WO2023202624A1 - 操作导通组件的方法、装置、启动装置和计算机可读介质 - Google Patents

操作导通组件的方法、装置、启动装置和计算机可读介质 Download PDF

Info

Publication number
WO2023202624A1
WO2023202624A1 PCT/CN2023/089241 CN2023089241W WO2023202624A1 WO 2023202624 A1 WO2023202624 A1 WO 2023202624A1 CN 2023089241 W CN2023089241 W CN 2023089241W WO 2023202624 A1 WO2023202624 A1 WO 2023202624A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
current
conduction
body diode
period
Prior art date
Application number
PCT/CN2023/089241
Other languages
English (en)
French (fr)
Inventor
陈晓航
宋杨峰
白万龙
凌清
吴作人
陈加敏
Original Assignee
施耐德电气工业公司
陈晓航
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气工业公司, 陈晓航 filed Critical 施耐德电气工业公司
Publication of WO2023202624A1 publication Critical patent/WO2023202624A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor

Definitions

  • Embodiments of the present invention generally relate to a method, apparatus, enabling device, and computer-readable medium for operating a conductive component, and more particularly, to a method, apparatus, enabling device, and computer-readable medium for operating a soft-start circuit.
  • Embodiments of the present disclosure provide a method, device, startup device and computer-readable medium for operating a conductive component, which can reduce the loss generated during the startup process, thereby at least partially solving the above-mentioned and existing problems in the prior art. Other potential problems.
  • a first aspect of the present disclosure relates to a method of operating a conductive assembly.
  • the conductive component is coupled between the AC power supply and the inductive load, and includes a first switching device and a second switching device connected in anti-series, the first switching device including a first body diode connected in anti-parallel with the first switching device,
  • the second switching device includes a second body diode connected in anti-parallel with the second switching device.
  • the method includes: in the first period, conducting the conduction component with a first conduction angle, and in the second period, conducting the conduction component with a second conduction angle, and the second conduction angle is greater than the first conduction angle, wherein, in the first period and the second period, based on the current flowing through the conduction component, it is determined that the first switching device or the second body diode connected in anti-parallel with the first body diode or the second body diode whose conduction direction is the same as the current direction is determined.
  • the turn-off timing of the switching device is determined in the first period and the second period, based on the current flowing through the conduction component.
  • the first switching device and the second switching device are at least partially in a simultaneous conduction state during the startup process, thereby reducing power loss compared with the existing soft start method.
  • determining the turn-off timing based on the current includes: detecting the magnitude of the current; and in response to the current being less than a threshold, directing a first switch connected in anti-parallel to the first body diode or the second body diode whose conduction direction is the same as the current direction. device or a second switching device provides the shutdown signal.
  • the method further includes conducting the conduction component at at least a third conduction angle during at least a third period, wherein the first period, the second period and the third period are used in the subsequent period.
  • the conduction angle is larger than the conduction angle used in the previous cycle.
  • the method further includes providing a turn-off signal to the first switching device or the second switching device in response to the current being equal to zero.
  • the method further includes determining an increase in the conduction angle in each cycle based on a voltage boost slope of the inductive load and a preset boost curve.
  • the threshold is determined based on the accuracy of current detection.
  • the turn-off timing includes a voltage zero crossing of the conducting component.
  • a second aspect of the present disclosure relates to an apparatus for operating a conductive assembly.
  • the conductive component is coupled between the AC power supply and the inductive load, and includes a first switching device and a second switching device connected in reverse series.
  • the first switching device includes a third switching device connected in anti-parallel with the first switching device.
  • the second switching device includes a second body diode connected in anti-parallel with the second switching device.
  • the apparatus includes: a current sampling device for sampling the current in the conductive component; and a controller communicatively connected with the current sampling device and configured to perform the method according to any one of the preceding embodiments.
  • a third aspect of the present disclosure relates to a starting device, comprising a device according to the preceding embodiments.
  • a fourth aspect of the present disclosure relates to a computer-readable medium having stored thereon a computer-readable medium.
  • the computer-executable instructions when executed on the processor, perform the method according to any one of the preceding embodiments.
  • Figure 1 shows a schematic diagram of the conduction waveform of a switching device in a soft-start circuit in the prior art
  • Figure 2 shows a schematic diagram of a soft-start circuit based on thyristors and relays in the prior art
  • Figure 3 shows a schematic diagram of a soft-start circuit based on reverse series transistors in the prior art
  • Figures 4-6 show a schematic diagram of the operation process of the soft-start circuit shown in Figure 3;
  • FIG. 7 illustrates a flowchart of a method of operating a pass assembly in accordance with an embodiment of the present disclosure
  • FIG. 8 shows a flowchart of determining a turn-off timing in a method of operating a conductive component according to an embodiment of the present disclosure
  • Figure 9 shows a schematic diagram of a current waveform when operating a conductive component according to a method according to an embodiment of the present disclosure
  • Figure 13 illustrates a block diagram of an example device that may be used to implement embodiments of the present disclosure.
