WO2023202729A1 - 一种增加分蘖来提高富硒水稻产量的方法 - Google Patents

一种增加分蘖来提高富硒水稻产量的方法 Download PDF

Info

Publication number
WO2023202729A1
WO2023202729A1 PCT/CN2023/100679 CN2023100679W WO2023202729A1 WO 2023202729 A1 WO2023202729 A1 WO 2023202729A1 CN 2023100679 W CN2023100679 W CN 2023100679W WO 2023202729 A1 WO2023202729 A1 WO 2023202729A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
nms
spherical
solution
selenium
Prior art date
Application number
PCT/CN2023/100679
Other languages
English (en)
French (fr)
Inventor
王震宇
王传洗
乐乐
曹雪松
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2023202729A1 publication Critical patent/WO2023202729A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/005Following a specific plan, e.g. pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Definitions

  • the invention relates to a method for increasing the yield of selenium-rich rice by increasing tillers, and belongs to the field of nano-agriculture technology.
  • Selenium is a component of glutathione peroxidase in the human body and an important component in maintaining the activity of various enzymes. It has antioxidant, anti-cancer and immunity-improving functions in the human body. Food-based color supplementation is one of the main measures to meet the human body’s color supply.
  • Se-rich rice is currently one of the main ways for human body to absorb Se, and its economic value is 1 to 5 times higher than ordinary rice.
  • the main way to produce Se-rich rice is to apply Se fertilizer to the soil, mainly sodium selenate and sodium selenite.
  • Se fertilizer mainly sodium selenate and sodium selenite.
  • the utilization efficiency of these traditional Se fertilizers is less than 20%, and a large amount of Se fertilizer remains, causing serious soil environmental problems.
  • zero-valent selenium as a selenium fertilizer.
  • zero-valent selenium has the disadvantages of low hydrophilicity and low bioavailability.
  • nano-selenium as selenium fertilizer, but the purity of the nano-selenium applied is low, and there are many other ingredients in the fertilizer (stabilizers and antibacterial agents, etc.), which cause unnecessary effects on plants and soil environment.
  • Se nanomaterials Se NMs can promote the formation of plant callus organs and root growth, increase crop photosynthesis and yield, and improve the nutritional quality of crops (Se content, soluble sugar, soluble protein, antioxidant enzyme activity, etc. ).
  • the subjects of these mechanism studies are mung bean sprouts, tobacco, etc., which are all dicotyledonous plants, while rice is a monocotyledonous plant, and the traits of the two are very different. In terms of growth environment, the two are quite different from each other.
  • rice is a paddy crop, and there is an alternation of dryness and wetness in the whole life cycle; compared to the former, the yield of the latter focuses more on the study of fruits in the mature stage; more importantly, the growth in the tillering stage is extremely important for rice.
  • plants such as mung bean sprouts and tobacco do not have the need for tillering, so the tillering effect of rice cannot be predicted directly from the growth effects of mung bean sprouts, tobacco and other plants.
  • increasing rice yield is generally achieved by increasing the amount of agricultural chemical fertilizers and providing microbial fertilizers.
  • the application of chemical fertilizers can supply more effective nutrients to rice, promote rice growth and thereby increase yield; the application of microbial fertilizers can supply more effective nutrients in the rhizosphere soil.
  • the beneficial bacteria reduce the incidence of rice blast and ensure rice yield.
  • Over-reliance on chemical fertilizers may lead to serious environmental pollution, deterioration of soil structure, and "seedling burning”.
  • Over-reliance on microbial fertilizers may cause extreme changes in the microbial community in the soil. Big changes will have a negative impact on crop growth.
  • Se nanomaterials have high activity and have gradually gained attention and recognition as Se fertilizers.
  • Se NMs Se nanomaterials
  • the present invention provides a method for increasing tillers to increase the yield of selenium-rich rice, and clarifies factors such as particle size, application amount, application period and application method of Se nanofertilizer for producing Se-rich rice, and clarifies Through the key role of rhizosphere environment, key genes, hormone levels and other factors, it can improve the absorption efficiency of soil nutrients and increase the number of effective tillers of rice, thereby achieving the goal of increasing selenium production.
  • the synthetic Se nano-fertilizer is applied to the leaves, which can significantly improve the soil microbial community structure and the production of root exudates, promote the absorption of nutrients, improve the effective tillering of rice, increase yield, and at the same time promote the role of Se in rice. Enrichment.
  • the first object of the present invention is to provide a method for increasing tillers to increase the yield of selenium-rich rice.
  • the method is to apply a spherical Se NMs solution to the leaves during the seedling stage of rice.
  • the size of the spherical Se NMs is 10 ⁇ 90nm, the hydration radius is 160 ⁇ 200nm, the surface charge is -15 ⁇ -18mV, and the purity is above 95%, further preferably 40 ⁇ 60nm.
  • the spherical Se NMs solution is a spherical Se NMs aqueous solution with a concentration of 1 to 3 mg/L.
  • the application amount of the spherical Se NMs solution is 0.5 to 2 mL/plant.
  • the spherical Se NMs solution can be applied in 1 to 5 times, specifically starting from the time when the rice reaches the "three leaves and one heart" period, with an interval of 5 to 7 days each time.
  • the rice seedling stage refers to the stage when rice reaches "three leaves and one heart".
  • step (3) Pour the solution obtained in step (2) into a container, add surface modification agent dropwise into it, perform ultrasonic treatment, centrifuge after treatment, and freeze-dry the resulting supernatant and precipitate respectively to finally obtain spherical Se NMs ;
  • the selenium source in step (1) is any one or a mixture of selenium dioxide, sodium selenite, selenious acid and sodium selenate;
  • the reducing agent is ascorbic acid, citric acid, sucrose, fructose Any one or a mixture of several of them;
  • the molar ratio of the selenium source to the reducing agent is 1:2;
