WO2023202510A1 - 压电马达、摄像模组和电子设备 - Google Patents

压电马达、摄像模组和电子设备 Download PDF

Info

Publication number
WO2023202510A1
WO2023202510A1 PCT/CN2023/088616 CN2023088616W WO2023202510A1 WO 2023202510 A1 WO2023202510 A1 WO 2023202510A1 CN 2023088616 W CN2023088616 W CN 2023088616W WO 2023202510 A1 WO2023202510 A1 WO 2023202510A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
base
motor according
piezoelectric motor
piece
Prior art date
Application number
PCT/CN2023/088616
Other languages
English (en)
French (fr)
Inventor
张百亮
边心秀
李邓峰
郑科
段然
唐玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023202510A1 publication Critical patent/WO2023202510A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • This application relates to the field of motors, specifically to a piezoelectric motor, camera module and electronic equipment.
  • the motors of camera modules of electronic devices are mainly voice coil motors.
  • the electromagnetic driving force of the voice coil motor is positively related to the magnetic field strength and the number of coil turns.
  • the photography technology of electronic devices improves, the photosensitive chips of camera modules become larger and larger, and the lenses become heavier.
  • the magnets and coils of the voice coil motor also need to become heavier; the increase in magnets and coils makes The volume and weight of the entire voice coil motor increases.
  • the increase in magnetic field strength will also cause magnetic interference problems to adjacent magnetic sensing devices or electromagnetic actuators. This causes the voice coil motor to be used in autofocus applications of large-load electronic equipment. The scene is limited.
  • Piezoelectric motors also known as ultrasonic motors
  • This application provides a piezoelectric motor, a camera module and electronic equipment to improve the autofocus stroke of the camera module.
  • this application provides a piezoelectric motor, which includes a base, a moving carrier and a driving mechanism; wherein the base has a mounting slot; the moving carrier is located in the mounting slot and is circumferentially fixed to the base, The mobile carrier is provided with a first through hole, and the mobile carrier is slidingly connected to the base along the axial direction of the first through hole; the driving mechanism is used to drive the mobile carrier to reciprocate along the axial direction of the first through hole relative to the base, and the driving mechanism It includes friction parts, a driving unit and an elastic connecting part. The friction parts are arranged on the peripheral surface of the moving carrier; the driving unit includes a connecting component and a piezoelectric vibrator connected to the connecting component.
  • the connecting component is connected to the base, and the piezoelectric vibrator is provided with a drive. part; when the piezoelectric vibrator operates, the driving part can reciprocate along the axial direction of the first through hole; the elastic connector can provide a pre-pressure force to make the driving part and the friction member contact in the axial direction perpendicular to the first through hole. , so that when the driving part vibrates, the friction member drives the moving carrier to reciprocate along the axial direction of the first through hole.
  • a first electrical signal is applied to the piezoelectric oscillator, and the moving carrier moves in the first direction driven by the driving part; then a second electrical signal is applied to the piezoelectric oscillator, and the driving part moves in the second direction, and the moving carrier moves in the inertial motion It first decelerates in the first direction and then moves in the second direction with the driving part, where the first direction and the second direction are opposite, and the loading times of the first electrical signal and the second electrical signal are different.
  • the moving carrier can slide relative to the base in the axial direction of the first through hole.
  • the piezoelectric vibrator is connected to the base through the connecting component.
  • the driving part of the piezoelectric vibrator interacts with the elastic connector under the action of the elastic connector.
  • the friction parts on the peripheral surface of the moving carrier are in contact.
  • the driving part can reciprocate along the axial direction of the first through hole, thereby driving the moving carrier to reciprocate along the axial direction of the first through hole. Since the elastic connection between the driving part and the friction part is achieved Elastic contact is used instead of rigid contact. Therefore, the driving part can achieve a larger amplitude, reducing the impact of the moving carrier on the amplitude of the driving part in the case of rigid contact, thereby increasing the autofocus stroke of the piezoelectric motor.
  • the moving carrier and the base are slidingly connected through a guide portion to reduce frictional resistance.
  • the guide part includes a first groove body provided on the mobile carrier, a second groove body provided on the base, and a sliding connection piece, the first groove body and the second groove body are arranged oppositely, and the first groove body
  • the tank body and the second tank body together form a cylindrical receiving groove, and the sliding connection piece is arranged in the cylindrical receiving groove to improve the stability of the sliding connection.
  • the sliding connection member is a ball
  • the ball is located in the cylindrical receiving groove
  • the second tank body is provided with a baffle at the opening of the cylindrical receiving groove to prevent the ball from sliding out.
  • the plurality of balls are arranged in sequence along the axial direction of the first through hole, and in the cylindrical accommodation groove, the diameters of the balls located at the bottom and top of the cylindrical accommodation groove are larger than The diameter of the remaining balls in the cylindrical holding groove.
  • the balls near the bottom and top of the cylindrical groove serve as contact balls and play the role of sliding support, and the remaining balls can play a guiding role.
  • the sliding connection member is a sliding rod
  • the sliding rod is fixedly connected to the base
  • the surface of the first groove body is provided with a sliding joint portion for connecting with the sliding rod.
  • the surface of the sliding joint portion for contacting the sliding rod may be an arc surface.
  • the guide parts there are at least two guide parts, for example, an even number, and the guide parts are symmetrically distributed along the direction of the pre-pressure force, and the direction of the pre-pressure force is arranged along the radial direction of the first through hole.
  • the sliding connectors in the guide parts on both sides receive the same force, which can balance the force on the mobile carrier and make its movement smoother.
  • there are four guide portions the four guide portions are arranged in groups of two, and the connection line of the two sliding connectors in any group of guide portions is perpendicular to the direction of the pre-pressure force.
  • the sliding connector is a ball
  • the distance between at least one set of balls at the bottom and top of the cylindrical accommodation groove and the groove wall of the cylindrical accommodation groove is less than or equal to 5 ⁇ m, so that the mobile carrier maintains good stability during sliding.
  • the contact point between the driving part and the friction member is used as the reference point, and along the circumferential direction of the first through hole, at least two guide parts are provided at a distance from the reference point of less than 1/5 of the circumference. to 1/2 circle.
  • the guide part is arranged close to the driving part and the friction part, and the torque generated by the friction driving force is small, which can improve the mechanical stability of the overall structure of the piezoelectric motor.
  • the piezoelectric motor further includes a magnetic component.
  • the magnetic component can exert a torque on the moving carrier that is opposite to the torque applied by the driving unit to the moving carrier.
  • the magnetic assembly includes a magnet and a magnetic piece, one of the magnet and the magnetic piece is provided on the base, and the other is provided on the mobile carrier. The magnetic assembly can provide tilt correction force, and the generated magnetic torque can overcome the combined torque generated by gravity and friction driving force to enhance the mechanical balance of the entire piezoelectric motor.
  • the magnetic attraction can also avoid fluctuations in the drive unit's pre-pressure caused by different loads, thereby maintaining stable drive unit output.
  • the elastic connection member is provided between the moving carrier and the friction member, and the elastic connection member is in a force-accumulating state to provide the friction member with a force close to the driving part in an axial direction perpendicular to the first through hole.
  • the force is exerted to make the friction piece contact the driving part.
  • the elastic connecting member includes a spring piece.
  • the outer peripheral surface of the moving carrier is provided with an escape groove.
  • the spring piece is fixed at the notch of the relief groove. When the spring piece is in a force-accumulating state, it bends into the avoidance groove. The deformed elastic piece can keep the friction part and the driving part in a state of contact at all times.
  • connection component includes a vertical plate, the vertical plate is perpendicular to the base and is fixedly connected to the base, and the piezoelectric vibrator is fixedly connected to the vertical plate.
  • the vertical plate can be disposed on a side of the piezoelectric vibrator away from the driving part to facilitate installation and fixation.
  • the elastic connection member is provided between the base and the driving unit, and the elastic connection member is in the storage position.
  • the force state provides the driving part with an acting force close to the friction element in an axial direction perpendicular to the first through hole, so that the driving part abuts the friction element.
  • the elastic connecting member is provided between the base and the driving unit. The size of the friction member is not limited by the elastic connecting member, and the driving stroke of the piezoelectric motor can be further increased.
  • connection component includes a first connection arm, one end of the first connection arm is connected to the piezoelectric vibrator, and the other end is connected to the base;
  • the elastic connection member includes a spring wire, one end of the spring wire is connected to the piezoelectric vibrator.
  • the electric vibrator is connected, and the other end is connected to the base;
  • the first connecting arm and the elastic connecting piece are respectively provided on both sides of the driving part of the piezoelectric vibrator.
  • the first connecting arm is hingedly connected to the base.
  • one end of the first connecting arm used for connecting to the base is provided with a hinge groove
  • the base is provided with a hinge column that matches the hinge groove.
  • the elastic connector further includes a second connecting arm connected to the spring wire, and the spring wire is connected to the base through the second connecting arm.
  • one end of the second connecting arm for connecting to the base is provided with a fixing hole, and the base is provided with a protruding column that is matched with the fixing hole.
  • connection assembly includes a vertical plate and a bottom plate fixedly connected to the vertical plate.
  • the piezoelectric vibrator is connected to the vertical plate.
  • the base and the bottom plate are slidingly connected along the pre-pressure direction.
  • the elastic connector is provided on the base. and the bottom plate, and the elastic connecting member is in a tensioned state to make the driving part and the friction member abut through the bottom plate.
  • the elastic connector includes a first end, a second end and a serpentine or arcuate reed disposed between the first end and the second end.
  • the first end includes a connection with the base.
  • the second end is connected to the base plate.
  • the first end further includes a pressing piece
  • the bottom plate is provided with a pressure-receiving protrusion that cooperates with the pressing piece
  • the pressing piece exerts a force on the pressure-receiving protruding portion toward the base.
  • the base is provided with a guide block, and the bottom plate is provided with a guide groove that matches the guide block; or, the base is provided with a guide groove, and the bottom plate is provided with a guide block that matches the guide slot, This facilitates the assembly of the base and the bottom plate, so that relative displacement occurs only in the direction of the preload.
  • the piezoelectric vibrator includes a carrier plate and piezoelectric ceramic sheets disposed on both sides of the carrier plate, and the surface of the carrier plate is perpendicular to the axial direction of the first through hole.
  • the piezoelectric ceramic piece deforms under the action of the electrical signal, thereby driving the bearing plate to deform, so that the driving part vibrates.
  • the driving part is a first protruding part provided on the carrying plate.
  • the first protruding part may be a triangular cantilever, and the contact surface of the triangular cantilever for contacting the friction member may be a curved surface or a flat surface, for example, it may be a convex arc surface.
  • the first protruding part is provided with an opening, and the opening penetrates the first protruding part in an axial direction of the first through hole.
  • the load-bearing plate has a rectangular structure
  • the driving part is provided on the first side of the load-bearing plate
  • the second side of the load-bearing plate away from the driving part is provided with a cross beam
  • the connection point between the cross beam and the load-bearing plate is the vibration node of the load-bearing plate.
  • the connection point between the beam and the load-bearing plate is set at the vibration node, which can reduce the impact of the beam on the vibration of the piezoelectric oscillator and help improve the output performance of the piezoelectric oscillator.
  • the beam is provided with notches. By setting the gap, the unfavorable vibration of the beam can be reduced, the vibration energy loss can be reduced, and the output performance of the piezoelectric vibrator can be improved.
  • the load-bearing plate is further provided with a second protruding part and a third protruding part, and the second protruding part and the third protruding part are symmetrically provided on the first side along the direction of the first side. both sides of the bulge.
  • the second protruding part and the third protruding part can be used as a counterweight of the piezoelectric vibrator to balance the weight of the driving part side and the cross beam side, thereby increasing the amplitude of the driving part.
  • the piezoelectric motor further includes a flexible circuit board, and both the positive and negative electrodes of the piezoelectric ceramic sheet are connected to the flexible circuit board.
  • one of the positive electrode and the negative electrode of the piezoelectric ceramic plate is led out from the carrier plate, and the other is disposed on a surface of the piezoelectric ceramic plate away from the carrier plate.
  • both the positive electrode and the negative electrode of the piezoelectric ceramic sheet are led out from a surface of the piezoelectric ceramic sheet away from the carrier plate.
  • the flexible circuit board is in contact with surfaces of the two piezoelectric ceramic sheets of the carrier plate that are away from the carrier plate.
  • the piezoelectric motor further includes a clip elastic piece
  • the clip elastic piece includes a U-shaped clip portion and a third connecting arm connected to the U-shaped clip portion, the U-shaped clip portion
  • the clamping portions are clamped on the surfaces of the piezoelectric ceramic sheets on both sides of the piezoelectric vibrator, and the third connecting arm is connected to the connecting component.
  • the electrode lead-out end of the piezoelectric vibrator can be led out to the position of the connecting component through the arrangement of the snap-on elastic piece, so as to facilitate connection with an external circuit.
  • the U-shaped engaging portion includes a first claw and a second claw, and the first claw abuts a piezoelectric ceramic piece of the piezoelectric vibrator, and the The second claw is in contact with the other piezoelectric ceramic piece of the piezoelectric vibrator.
  • the first clamping jaw and the second clamping jaw are used to realize the clamping connection between the U-shaped clamping part and the piezoelectric vibrator.
  • the first claw is provided with a first engaging protrusion
  • the second claw is provided with a second engaging protrusion
  • the first engaging protrusion and the The second clamping protrusion is welded or bonded to the piezoelectric ceramic piece. Through welding or bonding, the connection strength between the U-shaped clamping part and the piezoelectric vibrator is improved.
  • the first clamping protrusion and the second clamping protrusion are both provided with through holes, and the through holes are used to fill solder or conductive glue. Welding or bonding is achieved by setting through holes to fill them with solder or conductive glue.
  • the through hole is arranged corresponding to the geometric center of the piezoelectric ceramic sheet.
  • the connection position between the U-shaped connection part and the piezoelectric vibrator can be set at the geometric center position of the piezoelectric ceramic sheet, that is, the peak position in the vibration mode of the piezoelectric vibrator, so as to reduce the impact of the additional weight on the vibration of the piezoelectric vibrator. Impact.
  • this application provides a camera module.
  • the camera module includes a lens assembly, an image sensor and a piezoelectric motor according to the first aspect of this application.
  • the mounting groove of the base is a through groove and is coaxial with the first through hole. Set, the first through hole is divided into a light entrance side and a light exit side along its axial direction, the lens assembly is located in the first through hole on the light entrance side and is connected to the mobile carrier, and the image sensor is located on the light exit side and is fixedly connected to the base .
  • the camera module of the present application has the drive motor of the first aspect of the present application, the camera module has the advantages of large autofocus stroke, high focus accuracy, and fast focus speed.
  • this application provides an electronic device, including the camera module of the second aspect.
  • electronic devices include but are not limited to mobile phones, tablets, laptops, watches, cameras and other devices.
  • Figure 1 is a schematic structural diagram of an electronic device according to an embodiment
  • Figure 2 is a schematic structural diagram of a camera module according to an embodiment
  • Figure 3 is an exploded structural diagram of a piezoelectric motor according to an embodiment
  • Figure 4 is a schematic structural diagram of a base according to an embodiment
  • Figure 5 is a schematic structural diagram of a mobile carrier according to an embodiment
  • Figure 6 is a schematic structural diagram of a piezoelectric motor according to an embodiment
  • Figure 7 is a schematic cross-sectional structural diagram of the structure shown in Figure 6 at A-A;
  • Figure 8 is a schematic structural diagram of the connection between the driving mechanism and the mobile carrier according to an embodiment
  • Figure 9 is an enlarged structural schematic diagram of position B in Figure 8.
