WO2023202121A1 - 一种射频电路及电子设备 - Google Patents

一种射频电路及电子设备 Download PDF

Info

Publication number
WO2023202121A1
WO2023202121A1 PCT/CN2022/140160 CN2022140160W WO2023202121A1 WO 2023202121 A1 WO2023202121 A1 WO 2023202121A1 CN 2022140160 W CN2022140160 W CN 2022140160W WO 2023202121 A1 WO2023202121 A1 WO 2023202121A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
module
radio frequency
mmpa
switch
Prior art date
Application number
PCT/CN2022/140160
Other languages
English (en)
French (fr)
Inventor
张亭
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210432183.9A external-priority patent/CN114826295B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023202121A1 publication Critical patent/WO2023202121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • This application relates to but is not limited to electronic technology, especially a radio frequency circuit and electronic equipment.
  • 5G fifth generation mobile communication networks
  • SA independent networking
  • NSA non-independent networking
  • SA only needs the 5G network to be connected to the base station alone; while for NSA, the 5G network needs to rely on the fourth generation mobile communication network (4G, 4th generation mobile networks) core network for signaling connections to ensure that 4G and 5G can Work simultaneously.
  • 4G, 4th generation mobile networks fourth generation mobile communication network
  • the power supply circuits of SA and NSA are different, that is to say, SA and NSA each have their own power supply device. In this way, not only is there a huge waste of manpower and material resources, but it is also not conducive to cost savings.
  • This application provides a radio frequency circuit and electronic equipment, which can realize the common board of SA networking and NSA networking, saving costs.
  • the embodiment of the present application provides a radio frequency circuit, including: an ultra-high frequency power amplifier UHB PA, a transmitting module, and a multi-mode multi-frequency power amplifier MMPA;
  • the radio frequency circuit in the independent network SA also includes: a first power module, a first short-circuit component, and a second short-circuit component; wherein,
  • the output end is connected to the MMPA, connected to the MMPA through the first short-circuit element, and connected to the UHB PA through the second short-circuit element;
  • the first power module is used to supply power to the low-frequency power amplifier LB PA and the intermediate-frequency power amplifier MB PA in the MMPA, and to supply high-frequency power to the high-frequency power amplifier in the MMPA through the first short-circuit element.
  • the amplifier HB PA supplies power, and supplies power to the UHB PA through the second short-circuit element;
  • the radio frequency circuit in the non-independent networking NSA also includes: a first power module, a second power module, and a switch module; wherein,
  • the output end of the first power module is connected to the MMPA, or is connected to the MMPA and connected to the MMPA through the switch module; the output end of the second power module is respectively connected to the UHB PA and The transmitting module is connected to and connected to the MMPA through the switch module, or is connected to the UHB PA and the transmitting module respectively;
  • the switch module is used to switch according to the working state of the radio frequency circuit, and the working state is the first working state or the second working state;
  • the first power module is used to provide power to the LB PA and the MB PA in the MMPA in the first working state; to provide power to the LB PA and MB PA in the MMPA in the second working state.
  • LB PA and the MB PA supply power and supply power to the HB PA in the MMPA through the switch module;
  • the second power module is used to supply power to the UHB PA, to the MB PA in the transmitting module and to the HB PA in the MMPA through the switch module in the first working state. Power supply; in the second working state, power is supplied to the UHB PA and to the MB PA in the transmitting module.
  • the radio frequency circuit provided by the embodiment of this application realizes the common board power supply of the SA networking scheme and the NSA networking scheme, greatly reducing the labor development cost and material cost, and saving costs; moreover, for the NSA scheme, a second power supply is used
  • the module and a switch replace the two second power modules in the related technology, which further reduces the cost.
  • An embodiment of the present application also provides an electronic device, including the radio frequency circuit described in any one of the above.
  • Figure 1(a) is a simple architectural schematic diagram of an embodiment of NSA networking in related technologies
  • Figure 1(b) is a simple architectural schematic diagram of an embodiment of SA networking in related technology
  • Figure 2 is a schematic structural diagram of a radio frequency circuit in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the power supply principle of the radio frequency circuit in the SA only network in the embodiment of the present application;
  • Figure 4(a) is a schematic diagram of the power supply principle of the radio frequency circuit in the first working state under NSA networking in the embodiment of the present application;
  • Figure 4(b) is a schematic diagram of the power supply principle of the radio frequency circuit in the second working state under NSA networking in the embodiment of the present application.
  • first and second used in this application are only used for descriptive purposes and cannot be understood to indicate or imply the relative importance or implicitly indicate the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of this application, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection”, etc. if the connected circuits, modules, units, etc. have the transmission of electrical signals or data between each other.
  • the latest 5G NSA standard released by 3GPP uses LTE and 5G New Radio (NR) dual connectivity (ENDC), with 4G as the anchor point of the control plane, the 4G base station (eNB) as the master station, and the 5G base station (gNB) as the slave station.
