WO2023202490A1 - 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 - Google Patents
一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 Download PDFInfo
- Publication number
- WO2023202490A1 WO2023202490A1 PCT/CN2023/088436 CN2023088436W WO2023202490A1 WO 2023202490 A1 WO2023202490 A1 WO 2023202490A1 CN 2023088436 W CN2023088436 W CN 2023088436W WO 2023202490 A1 WO2023202490 A1 WO 2023202490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- built
- steel
- column
- steel pipe
- wall
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 346
- 239000010959 steel Substances 0.000 title claims abstract description 346
- 238000003466 welding Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 5
- 238000011900 installation process Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000021715 photosynthesis, light harvesting Effects 0.000 abstract description 3
- 230000002787 reinforcement Effects 0.000 abstract description 3
- 238000010276 construction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/56—Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
- E04B2/58—Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal
- E04B2/60—Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal characterised by special cross-section of the elongated members
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
Definitions
- This patent relates to the field of structural engineering, specifically to a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node areas.
- the steel plate shear wall structure is a new lateral force-resistant structural system developed in the 1970s. It has become the favor of many designers because of its extremely high load-bearing capacity, stable energy dissipation capacity and good ductility.
- connection nodes between shear walls and steel beams various forms of components are usually used to reinforce the connection nodes between shear walls and steel beams, and almost all components are arranged outside the connection nodes between steel plate shear walls and steel beams. On the one hand, it can strengthen the nodes and improve the strength of the nodes. On the other hand, it also facilitates on-site construction operations for construction workers.
- the purpose of the present invention is to provide a built-in strip-type lattice column double steel plate shear wall with a wall-beam node domain, so as to solve the problem of steel plate walls and steel beams in the prior art.
- the connection nodes require appearance treatment and complicated installation processes, while ensuring effective force transmission between the shear wall and the steel beam.
- a built-in strip-type lattice column double steel plate shear wall with a wall-beam node domain including: 2 outer steel plates and strip-type lattice column components;
- the strip-type lattice column assembly includes: 2 built-in strip-type lattice column edge columns, n built-in middle steel pipe columns and 6 (n+1) horizontal connecting channel steels, where n is a positive integer;
- the strip-type lattice column assembly is arranged between two outer steel plates;
- the two built-in strip-type lattice column edge columns and n central built-in steel pipe columns are arranged inside the two outer steel plates.
- the two built-in strip-type lattice column edge columns are respectively arranged inside At the left and right ends of the outer steel plate, n built-in steel pipe columns are arranged at equal intervals in the middle of the outer steel plate.
- Horizontal connecting channel steels are welded between each built-in steel pipe column.
- the uppermost and lowermost channel steels are respectively arranged on the upper and lower sides of the outer steel plate. Edge; the inner cavity of each built-in steel pipe column and the cavity between each built-in steel pipe column are filled with lightweight concrete, ultimately forming a built-in strip-type lattice column double steel plate shear with a wall-beam node domain wall;
- the built-in strip-type lattice column edge column is composed of 1 shear wall-beam node area, 4 horizontal connecting channel steels, 8 inclined angle steels, 2 built-in steel pipe columns 1 and 2 built-in steel pipe columns 2 ;
- the upper part of the shear wall-beam node area is welded with built-in steel pipe column one and built-in steel pipe column two from outside to inside, and a horizontal connecting groove is welded between built-in steel pipe column one and built-in steel pipe column two along the upper edge of the outer steel plate.
- Steel, 4 inclined angle steels are welded between the horizontal connecting channel steel and the wall-beam node domain; the structure of the lower part of the shear wall-beam node domain is the same as the upper part of the shear wall-beam node domain;
- the shear wall-beam joint area is composed of 2 perforated steel plates, 2 horizontal connecting channel steels, 1 short steel column 1, 1 short steel column 2 and 1 short web; the 2 perforated steel plates The steel plates are placed parallel and symmetrically with an overhang; the short steel column one and the short steel column two are placed between the perforated steel plates and are welded to the perforated steel plates.
- the positions correspond to the built-in steel pipe column one and the built-in steel pipe column two.
- the cross-sectional size is the same as the built-in steel pipe column one and the built-in steel pipe column two; a horizontal connecting channel steel is provided on the side between the perforated steel plates, and the horizontal connecting channel steel is welded to the short steel column one, the short steel column two and the perforated steel plate; The short web is welded to the extended part of the perforated steel plate and the short steel column to form an extended beam section.
- the two outer steel plates are arranged symmetrically from front to back.
- strip-type lattice column component and the outer steel plate are connected by welding.
- the contact areas between the two outer steel plates and the edge built-in columns, the middle built-in columns and the horizontal connecting channel steel are provided with intermittent vertical long plug weld holes, and the outer steel plates are connected to each built-in steel pipe column and horizontal connecting channel steel. The steel is joined using plug welds.