  • Figure 10 is a schematic structural diagram of a piezoelectric motor according to another embodiment
  • Figure 11 is a schematic structural diagram of the connection between the driving mechanism and the mobile carrier according to an embodiment
  • Figure 12 is a schematic structural diagram of a driving unit according to an embodiment
  • Figure 13 is a schematic diagram of the connection structure of the driving mechanism of another piezoelectric motor
  • Figure 14 is a schematic cross-sectional structural diagram along B-B in Figure 13;
  • Figure 15 is a schematic diagram of the connection structure between the bottom plate and the base in an embodiment
  • Figure 16 is a schematic structural diagram of an elastic connector according to an embodiment
  • Figure 17 is a schematic structural diagram of a piezoelectric vibrator according to an embodiment
  • Figure 18 is an exploded structural diagram of a piezoelectric vibrator according to an embodiment
  • Figure 19 is a schematic structural diagram of a piezoelectric vibrator according to another embodiment.
  • Figure 20 is a schematic structural diagram of a piezoelectric vibrator according to another embodiment
  • Figure 21 is a schematic structural diagram of a piezoelectric vibrator according to another embodiment.
  • Figure 22 is a schematic diagram of the vibration mode of a piezoelectric vibrator according to an embodiment
  • Figure 23 is an electrode connection relationship diagram of a piezoelectric vibrator according to an embodiment
  • Figure 24 is an electrode connection diagram of a piezoelectric vibrator according to another embodiment
  • Figure 25 is a schematic diagram of the connection structure between a piezoelectric vibrator and a flexible circuit board according to an embodiment
  • Figure 26 is a schematic diagram of the connection structure of a piezoelectric vibrator according to another embodiment
  • Figure 27 is a schematic structural diagram of a clamping elastic piece
  • Figure 28 is a schematic structural diagram of a connection assembly according to an embodiment
  • Figure 29 is a schematic diagram of the assembly structure of the guide part according to an embodiment
  • Figure 30 is a schematic structural diagram of the first tank body of the mobile carrier according to an embodiment
  • Figure 31 is a schematic structural diagram of a guide part according to another embodiment of the present application.
  • Figure 32 is a schematic diagram of the contact structure between the guide part and the mobile carrier in the structure shown in Figure 31;
  • Figure 33 is a schematic structural diagram of a piezoelectric motor according to an embodiment
  • Figure 34 is a schematic structural diagram of a piezoelectric motor according to another embodiment
  • Figure 35 is a schematic structural diagram of a piezoelectric motor according to another embodiment
  • Figure 36 is a schematic diagram of phase A and phase B signals applied to the positive and negative electrodes of a piezoelectric oscillator according to an embodiment
  • Figure 37 is a schematic waveform diagram of a synthesized driving signal applied to a piezoelectric vibrator
  • Figure 38 is a schematic diagram of phase A and phase B signals applied to the positive and negative electrodes of a piezoelectric oscillator according to another embodiment
  • Figure 39 is a schematic waveform diagram of a synthesized driving signal applied to a piezoelectric vibrator
  • Figure 40 is a schematic diagram of a triangular wave signal applied to a piezoelectric vibrator according to an embodiment.
  • Piezoelectric motors can be used in camera modules of electronic devices.
  • electronic devices include but are not limited to mobile phones, tablets, laptops, phone watches, mobile camera devices, etc.
  • Figure 1 is a schematic structural diagram of an electronic device.
  • the electronic device 001 may include a housing 01 and a processor 02 placed inside the housing, a display module (not shown in the figure) and a camera module. 03.
  • it may also include speakers, receivers, antennas, microphones and other components not shown in the figure.
  • the housing 01 is also divided into a front cover and a rear cover. Both the front cover and the rear cover of the housing 01 can be equipped with a camera module 03.
  • the rear cover is an example.
  • the rear cover is provided with a camera hole.
  • the camera module Group 03 is located inside the housing 01, and collects light through the camera hole on the back cover to capture images.
  • the camera module 03 and the display module are both electrically connected to the processor 02.
  • the processor 02 controls the camera module 03 to take pictures.
  • the camera module 03 transfers the collected image information to the processor 02 and performs image processing in the display module. display.
  • FIG. 2 is a schematic structural diagram of a camera module.
  • the camera module 03 shown in Figure 2 can be used as a front camera of an electronic device or as a rear camera of an electronic device, and is not strictly limited here.
  • the camera module 03 can include a lens assembly 10 and a piezoelectric motor 20.
  • the lens assembly 10 is installed on the light incident side of the piezoelectric motor 20.
  • the piezoelectric motor 20 can drive the lens assembly. 10 reciprocates along the optical axis direction of the lens assembly 10 to achieve automatic focusing of the camera module 03 .
  • the camera module 03 also includes an image sensor (not shown in the figure) and a circuit board (not shown in the figure).
  • the sensor can be fixed on the circuit board and electrically connected to the circuit board.
  • the circuit board can be fixedly connected to the piezoelectric motor 20 , wherein the circuit board is disposed on the light emitting side of the piezoelectric motor 20 .
  • the image sensor is used to receive light signals collected from the lens assembly 10 and convert the light signals into electrical signals. The formed electrical signals can be transmitted to the processor of the electronic device through the circuit board.
  • FIG. 3 is an exploded structural diagram of a piezoelectric motor according to an embodiment.
  • the piezoelectric motor 20 may include a base 21, a moving carrier 22 and a driving mechanism 23.
  • the piezoelectric motor 20 may also include an outer cover 24, which is fixedly connected to the base 21, and the outer cover 24 and the base 21 together form the outer shell of the piezoelectric motor 20.
  • the moving carrier 22 and the driving mechanism 23 are both located inside the housing of the piezoelectric motor 20 .
  • the outer cover 24 and the base 21 can be fixed by snap connection, bonding, welding, fastener connection and other methods, which are not specifically limited here.
  • FIG. 4 is a schematic structural diagram of a base according to an embodiment.
  • the base 21 is provided with a mounting slot 211 for assembling the mobile carrier 22 .
  • the mounting groove 211 of the base 21 is a through groove, and the axis of the through groove can coincide with the optical axis of the lens assembly (z direction shown in FIG. 3).
  • the outer shape of the base 21 may be a square structure, a rectangular structure, a circular structure or other structures, and is not specifically limited here. In one embodiment of the present application, the outer shape of the base 21 is selected as a square structure to facilitate processing, manufacturing and installation, and to facilitate the structural balance of the piezoelectric motor.
  • the first limiting portion 212 is provided in the mounting groove 211 of the base 21 .
  • the first limiting portion 212 can be a limiting block provided on the side wall of the mounting groove 211 . After the moving carrier 22 is assembled in the installation groove 211, the first limiting portion 212 can be used to limit the relative movement of the moving carrier 22 and the base 21 in the circumferential direction.
  • FIG. 5 is a schematic structural diagram of a mobile carrier according to an embodiment.
  • the mobile carrier 22 is assembled in the installation groove 211 of the base 21, and the mobile carrier 22 is provided with a first The axis of the through hole 221 and the first through hole 221 is coaxially arranged with the optical axis of the lens assembly.
  • the outer peripheral surface of the mobile carrier 22 is provided with a second limiting portion 222 that matches the first limiting portion 212.
  • the second limiting portion 222 can be a limiting groove that matches the limiting block.
  • the first limiting portion 212 After cooperating with the second limiting part 222, the mobile carrier 22 and the base 21 can be kept relatively stationary in the circumferential direction of the mobile carrier 22, so that the two are fixed in the circumferential direction.
  • the moving carrier 22 and the base 21 can be relatively displaced in the axial direction of the first through hole 221 , that is, in the z direction shown in FIG. 3 .
  • FIGS. 6 to 9 are schematic structural diagrams of a piezoelectric motor according to an embodiment.
  • Figure 6 is a schematic structural diagram of a piezoelectric motor according to an embodiment.
  • Figure 7 is a schematic cross-sectional structural diagram of the structure shown in Figure 6 at A-A.
  • Figure 8 is a schematic diagram of the connection between the driving mechanism and the moving carrier of an embodiment.
  • Figure 9 is an enlarged structural schematic diagram of B in Figure 8.
  • the driving mechanism 23 can be provided at a corner of the base 21 to fully utilize the installation space of the base 21 and reduce the cost. Piezoelectric motor 20 dimensions.
  • the driving mechanism 23 may include a friction member 31 , a driving unit 32 and an elastic connection member 33 .
  • the elastic connecting member 33 can be an elastic piece, or an elastic body such as foam or spring.
  • the elastic connecting member 33 in the embodiment of the present application is a spring piece.
  • the spring piece can be disposed between the moving carrier 22 and the friction member 31.
  • the spring piece can be fixedly connected to the moving carrier 22.
  • the friction member 31 can be connected to the mobile carrier 22 through the spring piece.
  • the carrier 22 is fixedly connected.
  • the outer peripheral surface of the moving carrier 22 is provided with an escape groove 223 at a position corresponding to the friction member 31.
  • the elastic piece is set at the notch of the escape groove 223.
  • the elastic piece can bend toward the avoidance groove 223 after receiving force.
  • the driving unit 32 may include a connection component 321 and a piezoelectric vibrator 322 connected to the connection component 321 , wherein, referring to FIGS. 6 to 9 together, the connection component 321 may Connected to base 21, Used to fix the piezoelectric vibrator 322.
  • the piezoelectric vibrator 322 is provided with a driving part 323. When the piezoelectric vibrator 322 operates, the driving part 323 can reciprocate along the axial direction of the first through hole of the moving carrier 22 (ie, the z direction shown in FIG. 6). The structure and vibration principle of the piezoelectric vibrator 322 will be explained later.
  • the interconnection relationship between the friction member 31, the driving unit 32 and the elastic connector 33 will be explained below.
  • the connection assembly 321 may include a vertical plate 3211 , and the vertical plate 3211 is fixedly connected to the base 21 .
  • the vertical plate 3211 can be fixedly connected to the base 21 by welding, bonding, snapping, etc.
  • the surface of the vertical plate 3211 can be perpendicular to the base 21 , and the vertical plate 3211 is provided on the side of the piezoelectric vibrator 322 away from the driving part 323 .
  • the driving part 323 of the piezoelectric vibrator 322 is used to contact the friction member 31 .
  • the driving mechanism 23 after the vertical plate 3211 is fixed to the base 21, the driving part 323 will exert a certain extrusion force on the friction member 31. Under the action of the extrusion force, the elastic connecting member 33 will undergo a certain deformation. , at this time, the elastic connecting member 33 is in a force-accumulating state to provide the friction member 31 with a force close to the driving part 323 in the axial direction perpendicular to the first through hole 221 (ie, the x direction shown in FIG. 6 ), so that The friction material 31 is in contact with the driving part 323 .
  • the pre-pressure force exerted on the friction member 31 by the driving part 323 is in the radial direction of the first through hole 221 (that is, the opposite direction of the x direction shown in FIG. 6 ).
  • the friction member 31 and the driving part 323 can always be in contact. In this way, when the driving part 323 moves, the friction member 31 can drive the moving carrier 22 to reciprocate in the z direction.
  • the driving mechanism 23 can achieve large-stroke autofocusing of more than 2mm. At the same time, the driving mechanism 23 can achieve self-locking by relying on friction.
  • the elastic piece when the elastic connecting member 33 is an elastic piece, the elastic piece needs to have greater stiffness in the z-direction and y-direction (ie, the plane direction of the elastic piece) and needs to have greater torsion. Stiffness is required to prevent the elastic piece from twisting during movement. At the same time, the elastic piece needs to have a small stiffness in the x-direction so that the elastic piece can generate sufficient elastic deformation to provide force for the contact between the driving part 323 and the friction member 31 .
  • a piezoelectric motor of another driving mechanism will be described below with reference to FIGS. 10 to 12 .
  • FIG. 10 is a schematic structural diagram of a piezoelectric motor in another embodiment.
  • FIG. 11 is a schematic structural diagram of the connection between the driving mechanism and the moving carrier.
  • FIG. 12 is a schematic structural diagram of a driving unit in an embodiment.
  • the friction member 31 can be a rigid friction plate, and the friction plate can be directly fixed to the moving carrier 22 , for example, it can be fixed in the escape groove 223 on the peripheral side of the moving carrier 22 .
  • the connection component 321 of the driving unit 32 may include a first connection arm 3212. One end of the first connection arm 3212 is connected to the piezoelectric vibrator 322, and the other end is connected to the base 21.
  • one end of the first connecting arm 3212 for connecting to the base 21 is provided with a hinge groove 3212a, and the base 21 is provided with a hinge column 213 that matches the hinge groove 3212a.
  • the column 213 can realize the hinge connection between the first connecting arm 3212 and the base 21 .
  • the elastic connecting member 33 may include a spring wire 331 , one end of the spring wire 331 is connected to the piezoelectric vibrator 322 , and the other end is connected to the base 21 .
  • the elastic connecting member 33 may further include a second connecting arm 332 through which the spring wire 331 is connected to the base 21 .
  • one end of the second connecting arm 332 for connecting to the base 21 is provided with a fixing hole 333
  • the base 21 is provided with a protruding column 214 that is connected to the fixing hole 333 .
  • the first connecting arm 3212 and the elastic connecting member 33 are respectively provided on both sides of the driving part 323 .
  • the elastic connector 33 As the elastic connector 33 is connected to the base 21, after the connection, the elastic connector 33 is in a force-accumulating state.
  • the elastic connector 33 can provide the driving part 323 with a force close to the friction member 31 in the x direction shown in Figure 11, so that The driving part 323 is in contact with the friction material 31 .
  • This drive mechanism can achieve ultra-large stroke autofocus of more than 5mm, and the drive mechanism can achieve self-locking by relying on friction.
  • the pre-pressure exerted by the driving mechanism is generally dozens of times greater than gravity, and the static friction generated is also dozens of times greater than gravity, thus locking the position of the moving carrier and achieving the ability to resist tremors in sports scene shooting. .
  • a piezoelectric motor of another driving mechanism will be described below with reference to FIGS. 13 to 16 .
  • FIG. 13 is a schematic diagram of the connection structure of the driving mechanism of another piezoelectric motor
  • FIG. 14 is a schematic cross-sectional structural diagram along B-B in FIG. 13
  • the friction member 31 may be a rigid friction plate, and the friction plate may be directly fixed to the outer peripheral surface of the moving carrier 22 .
  • the driving part 323 in the driving unit 32 is in contact with the friction member 31 .
  • the connection component 321 in the driving unit 32 may include a vertical plate 3211 and a bottom plate 3213 , wherein the piezoelectric vibrator 322 is fixedly connected to the vertical plate 3211 .
  • the vertical plate 3211 is vertically connected to the base 21, and the bottom plate 3213 is arranged parallel to the base 21.
  • the vertical plate 3211 and the bottom plate 3213 are fixedly connected.
  • the bottom plate 3213 and the base 21 are in the contact direction of the driving part 323 and the friction member 31 (as shown in the figure). x direction shown) sliding connection.
  • Figure 15 is a schematic diagram of the connection structure between the bottom plate and the base in an embodiment.
  • one of the base 21 and the bottom plate 3213 can be provided with a guide block 215, and the other can be provided with a guide groove 3213a, so that the bottom plate 3213 A sliding connection is achieved on the base 21 .
  • the base 21 is provided with a guide block 215, and the bottom plate 3213 is provided with a guide groove 3213a that matches the guide block 215; or the base 21 is provided with a guide groove, and the bottom plate 3213 is provided with a guide block that matches the guide slot.
  • the sliding movement of the bottom plate 3213 can also be limited, so that it can slide on the base 21 within a certain range.
  • the elastic connector 33 is provided between the base 21 and the bottom plate 3213.
  • One end of the elastic connector 33 can be fixedly connected to the base 21, and the other end can be fixedly connected to the bottom plate 3213. Refer to Figure 14 as well.
  • the elastic connecting part 33 is in a tensioned state, thereby exerting a certain pre-pressure on the driving part 323 and the friction part 31 .
  • Figure 16 is a schematic structural diagram of an elastic connector 33 of an embodiment.
  • the elastic connector 33 includes a first end 334, a second end 335 and a
  • the curved reed 336 between the first end 334 and the second end 335 can be, for example, a serpentine reed or an arcuate reed.
  • the arcuate reed or serpentine reed is symmetrically arranged in the direction of the pre-pressure to improve the strength of the force. Uniformity.
  • the first end 334 includes a connecting portion 3341 connected to the base 21.
