WO2023202426A1 - 一种多plmn的数据传输方法、装置、基站及移动性管理实体 - Google Patents

一种多plmn的数据传输方法、装置、基站及移动性管理实体 Download PDF

Info

Publication number
WO2023202426A1
WO2023202426A1 PCT/CN2023/087578 CN2023087578W WO2023202426A1 WO 2023202426 A1 WO2023202426 A1 WO 2023202426A1 CN 2023087578 W CN2023087578 W CN 2023087578W WO 2023202426 A1 WO2023202426 A1 WO 2023202426A1
Authority
WO
WIPO (PCT)
Prior art keywords
plmn
mme
links
data transmission
link
Prior art date
Application number
PCT/CN2023/087578
Other languages
English (en)
French (fr)
Inventor
吴德林
万威
付永纬
李娜
Original Assignee
北京佰才邦技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术股份有限公司 filed Critical 北京佰才邦技术股份有限公司
Publication of WO2023202426A1 publication Critical patent/WO2023202426A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communication technology, and in particular, to a multi-PLMN data transmission method, device, base station and mobility management entity.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • PLMN Public Land Mobile Network
  • the core network nodes are managed by Mobile Entity (Mobility Management Entity, MME), Serving Gateway (SGW), Packet Data Gateway (PDN Gateway, PGW), etc.;
  • the access network node is composed of an evolved base station (Evolved Node B, eNodeB), which performs PLMN During the selection or handover process, the network nodes involved are MME and eNodeB.
  • the base station can carry multiple PLMN identifiers in the system message, and each PLMN identifier corresponds to one operator.
  • Related technologies support configuring multiple PLMNs and multiple MME addresses, but only support using one source address to connect to multiple MME addresses. There will be operational inconveniences when multiple source addresses are involved.
  • the purpose of the present invention is to provide a multi-PLMN data transmission method, device, base station and mobility management entity, so as to solve the problem of operating problems when multiple source addresses are involved in a multi-PLMN solution. Inconvenience to work.
  • embodiments of the present invention provide a multi-PLMN data transmission method, which is applied to a base station, including:
  • P logical links are created between P WAN ports of the base station and P mobility management entities MME; where P is the number of public land mobile network PLMNs, and the logical links and the PLMNs are one to one. Correspondence;
  • Data transmission is performed based on the P logical links.
  • embodiments of the present invention provide a multi-PLMN data transmission method, applied to MME, including:
  • the configuration information includes the corresponding relationship between the WAN port of the base station and the MME; where P is the number of public land mobile networks PLMN, and the logical links are related to the MME.
  • PLMN is a one-to-one correspondence;
  • Data transmission is performed based on the P logical links.
  • embodiments of the present invention provide a multi-PLMN data transmission device, which is applied to a base station and includes:
  • a link creation module configured to create P logical links between P WAN ports of the base station and P mobility management entities MME; where P is the number of public land mobile networks PLMN, and the logical links There is a one-to-one correspondence with the PLMN;
  • a sending module configured to send the configuration information of the P logical links to the MME, where the configuration information includes the corresponding relationship between the WAN port and the MME;
  • the first transmission module is used for data transmission based on the P logical links.
  • embodiments of the present invention provide a multi-PLMN data transmission device, applied to MME, including:
  • a receiving module configured to receive configuration information of P logical links sent by the base station, where the configuration information includes the corresponding relationship between the WAN port of the base station and the MME; where P is the number of public land mobile networks PLMN, and the The logical link has a one-to-one correspondence with the PLMN;
  • the second transmission module is used for data transmission based on the P logical links.
  • embodiments of the present invention provide a base station, including: a transceiver, a processor, a memory, and a program or instruction stored in the memory and executable on the processor; the processor executes the When the program or instruction is described, the multi-PLMN data transmission method described in the first aspect is implemented.
  • embodiments of the present invention provide a mobility management entity, including: a transceiver, a processor, a memory, and a program or instructions stored on the memory and executable on the processor; the processor When the program or instruction is executed, the multi-PLMN data transmission method described in the second aspect is implemented.
  • embodiments of the present invention provide a readable storage medium on which programs or instructions are stored.
  • the programs or instructions are executed by a processor, the multi-PLMN as described in the first aspect or the second aspect is implemented. Data transfer method.
  • the solution of the embodiment of the present invention creates P logical links between P WAN ports of the base station and P mobility management entities MME; where P is the number of public land mobile networks PLMN, and the logical links are The PLMN has a one-to-one correspondence; sends configuration information of the P logical links to the MME, where the configuration information includes the corresponding relationship between the WAN port and the MME; based on the P logical links Perform data transfer.
  • one PLMN ID corresponds to one logical link, that is, one PLMN ID corresponds to one WAN port and one MME, which avoids the confusion when multiple PLMN IDs, multiple MME addresses and multiple source addresses are involved.
  • the WAN port and MME corresponding to each PLMN ID lead to operational inconvenience.
  • Figure 1 is a flow chart of a multi-PLMN data transmission method according to an embodiment of the present invention
  • Figure 2 is a schematic architectural diagram of a multi-PLMN solution according to an embodiment of the present invention.
  • Figure 3 is a flow chart of a multi-PLMN data transmission method according to another embodiment of the present invention.
  • Figure 4 is a structural diagram of a multi-PLMN data transmission device according to an embodiment of the present invention.
  • Figure 5 is a structural diagram of a multi-PLMN data transmission device according to another embodiment of the present invention.
  • Figure 6 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of an MME according to an embodiment of the present invention.
  • system and “network” are often used interchangeably in this article.
  • each base station is targeted at one operator, so it can only be connected to one operator's gateway.
  • each operator transmits wireless signals of its own frequency and broadcasts its own PLMN.
  • Multiple base stations share the same base station address and backhaul network.
  • Public Land Mobile Network PLMN is a mobile phone network controlled by a specific network operator.
  • a PLMN can be defined by a unique combination of a mobile country code and a mobile network code assigned to the network operator.
