WO2023202277A1 - 实现方向图测试的方法、电子设备、计算机可读介质 - Google Patents

实现方向图测试的方法、电子设备、计算机可读介质 Download PDF

Info

Publication number
WO2023202277A1
WO2023202277A1 PCT/CN2023/081638 CN2023081638W WO2023202277A1 WO 2023202277 A1 WO2023202277 A1 WO 2023202277A1 CN 2023081638 W CN2023081638 W CN 2023081638W WO 2023202277 A1 WO2023202277 A1 WO 2023202277A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle range
angle
axis
range
test
Prior art date
Application number
PCT/CN2023/081638
Other languages
English (en)
French (fr)
Inventor
丁春辉
谭宗英
王远
曹进
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023202277A1 publication Critical patent/WO2023202277A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • This application involves but is not limited to the field of OTA (Over The Air) testing technology.
  • various indicators of the AAU are generally calculated by testing the active pattern of the active antenna unit (AAU, Active Antenna Unit).
  • the active pattern includes horizontal pattern, vertical pattern and cross-polarization.
  • Directional diagram, etc., AAU indicators include horizontal 3 decibel (dB) lobe angle, vertical 3dB lobe angle, co-polarization front-to-back ratio, cross-polarization front-to-back ratio, axial cross-polarization ratio, and tilt angle range at various tilt angles , upper first side lobe suppression, upper side lobe suppression, etc.
  • the number of directional patterns that need to be tested is very large (for example, the total number can up to 100 or more).
  • Each direction includes a horizontal pattern, a vertical pattern and a cross-polarization pattern.
  • this application provides a method for implementing pattern testing, which includes: calculating the second angle range required for pattern testing based on the first angle range corresponding to the first indicator that needs to be analyzed for beam pointing; and calculating the second angle range required for pattern testing based on a single measurement. time to determine the test speed corresponding to the second angle range; generate a first control signal, the first control signal is used to control the first axis of the turntable to rotate to a specified angle, and control the second axis of the turntable to rotate in the Rotate within the second angle range according to the test speed corresponding to the second angle range to conduct the test. try.
  • the present application provides an electronic device, including: at least one processor; and a memory. At least one program is stored on the memory. When the at least one program is executed by the at least one processor, the processor Implement any of the above methods to implement pattern testing.
  • the present application provides a computer-readable medium.
  • a computer program is stored on the computer-readable medium.
  • the computer program When executed by a processor, it causes the processor to implement any of the above methods for implementing pattern testing. .
  • Figure 1 is a flow chart of a method for implementing direction pattern testing provided by this application
  • Figure 2 is a flow chart of a method for implementing direction pattern testing provided in Example 1 of this application;
  • Figure 3 is a schematic diagram of the test speed provided in Example 1 of this application.
  • Figure 4 is a flow chart of a method for implementing direction pattern testing provided in Example 2 of this application;
  • Figure 5 is a schematic diagram of the test speed provided in Example 2 of this application.
  • Figure 6 is a flow chart of a method for implementing direction pattern testing provided in Example 3 of this application;
  • Figure 7 is a schematic diagram of the test speed provided in Example 3 of this application.
  • Figure 8 is a block diagram of a device for implementing pattern testing provided by this application.
  • Figure 1 is a flow chart of a method for implementing pattern testing provided by this application.
  • this application provides a method for implementing pattern testing. This method can be applied to horizontal pattern testing, vertical pattern testing, or cross-polarization pattern testing.
  • test environment of this method can be near field, compact field, far field, etc.
  • the pattern mentioned in this method may refer to an active pattern or a passive pattern.
  • the method includes steps 100 to 102.
  • step 100 the second angle range required for the pattern test is calculated based on the first angle range corresponding to the first indicator that needs to be analyzed for the beam pointing.
  • the first indicator may be one or more than one.
  • the first indicator includes at least one of the following indicators: horizontal 3dB lobe angle, axial cross-polarization ratio, tilt angle range, upper first side lobe suppression, upper side lobe suppression, etc.
  • the first angle range corresponding to the first indicator refers to the angle range required to test the first indicator.
  • the first angle ranges corresponding to different first indicators may be the same or different.
  • calculating the second angular range required for the pattern test based on the first angular range corresponding to the first indicator that needs to be analyzed for beam pointing includes: determining the second angular range as the lower limit of the first angular range.
  • the angular range is between the sum of the maximum value and the second offset value, from the difference between the minimum value and the first offset value to the upper limit of the first angular range.
  • l Hoffset is the first offset value
  • h Hoffset is the second offset value.
  • the purpose of setting the first offset value and the second offset value is to ensure that all the data that needs to be collected can be collected.
  • the first offset value and the second offset value can be set according to the actual situation. set up. For example, the first offset value and the second offset value take values between 10 and 20 degrees.
  • the second angular range is less than 360 degrees.
  • step 101 the test speed corresponding to the second angle range is determined based on the single measurement time.
  • the single measurement time of the spectrum analyzer is related to the frequency point, bandwidth, sweep time (SweepTime), resolution bandwidth (RBW, Resolution BandWidth), Trigger, etc. of the measured signal.
  • determining the test speed corresponding to the second angle range based on a single measurement time includes: determining a sampling time interval based on a single measurement time; determining based on the sampling time interval and the sampling angle step corresponding to the second angle range. The maximum angular velocity of the second axis; determine the test speed corresponding to the second angular range based on the maximum angular velocity of the second axis.
  • the sampling time interval is determined based on a single measurement time.
  • the interval includes: determining that the sampling time interval is greater than A times the single measurement time, and A is greater than or equal to 1. For example, in order to ensure that there will be no sampling loss, set the sampling time interval to be greater than the single measurement time, such as satisfying the formula SampleTime>ROUND(1.5*TT,1).
  • SampleTime is the sampling time interval
  • TT is the single measurement time
  • ROUND(X, Y) is the rounding of X to the Yth decimal place.
  • determining the maximum angular velocity of the second axis according to the sampling time interval and the sampling angle step corresponding to the second angle range includes: determining the maximum angular velocity of the second axis as the sampling angle step corresponding to the second angle range. and the ratio of the sampling time interval. Assuming that the sampling angle step corresponding to the second angle range is Step, the maximum angular velocity H Velocity of the second axis is:
  • determining the test speed corresponding to the second angular range according to the maximum angular speed of the second axis includes: determining the test speed corresponding to the second angular range to be ⁇ times the maximum angular speed of the second axis, where ⁇ is greater than 1.
  • is 2 or 3.
  • a first control signal is generated.
  • the first control signal is used to control the first axis of the turntable to rotate to a specified angle, and to control the second axis of the turntable within the second angle range according to the test corresponding to the second angle range. Rotate at speed for testing.
  • the first axis is the vertical axis
  • the second axis is the horizontal axis
  • the specified angle is determined by the vertical direction of the current test beam, for example, the pointing angle is the vertical direction of the current test beam. angle.
  • the first axis is the horizontal axis
  • the second axis is the vertical axis
  • the specified angle is determined by the horizontal direction of the current test beam, for example, the pointing angle is the horizontal direction of the current test beam angle.
  • the first axis is the vertical axis
  • the second axis is the horizontal axis
  • the specified angle is determined by the vertical pointing of the current test beam, such as the pointing angle is Vertical pointing angle.
  • the first axis of the turntable can be controlled to rotate from the current angle to a specified angle at the maximum rotational speed of the first axis given by the turntable manufacturer
  • the second axis of the turntable is controlled to rotate from the current angle to the angle corresponding to the lower limit of the second angle range at the maximum rotational speed of the second axis given by the turntable manufacturer.