  • the number of the connecting portions 3341 can be multiple, such as two, three or four, etc. In this application, the number of connecting parts 3341 is two, and the two connecting parts 3341 are respectively provided on both sides of the bottom plate 3213 and are fixedly connected to the base 21 .
  • the connection part 3341 and the base 21 can be fixed by snapping, welding or bonding. After the connecting portion 3341 is fixed to the base 21, the serpentine reed or the arcuate reed is pressed on the surface of the bottom plate 3213.
  • the second end 335 is connected to the end of the serpentine reed or the arcuate reed, wherein the second end 335 may have an earth-shaped or T-shaped structure, and the second end 335 is fixedly connected to the bottom plate 3213 . It can be understood that the bottom plate 3213 can also be provided with a fixing groove that matches the earth-shaped or T-shaped structure to fix the second end 335 .
  • the first end 334 also includes a pressing piece 3342.
  • the pressing piece 3342 is provided between the two connecting parts 3341.
  • the bottom plate 3213 is provided with a pressing piece 3342 that cooperates with the pressing piece 3342.
  • the pressure-receiving protrusion 3214 is formed, and the pressing piece 3342 exerts a force on the pressure-receiving protrusion 3214 toward the base 21 . In this way, referring to FIG.
  • the pressing piece 3342 can be an integrated structure with the serpentine reed or the arcuate reed, or can be a split structure, which is not specifically limited here.
  • the driving unit 32 adopts piezoelectric driving technology to achieve driving.
  • the piezoelectric vibrator 322 in the driving unit 32 is based on the inverse piezoelectric effect of the piezoelectric material.
  • the piezoelectric material is Mechanical deformation occurs when periodic electricity is applied
  • the piezoelectric material can produce periodic deformation in response to the applied periodic electrical signal, thereby producing periodic movement.
  • the piezoelectric material can be an inorganic piezoelectric material, such as piezoelectric crystal, piezoelectric ceramics, or an organic piezoelectric material, such as polyvinylidene fluoride.
  • This application does not strictly limit the type of piezoelectric material.
  • the inverse piezoelectric effect means that when an electric field is applied in the polarization direction of the dielectric, the dielectric will produce mechanical deformation or mechanical pressure in a certain direction. When the external electric field is removed, these deformations or stresses will disappear.
  • the piezoelectric material when the piezoelectric material is not energized (the current is 0, or the current is very small), the piezoelectric material is in an initial state; when a positive current is supplied to the piezoelectric material, the piezoelectric material extends and is in an elongated state; When a negative current is passed through the piezoelectric material, the piezoelectric material shrinks and is in a shortened state. That is, the piezoelectric material will deform according to the applied electrical signal. When the electrical signal is an alternating signal, the piezoelectric material will undergo cyclic expansion and contraction.
  • FIG 17 is a schematic structural diagram of a piezoelectric vibrator.
  • Figure 18 is an exploded structural diagram of a piezoelectric vibrator.
  • the piezoelectric vibrator 322 includes a bearing plate 41 and a piezoelectric vibrator. Ceramic sheet 42, wherein the carrier plate 41 and the piezoelectric ceramic sheet 42 can be bonded, for example, through an adhesive layer 43.
  • the adhesive layer 43 can be, for example, an epoxy resin layer or a conductive adhesive layer.
  • the bearing plate 41 is a plate-shaped structure, for example, it can be a rectangular plate structure.
  • the bearing plate 41 can be a metal plate, which has a certain stiffness and can meet the needs of fixing the piezoelectric ceramic piece 42 and realizing vibration.
  • the two long sides of the carrying plate 41 are respectively the first side 41a and the second side 41b, and the two short sides are respectively the third side 41c and the fourth side 41d.
  • the bearing plate 41 includes a first surface 41e and a second surface 41f, and both the first surface 41e and the second surface 41f are parallel to the base.
  • the driving portion 323 of the piezoelectric vibrator 322 is a first protrusion formed by protruding outward from the first side 41a of the bearing plate 41.
  • the first protrusion The portions are symmetrically arranged along the mid-perpendicular line of the first side 41a.
  • the first protruding part may be a triangular cantilever, and the contact surface of the triangular cantilever for contacting with the friction member may be a curved surface or a flat surface, wherein when the contact surface is a curved surface, it may be a concave curved surface or a convex curved surface.
  • the contact surface of the driving portion 323 for contacting the friction member is a convex arc surface so as to better contact with the friction member.
  • the driving part 323 may be provided with an opening 411 , and the opening 411 may be a second through hole penetrating the driving part along the axial direction of the first through hole.
  • the shape of the opening 411 of the driving part 323 may be a circular, directional or triangular opening 411, which is not specifically limited here.
  • FIG 19 is a schematic structural diagram of another piezoelectric vibrator. As shown in Figure 19, the difference between this piezoelectric vibrator and the piezoelectric vibrator shown in Figure 17 is that the second side 41b of the bearing plate 41 is provided with a connecting member 412.
  • the connecting piece 412 is used to connect with the connecting component of the drive unit.
  • the connector 412 may be a plug-in part extending outward from the second side 41b of the load-bearing plate 41.
  • the number of the plug-in parts may be two, and each plug-in part is connected to the load-bearing plate at the second side 41b.
  • the connection point 41 can be a vibration node of the bearing plate 41.
  • FIG 20 is a schematic structural diagram of another piezoelectric vibrator. As shown in Figure 20, the difference between this piezoelectric vibrator and the piezoelectric vibrator shown in Figure 17 is that a cross beam 413 can be provided on the second side 41b of the carrying plate 41. , the connection point between the cross beam 413 and the second side 41b is the vibration node of the bearing plate 41 . Setting the connection point between the cross beam 413 and the load-bearing plate 41 at the vibration node of the load-bearing plate 41 allows the clamping force between the connection component and the piezoelectric vibrator 322 to act at the vibration node, thereby reducing the pressure on the connection component.
  • notches 414 may be provided on the beam 413 to reduce adverse vibrations of the beam 413 .
  • the cross beam 413 and the notch 414 can be symmetrically arranged along the center perpendicular line of the second side 41b, so that the cross beam 413 The weight of is symmetrically distributed along the center perpendicular of the second side 41b.
  • the connecting piece 412 (such as a plug-in part) that can be provided on the cross beam 413 is connected to the connecting component (such as a vertical plate) by using the connecting piece 412.
  • the load-bearing plate 41 is also provided with a second protruding portion 415 and a third protruding portion 416, wherein the second protruding portion 415 and the third protruding portion 416 are along the mid-perpendicular line of the first side 41a. They are symmetrically provided on both sides of the driving part 323 .
  • the second protruding portion 415 and the third protruding portion 416 are provided as counterweights on both sides of the driving portion 323 to balance the weight of the cross beam 413 so that the total weight of the first side 41a of the load-bearing plate 41 and the second side
  • the total weight of 41b is similar or equal, thereby increasing the amplitude of the driving part 323.
  • the second protruding portion 415 and the third protruding portion 416 can all be provided on the first side 41a of the carrying plate 41, and can be formed by the outward protrusion of the first side 41a of the carrying plate 41.
  • FIG. 21 is a schematic structural diagram of another piezoelectric vibrator.
  • the difference from the piezoelectric vibrator shown in FIG. 20 is that the second protruding portion 415 and the third protruding portion 416 are arranged in different positions.
  • the second protruding portion 415 and the third protruding portion 416 can also be disposed on the first side 41a of the bearing plate 41.
  • the third side 41c and the fourth side 41d of the load-bearing plate 41 are used to fully utilize the space of the load-bearing plate 41 .
  • the second protruding portion 415 and the third protruding portion 416 are only exemplary illustrations of the second protruding portion 415 and the third protruding portion 416.
  • the shapes and specific placement locations of the second protruding portion 415 and the third protruding portion 416 are not specified in this application. There is no specific limit, as long as the weight of the first side 41a side and the second side 41b side of the load-bearing plate 41 can be kept as balanced as possible.
  • the first surface 41e and the second surface 41f of the carrier plate 41 can both be provided with piezoelectric ceramic sheets 42.
  • the number of piezoelectric ceramic sheets 42 can be two, and any piezoelectric ceramic sheet 42 can be A single-layer piezoelectric ceramic can also be a multi-layer piezoelectric ceramic.
  • the two piezoelectric ceramic sheets 42 are respectively disposed on the first surface 41e and the second surface 41f of the carrier plate 41 and are arranged parallel to the carrier plate 41 .
  • the piezoelectric ceramic sheet 42 can be bonded to the carrier plate 41 through epoxy resin, conductive glue, or the like.
  • the two piezoelectric ceramic sheets 42 may be two piezoelectric ceramic sheets 42 with opposite deformation directions.
  • the piezoelectric ceramic sheets 42 when a first electrical signal is applied to the two piezoelectric ceramic sheets 42, one of the piezoelectric ceramic sheets 42 extends, In the elongated state, the other piezoelectric ceramic piece 42 contracts and is in the shortened state, so that the piezoelectric vibrator can generate bending vibration.
  • FIG 22 is a schematic diagram of the vibration mode of a piezoelectric vibrator. Taking the direction shown in Figure 22 as an example, and referring to Figure 17 together, a piezoelectric ceramic sheet 42 is respectively provided on the upper and lower surfaces of the carrier plate 41.
  • the piezoelectric ceramic sheet 42 For example, the polarization direction may be a direction perpendicular to the carrier plate.
  • the piece 42 is in an elongated state, and the piezoelectric vibrator 322 bends upward as a whole, thereby driving the driving part 323 to displace in the first direction; when a second electrical signal is applied to the piezoelectric ceramic piece 42, the piezoelectric ceramic piece above the bearing plate 41 42 is in an elongated state, the piezoelectric ceramic piece 42 under the bearing plate 41 is in a contracted state, and the entire piezoelectric vibrator 322 can bend downward, thereby driving the driving part 323 to displace in the second direction.
  • a flexible circuit board 25 can be provided in the piezoelectric motor 20.
  • the flexible circuit board 25 serves as an electrical connection bridge between the piezoelectric vibrator 322 and the external circuit, and applies an electrical signal to the piezoelectric ceramic sheet 42 to realize the vibration of the piezoelectric vibrator 322 .
  • FIG 23 is a diagram of the electrode connection relationship of a piezoelectric vibrator.
  • each piezoelectric ceramic piece 42 can be provided with two electrodes, a positive electrode and a negative electrode.
  • One of the electrodes is located close to the piezoelectric ceramic piece 42.
  • One side surface of the carrier plate 41 hereinafter referred to as the inner surface
  • the other electrode is provided on a side surface of the piezoelectric ceramic sheet 42 away from the carrier plate 41 (hereinafter referred to as the outer surface).
  • One of the positive and negative electrodes of each piezoelectric ceramic piece 42 can be led out through the carrying plate 41, and the other electrode can be led out from the outer surface of the piezoelectric ceramic piece 42.
  • the negative electrode of the piezoelectric ceramic piece 42 can be led out from the carrying plate 41.
  • the positive electrode of the electric ceramic piece 42 can be led out from the outer surface of the piezoelectric ceramic piece 42 .
  • the carrying plate 41 is used to lead out the electrodes, the carrying plate 41 and the inner surface of the piezoelectric ceramic sheet 42 can be bonded through conductive glue or epoxy resin glue. It is understandable that in Figure 24 The positions of the positive and negative electrodes shown are for illustrative purposes only, and the positions of the two electrodes are interchangeable.
  • Figure 24 is an electrode connection relationship diagram of another piezoelectric vibrator.
  • the electrodes on the inner surface of the piezoelectric ceramic sheet 42 can be led out to the piezoelectric ceramic sheet through electrode extension.
  • the outer surface of 42 for example, by covering one or two short sides of the piezoelectric ceramic sheet with electrodes, and leading the electrodes on the inner side to the outer surface of the piezoelectric ceramic sheet 42.
  • the electrode extension can be ensured by symmetrically covering the two short sides. The symmetry of the structure allows direct connection to the positive and negative poles on the outer surface when making circuit connections.
  • the piezoelectric vibrator When the positive and negative electrodes of the piezoelectric ceramic sheet 42 are both disposed on the outer surface, the ceramic surface between the positive electrode and the negative electrode is not covered with electrodes to ensure a certain insulation distance.
  • an insulating tape 44 can be provided on the outer surface of the piezoelectric ceramic sheet 42
  • the insulating strip 44 may be, for example, an insulating isolation layer or an insulating isolation groove provided on the outer surface of the piezoelectric ceramic sheet 42 to prevent short circuit between the positive electrode and the negative electrode.
  • the positions of the positive electrode and the negative electrode shown in FIG. 24 are only illustrative, and the positions of the two electrodes are interchangeable.
  • the piezoelectric vibrator can be connected to an external circuit through the flexible circuit board 25 (see FIG. 4 ). 3, the flexible circuit board 25 can be fixed on the base 21, and the positive and negative electrodes of the piezoelectric vibrator 322 can be connected to the flexible circuit board 25 through surface mounting technology or various anisotropic conductive adhesive films
  • Figure 25 is a schematic diagram of the connection structure between a piezoelectric vibrator and a flexible circuit board according to an embodiment.
  • the flexible The circuit board 25 can be covered on the outer surface of the piezoelectric ceramic sheet 42.
  • electrical connection points can be provided at the portion of the flexible circuit board 25 used to connect to the piezoelectric vibrator electrodes to electrically connect the two.
  • This connection method is especially applicable to the situation where both the positive electrode and the negative electrode are provided on the outer surface of the piezoelectric ceramic piece 42. In this way, the connection is convenient, the connection line between the piezoelectric vibrator and the flexible circuit board 25 can be saved, and the connection is stronger.
  • the flexible circuit board 25 can be used as a connection bridge between the piezoelectric vibrator and the external circuit. It can also be connected to the controller of the electronic device for sending electrical signals that drive the piezoelectric vibrator to vibrate.
  • the piezoelectric motor 20 of the present application may also include a position sensor 26.
  • the position sensor 26 may be connected to the flexible circuit board 25.
  • the position sensor 26 is used to sense the relative position of the moving carrier and the base to detect the detected position. The signal is transmitted to the controller of the electronic device through the flexible circuit board 25, and the controller controls whether it is necessary to drive the mobile carrier to move and determines the amount of movement.
  • the position sensor can be an induction magnet.
  • Figure 26 is a schematic diagram of the connection structure of a piezoelectric vibrator according to another embodiment.
  • the two piezoelectric ceramic pieces 42 of the piezoelectric vibrator 322 can be fixed on both sides of the carrier plate 41 respectively.
  • the bearing plate 41 reference can be made to the relevant structures in Figures 20 to 21, and details will not be repeated here.
  • One end of the bearing plate 41 can be fixedly connected to the vertical plate 3211 of the connection assembly 321 .
  • FIG. 26 an electrode lead-out end of the piezoelectric ceramic sheet 42 of the piezoelectric vibrator 322 in the embodiment of the present application can be led out to the position of the connecting component 321 through the snap-in elastic piece 70 .
  • Figure 27 is a schematic structural diagram of a clamping elastic piece.
  • the buckle spring piece 70 includes a U-shaped buckle portion 71 and a third connecting arm 72 connected to the U-shaped buckle portion 71 .
  • the U-shaped engaging portion 71 may include a first claw 711 and a second claw 712 connected to each other. The description will be given using the positions shown in Figures 26 and 27.
  • the first claw 711 is clamped on the surface of the piezoelectric ceramic sheet 42 on the front side of the carrier plate 41
  • the second claw 712 is clamped on the surface of the piezoelectric ceramic sheet 42 on the back side of the carrier plate 41
  • the clamping part of the first claw 711 may be provided with the first locking protrusion 713
  • the clamping part of the second claw 712 may be provided with a second locking protrusion 714. Taking the direction shown in FIG. 27 as an example, the protrusion direction of the first locking protrusion 713 is downward, and the protrusion direction of the second locking protrusion 714 is upward.
  • the first clamping protrusion 713 contacts the piezoelectric ceramic sheet 42 on the front side
  • the second clamping protrusion 714 contacts the piezoelectric ceramic sheet 42 on the back side.