- holes are spaced on the side walls of each built-in steel pipe column, and studs are provided on the horizontal connecting channel steel.
- the cross-section dimensions of several horizontal connection channel steels are the same, and the ratio of the thickness of the horizontal connection channel steel to the wall thickness of the built-in steel pipe column in the middle is 0.5 to 0.8.
- the cross-section dimensions of several inclined angle steels are the same, and the ratio of the thickness of the inclined angle steel to the wall thickness of the built-in steel pipe column in the middle is 0.5 to 0.8.
- the width-to-thickness ratio of the built-in steel pipe column in the middle is 9 to 15, and its width along the thickness direction of the double steel plate shear wall is 0.65 to 0.85 of the thickness of the shear wall.
- the built-in steel pipe column one and the built-in steel pipe column two are all made of rectangular steel pipe columns of the same size.
- the aspect ratio of the rectangular steel pipe column is 1.2 to 2.8.
- the length of the rectangular steel pipe column and the adjacent steel pipe column are The ratio of spacing is 1 to 5.
- the invention provides a double steel plate shear wall with a built-in strip-type lattice column with a wall-beam node domain, which is characterized in that: the shear wall is composed of two outer steel plates and two built-in strip-type lattice columns. It consists of edge columns, n built-in steel pipe columns in the middle and 6 (n+1) horizontal connecting channel steels, where n is a positive integer; the two outer steel plates are symmetrically arranged front and back; the two built-in strip type The lattice-type edge columns and n central built-in steel pipe columns are set inside the two outer steel plates. Among them, 2 inner The strip-shaped lattice-type edge columns are respectively set at the left and right ends of the outer steel plate.
- n middle built-in steel pipe columns are arranged at equal intervals in the middle of the outer steel plate.
- Horizontal connecting channels are welded between each built-in steel pipe column.
- the uppermost and The lower channel steels are respectively arranged on the upper and lower edges of the outer steel plates; the contact areas between the two outer steel plates and the edge built-in columns, the middle built-in columns and the horizontal connecting channel steel are provided with intermittent vertical long plug welds holes, the outer steel plate is connected to each built-in steel pipe column and horizontal connecting channel steel using plug welds; holes are spaced on the side walls of each built-in steel pipe column, and studs are provided on the horizontal connecting channel steel;
- the inner cavities of the built-in steel pipe columns and the cavities between the built-in steel pipe columns are filled with lightweight concrete, ultimately forming a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node areas;
- the built-in strip-type lattice column edge column consists of 1 shear wall-beam node area, 4 horizontal connecting channel steels, 8 diagonal angle steels, 2 built-in steel pipe columns and 2 built-in steel pipe columns.
- the shear wall-beam node domain is composed of 2 perforated steel plates, 2 horizontal connecting channel steels, 1 short steel column 1, 1 short steel column 2 and 1 short web; the 2 pieces The perforated steel plates are placed in parallel and symmetrically with overhanging parts; the short steel column one and the short steel column two are placed between the perforated steel plates and are welded and connected with the perforated steel plates. The positions are in phase with the built-in steel pipe column one and the two built-in steel pipe columns.
- the cross-sectional dimensions are the same as the built-in steel pipe column one and the built-in steel pipe column two; a horizontal connecting channel steel is provided on the side between the perforated steel plates, and the horizontal connecting channel steel is welded to the short steel column one, the short steel column two and the perforated steel plate. Connection; the short web is welded to the extended part of the perforated steel plate and the short steel column to form an extended beam section.
- the dimensions of the two outer steel plates are the same; the cross-section sizes of several horizontal connection channel steels are the same, and the ratio of the thickness of the horizontal connection channel steel to the wall thickness of the steel pipe column is 0.5 to 0.8; the cross-section sizes of several diagonal angle steels are the same, and the thickness of the diagonal angle steel is the same as the thickness of the steel pipe column.
- the ratio of wall thickness is 0.5-0.8; the width-to-thickness ratio of the built-in steel pipe column is 9-15, and its width along the thickness direction of the double steel plate shear wall is 0.65-0.85 of the thickness of the shear wall; the built-in
- the first steel pipe column uses a square steel pipe column of the same size.
- the second built-in steel pipe column and the middle built-in steel pipe column use a rectangular steel pipe column of the same size.
- the aspect ratio of the rectangular steel pipe column is 1.2 to 2.8.
- the cross-sectional length of the rectangular steel pipe column is the same as that of the rectangular steel pipe column.
- the ratio of the spacing between them is 1 to 5.
