WO2023202128A1 - 一种过流保护电路、控制方法、dc-dc转换器及电子设备 - Google Patents

一种过流保护电路、控制方法、dc-dc转换器及电子设备 Download PDF

Info

Publication number
WO2023202128A1
WO2023202128A1 PCT/CN2022/141084 CN2022141084W WO2023202128A1 WO 2023202128 A1 WO2023202128 A1 WO 2023202128A1 CN 2022141084 W CN2022141084 W CN 2022141084W WO 2023202128 A1 WO2023202128 A1 WO 2023202128A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
overcurrent protection
converter
control
processor
Prior art date
Application number
PCT/CN2022/141084
Other languages
English (en)
French (fr)
Inventor
彭博
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023202128A1 publication Critical patent/WO2023202128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters

Definitions

  • This application relates to overcurrent protection technology in medium DC-DC (Direct current-Direct current, DC-DC) converters, and in particular to an overcurrent protection circuit, control method, DC-DC converter and electronic equipment.
  • medium DC-DC Direct current-Direct current, DC-DC
  • the output end of the DC-DC converter exceeds the rated current value of the output end, the current at the output end exceeds the load, which is called overcurrent.
  • the overcurrent will damage the internal components of the DC-DC converter.
  • a suitable protection mechanism is needed to prevent overcurrent.
  • the DC-DC converter is checked to see whether there is an overcurrent by turning it off and on. When it does not exist, it turns on the DC-DC converter, and when it does exist, it turns off the DC-DC converter.
  • this method requires that the DC-DC converter turns on. During the period of checking whether there is overcurrent, if there is still overcurrent, the DC-DC converter will be damaged; it can be seen that the existing DC-DC converter has technical problems with poor reliability.
  • inventions of the present application provide an overcurrent protection circuit.
  • the overcurrent protection circuit is configured to protect a DC-DC converter from overcurrent, and includes: a current detection resistor, a first comparator, a second comparison converter, a first switch, a second switch, a third switch, a processor, a level conversion circuit, a voltage dividing resistor and a power supply, the output end of the DC-DC converter is connected to one end of the current detection resistor, the One end of the first switch is respectively connected to the input end of the first comparator and the other end of the current detection resistor, and the other end of the first switch is respectively connected to the power end of the load device and one end of the second switch, The other end of the second switch is connected to one end of the voltage dividing resistor and one end of the third switch respectively.
  • the other end of the third switch is connected to the input end of the second comparator.
  • the first comparator The output end of the converter is respectively connected to the input end of the level conversion circuit and the first end of the processor, the output end of the level conversion circuit is connected to the enable end of the DC-DC converter, and the third The output terminals of the two comparators are connected to the second terminal of the processor, and the third terminal of the processor is respectively connected to the control terminal of the second switch and the control terminal of the third switch.
  • the processor is also connected to The control end of the first switch and the other end of the voltage dividing resistor are grounded through the power supply; wherein the processor is configured to:
  • the control terminal of the first switch and the control terminal of the second switch are controlled. terminal and the control terminal of the third switch, so that the DC-DC converter enters the power supply state for the load device;
  • the first indication level is configured to indicate that the input voltage of the second comparator is greater than the reference voltage of the second comparator; the overcurrent protection state is when the first switch is turned off and the third comparator is turned off.
  • the DC-DC converter is turned on.
  • embodiments of the present application provide a control method, which method is applied to the processor of the overcurrent protection circuit described in one or more of the above embodiments, including:
  • the control terminal of the first switch and the control terminal of the second switch are controlled. terminal and the control terminal of the third switch, so that the DC-DC converter enters the power supply state for the load device;
  • the first indication level is configured to indicate that the input voltage of the second comparator is greater than the reference voltage of the second comparator; the overcurrent protection state is when the first switch is turned off and the third comparator is turned off.
  • the DC-DC converter is turned on.
  • embodiments of the present application provide a DC-DC converter, including the overcurrent protection circuit described in one or more of the above embodiments.
  • embodiments of the present application provide an electronic device, including: a DC-DC converter as described in one or more of the above embodiments and a storage medium storing instructions executable by the processor; the storage medium The processor is relied upon to perform operations through the communication bus. When the instructions are executed by the processor, the control method described in one or more embodiments is executed.
  • embodiments of the present application provide a computer storage medium that stores executable instructions.
  • the executable instructions are executed by one or more processors, the processor executes one or more of the above implementations.
  • the control method described in the example is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the executable instructions.
  • Figure 1 is a schematic structural diagram of an optional overcurrent protection circuit provided by an embodiment of the present application.
  • Figure 2a is a schematic flow chart 1 of the overcurrent protection mechanism of a DC-DC converter in related technologies
  • Figure 2b is a flow diagram 2 of the overcurrent protection mechanism of the DC-DC converter in related technology
  • Figure 3 is a schematic structural diagram of Example 1 of an optional overcurrent protection circuit provided by the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of Example 2 of an optional overcurrent protection circuit provided by the embodiment of the present application;
  • FIG. 5 is a schematic flowchart of an optional control method provided by the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an optional DC-DC converter provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optional electronic device provided by an embodiment of the present application.
  • inventions of the present application provide an overcurrent protection circuit.
  • the overcurrent protection circuit is configured to protect a DC-DC converter from overcurrent, and includes: a current detection resistor, a first comparator, a second comparison converter, a first switch, a second switch, a third switch, a processor, a level conversion circuit, a voltage dividing resistor and a power supply, the output end of the DC-DC converter is connected to one end of the current detection resistor, the One end of the first switch is respectively connected to the input end of the first comparator and the other end of the current detection resistor, and the other end of the first switch is respectively connected to the power end of the load device and one end of the second switch, The other end of the second switch is connected to one end of the voltage dividing resistor and one end of the third switch respectively.
  • the other end of the third switch is connected to the input end of the second comparator.
  • the first comparator The output end of the converter is respectively connected to the input end of the level conversion circuit and the first end of the processor, the output end of the level conversion circuit is connected to the enable end of the DC-DC converter, and the third The output terminals of the two comparators are connected to the second terminal of the processor, and the third terminal of the processor is respectively connected to the control terminal of the second switch and the control terminal of the third switch.
  • the processor is also connected to The control end of the first switch and the other end of the voltage dividing resistor are grounded through the power supply; wherein the processor is configured to:
  • the control terminal of the first switch and the control terminal of the second switch are controlled. terminal and the control terminal of the third switch, so that the DC-DC converter enters the power supply state for the load device;
  • the first indication level is configured to indicate that the input voltage of the second comparator is greater than the reference voltage of the second comparator; the overcurrent protection state is when the first switch is turned off and the third comparator is turned off.
  • the DC-DC converter is turned on.
  • the processor is further configured to:
  • the first preset threshold is different from the second preset threshold.
  • the processor is further configured to:
  • the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled.
  • the control end is to turn off the first switch, close the second switch and close the third switch, and set the OCP flag to the first preset threshold.
  • the third terminal of the processor is connected to the control terminal of the first switch; wherein,
  • the processor controls the control end of the first switch, the control end of the second switch and the control end of the third switch so that the DC-DC converter enters a power supply state for the load device. , including:
  • the processor is further configured to:
  • the overcurrent protection circuit When the overcurrent protection circuit is in the overcurrent protection state and the first output level is the second indication level, the control end of the first switch, the control end of the second switch and the The control terminal of the third switch, so that the overcurrent protection circuit remains in the overcurrent protection state;
  • the second indication level is configured to indicate that the input voltage of the second comparator is less than the reference voltage of the second comparator.
  • the third terminal of the processor is connected to the control terminal of the first switch; wherein,
  • the processor controls the control end of the first switch, the control end of the second switch and the control end of the third switch so that the overcurrent protection circuit remains in the overcurrent protection state, including :
  • control end of the first switch is connected to the first end of the processor by connecting the output end of the level conversion circuit;
  • the processor controls the control end of the first switch, the control end of the second switch and the control end of the third switch so that the DC-DC converter enters a power supply state for the load device. , including:
  • control end of the first switch is connected to the first end of the processor by connecting the output end of the level conversion circuit;
  • the processor controls the control terminal of the first switch, the control terminal of the second switch and the control terminal of the third switch so that the overcurrent protection circuit remains in the overcurrent protection state, include:
  • the effective level of the enable signal of the DC-DC converter is output to the level conversion circuit to keep the first switch open, the second switch closed and the third switch closed.
  • the circuit further includes: a first anti-shake circuit; wherein,
  • the first anti-shake circuit is disposed between the output end of the first comparator, the first end of the processor and the input end of the level conversion circuit, and the first anti-shake circuit is configured to The output level of the first comparator lasting a preset time threshold is output to the processor and the level conversion circuit respectively, and the first anti-shake circuit is further configured to convert the output level lasting a preset time threshold The output level of the processor is output to the level conversion circuit.
  • the circuit further includes a second anti-shake circuit; wherein,
  • the second anti-shake circuit is disposed between the output end of the second comparator and the processor, and the second anti-shake circuit is configured to maintain the output of the second comparator for a preset time threshold. level output to the processor.
  • embodiments of the present application also provide a control method, which method is applied to the processor of the overcurrent protection circuit described in one or more of the above embodiments, including:
  • the control terminal of the first switch and the control terminal of the second switch are controlled. terminal and the control terminal of the third switch, so that the DC-DC converter enters the power supply state for the load device;
  • the first indication level is configured to indicate that the input voltage of the second comparator is greater than the reference voltage of the second comparator; the overcurrent protection state is when the first switch is turned off and the third comparator is turned off.
  • the DC-DC converter is turned on.
  • the method further includes:
  • the first preset threshold is different from the second preset threshold.
  • the method further includes:
  • the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled.
  • the control end is to turn off the first switch, close the second switch and close the third switch, and set the OCP flag to the first preset threshold.
  • control end of the first switch, the control end of the second switch and the control end of the third switch are controlled so that the DC-DC converter enters
  • the power supply status of the load device includes:
  • the method further includes:
  • the control end of the first switch and the control end of the second switch are controlled. and the control terminal of the third switch, so that the overcurrent protection circuit remains in the overcurrent protection state;
  • the second indication level is configured to indicate that the input voltage of the second comparator is less than the reference voltage of the second comparator.
  • control end of the first switch, the control end of the second switch and the control end of the third switch are controlled so that the overcurrent protection circuit remains at The overcurrent protection status includes:
  • control end of the first switch, the control end of the second switch and the control end of the third switch are controlled so that the DC-DC converter enters
  • the power supply status of the load device includes:
  • control end of the first switch, the control end of the second switch and the control end of the third switch are controlled so that the overcurrent protection circuit remains at The overcurrent protection status includes:
  • the effective level of the enable signal of the DC-DC converter is output to the level conversion circuit to keep the first switch open, the second switch closed and the third switch closed.
  • embodiments of the present application further provide a DC-DC converter, including the overcurrent protection circuit as described in one or more of the above embodiments.
  • embodiments of the present application further provide an electronic device, including the DC-DC converter as described in one or more of the above embodiments and a storage medium storing instructions executable by the processor; the storage medium The processor is relied upon to perform operations through the communication bus. When the instructions are executed by the processor, the control method described in one or more embodiments is executed.
  • embodiments of the present application further provide a computer storage medium that stores executable instructions.
  • the executable instructions When executed by one or more processors, the processor executes one or more of the above implementations.
  • FIG. 1 is a schematic structural diagram of an optional overcurrent protection circuit provided by an embodiment of the present application. As shown in Figure 1, the overcurrent protection circuit 1000 is configured in pairs.
  • DC-DC converter 111 provides overcurrent protection, including:
  • the other end of the third switch 106 is connected to the second comparison
  • the input terminal of the first comparator 103 and the output terminal of the first comparator 102 are respectively connected to the input terminal of the level conversion circuit 108 and the first terminal of the processor 107.
  • the output terminal of the level conversion circuit 108 is connected to the operating terminal of the DC-DC converter 111.
  • the output end of the second comparator 103 is connected to the second end of the processor 107