  • Each SIM on a mobile communication device can support customization, which is used to register with the PLMN using the corresponding Radio Access Technology (RAT) and build self-constructed base stations, resulting in high base station construction costs and inter-base station Communicate on the PLMN if the interference is large. Because the cost of building multiple base stations is high and the interference between them is also large.
  • RAT Radio Access Technology
  • MOCN multi-operator core network
  • ARPU Average Revenue Per User
  • Network sharing is mainly divided into these categories:
  • Radio Access Network (RAN) sharing only wireless access is shared
  • Network (not shared by MME) refers to a RAN (wireless network) that can be connected to multiple operator core network nodes. According to whether the frequency is shared, it is divided into:
  • Wireless devices only emit one carrier, and all operators share this carrier, sharing hardware resources and spectrum resources at the same time.
  • Wireless devices transmit multiple carrier frequencies at the same time to carry services of different operators.
  • Gateway Core Network gateway shared core network and wireless access network (MME sharing) refers to the sharing of RAN, and then sinks some functions of the core network to the gateway to realize part of the core network shared.
  • MOCN After realizing spectrum sharing, MOCN needs to focus on solving specific wireless resource allocation issues, such as how to allocate the number of user equipment (UE) accesses, the number of wireless bearers, etc. among various operators.
  • the usual approach is mainly to achieve this by supporting the independent configuration of the number of dedicated users and the number of radio bearers for each PLMN:
  • Operators A and B each fixedly allocate part of the wireless resources, and the remaining parts are used as shared resources.
  • Resource pool Operators A and B have no fixed resource allocation, and the two operators share all wireless resources.
  • Interference allocation Operators A and B have fixed allocation. Under certain conditions, B can occupy part of A's resources, but can seize the resources back when A needs to occupy them.
  • a multi-PLMN data transmission method is applied to a base station and includes the following steps:
  • Step 101 Create P logical links between P wide area network (WAN) ports of the base station and P mobility management entities MME; where P is the number of public land mobile networks PLMN, and the The logical link has a one-to-one correspondence with the PLMN.
  • WAN wide area network
  • the base station (eNB) in this application is a base station with MOCN function.
  • the base station can carry multiple PLMN identifiers in the system message. Each PLMN identification corresponds to an operator.
  • SIB1 System Information Block 1
  • the UE selects the required PLMN ID according to its own Subscriber Identity Module (Subscriber Identity Module, SIM) card.
  • SIM Subscriber Identity Module
  • the base station broadcasts PLMN1, PLMN2, and PLMN3 through system messages.
  • UE1, UE2, and UE3 receive the system messages, UE1 chooses to access PLMN1, UE2 chooses to access PLMN2, and UE3 chooses to access PLMN3.
  • OAM delivers P source addresses to the base station, and the base station sets P WAN ports for external transmission accordingly.
  • Step 102 Send configuration information of the P logical links to the MME, where the configuration information includes the corresponding relationship between the WAN port and the MME.
  • the configuration information of the P logical links may be sent to the MME through Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • WAN port 1 For example, as shown in Figure 3, assuming there are 3 WAN ports and 3 MMEs, you can configure WAN port 1 to correspond to MME1, WAN port 2 to MME2, and WAN port 3 to MME3; or, WAN port 1 to correspond to MME2, WAN Port 2 corresponds to MME3, WAN port 3 corresponds to MME1, or other one-to-one correspondence.
  • WAN Port 2 corresponds to MME3
  • WAN port 3 corresponds to MME1, or other one-to-one correspondence.
  • Step 103 Perform data transmission based on the P logical links.
  • one PLMN identifier corresponds to a logical link, that is, one PLMN ID corresponds to one WAN port and one MME, which avoids the need to deal with multiple PLMN IDs, multiple MME addresses and multiple When knowing the source address, the WAN port and MME corresponding to each PLMN ID are not clear, which leads to operational inconvenience.
  • the above step 101 includes:
  • P data links and P control links are created; the control links and the data links have a one-to-one correspondence with the WAN ports respectively; so The control link and the data link respectively have a one-to-one correspondence with the MME;
  • the S1 interface is the communication interface between the LTE base station (eNodeB) and the packet core network (Evolved Packet Core, EPC).
  • the LTE system is divided into a wireless access network and a core network.
  • the X2 interface is the interconnection interface between e-NodeBs and supports direct transmission of data and signaling.
  • P WAN ports and P MMEs have a one-to-one correspondence, and the control link and data link corresponding to the same peer MME are bound to the same WAN port, and S1 under the same PLMN ID
  • the control plane interfaces of the interface and X2 interface are uniformly bound to the same control link.
  • control link 1 and data link 1 corresponding to PLMN ID1 are bound to WAN port 1; bind the S1 interface and The control plane interfaces of the interface are bound to control link 1, which corresponds to WAN port 1.
  • each PLMN ID corresponds to a unique WAN port and a unique MME, which avoids operational inconvenience caused by not knowing the WAN port and MME corresponding to each PLMN ID.
  • creating P data links and P control links according to the corresponding relationship between P WAN ports and P MMEs includes:
  • the protocol stack control plane establishes P mutually isolated Stream Control Transmission Protocol (SCTP) links with P MMEs, and establishes wireless resource control RRC and SCTP Socket binding relationship; wherein, the SCTP link and the WAN port are in a one-to-one correspondence; the SCTP link and the MME are in a one-to-one correspondence;
  • SCTP Stream Control Transmission Protocol
  • P mutually isolated data links are established on the data plane, and the user plane part (User Plane Part of GTP, GPTU) data link and user datagram protocol (GPTU) are established.
  • User Datagram Protocol, UPD Socket User Datagram Protocol, UPD Socket binding relationship.
  • SCTP Stream Control Transmission Protocol
  • the control plane of the protocol stack and the peer MME establish three mutually isolated Stream Control Transmission Protocol (SCTP) links in a multi-homing manner. ;And establish the binding relationship between RRC and SCTP socket.
  • the data Establish three mutually isolated data links on the data plane, and establish a binding relationship between the User Plane Part of GTP (GPTU) data link and the UPD Socket.