  • FIG. 1 shows a schematic diagram of the conduction waveform of a switching device in a soft-start circuit in the prior art.
  • soft start is usually achieved by gradually increasing the conduction angle of the conductive device in each cycle of soft start.
  • the conduction angle refers to the The conduction time of the conducting device. In this way, the current change in the inductive load is small, so that the voltage applied across the conductive device gradually increases from low to high without damaging the conductive device.
  • FIG. 2 shows a schematic diagram of a soft-start circuit based on thyristors and relays in the prior art.
  • each branch of this soft-start circuit for inductive loads includes parallel thyristors and relays.
  • the conduction angle of the thyristor gradually increases the conduction angle every half AC cycle.
  • the relay is closed to complete the soft start. Due to the characteristics of the thyristor itself, its loss is relatively large when it is turned on, making the overall loss of this soft-start circuit relatively large.
  • FIG. 3 shows a schematic diagram of a soft-start circuit based on reverse series transistors in the prior art.
  • each branch of this soft-start circuit for an inductive load (such as a three-phase motor) includes conductive components M1-M3, and each conductive component includes transistors connected in reverse series. Since the loss when the transistor is turned on is lower than that of the thyristor, the overall loss of the soft-start circuit shown in Figure 3 is smaller than that of the soft-start circuit shown in Figure 2.
  • the following describes the working process of the soft start circuit shown in Figure 3 in conjunction with Figure 4-6, taking phase A and phase B as examples.
  • Figures 4-6 show schematic diagrams of the operation of the soft-start circuit shown in Figure 2.
  • the A-phase branch of the soft-start circuit includes a conductive component M1, which includes transistors S1 and S2 connected in reverse series
  • the phase B branch includes a conductive component M2, which includes a transistor S3 connected in reverse series. and S4.
  • Each transistor includes an anti-parallel body diode.
  • the soft-start controller controls S1 and S4 are turned on, and S2 and S3 are turned off. At this time, the current flows from the A-phase power supply to the B-phase power supply through the body diodes of S1 and S2, and the body diodes of S4 and S3.
  • the soft-start controller turns off S1-S4. Since the conduction voltage drop across the body diode is about 0.7V, the loss of the soft-start circuit in the first cycle is about 2*0.7V*the current flowing through the body diode in the conduction angle of the first cycle.
  • the soft-start controller controls S2 and S3 to be turned on and S1 and S4 to be turned off. At this time, the current flows from the B-phase power supply to the A-phase power supply through the body diodes of S3 and S4, and the body diodes of S2 and S1.
  • the soft start controller turns off S1-S4. Since the conduction voltage drop across the body diode is about 0.7V, the loss of the soft-start circuit in the second cycle is about 2*0.7V*the current flowing through the body diode in the conduction angle of the second cycle.
  • the above control method does not need to detect the voltage at both ends of M1 and M2 and the current flowing through them. It only needs to control the on and off of M1 and M2 according to the conduction angle.
  • the control method is simple.
  • FIG. 7 shows a flow chart of a method of operating a conductive component coupled between an AC power source and an inductive load and including a first inverse series connection according to an embodiment of the present disclosure.
  • a switching device and a second switching device the first switching device includes a first body diode connected in anti-parallel with the first switching device, and the second switching device includes a second body diode connected in anti-parallel with the second switching device.
  • a method of operating a conductive component includes: at 105 , during a first period, conducting the conductive component at a first conduction angle. At 110, during the second period, the conduction component is turned on at a second conduction angle, the second conduction angle being greater than the first conduction angle. At 115, wherein, in the first period and the second period, based on the current flowing through the conduction component, it is determined that the first body diode or the second body diode with the same conduction direction and the current direction is connected in anti-parallel. The turn-off timing of the first switching device or the second switching device.
  • the switching devices in the conductive component are all in the conductive state for part of the period. Since the conduction voltage drop of the switching device (such as MOSFET) is much smaller than the voltage drop across the body diode, compared with the control method of the soft-start circuit shown in Figure 3, the method according to this embodiment can reduce the soft-start circuit loss and extend the service life of the conductive components.
  • the switching device such as MOSFET
  • the method further includes conducting the pass component at at least a third conduction angle during at least a third period, wherein any of the first period, the second period, and the third period are The conduction angle used is greater than the conduction angle used in the previous cycle.
  • other multiple cycles may also be included, and the conduction angle of each subsequent cycle is greater than the conduction angle of the previous cycle, which may be determined according to specific design requirements and cost.
  • the method further includes providing a shutdown signal to the first switching device or the second switching device in response to the current equaling zero. In this way, zero-current shutdown of the conducting components can be achieved.
  • the conductive component may also be turned off in other ways, which may be determined based on specific actual requirements and costs.
  • the method further includes determining an increase in the conduction angle in each cycle based on a voltage boost slope of the inductive load and a preset boost curve. In other embodiments, there are other ways to adjust the conduction angle, which can be determined according to specific design requirements and cost.