  • the third end of the processor 107 is connected to the control end of the second switch 105 and the control end of the third switch 106 respectively
  • the processor 107 is also connected to The control end of the first switch 104 and the other end of the voltage dividing resistor 109 are grounded through the power supply 110; wherein, the processor 107 is configured as:
  • the overvoltage protection circuit 1000 When the overvoltage protection circuit 1000 is in the overcurrent protection state and the first output level of the second comparator 103 is the first indication level, the control end of the first switch 104, the control end of the second switch 105 and the third The control end of the switch 106, so that the DC-DC converter 111 enters the power supply state for the load device 112;
  • the first indication level is configured to indicate that the input voltage of the second comparator 103 is greater than the reference voltage of the second comparator 103;
  • the overcurrent protection state is that the first switch 104 is turned off, the second switch 105 is closed, and the third switch 106
  • the power supply state is the state where the DC-DC converter 111 is turned on when the first switch 104 is closed, the second switch 105 is turned off, and the third switch 106 is turned off.
  • FIG. 2a is a schematic flow chart 1 of the overcurrent protection mechanism of a DC-DC converter in related technology.
  • the overcurrent protection mechanism may include:
  • the current on the path of the DC-DC converter is detected to exceed the threshold, and when it exceeds the threshold, the DC-DC converter output is turned off.
  • the circuit cannot be supplied by the DC-DC converter, that is, it cannot operate normally.
  • FIG. 2b is a flow diagram 2 of the overcurrent protection mechanism of the DC-DC converter in related technology.
  • the overcurrent protection mechanism may include:
  • S205 The detection circuit determines whether an overcurrent event occurs; if yes, execute S206;
  • S206 The anti-shake mechanism (detection of OC duration) determines whether the overcurrent protection (OCP, Over Current Protection) event is met; if so, execute S207;
  • the DC-DC converter is turned on (voltage detection) to determine whether there is an OC event; if yes, execute S206; if no, execute S204.
  • the hiccup mechanism is specifically: after entering the OCP mechanism, the output will be turned off for a period of time, and then the DC-DC converter will be turned on (the DC-DC converter can be set) to determine whether there is OC on the path. If there is an OC event, then Continue to turn off the output. After the set time, turn on the DC-DC converter again and check whether there are any OC events. If there are no OC events, exit the OCP protection mechanism and normalize the output voltage. If there are still OC events, repeat the above actions. , until the OC incident ends.
  • an embodiment of the present application provides an over-current protection circuit 1000.
  • the over-current protection circuit 1000 is configured to perform over-current protection on the DC-DC converter 111.
  • For the overcurrent protection circuit 1000 in the overcurrent protection state in order to promptly and accurately restore power to the load device 112 when there is no overcurrent in the DC-DC converter 111, when the overcurrent protection circuit 1000 is in the overcurrent protection state, through the second
  • the output level of the comparator 103 can be used to know whether the power supply voltage of the power supply terminal of the load device 112 is abnormal to ground. If it is normal, it means that there is no risk of overcurrent in the DC-DC converter 111 at this time, so the power supply to the load device 112 is restored. .
  • the first output level of the second comparator 103 is the first indication level, where the first indication level configured to indicate that the input voltage of the second comparator 103 is greater than the reference voltage of the second comparator 103; that is, when the overcurrent protection circuit 1000 is in the overcurrent protection state, and the first output level of the second comparator 103 indicates
  • the input voltage of the second comparator 103 is greater than the reference voltage of the second comparator 103, it means that the power supply voltage of the power supply terminal of the load device 113 is normal to ground at this time, and there is no overcurrent in the DC-DC converter 111 supplying power to the load device 112.
  • the processor 107 switches the overcurrent protection state of the overcurrent protection circuit 1000 by controlling the control end of the first switch 104, the control end of the second switch 105, and the control end of the third switch 106. to the power supply status of the DC-DC converter 111.
  • the above processor 107 determines that the overcurrent protection circuit 1000 is in the overcurrent protection state, it can determine the state of the overcurrent protection circuit 1000 through the states of the first switch 104, the second switch 105 and the third switch 106.
  • the state can also be determined by the value of the over-current protection flag (Over Current Protection flag, OCP flag) set in the processor 107.
  • OCP flag Over Current Protection flag
  • the above-mentioned load device 112 may be a power amplifier (Power Amplifier, PA) or other load devices, which is not specifically limited in this embodiment of the present application.
  • PA Power Amplifier
  • the state of the overcurrent protection circuit 1000 and the DC-DC converter 111 is determined by the states of the first switch 104, the second switch 105 and the third switch 106, when the first switch 104 is turned off, the second When the switch 105 is closed and the third switch 106 is closed, it is determined that the overcurrent protection circuit 1000 is in an overcurrent protection state.
  • the first switch 104 is closed, the second switch 105 is closed, and the third switch 106 is closed, the DC-DC conversion is determined.
  • Device 111 is in power supply state.
  • the processor is further configured to:
  • the overcurrent protection circuit 1000 when the OCP flag is the first preset threshold, the overcurrent protection circuit 1000 is in the overcurrent protection state, and when the OCP flag is the second preset threshold, the DC-DC converter 111 is in the power supply state, where the The first preset threshold is different from the second preset threshold; that is, by setting the OCP flag in the processor 107, the processor 107 can learn the status of the overcurrent protection circuit 1000 and the DC-DC converter 111 , so that the processor 107 can quickly know whether the DC-DC converter 111 supplies power to the load device 112 .
  • the processor 107 determines whether the DC-DC converter 111 supplies power to the load device 112 through the OCP flag. In order to know the status of the DC-DC converter 111, it is necessary to first determine the value of the OCP flag. In order to determine the value of the OCP flag , in an optional embodiment, the processor 107 is also configured to:
  • the control end of the first switch 104, the control end of the second switch 105 and the control end of the third switch 106 are controlled to turn off
  • the first switch 104 closes the second switch 105 and the third switch 106, and sets the OCP flag to the first preset threshold.
  • the processor 107 obtains the second output level at this time and determines the second output level.
  • Level is the invalid level of the enable signal of the DC-DC converter 111 or the valid level of the enable signal of the DC-DC converter 111 .
  • the level conversion circuit 108 converts the received invalid level into a valid level, so that the DC-DC converter 111 Normal operation, the first switch 104 remains closed, the second switch 105 remains off, the third switch 106 remains off, the processor 107 sets the value of the OCP flag to the second preset threshold, that is to say, the processor 107 determines There is no overcurrent in the DC-DC converter 111 and the DC-DC converter 111 is still in the power supply state.
  • the level conversion circuit 108 converts the received effective level to an invalid level, so that the DC-DC converter 111 Not working, control the control end of the first switch 104, the control end of the second switch 105 and the control end of the third switch 106 so that the first switch 104 is turned off, the second switch 105 is closed, the third switch 106 is closed, and the processor 107 sets the value of OCP flag to the first preset threshold, that is to say, the processor 107 determines that there is overcurrent in the DC-DC converter 111, and switches the DC-DC converter 111 from the power supply state to the overcurrent protection circuit 1000 overcurrent protection status.
  • the processor 107 can be directly connected to the first switch 104 or can be connected to the first switch 104 through the level conversion circuit 108, then, for the case where the processor 107 is directly connected to the first switch 104, in order to convert the process
  • the overcurrent protection state of the current protection circuit 1000 is switched to the power supply state of the DC-DC converter 111.
  • the third terminal of the processor 107 is connected to the control terminal of the first switch 104; wherein,
  • the processor 107 controls the control end of the first switch 104, the control end of the second switch 105, and the control end of the third switch 106, so that the DC-DC converter 111 enters a power supply state for the load device 112, including:
  • the control end of the first switch 104 , the control end of the second switch 105 and the control end of the third switch 106 are controlled to close the first switch 104 , turn off the second switch 105 and turn off the third switch 106 .
  • the processor 107 directly controls the control end of the first switch 104, the control end of the second switch 105, and the control end of the third switch 106, so that the first switch 104 is closed, the second switch 105 is turned off, and the third switch 106 is turned off. 106 is turned off, so that the DC-DC converter 111 supplies power to the load device 112 .
  • the OCP flag must be set to the second preset threshold at this time, so that the processor 107 can determine the status of the DC-DC converter 111.
  • the processor 107 is also configured to:
  • the overcurrent protection circuit 1000 When the overcurrent protection circuit 1000 is in the overcurrent protection state and the first output level is the second indication level, the control end of the first switch 104, the control end of the second switch 105 and the control end of the third switch 106 are controlled, So that the over-current protection circuit 1000 remains in the over-current protection state.
  • the second indication level is configured to indicate that the input voltage of the second comparator 103 is less than The reference voltage of the second comparator 103; that is, when the over-current protection circuit 1000 is in the over-current protection state and the first output level indicates that the input voltage of the second comparator 103 is less than the reference voltage of the second comparator 103 , indicating that the power supply voltage of the power supply end of the load device 112 is abnormal to ground at this time, and there is a risk of overcurrent in the DC-DC converter 111 supplying power to the load device 112.
  • the processor 107 controls the control end of the first switch 104 , the control end of the second switch 105 and the control end of the third switch 106 so that the overcurrent protection circuit 1000 continues to be in the overcurrent protection state to protect the DC-DC converter 111 from damage.
  • the third terminal of the processor 107 is connected to the control terminal of the first switch 104; wherein,
  • the processor 107 controls the control end of the first switch 104, the control end of the second switch 105, and the control end of the third switch 106 so that the overcurrent protection circuit 1000 remains in the overcurrent protection state, including:
  • the control end of the first switch 104 , the control end of the second switch 105 and the control end of the third switch 106 are controlled to turn off the first switch 104 , close the second switch 105 and close the third switch 106 .
  • the processor 107 since the third terminal of the processor 107 is directly connected to the control terminal of the first switch 104, it can directly control the control terminal of the first switch 104. Therefore, here, the processor 107 directly controls the first switch 104. The control end of the second switch 105 and the control end of the third switch 106, thereby turning off the first switch 104, closing the second switch 105 and closing the third switch 106, so that the overcurrent protection circuit 1000 is in overcurrent protection. status.
  • the control end of the first switch 104 is connected to the first end of the processor 107 by connecting the output end of the level conversion circuit 108;
  • the processor 107 controls the control end of the first switch 104, the control end of the second switch 105, and the control end of the third switch 106, so that the DC-DC converter 111 enters a power supply state for the load device 112, including:
  • the control terminal of the first switch 104 is connected to the output terminal of the level conversion circuit 108, in order for the DC-DC converter 111 to enter the power supply state for the load device 112, the DC-DC converter 111 needs to work. And the first switch 104 is closed, so the processor 107 outputs the invalid level of the enable signal of the DC-DC converter 111 to the level conversion circuit 108, and the level conversion circuit 108 converts the invalid level to obtain the effective level, On the one hand, the effective level can close the first switch, and on the other hand, it can make the DC-DC converter 111 work normally. At the same time, the processor 107 directly controls the control end of the second switch 105 and the control end of the third switch 106, so as to The second switch 105 is turned off and the third switch 106 is turned off.
  • the processor 107 controls the first switch 104 and the DC-DC converter 111 by directly controlling the second switch 105 and the third switch 106 and by controlling the level conversion circuit 108, so that the DC-DC converter 111 is in a state corresponding to the load device 112 power supply status.
  • the control end of the first switch 104 is connected to the first end of the processor 107 by connecting the output end of the level conversion circuit 108;
  • the processor 107 controls the control end of the first switch 104, the control end of the second switch 105, and the control end of the third switch 106 so that the overcurrent protection circuit 1000 remains in the overcurrent protection state, including:
  • the effective level of the enable signal of the DC-DC converter 111 is output to the level conversion circuit 108 to keep the first switch 104 open, the second switch 105 closed, and the third switch 106 closed.
  • the DC-DC converter 111 needs to be inactive and continue to operate.
  • the first switch 104 is turned off, so the processor 107 outputs the effective level of the enable signal of the DC-DC converter 111 to the level conversion circuit 108, and the level conversion circuit 108 converts the effective level to obtain an invalid level,
  • the inactive level can turn off the first switch, and on the other hand, it can cause the DC-DC converter 111 to not work.
  • the processor 107 directly controls the control end of the second switch 105 and the control end of the third switch 106, To close the second switch 105 and close the third switch 106.
  • the processor 107 directly controls the second switch 105 and the third switch 106, and controls the first switch 104 and the DC-DC converter 111 by controlling the level conversion circuit 108, so that the over-current protection circuit 1000 is maintained in the over-current protection state. .
  • the circuit also includes: a first anti-shake circuit; where,
  • the first anti-shake circuit is disposed between the output end of the first comparator 102, the first end of the processor 107, and the input end of the level conversion circuit 108.
  • the first anti-shake circuit is configured to convert the first anti-shake circuit for a preset time threshold.
  • the output level of a comparator 102 is output to the processor 107 and the level conversion circuit 108 respectively.
  • the first anti-shake circuit is also configured to output the output level of the processor 107 lasting a preset time threshold to the level conversion circuit 108 .