  • GPTU User Plane Part of GTP
  • UPD Socket User Plane Part of GTP
  • Socket is an abstraction of endpoints for two-way communication between application processes on different hosts in the network.
  • a socket is one end of process communication on the network, providing a mechanism for application layer processes to exchange data using network protocols.
  • the method further includes:
  • IP Security Protocol IPSec
  • an IPsec tunnel with the opposite end (MME end) security gateway is created for each logical link, and the corresponding IPsec settings are compared with the logical link. Links are bound.
  • the configuration to create a logical link binding relationship is as follows:
  • stackIPInterface program stack IP interface
  • boardconf base station platform configuration
  • wanConfig WAN port configuration
  • stackIPInterface2 stackIPInterface3
  • stackIPInterface3 the configuration is the same as stackIPInterface, as follows:
  • TR-069 Name (TR-069 path name): boardconf.stack.stackIPInterface2;
  • TR-069 Name:boardconf.stack.stackIPInterface3.
  • the configuration to create an IPsec secure tunnel is as follows:
  • TR-069 Name:boardconf.ipsec.tunnelConfig3.
  • the above method further includes: setting a unified control interface for all links under each PLMN ID and connecting to the control center.
  • multiple interfaces belonging to the same operator's PLMN ID are bound to one logical link by creating a logical link, which optimizes the internal management of the base station, increases the isolation between interfaces, and improves the stability of the link. , further improve system security by binding IPsec tunnels. Improved the flexibility, breadth, stability, and security of network sharing application scenarios.
  • an embodiment of the present invention provides a multi-PLMN data transmission method, which is applied to MME and includes the following steps:
  • Step 201 Receive the configuration information of P logical links sent by the base station.
  • the configuration information includes the corresponding relationship between the WAN port of the base station and the MME; where P is the number of public land mobile networks PLMN, and the logical links There is a one-to-one correspondence between the road and the PLMN;
  • the MME determines the one-to-one correspondence between the WAN port and the MME based on the configuration information of the P logical links, and performs data transmission with the base station based on the correspondence.
  • Step 202 Perform data transmission based on the P logical links.
  • a multi-PLMN data transmission device is applied to a base station and includes:
  • the link creation module 401 is used to create P logical links between the P WAN ports of the base station and the P mobility management entities MME; where P is the number of public land mobile networks PLMN, and the logical links There is a one-to-one correspondence between the road and the PLMN;
  • the sending module 402 is configured to send the configuration information of the P logical links to the MME, where the configuration information includes the corresponding relationship between the WAN port and the MME;
  • the first transmission module 403 is used to transmit data based on the P logical links.
  • the link creation module 401 includes:
  • the first processing submodule is used to create P data links and P control links according to the corresponding relationship between P WAN ports and P MMEs; the control links and the data links are respectively connected to the WAN
  • the port has a one-to-one correspondence; the control link and the data link have a one-to-one correspondence with the MME respectively;
  • the second processing submodule is used to bind the data link and the control link corresponding to the same MME to the same WAN port to obtain the P logical links;
  • the third processing submodule is used to bind the control plane interfaces of the S1 interface and X2 interface under the same PLMN ID to the same control link, and to bind the S1 interface and X2 interface data plane interfaces under the same PLMN ID. Bind to the same data link to obtain the corresponding relationship between PLMN ID and P logical links.
  • the first processing sub-module includes:
  • the first processing unit is configured to establish P mutually isolated flow control transmission protocol SCTP links between the protocol stack control plane and the P MMEs according to the corresponding relationship between the P WAN ports and the P MMEs, and establish radio resource control RRC and SCTP socket binding relationship; wherein, the SCTP link and the WAN port have a one-to-one correspondence; the SCTP link and the MME have a one-to-one correspondence;
  • the second processing unit is used to establish P mutually isolated data links on the data plane according to the one-to-one correspondence between P WAN ports and P MMEs, and establish part of the user plane GPTU data link and user datagram protocol UPD Socket binding relationship.
  • the device 400 also includes:
  • the security module is used to create an IPsec tunnel with the peer security gateway for each logical link, and bind the corresponding IPsec settings to the logical link.
  • the device provided by the embodiment of the present invention can execute the above method embodiments applied to the base station side. Its implementation principles and technical effects are similar, and this embodiment will not be described again here.
  • a multi-PLMN data transmission device is applied to MME and includes:
  • a receiving module configured to receive configuration information of P logical links sent by the base station, where the configuration information includes the corresponding relationship between the WAN port of the base station and the MME; where P is the number of public land mobile networks PLMN, and the The logical link has a one-to-one correspondence with the PLMN;
  • the second transmission module is used for data transmission based on the P logical links.
  • the device provided by the embodiment of the present invention can execute the above method embodiments applied to the MME side. Its implementation principles and technical effects are similar, and this embodiment will not be described again here.
  • An embodiment of the present invention provides a base station, as shown in Figure 6, including a transceiver 610, a processor 600, a memory 620, and programs or instructions stored on the memory 620 and executable on the processor 600;
  • the processor 600 implements the following steps when executing the program or instructions:
  • P logical links are created between P WAN ports of the base station and P mobility management entities MME; where P is the number of public land mobile network PLMNs, and the logical links and the PLMNs are one to one. Correspondence;
  • Data transmission is performed based on the P logical links.
  • the transceiver 610 is used to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 600 and various circuits of the memory represented by memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • processor 600 executes the program or instruction, the following steps are implemented:
  • P data links and P control links are created; the control links and the data links have a one-to-one correspondence with the WAN ports respectively; so The control link and the data link respectively have a one-to-one correspondence with the MME;
  • processor 600 executes the program or instruction, the following steps are implemented:
  • the protocol stack control plane establishes P mutually isolated flow control transmission protocol SCTP links with P MMEs, and establishes a binding relationship between radio resource control RRC and SCTP sockets; among them,
  • the SCTP link has a one-to-one correspondence with the WAN port;
  • the SCTP link has a one-to-one correspondence with the MME;
  • P mutually isolated data links are established on the data plane, and the binding relationship between the GPTU data link of the user plane and the user datagram protocol UPD Socket is established.