  • determining the turn-off timing based on the current includes: at 205, detecting the magnitude of the current.
  • a turn-off signal is provided to the first switching device or the second switching device connected in anti-parallel with the first body diode or the second body diode whose conduction direction is the same as the current direction.
  • FIG. 9 shows a schematic diagram of a current waveform when operating a conductive component according to a method according to an embodiment of the present disclosure. As shown in Figure 9, when it is detected that the current in the conductive component is less than the threshold I th at time t 1 , the controller sends a shutdown signal.
  • the detection accuracy of the current sensor will affect the selection of the threshold I th .
  • the threshold is determined based on the accuracy of current detection.
  • the threshold may be selected in other ways, which may be determined based on specific design requirements and cost.
  • the turn-off timing includes a voltage zero crossing of the turn-on component. This is because, in an inductive load, the voltage leads the current by a certain angle. When this angle is small, when the voltage reaches zero, the current also approaches zero. At this time, turning off the conductive component can also achieve a similar effect to the above solution of turning off the conductive component by detecting that the current is less than the threshold, and can save the current sensor.
  • the conductive component shown in Figure 10 is suitable for single-phase inductive loads, and can also be used as a single-phase branch of a three-phase inductive load, and its control method is the same.
  • the conduction component includes two MOSFETs S1 and S2 connected in reverse series, where S1 is connected in reverse parallel with the integrated diode D1, and S2 is connected in reverse parallel with the integrated diode D2.
  • the conduction component is turned on at a first conduction angle.
  • the controller controls both S1 and S2 to be turned on, and the current flows to the inductive load through S1 and S2.
  • a device for operating a conductive component is also disclosed.
  • the conductive component is coupled between an AC power source and an inductive load and includes a first switching device connected in reverse series. and a second switching device.
  • the first switching device includes a first body diode connected in anti-parallel with the first switching device.
  • the second switching device includes a second body diode connected in anti-parallel with the second switching device.
  • the device includes: a current sampling device. , for sampling the current in the conductive component; and a controller communicatively connected with the current sampling device and configured to perform a method according to any one of the preceding embodiments.
  • a starting device including the device according to the aforementioned embodiment.
  • a computer-readable medium is also disclosed, with computer-executable instructions stored thereon.
  • the executable instructions are run on a processor, the method according to the foregoing embodiments is executed.
  • Figure 13 shows a schematic block diagram of an example device 1300 that may be used to implement embodiments of the present disclosure.
  • Device 1300 may be used to implement methods 100 and 200 of Figures 7-8.
  • the apparatus 1300 may be implemented as the apparatus described above for operating a conductive component.
  • device 1300 includes a central processing unit (CPU controller) 1301 that may be loaded into random access memory (RAM) 1303 in accordance with computer program instructions stored in read only memory (ROM) 1302 or from storage unit 1308 computer program instructions to perform various appropriate actions and processes.
  • the controller 1301 may be, for example, the device described above for operating the conductive component.
  • RAM 1303 various programs and data required for the operation of the device 1300 can also be stored.
  • CPU 1301, ROM 1302 and RAM 1303 are connected to each other through bus 1304.
  • An input/output (I/O) interface 1305 is also connected to bus 1304.
  • I/O interface 1305 Multiple components in the device 1300 are connected to the I/O interface 1305, including: input unit 1306, such as a keyboard, mouse, etc.; output unit 1307, such as various types of displays, speakers, etc.; storage unit 1308, such as a magnetic disk, optical disk, etc. ; and communication unit 1309, such as network card, modem, wireless communication transceiver, etc.
  • the communication unit 1309 allows Device 1300 exchanges information/data with other devices through computer networks such as the Internet and/or various telecommunications networks.
  • the processing unit 1301 performs various methods and processes described above, such as methods 100 and 200 .
  • methods 100 and 200 may be implemented as a computer software program or computer program product tangibly embodied in a computer-readable medium, such as a non-transitory computer-readable medium (eg, storage unit 1308) .
  • part or all of the computer program may be loaded and/or installed onto device 1300 via ROM 1302 and/or communication unit 1309.
  • CPU 1301 may be configured to perform methods 100 and 200 in any other suitable manner (e.g., by means of firmware).
  • each step of the above-mentioned method of the present disclosure can be implemented by a general computing device. They can be concentrated on a single computing device or distributed on a network composed of multiple computing devices. Alternatively, Specifically, they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device and executed by the computing device, or they can be made into individual integrated circuit modules, or multiple modules or The steps are implemented as a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software. For example, certain embodiments of the disclosure also include various program modules and/or integrated circuit modules for performing one or more steps of methods 100 and 200 and/or one or more of the steps described in other embodiments of the disclosure. Other steps. These program modules may be included or embodied in a device, such as device 1300 of FIG. 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