  • NR 5G New Radio
  • eNB 4G base station
  • gNB 5G base station
  • the simple architectural diagram of the NSA networking embodiment is shown in Figure 1(a), in which the control plane (C-plane) is responsible for processing control signals, that is, managing call connections, and the user plane (U -plane) is responsible for processing voice signals, that is, managing call content.
  • C-plane control plane
  • U -plane user plane
  • E E-UTRA
  • N N Radio 5G
  • D LTE and 5G dual connection.
  • SA can be understood as the mutual compatibility of 4G and 5G dual connections.
  • Figure 1(b) shows a simple architectural diagram of an embodiment of SA networking. This pure 5G networking structure consists of 5G base station + 5G core network + 5G terminal. Different from NSA, SA is directly connected to the 5G network through C-plane.
  • NSA does not have a 5G core network
  • SA has a 5G core network.
  • 5G and 4G interoperate at the access network level, and the interconnection is complicated;
  • SA networking under SA networking, the 5G network is independent of the 4G network, and 5G and 4G only interoperate at the core network level, and the interconnection is simple.
  • MMPA Multimode Multiband Power Amplifier Module
  • SA only For a pure SA (SA only) solution, it usually includes MMPA, ultra-high frequency power amplifier (UHB PA) and the first transmit module (TxM1).
  • the power management chip PMIC, Power Management IC
  • PA power amplifiers
  • LB PA low-frequency power amplifier
  • MB PA mid-frequency power amplifier
  • HB PA Frequency power amplifier
  • UHB PA the battery powers the Global System for Mobile Communications
  • GSM Global System for Mobile Communications
  • MMPA For the NSA solution, it includes MMPA, UHB PA, the second transmit module (TxM2) and two average power tracking (APT, Average Power Tracking) power supplies (such as APT Buck1 and APT Buck2).
  • APT Average Power Tracking
  • the APT power supply mode is based on the power amplifier
  • the output power is a technology that automatically adjusts the operating voltage of the power amplifier in steps.
  • MMPA can support the ENDC combination of LB+HB to achieve the dual-shot function.
  • APT Buck1 supplies power to the HB PA in MMPA
  • APT Buck2 supplies power to UHB PA and MB PA in TxM2
  • PMIC supplies power to LB PA and MB PA in MMPA
  • the battery is the GSM LB PA in TxM2 and GSM HB PA powered.
  • the SA only networking solution and the NSA networking solution adopt independent split-board power supply solutions, that is, SA and NSA are designed on separate boards, and SA and NSA each have their own power supply devices. In this way, not only is there a huge waste of manpower and material resources, but it is also not conducive to cost savings.
  • embodiments of the present application provide a power supply device that can realize the common board of SA and NSA and save costs.
  • FIG. 2 is a schematic structural diagram of the radio frequency circuit in the embodiment of the present application. As shown in Figure 2, it at least includes: UHB PA 11, transmitting module 12, MMPA 13;
  • the radio frequency circuit When the radio frequency circuit is in the SA only networking mode, it may also include: a first power module 10, a first short-circuit component 40, and a second short-circuit component 50; wherein,
  • the output end of the first power module 10 is connected to the MMPA 13, connected to the MMPA 13 through the first short-circuit element 40, and connected to the UHB PA 11 through the second short-circuit element 50;
  • the first power module 10 is used to power the LB PA and MB PA in the MMPA 13, power the HB PA in the MMPA 13 through the first short-circuit element 40, and power the UHB PA 11 through the second short-circuit element 50;
  • the radio frequency circuit When the radio frequency circuit is in NSA networking mode, it may also include: a first power module 10, a second power module 20, and a switch module 30; wherein,
  • the output end of the first power module 10 is connected to the MMPA 13, or is connected to the MMPA 13 and connected to the MMPA 13 through the switch module 30; the output end of the second power module 20 is respectively connected to the UHB PA 11 and the transmit module 12 and through the switch
  • the module 30 is connected to the MMPA 13, or is connected to the UHB PA 11 and the transmitting module 12 respectively;
  • the switch module 30 is used to switch according to the working state of the radio frequency circuit, and the working state is the first working state or the second working state;
  • the first power module 10 is used to supply power to the LB PA and MB PA in the MMPA 13 when the switch module 30 is in the first working state; and to supply power to the LB PA and MB PA in the MMPA 13 when the switch module 30 is in the second working state. Power supply and power supply to the HB PA in MMPA 13 through switch module 30;
  • the second power module 20 is used to power the UHB PA 11, the MB PA in the transmitting module 12 and the HB PA in the MMPA 13 through the switch module 30 when the switch module 30 is in the first working state; in the switch module 30 is in the second working state, supplying power to the UHB PA 11 and to the MB PA in the transmitting module 12.
  • the radio frequency circuit provided by the embodiment of this application realizes the common board power supply of the SA only scheme and the NSA scheme, greatly reducing the labor development cost and material cost, and saving costs; moreover, for the NSA scheme, a second power module and a The switch replaces the two second power modules in the related technology, which better reduces the cost.
  • the radio frequency circuit provided by the embodiment of the present application may also include a battery for supplying power to the GSM LB PA and GSM HB PA in the transmitting module 12.
  • the first power module 10 may include, but is not limited to, a PMIC.
  • the second power module 20 may be a dedicated power supply chip of the PA to achieve better power saving.
  • the dedicated power supply chip may include, but is not limited to, an APT power supply, an envelope tracking (ET, Envelope Tracking) power supply, etc.