  • Other areas of the U-shaped clamping portion 71 are not in contact with the piezoelectric vibrator, so as to reduce restrictions on the vibration of the piezoelectric vibrator.
  • through holes 715 can be provided at both the first locking protrusion 713 and the second locking protrusion 714 .
  • the through hole 715 can be filled with solder or conductive glue to increase the reliability of the connection between the first claw 711 and the second claw 712 and the piezoelectric vibrator through welding or bonding.
  • the through holes 715 of the first clamping protrusion 713 and the second clamping protrusion 714 are both arranged at the center position of the piezoelectric ceramic sheet 42, which is the peak position of the vibration mode of the piezoelectric ceramic sheet 42, so as to Reduce the impact of additional masses such as the snap-on elastic piece 70, solder or conductive glue on the vibration of the piezoelectric vibrator.
  • the third connecting arm 72 of the elastic piece 70 may be a bent connecting arm.
  • One end of the third connecting arm 72 is connected to the U-shaped clamping portion 71 , and the other end is connected to the vertical plate 3211 of the connecting component 321 .
  • one end of the third connecting arm 72 connected to the vertical plate 3211 is used to connect to an external circuit and serves as an electrode connection point of the piezoelectric vibrator.
  • the other electrode of the piezoelectric vibrator can be led out through the carrying plate 41 .
  • the carrier plate 41 may be a conductive carrier plate or may be coated with a conductive coating on both sides thereof.
  • the bearing plate 41 is fixedly connected to the vertical plate 3211 of the connection assembly 321 .
  • Figure 28 is a schematic structural diagram of a connection component 321 according to an embodiment.
  • a conductive circuit board 73 may be provided at the position of the vertical plate 3211 for connection with the carrier board 41 .
  • the conductive circuit board 73 is used to connect to an external circuit and serve as another electrode connection point of the piezoelectric vibrator.
  • the positive and negative poles of the driving signal can be connected to the third connecting arm 72 and the conductive circuit board 73 respectively.
  • the structure and driving principle of the driving mechanism are explained above.
  • the driving mechanism outputs the driving force through the frictional coupling between the driving part and the friction piece, thereby driving the mobile carrier to move.
  • the axial assembly relationship between the mobile carrier and the base will be explained below.
  • the moving carrier 22 and the base 21 may be slidably connected through the guide portion 51 .
  • the guide portion 51 between the mobile carrier and the base will be explained below with reference to FIGS. 26 to 32 .
  • the guide portion 51 may include a cylindrical receiving groove formed by the moving carrier 22 and the base 21 and a sliding connection member disposed in the cylindrical receiving groove.
  • a first groove body 511 can be provided on the outer circumferential surface of the mobile carrier 22, and a second groove body 512 can be provided on the side wall of the installation groove of the base 21.
  • the first groove body 511 and the second groove body 512 are arranged oppositely, and can be Form a cylindrical receiving groove.
  • the sliding connecting piece is arranged in the cylindrical receiving groove.
  • Figure 30 is a schematic structural diagram of the first groove body of the mobile carrier.
  • the sliding connection member is a ball 513, and the number of the ball 513 can be multiple.
  • the balls 513 can be arranged sequentially in the cylindrical accommodation groove along the height direction of the cylindrical accommodation groove.
  • a baffle 514 may be provided on the top of the second groove body 512 .
  • the diameters of the balls 513 located at the top and bottom of the cylindrical accommodation groove are larger than the diameters of other balls 513 to reduce the contact points between the moving carrier 22 and the base 21. sliding resistance.
  • the distance between the balls 513 located at the bottom and top of the cylindrical accommodation groove and the groove wall of the cylindrical accommodation groove is less than or equal to 5 ⁇ m, so that the mobile carrier 22 maintains good stability during sliding.
  • FIG. 31 is a schematic structural diagram of a guide part according to another embodiment of the present application
  • FIG. 32 is a schematic structural diagram of the contact between the guide part and the mobile carrier in the structure shown in FIG. 31
  • the sliding connection member can be a sliding rod 515.
  • the sliding rod 515 is fixedly connected to the base 21.
  • the surface of the first groove 511 of the moving carrier 22 is provided with a
  • the sliding rod 515 is slidably connected to the protruding sliding contact portion 516 .
  • the surface of the sliding part 516 for contacting the sliding rod 515 (hereinafter referred to as the sliding surface) is an arc surface or a flat surface.
  • the sliding surface of the sliding part 516 is an arc surface, it may be a concave arc surface.
  • it can be a concave surface that matches the surface of the sliding rod 515, or it can be a convex arc surface, such as a convex spherical surface. as bulge
  • the contact surface between the moving carrier 22 and the sliding rod 515 can be reduced, thereby reducing the frictional resistance.
  • the number of sliding joints 516 can be one, two or three or more, for example, it can be selected from two or more. The specific number is not specifically limited here, as long as the sliding connection can be ensured. It is sufficient that the rod 515 and the moving carrier 22 can be in stable contact.
  • Figure 33 is a schematic structural diagram of a piezoelectric motor according to an embodiment.
  • the number of guide portions 51 can be multiple, such as two, three, four or more. Multiple, preferably two or four or other even numbers, wherein the plurality of guide portions 51 can be symmetrically arranged along the direction of pre-pressure (ie, the x direction shown in Figure 33).
  • the plurality of guide portions 51 can be formed into a group of two, and the connection line of the two guide portions 51 in any group (the connection line is located in the y direction in Figure 33) is perpendicular to the preload direction. In this way, the frictional force of the guide portions 51 in any group is equal, which can ensure the structural mechanical balance on both sides of the pre-pressure force and prevent the movable carrier 22 from rotating around the pre-pressure direction (x direction as shown in Figure 33).
  • At least two guide portions 51 have a distance from the reference point ranging from 1/5 to 1/5 of the circumference. between 2 circles.
  • the driving force exerted by the driving mechanism 23 in the z-direction will exert a moment around the y-axis on the moving carrier 22.
  • the guide portion 51 is arranged close to the contact point between the friction piece 31 and the driving mechanism 23, which can improve the mechanical stability of the overall structure.
  • the number of guide portions 51 can be four, and can be divided into two guide groups, namely a main guide group and an auxiliary guide group, wherein the two guide groups in the main guide group One guide part 51 is provided close to the contact point between the driving mechanism 23 and the friction member 31, and the two guide parts 51 in the auxiliary guide group are provided away from the contact point. In this way, the structural stability of the piezoelectric motor can be further improved and the mobile carrier can be ensured. 22Move smoothly.
  • the distance between the balls 513 located at the bottom and top of the cylindrical accommodation groove and the groove wall of the cylindrical accommodation groove is less than or equal to 5 ⁇ m, so that the moving carrier 22 can slide Maintain better stability.
  • Figure 34 is a schematic structural diagram of a piezoelectric motor.
  • the piezoelectric motor also includes a magnetic attraction component 61, wherein the magnetic attraction component 61 exerts a force on the guide portion 51 In the same direction as the force exerted by the pre-pressure force on the guide portion 51, in this way, in the direction of the pre-pressure force, the magnetic attraction assembly 61 can exert a torque on the moving carrier 22, which torque is opposite to the torque exerted by the driving mechanism 23 on the moving carrier 22. .
  • the magnetic assembly 61 includes a magnet 611 and a magnetic piece 612 .
  • One of the magnet 611 and the magnetic piece 612 is provided on the base 21 , and the other is provided on the mobile carrier 22 .
  • the number of magnetic assemblies 61 may be one group, two, or multiple groups. When the number of the magnetic assemblies 61 is one group, they can be arranged at opposite corners of the driving mechanism 23 , and the magnetic attraction force generated by the magnetic assemblies 61 can be consistent with the direction of the pre-pressure force.
  • Figure 35 is a schematic structural diagram of another piezoelectric motor.
  • the two sets of magnetic components 61 when there are multiple sets of magnetic components 61, for example, two groups, the two sets of magnetic components 61 can be respectively disposed on two sides in the pre-pressure direction.
  • the resultant force generated by the two sets of magnetic assemblies 61 can be in the same direction as the pre-pressure force.
  • the magnetic attraction force provided by the magnetic attraction component 61 can form a tilt correction force, and the generated magnetic attraction torque can overcome the rotational torque generated by the gravity torque, preload torque, and friction driving torque to achieve the purpose of maintaining the balance of the structure.
  • FIG. 36 is a schematic diagram of the A-phase and B-phase signals applied to the positive and negative electrodes of the piezoelectric oscillator according to an embodiment
  • FIG. 37 is a schematic diagram of the waveform applied to the piezoelectric oscillator.
  • the A-phase pulse signal is applied to one of the positive and negative electrodes of the piezoelectric oscillator.
  • the duty cycle of the A-phase pulse signal is x (x ⁇ 50%).
  • the other of the positive and negative electrodes is applied with A is a B-phase pulse signal with the same frequency, and the duty cycle of the B-phase pulse signal is 1-x.
  • the driving signal after the two pulse signals are synthesized is as shown in the figure
  • the moving carrier can move in the first direction driven by the piezoelectric oscillator.
  • the specific driving process is as follows: when the electrical signal applied to the piezoelectric oscillator is the first electrical signal (V+), that is, the time domain signal in stage a in Figure 37, the driving part of the piezoelectric oscillator will bend toward the first direction, At this time, the friction member can be used to drive the mobile carrier to move in the first direction; when the electrical signal applied to the piezoelectric vibrator changes from the first electrical signal to the second electrical signal (V-), which is the corresponding stage b in Figure 34 At the moment when the signal is detected, the driving part of the piezoelectric oscillator can bend in the second direction (where the second direction is opposite to the first direction).
  • the carrier will also move a certain distance in the first direction. After the moving speed of the moving carrier reaches zero, it will then move in the second direction driven by the driving part, and so on.
  • the loading time of the time domain signal in phase a is greater than the loading time of the time domain signal in phase b. Therefore, the mobile carrier will move toward the first direction as a whole.
  • Figure 38 is a schematic diagram of the A-phase and B-phase signals applied to the positive and negative electrodes of the piezoelectric oscillator according to an embodiment
  • Figure 39 is a schematic diagram of the waveform applied to the piezoelectric oscillator.
  • the A-phase pulse signal is applied to one of the positive and negative electrodes of the piezoelectric oscillator.
  • the duty cycle of the A-phase pulse signal is x (x ⁇ 50%).
  • the other of the positive and negative electrodes is applied with A is a B-phase pulse signal with the same frequency, and the duty cycle of the B-phase pulse signal is 1-x.
  • the combined driving signal of the two pulse signals is an asymmetric square wave signal as shown in Figure 36.
  • the moving carrier can move in the second direction driven by the piezoelectric oscillator.
  • the specific driving process is as follows: when the electrical signal applied to the piezoelectric oscillator is the first electrical signal (V-), that is, the time domain signal in stage b in Figure 38, the driving part of the piezoelectric oscillator will bend in the second direction.
  • the mobile carrier can be driven to move in the second direction through the friction member; when the electrical signal applied to the piezoelectric oscillator changes from the first electrical signal to the second electrical signal (V+), that is, the corresponding phase a in Figure 38
  • the driving part of the piezoelectric oscillator can bend in the first direction (where the first direction is opposite to the second direction).
  • the moving carrier since the moving carrier still has a certain moving speed in the second direction, the moving Under the action of inertial motion, the carrier will also move a certain distance in the second direction. After the moving speed of the moving carrier reaches zero, it will then move in the first direction driven by the driving part, and so on.
  • the loading time of the b-stage time domain signal is greater than the loading time of the a-stage time domain signal. Therefore, the mobile carrier will move toward the second direction as a whole.
  • the signal applied to the piezoelectric vibrator can also be a triangular wave signal as shown in Figure 40.
  • the applied triangular wave signal has a symmetry of ⁇ 50%.
  • the triangular wave signal also includes an a-stage time domain signal and a b-stage time domain signal.
  • the driving part When the piezoelectric vibrator applies the a-stage time domain signal, the driving part will drive the mobile carrier to move in the first direction; When the a-stage time domain signal transforms into the b-stage time domain signal, the driving part will move back in the second direction. Since the mobile carrier still has a certain moving speed along the first direction, the mobile carrier will also move in the direction under the action of inertial motion. It moves a certain distance in the first direction, and after the moving speed of the moving carrier reaches zero, it then moves to the first direction driven by the driving part, and so on. Since the loading duration of the time domain signal in phase a is longer than the loading duration of the time domain signal in phase b, the mobile carrier will move toward the first direction as a whole.
  • the loading duration of the a-stage time domain signal and the b-stage time domain signal are swapped, the loading duration of the a-stage time domain signal can be made shorter than the loading duration of the b-stage time domain signal. In this way, The mobile carrier will move toward the second direction as a whole.
  • the above two driving signals are only exemplary. As long as a high-frequency periodic signal with asymmetry in the period is applied between the two electrodes of the piezoelectric oscillator, the vibration of the piezoelectric oscillator can be excited and movement can be achieved. Movement of the carrier.