本公开的实施例涉及一种操作导通组件的方法、装置、启动装置和计算机可读介质。该导通组件耦接在交流电源与感性负载之间,并且包括反向串联的第一开关器件和第二开关器件,第一开关器件包括与第一开关器件反向并联的第一体二极管,第二开关器件包括与第二开关器件反向并联的第二体二极管。该方法包括:在第一周期,以第一导通角导通导通组件,在第二周期,以第二导通角导通导通组件,第二导通角大于第一导通角,其中,在第一周期和第二周期,基于流过导通组件的电流,确定导通方向与电流方向相同的第一体二极管或第二体二极管所反向并联的第一开关器件或第二开关器件的关断时机。在此提出的方法可以减小软启动电路的功率损耗。

Description

操作导通组件的方法、装置、启动装置和计算机可读介质 技术领域
本发明的实施例总体上涉及一种操作导通组件的方法、装置、启动装置和计算机可读介质,更具体地,涉及操作软启动电路的方法、装置、启动装置和计算机可读介质。
背景技术
现有的软启动方式多采用在多个周期逐步增大导通器件的导通角的方式。但是,现有的软启动方式在启动过程中造成的功率损耗较大,同时会减少元器件的使用寿命。
发明内容
本公开的实施例提供了一种操作导通组件的方法、装置、启动装置和计算机可读介质,其能够减小启动过程中产生的损耗,从而至少部分地解决现有技术中存在的上述以及其他潜在问题。
本公开的第一个方面涉及一种操作导通组件的方法。该导通组件耦接在交流电源与感性负载之间,并且包括反向串联的第一开关器件和第二开关器件,第一开关器件包括与第一开关器件反向并联的第一体二极管,第二开关器件包括与第二开关器件反向并联的第二体二极管。该方法包括:在第一周期,以第一导通角导通导通组件,在第二周期,以第二导通角导通导通组件,第二导通角大于第一导通角,其中,在第一周期和第二周期,基于流过导通组件的电流,确定导通方向与电流方向相同的第一体二极管或第二体二极管所反向并联的第一开关器件或第二开关器件的关断时机。
通过上述实施例,使得该第一开关器件和第二开关器件在启动过程中至少部分地处于同时导通的状态,从而相较于现有的软启动方式减少了功率损耗。
根据一个实施例,基于电流确定关断时机包括:检测电流的大小;以及响应于电流小于阈值,向导通方向与电流方向相同的第一体二极管或第二体二极管所反向并联的第一开关器件或第二开关器件提供关断信号。通过上述实施例,能够减小体二极管中流过的电流大小,从而减小体二极管的功率损耗。
根据一个实施例,该方法还包括在至少一个第三周期以至少一个第三导通角导通导通组件,其中第一周期、第二周期和第三周期中的在后周期中所使用的导通角大于在前周期中所使用的导通角。通过上述实施例,能够实现软启动。
根据一个实施例,该方法还包括响应于电流等于零而向第一开关器件或第二开关器件提供关断信号。通过上述实施例,能够实现导通组件的自然过零关断,增加了导通组件的使用寿命。
根据一个实施例,该方法还包括基于感性负载的电压升压斜率和预设升压曲线来确定每个周期导通角的增加量。通过上述实施例,能够以预定的速率实现软启动。
根据一个实施例,阈值基于电流检测的精度而被确定。通过上述实施例,可以尽可能大地减少导通组件的功率损耗。
根据一个实施例,关断时机包括导通组件的电压过零点。通过上述实施例,只需要检测导通组件两端的电压即可实现软启动。
本公开的第二个方面涉及一种用于操作导通组件的装置。该导通组件耦接在交流电源与感性负载之间的导通组件,并且包括反向串联的第一开关器件和第二开关器件,第一开关器件包括与第一开关器件反向并联的第一体二极管,第二开关器件包括与第二开关器件反向并联的第二体二极管。该装置包括:电流采样装置,用于采样导通组件中的电流;以及控制器,与电流采样装置通信地连接并且被配置为执行根据前述实施例中任一项所述的方法。
本公开的第三个方面涉及一种启动装置,包括根据前述实施例所述的装置。
本公开的第四个方面涉及一种计算机可读介质,其上存储有计 算机可执行指令,可执行指令在处理器上被运行时,执行根据前述实施例中任一项所述的方法。
附图说明
通过参照附图的以下详细描述,本公开实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本公开的多个实施例进行说明,其中:
图1示出了现有技术中软启动电路中开关器件导通波形的示意图;
图2示出了现有技术中基于晶闸管和继电器的软启动电路的示意图;
图3示出了现有技术中基于反向串联晶体管的软启动电路的示意图;
图4-6示出了图3中所示的软启动电路的操作过程的示意图;
图7示出了根据本公开的实施例的操作导通组件的方法的流程图;
图8示出了根据本公开的实施例的操作导通组件的方法中的确定关断时机的流程图;
图9示出了根据本公开的实施例的方法操作导通组件时电流波形的示意图;
图10-12示出了根据本公开的实施例的方法操作导通组件的示意图;以及
图13示出了可以用来实施本公开的实施例的示例设备的框图。
