WO2022143397A1 - 射频系统、射频系统的供电方法以及电子设备 - Google Patents

射频系统、射频系统的供电方法以及电子设备 Download PDF

Info

Publication number
WO2022143397A1
WO2022143397A1 PCT/CN2021/140810 CN2021140810W WO2022143397A1 WO 2022143397 A1 WO2022143397 A1 WO 2022143397A1 CN 2021140810 W CN2021140810 W CN 2021140810W WO 2022143397 A1 WO2022143397 A1 WO 2022143397A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
radio frequency
working state
power supply
Prior art date
Application number
PCT/CN2021/140810
Other languages
English (en)
French (fr)
Inventor
黄镇坚
杨正淼
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022143397A1 publication Critical patent/WO2022143397A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a radio frequency system, a power supply control method for a radio frequency system, and an electronic device.
  • the fifth generation mobile communication technology (5th generation mobile networks, 5G) has gradually become popular.
  • the current 5G networking method is usually Non-Standalone (NSA).
  • NSA mode 5G needs to rely on the 4G core network for signaling connection, and the 4G Power Amplifier (PA) and 5G PA work at the same time.
  • PA Power Amplifier
  • SA independent networking
  • 4G and 5G work independently, and 5G can work independently with signaling without the assistance of the 4G core network.
  • 4G PA and 5G PA work independently.
  • the 4G PA and the 5G PA need to work at the same time, or the 4G PA and the 5G PA need to work independently. Therefore, in the radio frequency system, it is usually necessary to set two PA power chips, one of which It is connected with 4G PA to control the power supply of 4G PA, and the other is connected with 5G PA to control the power supply of 5G PA. In this way, not only the cost of the radio frequency system is increased, but also the layout difficulty of the radio frequency system in the electronic equipment is increased.
  • the present application aims to provide a radio frequency system, a power supply control method for the radio frequency system, and an electronic device, which at least solve one of the problems of high cost of the radio frequency system and difficult layout in the electronic device.
  • an embodiment of the present application proposes a radio frequency system, including: a power supply, a PA power supply chip, a PA module, a switch module, and a control module;
  • the power supply is connected to the PA module through the switch module, the PA power chip is connected to the PA module through the switch module, and the PA module includes at least two PA modules;
  • the control module is connected with the switch module, and the control module is used to control the on-off state of the switch module according to the working state of the radio frequency system, so that the power supply and/or the PA power chip supply power to the PA module.
  • an embodiment of the present application proposes a power supply control method for a radio frequency system, which is used in the radio frequency system proposed in the first aspect, and the method includes:
  • the on-off state of the switch module is controlled, so that the power supply and/or the PA power supply chip supplies power to the PA module, wherein the PA module includes at least two PA modules.
  • an embodiment of the present application further provides an electronic device, including: any one of the above radio frequency systems.
  • the power supply is connected to the PA module through the switch module, and the PA power supply chip is connected to the PA module through the switch module;
  • the control module is connected to the switch module, and the control module is used for, according to the working state of the radio frequency system, to control the communication of the switch module. off state, so that the power supply and/or the PA power chip supply power to the PA module, so as to meet the power supply requirements of the PA module in different working states. That is to say, in the radio frequency system, only one PA power supply chip is required to cooperate with the use of the switch module to meet the power supply requirements of the PA module in different working states. In this way, not only the cost of the radio frequency system is reduced, but also the difficulty of layout of the radio frequency system in the electronic equipment is reduced.
  • FIG. 1 is a schematic structural diagram of a radio frequency system according to the related art
  • FIG. 2 is a structural block diagram of an embodiment of a radio frequency system provided by the present application.
  • FIG. 3 is one of the schematic structural diagrams of an embodiment of a radio frequency system provided by the present application.
  • FIG. 4 is a second schematic structural diagram of an embodiment of a radio frequency system provided by the present application.
  • FIG. 5 is a third schematic structural diagram of an embodiment of a radio frequency system provided by the present application.
  • FIG. 6 is a fourth schematic structural diagram of an embodiment of a radio frequency system provided by the present application.
  • FIG. 7 is a fifth schematic structural diagram of an embodiment of a radio frequency system provided by the present application.
  • FIG. 8 is a flowchart of steps of a power supply control method for a radio frequency system provided by an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a radio frequency system according to the related art.
  • the existing radio frequency system may specifically include: a power supply 10 , a first PA power supply chip 100 , a second PA power supply chip 200 , a A PA module 12 and a second PA module 13; wherein, the first PA power chip 100 is connected to the first open PA module 12 to supply power to the first PA module 12, and the second power chip 200 is connected to the second PA module 12.