  • the method further includes: determining a fourth angle range required for the pattern test based on the second angle range and a third angle range corresponding to the second indicator that needs to be analyzed for beam pointing; and based on a single measurement time to determine the test speed corresponding to the fourth angle range; generate a second control signal, the second control signal is used to control the first axis of the turntable to rotate to a specified angle, and control the second axis of the turntable according to the fourth angle range.
  • the fourth angle range is rotated at a testing speed corresponding to the testing speed.
  • the test speed of the second angular range is less than the test speed of the fourth angular range.
  • the sum of the second angular range and the fourth angular range is less than or equal to 360 degrees.
  • the second indicator includes at least one of the following indicators: co-polarization front-to-back ratio, cross-polarization front-to-back ratio.
  • determining the fourth angular range required for the pattern test based on the second angular range and the third angular range corresponding to the second indicator that needs to be analyzed for beam pointing includes: determining the fourth angular range includes: The angle range between the lower limit of the three angle range and the lower limit of the second angle range, and the angle range between the upper limit of the second angle range and the upper limit of the third angle range.
  • determining the fourth angle range required for the pattern test based on the second angle range and the third angle range corresponding to the second indicator includes: determining the fourth angle range includes: the lower limit of the third angle range an angle range between the minimum value and the lower limit of the second angle range, and an angle range between the upper limit of the second angle range and the maximum value of the upper limit of the third angle range.
  • determining the test speed corresponding to the fourth angle range based on a single measurement time includes: determining a sampling time interval based on a single measurement time; determining based on the sampling time interval and the sampling angle step corresponding to the second angle range. The maximum angular velocity of the second axis; determine the test speed corresponding to the fourth angular range based on the maximum angular velocity of the second axis.
  • the sampling time interval is determined based on a single measurement time.
  • the interval includes: determining that the sampling time interval is greater than A times the single measurement time, and A is greater than or equal to 1. For example, in order to ensure that there will be no sampling loss, set the sampling time interval to be greater than the single measurement time, such as satisfying the formula SampleTime>ROUND(1.5*TT,1).
  • SampleTime is the sampling time interval
  • TT is the single measurement time
  • ROUND(X, Y) is the rounding of X to the Yth decimal place.
  • determining the maximum angular velocity of the second axis according to the sampling time interval and the sampling angle step corresponding to the second angle range includes: determining the maximum angular velocity of the second axis as the sampling angle step corresponding to the second angle range. and the ratio of the sampling time interval. Assuming that the sampling angle step corresponding to the second angle range is Step, the maximum angular velocity H Velocity of the second axis is:
  • determining the test speed corresponding to the fourth angular range according to the maximum angular speed of the second axis includes: determining the test speed corresponding to the fourth angular range to be the maximum angular speed of the second axis.
  • the sampling angle step corresponding to the fourth angle range is a product of the test speed corresponding to the fourth angle range and the sampling time interval.
  • the first axis of the turntable can be controlled to rotate from the current angle to a specified angle at the maximum rotational speed of the first axis given by the turntable manufacturer, and the second axis of the turntable can be controlled to rotate at the maximum speed given by the turntable manufacturer.
  • the determined maximum speed of the second axis changes from the current angle to the angle corresponding to the lower limit of the third angle range.
  • This example describes a horizontal pattern testing method, as shown in Figure 2.
  • the method includes steps 200 to 202.
  • step 200 calculate the second angular range required for the pattern test based on the first angular range corresponding to the first indicator that needs to be analyzed for the beam pointing, and calculate the second angular range required for the pattern test based on the second angular range and the second angular range corresponding to the second indicator that needs to be analyzed for the beam pointing.
  • Three-angle range determination direction map measurement Try the fourth angle range required.
  • the first indicator includes at least one of the following indicators: horizontal 3dB lobe angle, axial cross-polarization ratio, tilt angle range, upper first side lobe suppression, upper side lobe suppression, etc.
  • the second metric includes the copolar front-to-back ratio. If there is no need to analyze the co-polar front-to-back ratio, there is no need to determine the fourth angle range, and subsequently there is no need to determine the test speed corresponding to the fourth angle range, nor to generate the second control signal.
  • l Hoffset is the first offset value
  • h Hoffset is the second offset value.
  • the fourth angle range includes: angle range (H 1 , H 2 ) and angle range (H 3 , H 4 ).
  • H 1 can take a value of -180 degrees
  • H 4 can take a value of 180 degrees
  • step 201 determine the sampling time interval based on the single measurement time; determine the maximum angular velocity of the horizontal axis based on the sampling time interval and the sampling angle step corresponding to the second angle range; determine the test corresponding to the second angle range based on the maximum angular velocity of the horizontal axis. speed and the test speed corresponding to the fourth angle range.
  • the sampling time interval is set to be greater than the single measurement time, such as satisfying the formula SampleTime>ROUND(1.5*TT,1).
  • SampleTime is the sampling time interval
  • TT is the single measurement time
  • ROUND(X, Y) is the rounding of X to the Yth decimal place.
  • the maximum angular velocity H Velocity of the horizontal axis is:
  • a first control signal and a second control signal are generated.
  • the second control signal is used to control the vertical axis of the turntable to rotate to a specified angle, and to control the horizontal axis of the turntable within a fourth angle range according to the test corresponding to the fourth angle range.
  • the first control signal is used to control the vertical axis of the turntable to rotate to a specified angle, and the horizontal axis of the turntable is controlled to rotate within the second angle range at the test speed corresponding to the second angle range for testing. .
  • the vertical axis of the turntable can be controlled to rotate from the current angle to the specified angle at the maximum rotational speed of the vertical axis given by the turntable manufacturer, and the horizontal axis of the turntable can be controlled to rotate at the maximum rotational speed of the horizontal axis given by the turntable manufacturer. Go to H 1 from the current angle.
  • This example describes the testing method of the vertical pattern, as shown in Figure 4.
  • the method includes steps 400 to 402.
  • step 400 the second angle range required for the pattern test is calculated based on the first angle range corresponding to the first indicator that needs to be analyzed for the beam pointing.
  • the first indicator includes at least one of the following indicators: horizontal 3dB lobe angle, axial cross-polarization ratio, tilt angle range, upper first side lobe suppression, upper side lobe suppression, etc.
  • l Voffset is the first offset value
  • h Voffset is the second offset value.
  • step 401 determine the sampling time interval based on the single measurement time; determine the maximum angular velocity of the horizontal axis based on the sampling time interval and the sampling angle step corresponding to the second angle range; determine the test corresponding to the second angle range based on the maximum angular velocity of the horizontal axis. speed.
  • the sampling time interval is set to be greater than the single measurement time, such as satisfying the formula SampleTime>ROUND(1.5*TT,1).
  • SampleTime is the sampling time interval
  • TT is the single measurement time
  • ROUND(X, Y) is the rounding of X to the Yth decimal place.
  • the maximum angular velocity V Velocity of the vertical axis is:
  • a first control signal is generated.
  • the first control signal is used to control the horizontal axis of the turntable to rotate to a specified angle, and to control the vertical axis of the turntable to rotate within the second angle range according to the test speed corresponding to the second angle range, so as to carry out testing.
  • the horizontal axis of the turntable can be controlled to rotate from the current angle to the specified angle at the maximum rotational speed of the horizontal axis given by the turntable manufacturer, and the vertical axis of the turntable can be controlled to rotate at the maximum rotational speed of the vertical axis given by the turntable manufacturer. Go to V 1 from the current angle.