  • processor 600 executes the program or instruction, the following steps are implemented:
  • the base station provided by the embodiment of the present invention can realize that one PLMN corresponds to one logical link, that is, one PLMN corresponds to one WAN port and one MME, which avoids the problem of multiple PLMNs, multiple MME addresses, and multiple source addresses due to Not knowing the WAN port and MME corresponding to each PLMN leads to operational inconvenience.
  • An MME includes a transceiver 710, a processor 700, a memory 720, and programs or instructions stored on the memory 720 and executable on the processor 700. ;
  • the processor 700 implements the following steps when executing the program or instruction:
  • the configuration information includes the corresponding relationship between the WAN port of the base station and the MME; where P is the number of public land mobile networks PLMN, and the logical links are related to the MME.
  • PLMN is a one-to-one correspondence;
  • Data transmission is performed based on the P logical links.
  • the transceiver 710 is used to receive and send data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 700 and various circuits of the memory represented by memory 720 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 710 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 when performing operations.
  • the MME provided by the embodiment of the present invention can realize that one PLMN corresponds to one logical link, that is, one PLMN corresponds to one WAN port and one MME, which avoids the problem of multiple PLMNs, multiple MME addresses, and multiple source addresses due to Not knowing the WAN port and MME corresponding to each PLMN leads to operational inconvenience.
  • a readable storage medium has a program or instruction stored thereon.
  • the program or instruction is executed by a processor, the steps in the multi-PLMN data transmission method as described above are implemented and the same can be achieved. To avoid repetition, the technical effects will not be repeated here.
  • the computer-readable storage medium is such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • terminals described in this specification include but are not limited to smartphones, tablet computers, etc., and many of the functional components described are called modules to more specifically emphasize the independence of their implementation.
  • the module can be implemented in software so as to be executed by various types of processors.
  • an identified module of executable code may include one or more physical or logical blocks of computer instructions, which may be structured, for example, as an object, procedure, or function. Nonetheless, the executable code of the identified module need not be physically located together, but may include The different instructions above, when these instructions are logically combined, form a module and achieve the specified purpose of the module.
  • an executable code module can be a single instruction or many instructions, and can even be distributed over multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within modules and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations (including on different storage devices), and may exist, at least in part, solely as electronic signals on a system or network.
  • the module can be implemented using software, taking into account the level of hardware technology in the relevant technology, those skilled in the art can build corresponding hardware circuits to implement the corresponding functions without considering the cost.
  • the hardware circuit includes conventional very large scale integration (VLSI) circuits or gate arrays, as well as semiconductors or other discrete components in related technologies such as logic chips and transistors.
  • VLSI very large scale integration
