行制御部15cは、集合基準位置及び集合基準方向のうちの少なくとも一方に基づいて、協調飛行指示を生成しても良い。この集合基準位置及び集合基準方向は、飛行体システム100に属する飛行体1及びエネルギー源飛行体2Aが協調飛行するときに基準となる位置及び方向である。第一記憶部16に記憶された飛行計画は、第一作業部13の作業計画を含んでもよい。この作業計画が、第一作業部13が作業を行う位置(例えば、作業対象の圃場の位置、圃場における作業を実行する位置など)、及び/又は作業内容(例えば、作業機の動作強度、動作時間、動作間隔など)を含んでも良い。 The first gathering flight control unit 15c may generate a cooperative flight instruction based on at least one of the gathering reference position and the gathering reference direction. The assembly reference position and assembly reference direction are positions and directions that serve as a reference when the flying object 1 and the energy source flying object 2A belonging to the flying object system 100 perform cooperative flight. The flight plan stored in the first storage unit 16 may include a work plan for the first work unit 13. This work plan determines the location where the first work unit 13 performs the work (for example, the position of the field to be worked on, the position where the work is performed in the field, etc.), and/or the work content (for example, the operating strength of the work equipment, the operation time, operation interval, etc.).
 飛行体1の第一単独飛行制御部15dは、複数の飛行体1及びエネルギー源飛行体2A群から自身の飛行体1を離脱させたときに、自身の単独飛行を制御する。例えば、第一単独飛行制御部15dは、第一衛星測位装置14で検出された自身の現在位置情報と、第一記憶部16に記憶された所定の充電場所や着陸場所等の待機位置情報とに基づいて、単独飛行経路を算出して、自身を単独飛行させる。 The first solo flight control unit 15d of the flying object 1 controls the solo flight of the flying object 1 when the flying object 1 leaves the group of the plurality of flying objects 1 and the energy source flying object 2A. For example, the first solo flight control unit 15d uses its own current position information detected by the first satellite positioning device 14 and standby position information such as a predetermined charging place or landing place stored in the first storage unit 16. Based on this, the robot calculates a solo flight path and flies itself solo.
 飛行体1の第一作業制御部15eは、所定の作業を実行する吊下作業装置5や第一作業部13の作動を制御する。本実施形態における第一作業制御部15eは、散布物を散布するポンプ及びノズルの作動やカメラの作動を制御する。この制御にあたり、例えば周辺の環境情報、圃場の形状情報及び他の飛行体1との相対位置関係等を考慮して、第一作業制御部15eは、最適な散布位置となるように吊下作業装置5を作動させる。 The first work control unit 15e of the aircraft 1 controls the operation of the suspension work device 5 and the first work unit 13 that execute predetermined work. The first work control unit 15e in this embodiment controls the operation of a pump and nozzle for dispersing substances and the operation of a camera. In performing this control, the first work control unit 15e performs the hanging work so as to obtain an optimal spraying position, taking into consideration, for example, surrounding environment information, field shape information, relative positional relationship with other flying objects 1, etc. Activate the device 5.
 飛行体1の第一記憶部16は、自身に搭載された一時的ではない(nоn-trаnsitоry)記憶媒体で構成されており、第一制御部15のプログラム、自身の状態情報、飛行計画及び作業計画等を記憶している。 The first storage unit 16 of the aircraft 1 is composed of a non-transitory storage medium mounted on the aircraft 1, and stores the program of the first control unit 15, its own status information, flight plan and work. Remembers plans etc.
 エネルギー源飛行体2Aのエネルギー源21は、カセット交換式等のバッテリーで構成されている。このエネルギー源21は、複数の飛行体1の飛行のために供給される飛行エネルギー源、飛行体1の第一作業部13や吊下作業装置5を作動させる作業用エネルギー源、自身を飛行させる駆動エネルギー源、第二作業部23や吊下作業装置5を作動させる作業用エネルギー源として活用することができる。エネルギー源21がカセット交換式のバッテリーである場合は、エネルギー源飛行体2Aの電力量が不足した場合に、所定の交換場所にて交換することができる。 Energy source The energy source 21 of the aircraft 2A is composed of a replaceable cassette battery or the like. This energy source 21 is a flight energy source supplied for the flight of a plurality of flying objects 1, a working energy source for operating the first working section 13 of the flying object 1 and the suspended working device 5, and a working energy source for making itself fly. It can be utilized as a driving energy source and a working energy source for operating the second working section 23 and the hanging working device 5. If the energy source 21 is a replaceable cassette battery, it can be replaced at a predetermined replacement location when the energy source aircraft 2A runs out of power.
 エネルギー源飛行体2Aの第二通信部22は、飛行体1の第一通信部12の通信装置32と有線通信又は無線通信が可能で、且つ、地上に設置されたコンピュータやタブレット、携帯端末等で構成される管理装置(不図示)と無線通信可能な通信インターフェースで構成されている。エネルギー源飛行体2Aの第二作業部23は、カメラ、散布物を収容するタンクや散布物を散布するポンプ及びノズル等で構成されている。この第二作業部23は、第二作業制御部25eにより作動が制御される。 The second communication unit 22 of the energy source aircraft 2A is capable of wired or wireless communication with the communication device 32 of the first communication unit 12 of the aircraft 1, and can communicate with a computer, tablet, mobile terminal, etc. installed on the ground. It is composed of a management device (not shown) consisting of a management device (not shown) and a communication interface capable of wireless communication. The second working section 23 of the energy source aircraft 2A is composed of a camera, a tank for storing a spray material, a pump and a nozzle for spraying the spray material, and the like. The operation of this second working section 23 is controlled by a second working control section 25e.
 エネルギー源飛行体2Aの第二衛星測位装置24は、飛行体1の第一衛星測位装置14と同様の構成であるため、説明を省略する。 The second satellite positioning device 24 of the energy source flight vehicle 2A has the same configuration as the first satellite positioning device 14 of the flight vehicle 1, so a description thereof will be omitted.
 エネルギー源飛行体2Aの第二記憶部26は、自身に搭載された一時的ではない(nоn-trаnsitоry)記憶媒体で構成されており、第二制御部25のプログラム、自身の状態情報、エネルギー計画、飛行計画及び作業計画等を記憶している。エネルギー計画は、第一受電部11の蓄電量及び充電開始する設定値、エネルギー源21の貯留量及び他の飛行体1に充電可能な閾値となる所定値等の情報である。 The second storage unit 26 of the energy source aircraft 2A is composed of a non-temporary storage medium mounted on itself, and stores the program of the second control unit 25, its own state information, and energy plan. , flight plans, work plans, etc. The energy plan is information such as the amount of electricity stored in the first power receiving unit 11, a setting value for starting charging, the amount of energy stored in the energy source 21, and a predetermined value that is a threshold value at which other aircraft 1 can be charged.
 エネルギー源飛行体2Aの第二エネルギー制御部25aは、第二通信部22を介して受信した夫々の飛行体1における第一受電部11のエネルギー状態(充電量や残容量等)に応じて、自身のエネルギー源21を制御する。第二エネルギー制御部25aは、例えば、第二状態取得部25bにより取得された第一受電部11の蓄電量が設定値以下となった飛行体1に対してエネルギーを供給する。このエネルギーの供給は、ケーブルを介した有線給電であっても良いし、非接触給電であっても良い。また、第二エネルギー制御部25aは、例えば、エネルギー源21の貯留量が所定値(自身が飛行可能な電力値に安全率を乗算した値)以下となったとき、エネルギー源飛行体2Aを蓄電量が最も多い他の飛行体1や新たなエネルギー源飛行体2Aと交代させても良い。つまり、エネルギー源飛行体2Aは、複数の飛行体1の何れかである。また、第二エネルギー制御部25aは、例えば、エネルギー源21の貯留量が所定値(自身が飛行可能な電力値に安全率を乗算した値)以下となったとき、全ての飛行体1を切り離して夫々を単独飛行させて自身を充電ポイントまで飛行させても良い。 The second energy control unit 25a of the energy source aircraft 2A receives the energy status (charge amount, remaining capacity, etc.) of the first power receiving unit 11 of each aircraft 1 via the second communication unit 22, Controls own energy source 21. The second energy control unit 25a supplies energy to the aircraft 1, for example, where the amount of electricity stored in the first power receiving unit 11 acquired by the second state acquisition unit 25b has become equal to or less than a set value. This energy supply may be a wired power supply via a cable or a non-contact power supply. For example, when the storage amount of the energy source 21 becomes less than or equal to a predetermined value (a value obtained by multiplying the power value at which the self can fly by a safety factor), the second energy control unit 25a controls the energy source aircraft 2A to It may be replaced with another flying object 1 having the largest amount or a new energy source flying object 2A. That is, the energy source flying object 2A is any one of the plurality of flying objects 1. Further, the second energy control unit 25a disconnects all the flying objects 1, for example, when the storage amount of the energy source 21 becomes less than a predetermined value (a value obtained by multiplying the power value at which the self can fly by a safety factor). You can also fly each one independently to the charging point.
 エネルギー源飛行体2Aの第二状態取得部25bは、第二通信部22を介して夫々の飛行体1における第一受電部11のエネルギー状態(充電量や残容量等)を取得すると共に、自身のエネルギー状態(充電量や残容量等)、自身の飛行状態及び周辺の環境情報を取得する。また、第二状態取得部25bは、エネルギー源飛行体2Aが気圧センサを搭載している場合はエネルギー源飛行体2Aの高度情報、ジャイロセンサを搭載している場合はエネルギー源飛行体2Aの飛行姿勢、速度センサを搭載している場合はエネルギー源飛行体2Aの飛行速度、風速センサや風向センサを搭載している場合は周辺の風状態といったエネルギー源飛行体2Aの飛行に影響を及ぼす様々な状態を取得する。 The second status acquisition unit 25b of the energy source aircraft 2A acquires the energy status (charge amount, remaining capacity, etc.) of the first power receiving unit 11 in each aircraft 1 via the second communication unit 22, and also Acquires the energy status (charge amount, remaining capacity, etc.) of the aircraft, its own flight status, and surrounding environment information. The second status acquisition unit 25b also provides altitude information of the energy source aircraft 2A if the energy source aircraft 2A is equipped with a barometric pressure sensor, and information about the flight of the energy source aircraft 2A if the energy source aircraft 2A is equipped with a gyro sensor. Various factors that affect the flight of the energy source aircraft 2A, such as the flight speed of the energy source aircraft 2A if it is equipped with an attitude and speed sensor, or the surrounding wind conditions if it is equipped with a wind speed sensor or wind direction sensor. Get the status.