  • the switch module 30 may be an electronic switch, a field effect transistor, or other switching device capable of realizing circuit on-off control, for example, it may be a single-pole double-throw switch SPDT.
  • the switch module 30 and the second power module 20 are independent physical entities.
  • the switch module 30 can be integrated into the second power module 20 , thus saving not only the cost of the switch module 30 but also the debugging cost of the SPDT switch.
  • the first port 111 of the SPDT switch is connected to the output terminal of the second power module 20 that outputs the voltage VCC, and the second port of the SPDT switch
  • the port 112 is connected to the output end of the first power module 10 that outputs the voltage VPA.
  • the output end of the first power module 10 outputting the voltage VPA is connected to one end of the first short-circuit element 40 , and the other end of the first short-circuit element 40 is connected to the common end 113 of the SPDT switch.
  • the output terminal of the first power module 10 that outputs the voltage VPA is connected to one end of the second short-circuit element 50 , and the other end of the second short-circuit element 50 is connected to the output terminal of the second power module 20 that outputs the voltage VCC.
  • the common terminal 113 of the SPDT switch when the radio frequency circuit is in the first working state, is connected to its first port 111. When the radio frequency circuit is in the second working state, the common terminal 113 of the SPDT switch is connected to its second port 112. .
  • the first short-circuit element 40 and the second short-circuit element 50 may include, but are not limited to, 0 ohm ( ⁇ ) resistors, wires, or the like.
  • the transmitting module 12 can install either TxM1 in the SA only solution in related technologies, or TxM2 in the NSA solution in related technologies.
  • TxM1 and TxM2 need to be designed as pin to pin, that is, TxM1 device and TxM2 device.
  • the functions and pins are fully compatible, so it can be directly replaced by replacing the chip without changing the circuit.
  • the first power module 10 is a PMIC
  • the second power module 20 is an APT power supply
  • the switch module 30 is an SPDT
  • the first short-circuit element 40 and the second short-circuit element 50 are 0 ⁇ resistors as an example.
  • the working principle of the radio frequency circuit provided in the embodiment is described in detail. This is only an example and is not intended to limit the scope of protection of the present application.
  • FIG 3 is a schematic diagram of the power supply principle of the radio frequency circuit in the SA only network in the embodiment of the present application.
  • the second power module 20 and the switch module 30 are removed, that is, the APT power supply and SPDT switch, the first short-circuit element 40 and the second short-circuit element 50 are connected to 0 ⁇ resistors, and the TxM1 device is installed at the transmitting module 12 (TxM1 12 only includes GSM LB PA and GSM HB PA).
  • the power interface provided by the PMIC of the platform provides voltage VPA. This voltage VPA supplies power for LB PA, MB PA and HB PA in MMPA 13, and n77PA in UHB PA 11.
  • the battery provides The voltage of VPH_PWR powers the GSM LB PA and GSM HB PA in TxM1 12.
  • FIG 4(a) is a schematic diagram of the power supply principle of the radio frequency circuit in the first working state under NSA networking in the embodiment of the present application.
  • the reserved first short-circuit element 40 and The two 0 ⁇ resistors at the second short-circuit component 50 are removed, that is, the two 0 ⁇ resistors are not installed.
  • the second power module 20 and the switch module 30 are connected to the APT power chip and SPDT switch, and the TxM2 device is installed at the transmitter module 12 ( TxM2 12 includes MB PA, GSM LB PA and GSM HB PA).
  • the SPDT switch is connected to the first port 111, and the radio frequency circuit is in the first working state.
  • the voltage VCC output by the APT power supply supplies power to the HB PA in MMPA 13, the n77PA in UHB PA 11, and the MB PA in TxM2.
  • the power interface provided by the PMIC 10 of the platform Provide voltage VPA, which powers the LB PA and MB PA in MMPA 13, and the voltage VPH_PWR provided by the battery powers the GSM LB PA and GSM HB PA in TxM1 12.
  • the possible ENDC combinations include: LB+HB, LB+UHB, and MB+MB.
  • FIG 4(b) is a schematic diagram of the power supply principle of the radio frequency circuit in the second working state under NSA networking in the embodiment of the present application.
  • the reserved first short-circuit element 40 and The two 0 ⁇ resistors at the second short-circuit component 50 are removed, that is, the two 0 ⁇ resistors are not installed.
  • the second power module 20 and the switch module 30 are connected to the APT power chip and SPDT switch, and the TxM2 device is installed at the transmitter module 12 ( TxM2 12 includes MB PA, GSM LB PA and GSM HB PA).
  • the SPDT switch is connected to the first port 112, and the radio frequency circuit is in the second working state.
  • the voltage VCC output by the APT power supply supplies power to the n77PA in the UHB PA 11 and the MB PA in the TxM2 12.
  • the power interface provided by the PMIC 10 of the platform provides the voltage VPA.
  • VPA supplies power to the HB PA, LB PA and MB PA in MMPA 13, and the voltage VPH_PWR provided by the battery supplies power to the GSM LB PA and GSM HB PA in TxM2 12.
  • the possible ENDC combinations include MB+HB.
  • An embodiment of the present application also provides an electronic device, including the radio frequency circuit described in any one of the above.
  • electronic devices may include but are not limited to: mobile phones, tablet computers, notebook computers, PDAs, vehicle-mounted electronic devices, wearable devices, Ultra-Mobile Personal Computers (UMPC, Ultra-Mobile Personal Computer), netbooks or personal digital assistants.
  • PDA Personal Digital Assistant
  • NAS Network Attached Storage Network Attached Storage
  • PC Personal Computer
  • TV teller machine or self-service machine, etc.