  • the PA module 13 is connected to supply power to the second PA module 13 .
  • the first PA module 12 may be a 4G PA module
  • the second PA module 13 may be a 5G PA module.
  • 4G PA and 5G PA work simultaneously.
  • the first PA power chip 100 can supply power to the first PA module 12
  • the second PA power chip 200 can supply power to the second PA module 13 .
  • 4G PA and 5G PA work independently.
  • the first PA power chip 100 independently supplies power to the first PA module 12
  • the second PA power chip 200 independently supplies power to the second PA module 13 .
  • the radio frequency system since two PA power chips need to be used to control the power supply of the PA, and the PA power chip is large in size and high in cost, the cost of the entire radio frequency system is high, and the layout is difficult. big. Moreover, the power supply interface reserved on the power supply 10 is not fully utilized, and the utilization rate of the power supply 10 is low.
  • the radio frequency system may specifically include: a power supply 10 , a PA power supply chip 11 , a PA module 20 , a switch module 14 and a control module 15; of which,
  • the power supply 10 is connected to the PA module 20 through the switch module 14, the PA power chip 11 is connected to the PA module 20 through the switch module 14, and the PA module includes at least two PA modules;
  • the control module 15 is connected to the switch module 14, and the control module 15 can be used to control the on-off state of the switch module 14 according to the working state of the radio frequency system, so that the power supply 10 and/or the PA power chip 11 can supply power to the PA module 20.
  • the power supply 10 may be a battery, or may be a platform power management chip (Power Management IC, PMIC), for example, an MTK platform MT6359, etc.
  • PMIC Power Management IC
  • the embodiment of the present application only takes the power supply 10 as a PMIC as an example for description, other The type of power supply can be executed according to the reference.
  • the PA power supply chip 11 can be a dedicated power supply chip for PA, and can support power supply technologies such as envelope tracking, which is more power-saving than PMIC, such as Qualcomm platform QET5100/QET6100, MTK platform MT6308, etc., can realize power envelope tracking Technology and other power saving technologies, with better performance, can achieve the purpose of PA power saving.
  • power supply technologies such as envelope tracking, which is more power-saving than PMIC, such as Qualcomm platform QET5100/QET6100, MTK platform MT6308, etc.
  • the PA module 20 may include at least two PA modules, and the PA modules may specifically include a 4G PA module, a 5G PA module, and the like.
  • the switch module 14 may specifically be a switch device such as an electronic switch, a field effect transistor, etc., which can realize circuit on-off control.
  • the control module 15 may be a central processing unit of an electronic device, or may be a dedicated control chip for controlling a radio frequency system, which is not particularly limited in this embodiment of the present application.
  • the working state of the radio frequency system may include the working state of the NSA mode, the working state of the SA mode, etc., which is not limited in this embodiment of the present application.
  • the control module 15 controls the power supply 10 to supply power to one or more PA modules in the PA module 20 by controlling the on-off state of the switch module 14 , or controls the PA power supply chip 11 to supply power to one or more PA modules in the PA module 20 .
  • One or more PA modules in the PA module are powered, or the power supply 10 is controlled to supply power to a part of the PA modules in the PA module 20, and the PA power chip 11 is controlled to supply power to another part of the PA modules in the PA module.
  • the embodiment of the present application The specific power supply logic is not specifically limited.
  • the PA power supply chip 11 is connected to the PA module 20 through the switch module 14; the control module 15 is connected to the switch module 14, and the control module 15 can be used for, according to The working state of the radio frequency system controls the on-off state of the switch module 14 so that the power supply 10 and/or the PA power chip 11 supplies power to the PA module 20 to meet the power supply requirements of the PA module 20 in different working states. That is to say, in the radio frequency system, only one PA power chip 11 is needed to cooperate with the use of the switch module 14 to meet the power supply requirements of the PA module 20 in different working states. In this way, not only the cost of the radio frequency system is reduced, but also the difficulty of layout of the radio frequency system in the electronic equipment is reduced.
  • the working states may include: a first working state, a second working state, and a third working state
  • the PA module 20 may include a first PA module 12 and a second PA module 13 ;
  • the control module 15 can control the switch module 14 to conduct the connection between the PA power chip 11 and the PA module 20, so that the PA power chip 11 supplies power to the first PA module 12.
  • the control module 15 can control the switch module 14 to turn on the connection between the PA power chip 11 and the PA module 20, so that the PA power chip 11 supplies power to the second PA module 13, so that the PA power chip 11 supplies power to the second PA module 13.