 エネルギー源飛行体2Aの第二集合飛行制御部25cと、第二単独飛行制御部25dと、第二作業制御部25eとは、夫々、飛行体1の第一集合飛行制御部15cと、第一単独飛行制御部15dと、第一作業制御部15eと同様の構成であるため、説明を省略する。なお、飛行体1及びエネルギー源飛行体2Aが協調飛行する際、第一集合飛行制御部15cと第二集合飛行制御部25cとの間で主従関係を持たせても良いし、複数の飛行体1の第一集合飛行制御部15cの間で主従関係を持たせても良い。 The second collective flight control section 25c, the second individual flight control section 25d, and the second work control section 25e of the energy source aircraft 2A are the first collective flight control section 15c and the first Since the configuration is similar to that of the solo flight control section 15d and the first work control section 15e, a description thereof will be omitted. In addition, when the flight object 1 and the energy source flight object 2A fly cooperatively, a master-slave relationship may be established between the first group flight control section 15c and the second group flight control section 25c, or a plurality of flight objects A master-slave relationship may be established between the first set flight control units 15c.
 図1~図3に示すように、連結機構3は、フレーム体30、エネルギー源31、通信装置32及び制御装置33を有している。また、飛行体システム100は、連結機構3と飛行体1及びエネルギー源飛行体2Aとの結合を案内する結合案内部材Fを備えている。フレーム体30の上部に、接続機構4のフレーム体40が接続されており、フレーム体30の下部に、飛行体1及びエネルギー源飛行体2Aが接続されている。本実施形態では、平面視で五角形であるフレーム体30の5つの頂点の近傍に、4つの飛行体1及び1つのエネルギー源飛行体2Aが接続されている。 As shown in FIGS. 1 to 3, the coupling mechanism 3 includes a frame body 30, an energy source 31, a communication device 32, and a control device 33. The aircraft system 100 also includes a coupling guide member F that guides coupling of the coupling mechanism 3, the aircraft 1, and the energy source aircraft 2A. The frame body 40 of the connection mechanism 4 is connected to the upper part of the frame body 30, and the flying object 1 and the energy source flying object 2A are connected to the lower part of the frame body 30. In this embodiment, four flying objects 1 and one energy source flying object 2A are connected near five vertices of a frame body 30 that is pentagonal in plan view.
 接続機構4は、フレーム体40、エネルギー源41、通信装置42、制御装置43及びワイヤ44を有している。フレーム体40の下部にワイヤ44及び連結機構3が接続されている。ワイヤ44の下端に吊下作業装置5が接続されている。換言すれば、吊下作業装置5は、接続機構4のワイヤ44により吊り下げられる。接続機構4が、ワイヤ44の長さを変更する機構(例えば、ウィンチ)や、ワイヤ44と吊下作業装置5との接続を解除する機構、フレーム体40とワイヤ44との接続を解除する機構を備えても良い。なお、連結機構3及び接続機構4が一体の構造物として構成されていても良い。 The connection mechanism 4 includes a frame body 40, an energy source 41, a communication device 42, a control device 43, and a wire 44. A wire 44 and a connecting mechanism 3 are connected to the lower part of the frame body 40. A hanging work device 5 is connected to the lower end of the wire 44. In other words, the hanging work device 5 is suspended by the wire 44 of the connection mechanism 4. The connection mechanism 4 includes a mechanism (for example, a winch) that changes the length of the wire 44, a mechanism that disconnects the wire 44 from the hanging device 5, and a mechanism that disconnects the frame body 40 and the wire 44. may be provided. Note that the connecting mechanism 3 and the connecting mechanism 4 may be configured as an integrated structure.
 結合案内部材Fは、連結機構3と飛行体1及びエネルギー源飛行体2Aとに亘って設けられている。結合案内部材Fは、連結機構3と飛行体1及びエネルギー源飛行体2Aとが所定の位置関係や向きで結合するように案内する部材であってもよい。例えば、一方の結合案内部材Fに溝が形成され、当該溝に係合可能なリブが他方の結合案内部材Fに形成されてもよい。結合案内部材Fが、通信線や電力線、燃料パイプ等のコネクタを含んでもよい。一方の結合案内部材Fが、先広がりの中空円錐を備え、他方の結合案内部材Fが、中空円錐の内部に進入可能な棒状部位を備えてもよい。この場合、棒状部位が中空円錐の内部に進入すると、中空円錐の内壁により棒状部位が中空円錐の中央へ導かれるので、結合案内部材Fどうしの結合が容易になる。 The coupling guide member F is provided across the coupling mechanism 3, the flying object 1, and the energy source flying object 2A. The coupling guide member F may be a member that guides the coupling mechanism 3, the aircraft 1, and the energy source aircraft 2A so that they are coupled in a predetermined positional relationship and orientation. For example, a groove may be formed on one coupling guide member F, and a rib that can engage with the groove may be formed on the other coupling guide member F. The coupling guide member F may include connectors for communication lines, power lines, fuel pipes, and the like. One coupling guide member F may be provided with a hollow cone that widens toward the tip, and the other coupling guide member F may be provided with a rod-shaped portion that can enter into the interior of the hollow cone. In this case, when the rod-shaped portion enters the inside of the hollow cone, the rod-shaped portion is guided to the center of the hollow cone by the inner wall of the hollow cone, making it easier to connect the coupling guide members F to each other.
 図1及び図4に示すように、接続機構4は、熱気球や、ヘリウムなどの空気より比重が小さい気体を封入した風船などで構成され、吊下作業装置5を持ち上げ可能な浮力部45を有しても良い。この浮力部45は、エネルギー源41で生成された熱エネルギーにより膨張することにより、浮力を発生させても良い。エネルギー源41で生成された熱エネルギーとは、エネルギー源41がバッテリーや発電機の場合は排熱、内燃機関の場合は排ガスにより生成される熱エネルギーのことである。 As shown in FIGS. 1 and 4, the connection mechanism 4 is configured with a hot air balloon or a balloon filled with a gas such as helium that has a specific gravity smaller than air, and has a buoyant part 45 that can lift the hanging work device 5. You may have one. The buoyancy portion 45 may generate buoyancy by expanding due to thermal energy generated by the energy source 41. The thermal energy generated by the energy source 41 refers to thermal energy generated by exhaust heat when the energy source 41 is a battery or a generator, or from exhaust gas when the energy source 41 is an internal combustion engine.
 浮力部45が空気中において受ける浮力は、浮力部45が地球上において受ける重力より大きい。すなわち浮力部45は、単独では重力より浮力が大きく、空気中において上向きの力を生ずる。これによって、飛行体1又はエネルギー源飛行体2A全体に上向きの力を与え、揚力によって支持する必要がある飛行体1又はエネルギー源飛行体2A全体の荷重を緩和しうる。また、この態様において、飛行体1又はエネルギー源飛行体2Aを下向きに下降させうる押付力を発生させるように飛行体1又はエネルギー源飛行体2Aを運転すると、飛行体1又はエネルギー源飛行体2Aにおいて、下向きの押付力と浮力部45による上向きの揚力とが拮抗するようにできる。これによって、飛行体1又はエネルギー源飛行体2Aが離陸又は着陸するときの上昇又は下降速度を、低い速度で精密に制御しやすくなる。 The buoyant force that the buoyant part 45 receives in the air is greater than the gravitational force that the buoyant part 45 receives on the earth. That is, the buoyancy part 45 alone has a buoyancy force greater than gravity, and generates an upward force in the air. As a result, an upward force can be applied to the entire aircraft 1 or the energy source aircraft 2A, and the load on the entire aircraft 1 or the energy source aircraft 2A, which needs to be supported by lift, can be alleviated. Further, in this aspect, when the flying object 1 or the energy source flying object 2A is operated to generate a pressing force that can cause the flying object 1 or the energy source flying object 2A to descend downward, the flying object 1 or the energy source flying object 2A In this case, the downward pressing force and the upward lifting force by the buoyant portion 45 can be made to compete with each other. This makes it easier to accurately control the rising or descending speed at a low speed when the flying object 1 or the energy source flying object 2A takes off or lands.
 図1及び図9に示すように、飛行体システム100は、エネルギー供給体2と飛行体1とをワイヤ等で構成されるケーブルCa(有線の一例)で連結する連結用飛行体6を備えていても良い。連結用飛行体6は、第三受電部61と、第三通信部62と、第三衛星測位装置63と、連結制御部64とを備えている。 As shown in FIGS. 1 and 9, the flying object system 100 includes a connecting flying object 6 that connects the energy supplying object 2 and the flying object 1 with a cable Ca (an example of a wired wire) made of a wire or the like. It's okay. The connection aircraft 6 includes a third power receiving section 61, a third communication section 62, a third satellite positioning device 63, and a connection control section 64.
 連結用飛行体6の第三受電部61は、所定の容量を蓄電しているバッテリーで構成されており、エネルギー供給体2からケーブルCaを介して電力が供給可能であるが、電磁誘導方式や磁界共鳴方式等の非接触給電であっても良い。連結用飛行体6の第三通信部62は、飛行体1の第一通信部12やエネルギー供給体2と有線通信又は無線通信が可能な通信インターフェースで構成されている。連結用飛行体6の第三衛星測位装置63は、飛行体1の第一衛星測位装置14と同様の構成であるため、説明を省略する。 The third power receiving unit 61 of the connecting aircraft 6 is composed of a battery that stores a predetermined capacity, and can be supplied with power from the energy supply unit 2 via the cable Ca. A non-contact power supply such as a magnetic field resonance method may also be used. The third communication unit 62 of the connecting aircraft 6 is configured with a communication interface capable of wired or wireless communication with the first communication unit 12 of the aircraft 1 and the energy supply body 2. The third satellite positioning device 63 of the connecting flight object 6 has the same configuration as the first satellite positioning device 14 of the flight object 1, so a description thereof will be omitted.
 連結用飛行体6の連結制御部64は、飛行体1とエネルギー供給体2との相対位置及び人工物の位置に基づいて自身の飛行位置を制御する。この連結制御部64は、電柱や樹木等の固定物や作業車等の移動物を回避するようにケーブルCaを誘導し、飛行体1の作業位置をアシストする。これにより、飛行体1は、干渉物を迂回した飛行ルートを設定することが可能となり、作業効率を向上させることができる。 The connection control unit 64 of the connection flying object 6 controls its own flight position based on the relative position of the flying object 1 and the energy supplying object 2 and the position of the artificial object. The connection control unit 64 guides the cable Ca to avoid fixed objects such as telephone poles and trees and moving objects such as work vehicles, and assists the flying object 1 in the working position. Thereby, the flying object 1 can set a flight route that bypasses the interfering object, and work efficiency can be improved.
 夫々の飛行体1の第一通信部12、エネルギー源飛行体2Aの第二通信部22、接続機構4の通信装置42、連結機構3の通信装置32、吊下作業装置5の通信装置52及び連結用飛行体6の第三通信部62は、有線又は無線通信により互いに通信可能なように構成されている。 The first communication unit 12 of each flight object 1, the second communication unit 22 of the energy source flight object 2A, the communication device 42 of the connection mechanism 4, the communication device 32 of the connection mechanism 3, the communication device 52 of the suspension work device 5, and The third communication units 62 of the connecting aircraft 6 are configured to be able to communicate with each other by wired or wireless communication.