  • Modules can also be implemented using programmable hardware devices, such as field programmable gate arrays, programmable array logic, programmable logic devices, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种多PLMN的数据传输方法、装置、基站及移动性管理实体,涉及通信技术领域。方法应用于基站,包括:在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;基于所述P条逻辑链路进行数据传输。

Description

一种多PLMN的数据传输方法、装置、基站及移动性管理实体
相关申请的交叉引用
本申请主张在2022年04月18日在中国提交的中国专利申请No.202210403129.1的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别是指一种多PLMN的数据传输方法、装置、基站及移动性管理实体。
背景技术
长期演进(Long Term Evolution,LTE)是由第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)组织制定的通用移动通信系统(Universal Mobile Telecommunications System,UMTS)技术标准的移动通信系统。通常情况下,在LTE移动通信系统中,一个运营商网络又称为公共陆地移动网(Public Land Mobile Network,PLMN),分为核心网和接入网两部分,其中,核心网络节点由移动管理实体(Mobility Management Entity,MME)、服务网关(Serving Gateway,SGW)、分组数据网关(PDN Gateway,PGW)等构成;接入网络节点由演进型基站(Evolved Node B,eNodeB)组成,在进行PLMN选择或切换过程中,所涉及的网络节点为MME和eNodeB。
对于多个运营商共享使用的基站,该基站可以在系统消息中携带多个PLMN标识,每个PLMN标识对应一个运营商。相关技术中支持配置多个PLMN,多个MME地址,但仅支持使用一个源地址去连接多个MME地址。在涉及多个源地址时,会存在操作上的不便。
发明内容
本发明的目的是提供一种多PLMN的数据传输方法、装置、基站及移动性管理实体,解决了在多PLMN的方案中,在涉及多个源地址时,会存在操 作上的不便的问题。
第一方面,本发明的实施例提供一种多PLMN的数据传输方法,应用于基站,包括:
在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;
基于所述P条逻辑链路进行数据传输。
第二方面,本发明的实施例提供一种多PLMN的数据传输方法,应用于MME,包括:
接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
基于所述P条逻辑链路进行数据传输。
第三方面,本发明的实施例提供一种多PLMN的数据传输装置,应用于基站,包括:
链路创建模块,用于在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
发送模块,用于向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;
第一传输模块,用于基于所述P条逻辑链路进行数据传输。
第四方面,本发明的实施例提供一种多PLMN的数据传输装置,应用于MME,包括:
接收模块,用于接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
第二传输模块,用于基于所述P条逻辑链路进行数据传输。
第五方面,本发明的实施例提供一种基站,包括:收发器、处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令;所述处理器执行所述程序或指令时实现如第一方面所述的多PLMN的数据传输方法。
第六方面,本发明的实施例提供一种移动管理实体,包括:收发器、处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令;所述处理器执行所述程序或指令时实现如第二方面所述的多PLMN的数据传输方法。
第七方面,本发明的实施例提供一种可读存储介质,其上存储有程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的多PLMN的数据传输方法。
本发明的上述技术方案的有益效果如下:
本发明实施例的方案,通过在基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;基于所述P条逻辑链路进行数据传输。如此,能够实现一个PLMN ID对应一条逻辑链路,即,一个PLMN ID对应一个WAN口和一个MME,避免了在涉及多个PLMN ID,多个MME地址和多个源地址时,由于不清楚每个PLMN ID对应的WAN口和MME,导致存在操作上的不便的问题。
附图说明
图1为本发明实施例的多PLMN的数据传输方法的流程图;
图2为本发明实施例的多PLMN方案的架构示意图;
图3为本发明另一实施例的多PLMN的数据传输方法的流程图;
图4为本发明实施例的多PLMN的数据传输装置的结构图;
图5为本发明另一实施例的多PLMN的数据传输装置的结构图;
图6为本发明实施例的基站的结构图;
图7为本发明实施例的MME的结构图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本发明的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
下面首先对本申请实施例提供的方案涉及的内容进行介绍。
一般而言,每个基站都是针对一个运营商的,因此它只能和一个运营商的网关相连。目前建设基站时一般是共站共建,即每个运营商发射各自频率的无线信号,广播各自的PLMN,多个基站共享相同的基站站址和回传网络。公共陆地移动网PLMN是由特定的网络运营商控制的移动电话网络。可以通过移动国家码和分配给网络运营商的移动网络码的唯一组合来定义PLMN。移动通信设备上的每个SIM可以支持订制,该订制用于使用相应的无线接入技术(Radio Access Technology,RAT)向PLMN进行注册并且自建设基站导致的基站建设成本高以及各基站间干扰大的在PLMN上进行通信。由于建设多套基站成本高且各占之间干扰也大。
多运营商网络(Multi-operator core network,MOCN)主要背景是当前小型运营商的崛起,同时站址、频谱等资源限制,运营商建网难度不断增大,客户平均每月收益(Average Revenue Per User,ARPU)值的不断下降,对于网络共享的呼声越来越强烈,网络共享是指实现无线网络在不同运营商之间的共享。目前网络资源共建共享已成为了解决网络资源紧张问题的重要途径。
网络共享主要分为这几类:
一、无线接入网络(Radio Access Network,RAN)共享:只共享无线接入 网(MME不共享),指一个RAN(无线网络)可以连接到多个运营商核心网节点。其中又根据频率是否共享分为:
A:共享频谱(MOCN)
无线设备只发射一个载波,所有运营商公用这个载波,共享硬件资源的同时共享频谱资源。
B:不共享频谱(多运营商RAN(Multi-operator RAN,MORAN))
无线设备同时发射多个载频,承载不同运营商业务。
二、网关核心网络(Gateway Core Network,GWCN)网关共享核心网和无线接入网(MME共享),是指在共享RAN的基础上,再将核心网部分功能下沉到网关,实现部分核心网共享。
MOCN在实现频谱共享之后,需要重点解决具体的无线资源分配问题,如用户设备(User Equipment,UE)接入个数、无线承载数等在各个运营商之间如何分配。通常做法主要是通过支持每个PLMN的专用用户数和无线承载数的独立配置来实现:
固定分配:运营商A、B固定分配所有资源
半静态分配:运营商A、B各固定分配部分无线资源,剩余部分作为共享资源
资源池:运营商A、B无固定资源分配,两个运营商公用所有的无线资源
过盈分配:运营商A、B固定分配,在特定的条件下,B可占用A的部分资源,但在A需要占用的时候又可将资源抢占回来。
下面结合附图1至7对本申请的方案进行介绍。
如图1所示,本发明实施例的一种多PLMN的数据传输方法,应用于基站,包括以下步骤:
步骤101,在所述基站的P个广域网(Wide Area Network,WAN)口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系。