- this patent sets a number of steel pipe columns between the two outer steel plates. Due to the effective pulling effect of the steel pipe columns, the outward movement of the outer steel plate can be restricted. drumming or inward The buckling deformation of the wall changes the buckling mode of the entire wall, causing the overall buckling of the wall to become local buckling between steel pipe columns, thereby effectively increasing the critical shear buckling force of the steel plate.
- the built-in edge column is conducive to ensuring the quality of welding. Compared with the external edge column, it can reduce the deformation caused by welding; the edge column is built into the outer steel plate, which effectively solves the problem of "protruding columns" and saves money. It reduces the indoor space and has good aesthetics; the constraints of the two outer steel plates can limit the out-of-plane instability of the built-in steel pipe columns, effectively improving the vertical stability bearing capacity of the overall double steel plate shear wall.
- the lightweight concrete in the shear wall cavity is a lightweight material, which can greatly reduce the weight of the structure, thereby reducing the earthquake effect; the lightweight concrete has a low elastic modulus and can quickly disperse and absorb the energy released by seismic waves during an earthquake, thereby achieving Good shock absorption effect; lightweight concrete has good thermal insulation properties, which can significantly improve the thermal insulation performance of shear walls; double-sided steel plates can be used as concrete formwork, eliminating the need for formwork procedures and shortening the construction period.
- the application of the present invention is very flexible.
- the wall-beam joint area and the built-in steel pipe column can be welded in the factory according to the traditional method, and then subsequent construction can be carried out to form a double steel plate shear wall, and finally transported to the site; it can also be carried out according to the actual situation. After being transported to the construction site, they are welded on site and then assembled into double steel plate shear walls, which facilitates transportation and saves transportation costs.
- Figure 1 is a three-dimensional view of a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node areas related to the present invention
- Figure 2 is a front view of a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node areas according to the present invention
- Figure 3 is a left view of a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node areas according to the present invention
- Figure 4 is a top view of a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node areas according to the present invention