  • the surface modification agent described in step (3) is any one of polyvinylpyrrolidone, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, dextran, and chitosan; the surface modification agent
  • the added amount of the surface modification agent accounts for 5% to 25% of the total mass of the Se source and the reducing agent; the added amount of the surface modification agent accounts for 10% to 15% of the total mass of the Se source and the reducing agent;
  • the ultrasonic temperature is 18 to 15%.
  • the ultrasonic power is 100 ⁇ 500W
  • the ultrasonic time is 30 ⁇ 120min.
  • the method is to apply spherical Se NMs solution on the leaf surface during the rice seedling stage;
  • the rice seedling stage refers to the period when the rice reaches the "three leaves and one heart" stage;
  • the size of spherical Se NMs is 40 ⁇ 90nm, the hydration radius is 160 ⁇ 200nm, the surface charge is -15 ⁇ -18mV, and the purity is above 95%;
  • the spherical Se NMs solution is a spherical Se NMs aqueous solution with a concentration of 1 ⁇ 2mg/L;
  • the application amount of the spherical Se NMs solution is 1 ⁇ 2mL/plant;
  • the spherical Se NMs solution is applied in 1 to 5 times, specifically starting from the period when the rice reaches the "three leaves and one heart” period. , each interval is 5 to 7 days;
  • the preparation method of spherical Se NMs includes the following steps:
  • the selenium source in step (1) is any one or a mixture of selenium dioxide, sodium selenite, selenious acid, and sodium selenate; the reducing agent is ascorbic acid, citric acid, sucrose, or fructose.
  • the surface modification agent described in step (3) is polyvinylpyrrolidone, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, dextran, and chitosan. Any kind.
  • a second object of the invention is the application of the method in the agricultural field.
  • the third object of the present invention is to provide a method for increasing the selenium content in rice.
  • the method is to apply a spherical Se NMs solution to the leaves during the seedling stage of rice; wherein the size of the spherical Se NMs is within 10 ⁇ 90nm; the rice seedling stage refers to the period when rice reaches "three leaves and one heart"; the spherical Se NMs solution is a spherical Se NMs aqueous solution with a concentration of 1 ⁇ 3 mg/L; the spherical Se NMs The application amount of the solution is 0.5 to 2 mL/plant; the spherical Se NMs solution can be applied in 1 to 5 times, specifically starting from the time when the rice reaches the "three leaves and one heart” period, with an interval of 5 to 7 days each time.
  • Se NMs can increase the content of root exudates in the rhizosphere environment and improve the soil environment.
  • Using root exudates as a carbon source can recruit more beneficial microorganisms and promote the growth of rice roots. , improve the availability of soil nutrients and improve the selenium-enrichment efficiency of rice; regulate the level of gibberellins in rice and the expression of tillering genes to increase the number of tillers in rice.
  • the method of the present invention can significantly improve the rice rhizosphere microbial community and increase root secretions, change the soil environment, and promote the absorption of root nutrients (N); significantly increase the Se content in rice, compared with plants without selenium fertilizer. 1.5 times or more It can regulate the synthesis of rice gibberellins and increase the expression of tillering genes; significantly increase the tiller number of rice plants, which is more than 1.5 times higher than that of plants without selenium fertilizer; and increase its yield, compared with plants without selenium fertilizer. Increased by more than 1.4 times.
  • the Se nanomaterials (Se NMs) used in the present invention have the advantages of high purity, high hydrophilicity, high bioavailability, and no other impurities.
  • Figure 1 is a TEM photo of Se NMs in Example 1.
  • Figure 2 is a comparison of N content in rice roots in Example 2 and Comparative Example 1.
  • Figure 3 is a comparison of Se content in rice in Example 2 and Comparative Example 1.
  • Figure 4 is a comparison of the number of effective tillers of rice in Example 2 and Comparative Example 1.
  • Figure 5 is a comparison of rice yield in Example 2 and Comparative Example 1.
  • Figure 6 shows the differences in rice root microorganisms in Example 2 and Comparative Example 1.
  • Figure 7 shows the changes in rice root exudates in Example 2 and Comparative Example 1.
  • Figure 8 shows the changes in the content of rice gibberellins in Example 2 and Comparative Example 1; A is the content of GA1; B is the content of GA4.
  • Figure 9 shows changes in the content of rice tillering genes in Example 2 and Comparative Example 1.
  • Se content Grind the completely dried rice grain sample, mix it evenly and sieve (60 mesh), weigh a certain mass of the sample and place it in a digestion tube. Add nitric acid, seal the digestion tube and place it in a microwave digestion instrument for digestion. After digestion is complete, the sample is filtered and tested using an inductively coupled plasma mass spectrometer.
  • Nitrogen content Grind the completely dried rice root samples, mix them evenly and sieve (60 mesh), weigh a certain mass of the sample and wrap it in a tin boat, and measure it with an elemental analyzer.
  • the collected fresh soil samples were immediately frozen in liquid nitrogen, 2 g of soil was ground evenly and put into a centrifuge tube, and the 16S rRNA gene standard method was used to determine the microorganisms in the soil.
  • the supernatant is temporarily stored at 4°C, and then the processed samples are tested on the machine. If stored for a long time, they need to be stored at -20°C.
  • Aqueous phase A 0.1% formic acid aqueous solution
  • Organic phase B 0.1% formic acid acetonitrile solution
  • the determination of rice hormones uses the method of isopropyl alcohol/water/hydrochloric acid solution to extract endogenous hormones in rice plants. Extract with dichloromethane and concentrate the sample with nitrogen purge, and then use liquid chromatography-mass spectrometry technology ( ESI-HPLC-MS/MS).
  • the key genes for tillering were determined by DNA polymerase chain reaction. First, use an RNA extraction kit to extract total RNA, and then use a reverse transcription kit to obtain the DNA template. Finally, the DNA template, fluorescent probe and tillering gene primer were mixed according to the method of the kit and tested using a DNA polymerase chain reaction instrument.