  • This example describes the testing method of the cross-polarization pattern, as shown in Figure 6.
  • the method includes steps 600 to 602.
  • step 600 the second angle range required for the pattern test is calculated based on the first angle range corresponding to the first indicator that needs to be analyzed for the beam pointing.
  • the first indicator includes at least one of the following indicators: horizontal 3dB lobe angle, axial cross-polarization ratio, tilt angle range, upper first side lobe suppression, upper side lobe suppression, etc.
  • l xoffset is the first offset value
  • h xoffset is the second offset value.
  • step 601 determine the sampling time interval based on the single measurement time; determine the maximum angular velocity of the horizontal axis based on the sampling time interval and the sampling angle step corresponding to the second angle range; determine the test corresponding to the second angle range based on the maximum angular velocity of the horizontal axis. speed.
  • the sampling time interval is set to be greater than the single measurement time, such as satisfying the formula SampleTime>ROUND(1.5*TT,1).
  • SampleTime is the sampling time interval
  • TT is the single measurement time
  • ROUND(X, Y) is the rounding of X to the Yth decimal place.
  • the maximum angular velocity X Velocity of the horizontal axis is:
  • a first control signal is generated.
  • the first control signal is used to control the vertical axis of the turntable to rotate to a specified angle, and to control the horizontal axis of the turntable to rotate within the second angle range according to the test speed corresponding to the second angle range, so as to carry out testing.
  • the method for implementing pattern testing obtained by the embodiment of the present application obtains the second angle range required for pattern testing based on the first angle range corresponding to the first indicator that needs to be analyzed for beam pointing, instead of performing a 360-degree scan, shortening the time Testing time is reduced, the amount of data collected is reduced, and testing efficiency is improved.
  • the present application provides an electronic device, including: at least one processor; and a memory. At least one program is stored on the memory. When the at least one program is executed by at least one processor, the at least one processor implements any of the above. A method to implement pattern testing.
  • the processor is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.
  • the memory is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically such as SDRAM). , DDR, etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • FLASH flash memory
  • the processor and the memory are connected to each other through a bus and are further connected to other components of the computing device.
  • the present application provides a computer-readable medium.
  • a computer program is stored on the computer-readable medium.
  • the computer program When executed by a processor, it causes the processor to implement any of the above methods for implementing pattern testing.
  • Figure 8 is a block diagram of a device for implementing pattern testing provided by this application.
  • another embodiment of the present application provides a device for implementing direction pattern testing, including: a calculation module 801 configured to calculate the direction according to the first angle range corresponding to the first indicator that needs to be analyzed for the beam pointing.
  • the determination module 802 is configured to determine the test speed corresponding to the second angle range based on a single measurement time;
  • the test module 803 is configured to generate a first control signal, the first control signal is The first axis of the turntable is controlled to rotate to a specified angle, and the second axis of the turntable is controlled to rotate within the second angle range according to the test speed corresponding to the second angle range to perform the test.
  • the calculation module 801 is further configured to: determine the fourth angle range required for the pattern test based on the second angle range and the third angle range corresponding to the second indicator that needs to be analyzed for beam pointing; determine the module 802 is also configured as: according to A single measurement time determines the test speed corresponding to the fourth angle range; the test module 803 is also configured to: generate a second control signal, the second control signal is used to control the first axis of the turntable to rotate to a specified angle, and control The second axis of the turntable rotates within the fourth angular range according to the test speed corresponding to the fourth angular range to perform testing.
  • the test speed of the second angular range is less than the test speed of the fourth angular range.
  • the calculation module 801 is configured to use the following method to determine the fourth angle range required for the pattern test based on the second angle range and the third angle range corresponding to the second indicator that needs to be analyzed for beam pointing: Determining the fourth angle range includes: the angle range between the lower limit of the third angle range and the lower limit of the second angle range, and the angle range between the upper limit of the second angle range and the upper limit of the third angle range.
  • the determination module 802 is configured to determine the test speed corresponding to the fourth angle range based on a single measurement time in the following manner: determine a sampling time interval based on a single measurement time; based on the sampling time interval and the second angle The sampling angle step corresponding to the range determines the maximum angular velocity of the second axis; the test speed corresponding to the fourth angular range is determined based on the maximum angular velocity of the second axis.
  • the determining module 802 is configured to determine the sampling time interval based on a single measurement time in the following manner: determine that the sampling time interval is greater than A times the single measurement time, and A is greater than or equal to 1.
  • the determination module 802 is configured to determine the maximum angular velocity of the second axis according to the sampling time interval and the sampling angle step corresponding to the second angle range in the following manner: determine the maximum angular velocity of the second axis as the second The ratio of the sampling angle step corresponding to the angle range and the sampling time interval.
  • the determination module 802 is configured to determine the test speed corresponding to the fourth angular range according to the maximum angular speed of the second axis in the following manner: determining the test speed corresponding to the fourth angular range to be the maximum angular speed of the second axis. .
  • the calculation module 801 is configured to calculate the second angular range required for the pattern test based on the first angular range corresponding to the first indicator that needs to be analyzed for beam pointing in the following manner: Determine the second angular range is the difference between the minimum value of the lower limit of the first angle range and the first offset value to the maximum value of the upper limit of the first angle range. The angular range between the sum of the maximum value and the second offset value.
  • the determination module 802 is configured to determine the test speed corresponding to the second angle range based on a single measurement time in the following manner: determine the sampling time interval based on the single measurement time; based on the sampling time interval and the second angle The sampling angle step corresponding to the range determines the maximum angular velocity of the second axis; the test speed corresponding to the second angular range is determined based on the maximum angular velocity of the second axis.
  • the determination module 802 is configured to determine the test speed corresponding to the second angular range according to the maximum angular speed of the second axis in the following manner: determine the test speed corresponding to the second angular range to be the maximum angular speed of the second axis. ⁇ times, ⁇ is greater than 1.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage, or may be used Any other medium that stores the desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or devices such as a carrier wave or Other data in the modulated data signal, such as other transport mechanisms, and may include any information delivery medium.
  • Example embodiments have been disclosed herein, and although specific terms are employed, they are used and should be interpreted in a general illustrative sense only and not for purpose of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics and/or elements described in connection with a particular embodiment may be used alone, or may be used in conjunction with other embodiments, unless expressly stated otherwise. Features and/or components used in combination. Accordingly, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the scope of the present application as set forth in the appended claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本申请提供了一种实现方向图测试的方法、电子设备、计算机可读介质,实现方向图测试的方法包括:根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围;根据单次测量时间确定所述第二角度范围对应的测试速度;生成第一控制信号,所述第一控制信号用于控制转台的第一轴转到指定角度,以及控制所述转台的第二轴在所述第二角度范围内按照所述第二角度范围对应的测试速度进行转动,以进行测试。