 エネルギー源飛行体2Aのエネルギー源21は、飛行体1や連結用飛行体6へのエネルギー供給に加えて、連結機構3、接続機構4及び吊下作業装置5へのエネルギー供給が可能に構成されている。また、連結機構3のエネルギー源31は、制御装置33によりエネルギー量が管理されており、飛行体1、連結用飛行体6、接続機構4及び吊下作業装置5へのエネルギー供給が可能に構成されている。また、接続機構4のエネルギー源41は、制御装置43によりエネルギー量が管理されており、飛行体1、連結用飛行体6、連結機構3及び吊下作業装置5へのエネルギー供給が可能に構成されている。また、吊下作業装置5のエネルギー源51は、制御装置53によりエネルギー量が管理されており、飛行体1、連結用飛行体6、連結機構3、接続機構4及び他の吊下作業装置5へのエネルギー供給が可能に構成されている。 The energy source 21 of the energy source aircraft 2A is configured to be capable of supplying energy to the coupling mechanism 3, the connection mechanism 4, and the suspension work device 5 in addition to supplying energy to the aircraft 1 and the connecting aircraft 6. ing. In addition, the energy source 31 of the coupling mechanism 3 has its energy amount managed by the control device 33, and is configured to be able to supply energy to the flying object 1, the connecting flying object 6, the connecting mechanism 4, and the hanging work device 5. has been done. In addition, the energy source 41 of the connection mechanism 4 has its energy amount managed by the control device 43, and is configured to be able to supply energy to the flying object 1, the connecting flying object 6, the connecting mechanism 3, and the hanging work device 5. has been done. Moreover, the energy source 51 of the hanging work device 5 has its energy amount managed by the control device 53, and the energy source 51 of the hanging work device 5 is managed by the control device 53. It is configured so that it can supply energy to
[第二実施形態]
 図5に示すように、本実施形態に係る飛行体システム100は、バッテリーを用いた電力駆動式で構成される飛行体1(飛行本体に相当)、及び、飛行体1を援助して飛行可能なサポート飛行体2C(エネルギー供給体2に相当、飛行本体に相当)を備えている。本実施形態における飛行体1は、小型のドローンで構成されており、サポート飛行体2Cは、大型のドローンや気球(浮力飛行体)等で構成されている。
[Second embodiment]
As shown in FIG. 5, the flying object system 100 according to the present embodiment includes a flying object 1 (corresponding to a flight main body) configured with an electric power drive type using a battery, and a flying object 1 capable of flying with assistance of the flying object 1. The aircraft is equipped with a supporting flight body 2C (corresponding to the energy supply body 2, equivalent to the flight main body). The flying object 1 in this embodiment is a small drone, and the support flying object 2C is a large drone, a balloon (buoyant flying object), or the like.
 飛行体1は、第一受電部11と、第一通信部12と、第一作業部13と、第一衛星測位装置14と、第一制御部15と、第一記憶部16とを備えている。第一制御部15は、第一エネルギー制御部15aと、第一状態取得部15bと、第一単独飛行制御部15dと、第一作業制御部15eとを有している。これらの構成は、上述した第一実施形態に係る飛行体1と同様であるので、説明を省略する。 The flying object 1 includes a first power receiving section 11, a first communication section 12, a first working section 13, a first satellite positioning device 14, a first control section 15, and a first storage section 16. There is. The first control section 15 includes a first energy control section 15a, a first state acquisition section 15b, a first solo flight control section 15d, and a first work control section 15e. These configurations are the same as those of the flying object 1 according to the first embodiment described above, so a description thereof will be omitted.
 サポート飛行体2Cは、自身と飛行体1とを連結する連結機構27と、作業装置29とを備えている。連結機構27は、第二制御部28と、大容量のバッテリーで構成されるエネルギー源27aと、通信装置27bと、結合案内部材27cと、第二衛星測位装置27dと、第二記憶部27eとを有している。第二制御部28は、第二エネルギー制御部28a(エネルギー制御部に相当)と、第二状態取得部28bと、飛行結合制御部28cと、協調飛行制御部28dと、第二単独飛行制御部28eと、第二作業制御部28fとを有している。 The support flying object 2C includes a connecting mechanism 27 that connects itself and the flying object 1, and a working device 29. The coupling mechanism 27 includes a second control section 28, an energy source 27a composed of a large-capacity battery, a communication device 27b, a coupling guide member 27c, a second satellite positioning device 27d, and a second storage section 27e. have. The second control unit 28 includes a second energy control unit 28a (corresponding to an energy control unit), a second state acquisition unit 28b, a flight combination control unit 28c, a cooperative flight control unit 28d, and a second independent flight control unit. 28e, and a second work control section 28f.
 図5及び図8に示すように、飛行体1は、第一本体部1Aと、結合案内部材27cに係合可能で第一本体部1Aから下側に突出した第一脚部1Bと、開閉可能で第一本体部1Aから横側に突出した複数(図8では3つ)の第一腕部1Cとを有している。これら第一腕部1Cの夫々には、第一回転翼1Caが連結されており、これら第一回転翼1Caをモータ(不図示)等の駆動力により回転させることによって、揚力及び推進力を発生させる。また、第一本体部1A及び第一腕部1Cに亘って、第一作業部13が接続されている。第一本体部1Aには、第一受電部11と第一通信部12と第一衛星測位装置14と第一制御部15と第一記憶部16とが収容されている。 As shown in FIGS. 5 and 8, the flying object 1 includes a first main body portion 1A, a first leg portion 1B that can be engaged with the coupling guide member 27c and protrudes downward from the first main body portion 1A, and a first leg portion 1B that can be opened and closed. It has a plurality of (three in FIG. 8) first arm portions 1C that protrude laterally from the first main body portion 1A. A first rotor blade 1Ca is connected to each of these first arm portions 1C, and lift and propulsive force are generated by rotating these first rotor blades 1Ca by the driving force of a motor (not shown) or the like. let Further, a first working section 13 is connected across the first main body section 1A and the first arm section 1C. A first power receiving section 11, a first communication section 12, a first satellite positioning device 14, a first control section 15, and a first storage section 16 are housed in the first main body section 1A.
 図5~図8に示すように、サポート飛行体2Cの連結機構27は、自身と複数の飛行体1とを連結する機構であり、複数の飛行体1を支持する第二本体部27Aと、地面に着陸する支脚としてU字状に形成され第二本体部27Aから突出した複数(図6では2つ)の第二脚部27Bとを有している。また、連結機構27には、第二脚部27Bの内側且つ第二本体部27Aの下側に、作業装置29が接続されている。第二本体部27Aには、複数(図6では6つ)の第二回転翼27Aaが連結されており、これら第二回転翼27Aaをモータ(不図示)等の駆動力により回転させることによって、揚力及び推進力を発生させる。 As shown in FIGS. 5 to 8, the connection mechanism 27 of the support flight object 2C is a mechanism that connects itself and the plurality of flight objects 1, and includes a second main body portion 27A that supports the plurality of flight objects 1; It has a plurality of (two in FIG. 6) second leg parts 27B that are formed in a U-shape and protrude from the second main body part 27A as supporting legs that land on the ground. Further, a working device 29 is connected to the coupling mechanism 27 on the inside of the second leg portion 27B and on the lower side of the second main body portion 27A. A plurality of (six in FIG. 6) second rotary blades 27Aa are connected to the second main body portion 27A, and by rotating these second rotary blades 27Aa by the driving force of a motor (not shown) or the like, Generates lift and propulsion.
 第二本体部27Aには、第二制御部28とエネルギー源27aと通信装置27bと第二衛星測位装置27dと第二記憶部27eとが収容されている。また、第二本体部27Aには、複数の飛行体1とサポート飛行体2Cとの結合を案内する結合案内部材27cが設けられている。本実施形態における結合案内部材27cは、飛行体1の第一脚部1Bを把持する機構を含んでおり、第一脚部1Bよりも大きな収容溝やテーパー溝を有する先広がりの中空円錐状に形成されている。この結合案内部材27cが、通信線や電力線、燃料パイプ等のコネクタを含んでも良いし、結合案内部材27cが飛行体1に形成されたリブに結合する溝等であっても良い。 The second main body portion 27A accommodates a second control portion 28, an energy source 27a, a communication device 27b, a second satellite positioning device 27d, and a second storage portion 27e. Further, the second main body portion 27A is provided with a coupling guide member 27c that guides the coupling between the plurality of flying objects 1 and the support flying object 2C. The coupling guide member 27c in this embodiment includes a mechanism for gripping the first leg portion 1B of the flying object 1, and has a hollow conical shape with a tapered groove and a larger accommodation groove than the first leg portion 1B. It is formed. The coupling guide member 27c may include a connector for a communication line, a power line, a fuel pipe, or the like, or may be a groove or the like that couples to a rib formed on the aircraft 1.
 サポート飛行体2Cのエネルギー源27aは、カセット交換式等のバッテリーで構成されている。このエネルギー源27aは、飛行体1の飛行のために供給される飛行エネルギー源、飛行体1の第一作業部13を作動させる作業用エネルギー源、自身を飛行させる駆動エネルギー源及び作業装置29を作動させる作業用エネルギー源として活用することができる。エネルギー源27aがカセット交換式のバッテリーである場合は、電力量が不足した場合に、所定の交換場所にて交換することができる。 The energy source 27a of the support aircraft 2C is composed of a replaceable cassette battery or the like. This energy source 27a is a flight energy source supplied for the flight of the flying object 1, a working energy source for operating the first working section 13 of the flying object 1, a driving energy source for making itself fly, and a working device 29. It can be used as a work energy source for operation. If the energy source 27a is a replaceable cassette battery, it can be replaced at a predetermined replacement location when the amount of power is insufficient.
 サポート飛行体2Cの通信装置27bは、飛行体1の第一通信部12と有線通信又は無線通信が可能で、且つ、地上に設置されたコンピュータやタブレット、携帯端末等で構成される管理装置(不図示)と無線通信可能な通信インターフェースで構成されている。サポート飛行体2Cの作業装置29は、圃場の状態を撮影可能なカメラや重量物で構成される散布物収容タンク等の農作業装置等で構成されている。この作業装置29は、第二本体部27Aに直接固定されても良いし、図3に示す吊下作業装置5のようにワイヤ等により吊り下げられても良い。本実施形態における作業装置29は、第二作業制御部28fにより作動が制御されるが、作業装置29に通信装置、制御装置、エネルギー源等が内蔵されていても良い。 The communication device 27b of the support flight object 2C is capable of wired or wireless communication with the first communication unit 12 of the flight object 1, and is a management device (comprising a computer, tablet, mobile terminal, etc.) installed on the ground. (not shown) and a communication interface capable of wireless communication. The working device 29 of the support aircraft 2C is composed of agricultural working devices such as a camera capable of photographing the state of the field and a spray material storage tank made up of heavy objects. This working device 29 may be directly fixed to the second main body portion 27A, or may be suspended by a wire or the like like the hanging working device 5 shown in FIG. The operation of the work device 29 in this embodiment is controlled by the second work control section 28f, but the work device 29 may have a built-in communication device, a control device, an energy source, and the like.