  • tillering of rice begins one month after transplanting and lasts for about one month.
  • the number of rice tillers was determined on the 60th day after transplanting.
  • the "Z" sampling method was used to set five sampling points in the field. 10 data were selected from each sampling point, totaling 50 data, and the average value was taken.
  • a method for preparing spherical Se NMs including the following steps:
  • step (3) Pour the solution obtained in step (2) into a container, add 47 mg of polyvinylpyrrolidone (PVP), and conduct ultrasonic treatment at 20°C and 300W for 60 minutes. After the treatment is completed, centrifuge at 4°C and 10000r/min to obtain the precipitate. After freeze-drying, spherical Se NMs were finally obtained.
  • PVP polyvinylpyrrolidone
  • a method for increasing tillers to increase selenium-rich rice yield includes the following steps:
  • Example 2 The spherical Se NMs solution in Example 2 was replaced with an aqueous solution, and the others were kept the same as in Example 2 to obtain rice.
  • Example 2 The rice of Example 2 and Comparative Example 1 were tested for performance, and the test results are as follows:
  • Figure 2 is a comparison of N content in rice roots in Example 2 and Comparative Example 1. As can be seen from Figure 2: the nitrogen content in the roots of rice treated with Se NMs increased by 10%, which means that the nutrient supply of rice has been improved and is helpful for the growth of rice;
  • Figure 3 is a comparison of Se content in rice in Example 2 and Comparative Example 1. It can be seen from Figure 3 that the selenium content of rice grains treated with Se NMs increased by 50%, which shows that the selenium-enriched technology of the present invention is valuable and reaches the standards of selenium-rich agricultural products;
  • Figure 4 is a comparison of the number of effective tillers of rice in Example 2 and Comparative Example 1. As can be seen from Figure 4: the tiller number of rice treated with Se NMs increased by 50%, which means that the number of rice panicles at maturity should theoretically increase by about 50%, which can significantly affect rice yield;
  • Figure 5 is a comparison of rice yield in Example 2 and Comparative Example 1. It can be seen from Figure 5 that the rice yield after Se NMs treatment increased by 40%, which is the result of the increase in the number of tillers;
  • Figure 6 shows the differences in rice root microorganisms in Example 2 and Comparative Example 1. It can be seen from Figure 6 that beneficial microorganisms increased in the rhizosphere soil after Se NMs treatment, among which the relative abundance of Herbaspirillum sp. increased by 88.7%, and the relative abundance of Desulfovibriocolilis increased. 29.2% of Geobacter daltonii The relative abundance increased by 199.0%, and the relative abundance of Anaeromyxobacter sp. increased by 144.8%, which helps rice root growth and improves rice's ability to acquire soil nutrients;
  • Figure 7 shows the changes in rice root exudates in Example 2 and Comparative Example 1. It can be seen from Figure 7 that the content of low molecular weight organic matter in the rice rhizosphere soil increased after Se NMs treatment. The relative abundance of pyruvate (Pyruvic acid) increased by 58.9%, and the relative abundance of phenylalanine (L-Phenylalanine) increased. The abundance increased by 607.4%, and the relative abundance of citric acid increased by 584.8%, which helps regulate the acid-base balance in the soil, improve the availability of soil nutrients, and promote rice growth;
  • Figure 8 shows the changes in the content of rice gibberellins in Example 2 and Comparative Example 1; A is the content of GA1; B is the content of GA4. It can be seen from Figure 8: Changes in rice gibberellin levels after Se NMs treatment. Increased gibberellin (GA1 and GA4) content in the tillering stage will reduce the tiller number of rice and thus reduce yield. Se NMs reduces the gibberellin level of rice. The hormone level can help increase the number of tillers of rice and increase the yield of rice;
  • Figure 9 shows changes in the content of rice tillering genes in Example 2 and Comparative Example 1. It can be seen from Figure 9 that the relative expression of rice tiller genes (MOC1, TB1, OSH1) increased after Se NMs treatment, which means that the number of rice tillers increased and the final yield increased.
  • MOC1, TB1, OSH1 rice tiller genes
  • Example 2 The spherical Se NMs solution in Example 2 was replaced with a sodium selenite solution with a selenium content of 1.5 mg/L. The others were kept consistent with Example 2 to obtain rice.
  • Example 2 The spherical Se NMs in Example 2 were replaced with commercially available retail price selenium (purity 99%, 20 ⁇ m), and the others were kept consistent with Example 2 to obtain rice.
  • Example 2 The spherical Se NMs in Example 2 were replaced with commercially available flaky selenium nanoparticles (purity 90%, length 200nm, width 90nm), and the others were kept consistent with Example 2 to obtain rice.
  • Example 2 The spherical Se NMs in Example 2 were replaced with commercially available linear selenium nanoparticles (purity 90%, length 1 ⁇ m, diameter 20 nm), and the others were kept consistent with Example 2 to obtain rice.
  • Example 2 The spherical Se NMs in Example 2 were replaced with commercially available spherical Se NMs (purity 80%, diameter 80 nm), and other conditions were kept consistent with Example 2 to obtain rice.
  • Example 2 The rice of Example 2 and Comparative Examples 1 to 6 were tested, and the test results are as follows:
  • Example 2 Adjusts the application amount of the spherical Se NMs solution in Example 2 to 0.5, 1.5 and 2 mL/plant, and keep the others consistent with Example 2 to obtain rice.
  • Example 2 The spherical Se NMs solution in Example 2 was applied in 1, 2, 3, and 5 times, starting from the time when the rice reached the "three leaves and one heart" stage, with an interval of 7 days each time. The other conditions were consistent with Example 2 to obtain rice.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Botany (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开了一种增加分蘖来提高富硒水稻产量的方法,属于纳米农业技术领域。本发明所述的方法是在水稻苗期,叶面施加球型Se NMs溶液;其中球型Se NMs的尺寸在10~90nm,水合半径在160~200 nm,表面电荷为-15~-18mV,纯度在95%以上;水稻苗期是指水稻达到"三叶一心"时期;球型Se NMs溶液为球型Se NMs水溶液,浓度为1~3mg/L。本发明的方法能够显著改善水稻根际微生物群落和增加根系分泌物,改变土壤环境,促进根部养分的吸收;显著提高水稻内Se含量;能够调控水稻赤霉素的合成,增加分蘖基因的上表达;显著提高水稻植株分蘖数;增加其产量。