  • the piezoelectric motor of this application can achieve high precision, fast response, large stroke (>5mm), large load (g level), anti-tremor or even tremor-free autofocus, meeting the needs of electronic equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本申请提供了一种压电马达、摄像模组和电子设备。该压电马达包括基座、移动载体和驱动机构。其中,基座具有安装槽;移动载体设于安装槽内并与基座周向固定,移动载体沿第一通孔的轴向与基座滑动连接;驱动机构包括摩擦件、驱动单元和弹性连接件,摩擦件设于移动载体的周侧表面;驱动单元包括连接组件和与连接组件连接的压电振子,连接组件与基座连接,压电振子设有驱动部;压电振子动作时,驱动部能够沿第一通孔的轴向往复运动;弹性连接件能够提供使驱动部与摩擦件抵接的预压力,以使驱动部振动时通过摩擦件带动移动载体往复运动。利用该压电马达可以提高摄像模组的自动对焦行程、对焦精度和对焦速度。

Description

压电马达、摄像模组和电子设备
相关申请的交叉引用
本申请要求在2022年04月18日提交中国专利局、申请号为202210415586.2、申请名称为“压电马达、摄像模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及马达领域,具体涉及一种压电马达、摄像模组和电子设备。
背景技术
目前,电子设备(例如手机)的摄像模组的马达主要为音圈马达。音圈马达的电磁驱动力和磁场强度、线圈匝数正相关。随着电子设备拍照技术提升,摄像模组的感光芯片越来越大,镜头越来越重,当镜头变重时,音圈马达的磁铁和线圈也需要变重;磁铁和线圈的增大使得整个音圈马达的体积和重量变大,同时磁场强度的增大也会对相邻磁性传感器件或电磁致动器带来磁干扰问题,这导致音圈马达在大载重的电子设备自动对焦应用场景受限。压电马达(又称超声波电机),因其具有响应快、功率密度大、载重大、无磁干扰等特性优点,逐步成为研究的热点,以满足未来手机摄像模组的对焦技术需求。而现有的压电马达,由于其结构设计制约,目前还无法满足摄像模组对于大行程自动对焦的要求。
发明内容
本申请提供了一种压电马达、摄像模组和电子设备,以提高摄像模组的自动对焦行程。
第一方面,本申请提供一种压电马达,该压电马达包括基座、移动载体和驱动机构;其中,基座具有安装槽;移动载体设于安装槽内并与基座周向固定,移动载体设有第一通孔,移动载体沿第一通孔的轴向与基座滑动连接;驱动机构用于驱动移动载体沿第一通孔的轴向相对于基座发生往复运动,驱动机构包括摩擦件、驱动单元和弹性连接件,摩擦件设于移动载体的周侧表面;驱动单元包括连接组件和与连接组件连接的压电振子,连接组件与基座连接,压电振子设有驱动部;压电振子动作时,驱动部能够沿第一通孔的轴向往复运动;弹性连接件能够提供在垂直于第一通孔的轴向方向内使驱动部与摩擦件抵接的预压力,以使驱动部振动时通过摩擦件带动移动载体沿第一通孔的轴向往复运动。对压电振子施加第一电信号,移动载体在驱动部的带动下沿第一方向运动;然后对压电振子施加第二电信号,驱动部向第二方向运动,移动载体在惯性运动的作用下先沿第一方向减速运动然后再随驱动部一并向第二方向运动,其中,第一方向和第二方向相反,第一电信号和第二电信号的加载时间不同。
本申请的压电马达,移动载体相对于基座能够在第一通孔的轴向方向滑动,压电振子通过连接组件与基座连接,压电振子的驱动部在弹性连接件的作用在与移动载体周侧表面的摩擦件抵接,当压电振子动作时驱动部可沿第一通孔的轴向发生往复运动,从而在带动移动载体沿第一通孔的轴向方向往复运动。由于驱动部与摩擦件之间通过弹性连接件实现 弹性抵接,而非刚性抵接,因此,驱动部可实现更大幅度的振幅,减少刚性抵接情况下移动载体对于驱动部振幅的影响,进而可提高压电马达的自动对焦行程。
在一种可能的实现方式,移动载体与基座之间通过导向部滑动连接,以减少摩擦阻力。
在一种可能的实现方式,导向部包括设于移动载体的第一槽体、设于基座的第二槽体以及滑动连接件,第一槽体和第二槽体相对设置,且第一槽体和第二槽体共同构成一柱状容纳槽,滑动连接件设于柱状容纳槽内,以提高滑动连接的稳定性。
在一种可能的实现方式,滑动连接件为滚珠,滚珠位于柱状容纳槽内,且第二槽体在柱状容纳槽的开口处设有用于防止滚珠滑出的挡板。利用滚珠作为滑动连接件,可为减少移动载体和基座之间的摩擦阻力,便于滑动。
在一种可能的实现方式,柱状容纳槽内的滚珠为多个,多个滚珠沿第一通孔的轴向依次设置,且柱状容纳槽内,位于柱状容纳槽底部以及顶部的滚珠的直径大于柱状容纳槽内的剩余的滚珠的直径。同一柱状同纳槽内的多个滚珠,靠近柱状容纳槽底部和顶部的滚珠作为接触滚珠,起到滑动支撑的作用,剩余的滚珠可起到导向作用。
在一种可能的实现方式,滑动连接件为滑杆,滑杆与基座固定连接,第一槽体的表面设有用于与滑杆连接的滑接部。其中,滑接部的用于与滑杆接触的表面可为弧面。通过设置滑接部,可减少移动载体与滑杆的接触面积,减少移动阻力。
在一种可能的实现方式,导向部至少为两个,例如可为偶数,且导向部沿预压力的方向对称分布,预压力的方向沿第一通孔的径向方向设置。这样,两侧导向部中的滑动连接件的受力相同,可平衡移动载体的受力,使其运动更平稳。在一种可选的实现方式中,导向部为四个,四个导向部两两一组,任一组导向部中的两个滑动连接件的连线与预压力的方向垂直。当滑动连接件为滚珠时,其中至少一组柱状容纳槽底部以及顶部的滚珠与柱状容纳槽的槽壁之间距离小于等于5μm,以使移动载体在滑动中保持较好的稳定性。
在一种可能的实现方式,以驱动部与摩擦件之间的抵接点为基准点,沿第一通孔的周向,至少两个导向部设于距离基准点的距离介于1/5圆周至1/2圆周之间。导向部靠近驱动部和摩擦件设置,摩擦驱动力产生的力矩较小,可提升压电马达整体结构的力学稳定性。
在一种可能的实现方式,压电马达还包括磁吸组件,在预压力的方向,磁吸组件能够在移动载体施加与驱动单元施加于移动载体的力矩相反的力矩。在一种可能的实现方式,磁吸组件包括磁石和磁片,磁石和磁片中的一个设于基座,另一个设于移动载体。磁吸组件可提供倾斜矫正力,产生的磁吸力矩可克服重力和摩擦驱动力产生的合力矩,以增强整个压电马达的力学平衡性。此外磁吸力还可避免不同载重引起的驱动单元预压力波动,从而维持驱动单元输出稳定。
在一种可选的实现方式中,弹性连接件设于移动载体和摩擦件之间,弹性连接件处于蓄力状态以在垂直于第一通孔的轴向方向为摩擦件提供靠近驱动部的作用力,使摩擦件与驱动部抵接。其中,弹性连接件包括弹片,移动载体的外周面设有避让槽,弹片固定于避让槽的槽口,弹片处于蓄力状态时向避让槽内弯曲。发生形变的弹片可使摩擦件和驱动部始终保持抵接的状态。
在一种可选的实现方式中,连接组件包括竖板,竖板与基座垂直且与基座固定连接,压电振子与竖板固定连接。其中,竖板可设于压电振子的背离驱动部的一侧,以方便安装固定。
在一种可选的实现方式中,弹性连接件设于基座与驱动单元之间,弹性连接件处于蓄 力状态以在垂直于第一通孔的轴向方向为驱动部提供靠近摩擦件的作用力,使驱动部与摩擦件抵接。弹性连接件设于基座和驱动单元之间,在摩擦件的尺寸可不受弹性连接件的限制,可进一步提高压电马达的驱动行程。
在一种可选的实现方式中,连接组件包括第一连接臂,第一连接臂的一端与压电振子连接,另一端与基座连接;弹性连接件包括簧丝,簧丝的一端与压电振子连接,另一端与基座连接;第一连接臂和弹性连接件分别设于压电振子的驱动部的两侧。通过调整簧丝和第一连接臂的设置位置,利用簧丝的弹力,可使驱动部与摩擦件抵接。
在一种可选的实现方式中,第一连接臂与基座铰接。其中,可选地,第一连接臂的用于基座连接的一端设有铰接槽,基座设有与铰接槽相配合的铰接柱。这样,可方便调整第一连接臂和基座之间的连接位置,进而调整弹性连接件使驱动部和摩擦件抵接。
在一种可选的实现方式中,弹性连接件还包括与簧丝连接的第二连接臂,簧丝通过第二连接臂与基座连接。其中,可选地,第二连接臂用于与基座连接的一端设有固定孔,基座设有与固定孔配合连接的凸起柱。该结构方便安装固定弹性连接件。
在一种可选的实现方式中,连接组件包括竖板和与竖板固定连接的底板,压电振子与竖板连接,基座和底板沿预压力方向滑动连接,弹性连接件设于基座和底板之间,且弹性连接件处于受拉状态以通过底板使驱动部与摩擦件抵接。其中,弹性连接件包括第一端部、第二端部以及设于第一端部和第二端部之间的蛇形簧片或弓形簧片,第一端部包括与基座连接的连接部,第二端部与底板连接。
在一种可选的实现方式中,第一端部还包括压片,底板设有与压片配合的受压凸起部,压片对受压凸起部施加朝向基座的作用力。通过在底板上施加朝向基座的作用力,可避免压电振子在预压力的作用下发生倾斜。
在一种可选的实现方式中,基座设有导向块,底板设有与导向块相配合的导向槽;或,基座设有导向槽,底板设有与导向槽相配合的导向块,这样可方便基座和底板的装配,使两者只在预压力的方向发生相对位移。
在一种可选的实现方式中,压电振子包括承载板和设于承载板两侧表面的压电陶瓷片,承载板的板面与第一通孔的轴向垂直。压电陶瓷片在电信号的作用下发生形变,从而带动承载板发生形变,以使驱动部发生振动。
在一种可选的实现方式中,驱动部为设于承载板的第一凸起部。其中,第一凸起部可为三角悬臂,三角悬臂的用于与摩擦件抵接的抵接面为曲面或平面,例如可为凸起的弧面。
在一种可选的实现方式中,第一凸起部设有开孔,开孔在第一通孔的轴向方向贯穿第一凸起部。通过设置开孔,可放大驱动部的振幅,进而可提高压电马达的输出力。
在一种可选的实现方式中,承载板为矩形结构,驱动部设于承载板的第一侧边,承载板的背离驱动部的第二侧边设有横梁,横梁与承载板的连接点为承载板的振动节点。横梁和承载板的连接点设置在振动节点,可减少横梁对压电振子振动的影响,有利于提升压电振子的输出性能。
在一种可选的实现方式中,横梁设有缺口。通过设置缺口,可减少横梁的不利振动,减少振动能量损耗,提高压电振子的输出性能。
在一种可选的实现方式中,承载板还设有第二凸起部和第三凸起部,第二凸起部和第三凸起部沿第一侧边的方向对称设于第一凸起部的两侧。第二凸起部和第三凸起部可作为压电振子的配重,以平衡驱动部一侧和横梁一侧的重量,进而提高驱动部的振幅。
在一种可选的实现方式中,压电马达还包括柔性电路板,压电陶瓷片的正极和负极均与柔性电路板连接。
在一种示例性实现方式中,压电陶瓷片的正极和负极中的一个自承载板引出,另一个设于压电陶瓷板的背离承载板的表面。
在一种示例性实现方式中,压电陶瓷片的正极和负极均自压电陶瓷片的背离承载板的表面引出。
在一种示例性实现方式中,柔性电路板分别与承载板的两个压电陶瓷片的背离承载板的表面接触。
在一种示例性实现方式中,所述压电马达还包括卡接弹片,所述卡接弹片包括U型卡接部和与所述U型卡接部连接的第三连接臂,所述U型卡接部卡设在所述压电振子两侧的压电陶瓷片表面,所述第三连接臂与所述连接组件连接。通过卡接弹片的设置可将压电振子的电极引出端引出至连接组件的位置,方便与外部电路连接。
在一种示例性实现方式中,所述U型卡接部包括第一卡爪和第二卡爪,所述第一卡爪与所述压电振子的一个压电陶瓷片抵接,所述第二卡爪与所述压电振子的另一个压电陶瓷片抵接。利用第一夹爪和第二夹爪实现U型卡接部和压电振子的卡接。
在一种示例性实现方式中,所述第一卡爪设有第一卡接凸起,所述第二卡爪设有第二卡接凸起,所述第一卡接凸起和所述第二卡接凸起与所述压电陶瓷片焊接或粘结。通过焊接或粘结,以提高U型卡接部和压电振子之间的连接强度。
在一种示例性实现方式中,所述第一卡接凸起和所述第二卡接凸起均设有通孔,所述通孔用于填充焊料或导电胶。通过设置通孔,以填充焊料或导电胶,实现焊接或粘结。
在一种示例性实现方式中,所述通孔对应所述压电陶瓷片的几何中心设置。该实现方式中,U型连接部和压电振子的连接位置可设置在压电陶瓷片的几何中心位置,即压电振子的振动模态中的波峰位置,以减少附加重量对压电振子振动的影响。
第二方面,本申请提供一种摄像模组,该摄像模组包括镜头组件、图像传感器和本申请第一方面的压电马达,基座的安装槽为通槽且与第一通孔共轴线设置,第一通孔沿其轴向分为入光侧和出光侧,镜头组件在入光侧设于第一通孔内并与移动载体连接,图像传感器设于出光侧并与基座固定连接。
本申请的摄像模组由于具有本申请第一方面的驱动马达,因此,该摄像模组具有自动对焦行程大、对焦精度高以及对焦速度快的优点。
第三方面,本申请提供一种电子设备,包括第二方面的摄像模组。
其中,电子设备包括但不限于手机、平板电脑、笔记本电脑、手表、摄像头等设备。
上述第二方面和第三方面可以达到的技术效果,可以参照上述第一方面中的相应效果描述,这里不再重复赘述。
附图说明
图1为一种实施例电子设备的结构示意图;
图2为一种实施例摄像模组的结构示意图;
图3为一种实施例的压电马达的分解结构示意图;
图4为一种实施例的基座的结构示意图;
图5为一种实施例的移动载体的结构示意图;
图6为一种实施例的压电马达的结构示意图;
图7为图6所示结构中A-A处的剖面结构示意图;
图8为一种实施例的驱动机构和移动载体连接处的结构示意图;
图9为图8中B处的放大结构示意图;
图10为另一种实施例的压电马达的结构示意图;
图11为一种实施例的驱动机构和移动载体连接处的结构示意图;
图12为一种实施例的驱动单元的结构示意图;
图13为另一种压电马达的驱动机构的连接结构示意图;
图14为沿图13中B-B的剖面结构示意图;
图15为一种实施例中底板与基座的连接结构示意图;
图16为一种实施例的弹性连接件的结构示意图;
图17为一种实施例的压电振子的结构示意图;
图18为一种实施例的压电振子的分解结构示意图;
图19为另一种实施例的压电振子的结构示意图;
图20为另一种实施例的压电振子的结构示意图;
图21为另一种实施例的压电振子的结构示意图;
图22为一种实施例压电振子的振动模态示意图;
图23为一种实施例压电振子的电极连接关系图;
图24为另一种实施例压电振子的电极连接关系图;
图25为一种实施例的压电振子与柔性电路板的连接结构示意图;
图26为另一种实施例的压电振子的连接结构示意图;
图27为一种卡接弹片的结构示意图;
图28为一种实施例连接组件的结构示意图;
图29为一种实施例导向部的装配结构示意图;
图30为一种实施例移动载体的第一槽体处的结构示意图;
图31为本申请另一种实施例的导向部的结构示意图;
图32为图31所示结构中导向部与移动载体的接触结构示意图;
图33为一种实施例的压电马达的结构示意图;
图34为另一种实施例压电马达的结构示意图;
图35为另一种实施例压电马达的结构示意图;
图36为一种实施例的施加于压电振子的正负极上的A相和B相信号示意图;
图37为施加于压电振子的合成后的驱动信号的波形示意图;
图38为另一种实施例的施加于压电振子的正负极上的A相和B相信号示意图;
图39为施加于压电振子的合成后的驱动信号的波形示意图;
图40为一种实施例的施加于压电振子上的三角波信号示意图。
附图标记:
001-电子设备;01-壳体;02-处理器;03-摄像模组;10-镜头组件;20-压电马达;21-基座;211-安装槽;212-第一限位部;213-铰接柱;214-凸起柱;215-导向块;22-移动载体;221-第一通孔;222-第二限位部;223-避让槽;23-驱动机构;31-摩擦件;32-驱动单元;321-连接组件;3211-竖板;3212-第一连接臂; 3212a-铰接槽;3213-底板;3213a-导向槽;3214-受压凸起部;322-压电振子;323-驱动部;33-弹性连接件;331-簧丝;332-第二连接臂;333-固定孔;334-第一端部;3341-连接部;3342-压片;335-第二端部;336-曲形簧片;24-外盖;25-柔性电路板;26-位置传感器;41-承载板;41a-第一侧边;41b-第二侧边;41c-第三侧边;41d-第四侧边;41e-第一表面;41f-第二表面;411-开孔;412-连接件;413-横梁;414-缺口;415-第二凸起部;416-第三凸起部;42-压电陶瓷片;43-粘结层;44-绝缘带;51-导向部;511-第一槽体;512-第二槽体;513-滚珠;514-挡板;515-滑杆;516-滑接部;61-磁吸组件;611-磁石;612-磁片;70-卡接弹片;71-U型卡接部;711-第一卡爪;712-第二卡爪;713-第一卡接凸起;714-第二卡接凸起;715-通孔;72-第三连接臂;73-导电线路板。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为方便理解本申请的压电马达,下面先对其应用场景做解释说明。