 サポート飛行体2Cの第二衛星測位装置27dは、人工衛星からのGNSS(Global Navigation Satellite System)の信号を受信して、受信した信号に基づいて自身の位置情報(緯度,経度を含む測位情報)を示す測位データを生成し、第二状態取得部28bに送信する。つまり、第二衛星測位装置27dは、GPS、QZSS、Gallileo等で構成されるGNSSにより、自身の位置情報(緯度,経度を含む測位情報)を検出可能である。この第二衛星測位装置27dにより検出されたサポート飛行体2Cの位置情報は、検出した時間と対応付けられて、第二記憶部27eに記憶されると共に、通信装置27bを介して管理装置に送信可能に構成されている。 The second satellite positioning device 27d of the support flight object 2C receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, and obtains its own position information (positioning information including latitude and longitude) based on the received signal. positioning data indicating this is generated and transmitted to the second state acquisition unit 28b. In other words, the second satellite positioning device 27d can detect its own position information (positioning information including latitude and longitude) using GNSS including GPS, QZSS, Gallileo, and the like. The position information of the support aircraft 2C detected by the second satellite positioning device 27d is stored in the second storage unit 27e in association with the time of detection, and is also transmitted to the management device via the communication device 27b. configured to be possible.
 サポート飛行体2Cの第二記憶部27eは、自身に搭載された一時的ではない(nоn-trаnsitоry)記憶媒体で構成されており、第二制御部28のプログラム、自身の状態情報や飛行計画、飛行体1の協調飛行計画、エネルギー計画及び作業計画等を記憶している。エネルギー計画は、第一受電部11の蓄電量及び充電開始する設定値、エネルギー源27aの貯留量及び飛行体1に充電可能な閾値となる所定値等の情報である。 The second storage unit 27e of the support aircraft 2C is composed of a non-temporary storage medium mounted on the support aircraft 2C, and stores the program of the second control unit 28, its own status information, flight plan, etc. It stores the cooperative flight plan, energy plan, work plan, etc. of the flying object 1. The energy plan is information such as the amount of electricity stored in the first power receiving unit 11, a setting value for starting charging, the amount of storage in the energy source 27a, and a predetermined value that is a threshold value at which the aircraft 1 can be charged.
 サポート飛行体2Cの第二エネルギー制御部28aは、通信装置27bを介して受信した夫々の飛行体1における第一受電部11のエネルギー状態(充電量や残容量等)に応じて、自身のエネルギー源27aを制御する。第二エネルギー制御部28aは、例えば、第二状態取得部28bにより取得された第一受電部11の蓄電量が設定値以下となった飛行体1に対してエネルギーを供給する。このエネルギーの供給は、ケーブルCbを介した有線給電であっても良いし、非接触給電であっても良い。また、第二エネルギー制御部28aは、例えば、エネルギー源27aの貯留量が所定値(自身が飛行可能な電力値に安全率を乗算した値)以下となったとき、サポート飛行体2Cを交代させても良いし、全ての飛行体1を切り離して夫々を単独飛行させても良い。 The second energy control unit 28a of the support aircraft 2C controls its own energy according to the energy state (charge amount, remaining capacity, etc.) of the first power receiving unit 11 in each aircraft 1 received via the communication device 27b. source 27a. The second energy control unit 28a supplies energy to the aircraft 1, for example, where the amount of electricity stored in the first power receiving unit 11, which is acquired by the second state acquisition unit 28b, is equal to or less than a set value. This energy supply may be a wired power supply via the cable Cb or a non-contact power supply. In addition, the second energy control unit 28a may, for example, change the support aircraft 2C when the storage amount of the energy source 27a becomes less than a predetermined value (a value obtained by multiplying the power value at which the aircraft itself can fly by a safety factor). Alternatively, all the flying objects 1 may be separated and each flying object 1 may be flown independently.
 サポート飛行体2Cの第二状態取得部28bは、通信装置27bを介して、夫々の飛行体1における第一受電部11のエネルギー状態(充電量や残容量等)や第一衛星測位装置14で検出された夫々の飛行体1の位置情報を取得する。また、第二状態取得部28bは、エネルギー源27aのエネルギー状態(充電量や残容量等)や第二衛星測位装置27dで検出された自身の位置情報を取得する。さらに、第二状態取得部28bは、サポート飛行体2Cが気圧センサを搭載している場合はサポート飛行体2Cの高度情報、ジャイロセンサを搭載している場合はサポート飛行体2Cの飛行姿勢、速度センサを搭載している場合はサポート飛行体2Cの飛行速度、風速センサや風向センサを搭載している場合は周辺の風状態といったサポート飛行体2Cの飛行に影響を及ぼす様々な状態を取得する。 The second state acquisition unit 28b of the support flight object 2C obtains the energy state (charge amount, remaining capacity, etc.) of the first power receiving unit 11 of each flight object 1 and the first satellite positioning device 14 via the communication device 27b. The position information of each detected flying object 1 is acquired. Further, the second status acquisition unit 28b acquires the energy status (charging amount, remaining capacity, etc.) of the energy source 27a and its own position information detected by the second satellite positioning device 27d. Furthermore, the second status acquisition unit 28b provides altitude information of the support aircraft 2C if the support aircraft 2C is equipped with a barometric pressure sensor, and flight attitude and speed of the support aircraft 2C if it is equipped with a gyro sensor. Various conditions that affect the flight of the support aircraft 2C are acquired, such as the flight speed of the support aircraft 2C if it is equipped with a sensor, and the surrounding wind conditions if it is equipped with a wind speed sensor or a wind direction sensor.
 サポート飛行体2Cの飛行結合制御部28cは、複数の飛行体1と連結機構27とが位置と向きを揃えて結合可能なように、飛行体1の飛行を制御する。この飛行結合制御部28cは、例えば、第一衛星測位装置14で検出された飛行体1の現在位置情報と、第二衛星測位装置21dで検出されたサポート飛行体2Cの現在位置情報とから、飛行体1とサポート飛行体2Cとの相対位置を算出し、第二記憶部27eに記憶された飛行体1の飛行計画に基づいて、複数の飛行体1とサポート飛行体2Cとの結合を制御する。このとき、結合案内部材27cにマークを設け、飛行結合制御部28cは、このマークを飛行体1に搭載されたカメラで認識しながら結合制御しても良い。また、飛行結合制御部28cは、複数の飛行体1の結合位置の割り付けを変更しても良いし、複数の飛行体1を横並びから縦並びに変更するというように結合姿勢を変更しても良い。 The flight connection control unit 28c of the support flight object 2C controls the flight of the flight object 1 so that the plurality of flight objects 1 and the coupling mechanism 27 can be connected with the same position and orientation. The flight connection control unit 28c, for example, uses the current position information of the flying object 1 detected by the first satellite positioning device 14 and the current position information of the support flying object 2C detected by the second satellite positioning device 21d. Calculates the relative position of the flying object 1 and the support flying object 2C, and controls the combination of the plurality of flying objects 1 and the supporting flying object 2C based on the flight plan of the flying object 1 stored in the second storage unit 27e. do. At this time, a mark may be provided on the coupling guide member 27c, and the flight coupling control section 28c may control the coupling while recognizing this mark with a camera mounted on the aircraft 1. Further, the flight combination control unit 28c may change the allocation of the joining positions of the plurality of flying objects 1, or may change the joining attitude of the plurality of flying objects 1, such as changing from side-by-side to vertical arrangement. .
 サポート飛行体2Cの協調飛行制御部28dは、複数の飛行体1が協調飛行するように制御する。この協調飛行制御部28dは、例えば、第一衛星測位装置14で検出された夫々の飛行体1の現在位置情報と、第二記憶部27eに記憶された飛行体1の協調飛行計画とに基づいて、複数の飛行体1の飛行編成を制御する。この飛行編成としては、複数の飛行体1が横列(1列やV字列など)に編隊飛行させながら一斉散布したり、散布した噴霧の流れを作業装置29のカメラで確認して飛行体1の編成を変更したりすることができる。 The cooperative flight control unit 28d of the support flying object 2C controls the plurality of flying objects 1 to fly cooperatively. This cooperative flight control unit 28d is based on, for example, the current position information of each flying object 1 detected by the first satellite positioning device 14 and the cooperative flight plan of the flying object 1 stored in the second storage unit 27e. to control the flight organization of the plurality of flying objects 1. In this flight formation, a plurality of aircraft 1 can be sprayed all at once while flying in a horizontal row (such as a single line or a V-shaped formation), or the flow of the sprayed spray can be confirmed with the camera of the work device 29, and the aircraft 1 can be You can change the organization of.
 協調飛行制御部28dは、協調基準位置及び協調基準方向のうちの少なくとも一方に基づいて、協調飛行指示を生成しても良い。この協調基準位置及び協調基準方向は、複数の飛行体1が協調飛行するときに基準となる位置及び方向である。第二記憶部26に記憶された飛行計画は、第一作業部13や作業装置29の作業計画を含んでもよい。この作業計画が、第一作業部13が作業を行う位置(例えば、作業対象の圃場の位置、圃場における作業を実行する位置など)、及び/又は作業内容(例えば、作業機の動作強度、動作時間、動作間隔など)を含んでも良い。 The cooperative flight control unit 28d may generate a cooperative flight instruction based on at least one of the cooperative reference position and the cooperative reference direction. The coordination reference position and coordination reference direction are positions and directions that serve as references when the plurality of flying objects 1 fly in coordination. The flight plan stored in the second storage unit 26 may include a work plan for the first work unit 13 and the work device 29. This work plan determines the location where the first work unit 13 performs the work (for example, the position of the field to be worked on, the position where the work is performed in the field, etc.), and/or the work content (for example, the operating strength of the work equipment, the operation time, operation interval, etc.).
 サポート飛行体2Cの第二単独飛行制御部28eは、複数の飛行体1群から一部の飛行体1を離脱させる制御を実行する。例えば、第二単独飛行制御部28eは、第一衛星測位装置14で検出された飛行体1の現在位置情報と、第二記憶部27eに記憶された飛行体1の飛行計画とに基づいて、単独飛行経路を算出して、飛行体1を単独飛行させる。第二単独飛行制御部28eは、単独基準位置及び単独基準方向のうちの少なくとも一方に基づいて、単独飛行指示を生成しても良い。この単独基準位置及び単独基準方向は、複数の飛行体1が単独飛行するときに基準となる位置及び方向である。 The second independent flight control unit 28e of the support aircraft 2C executes control to cause some of the aircraft 1 to leave a group of multiple aircraft 1. For example, the second solo flight control unit 28e, based on the current position information of the aircraft 1 detected by the first satellite positioning device 14 and the flight plan of the aircraft 1 stored in the second storage unit 27e, A solo flight path is calculated and the flying object 1 is made to fly solo. The second solo flight control unit 28e may generate the solo flight instruction based on at least one of the single reference position and the single reference direction. The individual reference position and the individual reference direction are positions and directions that serve as references when the plurality of flying objects 1 fly alone.