  • the control module 15 can control the switch module 14 to conduct the connection between the PA power chip 11 and the PA module 20, and to conduct the power supply 10 and the PA module. 20, so that the power supply 10 supplies power to one of the first PA module 12 and the second PA module 13, and the PA power chip 11 is the one of the first PA module 12 and the second PA module 13. The other one is powered.
  • the first working state may be a working state in which the first PA module 12 needs to work independently in the SA mode.
  • the second working state may be a working state in which the second PA module 13 needs to work independently in the SA mode.
  • the third working state may be the working state in the NSA mode.
  • the first PA module 12 can be a 4G PA module
  • the second PA module 13 can be a 5G PA module; wherein, the number of the first PA modules 12 can be two, one first PA module 12 can be used to transmit high frequency 4G signals, and another first PA module 12 can be used to transmit low frequency 4G signals.
  • the control module 15 can control the switch module 14 to turn on the PA power chip 11 and the power supply.
  • the PA module 20 is connected so that the PA power chip 11 can supply power to the first PA module 12; in the second working state, the control module 15 can control the switch module 14 to conduct the connection between the PA power chip 11 and the PA module 20, In this way, the PA power chip 11 can supply power to the second PA module 13, and power consumption saving technologies such as power envelope tracking technology can be realized, so as to achieve a better effect of reducing power consumption.
  • the first PA module 12 and the second PA module need to work at the same time.
  • control module 15 can control the switch module 14 to conduct the connection between the PA power chip 11 and the PA module 20, and to conduct The connection between the power supply 10 and the PA module 20 is turned on, so that the power supply 10 supplies power to one of the first PA module 12 and the second PA module 13, and the PA power chip 11 is the first PA module 12 and the second PA module 13.
  • the other one of the PA modules 13 is powered by a PA power chip 11 and the use of the switch module 14 to meet the power supply requirements of the PA modules in different working states.
  • the switch module 14 may include: a first switch module 141 and a second switch module 142 ; A switch module 141 is connected between the power supply 10 and the first PA module 12 ; the second switch module 142 is connected between the PA power chip 11 and the first PA module 12 .
  • the control module 15 is respectively connected with the first switch module 141 and the second switch module 142 to control the on-off state of the first switch module 141 and the second switch module 142 .
  • two power supply channels can be formed in the radio frequency system, wherein the power supply 10, the first switch module 141 and the first PA module 12 can form the power supply channel A, the PA power supply chip 11, the second switch module 142 , the first PA module 12 and the second PA module 13 may form a power supply channel B.
  • the power supply channel A can be turned on accordingly
  • the second switch module 142 is turned on
  • the power supply channel B can be turned on accordingly.
  • the control module 15 can control the first switch module 141 to be turned off, the second switch module 142 to be turned on, the power supply channel A to be turned off, and the power supply channel B to be turned on.
  • the PA power chip 11 can supply power to the first PA module 12 according to the power supply path b in FIG. 3 ;
  • the PA power chip 11 can supply power to the second PA module 13 according to the power supply path c in FIG. 3 .
  • the control module 15 can control the first switch module 141 to be turned on, the second switch module 142 to be turned off, and the power supply channel A and the power supply channel B are both turned on.
  • the power supply 10 can supply power to the first PA module 12 according to the power supply path a in FIG.
  • the power supply path c of is to supply power to the second PA module 13, so that the first PA module 12 and the second PA module 13 can work at the same time.
  • the first switch module 141 is a first field effect transistor
  • the second switch module 142 is a second field effect transistor
  • the control module 15 is provided with an interface 16, and the interface 16 is respectively connected with the first field effect transistor.
  • the field effect transistor and the second field effect transistor are connected, and are used to realize the on-off control of the first field effect transistor and the second field effect transistor. Furthermore, the on-off control of the power supply channel A and the power supply channel B can be realized.
  • the interface 16 may be a general-purpose input/output (GPIO) interface, which is used for outputting level signals to the first field effect transistor and the second field effect transistor, and controlling the first field effect transistor, On-off of the second FET.
  • GPIO general-purpose input/output
  • the first pole of the first field effect transistor is connected to the power supply 10
  • the second pole of the first field effect transistor is connected to the first PA module 12
  • the first pole of the second field effect transistor is connected to the PA power supply chip 11
  • the second pole of the second field effect transistor is connected to the first PA module 12
  • the interface 16 is respectively connected to the gate of the first field effect transistor and the gate of the second field effect transistor.
  • the first field effect transistor and the second field effect transistor may be at least one of an N-type field effect transistor or a P-type field effect transistor.