Abstract

本申请公开了一种射频电路及电子设备,实现了SA only方案和NSA方案共板供电,极大地减少了人力开发成本和物料成本,节省了成本;而且,对于NSA方案,采用一第二电源模块和一开关代替相关技术中的两颗第二电源模块,更好地降低了成本。

Description

一种射频电路及电子设备 技术领域
本申请涉及但不限于电子技术,尤指一种射频电路及电子设备。
背景技术
随着通信技术的发展,第五代移动通信网络(5G,5th generation mobile networks)逐步开始普及。当前5G组网方式分为独立组网(SA,Standalone)和非独立组网(NSA,Non-Standalone)两种方式。其中,SA只需要5G网络单独和基站连接即可;而对于NSA,5G网络需要依托于第四代移动通信网络(4G,4th generation mobile networks)核心网进行信令连接,以保证4G和5G能够同时工作。
相关技术中,SA和NSA的供电电路是不同的,也就是说,SA和NSA各自有自己的供电装置。这样,不仅存在很大的人力和物力浪费,而且不利于节省成本。
发明概述
本申请提供一种射频电路及电子设备,能够实现SA组网和NSA组网共板,节省成本。
本申请实施例提供一种射频电路,包括:超高频功率放大器UHB PA、发射模块、多模多频功率放大器MMPA;
对于处于独立组网SA的所述射频电路,还包括:第一电源模块、第一短路元件、第二短路元件;其中,
的输出端与所述MMPA连接,通过所述第一短路元件与所述MMPA连接,以及通过所述第二短路元件与所述UHB PA连接;
所述第一电源模块所述第一电源模块,用于向所述MMPA中的低频功率放大器LB PA和中频功率放大器MB PA供电,通过所述第一短路元件向所述MMPA中的高频功率放大器HB PA供电,以及通过所述第二短路元件向所述UHB PA供电;
对于处于非独立组网NSA的所述射频电路,还包括:第一电源模块、第 二电源模块、开关模块;其中,
所述第一电源模块的输出端与所述MMPA连接,或者,与所述MMPA连接以及通过所述开关模块与所述MMPA连接;所述第二电源模块的输出端分别与所述UHB PA和所述发射模块连接以及通过所述开关模块与所述MMPA连接,或者,分别与所述UHB PA和所述发射模块连接;
所述开关模块,用于按照所述射频电路的工作状态进行切换,所述工作状态为第一工作状态或第二工作状态;
所述第一电源模块,用于在所述第一工作状态,向所述MMPA中的所述LB PA和所述MB PA供电;在所述第二工作状态,向所述MMPA中的所述LB PA和所述MB PA供电以及通过所述开关模块向所述MMPA中的所述HB PA供电;
所述第二电源模块,用于在所述第一工作状态,向所述UHB PA供电,向所述发射模块中的MB PA供电以及通过所述开关模块向所述MMPA中的所述HB PA供电;在所述第二工作状态,向所述UHB PA供电以及向所述发射模块中的所述MB PA供电。
本申请实施例提供的射频电路,实现了SA组网方案和NSA组网方案共板供电,极大地减少了人力开发成本和物料成本,节省了成本;而且,对于NSA方案,采用一第二电源模块和一开关代替相关技术中的两颗第二电源模块,更好地降低了成本。
本申请实施例还提供一种电子设备,包括上述任一项所述的射频电路。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1(a)为相关技术中NSA组网的实施例的简单架构示意图;
图1(b)为相关技术中SA组网的一种实施例的简单架构示意图;
图2为本申请实施例中射频电路的组成结构示意图;
图3为本申请实施例中射频电路处于SA only组网下的供电原理示意图;
图4(a)为本申请实施例中射频电路处于NSA组网下第一工作状态的供电原理示意图;
图4(b)为本申请实施例中射频电路处于NSA组网下第二工作状态的供电原理示意图。
详述
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含” 或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
3GPP最新发布的5G NSA标准采用LTE与5G新空口(NR)双连接(ENDC)的方式,以4G作为控制面的锚点,4G基站(eNB)为主站,5G基站(gNB)为从站,并沿用4G核心网,NSA组网的实施例的简单架构示意图如图1(a)所示,其中,控制面(C-plane)负责处理控制信号,也就是管理呼叫连接,用户面(U-plane)负责处理语音信号,也就是管理通话内容。在NSA模式下,只有先通过C-plane连上4G网络,才可以再连上5G网络,也就是在4G网络连上之前,5G网络是无法单独连接的。其中,ENDC是EUTRA NR Dual-Connectivity的缩写,E表示E-UTRA,属于3GPP LTE的空中界面,是3GPP的第八版本;N表示N Radio 5G;D表示LTE和5G双连接。ENDC可以理解为4G和5G双连接的相互兼容。图1(b)给出了SA组网的一种实施例的简单架构示意图,这种纯5G组网结构由5G基站+5G核心网+5G终端组成。与NSA不同的是,SA中通过C-plane直接连上5G网络。