 サポート飛行体2Cの第二作業制御部28fは、圃場の状態を撮影可能なカメラ、散布物を収容するタンクや散布物を散布するポンプ及びノズルを含むスプレー装置等で構成されている作業装置29の作動を制御する。この第二作業制御部28fは、例えば、圃場の状態や散布状態を撮影するように作業装置29を制御する。第二作業制御部28fは、重量物で構成される作業装置29の作動を制御しても良い。例えば、作業装置29に大容量の散布物収容タンクが設けられている場合、この散布物を飛行体1の第一作業部13に供給するポンプ等の作動を制御する。 The second work control unit 28f of the support aircraft 2C is a working device 29 that includes a camera capable of photographing the state of the field, a spray device including a tank for storing a spray material, a pump and a nozzle for dispersing the spray material, and the like. control the operation of The second work control unit 28f controls the work device 29, for example, to photograph the state of the field and the state of spraying. The second work control section 28f may control the operation of the work device 29, which is a heavy object. For example, when the work device 29 is provided with a large-capacity spray material storage tank, the operation of a pump or the like that supplies the spray material to the first working section 13 of the aircraft 1 is controlled.
 本実施形態に飛行体システム100の一例として、図6には、飛行体システム100の飛行体1が作業中の斜視図が示されており、図7には飛行体システム100の飛行体1が待機中の斜視図が示されている。図6に示されるように、複数の飛行体1は、サポート飛行体2CにケーブルCbで有線接続されている。このケーブルCbには、サポート飛行体2Cの通信装置27bと飛行体1の第一通信部12とを接続する通信線や、サポート飛行体2Cのエネルギー源27aと飛行体1の第一受電部11とを接続する電力線又は燃料や散布物を流通させるパイプラインを収容することができる。 As an example of the flying object system 100 in this embodiment, FIG. 6 shows a perspective view of the flying object 1 of the flying object system 100 in operation, and FIG. 7 shows the flying object 1 of the flying object system 100. A standby perspective view is shown. As shown in FIG. 6, the plurality of flying objects 1 are wired to the support flying object 2C using a cable Cb. This cable Cb includes a communication line connecting the communication device 27b of the support flight object 2C and the first communication section 12 of the flight object 1, and a communication line connecting the energy source 27a of the support flight object 2C and the first power receiving section 11 of the flight object 1. It can accommodate power lines connecting the building or pipelines for distributing fuel or spray materials.
 図7に示すように、サポート飛行体2Cの飛行結合制御部28cは、複数の飛行体1と連結機構27とが結合するように飛行体1の飛行を制御し、結合された飛行体1の第一腕部1Cを閉姿勢に変更させる。これにより、サポート飛行体2Cのエネルギー源27aを用いて、所定の作業場所まで複数の飛行体1を一度に移動させることができる。 As shown in FIG. 7, the flight connection control unit 28c of the support flight object 2C controls the flight of the flight object 1 so that the plurality of flight objects 1 and the coupling mechanism 27 are connected, and The first arm portion 1C is changed to a closed position. Thereby, a plurality of aircraft 1 can be moved to a predetermined work place at once using the energy source 27a of the support aircraft 2C.
 飛行体1と第一実施形態に係るエネルギー源飛行体2Aや第二実施形態に係るサポート飛行体2Cとの連結態様は、種々の変形が可能である。例えば、連結機構3や連結機構27は、複数の飛行体1どうしが上下方向に離間する状態で連結させても良い。図2や図7に示す連結態様は、左右方向の空間が大きく、上下方向の空間が小さい場合に適している。一方、複数の飛行体1どうしが上下方向に離間する状態で連結する連結態様は、左右方向の空間が小さく、上下方向の空間が大きい場合に適している。なお、図2や図7に示す水平連結と複数の飛行体1どうしが上下方向に離間する立体連結とを、相互に変更可能に構成しても良い。 The manner in which the flying object 1 is connected to the energy source flying object 2A according to the first embodiment and the support flying object 2C according to the second embodiment can be modified in various ways. For example, the connecting mechanism 3 and the connecting mechanism 27 may connect a plurality of flying objects 1 while being separated from each other in the vertical direction. The connection modes shown in FIGS. 2 and 7 are suitable when the space in the horizontal direction is large and the space in the vertical direction is small. On the other hand, a connection mode in which a plurality of flying objects 1 are connected while being spaced apart from each other in the vertical direction is suitable when the space in the left-right direction is small and the space in the vertical direction is large. Note that the horizontal connection shown in FIGS. 2 and 7 and the three-dimensional connection in which the plurality of flying objects 1 are spaced apart from each other in the vertical direction may be configured to be mutually changeable.
 なお、本実施形態における飛行体システム100は、第一実施形態における接続機構4、吊下作業装置5、連結用飛行体6を備えても良い。また、本実施形態におけるサポート飛行体2Cにおいても、図4に示す浮力部45が設けられても良い。 Note that the flying object system 100 in this embodiment may include the connecting mechanism 4, the suspension work device 5, and the connecting flying object 6 in the first embodiment. Moreover, the buoyancy part 45 shown in FIG. 4 may also be provided in the support aircraft 2C in this embodiment.
 例えば、図9に示すように、飛行体システム100は、移動可能なエネルギー供給車2B(エネルギー供給体2に相当)と飛行体1(サポート飛行体2Cでも可)とをワイヤ等で構成されるケーブルCa(有線の一例)で連結する連結用飛行体6を備えていても良い。エネルギー供給車2Bは、電源車や燃料車等で構成される地上移動車であるが、飛行可能な飛行車であっても良い。 For example, as shown in FIG. 9, the flying object system 100 includes a movable energy supply vehicle 2B (corresponding to the energy supplying object 2) and a flying object 1 (also a support flying object 2C), which are constructed of wires or the like. A connecting flying object 6 connected by a cable Ca (an example of a wired wire) may be provided. The energy supply vehicle 2B is a ground vehicle including a power supply vehicle, a fuel vehicle, etc., but may also be a flying vehicle.
 例えば、図10に示すように、飛行体システム100は、移動可能な作業車2D(エネルギー供給体2に相当、作業装置に相当)と飛行体1(サポート飛行体2Cでも可)とをワイヤ等で構成されるケーブルCc(有線の一例)で連結しても良い。作業車2Dは、農作業機7に資材(苗、燃料、肥料、薬剤等)を搬送する資材搬送車、トラクタ,田植機,コンバインや籾機等の農作業機7、GPS基地局等であっても良い。作業車2Dは、地上移動車であるが、飛行可能な飛行車であっても良い。 For example, as shown in FIG. 10, the flying object system 100 connects a movable working vehicle 2D (corresponding to the energy supply body 2, equivalent to the working device) and the flying object 1 (the supporting flying object 2C is also possible) using wires, etc. They may be connected by a cable Cc (an example of a wired wire). The work vehicle 2D may be a material transport vehicle that transports materials (seedlings, fuel, fertilizer, medicine, etc.) to the agricultural work machine 7, a tractor, a rice transplanter, a farm work machine 7 such as a combine harvester or a rice paddy machine, a GPS base station, etc. good. The work vehicle 2D is a ground vehicle, but may also be a flying vehicle.
 図10に示す実施形態では、飛行体1がケーブルCcを介して作業車2Dから電力供給を受け、作業車2Dと農作業機7との間を往復移動する。例えば農作業機7が田植機の場合、作業車2Dの荷台に農作業機7の苗補給1回分の苗を1セットにしておき、作業車2Dから農作業機7まで苗を一度に運ぶと、人手の省力化と時間効率化が同時に達成できる。なお、資材の着脱は人が行い、作業車2Dから農作業機7までを自走飛行しても良く、リモートコントローラ等で人が操作しても良い。また、農作業機7が畦まで戻ってきた時に苗補充する方式の他に、農作業機7が走行中でも飛行体1が飛んで苗補充すれば、田植作業を止めることなく連続作業ができる。 In the embodiment shown in FIG. 10, the flying object 1 receives power from the working vehicle 2D via the cable Cc, and moves back and forth between the working vehicle 2D and the agricultural machine 7. For example, if the agricultural machine 7 is a rice transplanter, one set of seedlings for one replenishment of seedlings from the agricultural machine 7 is placed on the loading platform of the working vehicle 2D, and if the seedlings are transported from the working vehicle 2D to the agricultural machine 7 at once, it is difficult to use the human resources. Labor saving and time efficiency can be achieved at the same time. Note that attachment and detachment of materials may be performed by a person, and the work vehicle 2D to the agricultural machine 7 may fly by itself, or may be operated by a person using a remote controller or the like. In addition to the method of replenishing seedlings when the agricultural machine 7 returns to the ridge, if the flying object 1 flies and replenishes the seedlings even when the agricultural machine 7 is running, rice planting work can be continued without stopping.
[第三実施形態]
 図11~図12に示すように、本実施形態に係る飛行体システム100は、エネルギーを供給するエネルギー供給体2と、エネルギー供給体2で生成された熱エネルギーを用いて飛行する浮力飛行体8とを備えている。本実施形態におけるエネルギー供給体2は、エンジン駆動式発電機で構成されており、浮力飛行体8は、大型の気球(バルーン)等で構成されている。
[Third embodiment]
As shown in FIGS. 11 and 12, the flying object system 100 according to the present embodiment includes an energy supply body 2 that supplies energy, and a buoyant flight body 8 that flies using the thermal energy generated by the energy supply body 2. It is equipped with The energy supply body 2 in this embodiment is comprised of an engine-driven generator, and the buoyant flying object 8 is comprised of a large balloon or the like.
 本実施形態に係る飛行体システム100は、所定の作業を実施可能な作業装置9と、エネルギー供給体2で生成された熱エネルギーを管理するエネルギー管理装置10とを備えている。 The aircraft system 100 according to the present embodiment includes a work device 9 that can perform predetermined work, and an energy management device 10 that manages thermal energy generated by the energy supply body 2.
