WO2023202185A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2023202185A1
WO2023202185A1 PCT/CN2023/074913 CN2023074913W WO2023202185A1 WO 2023202185 A1 WO2023202185 A1 WO 2023202185A1 CN 2023074913 W CN2023074913 W CN 2023074913W WO 2023202185 A1 WO2023202185 A1 WO 2023202185A1
Authority
WO
WIPO (PCT)
Prior art keywords
potting
component
cavity
optical module
circuit
Prior art date
Application number
PCT/CN2023/074913
Other languages
English (en)
French (fr)
Inventor
孟繁博
王博杰
施沙美
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2023202185A1 publication Critical patent/WO2023202185A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • This application relates to the technical field of optical communication equipment, and specifically relates to an optical module.
  • optical modules optical transceiver modules
  • optical modules are important components of communication systems, resulting in a significant increase in power consumption of optical modules.
  • the national "dual carbon" strategy and the international pursuit of energy conservation and carbon reduction make it imperative to reduce the energy consumption of data centers. According to China data center energy consumption statistics in 2019, about 43% of the energy consumption of traditional data centers using air-cooling technology is used for heat dissipation, which is almost the same as the energy consumption of the equipment itself.
  • the heat dissipation design of the optical module itself has also encountered certain bottlenecks. Due to the compact structure of the optical module, the design space of traditional heat dissipation design solutions (internally conducting heat to the outer casing and external radiator through solid heat transfer, and then taking away the heat through forced air cooling) is greatly limited. On the existing basis, currently commonly used heat dissipation design solutions usually use TEC, heat pipes, vapor chambers, or use advanced thermal conductive materials such as graphene and liquid metal, or increase the thermal conductivity of thermal interface materials as much as possible.
  • the current heat dissipation efficiency of conventional optical modules is low, and the optical module uses an immersed liquid cooling solution.
  • the coolant easily penetrates into the optical path of the optical module, easily causing abnormal reflection, refraction, scattering and other problems, and even causing The optical module fails.
  • the application provides an optical module that can be adapted to the immersion liquid cooling solution, can reduce the risk of the cooling medium causing adverse effects on the beam propagation path, and has good heat dissipation efficiency and heat dissipation effect.
  • the optical module includes a housing assembly.
  • the optical module further includes a circuit component.
  • the circuit component is disposed in the housing component, wherein the circuit component has a first side and a second side that are oppositely arranged.
  • the optical module also includes a potting body, which is disposed on the circuit component and cooperates with the circuit component to form a sealed cavity on the first side.
  • the optical module also includes a light emitting/receiving element, a lens and a light guide component. The light beam propagation path formed by the light emitting/receiving element, the lens and the light guide component is in a sealed cavity.
  • the second side is connected to the outside of the housing assembly, so that the cooling medium entering the housing assembly can contact the circuit assembly for heat dissipation.
  • a potting cavity and a first heat dissipation cavity are formed between the circuit component and the housing component; the potting cavity is on the first side, and the potting body is potted in the potting cavity; the first The heat dissipation cavity is on the second side, and the first heat dissipation cavity is connected to the outside of the housing assembly, so that the cooling medium entering the housing assembly can contact the surface of the circuit assembly facing the first heat dissipation cavity.
  • a second heat dissipation cavity is also formed between the circuit component and the housing component; the second heat dissipation cavity is on the first side, and the second heat dissipation cavity and the potting cavity are spaced apart from each other; wherein, the second heat dissipation cavity
  • the heat dissipation cavity communicates with the outside of the housing assembly, so that the cooling medium entering the housing assembly can contact the surface of the circuit assembly facing the second heat dissipation cavity.
  • the housing component is provided with a first blocking wall and a second blocking wall on the first side; the second heat dissipation cavity is composed of the housing component, the circuit component, the first blocking wall and the second blocking wall.
  • the potting cavity is defined by the wall, and the potting cavity is on the side of the first retaining wall away from the second retaining wall.
  • the light guide component includes an optical fiber and an optical fiber fixing member provided at the end of the optical fiber; wherein, the light emitting/receiving element, the lens, and the optical fiber fixing member are all located in a sealed cavity.
  • the circuit assembly includes a circuit board and an electronic device; the surface of the circuit board facing the first side and/or the second side is provided with electronic devices, and the electronic device is not covered by the potting body, and the electronic device can Direct contact with the cooling medium for heat dissipation; and/or the surface of the circuit board facing the first side is provided with electronic devices, and the electronic devices are covered by the potting body, and the circuit board is also provided with a thermal conductive structure extending from the first side to the second side, The electronic device is connected to the thermally conductive structure on the first side, and the heat generated by the electronic device can be conducted to the second side through the thermally conductive structure for heat dissipation.
  • the optical module further includes a first limiting body and a second limiting body.
  • the first limiting body, the second limiting body, the circuit component and the housing component cooperate to form a potting cavity;
  • a limiting body is sandwiched between the circuit component and the housing component to form a seal;
  • a second limiting body is provided on the housing component and is spaced apart from the circuit component;
  • a potting opening is formed between the second limiting body and the circuit component , the potting body is potted in the potting cavity through the potting port, wherein the potting body at the position of the potting port does not pass the edge of the circuit component toward the first side.
  • the optical module further includes: a potting mold, which is provided on the circuit component and cooperates with the circuit component to form a potting cavity, and the potting body is potted in the potting cavity.
  • the optical module further includes an isolation component; the isolation component is provided in the sealed cavity, and the light beam propagation path is isolated from the potting body through the isolation component.
  • the circuit component includes a circuit board, and the light emitting/receiving element is located on the circuit board; the isolation component includes an isolation cover and an isolator; the lens covers the light emitting/receiving element, and the isolation cover is located away from the lens.
  • One side of the light emitting/receiving element among them, between the lens and the circuit board, between the lens and the isolation cover, between the lens and the light guide component, between the light guide component and the isolation cover, between the light guide component and the circuit board They are all sealed by isolators.
  • the circuit component includes a circuit board, and the light emitting/receiving element is provided on the circuit board; the isolation component includes a total reflection element and an isolator; the lens covers the light emitting/receiving element, and the lens faces away from the light emitting/receiving element.
  • the surface of the element has a reflective area, and the light beam undergoes total reflection in the reflective area; among them, the total reflective element is attached to the reflective area, and there are no gaps between the lens and the circuit board, between the lens and the light guide component, and between the light guide component and the circuit board.
  • a seal is formed by the spacer.
  • this application provides an optical module.
  • the potting body and the circuit component in the optical module cooperate to form a sealed cavity.
  • the light beam propagation path formed by the cooperation of the light emitting/receiving element, the lens and the light guide component is in a sealed cavity.
  • the optical module of this application can be adapted to the immersed liquid cooling solution.
  • the beam propagation path is isolated from the cooling medium through the potting body. The cooling medium will not penetrate into the beam propagation path, thus reducing the impact of the cooling medium on the beam propagation path. Risk of adverse effects.
  • the second side of the circuit component is connected to the outside of the housing component, so that the cooling medium entering the housing component can contact the circuit component for heat dissipation, which means that the optical module of the present application has good heat dissipation efficiency and heat dissipation effect.
  • Figure 1 is a schematic structural diagram of the first embodiment of the optical module of the present application.
  • Figure 2 is a schematic diagram of an embodiment of the K-K direction cross-sectional structure of the optical module shown in Figure 1;
  • Figure 3 is a schematic structural diagram of area A of the optical module shown in Figure 2;
  • Figure 4 is a schematic structural diagram of area B of the optical module shown in Figure 3;
  • Figure 5 is a schematic structural diagram of area C of the optical module shown in Figure 2;
  • Figure 6 is a schematic structural diagram of the D area of the optical module shown in Figure 2;
  • Figure 7 is a schematic cross-sectional structural diagram of the second embodiment of the optical module of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of the third embodiment of the optical module of the present application.
  • Figure 9 is a schematic cross-sectional structural diagram of the fourth embodiment of the optical module of the present application.
  • Figure 10 is a schematic structural diagram of the E area of the optical module shown in Figure 9;
  • Figure 11 is a schematic diagram of another embodiment of the K-K direction cross-sectional structure of the optical module shown in Figure 1;
  • Figure 12 is a schematic structural diagram of the F area of the optical module shown in Figure 11;
  • Figure 13 is a schematic structural diagram of an embodiment of the assembly process of circuit boards, light emitting/receiving components, lenses and light guide components according to the present application;
  • Figure 14 is a schematic structural diagram of an embodiment of the potting process of the potting body of the present application.
  • Figure 15 is a schematic structural diagram of the potting process of the potting body of the present application from another perspective.
  • an embodiment of the present application provides an optical module.
  • the optical module includes a housing assembly.
  • the optical module further includes a circuit component.
  • the circuit component is disposed in the housing component, wherein the circuit component has a first side and a second side that are oppositely arranged.