Description

实现方向图测试的方法、电子设备、计算机可读介质
相关申请的交叉引用
本申请要求2022年4月18日提交给中国专利局的第202210407451.1号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本申请涉及但不限于OTA(Over The Air)测试技术领域。
背景技术
相关技术中,一般通过测试有源天线单元(AAU,Active Antenna Unit)的有源方向图来计算得到AAU的各种指标,其中,有源方向图包括水平方向图、垂直方向图和交叉极化方向图等,AAU的指标包括在各种倾角下水平3分贝(dB)波瓣角、垂直3dB波瓣角、同极化前后比、交叉极化前后比、轴向交叉极化比、倾角范围、上第一旁瓣抑制、上旁瓣抑制等。由于需要测试的波束包括业务的多个波束和广播的多个波束,且测试需要覆盖AAU支持的高、中、低频段,这样叠加之后,需要测试的方向图指向数目非常多(例如总数目可达100以上)。每一个指向又包括水平方向图、垂直方向图和交叉极化方向图。
发明内容
第一方面,本申请提供一种实现方向图测试的方法,包括:根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围;根据单次测量时间确定所述第二角度范围对应的测试速度;生成第一控制信号,所述第一控制信号用于控制转台的第一轴转到指定角度,以及控制所述转台的第二轴在所述第二角度范围内按照所述第二角度范围对应的测试速度进行转动,以进行测 试。
第二方面,本申请提供一种电子设备,包括:至少一个处理器;存储器,存储器上存储有至少一个程序,当所述至少一个程序被所述至少一个处理器执行时,使得所述处理器实现上述任意一种实现方向图测试的方法。
第三方面,本申请提供一种计算机可读介质,计算机可读介质上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器实现上述任意一种实现方向图测试的方法。
附图说明
图1为本申请提供的实现方向图测试的方法的流程图;
图2为本申请的示例1提供的实现方向图测试的方法的流程图;
图3为本申请的示例1提供的测试速度示意图;
图4为本申请的示例2提供的实现方向图测试的方法的流程图;
图5为本申请的示例2提供的测试速度示意图;
图6为本申请的示例3提供的实现方向图测试的方法的流程图;
图7为本申请的示例3提供的测试速度示意图;
图8为本申请提供的实现方向图测试的装置的组成框图。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图对本申请提供的实现方向图测试的方法、电子设备、计算机可读介质进行详细描述。
在下文中将参考附图更充分地描述示例实施方式,但是所述示例实施方式可以以不同形式来体现且不应当被解释为限于本文阐述的实施方式。反之,提供这些实施方式的目的在于使本申请透彻和完整,并将使本领域技术人员充分理解本申请的范围。
在不冲突的情况下,本申请各实施方式及实施方式中的各特征可相互组合。
如本文所使用的,术语“和/或”包括至少一个相关列举条目的 任何和所有组合。
本文所使用的术语仅用于描述特定实施方式,且不意欲限制本申请。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加至少一个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本申请的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
相关的方向图测试方法存在测试时间长、采集到的数据量大、测试效率低的问题。
图1为本申请提供的实现方向图测试的方法的流程图。
第一方面,参照图1,本申请提供一种实现方向图测试的方法,该方法可以应用于水平方向图测试,也可以应用于垂直方向图测试,也可以应用于交叉极化方向图测试。
该方法的测试环境可以是近场、紧缩场、远场等。
该方法提及的方向图可以是指有源方向图,也可以是指无源方向图。
该方法包括步骤100至102。
在步骤100,根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围。
在一些示例性实施方式中,第一指标可以是一个或一个以上。
在一些示例性实施方式中,第一指标包括以下指标中的至少一个:水平3dB波瓣角、轴向交叉极化比、倾角范围、上第一旁瓣抑制、上旁瓣抑制等。
在一些示例性实施方式中,第一指标对应的第一角度范围是指测试第一指标所需要的角度范围。
在一些示例性实施方式中,不同的第一指标对应的第一角度范围可以相同,也可以不同。
在一些示例性实施方式中,根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围包括:确定第二角度范围为第一角度范围的下限的最小值和第一偏移值的差值到第一角度范围的上限的最大值和第二偏移值的和值之间的角度范围。
例如,假设波束指向所需要分析的第一指标有n个,这n个第一指标对应的第一角度范围分别为(lH1,hH1),(lH2,hH2),……,(lHn,hHn),那么,可以得到第二角度范围的下限H2为:H2=min(lH1,lH2,...,lHn)-lHoffset;第二角度范围的上限H3为:H3=max(hH1,hH2,...,hHn)+hHoffset。其中,lHoffset为第一偏移值,hHoffset为第二偏移值。
在一些示例性实施方式中,设置第一偏移值和第二偏移值的目的是为了保证需要采集的数据能够全部采集到,第一偏移值和第二偏移值可以根据实际情况进行设置。例如,第一偏移值和第二偏移值在10到20度之间取值。
在一些示例性实施方式中,第二角度范围小于360度。
在步骤101,根据单次测量时间确定第二角度范围对应的测试速度。
在一些示例性实施方式中,频谱仪的单次测量时间与被测信号的频点、带宽、扫描时间(SweepTime)、分辨率带宽(RBW,Resolution BandWidth)、Trigger等相关。
在一些示例性实施方式中,根据单次测量时间确定第二角度范围对应的测试速度包括:根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度;根据第二轴的最大角速度确定第二角度范围对应的测试速度。
在一些示例性实施方式中,根据单次测量时间确定采样时间间 隔包括:确定采样时间间隔大于单次测量时间的A倍,A大于或等于1。例如,为了保证不会出现采样丢失的现象,设置采样时间间隔大于单次测量时间,如满足公式SampleTime>ROUND(1.5*TT,1)。其中,SampleTime为采样时间间隔,TT为单次测量时间,ROUND(X,Y)为对X进行四舍五入,精确到小数点后第Y位。
在一些示例性实施方式中,根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度包括:确定第二轴的最大角速度为第二角度范围对应的采样角度步进和采样时间间隔的比值。假设第二角度范围对应的采样角度步进为Step,则第二轴的最大角速度HVelocity为:
在一些示例性实施方式中,根据第二轴的最大角速度确定第二角度范围对应的测试速度包括:确定第二角度范围对应的测试速度为第二轴的最大角速度的α倍,α大于1。
在一些示例性实施方式中,α取2或3。
在步骤102,生成第一控制信号,第一控制信号用于控制转台的第一轴转到指定角度,以及控制转台的第二轴在所述第二角度范围内按照第二角度范围对应的测试速度进行转动,以进行测试。
在一些示例性实施方式中,针对水平方向图的测试,第一轴为垂直轴,第二轴为水平轴,指定角度由当前测试波束的垂直指向确定,如指向角度为当前测试波束的垂直指向角度。
在一些示例性实施方式中,针对垂直方向图的测试,第一轴为水平轴,第二轴为垂直轴,指定角度由当前测试波束的水平指向确定,如指向角度为当前测试波束的水平指向角度。
在一些示例性实施方式中,针对交叉极化方向图的测试,第一轴为垂直轴,第二轴为水平轴,指定角度由当前测试波束的垂直指向确定,如指向角度为当前测试波束的垂直指向角度。