压电马达可用于电子设备的摄像模组中。其中,电子设备包括但不限于手机、平板电脑、笔记本电脑、电话手表、移动摄像装置等。图1为一种电子设备的结构示意图,以手机为例,该电子设备001可包括壳体01和置于壳体内部的处理器02、显示模组(图中未示出)和摄像模组03,除此之外,还可包括图中未示出的扬声器、受话筒、天线、麦克风等部件。壳体01还分为前盖板和后盖板,壳体01的前盖板和后盖板均可设置摄像模组03,以后盖板为例,后盖板上设有摄像孔,摄像模组03设于壳体01的内,并通过后盖板的摄像孔采集光线,进行图像的拍摄。摄像模组03和显示模组均与处理器02电连接,处理器02控制摄像模组03进行拍摄,摄像模组03将采集的图像信息传递给处理器02,并在显示模组中进行图像的显示。
以下将结合图2对摄像模组的结构做解释说明。图2为一种摄像模组的结构示意图,图2所示摄像模组03可作为电子设备的前置摄像头,也可为作为电子设备的后置摄像头,在此不做严格的限定。如图2所示,在一些实施例中,该摄像模组03可包括镜头组件10和压电马达20,镜头组件10安装于压电马达20的入光侧,压电马达20可驱动镜头组件10沿镜头组件10的光轴方向往复运动,从而实现摄像模组03的自动对焦。
其中,摄像模组03还包括图像传感器(图中未示出)和电路板(图中未示出),图像 传感器可固定于电路板且与电路板电连接,电路板可与压电马达20固定连接,其中,电路板设于压电马达20的出光侧。图像传感器用于接收自镜头组件10汇聚的光信号,并将光信号转换为电信号,形成的电信号可通过电路板传输至电子设备的处理器。
以下将结合图3对压电马达的结构做解释说明。图3为一种实施例的压电马达的分解结构示意图,如图3所示,在一些实施例中,压电马达20可包括基座21、移动载体22和驱动机构23,除此之外,压电马达20还可包括外盖24,外盖24和基座21固定连接,外盖24和基座21共同构成压电马达20的外壳。移动载体22和驱动机构23均设于压电马达20的外壳内部。外盖24和基座21可采用卡扣连接、粘结、焊接、紧固件连接等多种方式进行固定,在此不做具体的限定。
以下将结合图3和图4对压电马达的基座做解释说明。图4为一种实施例的基座的结构示意图,如图4所示,基座21设有安装槽211,以用于装配移动载体22。其中,基座21的安装槽211为通槽,该通槽的轴线可与镜头组件的光轴(图3中所示z方向)重合。基座21的外形可为方形结构、矩形结构、圆形结构或其他结构,在此不做具体的限定。在本申请一种实施例中,基座21的外形选为方形结构,以方便加工制作和安装,且有利于压电马达的结构平衡。其中,基座21的安装槽211内设有第一限位部212,第一限位部212可为设置安装槽211侧壁的限位块。在将移动载体22装配于安装槽211后,可利用该第一限位部212可限制移动载体22和基座21在周向发生相对运动。
以下将结合图3至图5对压电马达的移动载体做解释说明。图5为一种实施例的移动载体的结构示意图,如图3至图5所示,在一些实施例中,移动载体22装配于基座21的安装槽211内,移动载体22设有第一通孔221,第一通孔221的轴线与镜头组件的光轴同轴设置。移动载体22的外周面设有与第一限位部212相配合的第二限位部222,第二限位部222可为与限位块相配合的限位槽,第一限位部212和第二限位部222配合后可在移动载体22的周向使移动载体22和基座21保持相对静止,使两者之间在周向固定。
其中,结合图3和图5,移动载体22和基座21在第一通孔221的轴向,即在图3所示z向是可发生相对位移的,两者在第一通孔221的轴向滑动连接。由此,移动载体22可在驱动机构23的作用下与基座21在z向发生往复运动。
以下将结合图6至图16对几种形式的驱动机构做解释说明。
图6至图9为一种实施例的压电马达的结构示意图。具体的,图6为一种实施例的压电马达的结构示意图,图7为图6所示结构中A-A处的剖面结构示意图,图8为一种实施例的驱动机构和移动载体连接处的结构示意图,图9为图8中B处的放大结构示意图。
参照图6和图7所示,在一种实施例中,当基座21为方形结构时,驱动机构23可设于基座21的一个角处,以充分利用基座21的安装空间,减少压电马达20的尺寸。
参照图8和图9,驱动机构23可包括摩擦件31、驱动单元32和弹性连接件33。在一种实施例中,弹性连接件33可为弹片,也可为泡棉或弹簧等弹性体。为方便连接,本申请实施例中弹性连接件33为弹片,弹片可设于移动载体22和摩擦件31之间,弹片可与移动载体22固定连接,此时,摩擦件31可通过弹片与移动载体22固定连接。其中,移动载体22的外周面与摩擦件31对应的部位设有避让槽223,弹片搭设在避让槽223的槽口处,弹片在受力后可朝向避让槽223内发生弯曲。
继续参照图8和图9,在一种实施例中,驱动单元32可包括连接组件321和与连接组件321连接的压电振子322,其中,一并参照图6至图9,连接组件321可与基座21连接, 用于固定压电振子322。压电振子322设有驱动部323,压电振子322动作时,驱动部323能够沿移动载体22的第一通孔的轴向(即图6中所示z向)往复运动。对于压电振子322结构和振动原理将在后面做解释说明,以下先对摩擦件31、驱动单元32和弹性连接件33的相互连接关系做解释说明。
如图7和图9所示,连接组件321可包括竖板3211,竖板3211与基座21固定连接。竖板3211可与基座21采用焊接、粘接、卡接等方式进行固定连接。其中,竖板3211的板面可与基座21垂直,并且竖板3211设于压电振子322背离驱动部323的一侧。
继续参照图6至图9,压电振子322的驱动部323用于与摩擦件31抵接。该驱动机构23中,将竖板3211与基座21固定后,驱动部323将对摩擦件31施加一定的挤压力,在该挤压力的作用下,弹性连接件33将发生一定的形变,此时,弹性连接件33处于蓄力状态,以在垂直于第一通孔221的轴向方向(即图6中所示x方向)为摩擦件31提供靠近驱动部323的作用力,使摩擦件31与驱动部323抵接。其中,由驱动部323施加在摩擦件31的预压力在第一通孔221的径向方向(即图6中所示x向的反方向)。通过施加预压力,可使摩擦件31和驱动部323之间始终保持抵接,这样,当驱动部323运动时可通过摩擦件31带动移动载体22沿z向往复运动。该驱动机构23可实现大于2mm的大行程自动对焦,同时,驱动机构23可依靠摩擦实现自锁。
参照图8和图9,可以理解的是,当弹性连接件33为弹片时,该弹片在z向和y向(即弹片的平面方向)需具有较大的刚度,并且需具有较大的扭转刚度,以防止弹片在运动中出现扭转,同时,该弹片需要在x向具有较小的刚度,以使弹片产生足够的弹性形变从而为驱动部323和摩擦件31的抵接提供作用力。
以下结合图10至图12对另一种驱动机构的压电马达进行说明。
图10为另一种实施例的压电马达的结构示意图,图11为驱动机构和移动载体连接处的结构示意图,图12为一种实施例的驱动单元的结构示意图。如图10和图11所示,摩擦件31可为刚性摩擦板,该摩擦板可直接固定于移动载体22,例如可固定于移动载体22周侧面的避让槽223内。其中,驱动单元32的连接组件321可包括第一连接臂3212,第一连接臂3212的一端与压电振子322连接,另一端与基座21连接。一并参照图12,其中,第一连接臂3212的用于基座21连接的一端设有铰接槽3212a,基座21设有与铰接槽3212a相配合的铰接柱213,通过铰接槽3212a和铰接柱213,可实现第一连接臂3212和基座21的铰接。
如图11和图12所示,弹性连接件33可包括簧丝331,簧丝331的一端与压电振子322连接,另一端与基座21连接。继续参照图11,在一种实施例中,弹性连接件33还可包括第二连接臂332,簧丝331通过第二连接臂332与基座21连接。其中,第二连接臂332用于与基座21连接的一端设有固定孔333,基座21设有与固定孔333配合连接的凸起柱214。
参照图11和图12,第一连接臂3212和弹性连接件33分别设于驱动部323的两侧。作为弹性连接件33和基座21连接,连接后,弹性连接件33处于蓄力状态,弹性连接件33可在图11中所示x方向为驱动部323提供靠近摩擦件31的作用力,使驱动部323与摩擦件31抵接。
该驱动机构可实现大于5mm的超大行程自动对焦,驱动机构可依靠摩擦实现自锁。在摄像模组中,驱动机构施加的预压力一般是重力的数十倍,产生的静摩擦力也在重力的数十倍以上,从而锁住移动载体的位置,实现在运动场景拍摄中抗震颤的能力。
以下结合图13至图16对另一种驱动机构的压电马达进行说明。
图13为另一种压电马达的驱动机构的连接结构示意图,图14为沿图13中B-B的剖面结构示意图。如图13和图14所示,在一些实施例中,摩擦件31可为刚性摩擦板,该摩擦板可直接固定于移动载体22的外周面。驱动单元32中的驱动部323与摩擦件31抵接,驱动单元32中的连接组件321可包括竖板3211和底板3213,其中,压电振子322与竖板3211固定连接。竖板3211与基座21垂直连接,底板3213与基座21平行设置,竖板3211和底板3213固定连接,底板3213与基座21在驱动部323和摩擦件31的抵接方向(如图中所示x方向)滑动连接。
图15为一种实施例中底板与基座的连接结构示意图,如图15所示,基座21和底板3213中的一个可设置导向块215,另一个可设置导向槽3213a,以使底板3213在基座21上实现滑动连接。例如,基座21设有导向块215,底板3213设有与导向块215相配合的导向槽3213a;或,基座21设有导向槽,底板3213设有与导向槽相配合的导向块。另外,通过设置导向块215和导向槽3213a,还可对底板3213的滑动起到限位作用,使其在一定范围内在基座21上产生滑动。
如图15所示,弹性连接件33设于基座21和底板3213之间,弹性连接件33的一端可与基座21固定连接,另一端可与底板3213固定连接,一并参照图14,驱动部323和摩擦件31抵接时,弹性连接件33处于受拉状态,从而在驱动部323和摩擦件31上施压一定的预压力。
图16为一种实施例的弹性连接件的结构示意图,如图16所示,在一种实施例中,弹性连接件33包括第一端部334、第二端部335以及设于第一端部334和第二端部335之间的曲形簧片336,例如可为蛇形簧片或弓形簧片,弓形簧片或蛇形簧片在预压力的方向对称设置,以提高受力的均匀性。
如图15和图16所示,第一端部334包括与基座21连接的连接部3341,连接部3341的数量可为多个,例如两个、三个或四个等等,在本申请一种实施例中,连接部3341的数量为两个,且两个连接部3341分别设于底板3213的两侧,与基座21固定连接。连接部3341与基座21之间可通过卡接、焊接或粘结等方式进行固定。连接部3341与基座21固定后,蛇形簧片或弓形簧片压设在底板3213表面。第二端部335与蛇形簧片或弓形簧片的端部连接,其中,第二端部335可为土字型或T字型结构,第二端部335与底板3213固定连接。可以理解的是,底板3213上还可设置与土字型或T字型结构相配合的固定槽,以固定第二端部335。
继续参照图15和图16,在一种实施例中,第一端部334还包括压片3342,压片3342设于两个连接部3341之间,同时,底板3213设有与压片3342配合的受压凸起部3214,压片3342对受压凸起部3214施加朝向基座21的作用力。这样,一并参照图14,当驱动部323受到摩擦件31的反作用力产生向上的翻转力矩时,压片3342在受压凸起部3214施加的作用力可产生相反的力矩,从而保持驱动机构的稳定性。其中,压片3342可与蛇形簧片或弓形簧片为一体式结构,也可为分体式结构,在此不做具体的限定。
以上对驱动机构23中的驱动单元32、摩擦件31和弹性连接件33的具体连接方式了几种示例性说明,以下将对驱动单元32的工作原理做解释说明。其中,驱动单元32采用压电驱动技术实现驱动,具体的,驱动单元32中的压电振子322基于压电材料的逆压电效应,通过施加于压电材料的控制电信号,使压电材料产生机械变形,当施加周期性的电 信号后,压电材料可随施加的周期性电信号产生周期性的形变,从而产生周期性的运动。示例性地,压电材料可以为无机压电材料,如压电晶体、压电陶瓷,也可以为有机压电材料,如聚偏氟乙烯,本申请不对压电材料的类型进行严格限定。其中,逆压电效应是指当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失。一些实施例中,当压电材料不通电(电流为0,或者电流很小)时,压电材料处于初始状态;当压电材料通入正电流时,压电材料延展,处于伸长状态;当压电材料通入负电流时,压电材料收缩,处于缩短状态。也即,压电材料会依据施加的电信号发生形变,当电信号为交变信号时,压电材料会发生循环的伸缩动作。
以下将结合图17至图25对驱动单元中的压电振子的结构以及运动原理做进一步详细说明。
图17为一种压电振子的结构示意图,图18为压电振子的分解结构示意图,如图17和图18所示,在一种实施例中,压电振子322包括承载板41和压电陶瓷片42,其中,承载板41和压电陶瓷片42之间例如可通过粘结层43粘结,粘结层43例如可为环氧树脂层或导电胶层等。其中,承载板41为板状结构,例如可为矩形板结构,承载板41可为金属板,具有一定的刚度,可满足固定压电陶瓷片42和实现振动的需求。承载板41的两个长边分别为第一侧边41a和第二侧边41b,两个短边分别为第三侧边41c和第四侧边41d。承载板41包括第一表面41e和第二表面41f,且第一表面41e和第二表面41f均与基座平行。
参照图17和图18,在一种实施例中,压电振子322的驱动部323为自承载板41的第一侧边41a向外凸起形成的第一凸起部,该第一凸起部沿第一侧边41a的中垂线对称设置。其中,第一凸起部可为三角悬臂,该三角悬臂的用于与摩擦件抵接的抵接面可为曲面或平面,其中,当抵接面为曲面时,可为凹曲面或凸曲面。在一些实施例中,驱动部323的用于与摩擦件抵接的抵接面为凸弧面,以便更好地与摩擦件接触。
继续参照图17和图18,在一些实施例中,驱动部323可设置开孔411,开孔411可为沿第一通孔的轴向方向贯穿驱动部的第二通孔。其中,驱动部323的开孔411的形状可为圆形、方向或三角形等开孔411,在此不做具体的限定。通过设置开孔411,可放大驱动部323的振幅。
图19为另一种压电振子的结构示意图,如图19所示,该压电振子与图17所示压电振子的区别在于,承载板41的第二侧边41b设置连接件412,该连接件412用于与驱动单元的连接组件连接。其中,连接件412可为自承载板41的第二侧边41b向外延伸形成的插接部,插接部的数量可为两个,每个插接部在第二侧边41b与承载板41的连接点为可为承载板41的振动节点,压电振子322与连接组件连接后可减少连接组件对压电振子322振动的影响。
图20为另一种压电振子的结构示意图,如图20所示,该压电振子与图17所示压电振子的区别在于,承载板41的第二侧边41b一侧可设置横梁413,横梁413与第二侧边41b的连接点为承载板41的振动节点。将横梁413与承载板41的连接点设于承载板41的振动节点,可使连接组件与压电振子322的之间的夹持作用力作用在振动节点处,进而可使降低连接组件对压电振子322振动的影响,提升压电振子322的输出性能。继续参照图20,在一些实施例中,可在横梁413上设置缺口414,以减少横梁413的不利振动。其中,可以理解的是,横梁413以及缺口414可沿第二侧边41b的中垂线对称设置,以使横梁413 的重量沿第二侧边41b的中垂线对称分布。其中,横梁413上可设置的连接件412(例如插接部),利用连接件412与连接组件(例如竖板)连接。
继续参照图20,承载板41还设有第二凸起部415和第三凸起部416,其中,第二凸起部415和第三凸起部416沿第一侧边41a的中垂线对称设于驱动部323的两侧。第二凸起部415和第三凸起部416作为配重设置在驱动部323的两侧,可平衡横梁413的重量,使承载板41的第一侧边41a的总重量和第二侧边41b的总重量相近或相等,进而可提高驱动部323的振幅。其中,第二凸起部415和第三凸起部416可全部设置在承载板41的第一侧边41a,可由承载板41的第一侧边41a的向外凸出形成。