具体实施方式
现在将参照附图中所示的各种示例性实施例对本公开的原理进行说明。应当理解,这些实施例的描述仅仅为了使得本领域的技术人员能够更好地理解并进一步实现本公开,而并不意在以任何方式限制本公开的范围。应当注意的是,在可行情况下可以在图中使用 类似或相同的附图标记,并且类似或相同的附图标记可以表示类似或相同的功能。本领域的技术人员将容易地认识到,从下面的描述中,本文中所说明的结构和方法的替代实施例可以被采用而不脱离通过本文描述的本发明的原理。
下面将结合图1-6详细说明现有技术中软启动电路的结构和现有的软启动方法的缺点。首先参考图1,图1示出了现有技术中软启动电路中开关器件导通波形的示意图。
如图1所示,对于感性负载,现有技术中通常是通过软启动的每个周期逐渐增大导通器件的导通角来实现软启动,导通角是指软启动的每个周期内导通器件的导通时间。通过这种方式,感性负载中的电流变化较小,使得施加在导通器件两端的电压从低到高逐渐增大,不会损坏导通器件。
图2示出了现有技术中基于晶闸管和继电器的软启动电路的示意图。如图2所示,感性负载(例如三相电机)的这种软启动电路的每个支路包括并联的晶闸管和继电器,晶闸管的导通角在每半个交流周期逐渐增大导通角,最终当导通角到达最大时闭合继电器,完成软启动。由于晶闸管本身的特性,其导通时损耗较大,使得这种软启动电路的损耗整体较大。
图3示出了现有技术中基于反向串联晶体管的软启动电路的示意图。如图3所示,感性负载(例如三相电机)的这种软启动电路的每个支路包括导通组件M1-M3,每个导通组件包括反向串联的晶体管。由于晶体管导通时的损耗低于晶闸管,使得图3中所示的软启动电路的整体损耗要小于图2中所示的软启动电路。下面结合图4-6说明图3中所示的软启动电路的工作过程,以A相和B相为例。
图4-6示出了图2中所示的软启动电路的操作过程的示意图。如图4所示,软启动电路的A相支路包络导通组件M1,其包括反向串联的晶体管S1和S2,B相支路包括导通组件M2,其包括反向串联的晶体管S3和S4。每个晶体管包括反向并联的体二极管。在软启动的第一周期,假设A相电压高于B相电压,软启动控制器控制S1 和S4导通,关断S2和S3。此时,电流从A相电源经过S1、S2的体二极管、S4、S3的体二极管到达B相电源。
如图5所示,当第一周期M1和M2的导通角到达之后,软启动控制器断开S1-S4。由于体二极管两端的导通压降为约0.7V,第一周期内软启动电路的损耗约为2*0.7V*第一周期的导通角内流过体二极管的电流。
如图6所示,在软启动的第二周期,此时A相电压低于B相电压,软启动控制器控制S2和S3导通,关断S1和S4。此时,电流从B相电源经过S3、S4的体二极管、S2、S1的体二极管到达A相电源。
当第二周期M1和M2的导通角到达之后,软启动控制器断开S1-S4。由于体二极管两端的导通压降为约0.7V,第二周期内软启动电路的损耗约为2*0.7V*第二周期的导通角内流过体二极管的电流。
重复上述步骤,直到M1和M2的导通角达到最大,软启动结束。
上述控制方式无需检测M1和M2两端的电压和其中流过的电流,只需要根据导通角来控制M1和M2的通断,控制方式简单。
但是,由于体二极管两端存在压降,上述控制方式会导致M1和M2在软启动过程中产生较大的损耗,影响器件的寿命。
下面将结合图7-12详细说明根据本公开的示例实施例的备用电源延时控制电路。首先参考图7,图7示出了根据本公开的实施例的操作导通组件的方法的流程图,该导通组件耦接在交流电源与感性负载之间,并且包括反向串联的第一开关器件和第二开关器件,第一开关器件包括与第一开关器件反向并联的第一体二极管,第二开关器件包括与第二开关器件反向并联的第二体二极管。
如图7所示,操作导通组件的方法包括:在105处,在第一周期,以第一导通角导通导通组件。在110处,在第二周期,以第二导通角导通导通组件,第二导通角大于第一导通角。在115处,其中,在第一周期和第二周期,基于流过导通组件的电流,确定导通方向与电流方向相同的第一体二极管或第二体二极管所反向并联的 第一开关器件或第二开关器件的关断时机。
通过上述实施例,在软启动的过程中有部分时段导通组件内的开关器件均为导通状态。由于开关器件(例如MOSFET)的导通压降远小于体二极管两端的压降,因此,与图3中所示的软启动电路的控制方式相比,根据本实施例的方法可以降低软启动电路的损耗,延长导通组件的使用寿命。
在某些实施例中,该方法还包括在至少一个第三周期以至少一个第三导通角导通导通组件,其中第一周期、第二周期和第三周期中的在后周期中所使用的导通角大于在前周期中所使用的导通角。在其他实施例中,还可以包括其他多个周期,每个在后周期的导通角都大于在前周期的导通角,这可以根据具体的设计要求和成本来确定。
在某些实施例中,该方法还包括响应于电流等于零而向第一开关器件或第二开关器件提供关断信号。以这种方式,可以实现导通组件的零电流关断。在其他实施例中,也可以通过其他方式关断导通组件,这可以根据具体的实际要求和成本来确定。