在一些示例性实施方式中,在开始测试之前,可以控制转台的第一轴以转台厂家给定的第一轴的最大转速由当前角度转到指定角度, 控制转台的第二轴以转台厂家给定的第二轴的最大转速由当前角度转到第二角度范围的下限对应的角度。
在一些示例性实施方式中,该方法还包括:根据第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定方向图测试所需要的第四角度范围;根据单次测量时间确定第四角度范围对应的测试速度;生成第二控制信号,第二控制信号用于控制转台的第一轴转到指定角度,以及控制转台的第二轴在所述第四角度范围内按照所述第四角度范围对应的测试速度进行转动,以进行测试。
在一些示例性实施方式中,第二角度范围的测试速度小于第四角度范围的测试速度。
在一些示例性实施方式中,第二角度范围和第四角度范围之和小于或等于360度。
在一些示例性实施方式中,第二指标包括以下指标至少之一:同极化前后比、交叉极化前后比。
在一些示例性实施方式中,根据第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定方向图测试所需要的第四角度范围包括:确定第四角度范围包括:第三角度范围的下限到第二角度范围的下限之间的角度范围,以及第二角度范围的上限到第三角度范围的上限之间的角度范围。
在一些示例性实施方式中,根据第二角度范围和第二指标对应的第三角度范围确定方向图测试所需要的第四角度范围包括:确定第四角度范围包括:第三角度范围的下限的最小值到第二角度范围的下限之间的角度范围,以及第二角度范围的上限到第三角度范围的上限的最大值之间的角度范围。
在一些示例性实施方式中,根据单次测量时间确定第四角度范围对应的测试速度包括:根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度;根据第二轴的最大角速度确定第四角度范围对应的测试速度。
在一些示例性实施方式中,根据单次测量时间确定采样时间间 隔包括:确定采样时间间隔大于单次测量时间的A倍,A大于或等于1。例如,为了保证不会出现采样丢失的现象,设置采样时间间隔大于单次测量时间,如满足公式SampleTime>ROUND(1.5*TT,1)。其中,SampleTime为采样时间间隔,TT为单次测量时间,ROUND(X,Y)为对X进行四舍五入,精确到小数点后第Y位。
在一些示例性实施方式中,根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度包括:确定第二轴的最大角速度为第二角度范围对应的采样角度步进和采样时间间隔的比值。假设第二角度范围对应的采样角度步进为Step,则第二轴的最大角速度HVelocity为:
在一些示例性实施方式中,根据第二轴的最大角速度确定第四角度范围对应的测试速度包括:确定第四角度范围对应的测试速度为第二轴的最大角速度。
在一些示例性实施方式中,第四角度范围对应的采样角度步进为第四角度范围对应的测试速度和采样时间间隔的乘积。
在一些示例性实施方式中,在开始测试之前,可以控制转台的第一轴以转台厂家给定的第一轴的最大转速由当前角度转到指定角度,控制转台的第二轴以转台厂家给定的第二轴的最大转速由当前角度转到第三角度范围的下限对应的角度。
为了更直观的呈现本申请实施方式的实现方向图测试的方法,下面列举几个示例进行说明,所列举的示例不用于限定本申请实施方式的保护范围。
示例1
本示例描述水平方向图的测试方法,如图2所示,该方法包括步骤200至202。
在步骤200,根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围,根据第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定方向图测 试所需要的第四角度范围。
在本示例中,第一指标包括以下指标中的至少一个:水平3dB波瓣角、轴向交叉极化比、倾角范围、上第一旁瓣抑制、上旁瓣抑制等。
在本示例中,第二指标包括同极化前后比。如果不需要对同极化前后比进行分析,则可以不需要确定第四角度范围,后续也不需要确定第四角度范围对应的测试速度,也不需要生成第二控制信号。
在本示例中,如图3所示,假设波束指向所需要分析的第一指标有n个,这n个第一指标对应的第一角度范围分别为(lH1,hH1),(lH2,hH2),……,(lHn,hHn),那么,可以得到第二角度范围的下限H2为:H2=min(lH1,lH2,...,lHn)-lHoffset;第二角度范围的上限H3为:H3=max(hH1,hH2,...,hHn)+hHoffset。其中,lHoffset为第一偏移值,hHoffset为第二偏移值。
在本示例中,如图3所示,假设第三角度范围为(H1,H4),则第四角度范围包括:角度范围(H1,H2)和角度范围(H3,H4)。
本示例中,如图3所示,H1可以取值为-180度,H4可以取值为180度。
在步骤201,根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定水平轴的最大角速度;根据水平轴的最大角速度确定第二角度范围对应的测试速度和第四角度范围对应的测试速度。
在本示例中,为了保证不会出现采样丢失的现象,设置采样时间间隔大于单次测量时间,如满足公式SampleTime>ROUND(1.5*TT,1)。其中,SampleTime为采样时间间隔,TT为单次测量时间,ROUND(X,Y)为对X进行四舍五入,精确到小数点后第Y位。
在本示例中,假设第二角度范围对应的采样角度步进为Step,则水平轴的最大角速度HVelocity为:
在本示例中,如图3所示,第二角度范围对应的测试速度S1为: S1=HVelocity×α,α大于1。
在本示例中,如图3所示,第四角度范围对应的测试速度S2为:S2=HVelocity
在本示例中,根据第四角度范围对应的测试速度S2可以计算得到第四角度范围对应的采样角度步进Step2为:Step2=Round(S2×SampleTime,1)。
在步骤202,生成第一控制信号和第二控制信号,第二控制信号用于控制转台的垂直轴转到指定角度,控制转台的水平轴在第四角度范围内按照第四角度范围对应的测试速度进行转动,以进行测试,第一控制信号用于控制转台的垂直轴转到指定角度,控制转台的水平轴在第二角度范围内按照第二角度范围对应的测试速度进行转动,以进行测试。
本示例中,相比匀速测试所节省的时间SaveTime为:
本示例中,在开始测试之前,可以控制转台的垂直轴以转台厂家给定的垂直轴的最大转速由当前角度转到指定角度,控制转台的水平轴以转台厂家给定的水平轴的最大转速由当前角度转到H1
示例2
本示例描述垂直方向图的测试方法,如图4所示,该方法包括步骤400至402。
在步骤400,根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围。
在本示例中,第一指标包括以下指标中的至少一个:水平3dB波瓣角、轴向交叉极化比、倾角范围、上第一旁瓣抑制、上旁瓣抑制等。
在本示例中,如图5所示,假设波束指向所需要分析的第一指标有n个,这n个第一指标对应的第一角度范围分别为(lV1,hV1),(lV2,hV2),……,(lVn,hVn),那么,可以得到第二角度范围的下限V1为:V1=min(lV1,lV2,...,lVn)-lVoffset;第二角度范围的上限V2 为:V2=max(hV1,hV2,...,hVn)+hVoffset。其中,lVoffset为第一偏移值,hVoffset为第二偏移值。
在步骤401,根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定水平轴的最大角速度;根据水平轴的最大角速度确定第二角度范围对应的测试速度。
在本示例中,为了保证不会出现采样丢失的现象,设置采样时间间隔大于单次测量时间,如满足公式SampleTime>ROUND(1.5*TT,1)。其中,SampleTime为采样时间间隔,TT为单次测量时间,ROUND(X,Y)为对X进行四舍五入,精确到小数点后第Y位。