需要指出的是,本申请中的基站(eNB)是具MOCN功能的基站,对于多个运营商共享使用的基站,该基站可以在系统消息中携带多个PLMN标识, 每个PLMN标识对应一个运营商。eNB通过系统消息(System Information Block 1,SIB1)广播N个PLMN ID时,UE接收到系统消息SIB1后,根据自己的用户身份识别模块(Subscriber Identity Module,SIM)卡,选择所需的PLMN ID。
示例性地,如图3中,基站通过系统消息广播PLMN1、PLMN2和PLMN3,UE1、UE2和UE3在接收到系统消息后,UE1选择接入PLMN1,UE2选择接入PLMN2,UE3选择接入PLMN3。
该步骤中,基于所需要支持的PLMN ID数量,创建对应数目的逻辑链路。OAM给基站下发P个源地址,基站对应设置P个对外传输的WAN口。
步骤102,向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系。
该步骤中,可通过无线资源控制(Radio Resource Control,RRC)信令向所述MME发送所述P条逻辑链路的配置信息。
示例性地,如图3中,假设有3个WAN口和3个MME,则可配置WAN口1对应MME1,WAN口2对应MME2,WAN口3对应MME3;或者,WAN口1对应MME2,WAN口2对应MME3,WAN口3对应MME1,或者其他一一对应关系。这里,基于不同的组合方式可知,共包括6种一一对应的关系。
步骤103,基于所述P条逻辑链路进行数据传输。
该实施例中,能够实现一个PLMN标识(Identifier,ID)对应一条逻辑链路,即,一个PLMN ID对应一个WAN口和一个MME,避免了在涉及多个PLMN ID,多个MME地址和多个源地址时,由于不清楚每个PLMN ID对应的WAN口和MME,导致存在操作上的不便的问题。
在一实施例中,上述步骤101,包括:
按照P个WAN口与P个MME的对应关系,创建P条数据链路和P条控制链路;所述控制链路和所述数据链路分别与所述WAN口为一一对应关系;所述控制链路和所述数据链路分别与所述MME为一一对应关系;
将对应同一MME的所述数据链路和所述控制链路均绑定到同一个WAN口上,得到所述P条逻辑链路;
将同一个PLMN ID下的S1接口、X2接口的控制面接口绑定到同一个控制链路上,以及将同一个PLMN ID下的S1接口、X2接口数据面接口绑定到同一个数据链路上,得到PLMN ID与P个逻辑链路的对应关系。
这里,S1接口是LTE基站(eNodeB)与分组核心网(Evolved Packet Core,EPC)之间的通讯接口。将LTE系统划分为无线接入网和核心网。X2接口是e-NodeB之间的互连接口,支持数据和信令的直接传输。
该实施例中,P个WAN口与P个MME为一一对应关系,且对应同一个对端MME的控制链路与数据链路绑定到同一个WAN口上,在同一个PLMN ID下的S1接口、X2接口的控制面接口统一绑定到相同的控制链路上,如PLMN ID1对应的控制链路1与数据链路1绑定到WAN口1上;将PLMN ID1下的S1接口、X2接口的控制面接口都绑定在控制链路1上,即对应WAN口1。类似,将S1接口、X2接口数据面接口都绑定到数据链路1上,同样对应WAN口1。如此,每个PLMN ID都对应有唯一的WAN口和唯一的MME,避免由于不清楚每个PLMN ID对应的WAN口和MME,导致存在操作上的不便的问题。
在一具体实施例中,所述按照P个WAN口与P个MME的对应关系,创建P条数据链路和P条控制链路,包括:
按照P个WAN口与P个MME的对应关系,协议栈控制面与P个MME建立P条相互隔离的流控制传输协议(Stream Control Transmission Protocol,SCTP)链路,并建立无线资源控制RRC与SCTP套接字(socket)绑定关系;其中,所述SCTP链路与所述WAN口为一一对应关系;所述SCTP链路与所述MME为一一对应关系;
按照P个WAN口与P个MME的一一对应关系,数据面建立P条相互隔离的数据链路,并建立用户平面部分(User Plane Part of GTP,GPTU)数据链路与用户数据报协议(User Datagram Protocol,UPD Socket)的绑定关系。
示例性地,假设本系统支持3个PLMN ID,协议栈控制面与对端MME按多链路(multi-homing)方式建立三条相互隔离的流控制传输协议(Stream Control Transmission Protocol,SCTP)链路;并建立RRC与SCTP socket绑定关系。同时按照由控制面RRC提供的源地址与对端服务器的对应关系,数 据面建立3条相互隔离的数据链路,并建立用户平面部分(User Plane Part of GTP,GPTU)数据链路与UPD Socket的绑定关系。其中,SCTP是一种可靠的传输协议,它在两个端点之间提供稳定、有序的数据传递服务,并且可以保护数据消息边界。
所谓Socket(套接字),就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。一个套接字就是网络上进程通信的一端,提供了应用层进程利用网络协议交换数据的机制。
在一实施例中,所述将对应同一MME的所述数据链路和所述控制链路均绑定到同一个WAN口上,得到所述P条逻辑链路之后,所述方法还包括:
为每条逻辑链路创建与对端安全网关的IP安全协议(IP Security,IPsec)隧道,并将对应的IPsec设置与逻辑链路进行绑定。
该实施例中,在建立好逻辑链路后,为了保证每条逻辑链路的安全,为每条逻辑链路创建与对端(MME端)安全网关的IPsec隧道,将对应的IPsec设置与逻辑链路进行绑定。
示例性地,创建逻辑链路绑定关系的配置如下:
在boardconf(基站平台配置)中的增加多个stackIPInterface(协议栈IP接口)配置,使用和wanConfig(WAN口配置)一样的方法,增加stackIPInterface2,stackIPInterface3,配置和stackIPInterface相同,具体如下:
Record name(配置项名称):stackIPInterface2;
Record ID(配置项ID):0x660a0002;
TR-069 Name(TR-069路径名称):boardconf.stack.stackIPInterface2;
Record name:stackIPInterface3;
Record ID:0x660a0003;
TR-069 Name:boardconf.stack.stackIPInterface3。
绑定关系见下表:

示例性地,创建IPsec安全隧道的配置如下:
在boardconf中增加tunnelConfigX(第X个tunnel配置),其中的配置项和tunnelConfig1完全相同,例如在boardconf中增加一个tunnelConfig3,具体如下:
Record name:tunnelConfig3;
Record ID:0x66040005;
TR-069 Name:boardconf.ipsec.tunnelConfig3。
在一实施例中,上述方法还包括:将各个PLMN ID下的所有链路设置统一的控制接口,并连接控制中心。
上述方案中,通过创建逻辑链路,将同属于一个运营商PLMN ID下的多接口绑定在一条逻辑链路上,优化了基站内部管理,增加接口间的隔离度,提高链路的稳定性,通过绑定IPsec隧道,进一步提高系统的安全性。提高了网络共享的应用场景灵活性、广泛性、稳定性、安全性。
参见图3,本发明实施例提供一种多PLMN的数据传输方法,应用于MME,包括以下步骤:
步骤201,接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
该步骤中MME基于P条逻辑链路的配置信息,确定WAN口与MME的一一对应关系,从基于该对应关系与基站进行数据传输。
步骤202,基于所述P条逻辑链路进行数据传输。
该实施例中,能够实现在基站和多个MME之间创建P个逻辑链路,使一个PLMN ID对应一条逻辑链路,即,一个PLMN ID对应一个WAN口和一个MME,避免了在涉及多个PLMN ID,多个MME地址和多个源地址时, 由于不清楚每个PLMN ID对应的WAN口和MME,导致存在操作上的不便的问题。
如图4所示,本发明实施例的一种多PLMN的数据传输装置,应用于基站,包括:
链路创建模块401,用于在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
发送模块402,用于向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;
第一传输模块403,用于基于所述P条逻辑链路进行数据传输。
可选地,链路创建模块401,包括:
第一处理子模块,用于按照P个WAN口与P个MME的对应关系,创建P条数据链路和P条控制链路;所述控制链路和所述数据链路分别与所述WAN口为一一对应关系;所述控制链路和所述数据链路分别与所述MME为一一对应关系;
第二处理子模块,用于将对应同一MME的所述数据链路和所述控制链路均绑定到同一个WAN口上,得到所述P条逻辑链路;