  • the optical module also includes a potting body, which is disposed on the circuit component and cooperates with the circuit component to form a sealed cavity on the first side.
  • the optical module also includes a light emitting/receiving element, a lens and a light guide component. The light beam propagation path formed by the light emitting/receiving element, the lens and the light guide component is in a sealed cavity.
  • the second side is connected to the outside of the housing assembly, so that the cooling medium entering the housing assembly can contact the circuit assembly for heat dissipation. This is explained in detail below.
  • Figure 1 is a schematic structural diagram of the first embodiment of the optical module of the present application.
  • Figure 2 is a schematic diagram of the K-K direction cross-sectional structure of the optical module shown in Figure 1.
  • Figure 3 is a schematic diagram of the optical module shown in Figure 2. Structural diagram of module A area.
  • the optical module includes a housing assembly 10 .
  • the housing assembly 10 is the basic carrier of the optical module, and at least plays the role of carrying and protecting other components of the optical module.
  • the optical module also includes circuit components 20 .
  • the circuit component 20 is provided on the housing component 10 .
  • the circuit component 20 has a first side M and a second side N arranged oppositely, as shown in FIG. 3 .
  • the optical module also includes a light emitting/receiving element (such as the light emitting element 41 described below), a lens 42 and a light guide component 43 .
  • the light emitting/receiving element is provided on the circuit component 20 .
  • the light emitting/receiving element When the light emitting/receiving element is specifically a light emitting element, the light emitting element responds to the electrical signal of the circuit component 20 and outputs a corresponding optical signal, and the optical signal is transmitted to the light guide component 43 through the lens 42; and when the light emitting/receiving element When the element is specifically a light receiving element, the optical signal transmitted by the light guide component 43 is transmitted to the light receiving element through the lens 42, and the light receiving element receives the optical signal and converts the optical signal into a corresponding electrical signal.
  • the optical module interacts with external devices through optical signals through the light guide component 43 .
  • the light emitting/receiving element may be a light emitting element, that is, the optical module only includes a light emitting element, and the optical module is used to output an optical signal to an external device; or the light emitting/receiving element may be a light receiving element, that is, the light module The module only includes a light-receiving element, and the optical module is used to receive optical signals input from an external device; or the light-emitting/receiving element can include both a light-emitting element and a light-receiving element, that is, the optical module includes both a light-emitting element and a light-receiving element.
  • the optical module can not only output optical signals to external devices, but also receive optical signals input from external devices.
  • the optical module can be provided with groups of light emitting elements and groups of light receiving elements, where the number of light emitting elements in each group can be 4, etc., and the number of light receiving elements in each group can also be 4, etc.
  • the following description takes the light emitting/receiving element, specifically the light emitting element 41, as an example. This is only for discussion purposes and is not intended to be limiting. Alternatively, the light emitting element 41 may be a laser or the like.
  • the light guide component 43 may include an optical fiber 432 and an optical fiber fixing part 433 provided at the end of the optical fiber 432. The end of the optical fiber 432 is fixed to the circuit component 20 through the optical fiber fixing part 433.
  • the optical module also includes a potting body 30 .
  • the potting body 30 is potted on the circuit component 20 , and the potting body 30 cooperates with the circuit component 20 to form a sealed cavity 31 on the first side M, that is, the sealed cavity 31 is defined by the potting body 30 and the circuit component 20 .
  • at least part of the potting body 30 is located on the first side M, and the at least part cooperates with the circuit component 20 to form a sealed cavity 31 .
  • the potting body 30 may be entirely located on the first side M of the circuit assembly 20 .
  • the potting body 30 can also be partially located on the first side M, and the remaining portion extends to other sides of the circuit assembly 20 (for example, the second side N). In the following description, it is taken as an example that the potting body 30 is entirely located on the first side M of the circuit component 20. This is only for discussion purposes and is not intended to be limiting.
  • the light emitting element 41, the lens 42 and the light guide component 43 cooperate to form a beam propagation path P, and the optical signal transmitted between the light emitting element 41, the lens 42 and the light guide component 43 propagates along the beam propagation path P.
  • the beam propagation path P includes a sub-path P1, a sub-path P2 and a sub-path P3.
  • the surface of the lens 42 has an incident area 422, a reflection area 421 and an exit area 423. Other areas on the surface of the lens 42 do not participate in forming the beam propagation path P.
  • the optical signal output by the light emitting element 41 propagates along the sub-path P1 to the lens 42 and is incident into the lens 42 from the incident region 422; the optical signal incident from the incident region 422 propagates along the sub-path P2 in the lens 42 and is reflected in the reflection region. 421 undergoes total reflection, and then exits from the exit area 423; the optical signal exiting from the exit area 423 propagates along the sub-path P3, and is incident from the light guide component 43 toward the end surface 434 of the lens 42 into the light guide component 43, and then passes through the light guide Component 43 outputs to an external device.
  • the light beam propagation path P formed by the cooperation of the light emitting element 41 , the lens 42 and the light guide component 43 is located in the sealed cavity 31 .
  • the sub-path P3 between them is in the sealed cavity 31.
  • the optical module of this embodiment can be adapted to the immersion liquid cooling solution.
  • the beam propagation path P is isolated from the cooling medium (such as cooling liquid) through the potting body 30 , and the cooling medium will not penetrate into the beam propagation path P. , thus reducing the risk of the cooling medium causing adverse effects on the beam propagation path P.
  • the beam propagation path P in this embodiment is reliably sealed by the potting body 30, and the optical module can operate stably for a long time while being immersed in the cooling medium.
  • the second side N of the circuit component 20 in this embodiment is connected to the outside of the housing component 10 so that the cooling medium entering the housing component 10 can contact the circuit component 20 for heat dissipation.
  • the optical module of this embodiment can use an immersed liquid cooling solution.
  • the immersed liquid cooling solution has good heat dissipation efficiency and heat dissipation effect, which is conducive to ensuring that the optical module of this embodiment has good heat dissipation efficiency and heat dissipation effect.
  • At least the beam propagation path P formed by the light emitting element 41, the lens 42 and the light guide component 43 is in the sealed cavity 31, which can prevent the cooling medium and the potting body 30 from affecting the beam propagation.
  • Path P causes adverse effects.
  • the light emitting element 41, the entire lens 42, and the optical fiber fixing member 433 are all located in the sealed cavity 31, thereby minimizing the adverse effects of the cooling medium and the potting body 30 on the beam propagation path P.
  • a potting cavity 32 and a first heat dissipation cavity 21 are formed between the circuit component 20 and the housing component 10 .
  • the housing assembly 10 has an accommodating space inside, the circuit assembly 20 is disposed in the accommodating space, and the accommodating space is divided into a potting cavity 32 and a first heat dissipation cavity 21 .
  • the potting cavity 32 is defined by the housing assembly 10 and the circuit assembly 20 (to be explained in detail below), and the potting cavity 32 covers the sealing cavity 31 ; the first heat dissipation cavity 21 is defined by the housing assembly 10 and the circuit assembly 20 .
  • the potting cavity 32 is located on the first side M, and the potting body 30 is potted in the potting cavity 32 .
  • the potting process of the potting body 30 will be explained below.
  • the first heat dissipation cavity 21 is located on the second side N, and the first heat dissipation cavity 21 is connected to the outside of the housing assembly 10 so that the cooling medium entering the housing assembly 10 can contact the surface of the circuit assembly 20 facing the first heat dissipation cavity 21 for cooling. Efficient heat dissipation.
  • this embodiment rationally plans the accommodation space inside the housing assembly 10 so that the potting body 30 forms a sealed cavity 31 on the first side M of the circuit assembly 20 to control the optical path of the optical module (ie, the beam propagation path P ) for reliable sealing; and, the second side N of the circuit assembly 20 forms a first heat dissipation cavity 21 to adapt to the immersion liquid cooling solution, and the cooling medium entering the housing assembly 10 can contact the circuit in the first heat dissipation cavity 21 assembly 20 for efficient heat dissipation.
  • the optical module of this embodiment not only has good heat dissipation efficiency and heat dissipation effect, but also can prevent the cooling medium from penetrating into the beam propagation path P and causing adverse effects on the beam propagation path P as much as possible.
  • Figure 5 is a schematic structural diagram of area C of the optical module shown in Figure 2
  • Figure 6 is a schematic structural diagram of area D of the optical module shown in Figure 2.
  • the potting process of the potting body 30 may be to fill the potting cavity 32 with uncured potting material. After the potting material is solidified, the potting body 30 is formed in the potting cavity 32 .
  • the optical module also includes a first limiting body 33 and a second limiting body 34 . The first limiting body 33 , the second limiting body 34 , the circuit component 20 and the housing component 10 cooperate to form a potting cavity 32 .
  • the first limiting body 33 is sandwiched between the circuit component 20 and the housing assembly 10 and forms a seal to prevent uncured potting material from passing through the circuit component 20 and the housing where the first limiting body 33 is located. Gaps between components 10 leak.