 一例として、エネルギー供給体2は、燃料により内燃機関を作動させて発電する発電機で構成されている。つまり、エネルギー供給体2は、バッテリーや内燃機関により作動させた発電機から供給された電力源、内燃機関を作動させる燃料源等で構成されるエネルギー源20aを有している。また、エネルギー供給体2は、エネルギー源20aで生成された熱エネルギーを浮力飛行体8に直接供給する熱供給部20bを有している。エネルギー源20aで生成された熱エネルギーとは、エネルギー源20aの発電による排熱、内燃機関の排ガスにより生成される熱エネルギーのことである。なお、熱供給部20bは、冷却水などの媒体を介してヘリウムガス等を熱する熱交換式の機構や発電した電力による発熱式の機構であっても良い。また、エネルギー供給体2は、浮力飛行体8や作業装置9と有線通信又は無線通信が可能な通信部20cを有している。 As an example, the energy supply body 2 is comprised of a generator that operates an internal combustion engine using fuel to generate electricity. That is, the energy supply body 2 has an energy source 20a that includes a power source supplied from a battery or a generator operated by an internal combustion engine, a fuel source for operating the internal combustion engine, and the like. Moreover, the energy supply body 2 has a heat supply part 20b that directly supplies the thermal energy generated by the energy source 20a to the buoyant aircraft 8. Thermal energy generated by the energy source 20a is thermal energy generated by exhaust heat generated by the energy source 20a and exhaust gas from the internal combustion engine. Note that the heat supply section 20b may be a heat exchange type mechanism that heats helium gas or the like via a medium such as cooling water, or a heat generation type mechanism using generated electric power. Moreover, the energy supply body 2 has a communication unit 20c capable of wired or wireless communication with the buoyant flying body 8 and the working device 9.
 浮力飛行体8は、浮力部81と、エネルギー制御部82と、接続機構83とを有している。接続機構83には、エネルギー源83aと、通信装置83bと、衛星測位装置83cとが収容されている。また、本実施形態では、接続機構83にエネルギー供給体2が収容されている。 The buoyant aircraft 8 has a buoyancy section 81, an energy control section 82, and a connection mechanism 83. The connection mechanism 83 accommodates an energy source 83a, a communication device 83b, and a satellite positioning device 83c. Further, in this embodiment, the energy supply body 2 is housed in the connection mechanism 83.
 作業装置9は、エネルギー源91と、衛星測位装置92と、制御装置93と、通信装置94とを有している。 The work device 9 includes an energy source 91, a satellite positioning device 92, a control device 93, and a communication device 94.
 浮力部81は、エネルギー供給体2のエネルギー源20aで生成された熱エネルギーを受けて膨張することにより、浮力を発生させる。また、浮力部81は、浮力飛行体8のエネルギー源83aで生成された熱エネルギーやプロペラ等の揚力により浮力を発生させることができる。これにより、浮力飛行体8は、停滞する飛行体として機能し、滞空,微速飛行に適した作業(例えば収穫作業や受粉作業)を行うことができる。 The buoyancy part 81 generates buoyancy by expanding upon receiving thermal energy generated by the energy source 20a of the energy supply body 2. Furthermore, the buoyancy unit 81 can generate buoyancy using thermal energy generated by the energy source 83a of the buoyant flying object 8 or the lifting force of a propeller or the like. Thereby, the buoyant flying object 8 functions as a stagnant flying object, and can perform work (for example, harvesting work and pollination work) suitable for staying in the air and flying at low speed.
 エネルギー制御部82は、通信装置83bを介して受信した作業装置9におけるエネルギー源91のエネルギー状態(残容量等)に応じて、浮力飛行体8のエネルギー源83a又はエネルギー供給体2のエネルギー源20aを制御する。エネルギー制御部82は、例えば、作業装置9のエネルギー源91のエネルギー残量が設定値以下となったエネルギー源91に対して浮力飛行体8のエネルギー源83a又はエネルギー供給体2のエネルギー源20aからエネルギーを供給する。このエネルギーの供給は、ケーブルCdを介した有線供給であっても良いし、非接触供給(例えば非接触給電)であっても良い。また、エネルギー制御部82は、例えば、浮力飛行体8のエネルギー源83a又は通信装置83bを介して受信したエネルギー供給体2のエネルギー源20aの貯留量が所定値(自身が飛行可能な電力値に安全率を乗算した値)以下となったとき、浮力飛行体8やエネルギー供給体2を交代させても良いし、所定のエネルギー補充場所にてエネルギーを補充しても良いし、全ての作業装置9を切り離して夫々を単独で作業させても良い。また、エネルギー管理装置10が、エネルギー供給体2、浮力飛行体8及び作業装置9のエネルギーを一括管理しても良い。 The energy control unit 82 selects the energy source 83a of the buoyant aircraft 8 or the energy source 20a of the energy supply body 2 according to the energy state (remaining capacity, etc.) of the energy source 91 in the working device 9 received via the communication device 83b. control. For example, the energy control unit 82 controls the energy source 91 of the working device 9 whose remaining energy level is below a set value from the energy source 83a of the buoyant aircraft 8 or the energy source 20a of the energy supply body 2. Provides energy. This energy supply may be a wired supply via the cable Cd, or may be a non-contact supply (for example, a non-contact power supply). The energy control unit 82 also controls the energy control unit 82 to control the energy source 20a of the energy supply unit 2 received via the energy source 83a of the buoyant aircraft 8 or the communication device 83b to a predetermined value (a power value at which the unit itself can fly). (value multiplied by the safety factor), the buoyant aircraft 8 and energy supply unit 2 may be replaced, energy may be replenished at a predetermined energy replenishment location, or all work equipment may be replaced. 9 may be separated and each may be operated independently. Further, the energy management device 10 may collectively manage the energy of the energy supply body 2, the buoyant flying vehicle 8, and the working device 9.
 本実施形態における接続機構83は、作業装置9と浮力飛行体8とを接続するように、浮力飛行体8と一体化された筐体で構成されている。この筐体には、エネルギー供給体2が収容されている。また、筐体には、エネルギー源83aと、通信装置83bと、衛星測位装置83cとが収容されている。なお、接続機構83は、ワイヤ等で吊り下げた筐体で構成しても良いし、地上に設置されたエネルギー供給体2とケーブル等で接続する形態としても良い。また、接続機構83は、作業装置9が飛行体である場合、筐体内部に離着陸できる機構であっても良い。 The connection mechanism 83 in this embodiment is comprised of a casing that is integrated with the buoyant aircraft 8 so as to connect the working device 9 and the buoyant aircraft 8. The energy supply body 2 is housed in this housing. Further, the housing accommodates an energy source 83a, a communication device 83b, and a satellite positioning device 83c. Note that the connection mechanism 83 may be configured with a casing suspended by a wire or the like, or may be connected to the energy supply body 2 installed on the ground using a cable or the like. Further, when the working device 9 is a flying object, the connecting mechanism 83 may be a mechanism that can take off and land inside the housing.
 浮力飛行体8のエネルギー源83aは、バーナー等の燃焼装置、冷却水などの媒体を介してヘリウムガス等を熱する熱交換装置、発電した電力による発熱装置、プロペラ等を回転駆動させる発電装置や内燃機関又は内燃機関の駆動力で発電させる発電装置等で構成されている。本実施形態では、このエネルギー源83aをエネルギー供給体2として活用することができる。 The energy source 83a of the buoyant aircraft 8 includes a combustion device such as a burner, a heat exchange device that heats helium gas or the like through a medium such as cooling water, a heat generating device that uses generated electricity, a power generation device that rotationally drives a propeller, etc. It consists of an internal combustion engine or a power generation device that generates electricity using the driving force of the internal combustion engine. In this embodiment, this energy source 83a can be utilized as the energy supply body 2.
 浮力飛行体8の通信装置83bは、エネルギー供給体2の通信部20c及び作業装置9の通信装置94と有線通信又は無線通信が可能で、且つ、地上に設置されたコンピュータやタブレット、携帯端末等で構成されるエネルギー管理装置10と無線通信可能な通信インターフェースで構成されている。なお、浮力飛行体8自体に所定の作業を実施する作業部が設けられても良い。 The communication device 83b of the buoyant aircraft 8 is capable of wired or wireless communication with the communication unit 20c of the energy supply body 2 and the communication device 94 of the work device 9, and can communicate with a computer, tablet, mobile terminal, etc. installed on the ground. The energy management device 10 is configured with a communication interface capable of wireless communication. Note that the buoyant flying object 8 itself may be provided with a working section that performs a predetermined work.
 浮力飛行体8の衛星測位装置83cは、人工衛星からのGNSS(Global Navigation Satellite System)の信号を受信して、受信した信号に基づいて自身の位置情報(緯度,経度を含む測位情報)を示す測位データを生成する。つまり、衛星測位装置83cは、GPS、QZSS、Gallileo等で構成されるGNSSにより、自身の位置情報(緯度,経度を含む測位情報)を検出可能である。この衛星測位装置83cにより検出された浮力飛行体8の位置情報は、検出した時間と対応付けられて、通信装置83bを介してエネルギー管理装置10に送信可能に構成されている。 The satellite positioning device 83c of the buoyant aircraft 8 receives a GNSS (Global Navigation Satellite System) signal from an artificial satellite, and indicates its own position information (positioning information including latitude and longitude) based on the received signal. Generate positioning data. In other words, the satellite positioning device 83c can detect its own position information (positioning information including latitude and longitude) using GNSS including GPS, QZSS, Gallileo, and the like. The position information of the buoyant flying object 8 detected by the satellite positioning device 83c is configured to be associated with the time of detection and can be transmitted to the energy management device 10 via the communication device 83b.
 作業装置9は、衛星測位装置92により自身の位置情報を検出しながら、所定の作業を実施可能なドローン等の飛行体、トラクタ,田植機,コンバインや籾機等の農作業機、資材搬送車,電源車や燃料車等で構成される地上移動車、GPS基地局等で構成されている。作業装置9のエネルギー源91は、制御装置93によりエネルギー量が管理されており、浮力飛行体8、エネルギー供給体2及び他の作業装置9へのエネルギー供給が可能に構成されている。なお、浮力飛行体8とケーブルCdで連結される作業装置9は、浮力飛行体8を支えるアンカー作業を実施しても良い。 The work device 9 includes a flying vehicle such as a drone that can carry out a predetermined work while detecting its own position information using a satellite positioning device 92, a tractor, a rice transplanter, an agricultural machine such as a combine harvester or a rice paddy machine, a material carrier, etc. It consists of ground transportation vehicles such as power supply vehicles and fuel vehicles, and GPS base stations. The energy source 91 of the work device 9 has its energy amount managed by the control device 93, and is configured to be able to supply energy to the buoyant flying object 8, the energy supply body 2, and other work devices 9. Note that the work device 9 connected to the buoyant aircraft 8 by the cable Cd may perform anchor work to support the buoyant aircraft 8.