图21为另一种压电振子的结构示意图,与图20所示压电振子的区别在于,第二凸起部415和第三凸起部416的设置位置不同。当第二凸起部415和第三凸起部416的尺寸较大无法全部设置在承载板41的第一侧边41a时,第二凸起部415和第三凸起部416还可设置在承载板41的第三侧边41c和第四侧边41d,以充分利用承载板41的空间。其中,图20和图21仅为第二凸起部415和第三凸起部416的示例性说明,第二凸起部415和第三凸起部416的形状以及具体设置位置在本申请中不做具体的限定,只要能够使承载板41的第一侧边41a一侧和第二侧边41b一侧的重量尽量保持平衡即可。
参照图17和图18,承载板41的第一表面41e和第二表面41f均可设置压电陶瓷片42,压电陶瓷片42的数量可为两个,任一压电陶瓷片42可为单层压电陶瓷,也可为多层压电陶瓷,两个压电陶瓷片42分别设于承载板41的第一表面41e和第二表面41f且与承载板41平行设置。压电陶瓷片42可通过环氧树脂、导电胶等粘结于承载板41。其中,两个压电陶瓷片42可为形变方向相反的两个压电陶瓷片42,例如,当对两个压电陶瓷片42施加第一电信号时,其中一个压电陶瓷片42延展,处于伸长状态,另一个压电陶瓷片42收缩,处于缩短状态,这样,可以使压电振子产生弯曲振动。
图22为一种压电振子的振动模态示意图,以图22所示方向为例,且一并参照图17,承载板41的上下表面分别设置一个压电陶瓷片42,压电陶瓷片42的极化方向例如可为垂直于承载板的方向,当对压电陶瓷片42施加第一电信号时,承载板41上方的压电陶瓷片42处于收缩状态,承载板41下方的压电陶瓷片42处于伸长状态,压电振子322整体向上弯曲,从而带动驱动部323沿第一方向发生位移;当对压电陶瓷片42施加第二电信号时,承载板41上方的压电陶瓷片42处于伸长状态,承载板41下方的压电陶瓷片42处于收缩状态,压电振子322整体可向下弯曲,从而带动驱动部323沿第二方向发生位移。
如上,压电振子322振动时需要施加电信号,因此,压电振子322的电极需要与外部电路连接,本申请中,一并参照图3,压电马达20中可设置柔性电路板25,通过柔性电路板25作为压电振子322与外部电路的电连接桥梁,在压电陶瓷片42施加电信号,实现压电振子322的振动。
图23为一种压电振子的电极连接关系图,如图23所示,每个压电陶瓷片42可设有两个电极,正极和负极,其中一个电极设于压电陶瓷片42的靠近承载板41的一侧表面(以下称为内侧面),另一个电极设于压电陶瓷片42的背离承载板41的一侧表面(以下称为外侧面)。每个压电陶瓷片42的正极和负极中的一个可通过承载板41引出,另一个电极可自压电陶瓷片42外表面引出,例如压电陶瓷片42的负极可由承载板41引出,压电陶瓷片42的正极可由压电陶瓷片42外表面引出。当利用承载板41引出电极时,承载板41和压电陶瓷片42的内表面之间可通过导电胶或环氧树脂胶粘结。可以理解的是,图24中 所示的正极和负极的位置仅为示例性说明,两电极的位置可互换。
图24为另一种压电振子的电极连接关系图,如图24所示,在一种实施例中,可通过电极延覆将压电陶瓷片42的内表面的电极引出至压电陶瓷片42的外表面,例如通过在压电陶瓷片的一个或者两个短边侧面覆电极,将内侧面的电极引出至压电陶瓷片42的外表面,两短边对称地做电极延覆可以保证结构的对称性,在进行电路连接时可直接与外表面的正极和负极进行连接。其中,压电陶瓷片42的正极和负极均设于外表面时,正极和负极之间的陶瓷表面不覆电极,保证一定的绝缘距离,例如可压电陶瓷片42的外表面设置绝缘带44,绝缘带44例如可为设于压电陶瓷片42外表面的绝缘隔离层或绝缘隔离槽,防止正极和负极之间出现短路。其中,图24中所示的正极和负极的位置仅为示例性说明,两电极的位置可互换。在进行电路连接时,压电振子可通过柔性电路板25(参照图4)与外部电路连接。其中,一并参照图3,柔性电路板25可固定于基座21,压电振子322的正极和负极可分别通过表面贴装技术或各项异性导电胶膜等方式与柔性电路板25连接。
图25为一种实施例的压电振子与柔性电路板的连接结构示意图,如图25所示,当压电陶瓷片42的正极和负极均自压电陶瓷片42的外表面引出时,柔性电路板25可包覆在压电陶瓷片42的外表面,此时,柔性电路板25的用于与压电振子电极连接的部位可设置电连接点以使两者进行电连接。该连接方式尤其可适用于压电陶瓷片42的外表面同时设置正极和负极的情况,这样,方便连接,可节约压电振子至柔性电路板25的连接线,且连接更为牢固。
其中,柔性电路板25可作为压电振子与外部电路的连接桥梁,其还可与电子设备的控制器连接,用于发送驱动压电振子振动的电信号。一并参照图3,本申请的压电马达20还可包括位置传感器26,位置传感器26可与柔性电路板25连接,位置传感器26用于感应移动载体与基座的相对位置,以将检测的信号通过柔性电路板25传递至电子设备的控制器,由控制器控制是否需要驱动移动载体移动,并确定移动量。其中,位置传感器可为感应磁石。
图26为另一种实施例的压电振子的连接结构示意图。如图26所示,压电振子322的两个压电陶瓷片42可分别固定在承载板41的两侧。承载板41的结构可参照图20至图21的相关结构,在此不再重复赘述。其中,承载板41的一端可与连接组件321的竖板3211固定连接。
如图26所示,本申请实施例压电振子322的压电陶瓷片42的一个电极引出端可通过卡接弹片70引出至连接组件321的位置。图27为一种卡接弹片的结构示意图。一并参照图26和图27,卡接弹片70包括U型卡接部71和与U型卡接部71连接的第三连接臂72。其中,U型卡接部71可包括相互连接的第一卡爪711和第二卡爪712。以图26和图27所示位置进行说明。第一卡爪711卡设在承载板41正面的压电陶瓷片42表面,第二卡爪712卡设在承载板41背面的压电陶瓷片42表面。第一卡爪711的夹持部位可设于第一卡接凸起713,第二卡爪712的夹持部位可设置第二卡接凸起714。以图27所示方向为例,第一卡接凸起713的凸起方向向下,第二卡接凸起714的凸起方向向上。U型卡接部71卡设在压电振子表面时,第一卡接凸起713与正面的压电陶瓷片42接触,第二卡接凸起714与背面的压电陶瓷片42接触。U型卡接部71的其他区域均不与压电振子接触,以减少对压电振子振动的限制。
其中,为提高第一卡接凸起713和第二卡接凸起714与压电陶瓷片42连接的可靠性, 在一种实施例中,可在第一卡接凸起713和第二卡接凸起714处均设置通孔715。在固定时,可在通孔715内填充焊料或导电胶,通过焊接或粘结的方式增加第一卡爪711和第二卡爪712与压电振子连接的可靠度。
其中,第一卡接凸起713和第二卡接凸起714的通孔715均设置在压电陶瓷片42的中心位置,该位置为压电陶瓷片42的振动模态的波峰位置,以减少卡接弹片70、焊料或导电胶等附加质量对压电振子振动的影响。
继续参照图26和图27,卡接弹片70的第三连接臂72可为弯折连接臂。第三连接臂72的一端与U型卡接部71连接,另一端与连接组件321的竖板3211连接。其中,第三连接臂72的和竖板3211连接的一端用于和外部电路连接,以作为压电振子的一个电极连接点。
继续参照图26,在一种实施例中,压电振子的另一个电极可通过承载板41引出。承载板41可为导电承载板或在其两侧表面涂覆导电涂层。承载板41与连接组件321的竖板3211固定连接。图28为一种实施例连接组件321的结构示意图。如图26和图28所示,竖版3211的用于承载板41连接的位置可设置导电线路板73。导电线路板73用于和外部电路连接,以作为压电振子的另一个电极连接点。图26至图28所示结构实施例的压电振子,在施加驱动信号时,驱动信号的正负极可分别与第三连接臂72和导电线路板73连接。
以上对驱动机构的结构以及驱动原理做了解释说明,其中,驱动机构通过驱动部和摩擦件之间的摩擦耦合作用输出驱动力,从而带动移动载体发生移动。以下将对移动载体与基座的轴向装配关系做解释说明。
参照图29,为维持移动载体22在运动过程中的稳定性,且减少移动载体22和基座21之间的摩擦力,移动载体22和基座21之间可通过导向部51滑动连接。下面将结合图26至图32对移动载体和基座之间的导向部51做解释说明。
继续参照图29,在一种实施例中,导向部51可包括由移动载体22和基座21共同构成的柱状容纳槽以及设于柱状容纳槽内的滑动连接件。具体地,移动载体22的外周面可设置第一槽体511,基座21的安装槽的侧壁可设置第二槽体512,第一槽体511和第二槽体512相对设置,且可形成柱状容纳槽。滑动连接件设于柱状容纳槽内。
图30为移动载体的第一槽体处的结构示意图,参照图29和图30,在一种可选的实施例中,滑动连接件为滚珠513,且滚珠513的数量可为多个,多个滚珠513在柱状容纳槽内可沿柱状容纳槽的高度方向依次排列。在滑动过程中,为防止滚珠513脱离柱状容纳槽,第二槽体512的顶部可设置挡板514。其中,同一柱状容纳槽内的多个滚珠513,位于柱状容纳槽的顶部和底部的滚珠513的直径要大于其他滚珠513的直径,以减少移动载体22和基座21之间的接触点,减少滑动阻力。其中,位于柱状容纳槽底部以及顶部的滚珠513与柱状容纳槽的槽壁之间距离小于等于5μm,以使移动载体22在滑动中保持较好的稳定性。
图31为本申请另一种实施例的导向部的结构示意图,图32为图31所示结构中导向部与移动载体的接触结构示意图。如图31和图32所示,在一种实施例中,滑动连接件可为滑杆515,滑杆515与基座21固定连接,移动载体22的第一槽体511的表面设有用于与滑杆515滑动连接的凸起的滑接部516。其中,滑接部516的用于与滑杆515接触的表面(以下称为滑接面)为弧面或平面,当滑接部516的滑接面为弧面时,可为凹弧面,例如可为与滑杆515的表面相配合的凹面,也可为凸弧面,例如可为凸起的球面。当为凸起 的球面时,可减少移动载体22和滑杆515之间的接触面,进而降低摩擦阻力。其中,可以理解的是,滑接部516的数量可为一个、两个或三个及以上,例如可选自两个或多个,具体的数量在此不做具体的限定,只要能够保证滑杆515与移动载体22之间能够稳定接触即可。
图33为一种实施例的压电马达的结构示意图,如图33所示,在一种实施例中,导向部51的设置数量可为多个,例如两个、三个、四个或更多个,优选地可为两个或四个或其他偶数个,其中,多个导向部51可沿预压力的方向(即图33中所示x方向)对称设置。其中,多个导向部51可两两为一组,任一组中两个导向部51的连线(连线位于图33中的y方向)与预压力方向垂直。这样,任一组中的导向部51的摩擦力相等,可保证预压力两侧的结构力学平衡,防止移动载体22绕预压力方向(如图33中所示x方向)出现转动。
继续参照图33,以摩擦件31与驱动机构23的抵接点基准点,沿第一通孔221的周向,至少有两个导向部51距离基准点的距离介于1/5圆周至1/2圆周之间。在压电马达的驱动过程中,驱动机构23施加在z向方向的驱动力会对移动载体22施加一个绕y轴的力矩,导向部51越靠近驱动机构23,力臂越小,产生的绕y轴的力矩也就越小,因此,导向部51靠近摩擦件31和驱动机构23的抵接点设置,可提升整体结构的力学稳定性。继续参照图33,在一种可选实施例中,导向部51的数量可为四个,可分为两组导向组,分别为主导向组和副导向组,其中,主导向组中的两个导向部51靠近驱动机构23和摩擦件31的抵接点设置,副导向组中的两个导向部51设于远离抵接点设置,这样,可进一步提高压电马达的结构稳定性,保证移动载体22平稳移动。其中,当滑动连接件为滚珠时,至少一组导向部51中,位于柱状容纳槽底部以及顶部的滚珠513与柱状容纳槽的槽壁之间距离小于等于5μm,以使移动载体22在滑动中保持较好的稳定性。
图34为一种压电马达的结构示意图,如图34所示,在一种实施例中,该压电马达还包括磁吸组件61,其中,磁吸组件61施加于导向部51的作用力与预压力施加于导向部51的作用力同向,这样,在预压力的方向,磁吸组件61能够在移动载体22上施加一力矩,该力矩与驱动机构23施加于移动载体22的力矩相反。
参照图34,在一种实施例中,磁吸组件61包括磁石611和磁片612,磁石611和磁片612中的一个设于基座21,另一个设于移动载体22。其中,磁吸组件61的数量可为一组,也可为两个,还可为多组。当磁吸组件61的数量为一组时,其可设于驱动机构23的对角处,磁吸组件61产生的磁吸力可与预压力的方向一致。
图35为另一种压电马达的结构示意图,如图35所示,当磁吸组件61为多组时,例如为两组时,两组磁吸组件61可分别设于预压力方向的两侧,两组磁吸组件61产生的合力可与预压力同向。磁吸组件61提供的磁吸力可形成倾斜矫正力,产生的磁吸力矩可克服重力矩、预压力矩、摩擦驱动力矩产生的转动力矩,达到维持架构平衡的目的。
以上分别对基座21、移动载体22和驱动机构23的结构和相互连接关系做了解释说明,以下将对整个压电马达的驱动过程做解释说明。
图36为一种实施例的施加于压电振子的正负极上的A相和B相信号示意图,图37为施加于压电振子的波形示意图。如图36所示,在压电振子的正负极中的一个施加A相脉冲信号,A相脉冲信号的占空比为x(x≠50%),在正负极中的另一个施加与A相同频的B相脉冲信号,B相脉冲信号的占空比为1-x,两个脉冲信号合成后的驱动信号为如图 34所示的非对称的具有正负电压的方波信号。将图37所示驱动信号施加于压电振子后,移动载体可在压电振子的驱动下沿第一方向运动。具体的驱动过程如下:当施加于压电振子的电信号为第一电信号(V+)时,即图37中a阶段时域信号时,压电振子的驱动部将向朝向第一方向弯曲,此时可通过摩擦件带动移动载体向第一方向运动;当在压电振子上施加的电信号由第一电信号转变为第二电信号(V-),即图34中对应的b阶段时域信号的瞬间,压电振子的驱动部可向第二方向(其中,第二方向与第一方向相反)弯曲,此时,由于移动载体沿第一方向还具有一定的移动速度,因此,移动载体在惯性运动的作用下,还会朝第一方向移动一定的距离,在移动载体的运动速度为零后,再在驱动部的带动下向第二方向运动,如此往复。该驱动信号中,a阶段时域信号的加载时间大于b阶段时域信号的加载时间,因此,移动载体整体上会朝向第一方向运动。
图38为一种实施例的施加于压电振子的正负极上的A相和B相信号示意图,图39为施加于压电振子的波形示意图。如图38所示,在压电振子的正负极中的一个施加A相脉冲信号,A相脉冲信号的占空比为x(x≠50%),在正负极中的另一个施加与A相同频的B相脉冲信号,B相脉冲信号的占空比为1-x,两个脉冲信号合成后的驱动信号为如图36所示的非对称的方波信号。将图38所示驱动信号施加于压电振子后,移动载体可在压电振子的驱动下沿第二方向运动。具体的驱动过程如下:当施加于压电振子的电信号为第一电信号(V-)时,即图38中b阶段时域信号时,压电振子的驱动部将向朝向第二方向弯曲,此时可通过摩擦件带动移动载体向第二方向运动;当在压电振子上施加的电信号由第一电信号转变为第二电信号(V+),即图38中对应的a阶段时域信号的瞬间,压电振子的驱动部可向第一方向(其中,第一方向与第二方向相反)弯曲,此时,由于移动载体沿第二方向还具有一定的移动速度,因此,移动载体在惯性运动的作用下,还会朝第二方向移动一定的距离,在移动载体的运动速度为零后,再在驱动部的带动下向第一方向运动,如此往复。该驱动信号中,b阶段时域信号的加载时间大于a阶段时域信号的加载时间,因此,移动载体整体上会朝向第二方向运动。
另外,施加于压电振子上的信号除方波信号外还可为如图40所示的三角波信号,施加的三角波信号,其对称度≠50%。
如图40所示,该三角波信号同样包括a阶段时域信号和b阶段时域信号,当压电振子施加a阶段时域信号时,此时驱动部会带动移动载体朝第一方向运动;当由a阶段时域信号转变b阶段时域信号时,驱动部会沿第二方向回归运动,由于移动载体沿第一方向还具有一定的移动速度,因此,移动载体在惯性运动的作用下,还会朝第一方向移动一定的距离,在移动载体的运动速度为零后,再在驱动部的带动下向第一方向运动,如此往复。由于a阶段时域信号的加载时长大于b阶段时域信号的加载时长,因此,移动载体整体上会朝向第一方向运动。
在图40所示三角波信号中,当对调a阶段时域信号和b阶段时域信号的加载时长后,即可使a阶段时域信号的加载时长小于b阶段时域信号的加载时长,这样,移动载体整体上会朝向第二方向运动。