  • a first anti-shake circuit is provided between the output terminal of the first comparator 102, the first terminal of the processor 107 and the input terminal of the level conversion circuit 108, so that when the output voltage of the first comparator 102 The first anti-shake circuit outputs the output level of the first comparator 102 to the processor and the level conversion circuit only after the level maintains the preset time threshold. Similarly, when the output level of the first terminal of the processor maintains the preset After setting the time threshold, the first anti-shake circuit outputs the output level of the first terminal of the processor 107 to the level conversion circuit 108; in this way, the jittered output level can be avoided from affecting the reliability of the DC-DC converter 111. Impact.
  • the circuit also includes a second anti-shake circuit; where,
  • the second anti-shake circuit is disposed between the output end of the second comparator 103 and the processor 107 .
  • the second anti-shake circuit is configured to output the output level of the second comparator 103 for a preset time threshold to the processor 107 .
  • a second anti-shake circuit is provided between the output terminal of the second comparator 103 and the second terminal of the processor 107, so that after the output level of the second comparator 103 maintains the preset time threshold, the The second anti-shake circuit outputs the output level of the second comparator 103 to the processor 107; in this way, the impact of the jittered output level on the reliability of the DC-DC converter 111 can be avoided.
  • the above-mentioned overcurrent protection circuit 1000 can be provided in the DC-DC converter 111, or can be provided independently from the DC-DC converter 111.
  • the embodiment of the present application does not specifically limit this.
  • FIG 3 is a schematic structural diagram of Example 1 of an optional overcurrent protection circuit provided by the embodiment of the present application. As shown in Figure 3, the overcurrent protection circuit is used to protect the DC-DC converter 312 from overcurrent.
  • DC-DC converter 312 is used to power PA314.
  • the power terminal VCC of PA314 is connected to the output terminal of DC-DC converter 312 through current detection resistor Rs313.
  • the equivalent resistance of PA314 to ground is RL.
  • the overcurrent protection circuit is provided in the DC-DC converter 312.
  • the overcurrent protection circuit includes: comparator 301, comparator 302, anti-shake circuit 303, anti-shake circuit 304, processor 305, and level conversion circuit 306, voltage dividing resistor R307, DC power supply 308, switch 309, switch 310, switch 311 and current detection resistor 313; among them, the input end of the comparator 301 is connected to the connection node between Rs313 and the switch 309, and the output end of the comparator 301 is connected The input end of the anti-shake circuit 303 and the output end of the anti-shake circuit 303 are respectively connected to the level conversion circuit 306 and pin 1 of the processor 305.
  • the output end of the level conversion circuit 306 is respectively connected to the enable end and the DC-DC converter 312.
  • the control end of switch 309 and pin 3 of processor 305 are respectively connected to the control end of switch 310 and the control end of switch 311.
  • One end of switch 310 is connected to the connection node of switch 309 and PA314, and the other end of switch 310 is connected to the voltage dividing resistor R307.
  • One end, the other end of the voltage dividing resistor R307 is connected to the positive electrode of the DC power supply 308, the negative electrode of the DC power supply 308 is grounded, one end of the switch 311 is connected to the connection node between the switch 310 and the voltage dividing resistor R307, and the other end of the switch 311 is connected to the comparator 302.
  • the input terminal and the output terminal of the comparator 302 are connected to the input terminal of the anti-shake circuit 304, and the output terminal of the anti-shake circuit 304 is connected to pin 2 of the processor 305.
  • the DC-DC converter 312 In the normal state, the DC-DC converter 312 outputs normally, and there is no overcurrent on Rs313.
  • Rs313 converts the current into voltage, which is used as the input voltage of the comparator 301 and is compared with the reference voltage 1 of the comparator 301.
  • the comparator 301 When the input voltage is greater than When the reference voltage is 1, the comparator 301 outputs a low level; the anti-shake circuit 303 outputs a low level when the preset time threshold is met, and the level conversion circuit 306 converts the low level and outputs a high level, and DC-DC conversion is performed.
  • the enable terminal of the converter 312 receives a valid level, and the DC-DC converter 312 operates normally.
  • the OCP Flag in the processor 305 is set to 0 and outputs a low level to turn off the switch 310 and the switch 311.
  • the input voltage of the comparator 302 is 0, and its is less than the reference voltage 2 of the comparator 302, the comparator 302 outputs a low level, and the anti-shake circuit 304 outputs a low level to the pin2 of the processor 305.
  • the pin1 of the processor 305 and pin3 still outputs a low level to keep the circuit working normally.
  • the second situation abnormal state, that is, the VCC of PA314 is abnormal, and the ground resistance RL of PA314 becomes smaller;
  • the voltage dividing resistor R307 divides the voltage with RL. Since RL is small, the input voltage of the comparator 302 is less than the reference voltage 2, and the comparator 302 outputs a low level. After the anti-shake time is met, the anti-shake circuit 304 outputs a low level. ; When pin2 of processor 305 receives a low level and OCP Flag is 1, pin1 of processor 305 outputs high level and pin3 outputs high level, keeping the output of DC-DC converter 312 closed, switch 310 and The switch 311 is closed, and the comparator 302 and the anti-shake circuit 304 work normally.
  • the VCC of PA314 returns to normal and RL returns to normal.
  • the voltage is divided by the voltage dividing resistor R307 and RL.
  • the comparator 302 outputs a high level.
  • the anti-shake Circuit 304 outputs high level; when pin2 of processor 305 receives high level and OCP Flag is 1, pin1 outputs low level, pin3 outputs low level, DC-DC converter 312 and switch 309 are closed, and the switch 310 and switch 311 are turned off, and the circuit operates normally.
  • the circuit detects the voltage to determine whether the load resistance RL of the VCC of the PA314 is too small, thereby protecting the DC-DC converter 312.
  • Figure 4 is a schematic structural diagram of Example 2 of an optional overcurrent protection circuit provided by the embodiment of the present application. As shown in Figure 4, it is the same as the device and connection structure of Figure 3. The difference is that the overcurrent protection circuit ( The circuit in the dotted box) is set up independently of the DC-DC converter.
  • the voltage dividing resistor, comparator, switch, and anti-shake circuit are used to judge whether the load resistance is normal, so it can only be judged through the detection circuit. Will it occur and protect the internal circuit of the DC-DC converter from damage?
  • Embodiments of the present application provide an overcurrent protection circuit configured to protect a DC-DC converter from overcurrent, including: a current detection resistor, a first comparator, a second comparator, and a first switch.
  • the second switch, the third switch, the processor, the level conversion circuit, the voltage dividing resistor, the power supply, the output end of the DC-DC converter is connected to one end of the current detection resistor, and one end of the first switch is connected to the first comparator.
  • the input end and the other end of the current detection resistor, the other end of the first switch is connected to the power end of the load device and one end of the second switch respectively, the other end of the second switch is connected to one end of the voltage dividing resistor and one end of the third switch respectively , the other end of the third switch is connected to the input end of the second comparator, the output end of the first comparator is connected to the input end of the level conversion circuit and the first end of the processor respectively, and the output end of the level conversion circuit is connected to DC-
  • the enable end of the DC converter and the output end of the second comparator are connected to the second end of the processor.
  • the third end of the processor is respectively connected to the control end of the second switch and the control end of the third switch.
  • the processor is also connected to the third end.
  • the control end of a switch and the other end of the voltage dividing resistor are grounded through the power supply.
  • the processor is configured to: when the overcurrent protection state is in the overcurrent protection state, and the first output level of the second comparator is the first indication level. Normally, the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled so that the DC-DC converter enters a power supply state for the load device; wherein the first indication level is configured to indicate the third
  • the input voltage of the second comparator is greater than the reference voltage of the second comparator; that is to say, by setting an over-current protection circuit for the DC-DC converter, the over-current protection circuit performs over-current protection on the DC-DC converter.
  • the processor controls the first switch, the second switch and the third switch to switch from the overcurrent protection state of the overcurrent protection circuit to the DC-DC converter pair.
  • the power supply state of the load device avoids the risk of damage to the DC-DC converter due to overcurrent switching to the power supply state, thereby allowing the DC-DC converter to power the load device promptly and safely, improving the reliability of the DC-DC converter. .
  • an embodiment of the present application provides a control method, which is applied to a processor of an overcurrent protection circuit as described in one or more of the above embodiments.
  • Figure 5 shows a control method provided by an embodiment of the present application.
  • the flow chart of the optional control method is shown in Figure 5. The method includes:
  • the first indication level is configured to indicate that the input voltage of the second comparator is greater than the reference voltage of the second comparator; the overcurrent protection state is overcurrent protection when the first switch is turned off, the second switch is closed, and the third switch is closed.
  • the state of the circuit; the power supply state is the state in which the DC-DC converter is turned on when the first switch is closed, the second switch is turned off, and the third switch is turned off.
  • the above method further includes:
  • the first preset threshold is different from the second preset threshold.
  • the second switch when the first switch is closed, the second switch is turned off, and the third switch is turned off, the second output level of the first comparator is obtained;
  • the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled to turn off the first switch, Close the second switch and close the third switch, and set the OCP flag to the first preset threshold.
  • controlling the control end of the first switch, the control end of the second switch and the control end of the third switch so that the DC-DC converter enters a power supply state for the load device includes: :
  • the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled to close the first switch, turn off the second switch and turn off the third switch.
  • the method further includes:
  • the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled so that the overcurrent The protection circuit remains in overcurrent protection state;
  • the second indication level is configured to indicate that the input voltage of the second comparator is less than the reference voltage of the second comparator.
  • controlling the control end of the first switch, the control end of the second switch and the control end of the third switch so that the overcurrent protection circuit remains in the overcurrent protection state includes:
  • the control end of the first switch, the control end of the second switch and the control end of the third switch are controlled to turn off the first switch, close the second switch and close the third switch.
  • controlling the control end of the first switch, the control end of the second switch and the control end of the third switch so that the DC-DC converter enters the power supply state for the load device includes:
  • controlling the control end of the first switch, the control end of the second switch and the control end of the third switch so that the overcurrent protection circuit remains in the overcurrent protection state includes:
  • the effective level of the enable signal of the DC-DC converter is output to the level conversion circuit to keep the first switch open, the second switch closed and the third switch closed.
  • FIG. 6 is a schematic structural diagram of an optional DC-DC converter provided by an embodiment of the present application. As shown in Figure 6, the DC-DC converter 600 includes the overcurrent protection described in one or more embodiments. Circuit 61.
  • FIG. 7 is a schematic structural diagram of an optional electronic device provided by an embodiment of the present application.
  • an embodiment of the present application provides an electronic device 700, including: as described in one or more of the above embodiments.
  • DC-DC converter 71 and storage medium 72 storing instructions executable by the processor 711; the storage medium 72 relies on the processor 711 to perform operations through the communication bus 73.
  • the instructions are executed by the processor 711
  • the control method described in one or more of the above embodiments is executed.
  • the communication bus 73 is used to implement connection communication between these components.
  • the communication bus 73 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as communication bus 73 in FIG. 7 .
  • Embodiments of the present application provide a computer storage medium that stores executable instructions.
  • the executable instructions When executed by one or more processors, the processor executes the steps described in one or more of the above embodiments. Control Method.
  • the computer-readable storage medium can be magnetic random access memory (ferromagnetic random access memory, FRAM), read-only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-Only Memory, PROM), programmable read-only memory (PROM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash Memory, Magnetic Surface Memory , optical disk, or Compact Disc Read-Only Memory (CD-ROM) and other memories.
  • FRAM magnetic random access memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • Flash Memory Magnetic Surface Memory , optical disk, or Compact Disc Read-Only Memory (CD-ROM) and other memories.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, magnetic disk storage and optical storage, etc.) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage and optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • the output end of the DC-DC converter is connected to one end of the current detection resistor, and one end of the first switch is connected to the first comparator.
  • the input end and the other end of the current detection resistor, the other end of the first switch is connected to the power end of the load device and one end of the second switch respectively, the other end of the second switch is connected to one end of the voltage dividing resistor and one end of the third switch respectively , the other end of the third switch is connected to the input end of the second comparator, the output end of the first comparator is connected to the input end of the level conversion circuit and the first end of the processor respectively, and the output end of the level conversion circuit is connected to DC-
  • the enable end of the DC converter and the output end of the second comparator are connected to the second end of the processor.
  • the third end of the processor is respectively connected to the control end of the second switch and the control end of the third switch.
  • the processor is also connected to the third end.
  • a control end of the switch enables the DC-DC converter to supply power to the load device in a timely and safe manner, thereby improving the reliability of the DC-DC converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例公开了一种过流保护电路,包括:DC-DC转换器的输出端连接电流检测电阻的一端,第一开关的一端分别连接第一比较器的输入端和电流检测电阻的另一端,第一开关的另一端分别连接负载器件的电源端和第二开关的一端,第二开关的另一端分别连接分压电阻的一端和第三开关的一端,第三开关的另一端连接第二比较器的输入端,第一比较器的输出端分别连接电平转换电路的输入端和处理器的第一端,电平转换电路的输出端连接DC-DC转换器的使能端,第二比较器的输出端连接处理器的第二端,处理器的第三端分别连接第二开关的控制端和第三开关的控制端,处理器还连接第一开关的控制端。本申请实施例还同时提供了一种控制方法、DC-DC转换器及电子设备。