- Figure 5 is an exploded view of a built-in strip-type lattice-column double steel plate shear wall with wall-beam node areas according to the present invention
- Figure 6 is a three-dimensional view and an exploded view of the wall-beam node domain in a built-in strip-type lattice column-type double steel plate shear wall with wall-beam node domain related to the present invention.
- a built-in strip-type lattice column-type double steel plate shear wall with wall-beam joint areas includes the following components:
- the horizontal connecting channel steel (10) is located between short steel column one (8), short steel column two (9) and the steel plate (7), and is connected with short steel column one (8) and short steel column two (7).
- the short web (13) is welded and connected to the short steel column one (8) and the steel plate (7); finally a wall-beam node domain (12) with an extended beam section is formed. .
- the outer steel plate (5) is arranged symmetrically from front to back; the built-in strip-type lattice column edge column and the middle built-in steel pipe column (6) are arranged inside the outer steel plate (5), wherein the built-in strip-type lattice column edge column They are respectively arranged at the left and right ends of the outer steel plate (5).
- the built-in steel pipe columns (6) in the middle are arranged at equal intervals in the middle of the outer steel plate (5).
- Horizontal connecting channel steel (10) is welded between the built-in steel pipe columns (6) in the middle.
- the uppermost and lowermost horizontal connecting channel steels (10) are respectively arranged on the upper and lower edges of the outer steel plate (5); the outer steel plate (5) and the edge have built-in steel pipe columns, the middle built-in steel pipe column (6) and the horizontal connecting channel steel
- the contact area of (10) is provided with intermittent vertical long plug weld holes (12), and the outer steel plate (5) is connected to each built-in steel pipe column and horizontal connecting channel steel (10) using plug welds;
- the side walls of the built-in steel pipe columns are spaced with holes, and bolts (4) are set on the horizontal connecting channel steel (10); the inner cavities of each built-in steel pipe column and the cavities between the built-in steel pipe columns are filled with lightweight concrete ( 1); This completes the overall production of a built-in strip-type lattice column-type double steel plate shear wall unit with a wall-beam node domain.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Acoustics & Sound (AREA)
- Joining Of Building Structures In Genera (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