  • the second limiting body 34 is provided on the housing component 10 and is spaced apart from the circuit component 20 , so that a potting opening 35 is formed between the second limiting body 34 and the circuit component 20 .
  • the potting body 30 is potted in the potting cavity 32 through the potting port 35 , that is, the uncured potting material is poured into the potting cavity 32 through the potting port 35 , and then solidifies to form the potting body 30 .
  • the potting body 30 is potted in the potting cavity 32 through the above method.
  • the potting body 30 has good sealing reliability, and the potting method of this embodiment can be applied to the mass production process of optical modules. Not only It has high potting efficiency and can also ensure high yield. Traditional optical modules rely on dispensing glue to seal the gap to achieve sealing, which is difficult to operate, has poor mass production, and the sealing reliability is not high.
  • the potting method of this embodiment can completely seal the space near the beam propagation path P after the potting material solidifies to form the potting body 30. It is simple to operate, has strong mass production, and the sealing effect is extremely reliable.
  • the first limiting body 33 and the second limiting body 34 may be solidified colloid or electromagnetic shielding material.
  • the first limiting body 33 and the second limiting body 34 are made of electromagnetic shielding materials, the electromagnetic compatibility of the optical module can be improved.
  • Circuit assembly 20 includes circuit board 23 .
  • the first limiting body 33 , the second limiting body 34 , the circuit board 23 and the housing assembly 10 cooperate to form a potting cavity 32 .
  • the potting body 30 at the position of the potting opening 35 has submerged the edge of the circuit board 23 facing the first side M.
  • the housing component 10 is provided with a first retaining wall 11 on the first side M.
  • the first limiting body 33 is sandwiched between the circuit component 20 and the first retaining wall 11 and forms a seal to prevent uncured
  • the potting material leaks through the gap between the circuit component 20 and the first retaining wall 11 where the first limiting body 33 is located, as shown in FIG. 5 .
  • the potting material can be various types of potting glue, such as epoxy resin, silicone resin, acrylic resin, etc., or low-pressure injection molding materials.
  • the uncured potting material has a fluid form. After being injected and filled into the potting cavity 32, it is solidified by standing or other special process means.
  • the circuit component 20 and the housing component 10 are used to cooperate to form the potting cavity 32 , that is, the circuit component 20 and the housing component 10 are used to cooperate to form the container of the potting body 30 .
  • the housing assembly 10 , the first retaining wall 11 , the first limiting body 33 , the second limiting body 34 , and the circuit assembly 20 thereon define a potting cavity 32 .
  • the potting cavity 32 may also be formed without the use of the housing assembly 10 .
  • the optical module also includes a potting mold 36.
  • the potting mold 36 is provided on the circuit component 20, and the potting mold 36 cooperates with the circuit component 20 to form a potting cavity 32 (specifically, the potting mold 36 cooperates with the circuit board 23 to form a potting cavity 32. Potting cavity 32), the potting body 30 is potted in the potting cavity 32.
  • the potting mold 36 can be retained in the optical module, or the potting mold 36 can be disassembled after curing to form the potting body 30, as shown in FIG. 8, which is not limited here.
  • the optical module of this embodiment also includes an isolation component 50 .
  • the isolation component 50 is disposed in the sealed cavity 31, and the beam propagation path P is isolated from the potting body 30 through the isolation component 50, so as to avoid as much as possible the potting body 30 penetrating into the beam propagation path P before curing and causing damage to the beam propagation path P. adverse effects.
  • the isolation component 50 is pre-set to block the uncured potting material so that the uncured potting material can penetrate into the beam propagation path P of the optical module as much as possible. middle.
  • the surface of the lens 42 facing away from the light emitting element 41 has a reflective area 421 , and the light beam transmitted between the light emitting element 41 and the light guide component 43 undergoes total reflection in the reflective area 421 . If the potting body 30 contacts the reflective area 421 , the reflection of the light beam in the reflective area 421 will be adversely affected.
  • the isolation assembly 50 of this embodiment includes an isolation cover 51 .
  • the lens 42 covers the light emitting element 41 , and the isolation cover 51 is provided on the side of the lens 42 facing away from the light emitting element 41 .
  • the lens 42 is isolated from the potting body 30 by the isolation cover 51 , so that the reflection area 421 is isolated from the potting body 30 by the isolation cover 51 .
  • the isolation cover 51 not only isolates the reflective area 421 from the potting body 30, but also isolates other areas of the surface of the lens 42 away from the light emitting element 41 from the potting body 30 through the isolation cover 51, thereby minimizing the potting body 30. The risk of the enclosure 30 affecting the beam propagation path P.
  • the isolation assembly 50 also includes an isolation body 52 .
  • the assembly gaps between the circuit board 23 , the lens 42 , the light guide component 43 and the isolation cover 51 are all sealed by the isolation body 52 , so that the light beam propagation path P is isolated from the potting body 30 through the isolation assembly 50 .
  • the plates 23 are sealed by spacers 52 .
  • the isolation cover 51 is in a sheet-like structure.
  • the isolation cover 51 can also be in the form of a film structure, a glue structure, etc., and can function as an isolation lens 42 and the potting body 30 .
  • the isolation body 52 can be formed by dispensing glue, that is, the isolation body 52 itself is a solidified colloid.
  • the isolator 52 can also be formed by welding methods such as soldering, laser welding, etc., that is, the isolator 52 itself is a welded body; the isolator 52 can also be formed by sealing strips, that is, isolating The body 52 itself is a sealing strip.
  • FIG. 9 is a schematic cross-sectional structural diagram of the fourth embodiment of the optical module of the present application.
  • FIG. 10 is a schematic structural diagram of the E area of the optical module shown in FIG. 9 .
  • the difference between this embodiment and the above-mentioned embodiment is that the above-mentioned reflective area 421 is no longer isolated from the potting body 30 by the isolation cover 51 .
  • the isolation component 50 includes a total reflection element 53.
  • the total reflection element 53 is attached to the above-mentioned reflection area 421, that is, the reflection area 421 is isolated from the potting body 30 through the total reflection element 53.
  • the total reflection element 53 can ensure that the light beam passes through the reflection area 421. Total reflection occurs.
  • the total reflection element 53 is not attached to other areas of the surface of the lens 42 away from the light emitting element 41 .
  • the isolation assembly 50 also includes an isolation body 52 .
  • the assembly gaps between the circuit board 23 , the lens 42 and the light guide component 43 are all sealed by the isolation body 52 , so that the light beam propagation path P is isolated from the potting body 30 through the isolation assembly 50 .
  • the spacer 52 forms a seal between the lens 42 and the circuit board 23 , between the lens 42 and the light guide component 43 , and between the light guide component 43 and the circuit board 23 .
  • the total reflection element 53 may be a total reflection film or a total reflection patch, or the like.
  • the reflection area 421 is isolated from the potting body 30 through the total reflection element 53 .
  • Figure 11 is a schematic diagram of another embodiment of the K-K direction cross-sectional structure of the optical module shown in Figure 1.
  • Figure 12 is a schematic structural diagram of the F area of the optical module shown in Figure 11.
  • a second heat dissipation cavity 22 is also formed between the circuit component 20 and the casing component 10 , that is, the circuit component 20 cooperates with the casing component 10 to divide the above-mentioned accommodation space into a second heat dissipation cavity 22 .
  • the second heat dissipation cavity 22 is located on the first side M of the circuit assembly 20, and the second heat dissipation cavity 22 and the potting cavity 32 are spaced apart from each other.
  • the second heat dissipation cavity 22 is connected to the outside of the housing assembly 10 so that the cooling medium entering the housing assembly 10 can contact the surface of the circuit assembly 20 facing the second heat dissipation cavity 22 for efficient heat dissipation.
  • the surface of the circuit component 20 facing the second side N is used to contact the cooling medium for efficient heat dissipation, but at least part of the surface of the circuit component 20 facing the first side M is also used to contact the cooling medium for efficient heat dissipation.
  • the potting body 30 is enough to reliably seal the beam propagation path P, the surface area of the circuit component 20 for contacting the cooling medium is increased, which further helps to improve the heat dissipation efficiency and effect.
  • the housing assembly 10 is provided with a first retaining wall 11 and a second retaining wall 12 on the first side M.
  • the first retaining wall 11 and the second retaining wall 12 are spaced apart from each other.
  • the potting cavity 32 is located on the side of the first retaining wall 11 away from the second retaining wall 12
  • the second heat dissipation cavity 22 is located between the first retaining wall 11 and the second retaining wall 12 .
  • the second heat dissipation cavity 22 is defined by the housing assembly 10 , the circuit assembly 20 , the first retaining wall 11 and the second retaining wall 12 .
  • the housing assembly 10 may include an upper housing 13 and a lower housing 14 .
  • the upper shell 13 and the lower shell 14 are butted together to form the above-mentioned accommodation space.