Description

一种过流保护电路、控制方法、DC-DC转换器及电子设备
相关申请的交叉引用
本申请基于申请号为202210411388.9、申请日为2022年04月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引用的方式引入本申请。
技术领域
本申请涉及中直流-直流(Direct current-Direct current,DC-DC)转换器中过流保护技术,尤其涉及一种过流保护电路、控制方法、DC-DC转换器及电子设备。
背景技术
目前,当DC-DC转换器的输出端超过输出端的额定电流值时,输出端的电流超过负荷称之为过电流,过电流会使得DC-DC转换器内部元件受损。那么,为了保护DC-DC转换器以及前端的电路系统,所以,需要适合的保护机制来防止过电流。
相关技术中,通过关闭打开的方式来检查DC-DC转换器是否存在过电流,不存在时打开DC-DC转换器,存在时关闭DC-DC转换器;然而该方法在DC-DC转换器打开检查是否存在过电流的期间,如果还存在过电流会损坏DC-DC转换器;由此可以看出,现有DC-DC转换器存在可靠性较差的技术问题。
发明内容
本申请的技术方案是这样实现的:
第一方面,本申请实施例提供了一种过流保护电路,所述过流保护电路配置成对DC-DC转换器进行过流保护,包括:电流检测电阻,第一比较器,第二比较器,第一开关,第二开关,第三开关,处理器,电平转换电路,分压电阻和供电电源,所述DC-DC转换器的输出端连接所述电流检测电阻的一端,所述第一开关的一端分别连接所述第一比较器的输入端和所述电流检测电阻的另一端,所述第一开关的另一端分别连接负载器件的电源端和所述第二开关的一端,所述第二开关的另一端分别连接所述分压电阻的一端和所述第三开关的一端,所述第三开关的另一端连接所述第二比较器的输入端,所述第一比较器的输出端分别连接所述电平转换电路的输入端和所述处理器的第一端,所述电平转换电路的输出端连接所述DC-DC转换器的使能端,所述第二比较器的输出端连接所述处理器的第二端,所述处理器的第三端分别连接所述第二开关的控制端和所述第三开关的控制端,所述处理器还连接所述第一开关的控制端,所述分压电阻的另一端通过所述供电电源接地;其中,所述处理器配置成:
当所述过流保护电路处于过流保护状态,且所述第二比较器的第一输出电平为第一指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态;
其中,所述第一指示电平配置成指示所述第二比较器的输入电压大于所述第二比较器的基准电压;所述过流保护状态为所述第一开关关断、所述第二开关闭合和所述第三开关闭合时所述过流保护电路的状态;所述供电状态为所述第一开关闭合、所述第二开关关断和所述第三开关关断时所述DC-DC转换器开启的状态。
第二方面,本申请实施例提供一种控制方法,所述方法应用于上述一个或多个实施例所述的过流保护电路的处理器中,包括:
当所述过流保护电路处于过流保护状态,且所述第二比较器的第一输出电平均为第一指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述 DC-DC转换器进入对所述负载器件的供电状态;
其中,所述第一指示电平配置成指示所述第二比较器的输入电压大于所述第二比较器的基准电压;所述过流保护状态为所述第一开关关断、所述第二开关闭合和所述第三开关闭合时所述过流保护电路的状态;所述供电状态为所述第一开关闭合、所述第二开关关断和所述第三开关关断时所述DC-DC转换器开启的状态。
第三方面,本申请实施例提供一种DC-DC转换器,包括上述一个或多个实施例中所述的过流保护电路。
第四方面,本申请实施例提供一种电子设备,包括:如上述一个或多个实施例所述的DC-DC转换器以及存储有所述处理器可执行指令的存储介质;所述存储介质通过通信总线依赖所述处理器执行操作,当所述指令被所述处理器执行时,执行上述一个或多个实施例所述的控制方法。
第五方面,本申请实施例提供了一种计算机存储介质,存储有可执行指令,当所述可执行指令被一个或多个处理器执行的时候,所述处理器执行上述一个或多个实施例所述控制方法。
附图说明
图1为本申请实施例提供的一种可选的过流保护电路的结构示意图;
图2a为相关技术中DC-DC转换器的过流保护机制的流程示意图一;
图2b为相关技术中DC-DC转换器的过流保护机制的流程示意图二;
图3为本申请实施例提供的一种可选的过流保护电路的实例一的结构示意图;
图4为本申请实施例提供的一种可选的过流保护电路的实例二的结构示意图;
图5为本申请实施例提供的一种可选的控制方法的流程示意图;
图6为本申请实施例提供的一种可选的DC-DC转换器的结构示意图;
图7为本申请实施例提供的一种可选的电子设备的结构示意图。
具体实施方式
第一方面,本申请实施例提供了一种过流保护电路,所述过流保护电路配置成对DC-DC转换器进行过流保护,包括:电流检测电阻,第一比较器,第二比较器,第一开关,第二开关,第三开关,处理器,电平转换电路,分压电阻和供电电源,所述DC-DC转换器的输出端连接所述电流检测电阻的一端,所述第一开关的一端分别连接所述第一比较器的输入端和所述电流检测电阻的另一端,所述第一开关的另一端分别连接负载器件的电源端和所述第二开关的一端,所述第二开关的另一端分别连接所述分压电阻的一端和所述第三开关的一端,所述第三开关的另一端连接所述第二比较器的输入端,所述第一比较器的输出端分别连接所述电平转换电路的输入端和所述处理器的第一端,所述电平转换电路的输出端连接所述DC-DC转换器的使能端,所述第二比较器的输出端连接所述处理器的第二端,所述处理器的第三端分别连接所述第二开关的控制端和所述第三开关的控制端,所述处理器还连接所述第一开关的控制端,所述分压电阻的另一端通过所述供电电源接地;其中,所述处理器配置成:
当所述过流保护电路处于过流保护状态,且所述第二比较器的第一输出电平为第一指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态;
其中,所述第一指示电平配置成指示所述第二比较器的输入电压大于所述第二比较器的基准电压;所述过流保护状态为所述第一开关关断、所述第二开关闭合和所述第三开关闭合时所述过流保护电路的状态;所述供电状态为所述第一开关闭合、所述第二开关关断和所述第三开关关断时所述DC-DC转换器开启的状态。
在一种可选的实施例中,所述处理器还配置成:
当获取到的OCP flag为第一预设阈值时,确定所述过流保护电路处于所述过流保护状态;
当所述OCP flag为第二预设阈值时,确定所述DC-DC转换器处于所述供电状态;
其中,所述第一预设阈值与所述第二预设阈值不同。
在一种可选的实施例中,所述处理器还配置成:
当所述第一开关闭合、所述第二开关关断和所述第三开关关断时,获取所述第一比较器的第二 输出电平;
当所述第二输出电平为所述DC-DC转换器的使能信号的无效电平时,保持闭合所述第一开关、关断所述第二开关和关断所述第三开关,并将所述OCP flag置为所述第二预设阈值;
当所述第二输出电平为所述DC-DC转换器的使能信号的有效电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关,并将所述OCP flag置为所述第一预设阈值。
在一种可选的实施例中,所述处理器的第三端连接所述第一开关的控制端;其中,
所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态中,包括:
控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以闭合所述第一开关、关断所述第二开关和关断所述第三开关。
在一种可选的实施例中,所述处理器还配置成:
当所述过流保护电路处于所述过流保护状态,且所述第一输出电平为第二指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态;
其中,所述第二指示电平配置成指示所述第二比较器的输入电压小于所述第二比较器的基准电压。
在一种可选的实施例中,所述处理器的第三端连接所述第一开关的控制端;其中,
所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所过流保护电路保持在所述过流保护状态中,包括:
控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关。
在一种可选的实施例中,所述第一开关的控制端通过连接所述电平转换电路的输出端与所述处理器的第一端相连接;其中,
所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态中,包括:
向所述电平转换电路输出所述DC-DC转换器的使能信号的无效电平以闭合所述第一开关,且控制所述第二开关的控制端和所述第三开关的控制端,以关断所述第二开关和关断所述第三开关。
在一种可选的实施例中,所述第一开关的控制端通过连接所述电平转换电路的输出端与所述处理器的第一端相连接;其中,
所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态中,包括:
向所述电平转换电路输出所述DC-DC转换器的使能信号的有效电平,以保持所述第一开关断开、所述第二开关闭合和所述第三开关闭合。
在一种可选的实施例中,所述电路还包括:第一防抖电路;其中,
所述第一防抖电路设置于所述第一比较器的输出端,所述处理器的第一端与所述电平转换电路的输入端之间,所述第一防抖电路配置成将持续预设时间阈值的所述第一比较器的输出电平分别输出至所述处理器和所述电平转换电路,所述第一防抖电路还配置成将持续预设时间阈值的所述处理器的输出电平输出至所述电平转换电路。
在一种可选的实施例中,所述电路还包括第二防抖电路;其中,
所述第二防抖电路设置于所述第二比较器的输出端与所述处理器之间,所述第二防抖电路配置成将持续预设时间阈值的所述第二比较器的输出电平输出至所述处理器。
第二方面,本申请实施例还提供一种控制方法,所述方法应用于上述一个或多个实施例所述的过流保护电路的处理器中,包括:
当所述过流保护电路处于过流保护状态,且所述第二比较器的第一输出电平均为第一指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态;
其中,所述第一指示电平配置成指示所述第二比较器的输入电压大于所述第二比较器的基准电压;所述过流保护状态为所述第一开关关断、所述第二开关闭合和所述第三开关闭合时所述过流保护电路的状态;所述供电状态为所述第一开关闭合、所述第二开关关断和所述第三开关关断时所述DC-DC转换器开启的状态。
在一种可选的实施例中,所述方法还包括:
当获取到的OCP flag为第一预设阈值时,确定所述过流保护电路处于所述过流保护状态;
当所述OCP flag为第二预设阈值时,确定所述DC-DC转换器处于所述供电状态;
其中,所述第一预设阈值与所述第二预设阈值不同。
在一种可选的实施例中,所述方法还包括:
当所述第一开关闭合、所述第二开关关断和所述第三开关关断时,获取所述第一比较器的第二输出电平;