从图1(a)和图1(b)可见,NSA没有5G核心网,SA有5G核心网。在NSA组网下,5G与4G在接入网级互通,互连复杂;在SA组网下,5G网络独立于4G网络,5G与4G仅在核心网级互通,互连简单。为了支持ENDC,需要额外增加使用多模多频功率放大器(MMPA,Multimode Multiband Power Amplifier Module)器件。
对于纯SA(SA only)方案,通常包括MMPA、超高频功率放大器(UHB PA)以及第一发射模块(TxM1)。在SA only的供电方案中,电源管理芯片(PMIC,Power Management IC)提供电压给所有的功率放大器(PA),如MMPA中的低频功率放大器(LB PA),中频功率放大器(MB PA)和高频功率放大器(HB PA)以及UHB PA,电池为TxM1中的全球移动通信系统(GSM,Global System for Mobile Communications)LB PA和GSM HB PA供电。
对于NSA方案,包括MMPA,UHB PA、第二发射模块(TxM2)以及 两颗平均功率跟踪(APT,Average Power Tracking)电源(如APT Buck1和APT Buck2),其中,APT供电模式是根据功率放大器的输出功率,阶梯性地自动调整功率放大器的工作电压的技术。MMPA可以支持LB+HB的ENDC组合,实现双发的功能。在NSA的供电方案中,APT Buck1给MMPA中的HB PA供电,APT Buck2给UHB PA和TxM2中的MB PA供电,PMIC给MMPA中的LB PA和MB PA供电,电池为TxM2中的GSM LB PA和GSM HB PA供电。
相关技术中,SA only组网方案和NSA组网方案采用独立的分板供电方案,即SA和NSA是分板设计的,SA和NSA各自有自己的供电装置。这样,不仅存在很大的人力和物力浪费,而且不利于节省成本。为此,本申请实施例提供一种供电装置,能够实现SA和NSA共板,而且节省成本。
图2为本申请实施例中射频电路的组成结构示意图,如图2所示,至少包括:UHB PA 11、发射模块12、MMPA 13;
当射频电路处于SA only组网模式,还可以包括:第一电源模块10、第一短路元件40、第二短路元件50;其中,
第一电源模块10的输出端与MMPA 13连接、通过第一短路元件40与MMPA 13连接,以及通过第二短路元件50与UHB PA 11连接;
第一电源模块10,用于向MMPA 13中的LB PA和MB PA供电,通过第一短路元件40向MMPA 13中的HB PA供电,以及通过第二短路元件50向UHB PA 11供电;
当射频电路处于NSA组网模式,还可以包括:第一电源模块10、第二电源模块20、开关模块30;其中,
第一电源模块10的输出端与MMPA 13连接,或者,与MMPA 13连接以及通过开关模块30与MMPA 13连接;第二电源模块20的输出端分别与UHB PA 11和发射模块12连接以及通过开关模块30与MMPA 13连接,或者,分别与UHB PA 11和发射模块12连接;
开关模块30,用于按照射频电路的工作状态进行切换,所述工作状态为第一工作状态或第二工作状态;
第一电源模块10,用于在开关模块30处于第一工作状态,向MMPA 13中的LB PA和MB PA供电;在开关模块30处于第二工作状态,向MMPA 13中的LB PA和MB PA供电以及通过开关模块30向MMPA 13中的HB PA供电;
第二电源模块20,用于在开关模块30处于第一工作状态,向UHB PA 11供电,向发射模块12中的MB PA供电以及通过开关模块30向MMPA 13中的HB PA供电;在开关模块30处于第二工作状态,向UHB PA 11供电以及向发射模块12中的MB PA供电。
本申请实施例提供的射频电路,实现了SA only方案和NSA方案共板供电,极大地减少了人力开发成本和物料成本,节省了成本;而且,对于NSA方案,采用一第二电源模块和一开关代替相关技术中的两颗第二电源模块,更好地降低了成本。
本申请实施例提供的射频电路还可以包括电池,用于向发射模块12中的GSM LB PA和GSM HB PA供电。
在一种示例性实例中,第一电源模块10可以包括但不限于如PMIC。
在一种示例性实例中,第二电源模块20可以为PA的专用电源供电芯片以达到更优省电的目的。在一种实施例中,专用电源供电芯片可以包括但不限于如APT电源、包络跟踪(ET,Envelope Tracking)电源等。