Description

一种增加分蘖来提高富硒水稻产量的方法 技术领域
本发明涉及一种增加分蘖来提高富硒水稻产量的方法,属于纳米农业技术领域。
背景技术
硒(Se)是人体内谷胱甘肽过氧化物酶的组成元素以及维持多种酶活性的重要成分,它在人体具有抗氧化、抗癌以及提高免疫力等功能。食源性补Se是满足人体Se供应的主要措施之一。
富Se水稻目前是人体Se摄入的主要途径之一,其经济价值也比普通水稻高1到5倍。目前,生产富Se水稻的主要方式是在土壤中施加Se肥,主要是硒酸钠和亚硒酸钠等。然而,这些传统Se肥的利用效率不足20%,大量的Se肥残留,造成了严重的土壤环境问题。也有一些施加零价硒作为硒肥,而零价硒作为惰性硒矿,存在亲水性低,生物可利用性低的缺点。还有一些施加纳米硒作为硒肥,但施用的纳米硒纯度较低,肥料中有其它多类成分(稳定剂和抗菌剂等),对植物和土壤环境造成不必要的影响。
而且,目前对富硒水稻的研究主要集中于水稻的富硒效果。有研究报道指出,Se纳米材料Se NMs能够促进植物愈伤组织器官的形成和根系生长,增加作物光合作用及产量,提高作物的营养品质(Se含量、可溶性糖、可溶性蛋白、抗氧化酶活性等)。但是,这些机制研究的对象都是绿豆芽、烟草等,都属于双子叶植物,而水稻属于单子叶植物,两者性状差异极大;从生长环境上来说,二者区分度较大,不同于前者,水稻属于水田作物,全生命周期中存在干湿交替的情况;相比于前者,后者的产量更注重的是对成熟期果实的研究;更重要的是,分蘖期的生长对于水稻极为重要,而绿豆芽、烟草等植物没有分蘖的需求,从而无法直接从绿豆芽、烟草等植物的生长效果来预期水稻的分蘖效果。
此外,提高水稻产量一般是通过增加农用化肥施肥量和提供微生物肥料实现的,其中施加化肥可以供给水稻更多的有效养分,促进水稻生长进而提高产量;施加微生物肥料可以供给根际土壤中更多的有益菌,减少稻瘟病等的发病率,保证水稻产量。然而,现有的这些方法中都存在一定的缺陷,过度依赖化肥可能会导致环境污染严重、土壤结构恶化以及出现“烧苗”等现象;而过度依赖微生物肥料可能会引起土壤中微生物群落发生极大变化,对作物生长产生恶劣影响。目前对于如何影响水稻分蘖期性状进而提高水稻产量的研究较少,而且水稻分蘖期的相关调控机制尚不清晰。
近年来,Se纳米材料(Se NMs)具有高活性,在用作Se肥方面逐渐得到关注和认可。但是,并未有文献提及何种条件下Se NMs能够稳定且高效地促进水稻生长及增加Se的含量; 也未提及Se NMs的施用量如何影响Se在作物内的积累;更未提及Se NMs是否可以通过调控水稻激素水平、基因表达及根际环境、增加养分的利用有效性、促进水稻分蘖及生长,从而达到增产富硒的目标。
发明内容
目前富硒水稻的制备需要采用硒酸钠以及复合肥料,其富硒效果差,容易带来环境污染;且产量促进效果不明显,根本没有提及分蘖的效果。
为了解决上述至少一个问题,本发明提供了一种增加分蘖来提高富硒水稻产量的方法,明确了生产富Se水稻的Se纳米肥的粒径、施用量、施加时期和施加方式等因素,明确了通过根际环境、关键基因、激素水平等因素的关键作用,提高土壤养分的吸收效率,增加水稻有效分蘖数,从而达到增产硒的目标。本发明在水稻苗期,叶面施加合成的Se纳米肥,能够显著改善土壤微生物群落结构和根系分泌物的产生,促进养分的吸收,提高水稻的有效分蘖,增加产量,同时促进Se在水稻的富集。
本发明的第一个目的是提供一种增加分蘖来提高富硒水稻产量的方法,所述的方法是在水稻苗期,叶面施加球型Se NMs溶液。
在本发明的一种实施方式中,所述的球型Se NMs的尺寸在10~90nm,水合半径在160~200nm,表面电荷为-15~-18mV,纯度在95%以上,进一步优选为40~60nm。
在本发明的一种实施方式中,所述的球型Se NMs溶液为球型Se NMs水溶液,浓度为1~3mg/L。
在本发明的一种实施方式中,所述的球型Se NMs溶液的施加量为0.5~2mL/株。
在本发明的一种实施方式中,所述的球型Se NMs溶液可以分1~5次施加,具体是从水稻达到“三叶一心”时期开始,每次间隔5~7天。
在本发明的一种实施方式中,所述的水稻苗期是指水稻达到“三叶一心”时期。
在本发明的一种实施方式中,所述的球型Se NMs的制备方法见专利CN112010271A,具体包括如下步骤:
(1)取硒源与还原剂混合后充分研磨,研磨至呈红色糊状,停止研磨;
(2)向步骤(1)研磨得到的红色糊状物中加水分散;
(3)将步骤(2)得到的溶液倒入容器中,向其中滴加表面修饰剂,进行超声处理,处理完毕后离心,所得上清液和沉淀分别进行冷冻干燥,最终得到球型Se NMs;
其中,步骤(1)中所述硒源为二氧化硒、亚硒酸钠、亚硒酸、硒酸钠中任意一种或几种混合;所述还原剂为抗坏血酸、柠檬酸、蔗糖、果糖中的任意一种或几种混合;所述硒源与还原剂的摩尔比为1:2;