当所述第二输出电平为所述DC-DC转换器的使能信号的无效电平时,保持闭合所述第一开关、关断所述第二开关和关断所述第三开关,并将所述OCP flag置为所述第二预设阈值;
当所述第二输出电平为所述DC-DC转换器的使能信号的有效电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关,并将所述OCP flag置为所述第一预设阈值。
在一种可选的实施例中,所述控制所述第一开关的控制端,所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态,包括:
控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以闭合所述第一开关、关断所述第二开关和关断所述第三开关。
在一种可选的实施例中,所述方法还包括:
当所述过流保护电路处于所述过流保护状态,且所述第一输出电平为所述第二指示电平,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态;
其中,所述第二指示电平配置成指示所述第二比较器的输入电压小于所述第二比较器的基准电压。
在一种可选的实施例中,所述控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态,包括:
控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关。
在一种可选的实施例中,所述控制所述第一开关的控制端,所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态,包括:
向所述电平转换电路输出所述DC-DC转换器的使能信号的无效电平以闭合所述第一开关,且控制所述第二开关的控制端和所述第三开关的控制端,以关断所述第二开关和关断所述第三开关。
在一种可选的实施例中,所述控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态,包括:
向所述电平转换电路输出所述DC-DC转换器的使能信号的有效电平,以保持所述第一开关断开,所述第二开关闭合和所述第三开关闭合。
第三方面,本申请实施例还提供一种DC-DC转换器,包括如上述一个或多个实施例所述的过流保护电路。
第四方面,本申请实施例还提供一种电子设备,包括如上述一个或多个实施例所述的DC-DC转换器以及存储有所述处理器可执行指令的存储介质;所述存储介质通过通信总线依赖所述处理器执行操作,当所述指令被所述处理器执行时,执行上述一个或多个实施例所述的控制方法。
第五方面,本申请实施例还提供一种计算机存储介质,存储有可执行指令,当所述可执行指令被一个或多个处理器执行的时候,所述处理器执行上述一个或多个实施例所述的控制方法。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供了一种过流保护电路,图1为本申请实施例提供的一种可选的过流保护电路的结构示意图,如图1所示,该过流保护电路1000配置成对DC-DC转换器111进行过流保护,包括:
电流检测电阻101,第一比较器102,第二比较器103,第一开关104,第二开关105,第三开关106,处理器107,电平转换电路108,分压电阻109和供电电源110,DC-DC转换器111的输出端连接电流检测电阻101的一端,第一开关104的一端分别连接第一比较器102的输入端和电流检测电阻101的另一端,第一开关104的另一端分别连接负载器件112的电源端和第二开关105的一端,第二开关105的另一端分别连接分压电阻109的一端和第三开关106的一端,第三开关106的另一端连接第二比较器103的输入端,第一比较器102的输出端分别连接电平转换电路108的输入 端和处理器107的第一端,电平转换电路108的输出端连接DC-DC转换器111的使能端,第二比较器103的输出端连接处理器107的第二端,处理器107的第三端分别连接第二开关105的控制端和第三开关106的控制端,处理器107还连接第一开关104的控制端,分压电阻109的另一端通过供电电源110接地;其中,处理器107配置成:
当过压保护电路1000处于过流保护状态,且第二比较器103的第一输出电平为第一指示电平时,控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以使得DC-DC转换器111进入对负载器件112的供电状态;
其中,第一指示电平配置成指示第二比较器103的输入电压大于第二比较器103的基准电压;过流保护状态为第一开关104关断、第二开关105闭合和第三开关106闭合时过流保护电路1000的状态;供电状态为第一开关104闭合、第二开关105关断和第三开关106关断时DC-DC转换器111开启的状态。
图2a为相关技术中DC-DC转换器的过流保护机制的流程示意图一,如图2a所示,该过流保护机制可以包括:
S201:在开启DC-DC转换器,DC-DC转换器输出目标电压;
S202:判断是否有过流(OC,Over Current)事件发生;
S203:若有,关闭DC-DC转换器的输出。
这里,通过检测DC-DC转换器的通路上电流超过阈值,并在超过阈值的时候,会关闭DC-DC转换器输出。然而采用该方法,在通路恢复之后,电路无法得到DC-DC转换器供应,即无法正常工作。
图2b为相关技术中DC-DC转换器的过流保护机制的流程示意图二,如图2b所示,该过流保护机制可以包括:
S204:开启DC-DC转换器输出目标电压;
S205:检测电路判断是否有过流事件发生;若为是,执行S206;
S206:防抖机制(检测OC持续时间)判断是否满足过流保护(OCP,Over Current Protection)事件;若为是,执行S207;
S207:关闭DC-DC转换器输出并进入打嗝保护机制(DC-DC转换器关闭时间可设定);
S208:DC-DC转换器打开(检测电压)判断是否还有OC事件;若为是,执行S206;若为否,执行S204。
其中,打嗝机制具体为:进入OCP机制之后,会关闭输出一段时间,然后在开启DC-DC转换器(DC-DC转换器可以设置),判断通路上是否有OC,如果还有OC事件,则继续关闭输出,经过设定时间之后,再次打开DC-DC转换器,并检查,是否还有OC事件,如果没有OC事件,则退出OCP保护机制,正常输出电压,如果还有则反复做以上动作,直到OC事件结束。然而采用该方法,在负载器件异常场景下(负载器件的供电电压(VCC,Volt Current Condenser)对地电阻很小),在DC-DC转换器打开判断是否还有OC事件的时候,依然会有一定时间的电压输出,这时会有大电流产生,所以会有损坏DC-DC转换器内部的风险。
为了提高DC-DC转换器111的可靠性,本申请实施例提供一种过流保护电路1000,该过流保护电路1000配置成对DC-DC转换器111进行过流保护,针对处于过流保护状态的过流保护电路1000来说,为了在DC-DC转换器111不存在过电流时及时准确地恢复对负载器件112的供电,在过流保护电路1000处于过流保护状态时,通过第二比较器103的输出电平可以知晓负载器件112的电源端的供电电压是否对地异常,若正常,说明此时DC-DC转换器111不存在过流的风险,所以,恢复对负载器件112的供电。
为了恢复对负载器件112的供电,这里,当在过流保护电路1000处于过流保护状态时,第二比较器103的第一输出电平为第一指示电平,其中,第一指示电平配置成指示第二比较器103的输入电压大于第二比较器103的基准电压;也就是说,当过流保护电路1000处于过流保护状态,且第二比较器103的第一输出电平指示第二比较器103的输入电压大于第二比较器103的基准电压时,说明此时负载器件113的电源端的供电电压对地正常,DC-DC转换器111对负载器件112供电不存在过流的风险,所以,此时,处理器107通过控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端来实现将从过流保护电路1000的过流保护状态切换至DC-DC转换器111的供电状态。
需要说明的是,上述处理器107在确定过流保护电路1000处于过流保护状态中,可以通过第一开关104、第二开关105和第三开关106的状态来确定过流保护电路1000所处的状态,也可以通过 处理器107中所设置的过流保护的标志位(Over Current Protection flag,OCP flag)的值来确定,这里,本申请实施例对此不做具体限定。
上述负载器件112可以为功率放大器(Power Amplifier,PA),还可以为其他负载器件,这里本申请实施例对此不作具体限定。
其中,在通过第一开关104、第二开关105和第三开关106的状态来确定过流保护电路1000和DC-DC转换器111所处的状态中,当第一开关104关断、第二开关105闭合和第三开关106闭合时,确定过流保护电路1000处于过流保护状态,当第一开关104闭合、第二开关105关断和第三开关106关断时,确定DC-DC转换器111处于供电状态。
在通过OCP flag的值来确定过流保护电路1000和DC-DC转换器111的状态时,在一种可选的实施例中,所述处理器还配置成:
当获取到的OCP flag为第一预设阈值时,确定过流保护电路1000处于过流保护状态;
当OCP flag为第二预设阈值时,确定DC-DC转换器111处于供电状态。
可以理解地,当OCP flag为第一预设阈值时,过流保护电路1000处于过流保护状态,当OCP flag为第二预设阈值时,DC-DC转换器111处于供电状态,其中,第一预设阈值与第二预设阈值不同;也就是说,通过在处理器107中设置OCP flag的方式来使得处理器107可以获知过流保护电路1000和DC-DC转换器111所处的状态,从而使得处理器107可以快速地知晓DC-DC转换器111是否对负载器件112的供电。
另外,处理器107通过OCP flag确定DC-DC转换器111是否对负载器件112的供电,那么为了知晓DC-DC转换器111的状态需要先确定出OCP flag的值,为了确定出OCP flag的值,在一种可选的实施例中,处理器107还配置成:
当第一开关104闭合、第二开关105关断和第三开关106关断时,获取第一比较器102的第二输出电平;
当第二输出电平为DC-DC转换器111的使能信号的无效电平时,保持闭合第一开关104、关断第二开关105和关断第三开关106,并将OCP flag置为第二预设阈值;
当第二输出电平为DC-DC转换器111的使能信号的有效电平时,控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以关断第一开关104、闭合第二开关105和闭合第三开关106,并将OCP flag置为第一预设阈值。
可以理解地,当DC-DC转换器111在正常的工作状态时,第一开关104是闭合的,第二开关105是关断的,第三开关106是关断的,那么此时主要是通过第一比较器102的输出电平,即第二输出电平来判断DC-DC转换器111的通路上是否有过电流,所以此时处理器107获取第二输出电平,判断第二输出电平是DC-DC转换器111的使能信号的无效电平还是DC-DC转换器111的使能信号的有效电平。