 本実施形態における飛行体システム100は、浮力飛行体8を大型の気球型母船とし、作業装置9を構成する小型のドローンをケーブルCdにより有線接続した親子型である。このため、微速飛行の浮力飛行体8はバッテリーや薬剤などの重量物を省エネルギーで牽引するのに適し、作業装置9は軽量を活かして浮力飛行体8の周りで機敏に動いて作業することができる。また、浮力飛行体8が風などの外乱で流されても、ケーブルCdが外乱に対するバッファとなり、作業をする作業装置9は影響を抑えられる。なお、停滞する飛行体としての浮力飛行体8は、気球に限定されず、屋根状の停滞物等で複数の作業装置9を接続機構83により連結しても良い。 The flying object system 100 in this embodiment is a parent-child type in which the buoyant flying object 8 is a large balloon-type mother ship, and a small drone forming the working device 9 is connected by wire via a cable Cd. Therefore, the buoyant aircraft 8 flying at a slow speed is suitable for towing heavy objects such as batteries and medicines in an energy-saving manner, and the work device 9 can take advantage of its light weight to move quickly around the buoyant aircraft 8 to perform work. can. Furthermore, even if the buoyant flying object 8 is blown away by a disturbance such as wind, the cable Cd acts as a buffer against the disturbance, and the effect on the working device 9 can be suppressed. Note that the buoyant flying object 8 as a stagnant flying object is not limited to a balloon, and a plurality of working devices 9 may be connected by a connecting mechanism 83 using a roof-like stagnant object or the like.
[その他の実施形態]
(1)飛行体システム100が、鳥や動物の追い払いや警備、防犯等の用途に使用可能なように構成されてもよい。例えば、第一作業部13、第二作業部23、吊下作業装置5又は作業装置29が、撮影画像により鳥獣や不審者を認識可能な監視装置、音や光を発して鳥獣や不審者を威嚇する威嚇装置、鳥獣や不審者の存在を報知する報知装置等を含んでもよい。
[Other embodiments]
(1) The flying object system 100 may be configured to be usable for purposes such as driving away birds and animals, security, and crime prevention. For example, the first working part 13, the second working part 23, the hanging work device 5, or the working device 29 may be a monitoring device that can recognize birds, animals, or suspicious persons from captured images, or a monitoring device that can recognize birds, animals, or suspicious persons by emitting sound or light. It may also include an intimidation device that intimidates, a notification device that notifies the presence of birds, animals, or suspicious persons, and the like.
(2)飛行体システム100が、強風、落雷、降雨など飛行に悪影響を及ぼす天候に対処可能なように構成されてもよい。例えば、飛行体システム100が、天候を観測するセンサや、天候や天候の予報を示す情報を通信を介して取得する取得部などを備えてもよい。飛行体システム100が、天候又は天候の予報に応じて、飛行計画の変更や、安全区域への避難飛行、不時着等を行うように構成されてもよい。 (2) The aircraft system 100 may be configured to be able to cope with weather conditions that adversely affect flight, such as strong winds, lightning strikes, and rainfall. For example, the aircraft system 100 may include a sensor that observes the weather, an acquisition unit that acquires information indicating the weather or a weather forecast via communication, and the like. The aircraft system 100 may be configured to change the flight plan, take an evacuation flight to a safe area, make an emergency landing, etc., depending on the weather or weather forecast.
(3)飛行体1、エネルギー源飛行体2A又はサポート飛行体2Cが、両者が連結した状態で両者の相対位置が変更可能なように構成されてもよい。例えば、連結機構3,27に設けられた結合案内部材F,27cが移動可能なように構成されてもよい。これにより、飛行体システム100が飛行しているときに、複数の飛行体1と、エネルギー源飛行体2A又はサポート飛行体2Cとの相対位置を変更することが可能となる。 (3) The flying object 1, the energy source flying object 2A, or the support flying object 2C may be configured so that their relative positions can be changed while they are connected. For example, the coupling guide members F, 27c provided in the coupling mechanisms 3, 27 may be configured to be movable. Thereby, while the flying object system 100 is flying, it becomes possible to change the relative positions of the plurality of flying objects 1 and the energy source flying object 2A or the support flying object 2C.
(4)飛行体システム100が、飛行体1、エネルギー源飛行体2A又はサポート飛行体2Cの回転翼B,1Ca,27Aaの作動音を打ち消すよう構成されてもよい。例えば、複数の回転翼B,1Ca,27Aaが、互いに作動音を打ち消すように動作制御されてもよい。例えば、回転翼B,1Ca,27Aaの作動音を打ち消す音(ノイズキャンセル音)を発生する消音装置が飛行体システム100に設けられてもよい。その消音装置が、回転翼B,1Ca,27Aaへ送られる制御量に基づいてノイズキャンセル音を生成するように構成されてもよい。 (4) The aircraft system 100 may be configured to cancel the operating noise of the rotor blades B, 1Ca, and 27Aa of the aircraft 1, the energy source aircraft 2A, or the support aircraft 2C. For example, the operations of the plurality of rotary blades B, 1Ca, and 27Aa may be controlled so as to cancel out their operating sounds. For example, the aircraft system 100 may be provided with a muffling device that generates a sound (noise canceling sound) that cancels the operating sound of the rotary blades B, 1Ca, and 27Aa. The muffling device may be configured to generate noise canceling sound based on the control amount sent to the rotary blades B, 1Ca, and 27Aa.
(5)飛行体システム100を構成する装置が、様々な形態の飛行体システム100の間で流用可能なように設計されてもよい。例えば、連結機構3,27が様々な形態の飛行体システム100に連結可能なように共通仕様としても良い。 (5) The devices constituting the flight system 100 may be designed so that they can be used between various types of flight system 100. For example, the coupling mechanisms 3 and 27 may have common specifications so that they can be coupled to various types of aircraft systems 100.
(6)飛行体1、エネルギー源飛行体2A又はサポート飛行体2Cが、自身に浮力を付与する浮力体(気球、風船など)を備えてもよい。これにより、飛行体システム100を所定の作業位置にホバリング飛行(停滞)させることが容易になる。 (6) The flying object 1, the energy source flying object 2A, or the support flying object 2C may be provided with a buoyant body (balloon, balloon, etc.) that provides buoyancy to itself. This makes it easy to hover (stagnate) the aircraft system 100 at a predetermined work position.
(7)飛行体1、エネルギー源飛行体2A、サポート飛行体2C又は浮力飛行体8の飛行制御は、作業対象地にあるセンサ情報を用いて実施しても良い。このセンサ情報は、スマート農機等に搭載された移動式のセンサや、GPS基地局等の固定式のセンサ等で取得される。 (7) Flight control of the flying object 1, the energy source flying object 2A, the support flying object 2C, or the buoyancy flying object 8 may be performed using sensor information at the work target area. This sensor information is acquired by a mobile sensor mounted on a smart agricultural machine or a fixed sensor such as a GPS base station.
(8)飛行体1、エネルギー源飛行体2A、サポート飛行体2C又は浮力飛行体8の飛行制御は、サプライチェーン上にあるスマート農機と連携しても良い。例えば、穀物乾燥機の稼働情報を得て、適切な収穫タイミングとなるように飛行制御されても良い。 (8) Flight control of the aircraft 1, the energy source aircraft 2A, the support aircraft 2C, or the buoyant aircraft 8 may be coordinated with smart agricultural machines on the supply chain. For example, operation information of a grain dryer may be obtained and flight control may be performed to achieve appropriate harvest timing.
(9)飛行体1やエネルギー源飛行体2A又はサポート飛行体2Cの自重に加えて、積極的に押付力を発生させて、耕耘等の重量物による農作業に飛行体1やエネルギー源飛行体2A又はサポート飛行体2Cが用いられても良い。 (9) In addition to the own weight of the flying object 1, the energy source flying object 2A, or the support flying object 2C, a pushing force is actively generated, and the flying object 1 or the energy source flying object 2A is used for agricultural work using heavy objects such as plowing. Alternatively, the support aircraft 2C may be used.
(10)上述した実施形態では、エネルギー不足が発生したときにエネルギー源飛行体2A又はサポート飛行体2Cを離脱させたり、エネルギー源飛行体2A又はサポート飛行体2Cを交代させたりしたが、エネルギー不足に限定されず、機体の不具合等であっても良い。 (10) In the embodiments described above, when an energy shortage occurs, the energy source aircraft 2A or the support aircraft 2C is removed, or the energy source aircraft 2A or the support aircraft 2C is replaced. The problem is not limited to, but may also be a malfunction of the aircraft.
(11)上述した実施形態では、サポート飛行体2Cが飛行体1の飛行制御を行ったが、サポート飛行体2Cが飛行体1を援助していれば種々の変形が可能である。例えば、地上に設けられた管理装置にて、飛行体1やサポート飛行体2Cの飛行が自動制御されても良いし、リモートコントローラを用いて手動制御されても良い。 (11) In the embodiment described above, the support aircraft 2C controlled the flight of the aircraft 1, but various modifications are possible as long as the support aircraft 2C assists the aircraft 1. For example, the flight of the flying object 1 and the support flying object 2C may be automatically controlled by a management device provided on the ground, or may be manually controlled using a remote controller.
(12)上述した実施形態では、第一受電部11やエネルギー源21,27aとしてバッテリーを一例として説明したが、内燃機関で構成されても良い。この場合、エネルギー源21,27aから供給されるエネルギーは、内燃機関を作動させる燃料となる。エネルギー源21,27aが内燃機関の場合は、飛行体1、エネルギー源飛行体2A及びサポート飛行体2Cの飛行駆動力を高めることができる。 (12) In the embodiment described above, a battery is used as an example of the first power receiving unit 11 and the energy sources 21 and 27a, but an internal combustion engine may be used instead. In this case, the energy supplied from the energy sources 21, 27a serves as fuel for operating the internal combustion engine. When the energy sources 21 and 27a are internal combustion engines, the flight driving force of the flying object 1, the energy source flying object 2A, and the support flying object 2C can be increased.
 本発明は、エネルギーを供給可能なエネルギー供給体を備えた飛行体システムに利用可能である。 The present invention can be used in an aircraft system equipped with an energy supply body capable of supplying energy.
1    :飛行体
2    :エネルギー供給体
2A   :エネルギー源飛行体
2B   :エネルギー供給車
2C   :サポート飛行体
2D   :作業車(作業装置)
3    :連結機構
4    :接続機構
5    :吊下作業装置(作業部)
6    :連結用飛行体
8    :浮力飛行体
9    :作業装置
20a  :エネルギー源
21   :エネルギー源
25a  :第二エネルギー制御部(エネルギー制御部)
27   :連結機構
27a  :エネルギー源
28a  :第二エネルギー制御部(エネルギー制御部)
29   :作業装置
31   :エネルギー源
41   :エネルギー源(作業用エネルギー源)
45   :浮力部
51   :エネルギー源
64   :連結制御部
83   :接続機構
83a  :エネルギー源
91   :エネルギー源
100  :飛行体システム
 
1: Flying object 2: Energy supplying object 2A: Energy source flying object 2B: Energy supply vehicle 2C: Support flying object 2D: Work vehicle (work device)
3: Connection mechanism 4: Connection mechanism 5: Hanging work device (work part)
6: Connecting flying object 8: Buoyant flying object 9: Working device 20a: Energy source 21: Energy source 25a: Second energy control section (energy control section)
27: Connection mechanism 27a: Energy source 28a: Second energy control section (energy control section)
29: Work equipment 31: Energy source 41: Energy source (work energy source)
45: Buoyancy section 51: Energy source 64: Connection control section 83: Connection mechanism 83a: Energy source 91: Energy source 100: Aircraft system

Claims (22)

  1.  所定の作業を実施可能な飛行体と、
     前記飛行体にエネルギーを供給可能なエネルギー供給体と、を備えた飛行体システム。
    A flying vehicle capable of performing a predetermined task;
    An aircraft system comprising: an energy supply body capable of supplying energy to the aircraft.