在一种示例性实例中,开关模块30可以为电子开关、场效应管等能够实现电路通断控制的开关器件,比如可以是一单刀双掷开关SPDT。
在一种实施例中,开关模块30与第二电源模块20为独立的物理实体。在另一种实施例中,开关模块30可以集成到第二电源模块20中,这样,既节省了一开关模块30的成本,也节省了SPDT开关的调试成本。
在一种示例性实例中,以开关模块30为SPDT开关为例,如图2所示,SPDT开关的第一端口111与第二电源模块20输出电压VCC的输出端连接,SPDT开关的第二端口112与第一电源模块10输出电压VPA的输出端连接。第一电源模块10输出电压VPA的输出端与第一短路元件40的一端连接,第一短路元件40的另一端与SPDT开关的公共端113连接。第一电源模块10 输出电压VPA的输出端与第二短路元件50的一端连接,第二短路元件50的另一端与第二电源模块20输出电压VCC的输出端连接。在一种实施例中,射频电路处于第一工作状态时,SPDT开关的公共端113与其第一端口111连通,射频电路处于第二工作状态时,SPDT开关的公共端113与其第二端口112连通。
在一种示例性实例中,第一短路元件40和第二短路元件50可以包括但不限于如0欧姆(Ω)电阻,或者导线等。
在实际应用中,发射模块12处既可以安装相关技术中SA only方案中的TxM1,也可以安装相关技术中NSA方案中的TxM2,只需要TxM1和TxM2设计为pin to pin即TxM1器件和TxM2器件的功能和管脚完全兼容,这样,可以直接通过更换芯片替代而无须改变电路。
下面以UHB PA 11包括n77PA,第一电源模块10为PMIC,第二电源模块20为APT电源,开关模块30为SPDT,第一短路元件40和第二短路元件50为0Ω电阻为例,对本申请实施例提供的射频电路的工作原理进行详细描述。这里仅是举例说明,并不用于限定本申请的保护范围。
图3为本申请实施例中射频电路处于SA only组网下的供电原理示意图,如图3所示,本实施例中,第二电源模块20和开关模块30被拿掉即不安装APT电源和SPDT开关,第一短路元件40和第二短路元件50处接上0Ω电阻,发射模块12处安装上TxM1器件(TxM1 12中仅包括GSM LB PA和GSM HB PA)。如图3中的粗实线所示,平台的PMIC提供的电源接口提供电压VPA,该电压VPA为MMPA 13中的LB PA、MB PA和HB PA,以及UHB PA 11中的n77PA供电,电池提供的电压VPH_PWR为TxM1 12中的GSM LB PA和GSM HB PA供电。
图4(a)为本申请实施例中射频电路处于NSA组网下第一工作状态的供电原理示意图,如图4(a)所示,本实施例中,预留的第一短路元件40和第二短路元件50处的两个0Ω电阻被拿掉即不安装两个0Ω电阻,第二电源模块20和开关模块30处接上APT电源芯片和SPDT开关,发射模块12处安装上TxM2器件(TxM2 12中包括MB PA、GSM LB PA和GSM HB PA)。图4(a)所示实施例中,SPDT开关接第一端口111,射频电路处于第一工作状态。如 图4(a)中的粗实线所示,APT电源输出的电压VCC为MMPA 13中的HB PA、UHB PA 11中的n77PA和TxM2中的MB PA供电,平台的PMIC 10提供的电源接口提供电压VPA,该电压VPA为MMPA 13中的LB PA和MB PA供电,电池提供的电压VPH_PWR为TxM1 12中的GSM LB PA和GSM HB PA供电。图4(a)所示实施例中,可以实现的ENDC组合包括:LB+HB,LB+UHB,MB+MB。
图4(b)为本申请实施例中射频电路处于NSA组网下第二工作状态的供电原理示意图,如图4(b)所示,本实施例中,预留的第一短路元件40和第二短路元件50处的两个0Ω电阻被拿掉即不安装两个0Ω电阻,第二电源模块20和开关模块30处接上APT电源芯片和SPDT开关,发射模块12处安装上TxM2器件(TxM2 12中包括MB PA、GSM LB PA和GSM HB PA)。图4(b)所示实施例中,SPDT开关接第一端口112,射频电路处于第二工作状态。如图4(b)中的粗实线所示,APT电源输出的电压VCC为UHB PA 11中的n77PA和TxM2 12中的MB PA供电,平台的PMIC 10提供的电源接口提供电压VPA,该电压VPA为MMPA 13中的HB PA、LB PA和MB PA供电,电池提供的电压VPH_PWR为TxM2 12中的GSM LB PA和GSM HB PA供电。图4(b)所示实施例中,可以实现的ENDC组合包括MB+HB。