  • the circuit component 20 cooperates with the upper shell 13 to form a first heat dissipation cavity 21
  • the circuit component 20 cooperates with the lower shell 14 to form a potting cavity 32 and a second heat dissipation cavity 22 .
  • the first retaining wall 11 and the second retaining wall 12 are specifically provided on the lower shell 14 .
  • area I of the optical module when the optical module uses an immersion liquid cooling solution, area I of the optical module is immersed in the cooling medium.
  • the cooling medium will fill the internal space of the optical module in area I. Therefore, when designing the optical module, you can consider arranging high-power electronic devices in area I. These electronic devices can directly or indirectly contact the cooling medium, which can achieve good results. The heat dissipation effect.
  • Area II is exposed from the cooling medium and interfaces with other external devices of the communication system to interact with information and data, as shown in Figure 1.
  • the circuit assembly 20 includes a circuit board 23 and electronic devices, where the electronic devices may include chips 24 and the like.
  • the surface of the circuit board 23 facing the first side M and/or the second side N is provided with electronic devices, and the electronic devices are not covered by the potting body 30 , and the electronic devices can directly contact the cooling medium for heat dissipation.
  • the electronic devices in the first heat dissipation cavity 21 face the second side N and are not covered by the potting body 30 . This part of the electronic devices can directly contact and enter the first heat dissipation cavity.
  • the cooling medium in the heat dissipation cavity 21 dissipates heat.
  • the electronic devices in the second heat dissipation cavity 22 face the first side M and are not covered by the potting body 30 . These electronic devices can directly contact the cooling medium entering the second heat dissipation cavity 22 for heat dissipation.
  • the surface of the circuit board 23 facing the first side M is provided with electronic components, and the electronic components are covered by the potting body 30 .
  • the electronic devices covered by the potting body 30 may include electronic devices that are in direct contact with the potting body 30 , such as the electronic devices in area T in FIG. 3 .
  • the electronic devices covered by the potting body 30 may also include electronic devices that are not in direct contact with the potting body 30 , such as electronic devices in the sealed cavity 31 (ie, the chip 24 , the light emitting element 41 , etc.).
  • the circuit board 23 is also provided with a thermal conductive structure (not shown) extending from the first side M to the second side N.
  • the electronic device covered by the potting body 30 is connected to the thermal conductive structure on the first side M. The heat generated by this part of the electronic device The heat can be conducted to the second side N through the thermal conductive structure for heat dissipation, which is beneficial to improving the heat dissipation efficiency and heat dissipation effect of the optical module.
  • the thermal conductive structure may include thermal conductive holes and/or thermal conductive holes and thermal conductors embedded therein, etc.
  • the thermal holes can be made on the circuit board 23 by laser or other means, and the thermal conductor can be made of materials with good thermal conductivity such as copper.
  • FIG. 13 to FIG. 15 Please refer to FIG. 13 to FIG. 15 together.
  • the following is a general description of the assembly process of the optical module according to the embodiment of the present application.
  • S101 Assemble light emitting components, lenses and light guide components on the circuit board.
  • S102 Assemble an isolation cover on the side of the lens facing away from the light-emitting element.
  • an isolation cover 51 is assembled on the side of the lens 42 facing away from the light emitting element.
  • the function of the isolation cover 51 is to prevent the potting material from penetrating into the light beam propagation path during the subsequent potting process to form the potting body.
  • the assembly gaps between the circuit board 23 , the lens 42 , the light guide component 43 and the isolation cover 51 are sealed, that is, the gaps where the uncured potting material may penetrate into the light beam propagation path are sealed. gap.
  • the lens 42 and the circuit board 23 between the lens 42 and the isolation cover 51, between the lens 42 and the light guide component 43, between the light guide component 43 and the isolation cover 51, between the light guide component 43 and the circuit
  • the plates 23 are sealed by spacers 52 .