  2.  前記エネルギー供給体は、前記飛行体にエネルギーを供給可能なエネルギー源を搭載したエネルギー源飛行体である請求項1に記載の飛行体システム。 The flying vehicle system according to claim 1, wherein the energy supply body is an energy source flying vehicle equipped with an energy source capable of supplying energy to the flying vehicle.
  3.  前記エネルギー源飛行体は、複数の前記飛行体の何れかである請求項2に記載の飛行体システム。 The flying object system according to claim 2, wherein the energy source flying object is any one of the plurality of flying objects.
  4.  前記エネルギー源飛行体は、前記飛行体を援助して飛行可能なサポート飛行体である請求項2に記載の飛行体システム。 The flying vehicle system according to claim 2, wherein the energy source flying vehicle is a support flying vehicle that can fly by assisting the flying vehicle.
  5.  前記エネルギー源飛行体の作動を制御するエネルギー制御部を備え、
     前記エネルギー制御部は、前記エネルギー源の貯留量が所定値以下となったとき、前記エネルギー源飛行体を交代させる請求項2から4の何れか一項に記載の飛行体システム。
    comprising an energy control unit that controls the operation of the energy source aircraft;
    The aircraft system according to any one of claims 2 to 4, wherein the energy control unit changes the energy source aircraft when the storage amount of the energy source becomes equal to or less than a predetermined value.
  6.  前記エネルギー源飛行体は、前記所定の作業又は前記所定の作業とは異なる作業を実施可能である請求項2から5の何れか一項に記載の飛行体システム。 The aircraft system according to any one of claims 2 to 5, wherein the energy source aircraft is capable of performing the predetermined work or a work different from the predetermined work.
  7.  前記エネルギー供給体は、移動可能なエネルギー供給車である請求項1に記載の飛行体システム。 The aircraft system according to claim 1, wherein the energy supply body is a movable energy supply vehicle.
  8.  前記エネルギー供給体は、移動可能な作業装置である請求項1に記載の飛行体システム。 The aircraft system according to claim 1, wherein the energy supply body is a movable working device.
  9.  前記エネルギー供給体と前記飛行体とを有線で連結する連結用飛行体を備えた請求項1から8の何れか一項に記載の飛行体システム。 The flying object system according to any one of claims 1 to 8, further comprising a connecting flying object that connects the energy supply body and the flying object by wire.
  10.  前記連結用飛行体は、前記エネルギー供給体からエネルギーが供給される請求項9に記載の飛行体システム。 The aircraft system according to claim 9, wherein the connecting aircraft is supplied with energy from the energy supply body.
  11.  前記飛行体と前記エネルギー供給体との相対位置及び人工物の位置に基づいて前記連結用飛行体の飛行位置を制御する連結制御部を備えた請求項9又は10に記載の飛行体システム。 The flying object system according to claim 9 or 10, further comprising a connection control section that controls the flight position of the connecting flying object based on the relative position of the flying object and the energy supplying object and the position of the artificial object.
  12.  複数の前記飛行体を連結する連結機構を備え、
     前記エネルギー供給体は、前記飛行体にエネルギーを供給するエネルギー源を搭載した前記連結機構である請求項1に記載の飛行体システム。
    comprising a connection mechanism that connects a plurality of the flying objects,
    The aircraft system according to claim 1, wherein the energy supply body is the coupling mechanism equipped with an energy source that supplies energy to the aircraft.
  13.  前記飛行体は、エネルギーを得て飛行する飛行本体と、前記所定の作業を実施する作業部と、前記飛行本体と前記作業部とを接続する接続機構と、を有しており、
     前記エネルギー供給体は、前記飛行本体にエネルギーを供給するエネルギー源を搭載した前記作業部又は前記接続機構である請求項1に記載の飛行体システム。
    The flying object has a flight main body that obtains energy and flies, a working part that performs the predetermined work, and a connection mechanism that connects the flying main body and the working part,
    The aircraft system according to claim 1, wherein the energy supply body is the working part or the connection mechanism equipped with an energy source that supplies energy to the flight main body.
  14.  前記接続機構は、前記作業部を持ち上げ可能な浮力部を有している請求項13に記載の飛行体システム。 The aircraft system according to claim 13, wherein the connection mechanism has a buoyant part that can lift the working part.
  15.  前記接続機構は、前記作業部にエネルギーを供給可能な作業用エネルギー源を有する請求項13又は14に記載の飛行体システム。 The aircraft system according to claim 13 or 14, wherein the connection mechanism includes a working energy source that can supply energy to the working part.
  16.  前記エネルギー供給体は、少なくとも1つの前記飛行体の前記作業部であり、他の前記飛行体の前記作業部にエネルギーを供給する請求項13から15の何れか一項に記載の飛行体システム。 The flight vehicle system according to any one of claims 13 to 15, wherein the energy supply body is the working section of at least one of the flight vehicles, and supplies energy to the working section of another of the flight vehicles.
  17.  前記エネルギー供給体は、非接触給電により前記飛行体にエネルギーを供給する請求項1から16の何れか一項に記載の飛行体システム。 The flying object system according to any one of claims 1 to 16, wherein the energy supply body supplies energy to the flying object by non-contact power supply.
  18.  エネルギーを供給するエネルギー供給体と、
     前記エネルギー供給体で生成された熱エネルギーによる浮力を用いて飛行する浮力飛行体と、を備えた飛行体システム。
    an energy supply body that supplies energy;
    A buoyant flying vehicle that flies using buoyancy due to thermal energy generated by the energy supply body.
  19.  前記エネルギー供給体は、前記浮力飛行体に搭載されたエネルギー源である請求項18に記載の飛行体システム。 The flying vehicle system according to claim 18, wherein the energy supply body is an energy source mounted on the buoyant flying vehicle.
  20.  所定の作業を実施可能な作業装置を備え、
     前記エネルギー供給体は、前記作業装置にエネルギーを供給する請求項19に記載の飛行体システム。
    Equipped with work equipment that can perform the specified work,
    The aircraft system according to claim 19, wherein the energy supply supplies energy to the working device.
  21.  所定の作業を実施可能な作業装置と、
     前記作業装置と前記浮力飛行体とを接続する接続機構と、を備え、
     前記エネルギー供給体は、前記作業装置又は前記接続機構に搭載されたエネルギー源である請求項18に記載の飛行体システム。
    A work device capable of carrying out a predetermined work;
    a connection mechanism that connects the working device and the buoyant flying object,
    The aircraft system according to claim 18, wherein the energy supply body is an energy source mounted on the working device or the connection mechanism.
  22.  前記エネルギーは、内燃機関に供給される燃料、又は、内燃機関により発電した電力である請求項1から21の何れか一項に記載の飛行体システム。
     
    The aircraft system according to any one of claims 1 to 21, wherein the energy is fuel supplied to an internal combustion engine or electric power generated by the internal combustion engine.
PCT/JP2022/018269 2022-04-20 2022-04-20 Flying body system WO2023203672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018269 WO2023203672A1 (en) 2022-04-20 2022-04-20 Flying body system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018269 WO2023203672A1 (en) 2022-04-20 2022-04-20 Flying body system

Publications (1)

Publication Number Publication Date
WO2023203672A1 true WO2023203672A1 (en) 2023-10-26

Family

ID=88419588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018269 WO2023203672A1 (en) 2022-04-20 2022-04-20 Flying body system

Country Status (1)

Country Link
WO (1) WO2023203672A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244837A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Power generation apparatus, power generation system, and power generation method
US20150041598A1 (en) * 2011-06-09 2015-02-12 Thomas J. Nugent Aerial platform system, and related methods
JP2017039370A (en) * 2015-08-19 2017-02-23 日本電気株式会社 Aerial floating device
JP2019111871A (en) * 2017-12-21 2019-07-11 株式会社クボタ Agricultural multicopter
WO2020016941A1 (en) * 2018-07-17 2020-01-23 株式会社エアロネクスト Flying body system equipped with plurality of connectable flying bodies
JP2021070413A (en) * 2019-10-31 2021-05-06 井関農機株式会社 Autonomous travel system of work vehicle using unmanned flight body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244837A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Power generation apparatus, power generation system, and power generation method
US20150041598A1 (en) * 2011-06-09 2015-02-12 Thomas J. Nugent Aerial platform system, and related methods
JP2017039370A (en) * 2015-08-19 2017-02-23 日本電気株式会社 Aerial floating device
JP2019111871A (en) * 2017-12-21 2019-07-11 株式会社クボタ Agricultural multicopter
WO2020016941A1 (en) * 2018-07-17 2020-01-23 株式会社エアロネクスト Flying body system equipped with plurality of connectable flying bodies
JP2021070413A (en) * 2019-10-31 2021-05-06 井関農機株式会社 Autonomous travel system of work vehicle using unmanned flight body

Similar Documents

Publication Publication Date Title
US11117663B2 (en) Apparatus and method for unmanned flight
JP2019194084A (en) Flying body and method of controlling flying body
CN206351780U (en) A kind of unmanned plane aircraft carrier based on earth station and helium balloon
JP6891102B2 (en) Agricultural multicopter
JP6830187B2 (en) Electric rotary wing unmanned aerial vehicle with multiple connected aircraft
US10843819B2 (en) Recharging network for drones
WO2023203672A1 (en) Flying body system
WO2023203674A1 (en) Flight vehicle unit
KR20210029868A (en) System for managing crops using balloon-drone
CN113371200B (en) Unmanned aerial vehicle accurate pesticide spraying system for planting crops in large scale
CN108490971A (en) Unmanned plane job platform
JP7156703B2 (en) Air vehicle system comprising a plurality of connectable air vehicles
CN107161345A (en) A kind of full-automatic unmanned machine system of latent nest type
CN117227977B (en) Plant protection system and plant protection method
WO2023203675A1 (en) Grouped flying object system and flying objects
WO2023203676A1 (en) Work-performing aerial vehicle
WO2023203673A1 (en) Flying object control system and flying object system
WO2023203667A1 (en) Aircraft and work assistance system using aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938475

Country of ref document: EP

Kind code of ref document: A1