第三处理子模块,用于将同一个PLMN ID下的S1接口、X2接口的控制面接口绑定到同一个控制链路上,以及将同一个PLMN ID下的S1接口、X2接口数据面接口绑定到同一个数据链路上,得到PLMN ID与P个逻辑链路的对应关系。
可选地,第一处理子模块,包括:
第一处理单元,用于按照P个WAN口与P个MME的对应关系,协议栈控制面与P个MME建立P条相互隔离的流控制传输协议SCTP链路,并建立无线资源控制RRC与SCTP socket绑定关系;其中,所述SCTP链路与所述WAN口为一一对应关系;所述SCTP链路与所述MME为一一对应关系;
第二处理单元,用于按照P个WAN口与P个MME的一一对应关系,数据面建立P条相互隔离的数据链路,并建立用户平面部分GPTU数据链路与用户数据报协议UPD Socket的绑定关系。
可选地,装置400还包括:
安全模块,用于为每条逻辑链路创建与对端安全网关的IPsec隧道,并将对应的IPsec设置与逻辑链路进行绑定。
本发明实施例提供的装置,可以执行上述应用于基站侧的方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
如图5所示,本发明实施例的一种多PLMN的数据传输装置,应用于MME,包括:
接收模块,用于接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
第二传输模块,用于基于所述P条逻辑链路进行数据传输。
本发明实施例提供的装置,可以执行上述应用于MME侧的方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本发明实施例提供一种基站,如图6所示,包括收发器610、处理器600、存储器620及存储在所述存储器620上并可在所述处理器600上运行的程序或指令;所述处理器600执行所述程序或指令时实现如下步骤:
在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;
基于所述P条逻辑链路进行数据传输。
所述收发器610,用于在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。 处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选地,所述处理器600执行所述程序或指令时实现如下步骤:
按照P个WAN口与P个MME的对应关系,创建P条数据链路和P条控制链路;所述控制链路和所述数据链路分别与所述WAN口为一一对应关系;所述控制链路和所述数据链路分别与所述MME为一一对应关系;
将对应同一MME的所述数据链路和所述控制链路均绑定到同一个WAN口上,得到所述P条逻辑链路;
将同一个PLMN ID下的S1接口、X2接口的控制面接口绑定到同一个控制链路上,以及将同一个PLMN ID下的S1接口、X2接口数据面接口绑定到同一个数据链路上,得到PLMN ID与P个逻辑链路的对应关系。
可选地,所述处理器600执行所述程序或指令时实现如下步骤:
按照P个WAN口与P个MME的对应关系,协议栈控制面与P个MME建立P条相互隔离的流控制传输协议SCTP链路,并建立无线资源控制RRC与SCTP socket绑定关系;其中,所述SCTP链路与所述WAN口为一一对应关系;所述SCTP链路与所述MME为一一对应关系;
按照P个WAN口与P个MME的一一对应关系,数据面建立P条相互隔离的数据链路,并建立用户平面部分GPTU数据链路与用户数据报协议UPD Socket的绑定关系。
可选地,所述处理器600执行所述程序或指令时实现如下步骤:
为每条逻辑链路创建与对端安全网关的IPsec隧道,并将对应的IPsec设置与逻辑链路进行绑定。
本发明实施例提供的基站,能够实现一个PLMN对应一条逻辑链路,即,一个PLMN对应一个WAN口和一个MME,避免了在涉及多个PLMN,多个MME地址和多个源地址时,由于不清楚每个PLMN对应的WAN口和MME,导致存在操作上的不便的问题。
本发明另一实施例的一种MME,如图7所示,包括收发器710、处理器700、存储器720及存储在所述存储器720上并可在所述处理器700上运行的程序或指令;所述处理器700执行所述程序或指令时实现如下步骤:
接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
基于所述P条逻辑链路进行数据传输。
所述收发器710,用于在处理器700的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
本发明实施例提供的MME,能够实现一个PLMN对应一条逻辑链路,即,一个PLMN对应一个WAN口和一个MME,避免了在涉及多个PLMN,多个MME地址和多个源地址时,由于不清楚每个PLMN对应的WAN口和MME,导致存在操作上的不便的问题。
本发明实施例的一种可读存储介质,其上存储有程序或指令,所述程序或指令被处理器执行时实现如上所述的多PLMN的数据传输方法中的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
进一步需要说明的是,此说明书中所描述的终端包括但不限于智能手机、平板电脑等,且所描述的许多功能部件都被称为模块,以便更加特别地强调其实现方式的独立性。
本发明实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位 里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到相关技术中硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的相关技术中半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
上述范例性实施例是参考该些附图来描述的,许多不同的形式和实施例是可行而不偏离本发明精神及教示,因此,本发明不应被建构成为在此所提出范例性实施例的限制。更确切地说,这些范例性实施例被提供以使得本发明会是完善又完整,且会将本发明范围传达给那些熟知此项技术的人士。在该些图式中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定范例性实施例目的,并无意成为限制用。如在此所使用地,除非该内文清楚地另有所指,否则该单数形式“一”、“一个”和“该”是意欲将该些多个形式也纳入。会进一步了解到该些术语“包含”及/或“包括”在使用于本说明书时,表示所述特征、整数、步骤、操作、构件及/或组件的存在,但不排除一或更多其它特征、整数、步骤、操作、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,一值范围包含该范围的上下限及其间的任何子范围。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种多PLMN的数据传输方法,应用于基站,包括:
    在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
    向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;
    基于所述P条逻辑链路进行数据传输。
  2. 根据权利要求1所述的多PLMN的数据传输方法,其中,所述在所述基站的P个WAN口与和P个移动管理实体MME之间创建P条逻辑链路,包括:
    按照P个WAN口与P个MME的对应关系,创建P条数据链路和P条控制链路;所述控制链路和所述数据链路分别与所述WAN口为一一对应关系;所述控制链路和所述数据链路分别与所述MME为一一对应关系;
    将对应同一MME的所述数据链路和所述控制链路均绑定到同一个WAN口上,得到所述P条逻辑链路;
    将同一个PLMN ID下的S1接口、X2接口的控制面接口绑定到同一个控制链路上,以及将同一个PLMN ID下的S1接口、X2接口数据面接口绑定到同一个数据链路上,得到PLMN ID与P个逻辑链路的对应关系。
  3. 根据权利要求2所述的多PLMN的数据传输方法,其中,所述按照P个WAN口与P个MME的对应关系,创建P条数据链路和P条控制链路,包括:
    按照P个WAN口与P个MME的对应关系,协议栈控制面与P个MME建立P条相互隔离的流控制传输协议SCTP链路,并建立无线资源控制RRC与SCTP socket绑定关系;其中,所述SCTP链路与所述WAN口为一一对应关系;所述SCTP链路与所述MME为一一对应关系;
    按照P个WAN口与P个MME的一一对应关系,数据面建立P条相互隔离的数据链路,并建立用户平面部分GPTU数据链路与用户数据报协议 UPD Socket的绑定关系。
  4. 根据权利要求2所述的多PLMN的数据传输方法,其中,所述将对应同一MME的所述数据链路和所述控制链路均绑定到同一个WAN口上,得到所述P条逻辑链路之后,所述方法还包括:
    为每条逻辑链路创建与对端安全网关的IPsec隧道,并将对应的IPsec设置与逻辑链路进行绑定。