  • the end of the light guide component 43 close to the lens 42 is usually provided with a mounting hole 431 , and the relative position between the light guide component 43 and the lens 42 is fixed through the mounting hole 431 .
  • the isolator 52 is also provided in the mounting hole 431 to form a seal.
  • the side of the circuit board 23 provided with the lens 42 , the light guide component 43 and the isolation cover 51 is assembled with the lower case 14 , and then flipped 180° so that the circuit board 23 The side away from the lens 42, the light guide component 43 and the isolation cover 51 faces upward.
  • S105 Set the first limiting body and the second limiting body, and pour potting material to form a potting body.
  • a first limiting body 33 and a second limiting body 34 are provided.
  • the first limiting body 33 is provided between the circuit board 23 and the first retaining wall 11 of the lower case 14
  • the second limiting body 34 is provided on the lower case 14 .
  • the first limiting body 33, the second limiting body 34, the circuit board 23 and the lower shell 14 cooperate to form a potting cavity.
  • the second limiting body 34 and the circuit board 23 are spaced apart from each other, so that a potting opening 35 is formed between the second limiting body 34 and the circuit board 23 .
  • the uncured potting material is poured into the potting cavity through the potting port 35 and then solidifies to form the potting body 30 .
  • the potting material needs to cover the lower edge of the circuit board 23 (that is, the edge toward the first side), but not exceed the upper edge of the circuit board 23, so that the potting material is filled with potting material. Seal the cavity.
  • the cured potting body 30 can form an extremely reliable seal for the sealed cavity.
  • the upper case 13 is assembled to complete the assembly process of the optical module.
  • the assembled optical module is shown in Figure 1.
  • optical module provided by this application has been introduced in detail above. Specific examples are used in this article to illustrate the principles and implementation methods of this application. The description of the above embodiments is only used to help understand the method and its core idea of this application; at the same time, , for those of ordinary skill in the art, there will be changes in the specific implementation and application scope based on the ideas of this application. In summary, the content of this description should not be understood as a limitation of this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括壳体组件(10)和电路组件(20),电路组件(20)设于壳体组件(10)内,其中电路组件(20)具有相对设置的第一侧(M)和第二侧(N),该光模块还包括灌封体(30),灌封体(30)设于电路组件(20)上,且与电路组件(20)配合形成处于第一侧(M)的密封腔(31),该光模块还包括光发射/接收元件、透镜(42)以及导光部件(43),光发射/接收元件、透镜(42)以及导光部件(43)配合构成的光束传播路径(P)处于密封腔(31)中,其中,第二侧(N)连通壳体组件(10)的外部,使得进入壳体组件(10)的冷却媒介能够接触电路组件(20)以进行散热。

Description

一种光模块
本申请要求于2022年4月19日提交中国专利局、申请号为202220909501.1、发明名称为“一种光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通讯设备技术领域,具体涉及一种光模块。
背景技术
近年来,数据中心、高性能计算、5G通信等新兴技术的发展对信息传输速率提出了更高需求。因此,市场对作为通信系统重要器件的光收发模块(以下简称光模块)速率有更高的要求,导致光模块功耗大幅度提升。与此同时,国家“双碳”战略与国际对于节能减碳的追求使得降低数据中心的能耗势在必行。据2019年中国数据中心能耗统计,使用风冷技术的传统数据中心约43%的能耗用于散热,几乎与设备自身能耗持平。因此,通过提高散热效率来降低相关能耗、控制数据中心运营成本已势在必行。作为目前最具代表性的先进制冷方案,浸没式液冷是近期相关行业众所瞩目的焦点技术。为适应此形势,市场正迫切需求开发适用于浸没式液体制冷的光模块。
另一方面,除上述与国家政策及数据中心能耗管控相关的原因之外,光模块本身的散热设计目前也遇到了一定瓶颈。由于光模块结构紧凑,极大地限制了传统散热设计方案(内部通过固体传热将热量导至外壳及外置散热器,再通过强制风冷将热量带走)的设计空间。在现有基础上,目前常用的散热设计方案通常使用TEC、热管、均温板,或是使用石墨烯、液态金属等先进的导热材料,或者尽可能地提升导热界面材料的导热系数。这些方案大多会带来成本增加、功耗超标、工艺实现困难等难以解决的问题,且根据目前已有的理论分析和实验数据,其效果可能有限。随着模块速率和功耗的大幅度提升,散热设计瓶颈愈发明显。其中,浸没式液冷散热方案的散热效率远超传统风冷技术,在解决这一未来必将面临挑战的问题上具有非常好的前景。
然而,目前常规光模块的散热效率较低,且光模块应用浸没式液冷散热方案,冷却液容易渗透进光模块的光路之中,容易导致异常的反射、折射、散射等问题,甚至会导致光模块失效。
技术问题
申请提供一种光模块,能够适配浸没式液冷散热方案,能够降低冷却媒介对光束传播路径造成不良影响的风险,并且具有良好的散热效率及散热效果。
技术解决方案
本申请提供一种光模块。该光模块包括壳体组件。该光模块还包括电路组件,电路组件设于壳体组件内,其中电路组件具有相对设置的第一侧和第二侧。该光模块还包括灌封体,灌封体设于电路组件上,且与电路组件配合形成处于第一侧的密封腔。该光模块还包括光发射/接收元件、透镜以及导光部件,光发射/接收元件、透镜以及导光部件配合构成的光束传播路径处于密封腔中。其中,第二侧连通壳体组件的外部,使得进入壳体组件的冷却媒介能够接触电路组件以进行散热。
在本申请的一实施例中,电路组件和壳体组件之间形成有灌封腔和第一散热腔;灌封腔处于第一侧,且灌封体灌封于灌封腔中;第一散热腔处于第二侧,且第一散热腔连通壳体组件的外部,使得进入壳体组件的冷却媒介能够接触电路组件朝向第一散热腔的表面。
在本申请的一实施例中,电路组件和壳体组件之间还形成有第二散热腔;第二散热腔处于第一侧,且第二散热腔与灌封腔彼此间隔;其中,第二散热腔连通壳体组件的外部,使得进入壳体组件的冷却媒介能够接触电路组件朝向第二散热腔的表面。
在本申请的一实施例中,壳体组件上设有处于第一侧的第一挡墙和第二挡墙;第二散热腔由壳体组件、电路组件、第一挡墙以及第二挡墙所界定,灌封腔处于第一挡墙背离第二挡墙的一侧。
在本申请的一实施例中,导光部件包括光纤及设于光纤端部的光纤固定件;其中,光发射/接收元件、透镜以及光纤固定件均处于密封腔中。
在本申请的一实施例中,电路组件包括电路板和电子器件;电路板朝向第一侧和/或第二侧的表面设有电子器件,且电子器件未被灌封体覆盖,电子器件能够直接接触冷却媒介进行散热;和/或电路板朝向第一侧的表面设有电子器件,且电子器件被灌封体覆盖,电路板还设有自第一侧延伸至第二侧的导热结构,电子器件于第一侧连接导热结构,电子器件产生的热量能够通过导热结构传导至第二侧进行散热。
在本申请的一实施例中,光模块还包括第一限位体和第二限位体,第一限位体、第二限位体、电路组件及壳体组件配合形成灌封腔;第一限位体夹设于电路组件和壳体组件之间且形成密封;第二限位体设于壳体组件且与电路组件彼此间隔,第二限位体和电路组件之间形成有灌封口,灌封体通过灌封口灌封于灌封腔中,其中灌封口所在位置处的灌封体没过电路组件朝向第一侧的边缘。
在本申请的一实施例中,光模块还包括:灌封模具,设于电路组件上,且与电路组件配合形成灌封腔,灌封体灌封于灌封腔中。
在本申请的一实施例中,光模块还包括隔离组件;隔离组件设于密封腔中,光束传播路径通过隔离组件与灌封体隔离。