在本示例中,假设第二角度范围对应的采样角度步进为Step,则垂直轴的最大角速度VVelocity为:
在本示例中,如图5所示,第二角度范围对应的测试速度S3为:S3=VVelocity
在步骤402,生成第一控制信号,第一控制信号用于控制转台的水平轴转到指定角度,控制转台的垂直轴在第二角度范围内按照第二角度范围对应的测试速度进行转动,以进行测试。
本示例中,相比匀速测试所节省的时间SaveTime为:
本示例中,在开始测试之前,可以控制转台的水平轴以转台厂家给定的水平轴的最大转速由当前角度转到指定角度,控制转台的垂直轴以转台厂家给定的垂直轴的最大转速由当前角度转到V1
示例3
本示例描述交叉极化方向图的测试方法,如图6所示,该方法包括步骤600至602。
在步骤600,根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围。
在本示例中,第一指标包括以下指标中的至少一个:水平3dB波瓣角、轴向交叉极化比、倾角范围、上第一旁瓣抑制、上旁瓣抑制等。
在本示例中,如图7所示,假设波束指向所需要分析的第一指标有n个,这n个第一指标对应的第一角度范围分别为(lx1,hx1),(lx2,hx2),……,(lxn,hxn),那么,可以得到第二角度范围的下限X1为:X1=min(lX1,lX2,...,lXn)-lXoffset;第二角度范围的上限X2为:X2=max(hX1,hX2,...,hXn)+hXoffset。其中,lxoffset为第一偏移值,hxoffset为第二偏移值。
在步骤601,根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定水平轴的最大角速度;根据水平轴的最大角速度确定第二角度范围对应的测试速度。
在本示例中,为了保证不会出现采样丢失的现象,设置采样时间间隔大于单次测量时间,如满足公式SampleTime>ROUND(1.5*TT,1)。其中,SampleTime为采样时间间隔,TT为单次测量时间,ROUND(X,Y)为对X进行四舍五入,精确到小数点后第Y位。
在本示例中,假设第二角度范围对应的采样角度步进为Step,则水平轴的最大角速度XVelocity为:
在本示例中,如图7所示,第二角度范围对应的测试速度S4为:S4=XVelocity
在步骤602,生成第一控制信号,第一控制信号用于控制转台的垂直轴转到指定角度,控制转台的水平轴在第二角度范围内按照第二角度范围对应的测试速度进行转动,以进行测试。
本示例中,相比匀速测试所节省的时间SaveTime为:
本示例中,在开始测试之前,可以控制转台的垂直轴以转台厂家给定的垂直轴的最大转速由当前角度转到指定角度,控制转台的水平 轴以转台厂家给定的水平轴的最大转速由当前角度转到X1
本申请实施方式提供的实现方向图测试的方法,根据波束指向所需要分析的第一指标对应的第一角度范围得到方向图测试所需要的第二角度范围,而不是进行360度扫描,缩短了测试时间、减少了采集的数据量,提高了测试效率。
第二方面,本申请提供一种电子设备,包括:至少一个处理器;存储器,存储器上存储有至少一个程序,当至少一个程序被至少一个处理器执行时,使得至少一个处理器实现上述任意一种实现方向图测试的方法。
其中,处理器为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH)。
在一些实施方式中,处理器、存储器通过总线相互连接,进而与计算设备的其它组件连接。
第三方面,本申请提供一种计算机可读介质,计算机可读介质上存储有计算机程序,计算机程序被处理器执行时,使得处理器实现上述任意一种实现方向图测试的方法。
图8为本申请提供的实现方向图测试的装置的组成框图。
第四方面,参照图8,本申请另一个实施方式提供一种实现方向图测试的装置,包括:计算模块801,配置为根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围;确定模块802,配置为根据单次测量时间确定第二角度范围对应的测试速度;测试模块803,配置为生成第一控制信号,所述第一控制信号用于控制转台的第一轴转到指定角度,以及控制所述转台的第二轴在所述第二角度范围内按照所述第二角度范围对应的测试速度进行转动,以进行测试。
在一些示例性实施方式中,计算模块801还配置为:根据第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定方向图测试所需要的第四角度范围;确定模块802还配置为:根据 单次测量时间确定第四角度范围对应的测试速度;测试模块803还配置为:生成第二控制信号,所述第二控制信号用于控制所述转台的第一轴转到指定角度,以及控制所述转台的第二轴在所述第四角度范围内按照所述第四角度范围对应的测试速度进行转动,以进行测试。
在一些示例性实施方式中,第二角度范围的测试速度小于第四角度范围的测试速度。
在一些示例性实施方式中,计算模块801配置为采用以下方式实现根据第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定方向图测试所需要的第四角度范围:确定第四角度范围包括:第三角度范围的下限到第二角度范围的下限之间的角度范围,以及第二角度范围的上限到第三角度范围的上限之间的角度范围。
在一些示例性实施方式中,确定模块802配置为采用以下方式实现根据单次测量时间确定第四角度范围对应的测试速度:根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度;根据第二轴的最大角速度确定第四角度范围对应的测试速度。
在一些示例性实施方式中,确定模块802配置为采用以下方式实现根据单次测量时间确定采样时间间隔:确定采样时间间隔大于单次测量时间的A倍,A大于或等于1。
在一些示例性实施方式中,确定模块802配置为采用以下方式实现根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度:确定第二轴的最大角速度为第二角度范围对应的采样角度步进和采样时间间隔的比值。
在一些示例性实施方式中,确定模块802配置为采用以下方式实现根据第二轴的最大角速度确定第四角度范围对应的测试速度:确定第四角度范围对应的测试速度为第二轴的最大角速度。
在一些示例性实施方式中,计算模块801配置为采用以下方式实现根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围:确定第二角度范围为第一角度范围的下限的最小值和第一偏移值的差值到第一角度范围的上限的最 大值和第二偏移值的和值之间的角度范围。
在一些示例性实施方式中,确定模块802配置为采用以下方式实现根据单次测量时间确定第二角度范围对应的测试速度:根据单次测量时间确定采样时间间隔;根据采样时间间隔和第二角度范围对应的采样角度步进确定第二轴的最大角速度;根据第二轴的最大角速度确定第二角度范围对应的测试速度。
在一些示例性实施方式中,确定模块802配置为采用以下方式实现根据第二轴的最大角速度确定第二角度范围对应的测试速度:确定第二角度范围对应的测试速度为第二轴的最大角速度的α倍,α大于1。
上述实现方向图测试的装置的具体实现过程与前述实施方式实现方向图测试的方法的具体实现过程相同,这里不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储器、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或 其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施方式,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施方式相结合描述的特征、特性和/或元素,或可与其它实施方式相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本申请的范围的情况下,可进行各种形式和细节上的改变。