步骤(3)中所述的表面修饰剂为聚乙烯吡咯烷酮、十二烷基硫酸钠、十二烷基苯磺酸钠、葡聚糖、壳聚糖中的任意一种;所述表面修饰剂的加入量占Se源与还原剂的总质量的5~25%;所述表面修饰剂的加入量占Se源与还原剂的总质量的10%~15%;所述超声的温度为18~25℃,超声的功率为100~500W,超声的时间为30~120min。
在本发明的一种实施方式中,所述的方法是在水稻苗期,叶面施加球型Se NMs溶液;所述的水稻苗期是指水稻达到“三叶一心”时期;所述的球型Se NMs的尺寸在40~90nm,水合半径在160~200nm,表面电荷为-15~-18mV,纯度在95%以上;所述的球型Se NMs溶液为球型Se NMs水溶液,浓度为1~2mg/L;所述的球型Se NMs溶液的施加量为1~2mL/株;所述的球型Se NMs溶液分1~5次施加,具体是从水稻达到“三叶一心”时期开始,每次间隔5~7天;
所述的球型Se NMs的制备方法,包括如下步骤:
(1)取硒源与还原剂混合后充分研磨,研磨至呈红色糊状,停止研磨;
(2)向步骤(1)研磨得到的红色糊状物中加水分散;
(3)将步骤(2)得到的溶液倒入容器中,向其中滴加表面修饰剂,进行超声处理,处理完毕后离心,所得上清液和沉淀分别进行冷冻干燥,最终得到球型Se NMs;步骤(1)中所述硒源为二氧化硒、亚硒酸钠、亚硒酸、硒酸钠中任意一种或几种混合;所述还原剂为抗坏血酸、柠檬酸、蔗糖、果糖中的任意一种或几种混合;步骤(3)中所述的表面修饰剂为聚乙烯吡咯烷酮、十二烷基硫酸钠、十二烷基苯磺酸钠、葡聚糖、壳聚糖中的任意一种。本发明的第二个目的是本发明所述的方法在农业领域的应用。
本发明的第三个目的是提供一种提高水稻中硒含量的方法,所述的方法是在水稻苗期,叶面施加球型Se NMs溶液;其中所述的球型Se NMs的尺寸在10~90nm;所述的水稻苗期是指水稻达到“三叶一心”时期;所述的球型Se NMs溶液为球型Se NMs水溶液,浓度为1~3mg/L;所述的球型Se NMs溶液的施加量为0.5~2mL/株;所述的球型Se NMs溶液可以分1~5次施加,具体是从水稻达到“三叶一心”时期开始,每次间隔5~7天。
本发明的有益效果:
(1)本发明增加分蘖、促进富硒的机理为:Se NMs能够提高根际环境中根系分泌物的含量改善土壤环境,以根系分泌物作为碳源可以招募更多有益微生物,促进水稻根部生长,提高土壤养分的有效性,提高水稻的富硒效率;调控水稻体内赤霉素水平以及分蘖基因的表达,提高水稻的分蘖数。
(2)本发明的方法能够显著改善水稻根际微生物群落和增加根系分泌物,改变土壤环境,促进根部养分(N)的吸收;显著提高水稻内Se含量,相对于不加硒肥的植株提升1.5倍以 上;能够调控水稻赤霉素的合成,增加分蘖基因的上表达;显著提高水稻植株分蘖数,相对于不加硒肥的植株提升1.5倍以上;增加其产量,相对于不加硒肥的植株提升1.4倍以上。
(3)本发明所用Se纳米材料(Se NMs)和常规所述的零价硒、纳米硒肥相比,具有纯度高、亲水性高、生物可利用性高、不含其它杂质等优点。
附图说明
图1为实施例1中Se NMs的TEM照片。
图2为实施例2和对比例1中水稻根部N含量的对比。
图3为实施例2和对比例1中水稻中Se含量的对比。
图4为实施例2和对比例1中水稻有效分蘖数对比。
图5为实施例2和对比例1中水稻产量的对比。
图6为实施例2和对比例1中水稻根系微生物的差异性。
图7为实施例2和对比例1中水稻根系分泌物的变化。
图8为实施例2和对比例1中水稻赤霉素的含量的变化;其中A为GA1的含量;B为GA4的含量。
图9为实施例2和对比例1中水稻分蘖基因的含量的变化。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
测试方法:
1、Se和氮含量的测定
Se含量:将完全干燥的水稻籽粒样品磨碎后混合均匀过筛(60目),称取一定质量的样品置于消解管中,加入硝酸后密封消解管放入微波消解仪中消解。消解完成后,将样品过滤,然后使用电感耦合等离子质质谱仪测试。
氮含量:将完全干燥的水稻根系样品磨碎后混合均匀过筛(60目),称取一定质量的样品置于锡舟中包好,采用元素分析仪进行测定。
2、根际微生物的测定
将采集的新鲜土壤样品立即用液氮冷冻,取2g土壤磨匀后装入离心管,采用16S rRNA基因标准法测定土壤中的微生物。
3、根系分泌物的测定将采集的土壤鲜样立即用液氮冷冻,取1g土壤样品于液氮中研磨均匀后置于2ml离心管内,加入1.5ml提取液(80%甲醇水溶液(内含0.1%甲酸和内标),置于4℃冰箱预冷保存)涡旋混匀;冰浴超声30min(35kHz);之后在4℃、12000rpm条件下 离心15min,取上清液用旋转蒸发浓缩仪(接冷井)真空旋干,并用200μL甲醇乙腈水(4:4:2)复溶,在4℃、12000rpm条件下离心10min取上清液。上清液置于4℃环境临时保存,然后将处理好的样品上机测试,若长期保存需置于-20℃。