通过判断确定出第二输出电平为DC-DC转换器111的使能信号的无效电平,电平转换电路108将接收到的无效电平转换得到有效电平,使得DC-DC转换器111正常工作,第一开关104保持闭合,第二开关105保持关断,第三开关106保持关断,处理器107将OCP flag的值置为第二预设阈值,也就是说,处理器107确定DC-DC转换器111中没有过电流,仍然处于DC-DC转换器111的供电状态。
通过判断确定出第二输出电平为DC-DC转换器111的使能信号的有效电平,电平转换电路108将接收到的有效电平转换得到无效电平,使得DC-DC转换器111不工作,控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,使得第一开关104关断,第二开关105闭合,第三开关106闭合,处理器107将OCP flag的值置为第一预设阈值,也就是说,处理器107确定DC-DC转换器111中有过电流,将DC-DC转换器111由供电状态切换至过流保护电路1000的过流保护状态。
由于处理器107可以直接与第一开关104相连接,也可以通过电平转换电路108与第一开关104相连接,那么,针对处理器107直接与第一开关104相连接的情况,为了将过流保护电路1000的过流保护状态切换至DC-DC转换器111的供电状态,在一种可选的实施例中,处理器107的第三端连接第一开关104的控制端;其中,
处理器107控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以使得DC-DC转换器111进入对负载器件112的供电状态,包括:
控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以闭合第一开关104、关断第二开关105和关断第三开关106。
可以理解地,处理器107直接控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,使得第一开关104闭合、第二开关105关断和第三开关106关断,如此,使得DC-DC转换器111向负载器件112供电。
另外,若采用OCP flag的值来确定DC-DC转换器111的状态,此时还要将OCP flag置为第二预设阈值,这样以便处理器107确定DC-DC转换器111的状态。
另外,针对处于过流保护电路1000处于过流保护状态时的DC-DC转换器111来说,在一种可选的实施例中,处理器107还配置成:
当过流保护电路1000处于过流保护状态,且第一输出电平为第二指示电平时,控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以使得过流保护电路1000保持在过流保护状态。
可以理解地,当过流保护电路1000处于过流保护状态,且第一输出电平为第二指示电平时,其中,所述第二指示电平配置成指示第二比较器103的输入电压小于第二比较器103的基准电压;也就是说,当过流保护电路1000处于过流保护状态,且第一输出电平指示第二比较器103的输入电压小于第二比较器103的基准电压时,说明此时负载器件112的电源端的供电电压对地异常,DC-DC转换器111对负载器件112供电存在过流的风险,所以,此时,处理器107通过控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端以使得过流保护电路1000继续处于过流保护状态,以保护DC-DC转换器111损坏。
为了实现将过流保护电路1000保持在过流保护状态中,在一种可选的实施例中,处理器107的第三端连接第一开关104的控制端;其中,
处理器107控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以使得过流保护电路1000保持在过流保护状态,包括:
控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以关断第一开关104、闭合第二开关105和闭合第三开关106。
可以理解地,由于处理器107的第三端直接与第一开关104的控制端相连接,所以,可以直接控制第一开关104的控制端,所以,这里,处理器107直接控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,从而关断第一开关104、闭合第二开关105和闭合第三开关106,使得过流保护电路1000处于过流保护状态中。
针对处理器107的第一端通过电平转换电路108连接第一开关104的控制端的结构来说,为了使得DC-DC转换器111进入对负载器件112的供电状态,在一种可选的实施例中,第一开关104的控制端通过连接电平转换电路108的输出端与处理器107的第一端相连接;其中,
处理器107控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以使得DC-DC转换器111进入对负载器件112的供电状态,包括:
向电平转换电路108输出DC-DC转换器111的使能信号的无效电平以闭合第一开关104,且控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以闭合第一开关104、关断第二开关105和关断第三开关106。
可以理解地,由于第一开关104的控制端连接电平转换电路108的输出端,所以,为了使得DC-DC转换器111进入对负载器件112的供电状态,需要DC-DC转换器111工作,且闭合第一开关104,所以,处理器107向电平转换电路108输出DC-DC转换器111的使能信号的无效电平,电平转换电路108对无效电平进行转换得到有效电平,该有效电平一方面可以闭合第一开关,另一方面可以使得DC-DC转换器111正常工作,同时,处理器107直接控制第二开关105的控制端和第三开关106的控制端,以关断第二开关105和关断第三开关106。
这样,处理器107通过直接控制第二开关105和第三开关106,通过控制电平转换电路108控制第一开关104和DC-DC转换器111,使得DC-DC转换器111处于对负载器件112的供电状态。
另外,基于处理器107的第一端通过电平转换电路108连接第一开关104的控制端的结构来说,为了使得过流保护电路1000维持在过流保护状态,在一种可选的实施例中,第一开关104的控制端通过连接电平转换电路108的输出端与处理器107的第一端相连接;其中,
处理器107控制第一开关104的控制端、第二开关105的控制端和第三开关106的控制端,以使得过流保护电路1000保持在过流保护状态,包括:
向电平转换电路108输出DC-DC转换器111的使能信号的有效电平,以保持第一开关104断开、第二开关105闭合和第三开关106闭合。
可以理解地,由于第一开关104的控制端连接电平转换电路108的输出端,所以,为了使得过 流保护电路1000维持在过流保护状态,需要DC-DC转换器111不工作,且继续断开第一开关104,所以,处理器107向电平转换电路108输出DC-DC转换器111的使能信号的有效电平,电平转换电路108对有效电平进行转换得到无效电平,该无效电平一方面可以关断第一开关,另一方面可以使得DC-DC转换器111不工作,同时,处理器107直接控制第二开关105的控制端和第三开关106的控制端,以闭合第二开关105和闭合第三开关106。
这样,处理器107通过直接控制第二开关105和第三开关106,通过控制电平转换电路108控制第一开关104和DC-DC转换器111,使得过流保护电路1000维持在过流保护状态。
为了进一步提高DC-DC转换器111的可靠性,需要进一步筛选第一比较器102的输出电平,防止暂时的输出对DC-DC转换器111可靠性的影响,在一种可选的实施例中,电路还包括:第一防抖电路;其中,
第一防抖电路设置于第一比较器102的输出端,处理器107的第一端与电平转换电路108的输入端之间,第一防抖电路配置成将持续预设时间阈值的第一比较器102的输出电平分别输出至处理器107和电平转换电路108,第一防抖电路还配置成将持续预设时间阈值的处理器107的输出电平输出至电平转换电路108。
可以理解地,在第一比较器102的输出端,处理器107的第一端和电平转换电路108的输入端之间设置第一防抖电路,这样,当第一比较器102的输出电平保持预设时间阈值之后,第一防抖电路才将第一比较器102的输出电平输出至处理器和电平转换电路,同样的,当处理器的第一端的输出电平保持预设时间阈值之后,第一防抖电路才将处理器107的第一端的输出电平输出至电平转换电路108;如此,可以避免抖动的输出电平对DC-DC转换器111的可靠性的影响。
为了进一步提高DC-DC转换器111的可靠性,需要进一步筛选第二比较器103的输出电平,防止暂时的输出对DC-DC转换器111可靠性的影响,在一种可选的实施例中,电路还包括第二防抖电路;其中,
第二防抖电路设置于第二比较器103的输出端与处理器107之间,第二防抖电路配置成将持续预设时间阈值的第二比较器103的输出电平输出至处理器107。
可以理解地,在第二比较器103的输出端与处理器107的第二端之间设置第二防抖电路,这样,当第二比较器103的输出电平保持预设时间阈值之后,第二防抖电路才将第二比较器103的输出电平输出至处理器107;如此,可以避免抖动的输出电平对DC-DC转换器111的可靠性的影响。
需要说明的是,上述过流保护电路1000可以设置于DC-DC转换器111中,也可以独立于DC-DC转换器111单独设置,这里,本申请实施例对此不做具体限定。
下面举实例来对上述一个或多个实施例中所述的过流保护电路进行说明。
图3为本申请实施例提供的一种可选的过流保护电路的实例一的结构示意图,如图3所示,该过流保护电路用于对DC-DC转换器312进行过流保护,DC-DC转换器312用于对PA314供电,PA314的电源端VCC通过电流检测电阻Rs313与DC-DC转换器312的输出端相连接,PA314的对地的等效电阻为RL。
图3中过流保护电路设置于DC-DC转换器312中,该过流保护电路包括:比较器301,比较器302,防抖电路303,防抖电路304,处理器305,电平转换电路306,分压电阻R307,直流电源308,开关309,开关310,开关311和电流检测电阻313;其中,比较器301的输入端连接于Rs313与开关309的连接节点,比较器301的输出端连接防抖电路303的输入端,防抖电路303的输出端分别连接电平转换电路306和处理器305的pin1,电平转换电路306的输出端分别连接DC-DC转换器312的使能端和开关309的控制端,处理器305的pin3分别连接开关310的控制端和开关311的控制端,开关310的一端连接于开关309与PA314的连接节点,开关310的另一端连接分压电阻R307的一端,分压电阻R307的另一端连接直流电源308的正极,直流电源308的负极接地,开关311的一端连接于开关310与分压电阻R307的连接节点,开关311的另一端连接比较器302的输入端,比较器302的输出端连接防抖电路304的输入端,防抖电路304的输出端连接处理器305的pin2。