提供一种带有墙-梁节点域(12)的内置缀条型格构柱式双钢板剪力墙,属于结构工程领域。该双钢板剪力墙由2块外侧钢板(5)、2根内置缀条型格构柱式边缘柱、n根中部内置钢管柱(6)及4(n+1)个水平连接槽钢(10)组成。该剪力墙与钢梁可通过螺栓、盖板连接;柱、槽钢(10)、角钢(11)与钢板(5)的组合大大提高了剪力墙的侧向刚度。解决了现有技术中钢板剪力墙与钢梁连接节点需要进行外观处理、安装工艺复杂的问题,同时保证剪力墙与钢梁之间进行力的有效传递,实现了内部补强,也提高了耗能能力。采用标准化工艺,为装配式钢结构的发展提供了新的思路。
Description
本专利涉及结构工程领域,具体涉及一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙。
建筑高度日益增高,水平荷载逐渐取代竖向荷载成为高层建筑设计中的重要控制因素,传统抗侧力构件已经达不到高层建筑对耗能能力和水平承载能力的需求。
钢板剪力墙结构是上世纪70年代发展起来的新型抗侧力结构体系,并以其极高的承载能力、稳定的耗能能力和良好的延性,成为许多设计师的青睐。
现有技术中,在剪力墙与钢梁的连接节点处,通常会采用各种形式的构件对其进行加固,而几乎所有的构件都设置在钢板剪力墙与钢梁连接节点的外侧,一方面可以补强节点,提升节点的强度,另一方面也便于施工工人现场施工操作。
但是这会影响墙-梁节点处的外形,在连接后需要对该节点的外观进行美化加工处理,同时,这些对节点进行补强的构件数量较多,大部分需要在施工现场进行,安装工艺复杂,不符合装配式钢结构的发展方向。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,以解决现有技术中钢板墙与钢梁连接节点需要进行外观处理、安装工艺复杂的问题,同时保证剪力墙与钢梁之间进行力的有效传递。
一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,包括:2块外侧钢板以及缀条型格构柱式组件;
所述缀条型格构柱式组件包括:2根内置缀条型格构柱式边缘柱、n根中部内置钢管柱及6(n+1)个水平连接槽钢,其中n为正整数;
所述缀条型格构柱式组件设置在2块外侧钢板之间;
其中,所述的2根内置缀条型格构柱式边缘柱和n根中部内置钢管柱均设置于两块外侧钢板内部,其中,2根内置缀条型格构柱式边缘柱分别设置于外侧钢板左、右端部,n根中部内置钢管柱等间距布置于外侧钢板中部,各内置钢管柱间焊有水平连接槽钢,最上端和最下端的槽钢分别设置于外侧钢板的上、下边缘;所述各内置钢管柱的内腔以及各内置钢管柱之间的腔体中填充轻质混凝土,最终形成带有墙-梁节点域的内置缀条型格构柱式双钢板剪力
墙;
所述内置缀条型格构柱式边缘柱由1个剪力墙-梁节点域、4个水平连接槽钢、8根斜放角钢、2根内置钢管柱一及2根内置钢管柱二组成;所述剪力墙-梁节点域上部由外到内分别焊有内置钢管柱一和内置钢管柱二,内置钢管柱一和内置钢管柱二之间沿外侧钢板的上边缘焊接有水平连接槽钢,在水平连接槽钢和墙-梁节点域之间焊有4根斜放角钢;剪力墙-梁节点域下部的构造与剪力墙-梁节点域上部相同;
所述剪力墙-梁节点域由2块开孔钢板、2个水平连接槽钢、1个短钢柱一、1个短钢柱二及1块短腹板组成;所述2块开孔钢板平行对称放置并设置外伸部分;所述短钢柱一和短钢柱二放置于开孔钢板之间,与开孔钢板焊接连接,位置与内置钢管柱一、内置钢管柱二相对应,截面尺寸与内置钢管柱一、内置钢管柱二相同;所述开孔钢板之间的侧面设置水平连接槽钢,水平连接槽钢与短钢柱一、短钢柱二和开孔钢板焊接连接;所述短腹板与开孔钢板外伸部分、短钢柱一焊接连接,形成外伸梁段。
进一步,所述的2块外侧钢板前后对称布置。
进一步,两外侧钢板尺寸大小相同。
进一步,所述缀条型格构柱式组件与所述外侧钢板采用焊接连接。
进一步,所述的2块外侧钢板与边缘内置柱、中部内置柱及水平连接槽钢的接触区域设有间断的竖向长条形塞焊缝孔,外侧钢板与各内置钢管柱和水平连接槽钢采用塞焊缝方式连接。
进一步,在所述各内置钢管柱的侧壁间隔开洞,在所述水平连接槽钢上设置栓钉。
进一步,若干水平连接槽钢截面尺寸相同,水平连接槽钢厚度与中部内置钢管柱壁厚的比值为0.5~0.8。
进一步,若干斜放角钢截面尺寸相同,斜放角钢厚度与中部内置钢管柱壁厚的比值为0.5~0.8。
进一步,所述中部内置钢管柱的宽厚比为9~15,其沿所述双钢板剪力墙厚度方向的宽度为所述剪力墙厚度的0.65~0.85。
进一步,所述内置钢管柱一、所述内置钢管柱二均采用相同尺寸矩形钢管柱,所述的矩形钢管柱的长宽比为1.2~2.8,矩形钢管柱的长度与相邻钢管柱之间间距的比值为1~5。
本发明提供一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:该剪力墙由2块外侧钢板、2根内置缀条型格构柱式边缘柱、n根中部内置钢管柱及6(n+1)个水平连接槽钢组成,其中n为正整数;所述的2块外侧钢板前后对称布置;所述的2根内置缀条型格构柱式边缘柱和n根中部内置钢管柱均设置于两块外侧钢板内部,其中,2根内
置缀条型格构柱式边缘柱分别设置于外侧钢板左、右端部,n根中部内置钢管柱等间距布置于外侧钢板中部,各内置钢管柱间焊有水平连接槽钢,最上端和最下端的槽钢分别设置于外侧钢板的上、下边缘;所述的2块外侧钢板与边缘内置柱、中部内置柱及水平连接槽钢的接触区域设有间断的竖向长条形塞焊缝孔,外侧钢板与各内置钢管柱和水平连接槽钢采用塞焊缝方式连接;在所述各内置钢管柱的侧壁间隔开洞,在所述水平连接槽钢上设置栓钉;所述各内置钢管柱的内腔以及各内置钢管柱之间的腔体中填充轻质混凝土,最终形成带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙;
其中,所述内置缀条型格构柱式边缘柱由1个剪力墙-梁节点域、4个水平连接槽钢、8根斜放角钢、2根内置钢管柱一及2根内置钢管柱二组成;所述剪力墙-梁节点域上部由外到内分别焊有内置钢管柱一和内置钢管柱二,内置钢管柱一和内置钢管柱二之间沿外侧钢板的上边缘焊接有水平连接槽钢,在水平连接槽钢和墙-梁节点域之间焊有4根斜放角钢;剪力墙-梁节点域下部的构造与剪力墙-梁节点域上部相同;
其中,所述剪力墙-梁节点域由2块开孔钢板、2个水平连接槽钢、1个短钢柱一、1个短钢柱二及1块短腹板组成;所述2块开孔钢板平行对称放置并设置外伸部分;所述短钢柱一和短钢柱二放置于开孔钢板之间,与开孔钢板焊接连接,位置与内置钢管柱一、内置钢管柱二相对应,截面尺寸与内置钢管柱一、内置钢管柱二相同;所述开孔钢板之间的侧面设置水平连接槽钢,水平连接槽钢与短钢柱一、短钢柱二和开孔钢板焊接连接;所述短腹板与开孔钢板外伸部分、短钢柱一焊接连接,形成外伸梁段。