仪器型号:Thermo Scientific UPLC Vanquish。
梯度洗脱(体积比)
流动相:
水相A:0.1%甲酸水溶液有机相B:0.1%甲酸乙腈溶液
流动相流速:0.35ml/min
进样量:5μL
柱温:35℃
柱型:ACQUITY UPLC HSS T3(2.1×100mm,1.8μm)。
4、水稻激素的测定采用异丙醇/水/盐酸溶液的方法提取液水稻植株中内源性激素,通过二氯甲烷萃取并以氮气吹扫方式浓缩样品,然后使用液相-质谱联用技术(ESI-HPLC-MS/MS)进行测定。
5、水稻分蘖基因的测定通过DNA聚合酶链式反应测定分蘖关键基因。首先使用RNA提取试剂盒提取总RNA,然后使用逆转录试剂盒得到DNA模板。最后将DNA模板、荧光探针以及分蘖基因引物按照试剂盒的方法混合后使用DNA聚合酶链式反应仪进行测试。
6、分蘖数的测试一般地,水稻插秧后1个月开始分蘖,持续一个月左右。选取插秧后第60天进行水稻分蘖数的取值,采用“Z”字取样法在田间设定五个采样点,每个采样点选取10个数据,共50个数据,取平均值。
7、产量的测试一般地,以收获期的水稻单株籽粒重量作为本发明中水稻的产量值。
实施例1
一种球型Se NMs的制备方法,包括如下步骤:
(1)称取二氧化硒0.11g和抗坏血酸0.36g,两者摩尔比为1:2,放入研钵中,混合后,在20℃下进行充分研磨1~10min,直至红色糊状;
(2)向步骤(1)研磨得到的红色糊状物中加入20mL去离子水分散;
(3)将步骤(2)得到的溶液倒入容器中,向其中加聚乙烯吡咯烷酮(PVP)47mg,进行20℃,300W超声处理60min,处理完毕后在4℃,10000r/min离心,所得沉淀进行冷冻干燥,最终得到球型Se NMs。
将得到的球型Se NMs进行性能测试,测试结果见表1:
表1球型Se NMs的表征
实施例2
一种增加分蘖来提高富硒水稻产量的方法,包括如下步骤:
(1)将来自江苏省农业科学院的水稻种子在育苗基地进行生长;
(2)选择“两叶一心”时期的水稻苗采用机器插秧的方式,移植在标准水稻田(种植密度为每亩一万颗)里;
(3)培养10天,达到“三叶一心”时期,叶面喷施1.5mg/L的实施例1的球型Se NMs水溶液,继续培养140天,收获水稻;其中喷施量为1mL/株。
对比例1
将实施例2中的球型Se NMs溶液替换为水溶液,其他和实施例2保持一致,得到水稻。
将实施例2和对比例1的水稻进行性能测试,测试结果如下:
图2为实施例2和对比例1中水稻根部N含量的对比。从图2可以看出:Se NMs处理后的水稻根部氮含量提高了10%,这意味着水稻的养分供给得到了提升,有助于水稻的生长;
图3为实施例2和对比例1中水稻中Se含量的对比。从图3可以看出:Se NMs处理后的水稻籽粒硒含量提高了50%,这说明了本发明的富硒技术是有价值的,达到了富硒农产品的标准;
图4为实施例2和对比例1中水稻有效分蘖数对比。从图4可以看出:Se NMs处理后的水稻分蘖数提高了50%,这意味着水稻的成熟期穗数理论上要增加50%左右,可以显著影响到水稻的产量;
图5为实施例2和对比例1中水稻产量的对比。从图5可以看出:Se NMs处理后的水稻产量增加了40%,这是分蘖数增加带来的结果;
图6为实施例2和对比例1中水稻根系微生物的差异性。从图6可以看出:Se NMs处理后根际土壤中有益微生物增加,其中草螺菌(Herbaspirillum sp.)的相对丰度增加了88.7%,脱硫弧菌(Desulfovibrio putealis)的相对丰度增加了29.2%,地杆菌(Geobacter daltonii)的 相对丰度增加了199.0%,厌氧粘细菌(Anaeromyxobacter sp.)的相对丰度增加了144.8%,这有助于水稻根系生长,提高水稻对土壤养分的获取能力;
图7为实施例2和对比例1中水稻根系分泌物的变化。从图7可以看出:Se NMs处理后的水稻根际土壤中低分子量有机质含量增加,其中丙酮酸(Pyruvic acid)的相对丰度增加了58.9%,苯丙氨酸(L-Phenylalanine)的相对丰度增加了607.4%,柠檬酸(Citric acid)的相对丰度增加了584.8%,这有助于调节土壤中的酸碱平衡,提高土壤养分的有效性,促进水稻生长;
图8为实施例2和对比例1中水稻赤霉素的含量的变化;其中A为GA1的含量;B为GA4的含量。从图8可以看出:Se NMs处理后水稻赤霉素水平的变化,分蘖期赤霉素(GA1和GA4)含量升高会降低水稻的分蘖数进而降低产量,Se NMs降低了水稻的赤霉素水平,这有助于提高水稻的分蘖数,提高水稻的产量;