Claims (13)

  1. 一种实现方向图测试的方法,包括:
    根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围;
    根据单次测量时间确定所述第二角度范围对应的测试速度;
    生成第一控制信号,所述第一控制信号用于控制转台的第一轴转到指定角度,以及控制所述转台的第二轴在所述第二角度范围内按照所述第二角度范围对应的测试速度进行转动,以进行测试。
  2. 根据权利要求1所述的实现方向图测试的方法,还包括:
    根据所述第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定所述方向图测试所需要的第四角度范围;
    根据所述单次测量时间确定所述第四角度范围对应的测试速度;
    生成第二控制信号,所述第二控制信号用于控制所述转台的第一轴转到指定角度,以及控制所述转台的第二轴在所述第四角度范围内按照所述第四角度范围对应的测试速度进行转动,以进行测试。
  3. 根据权利要求2所述的实现方向图测试的方法,其中,所述第二角度范围的测试速度小于所述第四角度范围的测试速度。
  4. 根据权利要求2所述的实现方向图测试的方法,其中,所述根据所述第二角度范围和波束指向所需要分析的第二指标对应的第三角度范围确定所述方向图测试所需要的第四角度范围包括:
    确定所述第四角度范围包括:所述第三角度范围的下限到所述第二角度范围的下限之间的角度范围,以及所述第二角度范围的上限到所述第三角度范围的上限之间的角度范围。
  5. 根据权利要求2所述的实现方向图测试的方法,其中,所述根据所述单次测量时间确定所述第四角度范围对应的测试速度包括:
    根据所述单次测量时间确定采样时间间隔;
    根据所述采样时间间隔和所述第二角度范围对应的采样角度步进确定所述第二轴的最大角速度;
    根据所述第二轴的最大角速度确定所述第四角度范围对应的测 试速度。
  6. 根据权利要求5所述的实现方向图测试的方法,其中,所述根据所述单次测量时间确定采样时间间隔包括:
    确定所述采样时间间隔大于所述单次测量时间的A倍,A大于或等于1。
  7. 根据权利要求5所述的实现方向图测试的方法,其中,所述根据所述采样时间间隔和所述第二角度范围对应的采样角度步进确定所述第二轴的最大角速度包括:
    确定所述第二轴的最大角速度为所述第二角度范围对应的采样角度步进和所述采样时间间隔的比值。
  8. 根据权利要求5所述的实现方向图测试的方法,其中,所述根据所述第二轴的最大角速度确定所述第四角度范围对应的测试速度包括:
    确定所述第四角度范围对应的测试速度为所述第二轴的最大角速度。
  9. 根据权利要求1所述的实现方向图测试的方法,其中,所述根据波束指向所需要分析的第一指标对应的第一角度范围计算方向图测试所需要的第二角度范围包括:
    确定所述第二角度范围为所述第一角度范围的下限的最小值和第一偏移值的差值到所述第一角度范围的上限的最大值和第二偏移值的和值之间的角度范围。
  10. 根据权利要求1所述的实现方向图测试的方法,其中,所述根据单次测量时间确定所述第二角度范围对应的测试速度包括:
    根据所述单次测量时间确定采样时间间隔;
    根据所述采样时间间隔和所述第二角度范围对应的采样角度步进确定所述第二轴的最大角速度;
    根据所述第二轴的最大角速度确定所述第二角度范围对应的测试速度。
  11. 根据权利要求10所述的实现方向图测试的方法,其中,所述根据所述第二轴的最大角速度确定所述第二角度范围对应的测试速 度包括:
    确定所述第二角度范围对应的测试速度为所述第二轴的最大角速度的α倍,α大于1。
  12. 一种电子设备,包括:
    至少一个处理器;
    存储器,所述存储器上存储有至少一个程序,当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器实现权利要求1-11任意一项所述的实现方向图测试的方法。
  13. 一种计算机可读介质,所述计算机可读介质上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器实现权利要求1-11任意一项所述的实现方向图测试的方法。
PCT/CN2023/081638 2022-04-18 2023-03-15 实现方向图测试的方法、电子设备、计算机可读介质 WO2023202277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210407451.1A CN116953373A (zh) 2022-04-18 2022-04-18 实现方向图测试的方法、电子设备、计算机可读介质
CN202210407451.1 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023202277A1 true WO2023202277A1 (zh) 2023-10-26