在某些实施例中,该方法还包括基于感性负载的电压升压斜率和预设升压曲线来确定每个周期导通角的增加量。在其他实施例中,还有通过其他方式来调节导通角,这可以根据具体的设计要求和成本来确定。
图8示出了根据本公开的实施例的操作导通组件的方法中的确定关断时机的流程图。如图8所示,基于电流确定关断时机包括:在205处,检测电流的大小。在210处,响应于电流小于阈值,向导通方向与电流方向相同的第一体二极管或第二体二极管所反向并联的第一开关器件或第二开关器件提供关断信号。
图9示出了根据本公开的实施例的方法操作导通组件时电流波形的示意图。如图9所示,当在t1时刻检测到导通组件中的电流已经小于阈值Ith时,控制器发出关断信号。
为了尽可能地减小损耗,期望Ith越接近零越好。在某些实施例 中,Ith=0。即,当导通组件中的电流在t2时刻到达零,控制器发出关断信号。
然而,在实际的电流检测过程中,电流传感器的检测精度会影响阈值Ith的选择。例如,如果电流传感器的检测精度为0.1A,则当导通组件中流过的电流是0.1A和0A时,电流传感器的输出可能是一样的。因此,在某些实施例中,阈值基于电流检测的精度而被确定。在其他实施例中,阈值也可以根据其他方式选择,这可以根据具体的设计要求和成本来确定。
在某些实施例中,关断时机包括导通组件的电压过零点。这是因为,在感性负载中,电压会超前电流一定角度。当该角度较小时,当电压到达零时,电流也接近零。此时关断导通组件也可以取得与上述通过检测电流小于阈值来关断导通组件的方案类似的效果,并且可以节省电流传感器。
下面结合图10-12来说明根据本实施例的方法控制导通组件的具体过程。首先参见图10,图10中示出的导通组件适用于单相感性负载,也可以作为三相感性负载的单相支路,其控制方式是相同的。该导通组件包括反向串联的两个MOSFET S1和S2,其中S1反向并联一体二极管D1,S2反向并联一体二极管D2。
如图10所示,在第一周期,以第一导通角导通导通组件。在导通角起始处,控制器控制S1和S2均导通,电流通过S1和S2流到感性负载。
如图11所示,在电流减小的过程中,当控制器检测到电流小于阈值时,控制器控制S2断开,此时电流通过S1和D2流到负载。
如图12所示,当控制器检测到电流为0时,控制器控制S1断开。此时,由于S2已被关断,同时D2会阻断反向电流,因此不会有反向电流流过S1,从而自然地实现了导通组件的零电流关断。
当电流相反时,操作过程也类似,在此不再赘述。
通过上述操作过程可知,在软启动的过程中,只有部分电流较小的时刻电流会通过MOSFET的体二极管,其余时间电流都是流过 MOSFET本体的。因此,导通组件在整个软启动过程中的损耗被大大降低。
在本公开的另一个方面,还公开了一种用于操作导通组件的装置,导通组件耦接在交流电源与感性负载之间的导通组件,并且包括反向串联的第一开关器件和第二开关器件,第一开关器件包括与第一开关器件反向并联的第一体二极管,第二开关器件包括与第二开关器件反向并联的第二体二极管,装置包括:电流采样装置,用于采样导通组件中的电流;以及控制器,与电流采样装置通信地连接并且被配置为执行根据前述实施例中任一项的方法。
在本公开的另一个方面,还公开了一种启动装置,包括根据前述实施例的装置。
在本公开的另一个方面,还公开了一种计算机可读介质,其上存储有计算机可执行指令,可执行指令在处理器上被运行时,执行根据前述实施例是的方法。
图13示出了可以用来实施本公开的实施例的示例设备1300的示意性框图。设备1300可以用于实现图7-8的方法100和200。设备1300可以被实现为以上描述的用于操作导通组件的装置。
如图所示,设备1300包括中央处理单元(CPU控制器)1301,其可以根据存储在只读存储器(ROM)1302中的计算机程序指令或者从存储单元1308加载到随机访问存储器(RAM)1303中的计算机程序指令,来执行各种适当的动作和处理。控制器1301例如可以是以上描述的用于操作导通组件的装置。在RAM 1303中,还可存储设备1300操作所需的各种程序和数据。CPU 1301、ROM 1302以及RAM 1303通过总线1304彼此相连。输入/输出(I/O)接口1305也连接至总线1304。
设备1300中的多个部件连接至I/O接口1305,包括:输入单元1306,例如键盘、鼠标等;输出单元1307,例如各种类型的显示器、扬声器等;存储单元1308,例如磁盘、光盘等;以及通信单元1309,例如网卡、调制解调器、无线通信收发机等。通信单元1309允许设 备1300通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理单元1301执行上文所描述的各个方法和处理,例如方法100和200。例如,在某些实施例中,方法100和200可被实现为计算机软件程序或计算机程序产品,其被有形地包含于计算机可读介质,诸如非瞬态计算机可读介质(例如存储单元1308)。在某些实施例中,计算机程序的部分或者全部可以经由ROM 1302和/或通信单元1309而被载入和/或安装到设备1300上。当计算机程序加载到RAM 1303并由CPU 1301执行时,可以执行上文描述的方法100和200的一个或多个步骤。备选地,在其他实施例中,CPU 1301可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行方法100和200。