图9为实施例2和对比例1中水稻分蘖基因的含量的变化。从图9可以看出:Se NMs处理后水稻分蘖基因(MOC1、TB1、OSH1)的相对表达量提高,这意味着水稻分蘖数的增加,最终产量提高。
对比例2
将实施例2中的球型Se NMs溶液替换为浓度为含硒量1.5mg/L的亚硒酸钠溶液,其他和实施例2保持一致,得到水稻。
对比例3
将实施例2中的球型Se NMs替换为市售零价硒(纯度99%,20μm),其他和实施例2保持一致,得到水稻。
对比例4
将实施例2中的球型Se NMs替换为市售片状纳米硒(纯度90%,长200nm,宽90nm),其他和实施例2保持一致,得到水稻。
对比例5
将实施例2中的球型Se NMs替换为市售线状纳米硒(纯度90%,长1μm,直径20nm),其他和实施例2保持一致,得到水稻。
对比例6
将实施例2中的球型Se NMs替换为市售球型Se NMs(纯度80%,直径80nm),其他和实施例2保持一致,得到水稻。
将实施例2、对比例1~6的水稻进行测试,测试结果如下:
表2实施例2和对比例1~6的测试结果
实施例3
参考专利CN112010271A的球型Se NMs合成方法,调整实施例1中球型Se NMs的粒径为10nm、40nm、100nm、200nm,其他和实施例2保持一致,得到水稻。
将得到的水稻进行测试,测试结果如下:
表3实施例3的测试结果
实施例4
调整实施例2中球型Se NMs溶液的施加量为0.5、1.5和2mL/株,其他和实施例2保持一致,得到水稻。
将得到的水稻进行测试,测试结果如下:
表4实施例4的测试结果
实施例5
将实施例2中球型Se NMs溶液分1、2、3、5次施用,从水稻达到“三叶一心”时期开始,每次间隔7天,其它和实施例2保持一致,得到水稻。
表5实施例5的测试结果
实施例6
调整实施例2中球型Se NMs溶液的施用浓度为1、2和3mg/L,其他和实施例2保持一致,得到水稻。
表6实施例6的测试结果
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 一种增加分蘖来提高富硒水稻产量的方法,其特征在于,所述的方法是在水稻苗期,叶面施加球型Se NMs溶液。
  2. 根据权利要求1所述的方法,其特征在于,所述的球型Se NMs的尺寸在10~90nm,水合半径在160~200nm,表面电荷为-15~-18mV,纯度在95%以上。
  3. 根据权利要求1所述的方法,其特征在于,所述的球型Se NMs溶液为球型Se NMs水溶液,浓度为1~3mg/L。
  4. 根据权利要求1所述的方法,其特征在于,所述的水稻苗期是指水稻达到“三叶一心”时期。
  5. 根据权利要求1所述的方法,其特征在于,所述的球型Se NMs溶液的施加量为0.5~2mL/株。
  6. 根据权利要求1所述的方法,其特征在于,所述的球型Se NMs溶液可以分1~5次施加,具体是从水稻达到“三叶一心”时期开始,每次间隔5~7天。
  7. 根据权利要求1所述的方法,其特征在于,所述的球型Se NMs的制备方法,包括如下步骤:
    (1)取硒源与还原剂混合后充分研磨,研磨至呈红色糊状,停止研磨;
    (2)向步骤(1)研磨得到的红色糊状物中加水分散;
    (3)将步骤(2)得到的溶液倒入容器中,向其中滴加表面修饰剂,进行超声处理,处理完毕后离心,所得上清液和沉淀分别进行冷冻干燥,最终得到球型Se NMs。
  8. 权利要求1~7任一项所述的方法在农业领域的应用。
  9. 一种提高水稻中硒含量的方法,其特征在于,所述的方法是在水稻苗期,叶面施加球型Se NMs溶液。
  10. 根据权利要求9所述的方法,其特征在于,所述的球型Se NMs的尺寸在10~90nm;所述的水稻苗期是指水稻达到“三叶一心”时期;所述的球型Se NMs溶液为球型Se NMs水溶液,浓度为1~3mg/L;所述的球型Se NMs溶液的施加量为0.5~2mL/株;所述的球型Se NMs溶液可以分1~5次施加,具体是从水稻达到“三叶一心”时期开始,每次间隔5~7天。
PCT/CN2023/100679 2022-04-18 2023-06-16 一种增加分蘖来提高富硒水稻产量的方法 WO2023202729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210447145.0 2022-04-18
CN202210447145.0A CN114711112B (zh) 2022-04-18 2022-04-18 一种增加分蘖来提高富硒水稻产量的方法