Family

ID=88419069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081638 WO2023202277A1 (zh) 2022-04-18 2023-03-15 实现方向图测试的方法、电子设备、计算机可读介质

Country Status (2)

Country Link
CN (1) CN116953373A (zh)
WO (1) WO2023202277A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073246A1 (en) * 2006-12-04 2010-03-25 Soon-Soo Oh System and method for measuring antenna radiation pattern in fresnel region based on phi-variation method
US20100207827A1 (en) * 2007-09-19 2010-08-19 Electronics And Telecommunications Research Institute Apparatus and Method for Measuring Antenna Radiation Patterns
US20130249746A1 (en) * 2012-03-22 2013-09-26 Electronics And Telecommunications Research Institute Method and apparatus for measuring radiated power of antenna
CN106342224B (zh) * 2010-09-14 2013-11-20 中国航空工业集团公司雷华电子技术研究所 一种天线幅度相位方向图的测量方法
CN103558459A (zh) * 2013-11-11 2014-02-05 电子科技大学 一种外场天线方向图的测试方法
CN104101786A (zh) * 2014-06-24 2014-10-15 中国电子科技集团公司第十研究所 全空域有源多波束球面相控阵天线方向图测量系统
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试系统、方法、毫米波雷达和计算机可读存储介质
CN112649792A (zh) * 2020-12-18 2021-04-13 芜湖易来达雷达科技有限公司 一种毫米波雷达测试转台及其测试方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073246A1 (en) * 2006-12-04 2010-03-25 Soon-Soo Oh System and method for measuring antenna radiation pattern in fresnel region based on phi-variation method
US20100207827A1 (en) * 2007-09-19 2010-08-19 Electronics And Telecommunications Research Institute Apparatus and Method for Measuring Antenna Radiation Patterns
CN106342224B (zh) * 2010-09-14 2013-11-20 中国航空工业集团公司雷华电子技术研究所 一种天线幅度相位方向图的测量方法
US20130249746A1 (en) * 2012-03-22 2013-09-26 Electronics And Telecommunications Research Institute Method and apparatus for measuring radiated power of antenna
CN103558459A (zh) * 2013-11-11 2014-02-05 电子科技大学 一种外场天线方向图的测试方法
CN104101786A (zh) * 2014-06-24 2014-10-15 中国电子科技集团公司第十研究所 全空域有源多波束球面相控阵天线方向图测量系统
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试系统、方法、毫米波雷达和计算机可读存储介质
CN112649792A (zh) * 2020-12-18 2021-04-13 芜湖易来达雷达科技有限公司 一种毫米波雷达测试转台及其测试方法

Also Published As

Publication number Publication date
CN116953373A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN109495189B (zh) 一种阵列天线校准方法及装置
WO2018059821A1 (en) Reduced grid for measurement of total radiated power
CN110646772B (zh) 雷达安装参数校准方法及装置
WO2018161681A1 (zh) 一种波束旁瓣抑制的方法及装置
CN107247193B (zh) 天线近场测试方法及装置
CN113093096B (zh) 到达角度确定方法及相关装置
CN112926218A (zh) 净空距离的获取方法、装置、设备和存储介质
CN112819904A (zh) 一种用于标定ptz摄像机的方法与设备
US10432326B2 (en) Method, apparatus, device, and system for antenna alignment
EP3836454B1 (en) Method and device for improving phase measurement accuracy
WO2023202277A1 (zh) 实现方向图测试的方法、电子设备、计算机可读介质
CN113655298A (zh) 一种车载相控阵天线的测试方法、装置及电子设备
CN112448775B (zh) 蓝牙辐射性能测试方法、装置及存储介质
CN115267711B (zh) 一种天线指向性粗差校准方法、装置、设备及存储介质
CN111141952A (zh) 测试天线阵列产生的涡旋波的纯度的方法和装置
CN112821061A (zh) 一种波束方向调整方法、装置以及天线系统
US11166254B2 (en) Position relationship determining method and apparatus
CN110809277B (zh) 基站的优化方法及设备
CN108322269B (zh) 指向性天线的发射性能评估方法及装置
CN114660534A (zh) 到达角的确定方法、装置、计算机可读存储介质及电子设备
CN117910283B (zh) 测向天线阵的快速检测方法、系统、存储介质及计算机
AU2019204348B2 (en) Method and system for determining an angle of arrival of a radioelectric signal
CN112579969B (zh) 二维小角x射线散射图谱计算方法和装置
CN116108703B (zh) 应用于非平面天线罩波束指向值的修正方法及装置
CN117910283A (zh) 测向天线阵的快速检测方法、系统、存储介质及计算机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790938

Country of ref document: EP

Kind code of ref document: A1