在本申请的一实施例中,电路组件包括电路板,光发射/接收元件设于电路板;隔离组件包括隔离盖片和隔离体;透镜覆盖光发射/接收元件,隔离盖片设于透镜背离光发射/接收元件的一侧;其中,透镜和电路板之间、透镜和隔离盖片之间、透镜和导光部件之间、导光部件和隔离盖片之间,导光部件和电路板之间均通过隔离体形成密封。
在本申请的一实施例中,电路组件包括电路板,光发射/接收元件设于电路板;隔离组件包括全反射元件和隔离体;透镜覆盖光发射/接收元件,且透镜背离光发射/接收元件的表面具有反射区域,光束在反射区域发生全反射;其中,全反射元件附着于反射区域,且透镜和电路板之间、透镜和导光部件之间、导光部件和电路板之间均通过隔离体形成密封。
有益效果
本申请的有益效果是:区别于现有技术,本申请提供一种光模块。该光模块中灌封体和电路组件配合形成密封腔。光发射/接收元件、透镜以及导光部件配合构成的光束传播路径处于密封腔中。换言之,本申请光模块能够适配浸没式液冷散热方案,光束传播路径通过灌封体与冷却媒介隔离开来,冷却媒介不会渗透至光束传播路径中,因而能够降低冷却媒介对光束传播路径造成不良影响的风险。
并且,电路组件的第二侧连通壳体组件的外部,使得进入壳体组件的冷却媒介能够接触电路组件以进行散热,意味着本申请光模块具有良好的散热效率及散热效果。
附图说明
在为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请光模块第一实施例的结构示意图;
图2是图1所示光模块K-K方向剖面结构一实施例的示意图;
图3是图2所示光模块A区域的结构示意图;
图4是图3所示光模块B区域的结构示意图;
图5是图2所示光模块C区域的结构示意图;
图6是图2所示光模块D区域的结构示意图;
图7是本申请光模块第二实施例的剖面结构示意图;
图8是本申请光模块第三实施例的剖面结构示意图;
图9是本申请光模块第四实施例的剖面结构示意图;
图10是图9所示光模块E区域的结构示意图;
图11是图1所示光模块K-K方向剖面结构另一实施例的示意图;
图12是图11所示光模块F区域的结构示意图;
图13是本申请电路板、光发射/接收元件、透镜以及导光部件的装配过程一实施例的结构示意图;
图14是本申请灌封体的灌封过程一实施例的结构示意图;
图15是本申请灌封体的灌封过程另一视角的结构示意图。
附图标记说明:
10 壳体组件、11 第一挡墙、12 第二挡墙、13 上壳、14 下壳、20 电路组件、21 第一散热腔、22 第二散热腔、23 电路板、24 芯片、30 灌封体、31 密封腔、32 灌封腔、33 第一限位体、34 第二限位体、35 灌封口、36 灌封模具、41 光发射元件、42 透镜、421 反射区域、422 入射区域、423 出射区域、43 导光部件、431 安装孔、432 光纤、433 光纤固定件、434 端面、50 隔离组件、51 隔离盖片、52 隔离体、53 全反射元件。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”、“下”、“左”、“右”通常是指装置实际使用或工作状态下的上、下、左和右,具体为附图中的图面方向。
本申请提供一种光模块,以下分别进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。且在以下实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
为解决现有技术中冷却液容易渗透进光模块的光路中的技术问题,本申请的一实施例提供一种光模块。该光模块包括壳体组件。该光模块还包括电路组件,电路组件设于壳体组件内,其中电路组件具有相对设置的第一侧和第二侧。该光模块还包括灌封体,灌封体设于电路组件上,且与电路组件配合形成处于第一侧的密封腔。该光模块还包括光发射/接收元件、透镜以及导光部件,光发射/接收元件、透镜以及导光部件配合构成的光束传播路径处于密封腔中。其中,第二侧连通壳体组件的外部,使得进入壳体组件的冷却媒介能够接触电路组件以进行散热。以下进行详细阐述。
请参阅图1至图3,图1是本申请光模块第一实施例的结构示意图,图2是图1所示光模块K-K方向剖面结构一实施例的示意图,图3是图2所示光模块A区域的结构示意图。
在一实施例中,光模块包括壳体组件10。壳体组件10为光模块的基础载体,对光模块的其它零部件至少起到承载及保护的作用。
光模块还包括电路组件20。电路组件20设于壳体组件10。其中,电路组件20具有相对设置的第一侧M和第二侧N,如图3所示。
请一并参阅图4,光模块还包括光发射/接收元件(例如下述的光发射元件41)、透镜42以及导光部件43。光发射/接收元件设于电路组件20上。当光发射/接收元件具体为光发射元件时,光发射元件响应于电路组件20的电信号而输出对应的光信号,该光信号通过透镜42传输至导光部件43;而当光发射/接收元件具体为光接收元件时,导光部件43传输的光信号通过透镜42传输至光接收元件,光接收元件接收该光信号,并将该光信号转换为对应的电信号。光模块通过导光部件43与外部设备进行光信号交互。
本申请实施例光发射/接收元件可以是光发射元件,即光模块仅包括光发射元件,光模块用于向外部设备输出光信号;或者,光发射/接收元件可以是光接收元件,即光模块仅包括光接收元件,光模块用于接收外部设备输入的光信号;亦或是,光发射/接收元件可以同时包括光发射元件和光接收元件,即光模块同时包括光发射元件和光接收元件,光模块不仅能够向外部设备输出光信号,还能够接收外部设备输入的光信号。光模块可以设置成组的光发射元件以及成组的光接收元件,其中每一组光发射元件的数量可以为4个等,每一组光接收元件的数量也可以为4个等。
下文以光发射/接收元件具体是光发射元件41为例进行阐述,仅为论述需要,并非因此造成限定。可选地,光发射元件41可以是激光器等。导光部件43可以包括光纤432及设于光纤432端部的光纤固定件433,光纤432的端部通过光纤固定件433固定于电路组件20。
光模块还包括灌封体30。灌封体30灌封于电路组件20上,且灌封体30与电路组件20配合形成处于第一侧M的密封腔31,即密封腔31由灌封体30和电路组件20所界定。具体地,灌封体30的至少部分处于第一侧M,且该至少部分与电路组件20配合形成密封腔31。可以理解的是,灌封体30可以全部处于电路组件20的第一侧M。当然,灌封体30也可以部分处于第一侧M,剩余部分延伸至电路组件20的其它侧(例如第二侧N)。下文以灌封体30全部处于电路组件20的第一侧M为例进行阐述,仅为论述需要,并非因此造成限定。
本实施例光发射元件41、透镜42以及导光部件43配合构成光束传播路径P,光发射元件41、透镜42以及导光部件43之间传输的光信号沿光束传播路径P传播。具体地,光束传播路径P包括子路径P1、子路径P2以及子路径P3。透镜42的表面具有入射区域422、反射区域421以及出射区域423,透镜42表面的其它区域并不参与构成光束传播路径P。光发射元件41输出的光信号沿子路径P1传播至透镜42,并从入射区域422入射至透镜42中;自入射区域422入射的光信号在透镜42中沿子路径P2传播,且在反射区域421发生全反射,之后从出射区域423出射;自出射区域423出射的光信号沿子路径P3传播,并从导光部件43朝向透镜42的端面434入射至导光部件43中,进而通过导光部件43输出至外部设备。
本实施例中光发射元件41、透镜42以及导光部件43配合构成的光束传播路径P处于密封腔31中。换言之,本实施例光发射元件41和入射区域422之间的子路径P1、透镜42中入射区域422和出射区域423之间的子路径P2,以及出射区域423和导光部件43的端面434之间的子路径P3处于密封腔31中。
通过上述方式,本实施例光模块能够适配浸没式液冷散热方案,光束传播路径P通过灌封体30与冷却媒介(例如冷却液)隔离开来,冷却媒介不会渗透至光束传播路径P中,因而能够降低冷却媒介对光束传播路径P造成不良影响的风险。意味着本实施例光束传播路径P通过灌封体30实现可靠密封,光模块能够在浸没于冷却媒介的状态下长期稳定工作。
并且,本实施例电路组件20的第二侧N连通壳体组件10的外部,使得进入壳体组件10的冷却媒介能够接触电路组件20以进行散热。意味着本实施例光模块可以应用浸没式液冷散热方案,浸没式液冷散热方案具有良好的散热效率及散热效果,有利于保证本实施例光模块具有良好的散热效率及散热效果。
需要说明的是,本申请实施例中至少光发射元件41、透镜42以及导光部件43构成的光束传播路径P处于密封腔31中,即可起到避免冷却媒介以及灌封体30对光束传播路径P造成不良影响的作用。本申请实施例优选是光发射元件41、整个透镜42、光纤固定件433均处于密封腔31中,进而最大限度地避免冷却媒介以及灌封体30对光束传播路径P造成不良影响。
当然,在本申请的其它实施例中,允许透镜42除入射区域422、反射区域421以及出射区域423以外的其它区域处于密封腔31的外部,还允许导光部件43除端面434之外的其它部分处于密封腔31的外部,在此不作限定。
在一实施例中,电路组件20和壳体组件10之间形成有灌封腔32和第一散热腔21。换言之,壳体组件10的内部具有容纳空间,电路组件20设于该容纳空间中,并将该容纳空间划分为灌封腔32和第一散热腔21。灌封腔32由壳体组件10和电路组件20所界定(将在下文详细阐述),且灌封腔32覆盖密封腔31;第一散热腔21由壳体组件10和电路组件20所界定。
灌封腔32处于第一侧M,且灌封体30灌封于灌封腔32中。灌封体30的灌封过程将在下文进行阐述。第一散热腔21处于第二侧N,且第一散热腔21连通壳体组件10的外部,使得进入壳体组件10的冷却媒介能够接触电路组件20朝向第一散热腔21的表面,以进行高效散热。
通过上述方式,本实施例通过合理规划壳体组件10内部的容纳空间,使得灌封体30在电路组件20的第一侧M形成密封腔31,以对光模块的光路(即光束传播路径P)进行可靠密封;并且,电路组件20的第二侧N形成第一散热腔21,以适配浸没式液冷散热方案,进入壳体组件10的冷却媒介能够在第一散热腔21中接触电路组件20以进行高效散热。换言之,本实施例光模块不仅具有良好的散热效率及散热效果,还能够尽可能避免冷却媒介渗透至光束传播路径P中而对光束传播路径P造成不良影响。
请一并参阅图5和图6,图5是图2所示光模块C区域的结构示意图,图6是图2所示光模块D区域的结构示意图。
在一实施例中,灌封体30的灌封过程可以是利用未固化的灌封材料充满灌封腔32,待灌封材料固化后,灌封腔32中形成灌封体30。光模块还包括第一限位体33和第二限位体34。第一限位体33、第二限位体34、电路组件20及壳体组件10配合形成灌封腔32。
具体地,第一限位体33夹设于电路组件20和壳体组件10之间且形成密封,以避免未固化的灌封材料通过第一限位体33所在位置的电路组件20和壳体组件10之间的缝隙泄露。并且,第二限位体34设于壳体组件10且与电路组件20彼此间隔,使得第二限位体34和电路组件20之间形成有灌封口35。灌封体30通过灌封口35灌封于灌封腔32中,即未固化的灌封材料通过灌封口35灌入灌封腔32中,进而固化形成灌封体30。
本实施例通过上述方式实现灌封体30灌封于灌封腔32中,灌封体30具有良好的密封可靠性,且本实施例的灌封方式能够适用于光模块的量产工艺,不仅具有较高的灌封效率,还能够保证较高的良率。传统光模块依靠点胶的方式封闭缝隙以实现密封,操作难度高,量产性差,且密封可靠性不高。本实施例的灌封方式在灌封材料固化形成灌封体30后,能够完全封闭光束传播路径P附近的空间,操作简单,量产性强,且密封效果极为可靠。