基于上述图3,分为两种情况,一种是正常状态,另一种是异常状态;
针对第一种情况:正常状态,即PA314正常,RL的值正常;
在正常状态时,DC-DC转换器312正常输出,Rs313上没有过电流,Rs313把电流转换成电压,作为比较器301的输入电压,与比较器301的基准电压1进行比较,当输入电压大于基准电压1时,比较器301输出低电平;防抖电路303在满足预设时间阈值时输出低电平,经过电平转换电路306对低电平的转换输出高电平,DC-DC转换器312的使能端接收到有效电平,DC-DC转换器312正常工作。
另外,防抖电路303输出低电平时,处理器305中的OCP Flag置0,输出低电平以关断开关310和关断开关311,此时,比较器302的输入端电压为0,其小于比较器302的基准电压2,比较器302输出低电平,防抖电路304输出低电平给处理器305的pin2,处理器305的pin2接收到低电平之后,处理器305的pin1和pin3依然输出低电平保持电路正常工作。
第二种情况:异常状态,即PA314的VCC异常,对PA314的地电阻RL变小;
在Rs313上有过电流时,由V/RL=I,I变大,经过Rs313转换电压,使得比较器301的输入电压小于比较器301的基准电压1,比较器301输出高电平,当高电平持续时间超过预设时间阈值之后,防抖电路303输出高电平,电平转换电路306将高电平转换为低电平,输出至DC-DC转换器312的使能端,使得DC-DC转换器312关闭,且开关309关断。此时,处理器305的pin1输入高电平,处理器305将OCP Flag置1,表示电路有过流产生,处理器305的pin3输出高电平,使得开关310闭合和开关311闭合。
如此,分压电阻R307与RL进行分压,由于RL小,因此比较器302的输入电压小于基准电压2,比较器302输出低电平,满足防抖时间之后,防抖电路304输出低电平;当处理器305的pin2收到低电平,且OCP Flag为1时,则处理器305的pin1输出高电平,pin3输出高电平,保持DC-DC转换器312输出关闭,开关310和开关311闭合,比较器302和防抖电路304正常工作。
假设PA314的VCC恢复正常,RL恢复正常,由分压电阻R307与RL分压,RL分压得到的电压比基准电压2高时,比较器302输出高电平,满足防抖时间之后,防抖电路304输出高电平;当处理器305的pin2收到高电平且OCP Flag为1时,则pin1输出低电平,pin3输出低电平,DC-DC转换器312以及开关309闭合,开关310和开关311关断,电路正常工作。
如此,在不需要开启DC-DC转换器312的基础上,通过电路检测电压的方式来判断PA314的VCC的负载电阻RL是否过小,从而保护DC-DC转换器312。
本实例中,在不开启DC-DC转换器312的情况下,可以判断PA314的VCC的负载电阻RL是否过小,导致产生大电流,从而保护DC-DC转换器312内部电路不被烧坏。
图4为本申请实施例提供的一种可选的过流保护电路的实例二的结构示意图,如图4所示,与图3的器件和连接结构相同,区别在于,将过流保护电路(虚线框中的电路)独立于DC-DC转换器单独设置。
也就是说,在上述实例中,在不开启DC-DC转换器的情况下,通过分压电阻,比较器,开关,防抖电路来判断,负载电阻是否正常,因此仅可通过检测电路来判断是否会产生过来,进而保护DC-DC转换器内部电路损坏。
本申请实施例提供了一种过流保护电路,该过流保护电路配置成对DC-DC转换器进行过流保护,包括:电流检测电阻,第一比较器,第二比较器,第一开关,第二开关,第三开关,处理器,电平转换电路,分压电阻,供电电源,DC-DC转换器的输出端连接电流检测电阻的一端,第一开关的一端分别连接第一比较器的输入端和电流检测电阻的另一端,第一开关的另一端分别连接负载器件的电源端和第二开关的一端,第二开关的另一端分别连接分压电阻的一端和第三开关的一端,第三开关的另一端连接第二比较器的输入端,第一比较器的输出端分别连接电平转换电路的输入端和处理器的第一端,电平转换电路的输出端连接DC-DC转换器的使能端,第二比较器的输出端连接处理器的第二端,处理器的第三端分别连接第二开关的控制端和第三开关的控制端,处理器还连接第一开关的控制端,分压电阻的另一端通过供电电源接地,该处理器配置成:当过流保护状态处于过流保护状态,且第二比较器的第一输出电平为第一指示电平时,控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以使得DC-DC转换器进入对负载器件的供电状态;其中,第一指示电平配置成指示第二比较器的输入电压大于第二比较器的基准电压;也就是说,通过在为DC-DC转换器设置过流保护电路,使得过流保护电路在对DC-DC转换器进行过流保护时,通过第二比较器的第一输出电平可以确定出第二比较器的输入电压是否大于第二比较器的基准电压,若大于,说明负载器件的电源端异常已不存在,所以,DC-DC转换器的输出端已经不存在过电流,此时,处理器通过控制第一开关、第二开关和第三开关,使得从过流保护电路的过流保护状态切换至DC-DC转换器对负载器件的供电状态,避免存在过电流切换至供电状态对DC-DC转换器的损坏风险,从而使得DC-DC转换器及时且安全地对负载器件供电,提高了DC-DC转换器的可靠性。
基于同一发明构思,本申请实施例提供一种控制方法,该方法应用于如上述一个或多个实施例所述的过流保护电路的处理器中,图5为本申请实施例提供的一种可选的控制方法的流程示意图,如图5所示,该方法包括:
S501:当过流保护电路处于过流保护状态,且第二比较器的第一输出电平均为第一指示电平时,控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以使得DC-DC转换器进入对负载器件的供电状态。
其中,第一指示电平配置成指示第二比较器的输入电压大于第二比较器的基准电压;过流保护状态为第一开关关断、第二开关闭合和第三开关闭合时过流保护电路的状态;供电状态为第一开关闭合、第二开关关断和第三开关关断时DC-DC转换器开启的状态。
在一种可选的实施例中,上述方法还包括:
当获取到的OCP flag为第一预设阈值时,确定过流保护电路处于过流保护状态;
当OCP flag为第二预设阈值时,确定DC-DC转换器处于供电状态;
其中,第一预设阈值与第二预设阈值不同。
在一种可选的实施例中,当第一开关闭合、第二开关关断和第三开关关断时,获取第一比较器的第二输出电平;
当第二输出电平为DC-DC转换器的使能信号的无效电平时,保持闭合第一开关、关断第二开关和关断第三开关,并将OCP flag置为第二预设阈值;
当第二输出电平为DC-DC转换器的使能信号的有效电平时,控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以关断第一开关、闭合第二开关和闭合第三开关,并将OCP flag置为第一预设阈值。
在一种可选的实施例中,控制所述第一开关的控制端,第二开关的控制端和第三开关的控制端,以使得DC-DC转换器进入对负载器件的供电状态,包括:
控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以闭合第一开关、关断第二开关和关断第三开关。
在一种可选的实施例中,所述方法还包括:
当过流保护电路处于过流保护状态,且第一输出电平为第二指示电平,控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以使得过流保护电路保持在过流保护状态;
其中,第二指示电平配置成指示第二比较器的输入电压小于第二比较器的基准电压。
在一种可选的实施例中,控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以使得过流保护电路保持在过流保护状态,包括:
控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以关断第一开关、闭合第二开关和闭合第三开关。
在一种可选的实施例中,控制第一开关的控制端,第二开关的控制端和第三开关的控制端,以使得DC-DC转换器进入对负载器件的供电状态,包括:
向电平转换电路输出DC-DC转换器的使能信号的无效电平以闭合第一开关,且控制第二开关的控制端和第三开关的控制端,以关断第二开关和关断第三开关。
在一种可选的实施例中,控制第一开关的控制端、第二开关的控制端和第三开关的控制端,以使得过流保护电路保持在过流保护状态,包括:
向电平转换电路输出DC-DC转换器的使能信号的有效电平,以保持第一开关断开,第二开关闭合和第三开关闭合。
图6为本申请实施例提供的一种可选的DC-DC转换器的结构示意图,如图6所示,该DC-DC转换器600包括上述一个或多个实施例所述的过流保护电路61。
图7为本申请实施例提供的一种可选的电子设备的结构示意图,如图7所示,本申请实施例提供一种电子设备700,包括:如上述一个或多个实施例所述的DC-DC转换器71以及存储有所述处理器711可执行指令的存储介质72;所述存储介质72通过通信总线73依赖所述处理器711执行操作,当所述指令被所述处理器711执行时,执行上述一个或多个实施例中所述的控制方法。
需要说明的是,实际应用时,终端中的各个组件通过通信总线73耦合在一起。可理解,通信总线73用于实现这些组件之间的连接通信。通信总线73除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为通信总线73。
本申请实施例提供了一种计算机存储介质,存储有可执行指令,当所述可执行指令被一个或多个处理器执行的时候,所述处理器执行上述一个或多个实施例所述的控制方法。
其中,计算机可读存储介质可以是磁性随机存取存储器(ferromagnetic random access memory,FRAM)、只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、 电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM)等存储器。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例中提供的过流保护电路、控制方法、DC-DC转换器及电子设备,DC-DC转换器的输出端连接电流检测电阻的一端,第一开关的一端分别连接第一比较器的输入端和电流检测电阻的另一端,第一开关的另一端分别连接负载器件的电源端和第二开关的一端,第二开关的另一端分别连接分压电阻的一端和第三开关的一端,第三开关的另一端连接第二比较器的输入端,第一比较器的输出端分别连接电平转换电路的输入端和处理器的第一端,电平转换电路的输出端连接DC-DC转换器的使能端,第二比较器的输出端连接处理器的第二端,处理器的第三端分别连接第二开关的控制端和第三开关的控制端,处理器还连接第一开关的控制端,从而使得DC-DC转换器及时且安全地对负载器件供电,提高了DC-DC转换器的可靠性。