其中,两外侧钢板尺寸大小相同;若干水平连接槽钢截面尺寸相同,水平连接槽钢厚度与钢管柱壁厚的比值为0.5~0.8;若干斜放角钢截面尺寸相同,斜放角钢厚度与钢管柱壁厚的比值为0.5~0.8;所述内置钢管柱的宽厚比为9~15,其沿所述双钢板剪力墙厚度方向的宽度为所述剪力墙厚度的0.65~0.85;所述内置钢管柱一采用相同尺寸方形钢管柱,所述内置钢管柱二与中部内置钢管柱采用相同尺寸矩形钢管柱,矩形钢管柱的长宽比为1.2~2.8,矩形钢管柱的截面长度与矩形钢管柱之间间距的比值为1~5。
本发明的有益效果为:
1、柱、槽钢、角钢与钢板的组合产生协同作用,达到类似框架的受力效果,大大提高了剪力墙的侧向刚度和抗压承载力;内置钢管柱对剪力墙的变形能力、破坏延性以及抗倒塌性能有较为明显的提高;上、下端水平连接槽钢的存在实现了剪力墙的端部加强,使得其承载能力、延性、刚度退化、耗能能力方面均有较大的提升。
2、基于提高外侧钢板弹性剪切屈曲荷载以及其抗剪承载力的理念,本专利在两块外侧钢板之间设置了若干钢管柱,由于钢管柱的有效拉结作用,可以限制外侧钢板向外鼓曲或向内
的屈曲变形,进而改变整个墙体的屈曲模式,使墙体的整体屈曲变为钢管柱间的局部屈曲,从而有效提高钢板抗剪屈曲临界力。
3、实现了内部补强,槽钢的加固也提高了耗能能力;采用标准化工艺,为装配式钢结构的发展提供了新的思路;本发明解决了现有技术钢板剪力墙与钢梁连接节点需要进行外观处理、安装工艺复杂的问题,同时保证剪力墙与钢梁之间进行有效的力的传递。
4、边缘柱内置有利于保证焊接质量,相比于边缘柱外置,更能减小焊接产生的变形;所述边缘柱内置于外侧钢板中,有效的解决了“突柱”的问题,节约了室内空间,具有良好的美观性;两块外侧钢板的约束能够限制内置钢管柱的面外失稳,有效提高了整体双钢板剪力墙的竖向稳定承载能力。
5、剪力墙腔体内的轻质混凝土为轻型材料,可以大大降低结构自重,从而降低地震作用;轻质混凝土弹性模量低,在地震时可以快速分散和吸收地震波所释放的能量,从而达到良好的减震效果;轻质混凝土隔热性能好,能显著提升剪力墙的保温性能;双侧钢板可以作为混凝土的模板,省去了支模的程序,缩短了施工工期。
6、本发明应用非常灵活,可以依照传统的方法在工厂将墙-梁节点域与内置钢管柱进行焊接,再进行后续施工,组成双钢板剪力墙,最后运输到现场;也可以根据实际情况运输到施工地点后采用现场施焊,然后拼装成双钢板剪力墙,这样方便运输,能够节省运输费。
图1为本发明涉及的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙的三维图;
图2为本发明涉及的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙的正视图;
图3为本发明涉及的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙的左视图;
图4为本发明涉及的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙的俯视图;
图5为本发明涉及的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙的拆分图;
图6为本发明涉及的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙中墙-梁节点域的三维图和拆分图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图,详细说明本发明的实
施方式。
如图1~6所示,一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙包括以下构件:
1——轻质混凝土;
2——内置钢管柱一;
3——内置钢管柱二;
4——钢板和槽钢上设置的栓钉;
5——外侧钢板;
6——中部内置钢管柱;
7——开孔钢板;
8——短钢柱一;
9——短钢柱二;
10——水平连接槽钢;
11——斜放角钢;
12——墙-梁节点域;
13——短腹板;
14——外侧钢板4上与钢管柱连接区的竖向长条形塞焊缝孔。
将短钢柱一(8)、短钢柱二(9)放于上下钢板(7)之间,与钢板(7)焊接连接,位置与所述内置钢管柱一(2)、内置钢管柱二(3)对应;水平连接槽钢(10)位于短钢柱一(8)、短钢柱二(9)与钢板(7)之间,与短钢柱一(8)、短钢柱二(9)和钢板(7)焊接连接;短腹板(13)与短钢柱一(8)、钢板(7)焊接连接;最终形成一种带外伸梁段的墙-梁节点域(12)。
将墙-梁节点域(12)与内置钢管柱一(2)及内置钢管柱二(3)焊接在一起,形成带墙-梁节点域的内置钢管柱,在其最上端和最下端之间设置水平连接槽钢(10),分别与剪力墙的上、下边缘对齐,在水平连接槽钢(10)和墙-梁节点域(12)角焊有斜放角钢(11),形成内置缀条型格构柱式边缘柱。
将外侧钢板(5)前后对称布置;将内置缀条型格构柱式边缘柱和中部内置钢管柱(6)设置于外侧钢板(5)内部,其中,内置缀条型格构柱式边缘柱分别设置于外侧钢板(5)左、右端部,中部内置钢管柱(6)等间距布置于外侧钢板(5)中部,各中部内置钢管柱(6)间焊上水平连接槽钢(10),最上端和最下端的水平连接槽钢(10)分别设置于外侧钢板(5)的上、下边缘;在外侧钢板(5)与边缘内置钢管柱、中部内置钢管柱(6)及水平连接槽钢
(10)的接触区域设有间断的竖向长条形塞焊缝孔(12),外侧钢板(5)与各内置钢管柱和水平连接槽钢(10)采用塞焊缝方式连接;在各内置钢管柱的侧壁间隔开洞,在水平连接槽钢上(10)设置栓钉(4);在各内置钢管柱的内腔以及各内置钢管柱之间的腔体中填充轻质混凝土(1);由此完成带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙单元的整体制作。
当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的指导下,所做出的所有等同替代、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。
Claims (10)