本领域的技术人员应当理解,上述本公开的方法的各个步骤可以通过通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。例如,本公开的某些实施例还包括各个程序模块和/或集成电路模块,用于执行方法100和200的一个或多个步骤和/或本公开的其他实施例中描述的一个或多个其他步骤。这些程序模块可以被包括或被体现在一个设备中,诸如图13的设备1300中。
应当理解,尽管在上文的详细描述中提及了设备的若干装置或子装置,但是这种划分仅仅是示例性而非强制性的。实际上,根据本公开的实施例,上文描述的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上仅为本公开的可选实施例,并不用于限制本公开,对于本 领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等效替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种操作导通组件的方法,所述导通组件耦接在交流电源与感性负载之间,并且包括反向串联的第一开关器件和第二开关器件,所述第一开关器件包括与所述第一开关器件反向并联的第一体二极管,所述第二开关器件包括与所述第二开关器件反向并联的第二体二极管,所述方法包括:
    在第一周期,以第一导通角导通所述导通组件,
    在第二周期,以第二导通角导通所述导通组件,所述第二导通角大于所述第一导通角,
    其中,在所述第一周期和所述第二周期,基于流过所述导通组件的电流,确定导通方向与所述电流方向相同的所述第一体二极管或所述第二体二极管所反向并联的所述第一开关器件或所述第二开关器件的关断时机。
  2. 根据权利要求1所述的方法,其中基于所述电流确定所述关断时机包括:
    检测所述电流的大小;以及
    响应于所述电流小于阈值,向导通方向与所述电流方向相同的所述第一体二极管或所述第二体二极管所反向并联的所述第一开关器件或所述第二开关器件提供关断信号。
  3. 根据权利要求1所述的方法,还包括在至少一个第三周期以至少一个第三导通角导通所述导通组件,其中所述第一周期、所述第二周期和所述第三周期中的在后周期中所使用的导通角大于在前周期中所使用的导通角。
  4. 根据权利要求1所述的方法,还包括响应于所述电流等于零而向所述第一开关器件或所述第二开关器件提供关断信号。
  5. 根据权利要求1所述的方法,还包括基于所述感性负载的电压升压斜率和预设升压曲线来确定每个周期所述导通角的增加量。
  6. 根据权利要求1所述的方法,其中所述阈值基于电流检测的 精度而被确定。
  7. 根据权利要求1所述的方法,其中所述关断时机包括所述导通组件的电压过零点。
  8. 一种用于操作导通组件的装置,所述导通组件耦接在交流电源与感性负载之间的导通组件,并且包括反向串联的第一开关器件和第二开关器件,所述第一开关器件包括与所述第一开关器件反向并联的第一体二极管,所述第二开关器件包括与所述第二开关器件反向并联的第二体二极管,所述装置包括:
    电流采样装置,用于采样所述导通组件中的电流;以及
    控制器,与所述电流采样装置通信地连接并且被配置为执行根据权利要求1-7中任一项所述的方法。
  9. 一种启动装置,包括根据权利要求8所述的装置。
  10. 一种计算机可读介质,其上存储有计算机可执行指令,所述可执行指令在处理器上被运行时,执行根据权利要求1-7中任一项所述的方法。
PCT/CN2023/089241 2022-04-20 2023-04-19 操作导通组件的方法、装置、启动装置和计算机可读介质 WO2023202624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210420784.8A CN116961474A (zh) 2022-04-20 2022-04-20 操作导通组件的方法、装置、启动装置和计算机可读介质
CN202210420784.8 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023202624A1 true WO2023202624A1 (zh) 2023-10-26