可选地,第一限位体33和第二限位体34可以是固化的胶体,或是电磁屏蔽材料。其中,当第一限位体33和第二限位体34是电磁屏蔽材料时,可以提高光模块的电磁兼容性。
进一步地,灌封口35所在位置处的灌封体30没过电路组件20朝向第一侧M的边缘,如图6所示。电路组件20包括电路板23。其中,第一限位体33、第二限位体34、电路板23及壳体组件10配合形成灌封腔32。在灌封过程中,为保证灌封材料充满灌封腔32,当通过灌封口35灌入灌封材料时,要保证灌封材料没过电路板23朝向第一侧M的边缘。待灌封材料固化后,灌封口35所在位置处的灌封体30即没过电路板23朝向第一侧M的边缘。
举例而言,壳体组件10设有处于第一侧M的第一挡墙11,第一限位体33夹设于电路组件20和第一挡墙11之间且形成密封,以避免未固化的灌封材料通过第一限位体33所在位置的电路组件20和第一挡墙11之间的缝隙泄露,如图5所示。
可选地,灌封材料可以是各种类型的灌封胶,例如环氧树脂、硅树脂、丙烯酸树脂等,或是低压注塑材料等。未固化的灌封材料具有流体形态,注入、填充灌封腔32后,再通过静置或其它特殊工艺手段进行固化。
需要说明的是,本实施例利用电路组件20和壳体组件10配合形成灌封腔32,即利用电路组件20和壳体组件10配合形成灌封体30的容器。具体地,壳体组件10、第一挡墙11及其上的第一限位体33、第二限位体34、电路组件20界定出灌封腔32。
请一并参阅图7,当然,在本申请的其它实施例中,也可以不借助壳体组件10形成灌封腔32。具体是光模块还包括灌封模具36,灌封模具36设于电路组件20上,且灌封模具36与电路组件20配合形成灌封腔32(具体是灌封模具36与电路板23配合形成灌封腔32),灌封体30灌封于灌封腔32中。并且,灌封模具36可以保留于光模块中,或是在固化形成灌封体30后拆卸灌封模具36,如图8所示,在此不作限定。
请继续参阅图3和图4。在一实施例中,考虑到未固化的灌封材料具有一定的流动性,如若未固化的灌封材料渗透至光模块的光束传播路径P中,同样会对光束传播路径P造成不良影响。
有鉴于此,本实施例光模块还包括隔离组件50。隔离组件50设于密封腔31中,光束传播路径P通过隔离组件50与灌封体30隔离,以尽可能避免灌封体30在固化前渗透至光束传播路径P中而对光束传播路径P造成不良影响。可以理解的是,本实施例在灌封形成灌封体30之前,预先设置隔离组件50,以阻挡未固化的灌封材料,尽可能未固化的灌封材料渗透至光模块的光束传播路径P中。
在一示例性实施例中,如图4所示,透镜42背离光发射元件41的表面具有反射区域421,光发射元件41和导光部件43之间传输的光束在该反射区域421发生全反射。如若灌封体30接触该反射区域421,会对光束在该反射区域421的反射情况造成不良影响。
有鉴于此,本实施例隔离组件50包括隔离盖片51。透镜42覆盖光发射元件41,隔离盖片51设于透镜42背离光发射元件41的一侧。透镜42通过隔离盖片51与灌封体30隔离,使得该反射区域421通过隔离盖片51与灌封体30隔离。其中,隔离盖片51不仅实现该反射区域421与灌封体30隔离,透镜42背离光发射元件41的表面的其它区域也通过隔离盖片51与灌封体30隔离,进而最大限度地降低灌封体30影响光束传播路径P的风险。
隔离组件50还包括隔离体52。电路板23、透镜42、导光部件43及隔离盖片51两两之间的装配间隙均通过隔离体52形成密封,以使得光束传播路径P通过隔离组件50与灌封体30隔离。具体地,透镜42和电路板23之间、透镜42和隔离盖片51之间、透镜42和导光部件43之间、导光部件43和隔离盖片51之间,导光部件43和电路板23之间均通过隔离体52形成密封。
可选地,本实施例中隔离盖片51呈现为片状结构。当然,在本申请的其它实施例中,隔离盖片51也可以呈现为膜结构、胶结构等,能够起到隔离透镜42和灌封体30的作用即可。并且,隔离体52可以通过点胶的方式形成,即隔离体52自身为固化后的胶体。当然,在本申请的其它实施例中,隔离体52也可以通过锡焊、激光焊等焊接方式形成,即隔离体52自身为焊接体;隔离体52也可以通过密封条的方式形成,即隔离体52自身为密封条。
请一并参阅图9和图10,图9是本申请光模块第四实施例的剖面结构示意图,图10是图9所示光模块E区域的结构示意图。
在另一示例性实施例中,本实施例与上述实施例的不同之处在于:上述的反射区域421不再通过隔离盖片51与灌封体30隔离。隔离组件50包括全反射元件53,全反射元件53附着于上述的反射区域421,即该反射区域421通过全反射元件53与灌封体30隔离,全反射元件53能够保证光束在该反射区域421发生全反射。其中,透镜42背离光发射元件41的表面的其它区域并未附着全反射元件53。
隔离组件50还包括隔离体52。电路板23、透镜42及导光部件43两两之间的装配间隙均通过隔离体52形成密封,以使得光束传播路径P通过隔离组件50与灌封体30隔离。具体地,透镜42和电路板23之间、透镜42和导光部件43之间、导光部件43和电路板23之间均通过隔离体52形成密封。
可选地,全反射元件53可以是全反射膜或全反射贴片等。本实施例通过在该反射区域421镀全反射膜,或是贴装全反射贴片,实现该反射区域421通过全反射元件53与灌封体30隔离。
请一并参阅图11和图12,图11是图1所示光模块K-K方向剖面结构另一实施例的示意图,图12是图11所示光模块F区域的结构示意图。
在一实施例中,电路组件20和壳体组件10之间还形成有第二散热腔22,即电路组件20还和壳体组件10配合将上述的容纳空间划分出第二散热腔22。第二散热腔22处于电路组件20的第一侧M,且第二散热腔22与灌封腔32彼此间隔。其中,第二散热腔22连通壳体组件10的外部,使得进入壳体组件10的冷却媒介能够接触电路组件20朝向第二散热腔22的表面,以进行高效散热。
换言之,本实施例不仅电路组件20朝向第二侧N的表面用于接触冷却媒介以进行高效散热,电路组件20朝向第一侧M的表面的至少部分区域同样用于接触冷却媒介以进行高效散热。本实施例在灌封体30足以可靠密封光束传播路径P的情况下,增加电路组件20用于接触冷却媒介的表面面积,进一步有利于提高散热效率及散热效果。
具体地,壳体组件10上设有处于第一侧M的第一挡墙11和第二挡墙12。第一挡墙11和第二挡墙12彼此间隔设置。灌封腔32处于第一挡墙11背离第二挡墙12的一侧,第二散热腔22处于第一挡墙11和第二挡墙12之间。第二散热腔22由壳体组件10、电路组件20、第一挡墙11以及第二挡墙12所界定。
壳体组件10可以包括上壳13和下壳14。上壳13和下壳14对接形成上述的容纳空间。电路组件20与上壳13配合形成第一散热腔21,电路组件20与下壳14配合形成灌封腔32和第二散热腔22。第一挡墙11和第二挡墙12具体设于下壳14。
在一实施例中,当光模块应用浸没式液冷散热方案时,光模块的Ⅰ区域浸没在冷却媒介中。冷却媒介会充满Ⅰ区域中的光模块的内部空间,因此在进行光模块设计时可以考虑在Ⅰ区域中布置高功耗的电子器件,这些电子器件能够直接或间接接触冷却媒介,可以达到很好的散热效果。Ⅱ区域从冷却媒介中露出而与通信系统的其它外部设备进行对接,以进行信息和数据的交互,如图1所示。
电路组件20包括电路板23和电子器件,其中电子器件可以包括芯片24等。电路板23朝向第一侧M和/或第二侧N的表面设有电子器件,且电子器件未被灌封体30覆盖,电子器件能够直接接触冷却媒介进行散热。
以上述第一散热腔21和第二散热腔22为例,第一散热腔21中的电子器件朝向第二侧N,且未被灌封体30覆盖,该部分电子器件能够直接接触进入第一散热腔21中的冷却媒介进行散热。第二散热腔22中的电子器件朝向第一侧M,且未被灌封体30覆盖,该部分电子器件能够直接接触进入第二散热腔22中的冷却媒介进行散热。
在替代实施例中,电路板23朝向第一侧M的表面设有电子器件,且电子器件被灌封体30覆盖。被灌封体30覆盖的电子器件可以包括与灌封体30直接接触的电子器件,例如图3中区域T中的电子器件。被灌封体30覆盖的电子器件也可以包括未与灌封体30直接接触的电子器件,例如密封腔31中的电子器件(即芯片24、光发射元件41等)。电路板23还设有自第一侧M延伸至第二侧N的导热结构(未图示),被灌封体30覆盖的电子器件于第一侧M连接导热结构,该部分电子器件产生的热量能够通过导热结构传导至第二侧N进行散热,有利于提高光模块的散热效率及散热效果。
可选地,导热结构可以包括导热孔和/或导热孔及其中嵌设的导热体等。其中,导热孔可以通过激光等手段制作于电路板23上,并且导热体可以采用铜等导热性能良好的材料。
请一并参阅图13至图15,以下对本申请实施例光模块的组装过程进行大致阐述。
S101:在电路板上装配光发射元件、透镜以及导光部件。
在本实施例中,如图13所示,将光发射元件、芯片等电子器件贴装于电路板23,并在光发射元件上布置透镜42。然后将导光部件43的一个端部与透镜42通过点胶或机械铆合等方式固定,另一个端部伸出光模块外而与通信系统中的其它外部设备连接以实现信息传输和数据交互。
需要说明的是,该步骤中光发射元件、透镜42以及导光部件43的装配方式属于本领域技术人员的理解范畴,在此就不再赘述。
S102:在透镜背离光发射元件的一侧装配隔离盖片。
在本实施例中,如图13所示,在透镜42背离光发射元件的一侧装配隔离盖片51。隔离盖片51的作用为在后续灌封形成灌封体的过程中阻挡灌封材料渗透至光束传播路径中。
S103:密封电路板、透镜、导光部件及隔离盖片两两之间的装配间隙。
在本实施例中,如图13所示,密封电路板23、透镜42、导光部件43及隔离盖片51两两之间的装配间隙,即封闭未固化灌封材料可能渗入光束传播路径的间隙。具体地,透镜42和电路板23之间、透镜42和隔离盖片51之间、透镜42和导光部件43之间、导光部件43和隔离盖片51之间,导光部件43和电路板23之间均通过隔离体52形成密封。
需要说明的是,导光部件43靠近透镜42的端部通常设置有安装孔431,导光部件43和透镜42之间通过安装孔431实现二者相对位置固定。考虑到安装孔431的密封性有限,因此本实施例优选是安装孔431中也设有隔离体52以形成密封。
S104:组装下壳。
在本实施例中,如图14所示,将电路板23设有透镜42、导光部件43及隔离盖片51的一侧与下壳14进行组装,之后将进行翻转180°,使得电路板23背离透镜42、导光部件43及隔离盖片51的一侧朝上。
S105:设置第一限位体和第二限位体,并灌入灌封材料,以形成灌封体。
在本实施例中,如图14和图15所示,设置第一限位体33和第二限位体34。具体地,在电路板23和下壳14的第一挡墙11之间设置第一限位体33,且在下壳14上设置第二限位体34。第一限位体33、第二限位体34、电路板23及下壳14配合形成灌封腔。第二限位体34与电路板23彼此间隔,使得第二限位体34和电路板23之间形成有灌封口35。
未固化的灌封材料通过灌封口35灌入灌封腔中,进而固化形成灌封体30。其中,在灌封材料的灌入过程中,灌封材料需要没过电路板23的下边缘(即朝向第一侧的边缘),但不超过电路板23的上边缘,使得灌封材料充满灌封腔。固化形成的灌封体30能够对密封腔形成极为可靠的密封。
S106:组装上壳,进而完成光模块的组装过程。
在本实施例中,待灌封材料固化形成灌封体30之后,组装上壳13,进而完成光模块的组装过程,组装完成的光模块如图1所示。