- 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于,包括:2块外侧钢板以及缀条型格构柱式组件;所述缀条型格构柱式组件包括:2根内置缀条型格构柱式边缘柱、n根中部内置钢管柱及6(n+1)个水平连接槽钢,其中n为正整数;所述缀条型格构柱式组件设置在2块外侧钢板之间;其中,所述的2根内置缀条型格构柱式边缘柱和n根中部内置钢管柱均设置于两块外侧钢板内部,其中,2根内置缀条型格构柱式边缘柱分别设置于外侧钢板左、右端部,n根中部内置钢管柱等间距布置于外侧钢板中部,各内置钢管柱间焊有水平连接槽钢,最上端和最下端的槽钢分别设置于外侧钢板的上、下边缘;所述各内置钢管柱的内腔以及各内置钢管柱之间的腔体中填充轻质混凝土,最终形成带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙;所述内置缀条型格构柱式边缘柱由1个剪力墙-梁节点域、4个水平连接槽钢、8根斜放角钢、2根内置钢管柱一及2根内置钢管柱二组成;所述剪力墙-梁节点域上部由外到内分别焊有内置钢管柱一和内置钢管柱二,内置钢管柱一和内置钢管柱二之间沿外侧钢板的上边缘焊接有水平连接槽钢,在水平连接槽钢和墙-梁节点域之间焊有4根斜放角钢;剪力墙-梁节点域下部的构造与剪力墙-梁节点域上部相同;所述剪力墙-梁节点域由2块开孔钢板、2个水平连接槽钢、1个短钢柱一、1个短钢柱二及1块短腹板组成;所述2块开孔钢板平行对称放置并设置外伸部分;所述短钢柱一和短钢柱二放置于开孔钢板之间,与开孔钢板焊接连接,位置与内置钢管柱一、内置钢管柱二相对应,截面尺寸与内置钢管柱一、内置钢管柱二相同;所述开孔钢板之间的侧面设置水平连接槽钢,水平连接槽钢与短钢柱一、短钢柱二和开孔钢板焊接连接;所述短腹板与开孔钢板外伸部分、短钢柱一焊接连接,形成外伸梁段。
- 根据权利要求1所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:所述的2块外侧钢板前后对称布置。
- 根据权利要求1所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:两外侧钢板尺寸大小相同。
- 根据权利要求1所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:所述缀条型格构柱式组件与所述外侧钢板采用焊接连接。
- 根据权利要求4所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:所述的2块外侧钢板与边缘内置柱、中部内置柱及水平连接槽钢的接触区域设有间断的竖向长条形塞焊缝孔,外侧钢板与各内置钢管柱和水平连接槽钢采用塞焊缝方式连接。
- 根据权利要求1所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:在所述各内置钢管柱的侧壁间隔开洞,在所述水平连接槽钢上设置栓钉。
- 根据权利要求1所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:若干水平连接槽钢截面尺寸相同,水平连接槽钢厚度与中部内置钢管柱壁厚的比值为0.5~0.8。
- 根据权利要求1所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:若干斜放角钢截面尺寸相同,斜放角钢厚度与中部内置钢管柱壁厚的比值为0.5~0.8。
- 根据权利要求1至8任意一项所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:所述中部内置钢管柱的宽厚比为9~15,其沿所述双钢板剪力墙厚度方向的宽度为所述剪力墙厚度的0.65~0.85。
- 根据权利要求9所述的一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙,其特征在于:所述内置钢管柱一、所述内置钢管柱二均采用相同尺寸矩形钢管柱,所述的矩形钢管柱的长宽比为1.2~2.8,矩形钢管柱的长度与相邻钢管柱之间间距的比值为1~5。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210405034.3A CN114687479B (zh) | 2022-04-18 | 2022-04-18 | 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 |
CN202210405034.3 | 2022-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023202490A1 true WO2023202490A1 (zh) | 2023-10-26 |
Family
ID=82143721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/088436 WO2023202490A1 (zh) | 2022-04-18 | 2023-04-14 | 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114687479B (zh) |
WO (1) | WO2023202490A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114687479B (zh) * | 2022-04-18 | 2024-03-26 | 北京工业大学 | 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004051021A1 (en) * | 2002-11-21 | 2004-06-17 | Mara-Institut D.O.O. | Building with wall panels |
JP2015117534A (ja) * | 2013-12-19 | 2015-06-25 | 大和ハウス工業株式会社 | 面材・ブレース併用耐力壁 |
CN205502309U (zh) * | 2016-01-23 | 2016-08-24 | 合肥工业大学 | 一种加强双钢板组合剪力墙 |
CN206448371U (zh) * | 2017-01-23 | 2017-08-29 | 杭州汉拓建筑设计有限公司 | 钢梁与格构柱式组合剪力墙的非完全贯通式隔板连接节点 |
CN112962824A (zh) * | 2021-02-07 | 2021-06-15 | 西安理工大学 | 一种可更换耗能构件的短肢钢板剪力墙及其施工方法 |
CN113718997A (zh) * | 2021-08-26 | 2021-11-30 | 北京工业大学 | 一种模块化装配式双钢板剪力墙 |
CN114687479A (zh) * | 2022-04-18 | 2022-07-01 | 北京工业大学 | 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 |