Publications (1)

Publication Number Publication Date
WO2023202729A1 true WO2023202729A1 (zh) 2023-10-26

Family

ID=82246218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100679 WO2023202729A1 (zh) 2022-04-18 2023-06-16 一种增加分蘖来提高富硒水稻产量的方法

Country Status (2)

Country Link
CN (1) CN114711112B (zh)
WO (1) WO2023202729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711112B (zh) * 2022-04-18 2023-06-13 江南大学 一种增加分蘖来提高富硒水稻产量的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289129A1 (en) * 2013-12-26 2016-10-06 Guangdong Institute Of Eco-Environmental And Soil Sciences (Guangdong Museum Of Soil Sciences) Selenium-doped nano silica sol used for producing selenium-enriched rice and capable of suppressing absorption and accumulation of heavy metals in paddy rice and preparation method therefor
CN107173138A (zh) * 2017-06-28 2017-09-19 全椒县吉祥粮食种植专业合作社 一种富硒水稻的种植方法
CN109691369A (zh) * 2019-02-28 2019-04-30 常德市农学会 一种水稻富硒提质方法
AU2020102215A4 (en) * 2020-09-11 2020-10-22 Jiangsu Xuhuai Area Huaiyin Agricultural Science Research Institute Foliar fertilizer rich in selenium (se) and calcium (ca) for rice plant and preparation method and use thereof
CN112010271A (zh) * 2020-09-28 2020-12-01 江南大学 一种球形硒纳米颗粒及其制备方法
CN112997824A (zh) * 2021-02-22 2021-06-22 安徽金太阳食品有限公司 一种富硒水稻的种植方法
CN114208614A (zh) * 2021-12-16 2022-03-22 苏州新高塬生物科技有限公司 一种提高水稻土壤氮利用有效性的方法
CN114711112A (zh) * 2022-04-18 2022-07-08 江南大学 一种增加分蘖来提高富硒水稻产量的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550349B (zh) * 2011-12-05 2013-07-03 广西康华农业股份有限公司 有机富硒米水稻的栽培方法
CN103875345A (zh) * 2014-02-25 2014-06-25 安徽硒谷生物科技有限公司 一种富硒小米及其生产方法
CN106171221A (zh) * 2016-07-12 2016-12-07 浏阳市隆亭种养专业合作社 一种新型富硒米及其生产方法
CN113439623A (zh) * 2021-06-10 2021-09-28 江南大学 一种基于调控根系微生物提高叶菜产量及硒含量的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289129A1 (en) * 2013-12-26 2016-10-06 Guangdong Institute Of Eco-Environmental And Soil Sciences (Guangdong Museum Of Soil Sciences) Selenium-doped nano silica sol used for producing selenium-enriched rice and capable of suppressing absorption and accumulation of heavy metals in paddy rice and preparation method therefor
CN107173138A (zh) * 2017-06-28 2017-09-19 全椒县吉祥粮食种植专业合作社 一种富硒水稻的种植方法
CN109691369A (zh) * 2019-02-28 2019-04-30 常德市农学会 一种水稻富硒提质方法
AU2020102215A4 (en) * 2020-09-11 2020-10-22 Jiangsu Xuhuai Area Huaiyin Agricultural Science Research Institute Foliar fertilizer rich in selenium (se) and calcium (ca) for rice plant and preparation method and use thereof
CN112010271A (zh) * 2020-09-28 2020-12-01 江南大学 一种球形硒纳米颗粒及其制备方法
CN112997824A (zh) * 2021-02-22 2021-06-22 安徽金太阳食品有限公司 一种富硒水稻的种植方法
CN114208614A (zh) * 2021-12-16 2022-03-22 苏州新高塬生物科技有限公司 一种提高水稻土壤氮利用有效性的方法
CN114711112A (zh) * 2022-04-18 2022-07-08 江南大学 一种增加分蘖来提高富硒水稻产量的方法

Also Published As

Publication number Publication date
CN114711112B (zh) 2023-06-13
CN114711112A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Dunstan et al. Improved growth of tissue cultures of the onion, Allium cepa
CN102417417B (zh) 一种工厂化育苗营养液及其制备方法和应用
WO2023202729A1 (zh) 一种增加分蘖来提高富硒水稻产量的方法
CN108967442B (zh) 一种抑制水稻镉砷积累的亚铁改性硒溶胶及其制备方法与应用
CN113439623A (zh) 一种基于调控根系微生物提高叶菜产量及硒含量的方法
CN101550035A (zh) 高活性硅钙镁钾肥
CN108129196A (zh) 一种纳米碳有机肥
CN113603532B (zh) 一种生物有机硒叶面肥及其用途
CN112470651A (zh) 冬小麦微量元素肥料高效施用方法及籽粒微量元素营养强化
CN115259138B (zh) 一种基于碳纳米材料提高作物耐旱性和产量的方法
CN111232949A (zh) 一种小球藻水热炭材料的制备方法及其在水稻生产中的应用
CN114208614B (zh) 一种提高水稻土壤氮利用有效性的方法
CN106900504B (zh) 适于番茄的无土栽培养料及椰糠基质培番茄的培养方法
CN115872785A (zh) 一种适于培养贵州地方优质特色稻红禾和/或红米禾的培养液以及应用和水稻培养方法
Wang et al. Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3− and NH4+ supply
CN114988952A (zh) 一种纳米硅液体肥料及其制备方法
Kolota et al. Slow release fertilizers on organic carriers as the source of N for vegetable crops production in the open field
CN114586614A (zh) 铁酸锰纳米材料在诱导番茄早花增产中的应用
US11474099B2 (en) Method for diagnosing the sulphur nutrition state of a plant
Gupta et al. Effect of integrated nutrient management on growth and yield of guava (Psidium guajava L.) cv. Allahabad safeda under high density planting
CN110073790A (zh) 一种适用于镉污染稻田的双季稻施肥方法
CN113186132B (zh) 一种适于玉米种植的微生物菌剂和应用
CN113717885B (zh) 一种来自于芽胞杆菌的微量元素螯合剂及其应用
Patni et al. Nitrogen: A key nutrient for rice production
CN107466750A (zh) 一种提高水稻品质的种植方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023570053

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791381

Country of ref document: EP

Kind code of ref document: A1