可以理解的是,上述两种驱动信号仅为示例性说明,只要在压电振子的两电极间施加周期内不具对称性的高频周期信号,即可激发压电振子的振动,并可实现移动载体的移动。
综上,本申请的压电马达可实现高精度、快响应、大行程(>5mm)、大载重(g级)、抗震颤甚至无震颤自动对焦,满足电子设备的使用需求。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (43)

  1. 一种压电马达,其特征在于,包括:基座、移动载体和驱动机构;其中,
    所述基座具有安装槽;
    所述移动载体设于所述安装槽内并与所述基座周向固定,所述移动载体设有第一通孔,所述移动载体沿所述第一通孔的轴向与所述基座滑动连接;
    所述驱动机构用于驱动所述移动载体沿所述第一通孔的轴向往复运动,所述驱动机构包括摩擦件、驱动单元和弹性连接件;其中,
    所述摩擦件设于所述移动载体的周侧表面;
    所述驱动单元包括连接组件和与所述连接组件连接的压电振子,所述连接组件与所述基座连接,所述压电振子设有驱动部;所述压电振子动作时,所述驱动部能够沿所述第一通孔的轴向往复运动;
    所述弹性连接件能够提供在垂直于所述第一通孔的轴向方向内使所述驱动部与所述摩擦件抵接的预压力,以使所述驱动部振动时通过所述摩擦件带动所述移动载体沿所述第一通孔的轴向往复运动;
    对所述压电振子施加第一电信号,所述移动载体在所述驱动部的带动下沿第一方向运动;然后对所述压电振子施加第二电信号,所述驱动部向第二方向运动,所述移动载体在惯性运动的作用下先沿所述第一方向减速运动然后再随所述驱动部一并向所述第二方向运动,其中,所述第一方向和所述第二方向相反,所述第一电信号和所述第二电信号的加载时间不同。
  2. 根据权利要求1所述的压电马达,其特征在于,所述移动载体与所述基座之间通过导向部滑动连接。
  3. 根据权利要求2所述的压电马达,其特征在于,所述导向部包括设于所述移动载体的第一槽体、设于所述基座的第二槽体以及滑动连接件,所述第一槽体和所述第二槽体相对设置,且所述第一槽体和所述第二槽体共同构成一柱状容纳槽,所述滑动连接件设于所述柱状容纳槽内。
  4. 根据权利要求3所述的压电马达,其特征在于,所述滑动连接件为滚珠,所述滚珠位于所述柱状容纳槽内,且所述第二槽体在所述柱状容纳槽的开口处设有用于防止滚珠滑出的挡板。
  5. 根据权利要求4所述的压电马达,其特征在于,所述柱状容纳槽内的滚珠为多个,多个所述滚珠沿所述第一通孔的轴向依次设置,且所述柱状容纳槽内,位于所述柱状容纳槽底部以及顶部的滚珠的直径大于所述柱状容纳槽内的剩余的滚珠的直径。
  6. 根据权利要求5所述的压电马达,其特征在于,位于所述柱状容纳槽底部以及顶部的滚珠与所述柱状容纳槽的槽壁之间距离小于等于5μm。
  7. 根据权利要求3所述的压电马达,其特征在于,所述滑动连接件为滑杆,所述滑杆与所述基座固定连接,所述第一槽体的表面设有用于与所述滑杆滑动连接的凸起的滑接部。
  8. 根据权利要求7所述的压电马达,其特征在于,所述滑接部的用于与所述滑杆接触的表面为弧面。
  9. 根据权利要求2-8任一项所述的压电马达,其特征在于,所述导向部至少为两个,且所述导向部沿所述预压力的方向对称分布,所述预压力的方向沿所述第一通孔的径向方 向设置。
  10. 根据权利要求1-9任一项所述的压电马达,其特征在于,以所述驱动部与摩擦件之间的抵接点为基准点,沿所述第一通孔的周向,至少两个所述导向部设于距离所述基准点的距离介于1/5圆周至1/2圆周之间。
  11. 根据权利要求1-10任一项所述的压电马达,其特征在于,所述压电马达还包括磁吸组件,在所述预压力的方向,所述磁吸组件能够在所述移动载体施加与所述驱动单元施加于所述移动载体的力矩相反的力矩。
  12. 根据权利要求11所述的压电马达,其特征在于,所述磁吸组件包括磁石和磁片,所述磁石和所述磁片中的一个设于所述基座,另一个设于所述移动载体。
  13. 根据权利要求1-12任一项所述的压电马达,其特征在于,所述弹性连接件设于所述移动载体和所述摩擦件之间,所述弹性连接件处于蓄力状态以在垂直于所述第一通孔的轴向方向为所述摩擦件提供靠近所述驱动部的作用力,使所述摩擦件与驱动部抵接。
  14. 根据权利要求13所述的压电马达,其特征在于,所述弹性连接件包括弹片,所述移动载体的外周面设有避让槽,所述弹片固定于所述避让槽的槽口,所述弹片处于蓄力状态时向所述避让槽内弯曲。
  15. 根据权利要求13或14所述的压电马达,其特征在于,所述连接组件包括竖板,所述竖板与所述基座垂直且与所述基座固定连接。
  16. 根据权利要求1-12任一项所述的压电马达,其特征在于,所述弹性连接件设于所述基座与所述驱动单元之间,所述弹性连接件处于蓄力状态以在垂直于所述第一通孔的轴向方向为所述驱动部提供靠近所述摩擦件的作用力,使所述驱动部与摩擦件抵接。
  17. 根据权利要求16所述的压电马达,其特征在于,所述连接组件包括第一连接臂,所述第一连接臂的一端与所述压电振子连接,另一端与所述基座连接;
    所述弹性连接件包括簧丝,所述簧丝的一端与所述压电振子连接,另一端与基座连接;
    所述第一连接臂和所述弹性连接件分别设于所述压电振子的所述驱动部的两侧。
  18. 根据权利要求17所述的压电马达,其特征在于,所述第一连接臂与所述基座铰接。
  19. 根据权利要求18所述的压电马达,其特征在于,所述第一连接臂的用于所述基座连接的一端设有铰接槽,所述基座设有与所述铰接槽相配合的铰接柱。
  20. 根据权利要求17所述的压电马达,其特征在于,所述弹性连接件还包括与所述簧丝连接的第二连接臂,所述簧丝通过所述第二连接臂与所述基座连接。
  21. 根据权利要求20所述的压电马达,其特征在于,所述第二连接臂用于与所述基座连接的一端设有固定孔,所述基座设有与所述固定孔配合连接的凸起柱。
  22. 根据权利要求16所述的压电马达,其特征在于,所述连接组件包括竖板和与所述竖板固定连接的底板,所述压电振子与所述竖板连接,所述基座和所述底板沿所述预压力方向滑动连接,所述弹性连接件设于所述基座和所述底板之间,且所述弹性连接件处于受拉状态以通过所述底板使所述驱动部与所述摩擦件抵接。
  23. 根据权利要求22所述的压电马达,其特征在于,所述弹性连接件包括第一端部、第二端部以及设于所述第一端部和所述第二端部之间的蛇形簧片或弓形簧片,所述第一端部包括与所述基座连接的连接部,所述第二端部与所述底板连接。
  24. 根据权利要求23所述的压电马达,其特征在于,所述第一端部还包括压片,所述底板设有与所述压片配合的受压凸起部,所述压片对所述受压凸起部施加朝向所述基座的 作用力。
  25. 根据权利要求22-24任一项所述的压电马达,其特征在于,所述基座设有导向块,所述底板设有与所述导向块相配合的导向槽;或,所述基座设有导向槽,所述底板设有与所述导向槽相配合的导向块。
  26. 根据权利要求1-25任一项所述的压电马达,其特征在于,所述压电振子包括承载板和设于所述承载板两侧表面的压电陶瓷片,所述承载板的板面与所述第一通孔的轴向垂直。
  27. 根据权利要求26所述的压电马达,其特征在于,所述驱动部为设于所述承载板的第一凸起部。
  28. 根据权利要求27所述的压电马达,其特征在于,所述第一凸起部为三角悬臂,所述三角悬臂的用于与所述摩擦件抵接的抵接面为曲面或平面。
  29. 根据权利要求27所述的压电马达,其特征在于,所述第一凸起部设有开孔,所述开孔在所述第一通孔的轴向方向贯穿所述第一凸起部。
  30. 根据权利要求26-29任一项所述的压电马达,其特征在于,所述承载板为矩形结构,所述驱动部设于所述承载板的第一侧边,所述承载板的背离所述驱动部的第二侧边设有横梁,所述横梁与所述承载板的连接点为所述承载板的振动节点。
  31. 根据权利要求30所述的压电马达,其特征在于,所述横梁设有缺口。
  32. 根据权利要求30所述的压电马达,其特征在于,所述承载板还设有第二凸起部和第三凸起部,所述第二凸起部和所述第三凸起部沿所述第一侧边的中垂线对称设于所述第一凸起部的两侧。
  33. 根据权利要求26-32任一项所述的压电马达,其特征在于,所述压电马达还包括柔性电路板,所述压电陶瓷片的正极和负极均与所述柔性电路板连接。
  34. 根据权利要求33所述的压电马达,其特征在于,所述压电陶瓷片的正极和负极中的一个自所述承载板引出,另一个设于所述压电陶瓷板的背离所述承载板的表面。
  35. 根据权利要求33所述的压电马达,其特征在于,所述压电陶瓷片的正极和负极均自所述压电陶瓷片的背离所述承载板的表面引出。
  36. 根据权利要求35所述的压电马达,其特征在于,所述柔性电路板分别与所述承载板的两个所述压电陶瓷片的背离所述承载板的表面接触。
  37. 根据权利要求26-32任一项所述的压电马达,其特征在于,所述压电马达还包括卡接弹片,所述卡接弹片包括U型卡接部和与所述U型卡接部连接的第三连接臂,所述U型卡接部卡设在所述压电振子两侧的压电陶瓷片表面,所述第三连接臂与所述连接组件连接。
  38. 根据权利要求37所述的压电马达,其特征在于,所述U型卡接部包括第一卡爪和第二卡爪,所述第一卡爪与所述压电振子的一个压电陶瓷片抵接,所述第二卡爪与所述压电振子的另一个压电陶瓷片抵接。
  39. 根据权利要求38所述的压电马达,其特征在于,所述第一卡爪设有第一卡接凸起,所述第二卡爪设有第二卡接凸起,所述第一卡接凸起和所述第二卡接凸起与所述压电陶瓷片焊接或粘结。
  40. 根据权利要求39所述的压电马达,其特征在于,所述第一卡接凸起和所述第二卡接凸起均设有通孔,所述通孔用于填充焊料或导电胶。
  41. 根据权利要求40所述的压电马达,其特征在于,所述通孔对应所述压电陶瓷片的几何中心设置。
  42. 一种摄像模组,其特征在于,包括镜头组件、图像传感器和如权利要求1-41任一项所述的压电马达,所述基座的安装槽为通槽且与所述第一通孔共轴线设置,所述第一通孔沿其轴向分为入光侧和出光侧,所述镜头组件在所述入光侧设于所述第一通孔内并与所述移动载体连接,所述图像传感器设于所述出光侧并与所述基座固定连接。
  43. 一种电子设备,其特征在于,包括如权利要求42所述的摄像模组。
PCT/CN2023/088616 2022-04-18 2023-04-17 压电马达、摄像模组和电子设备 WO2023202510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210415586.2A CN116979828A (zh) 2022-04-18 2022-04-18 压电马达、摄像模组和电子设备
CN202210415586.2 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023202510A1 true WO2023202510A1 (zh) 2023-10-26

Family

ID=88419182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088616 WO2023202510A1 (zh) 2022-04-18 2023-04-17 压电马达、摄像模组和电子设备

Country Status (2)

Country Link
CN (1) CN116979828A (zh)
WO (1) WO2023202510A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262232A1 (en) * 2008-04-22 2009-10-22 Samsung Techwin Co., Ltd. Lens driving unit and image photographing module comprising the same
CN101726825A (zh) * 2008-10-15 2010-06-09 三星Techwin株式会社 透镜驱动单元以及包括该透镜驱动单元的相机模块
CN113242376A (zh) * 2021-06-18 2021-08-10 维沃移动通信有限公司 摄像模组和电子设备
CN113660404A (zh) * 2021-08-24 2021-11-16 维沃移动通信有限公司 摄像头模组和电子设备
CN216052388U (zh) * 2021-11-10 2022-03-15 辽宁中蓝光电科技有限公司 一种新型压电陶瓷摄像驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262232A1 (en) * 2008-04-22 2009-10-22 Samsung Techwin Co., Ltd. Lens driving unit and image photographing module comprising the same
CN101726825A (zh) * 2008-10-15 2010-06-09 三星Techwin株式会社 透镜驱动单元以及包括该透镜驱动单元的相机模块
CN113242376A (zh) * 2021-06-18 2021-08-10 维沃移动通信有限公司 摄像模组和电子设备
CN113660404A (zh) * 2021-08-24 2021-11-16 维沃移动通信有限公司 摄像头模组和电子设备
CN216052388U (zh) * 2021-11-10 2022-03-15 辽宁中蓝光电科技有限公司 一种新型压电陶瓷摄像驱动装置

Also Published As

Publication number Publication date
CN116979828A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US11774702B2 (en) Camera module with foreign objects inhibiting structure
US8279541B2 (en) Lens actuator module
JP6330918B2 (ja) 駆動装置及びその製造方法
CN212935798U (zh) 用于摄像镜头驱动的压电式直线驱动器
US7499231B2 (en) Auto-focus lens module
US20140327978A1 (en) Voice coil motor
US8040623B2 (en) Compact auto focus lens module with piezoelectric actuator
WO2022262697A1 (zh) 摄像模组和电子设备
JP6155460B2 (ja) 駆動部材、リニア駆動装置、カメラ装置及び電子機器
JP2021509967A (ja) 駆動機構、カメラモジュール及び電子機器
US7477462B2 (en) Auto-focus lens module
CN114236946A (zh) 光学元件驱动装置、摄像装置及移动终端
CN111624726A (zh) 一种云台自动变焦音圈电机
WO2023202510A1 (zh) 压电马达、摄像模组和电子设备
CN212647123U (zh) 一种云台自动变焦音圈电机
CN113452233B (zh) 一种大推力中置自动对焦马达
WO2023005038A1 (zh) 透镜驱动装置、摄像装置及移动终端
WO2024087956A1 (zh) 驱动单元、压电马达、摄像模组和电子设备
CN117501176A (zh) 摄像模组
CN209767653U (zh) 防抖结构、防抖系统及摄像装置
CN115268167A (zh) 摄像模组
WO2022033356A1 (zh) 超声波压电马达、摄像头模组及电子设备
CN218383585U (zh) 光学元件驱动装置、摄像装置及移动终端
WO2023197994A1 (zh) 驱动组件和电子设备
CN217821037U (zh) 一种镜头驱动机构的底座及镜头驱动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791165

Country of ref document: EP

Kind code of ref document: A1