CN114687478A (zh) * | 2022-04-18 | 2022-07-01 | 北京工业大学 | 一种带有剪力墙-梁节点域的内置格构柱式双钢板剪力墙 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103233509B (zh) * | 2013-04-28 | 2015-04-08 | 东南大学 | 内置波形钢板的双钢板混凝土组合核心筒结构及施工方法 |
CN103726594B (zh) * | 2013-12-30 | 2016-02-17 | 北京工业大学 | 内藏多腔双钢板及钢管混凝土柱组合剪力墙及作法 |
CN103806672B (zh) * | 2014-01-21 | 2016-01-20 | 浙江天地环保工程有限公司 | 一种既有梁与缀条式格构钢柱相碰节点的补强方法 |
CN107227808B (zh) * | 2017-07-04 | 2019-09-17 | 重庆大学 | 一种全装配式屈曲约束钢板剪力墙体系 |
CN112282121A (zh) * | 2020-11-20 | 2021-01-29 | 浙江汉林建筑设计有限公司 | 预制式内置波纹钢板增强混凝土组合剪力墙及施工工艺 |
-
2022
- 2022-04-18 CN CN202210405034.3A patent/CN114687479B/zh active Active
-
2023
- 2023-04-14 WO PCT/CN2023/088436 patent/WO2023202490A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004051021A1 (en) * | 2002-11-21 | 2004-06-17 | Mara-Institut D.O.O. | Building with wall panels |
JP2015117534A (ja) * | 2013-12-19 | 2015-06-25 | 大和ハウス工業株式会社 | 面材・ブレース併用耐力壁 |
CN205502309U (zh) * | 2016-01-23 | 2016-08-24 | 合肥工业大学 | 一种加强双钢板组合剪力墙 |
CN206448371U (zh) * | 2017-01-23 | 2017-08-29 | 杭州汉拓建筑设计有限公司 | 钢梁与格构柱式组合剪力墙的非完全贯通式隔板连接节点 |
CN112962824A (zh) * | 2021-02-07 | 2021-06-15 | 西安理工大学 | 一种可更换耗能构件的短肢钢板剪力墙及其施工方法 |
CN113718997A (zh) * | 2021-08-26 | 2021-11-30 | 北京工业大学 | 一种模块化装配式双钢板剪力墙 |
CN114687479A (zh) * | 2022-04-18 | 2022-07-01 | 北京工业大学 | 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 |
CN114687478A (zh) * | 2022-04-18 | 2022-07-01 | 北京工业大学 | 一种带有剪力墙-梁节点域的内置格构柱式双钢板剪力墙 |
Also Published As
Publication number | Publication date |
---|---|
CN114687479B (zh) | 2024-03-26 |
CN114687479A (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106677336A (zh) | 一种方钢管混凝土柱与工字形截面钢梁的连接节点构造及作法 | |
CN109339321B (zh) | 一种便于施工的减震标准预制井格式楼板结构体系 | |
KR102079008B1 (ko) | 단부모멘트 및 휨 저항력이 보강된 보와 기둥의 이-지(ez) 결합구조 | |
CN106522419B (zh) | 一种相邻跨设置钢板混凝土剪力墙的梁托柱转换梁 | |
WO2023202490A1 (zh) | 一种带有墙-梁节点域的内置缀条型格构柱式双钢板剪力墙 | |
WO2018201817A1 (zh) | 一种装配式钢—混部分组合剪力墙及其水平拼接方法 | |
CN113279501A (zh) | 带撑排钢管钢板混凝土剪力墙结构 | |
WO2020253099A1 (zh) | 一种装配式部分填充组合框架-支撑结构及其施工方法 | |
CN114753524A (zh) | 一种内置密布柱式双层波形钢板组合剪力墙 | |
CN114687478B (zh) | 一种带有剪力墙-梁节点域的内置格构柱式双钢板剪力墙 | |
CN110700422B (zh) | 一种箱型钢管焊接组成的dk型空间汇交节点及应用 | |
CN204715539U (zh) | 一种圆钢管约束型钢混凝土柱与钢筋混凝土梁节点结构 | |
CN216552704U (zh) | 一种带支管的局部混凝土钢管柱 | |
CN217000315U (zh) | 带撑排钢管钢板混凝土剪力墙结构 | |
CN213539882U (zh) | 一种钢管混凝土柱H钢梁支撑π形连接边柱中部节点 | |
CN211690771U (zh) | 一种箱型钢管焊接组成的y型立面汇交转换节点 | |
CN112900748A (zh) | 一种预制装配式方钢管蜂窝钢骨混凝土组合柱及制作方法 | |
CN209854935U (zh) | 一种复式钢管混凝土角柱—钢梁节点 | |
CN113605541A (zh) | 一种外环式梁柱刚性连接节点 | |
CN109025062B (zh) | 一种异形多腔钢-混凝土组合柱 | |
CN111042323A (zh) | 一种箱型钢管焊接组成的x型立面汇交节点及应用 | |
CN112411804A (zh) | Z形矩形钢管-波折钢板组合墙及实施方法 | |
CN113202212A (zh) | 带撑排钢管钢板混凝土剪力墙结构的施工方法 | |
CN112900749A (zh) | 一种十字形蜂窝钢骨矩形截面组合柱及其制作方法 | |
CN114622655A (zh) | 异形钢管混凝土柱与h形钢梁连接结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23791145 Country of ref document: EP Kind code of ref document: A1 |