Claims (21)

  1. 一种过流保护电路,所述过流保护电路配置成对DC-DC转换器进行过流保护,包括:电流检测电阻,第一比较器,第二比较器,第一开关,第二开关,第三开关,处理器,电平转换电路,分压电阻和供电电源,所述DC-DC转换器的输出端连接所述电流检测电阻的一端,所述第一开关的一端分别连接所述第一比较器的输入端和所述电流检测电阻的另一端,所述第一开关的另一端分别连接负载器件的电源端和所述第二开关的一端,所述第二开关的另一端分别连接所述分压电阻的一端和所述第三开关的一端,所述第三开关的另一端连接所述第二比较器的输入端,所述第一比较器的输出端分别连接所述电平转换电路的输入端和所述处理器的第一端,所述电平转换电路的输出端连接所述DC-DC转换器的使能端,所述第二比较器的输出端连接所述处理器的第二端,所述处理器的第三端分别连接所述第二开关的控制端和所述第三开关的控制端,所述处理器还连接所述第一开关的控制端,所述分压电阻的另一端通过所述供电电源接地;其中,所述处理器配置成:
    当所述过流保护电路处于过流保护状态,且所述第二比较器的第一输出电平为第一指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态;
    其中,所述第一指示电平配置成指示所述第二比较器的输入电压大于所述第二比较器的基准电压;所述过流保护状态为所述第一开关关断、所述第二开关闭合和所述第三开关闭合时所述过流保护电路的状态;所述供电状态为所述第一开关闭合、所述第二开关关断和所述第三开关关断时所述DC-DC转换器开启的状态。
  2. 根据权利要求1所述的电路,其中,所述处理器还配置成:
    当获取到的OCP flag为第一预设阈值时,确定所述过流保护电路处于所述过流保护状态;
    当所述OCP flag为第二预设阈值时,确定所述DC-DC转换器处于所述供电状态;
    其中,所述第一预设阈值与所述第二预设阈值不同。
  3. 根据权利要求2所述的电路,其中,所述处理器还配置成:
    当所述第一开关闭合、所述第二开关关断和所述第三开关关断时,获取所述第一比较器的第二输出电平;
    当所述第二输出电平为所述DC-DC转换器的使能信号的无效电平时,保持闭合所述第一开关、关断所述第二开关和关断所述第三开关,并将所述OCP flag置为所述第二预设阈值;
    当所述第二输出电平为所述DC-DC转换器的使能信号的有效电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关,并将所述OCP flag置为所述第一预设阈值。
  4. 根据权利要求1至3任一项所述的电路,其中,所述处理器的第三端连接所述第一开关的控制端;其中,
    所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态中,包括:
    控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以闭合所述第一开关、关断所述第二开关和关断所述第三开关。
  5. 根据权利要求1至3任一项所述的电路,其中,所述处理器还配置成:
    当所述过流保护电路处于所述过流保护状态,且所述第一输出电平为第二指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态;
    其中,所述第二指示电平配置成指示所述第二比较器的输入电压小于所述第二比较器的基准电压。
  6. 根据权利要求5所述的电路,其中,所述处理器的第三端连接所述第一开关的控制端;其中,
    所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所过流保护电路保持在所述过流保护状态中,包括:
    控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关。
  7. 根据权利要求1至3任一项所述的电路,其中,所述第一开关的控制端通过连接所述电平转 换电路的输出端与所述处理器的第一端相连接;其中,
    所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态中,包括:
    向所述电平转换电路输出所述DC-DC转换器的使能信号的无效电平以闭合所述第一开关,且控制所述第二开关的控制端和所述第三开关的控制端,以关断所述第二开关和关断所述第三开关。
  8. 根据权利要求5所述的电路,其中,所述第一开关的控制端通过连接所述电平转换电路的输出端与所述处理器的第一端相连接;其中,
    所述处理器控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态中,包括:
    向所述电平转换电路输出所述DC-DC转换器的使能信号的有效电平,以保持所述第一开关断开、所述第二开关闭合和所述第三开关闭合。
  9. 根据权利要求1至3任一项所述的电路,其中,所述电路还包括:第一防抖电路;其中,
    所述第一防抖电路设置于所述第一比较器的输出端,所述处理器的第一端与所述电平转换电路的输入端之间,所述第一防抖电路配置成将持续预设时间阈值的所述第一比较器的输出电平分别输出至所述处理器和所述电平转换电路,所述第一防抖电路还配置成将持续预设时间阈值的所述处理器的输出电平输出至所述电平转换电路。
  10. 根据权利要求1至3任一项所述的电路,其中,所述电路还包括第二防抖电路;其中,
    所述第二防抖电路设置于所述第二比较器的输出端与所述处理器之间,所述第二防抖电路配置成将持续预设时间阈值的所述第二比较器的输出电平输出至所述处理器。
  11. 一种控制方法,所述方法应用于如权利要求1至10任一项所述的过流保护电路的处理器中,包括:
    当所述过流保护电路处于过流保护状态,且所述第二比较器的第一输出电平均为第一指示电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态;
    其中,所述第一指示电平配置成指示所述第二比较器的输入电压大于所述第二比较器的基准电压;所述过流保护状态为所述第一开关关断、所述第二开关闭合和所述第三开关闭合时所述过流保护电路的状态;所述供电状态为所述第一开关闭合、所述第二开关关断和所述第三开关关断时所述DC-DC转换器开启的状态。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    当获取到的OCP flag为第一预设阈值时,确定所述过流保护电路处于所述过流保护状态;
    当所述OCP flag为第二预设阈值时,确定所述DC-DC转换器处于所述供电状态;
    其中,所述第一预设阈值与所述第二预设阈值不同。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    当所述第一开关闭合、所述第二开关关断和所述第三开关关断时,获取所述第一比较器的第二输出电平;
    当所述第二输出电平为所述DC-DC转换器的使能信号的无效电平时,保持闭合所述第一开关、关断所述第二开关和关断所述第三开关,并将所述OCP flag置为所述第二预设阈值;
    当所述第二输出电平为所述DC-DC转换器的使能信号的有效电平时,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关,并将所述OCP flag置为所述第一预设阈值。
  14. 根据权利要求11至13任一项所述的方法,其中,所述控制所述第一开关的控制端,所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态,包括:
    控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以闭合所述第一开关、关断所述第二开关和关断所述第三开关。
  15. 根据权利要求11至13任一项所述的方法,其中,所述方法还包括:
    当所述过流保护电路处于所述过流保护状态,且所述第一输出电平为所述第二指示电平,控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态;
    其中,所述第二指示电平配置成指示所述第二比较器的输入电压小于所述第二比较器的基准电压。
  16. 根据权利要求15所述的方法,其中,所述控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态,包括:
    控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以关断所述第一开关、闭合所述第二开关和闭合所述第三开关。
  17. 根据权利要求11至13任一项所述的方法,其中,所述控制所述第一开关的控制端,所述第二开关的控制端和所述第三开关的控制端,以使得所述DC-DC转换器进入对所述负载器件的供电状态,包括:
    向所述电平转换电路输出所述DC-DC转换器的使能信号的无效电平以闭合所述第一开关,且控制所述第二开关的控制端和所述第三开关的控制端,以关断所述第二开关和关断所述第三开关。
  18. 根据权利要求15所述的方法,其中,所述控制所述第一开关的控制端、所述第二开关的控制端和所述第三开关的控制端,以使得所述过流保护电路保持在所述过流保护状态,包括:
    向所述电平转换电路输出所述DC-DC转换器的使能信号的有效电平,以保持所述第一开关断开,所述第二开关闭合和所述第三开关闭合。
  19. 一种DC-DC转换器,包括如权利要求1至10任一项所述的过流保护电路。
  20. 一种电子设备,包括如权利要求19所述的DC-DC转换器以及存储有所述处理器可执行指令的存储介质;所述存储介质通过通信总线依赖所述处理器执行操作,当所述指令被所述处理器执行时,执行上述的权利要求11至18任一项所述的控制方法。
  21. 一种计算机存储介质,存储有可执行指令,当所述可执行指令被一个或多个处理器执行的时候,所述处理器执行所述的权利要求11至18任一项所述的控制方法。
PCT/CN2022/141084 2022-04-19 2022-12-22 一种过流保护电路、控制方法、dc-dc转换器及电子设备 WO2023202128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210411388.9A CN114865594A (zh) 2022-04-19 2022-04-19 一种过流保护电路、控制方法、dc-dc转换器及电子设备
CN202210411388.9 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023202128A1 true WO2023202128A1 (zh) 2023-10-26

Family

ID=82632408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141084 WO2023202128A1 (zh) 2022-04-19 2022-12-22 一种过流保护电路、控制方法、dc-dc转换器及电子设备

Country Status (2)

Country Link
CN (1) CN114865594A (zh)
WO (1) WO2023202128A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865594A (zh) * 2022-04-19 2022-08-05 Oppo广东移动通信有限公司 一种过流保护电路、控制方法、dc-dc转换器及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317488A1 (en) * 2016-04-28 2017-11-02 Texas Instruments Incorporated Over-current protection in multiphase dc-dc switching regulators
CN112103920A (zh) * 2020-09-10 2020-12-18 安徽鸿创新能源动力有限公司 一种dc/dc转换器过流保护电路
CN213990125U (zh) * 2020-12-25 2021-08-17 国网智慧能源交通技术创新中心(苏州)有限公司 一种双向dc/dc变换器的双向过流保护装置
CN114865594A (zh) * 2022-04-19 2022-08-05 Oppo广东移动通信有限公司 一种过流保护电路、控制方法、dc-dc转换器及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317488A1 (en) * 2016-04-28 2017-11-02 Texas Instruments Incorporated Over-current protection in multiphase dc-dc switching regulators
CN112103920A (zh) * 2020-09-10 2020-12-18 安徽鸿创新能源动力有限公司 一种dc/dc转换器过流保护电路
CN213990125U (zh) * 2020-12-25 2021-08-17 国网智慧能源交通技术创新中心(苏州)有限公司 一种双向dc/dc变换器的双向过流保护装置
CN114865594A (zh) * 2022-04-19 2022-08-05 Oppo广东移动通信有限公司 一种过流保护电路、控制方法、dc-dc转换器及电子设备

Also Published As

Publication number Publication date
CN114865594A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
JP2008306799A (ja) 電源装置、電源装置の制御方法、プログラム、及び記憶媒体
WO2023202128A1 (zh) 一种过流保护电路、控制方法、dc-dc转换器及电子设备
KR20100016100A (ko) 전압 서지 및 과전압 보호
JP2009219348A (ja) 電流を調整するための監視及び制御回路
EP3254366B1 (en) Method for detecting a failing rectifier or rectifier source in a ups
US20080259513A1 (en) Secondary battery protection device
JP5319246B2 (ja) スイッチング電源保護システム及び計算機
CN110718893A (zh) 一种过流保护方法与装置
JP6385310B2 (ja) バッテリ装置
CN112003247A (zh) 一种使用均流信号的冗余电源保护方法及冗余电源
US8977406B2 (en) Power supply system, power supply control method, power supply control device and program
JP2007267563A (ja) キャパシタ充電監視制御装置
JP2002233156A (ja) 電力変換装置
CN113629654B (zh) 一种电源控制方法、电路、装置及可读存储介质
US20190165561A1 (en) Power supply control apparatus, power supply control method, and computer program
KR102299582B1 (ko) 단락전류 보호 장치 및 이를 구비한 엘리베이터 인버터용 smps
CN211351693U (zh) 电机馈电控制电路和用电设备
CN113765080A (zh) 抑制电源启动浪涌的电路、方法、充电装置及存储介质
US20180114999A1 (en) Fuel cell system
JP7054024B2 (ja) 過電流保護回路及び電気機器
KR101524660B1 (ko) 사이리스터 고장 검출 시스템 및 방법
US9231467B2 (en) System and method for managing recovery of control in an electrical system
JP7310042B2 (ja) Dcライン障害の場合のフルブリッジ型又は混合アーム型のモジュラーマルチレベルコンバータの制御
US20220350393A1 (en) Power management device and management method thereof
CN113270848B (zh) 一种目标电路的故障保护的触发控制方法、装置、控制器及电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938346

Country of ref document: EP

Kind code of ref document: A1