Family

ID=88419241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089241 WO2023202624A1 (zh) 2022-04-20 2023-04-19 操作导通组件的方法、装置、启动装置和计算机可读介质

Country Status (2)

Country Link
CN (1) CN116961474A (zh)
WO (1) WO2023202624A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732616A (zh) * 2002-12-31 2006-02-08 施耐德电器工业公司 功率控制器
JP2009081969A (ja) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd 双方向スイッチ
CN104285351A (zh) * 2012-05-03 2015-01-14 菲尼克斯电气公司 作为两端口网络的能量供应模块,分离器件在该能量供应模块中的使用以及该能量供应模块的操作方法
JP2019004656A (ja) * 2017-06-19 2019-01-10 富士電機株式会社 双方向スイッチ及びその駆動方法
CN213185474U (zh) * 2020-07-13 2021-05-11 上海正泰智能科技有限公司 固态断路器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732616A (zh) * 2002-12-31 2006-02-08 施耐德电器工业公司 功率控制器
JP2009081969A (ja) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd 双方向スイッチ
CN104285351A (zh) * 2012-05-03 2015-01-14 菲尼克斯电气公司 作为两端口网络的能量供应模块,分离器件在该能量供应模块中的使用以及该能量供应模块的操作方法
JP2019004656A (ja) * 2017-06-19 2019-01-10 富士電機株式会社 双方向スイッチ及びその駆動方法
CN213185474U (zh) * 2020-07-13 2021-05-11 上海正泰智能科技有限公司 固态断路器

Also Published As

Publication number Publication date
CN116961474A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US9570973B2 (en) Bridgeless power factor correction circuit and control method utilizing control module to control current flow in power module
EP3654518B1 (en) Method for shutdown of an active neutral point clamped converter
US10014761B2 (en) Control method and device for I-type three-level circuit
US20160211767A1 (en) Inverter controller and control method of inverter device
US8792215B2 (en) Switch unit and power generation system thereof
CN111293888A (zh) Dc/dc转换器
JP6334336B2 (ja) 電力変換装置
WO2017020644A1 (zh) 减少隔离ups旁路导通的变压器励磁电流的方法及装置
CN113783450A (zh) 一种适用于anpc拓扑结构变流器的控制系统及方法
US20220337176A1 (en) Inverter circuit control method and related apparatus
US11431271B2 (en) Electric motor drive device
US20170170715A1 (en) Method of controlling an inverter
JP2002369498A (ja) 電力用半導体素子のゲート駆動回路
WO2023202624A1 (zh) 操作导通组件的方法、装置、启动装置和计算机可读介质
Wei et al. Current limit strategy for BLDC motor drive with minimized DC-link capacitor
JPH0823779B2 (ja) 電力制御装置
US11683031B1 (en) Thyristor current interrupter
RU2426218C2 (ru) Способ управления работой электродвигателя
KR101203883B1 (ko) 소프트스타터 장치 및 그의 제조방법
KR100724498B1 (ko) 매트릭스 컨버터의 전압 보상 장치 및 그 방법
CN114336529B (zh) 三相电源变换电路、过流保护方法、电路板及空调器
JP2016503281A (ja) 電力半導体デバイスの制御のためのシステムおよび方法
US20240178764A1 (en) Methods and apparatus for controlling switch gate logic in a power converter
EP4297263A1 (en) Circuitry and method for transitioning between modes of operation during an electrical fault
US20230187963A1 (en) Systems and methods of accelerating transfer in a static transfer switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791279

Country of ref document: EP

Kind code of ref document: A1