以上对本申请提供的光模块进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种光模块,其特征在于,包括:
    壳体组件;
    电路组件,设于所述壳体组件内,其中所述电路组件具有相对设置的第一侧和第二侧;
    灌封体,设于所述电路组件上,且与所述电路组件配合形成处于所述第一侧的密封腔;
    光发射/接收元件、透镜以及导光部件,所述光发射/接收元件、所述透镜以及所述导光部件配合构成的光束传播路径处于所述密封腔中;
    其中,所述第二侧连通所述壳体组件的外部,使得进入所述壳体组件的冷却媒介能够接触所述电路组件以进行散热。
  2. 根据权利要求1所述光模块,其特征在于,
    所述电路组件和所述壳体组件之间形成有灌封腔和第一散热腔;
    所述灌封腔处于所述第一侧,且所述灌封体灌封于所述灌封腔中;
    所述第一散热腔处于所述第二侧,且所述第一散热腔连通所述壳体组件的外部,使得进入所述壳体组件的冷却媒介能够接触所述电路组件朝向所述第一散热腔的表面。
  3. 根据权利要求2所述光模块,其特征在于,
    所述电路组件和所述壳体组件之间还形成有第二散热腔;
    所述第二散热腔处于所述第一侧,且所述第二散热腔与所述灌封腔彼此间隔;
    其中,所述第二散热腔连通所述壳体组件的外部,使得进入所述壳体组件的冷却媒介能够接触所述电路组件朝向所述第二散热腔的表面。
  4. 根据权利要求3所述光模块,其特征在于,
    所述壳体组件上设有处于所述第一侧的第一挡墙和第二挡墙;
    所述第二散热腔由所述壳体组件、所述电路组件、所述第一挡墙以及所述第二挡墙所界定,所述灌封腔处于所述第一挡墙背离所述第二挡墙的一侧。
  5. 根据权利要求1所述光模块,其特征在于,
    所述导光部件包括光纤及设于所述光纤端部的光纤固定件;
    其中,所述光发射/接收元件、所述透镜以及所述光纤固定件均处于所述密封腔中。
  6. 根据权利要求1所述光模块,其特征在于,
    所述电路组件包括电路板和电子器件;
    所述电路板朝向所述第一侧和/或所述第二侧的表面设有所述电子器件,且所述电子器件未被所述灌封体覆盖,所述电子器件能够直接接触冷却媒介进行散热;和/或
    所述电路板朝向所述第一侧的表面设有所述电子器件,且所述电子器件被所述灌封体覆盖,所述电路板还设有自所述第一侧延伸至所述第二侧的导热结构,所述电子器件于所述第一侧连接所述导热结构,所述电子器件产生的热量能够通过所述导热结构传导至所述第二侧进行散热。
  7. 根据权利要求1所述光模块,其特征在于,
    所述光模块还包括第一限位体和第二限位体,所述第一限位体、所述第二限位体、所述电路组件及所述壳体组件配合形成灌封腔;
    所述第一限位体夹设于所述电路组件和所述壳体组件之间且形成密封;
    所述第二限位体设于所述壳体组件且与所述电路组件彼此间隔,所述第二限位体和所述电路组件之间形成有灌封口,所述灌封体通过所述灌封口灌封于所述灌封腔中,其中所述灌封口所在位置处的灌封体没过所述电路组件朝向所述第一侧的边缘。
  8. 根据权利要求1所述光模块,其特征在于,
    所述光模块还包括:
    灌封模具,设于所述电路组件上,且与所述电路组件配合形成灌封腔,所述灌封体灌封于所述灌封腔中。
  9. 根据权利要求1所述光模块,其特征在于,
    所述光模块还包括隔离组件;
    所述隔离组件设于所述密封腔中,所述光束传播路径通过所述隔离组件与所述灌封体隔离。
  10. 根据权利要求9所述光模块,其特征在于,
    所述电路组件包括电路板,所述光发射/接收元件设于所述电路板;
    所述隔离组件包括隔离盖片和隔离体;
    所述透镜覆盖所述光发射/接收元件,所述隔离盖片设于所述透镜背离所述光发射/接收元件的一侧;
    其中,所述透镜和所述电路板之间、所述透镜和所述隔离盖片之间、所述透镜和所述导光部件之间、所述导光部件和所述隔离盖片之间,所述导光部件和所述电路板之间均通过所述隔离体形成密封。
  11. 根据权利要求9所述光模块,其特征在于,
    所述电路组件包括电路板,所述光发射/接收元件设于所述电路板;
    所述隔离组件包括全反射元件和隔离体;
    所述透镜覆盖所述光发射/接收元件,且所述透镜背离所述光发射/接收元件的表面具有反射区域,光束在所述反射区域发生全反射;
    其中,所述全反射元件附着于所述反射区域,且所述透镜和所述电路板之间、所述透镜和所述导光部件之间、所述导光部件和所述电路板之间均通过所述隔离体形成密封。
PCT/CN2023/074913 2022-04-19 2023-02-08 一种光模块 WO2023202185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220909501.1U CN217467259U (zh) 2022-04-19 2022-04-19 一种光模块
CN202220909501.1 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023202185A1 true WO2023202185A1 (zh) 2023-10-26

Family

ID=83269879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074913 WO2023202185A1 (zh) 2022-04-19 2023-02-08 一种光模块

Country Status (2)

Country Link
CN (1) CN217467259U (zh)
WO (1) WO2023202185A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217467259U (zh) * 2022-04-19 2022-09-20 苏州旭创科技有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101020A1 (en) * 2002-11-26 2004-05-27 Photodigm, Inc. Packaging and passive alignment of light source to single mode fiber using microlens and precision ferrule
US20110123150A1 (en) * 2009-11-11 2011-05-26 Eric Zbinden Optical engine for active optical cable
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
WO2020150551A1 (en) * 2019-01-18 2020-07-23 Samtec, Inc. Sealed optical transceiver
CN216160875U (zh) * 2021-09-15 2022-04-01 深圳市易飞扬通信技术有限公司 光模块结构
CN217467259U (zh) * 2022-04-19 2022-09-20 苏州旭创科技有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101020A1 (en) * 2002-11-26 2004-05-27 Photodigm, Inc. Packaging and passive alignment of light source to single mode fiber using microlens and precision ferrule
US20110123150A1 (en) * 2009-11-11 2011-05-26 Eric Zbinden Optical engine for active optical cable
WO2020150551A1 (en) * 2019-01-18 2020-07-23 Samtec, Inc. Sealed optical transceiver
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
CN216160875U (zh) * 2021-09-15 2022-04-01 深圳市易飞扬通信技术有限公司 光模块结构
CN217467259U (zh) * 2022-04-19 2022-09-20 苏州旭创科技有限公司 一种光模块

Also Published As

Publication number Publication date
CN217467259U (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2021212849A1 (zh) 一种光模块
US20240012210A1 (en) Optical module
US5960141A (en) Optical transmission terminal device
WO2023202185A1 (zh) 一种光模块
WO2018112988A1 (zh) 一种光模块封装结构及光模块
US20210185804A1 (en) Circuit board assembly and semi-finished product thereof, floodlight, camera module and application thereof
WO2020125784A1 (zh) 一种光模块
CN212083733U (zh) 一种光模块
KR20150032623A (ko) 광 전송 모듈
JP2023550873A (ja) 高帯域幅光学インターコネクトアーキテクチャ
CN113009648B (zh) 一种光模块
WO2020150551A1 (en) Sealed optical transceiver
CN215297764U (zh) 高密cpo硅光引擎
CN113985540A (zh) 一种800g光模块及其制备方法
TW202306234A (zh) 具有波導管的線路板結構及其製作方法
CN217181280U (zh) 光模块
CN116413866A (zh) 一种光模块
JP2005181610A (ja) 光電複合装置、この装置に用いられるソケット、並びに光電複合装置の実装構造
CN113467011A (zh) 一种高效散热qsfp-dd封装可插拔光通信模组
CN113009647B (zh) 一种光模块
CN113391412A (zh) 一种高效散热的800g光模块
CN112394530A (zh) 光纤合束器的封装结构及光纤激光器
CN114578497B (zh) 一种基于硅基光电子集成芯片的封装结构及封装方法
CN217332937U (zh) 一种光模块
CN114026751A (zh) 支撑多个激光源的激光引擎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790849

Country of ref document: EP

Kind code of ref document: A1