本申请实施例还提供一种电子设备,包括上述任一项所述的射频电路。示例性的,电子设备可以包括但不限于:手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(UMPC,Ultra-Mobile Personal Computer)、上网本或者个人数字助理(PDA,Personal Digital Assistant)、网络附属存储器(NAS Network Attached Storage)、个人计算机(PC,Personal Computer)、电视机、柜员机或者自助机等,本申请实施例不作具体限定。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种射频电路,包括:超高频功率放大器UHB PA、发射模块、多模多频功率放大器MMPA;
    对于处于独立组网SA的所述射频电路,还包括:第一电源模块、第一短路元件、第二短路元件;其中,
    所述第一电源模块的输出端与所述MMPA连接、通过所述第一短路元件与所述MMPA连接,以及通过所述第二短路元件与所述UHB PA连接;
    所述第一电源模块用于向所述MMPA中的低频功率放大器LB PA和中频功率放大器MB PA供电,通过所述第一短路元件向所述MMPA中的高频功率放大器HB PA供电,以及通过所述第二短路元件向所述UHB PA供电;
    对于处于非独立组网NSA的所述射频电路,还包括:第一电源模块、第二电源模块、开关模块;其中,
    所述第一电源模块的输出端与所述MMPA连接,或者,与所述MMPA连接以及通过所述开关模块与所述MMPA连接;所述第二电源模块的输出端分别与所述UHB PA和所述发射模块连接以及通过所述开关模块与所述MMPA连接,或者,分别与所述UHB PA和所述发射模块连接;
    所述开关模块,用于按照所述射频电路的工作状态进行切换,所述工作状态为第一工作状态或第二工作状态;
    所述第一电源模块,用于在所述第一工作状态,向所述MMPA中的所述LB PA和所述MB PA供电;在所述第二工作状态,向所述MMPA中的所述LB PA和所述MB PA供电以及通过所述开关模块向所述MMPA中的所述HB PA供电;
    所述第二电源模块,用于在所述第一工作状态,向所述UHB PA供电,向所述发射模块中的MB PA供电以及通过所述开关模块向所述MMPA中的所述HB PA供电;在所述第二工作状态,向所述UHB PA供电以及向所述发射模块中的所述MB PA供电。
  2. 根据权利要求1所述的射频电路,所述射频电路还包括电池,用于向所述发射模块中的全球移动通信系统GSM LB PA和GSM HB PA供电。
  3. 根据权利要求1或2所述的射频电路,其中,所述第一电源模块为电源管理芯片PMIC。
  4. 根据权利要求1或2所述的射频电路,其中,所述第二电源模块为平均功率跟踪APT电源或包络跟踪ET电源。
  5. 根据权利要求1或2所述的射频电路,其中,所述开关模块和所述第二电源模块为独立的物理实体;或者,
    所述开关模块集成在所述第二电源模块中。
  6. 根据权利要求5所述的射频电路,其中,所述开关模块为电子开关、场效应管。
  7. 根据权利要求1或2所述的射频电路,其中,所述开关模块为单刀双掷开关SPDT;
    所述SPDT开关的第一端口与所述第二电源模块输出电压VCC的输出端连接,所述SPDT开关的第二端口与所述第一电源模块输出电压VPA的输出端连接;
    所述第一电源模块输出电压VPA的输出端与所述第一短路元件的一端连接,所述第一短路元件的另一端与所述SPDT开关的公共端连接;
    所述第一电源模块输出电压VPA的输出端与所述第二短路元件的一端连接,所述第二短路元件的另一端与所述第二电源模块输出电压VCC的输出端连接。
  8. 根据权利要求7所述的射频电路,其中,所述工作状态为所述第一工作状态时,所述SPDT开关的公共端与其所述第一端口连通;
    所述工作状态为所述第二工作状态时,所述SPDT开关的公共端与其所述第二端口连通。
  9. 根据权利要求1或2所述的射频电路,其中,所述第一短路元件和所述第二短路元件为0欧姆电阻,或者导线。
  10. 一种电子设备,包括权利要求1~9任一项所述的射频电路。
PCT/CN2022/140160 2022-04-22 2022-12-19 一种射频电路及电子设备 WO2023202121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210432183.9A CN114826295B (zh) 2022-04-22 一种射频电路及电子设备
CN202210432183.9 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023202121A1 true WO2023202121A1 (zh) 2023-10-26