  5. 一种多PLMN的数据传输方法,应用于MME,包括:
    接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
    基于所述P条逻辑链路进行数据传输。
  6. 一种多PLMN的数据传输装置,应用于基站,包括:
    链路创建模块,用于在所述基站的P个WAN口与P个移动管理实体MME之间创建P条逻辑链路;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
    发送模块,用于向所述MME发送所述P条逻辑链路的配置信息,所述配置信息包括所述WAN口与所述MME的对应关系;
    第一传输模块,用于基于所述P条逻辑链路进行数据传输。
  7. 一种多PLMN的数据传输装置,应用于MME,包括:
    接收模块,用于接收基站发送的P条逻辑链路的配置信息,所述配置信息包括所述基站的WAN口与MME的对应关系;其中,P为公共陆地移动网PLMN的数量,且所述逻辑链路与所述PLMN为一一对应关系;
    第二传输模块,用于基于所述P条逻辑链路进行数据传输。
  8. 一种基站,包括:收发器、处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令;所述处理器执行所述程序或指令时实现如权利要求1-4任一项所述的多PLMN的数据传输方法。
  9. 一种移动管理实体,包括:收发器、处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令;所述处理器执行所述程序或指令时实现如权利要求5所述的多PLMN的数据传输方法。
  10. 一种可读存储介质,其上存储有程序或指令,所述程序或指令被处理器执行时实现如权利要求1-4任一项所述的多PLMN的数据传输方法中的步骤,或者如权利要求5所述的多PLMN的数据传输方法中的步骤。
PCT/CN2023/087578 2022-04-18 2023-04-11 一种多plmn的数据传输方法、装置、基站及移动性管理实体 WO2023202426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210403129.1A CN116963105A (zh) 2022-04-18 2022-04-18 一种多plmn的数据传输方法、装置、基站及移动性管理实体
CN202210403129.1 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023202426A1 true WO2023202426A1 (zh) 2023-10-26

Family

ID=88419117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087578 WO2023202426A1 (zh) 2022-04-18 2023-04-11 一种多plmn的数据传输方法、装置、基站及移动性管理实体

Country Status (2)

Country Link
CN (1) CN116963105A (zh)
WO (1) WO2023202426A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106376037A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种基站内跨plmn切换方法、基站及通信系统
US20170041846A1 (en) * 2012-06-14 2017-02-09 Samsung Electronics Co., Ltd. Method of selecting public land mobile network for network sharing
CN112312401A (zh) * 2019-07-23 2021-02-02 大唐移动通信设备有限公司 一种共享基站、共享基站的业务处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170041846A1 (en) * 2012-06-14 2017-02-09 Samsung Electronics Co., Ltd. Method of selecting public land mobile network for network sharing
CN106376037A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种基站内跨plmn切换方法、基站及通信系统
CN112312401A (zh) * 2019-07-23 2021-02-02 大唐移动通信设备有限公司 一种共享基站、共享基站的业务处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILLICON: "Clarification on PLMN selection in network sharing scenario", 3GPP DRAFT; S2-182004 - CLARIFICATION ON PLMN SELECTION IN NETWORK SHARING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Montreal, Canada;, 20 February 2018 (2018-02-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051408547 *

Also Published As

Publication number Publication date
CN116963105A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP7124933B2 (ja) マスター無線アクセスネットワークノード、コントロールプレーン・ノード、及びこれらの方法
JP6724232B2 (ja) 無線通信システムにおけるネットワークスライスベースのnrのためのセル特定手順を実行する方法及び装置
CN109246778B (zh) 功能网元的选择方法及相关设备
CN111052851A (zh) 互连时增强的5g会话管理状态映射
WO2020103807A1 (zh) 一种通信方法及装置
WO2019242749A1 (zh) 一种切换方法及装置
KR102469973B1 (ko) 통신 방법 및 장치
US20230254922A1 (en) Multipath transmission method and communication apparatus
WO2021249430A1 (zh) 一种通信方法及相关设备
WO2021238882A1 (zh) 一种实现业务连续性的方法及装置
US20210007028A1 (en) Communications method and apparatus, system, and storage medium
CN112188608B (zh) 一种同步pdu会话状态的方法、装置、系统及芯片
WO2020216133A1 (zh) 一种通信方法及设备
WO2021083321A1 (zh) 一种通信方法及设备
US20230156833A1 (en) Packet Forwarding Method, Apparatus, and System
EP4213514A1 (en) Data transmission method and apparatus
US20220408317A1 (en) Handover method and communication apparatus
WO2014117386A1 (zh) 数据交互的方法和装置
CN109429366B (zh) 一种pdu会话处理方法及设备
WO2023202426A1 (zh) 一种多plmn的数据传输方法、装置、基站及移动性管理实体
RU2631669C1 (ru) Устройство обмена информацией, базовая станция и система связи
WO2022160205A1 (zh) 一种数据传输方法、终端设备和网络设备
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2020095804A1 (en) Network and methods to support inter-domain mobility in virtualized radio access network
WO2020063575A1 (zh) 获取网络设备的配置信息的方法和相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791081

Country of ref document: EP

Kind code of ref document: A1