Family

ID=82507606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140160 WO2023202121A1 (zh) 2022-04-22 2022-12-19 一种射频电路及电子设备

Country Status (1)

Country Link
WO (1) WO2023202121A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143877A1 (zh) * 2020-01-17 2021-07-22 Oppo广东移动通信有限公司 射频电路和电子设备
CN113676211A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN215682285U (zh) * 2021-09-24 2022-01-28 维沃移动通信有限公司 射频电路和电子设备
CN114826295A (zh) * 2022-04-22 2022-07-29 Oppo广东移动通信有限公司 一种射频电路及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143877A1 (zh) * 2020-01-17 2021-07-22 Oppo广东移动通信有限公司 射频电路和电子设备
CN113676211A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN215682285U (zh) * 2021-09-24 2022-01-28 维沃移动通信有限公司 射频电路和电子设备
CN114826295A (zh) * 2022-04-22 2022-07-29 Oppo广东移动通信有限公司 一种射频电路及电子设备

Also Published As

Publication number Publication date
CN114826295A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN105893304B (zh) 一种支持双网数据传输的终端及其实现方法
WO2018014471A1 (zh) 终端、终端外设、信号发送及接收方法、数据传输系统
WO2023051206A1 (zh) 一种电路板及电子设备
WO2023197662A1 (zh) 一种双发射频电路及电子设备
WO2022179357A1 (zh) 射频模组及天线系统、电子设备
WO2023202121A1 (zh) 一种射频电路及电子设备
FI104921B (fi) Laajennuskortti, korttiliitäntä ja elektroniikkalaite
CN113535622A (zh) 供电切换系统、usb插座和电子设备
WO2022143397A1 (zh) 射频系统、射频系统的供电方法以及电子设备
CN114826295B (zh) 一种射频电路及电子设备
CN107395131B (zh) 一种Doherty功率放大器及移动终端
CN206559350U (zh) 4g通信模块
CN108141677A (zh) 一种扬声器模组、音频补偿方法和装置
CN218183525U (zh) 一种低功耗无线音频适配器及智能设备
CN100511198C (zh) 主电子装置、扩充电子装置及可扩充式电子系统
CN201075546Y (zh) 电池连接器及具有所述电池连接器的移动通信设备
CN217880305U (zh) 一种usb切换电路和电子设备
CN214011920U (zh) 一种兼容不同信号并自动切换的电路及终端设备
CN107465783B (zh) 主板以及移动终端
CN219642377U (zh) 双蓝牙无线控制装置
CN213754575U (zh) 一种集成lte-4g专网模块的智能手机
US20240028548A1 (en) Universal serial bus (usb) hub with host bridge function and control method thereof
CN215647311U (zh) 直播音频系统及直播系统
CN210297683U (zh) 一种基于cpci架构的短波板卡式接收机
CN216210995U (zh) 一种创新型usb接口分时复用电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938339

Country of ref document: EP

Kind code of ref document: A1