  • the first field effect transistor and the second field effect transistor are used. All N-type FETs are used as an example for description, and other scenarios can be referred to and executed.
  • the first field effect transistor is an N-type field effect transistor
  • the interface 60 when the interface 60 outputs a high-level signal to the first field effect transistor, the connection between the first pole and the second pole of the first field effect transistor can be controlled. is turned on, the power supply channel A is turned on; when the interface 60 outputs a low-level signal to the first field effect transistor, it can control the power supply channel A to be non-conductive between the first pole and the second pole of the first field effect transistor.
  • the first electrode may be a source electrode
  • the second electrode may be a drain stage, or the first electrode may be a drain stage, and the second electrode may be a source electrode, which is not limited in this embodiment of the present application.
  • the interface 16 may include a first interface 161 and a second interface 162; wherein, the first interface 161 is connected to the gate of the first field effect transistor, the second interface 162 is connected to the gate of the second field effect transistor, The on-off of the first FET is controlled through the first interface 161 , and the on-off of the second FET is controlled through the second interface 162 .
  • the independent control of each field effect transistor can be realized, thereby improving the control accuracy.
  • the first interface 161 when the radio frequency system is in the first working state or the second working state, the first interface 161 can output a low-level signal , the second interface 162 can output a high-level signal, the first FET is not turned on, and the second FET is turned on; when the radio frequency system is in the third working state, the first interface 161 can output a high-level signal If the signal is flat, the second interface 162 can output a low-level signal, the first field effect transistor is turned on, and the second field effect transistor is not turned on.
  • the radio frequency system may further include: an inverter 17 ; wherein the inverter 17 Connected between the interface 16 and the gate of the second field effect transistor.
  • the inverter 17 can be used to invert the level signal output by the interface 16 .
  • the level signal output by the interface 16 is a low-level signal
  • the level signal output by the second field effect transistor is a high-level signal after being reversed by the inverter 17;
  • the level signal output to the second field effect transistor is a low-level signal after being reversed by the inverter 17 .
  • the radio frequency system shown in FIG. 3 to FIG. 6 no matter whether the radio frequency system is in the first working state, the second working state or the second working state, there is only one FET in the first FET and the second FET. It is turned on, that is, among the level signals input by the first FET and the second FET, one of them is a low-level signal, and the other is a high-level signal.
  • the level signal of the FET input should be opposite.
  • the inverter 17 by arranging the inverter 17 between the interface 16 and the second field effect transistor, when the interface 16 outputs the same level signal to the first field effect transistor and the second field effect transistor, the inverter 17 Under the reverse action of , the level signals input by the first FET and the second FET can be opposite. In this way, by outputting the same level signal through one interface 16 , the on-off control of the two FETs can be realized, the number of interfaces can be reduced, and the control logic of the interface 16 can be simplified.
  • the interface 16 can output a low level when the radio frequency system is in the first working state or the second working state signal, the level signal input by the first field effect transistor is a low level signal, and due to the reverse action of the inverter 17, the level signal input by the second field effect transistor is a high level signal.
  • the interface 16 can output a high-level signal, and the first field effect transistor
  • the level signal input by the effect transistor is a high level signal, and due to the reverse action of the inverter 17, the level signal input by the second field effect transistor is a low level signal.
  • FIG. 7 a schematic structural diagram of another embodiment of the radio frequency system provided by the present application is shown.
  • the power supply 10 is connected to the first PA module 12 and the second PA module 13 ; the PA power supply chip 11 They are respectively connected with the first PA module 12 and the second PA module 13 .
  • the third working state includes a third sub-working state and a fourth sub-working state.
  • control module 15 can control the switch module 14 to conduct the connection between the PA power chip 11 and the first PA module 12 , so that the PA power chip 11 supplies power to the first PA module 12 .
  • the first PA module 12 works, and the second PA module 13 does not work.
  • control module 15 can control the switch module 14 to conduct the connection between the PA power chip 11 and the second PA module 13 , so that the PA power chip 11 supplies power to the second PA module 13 .
  • the second PA module 13 works and the first PA module 12 does not work.
  • the control module 15 can control the switch module 14 to turn on the connection between the power supply 10 and the second PA module 13, and the connection between the PA power supply chip 11 and the first PA module 12, so as to Make the power supply 10 supply power to the second PA module 13, and the PA power supply chip 11 to supply power to the first PA module 12.
  • the first PA module 12 and the second PA module 13 are both working, and the PA power supply chip 11 is The power consumption of the first PA module 12 is relatively low.
  • the control module 15 controls the switch module 14 to conduct the connection between the power supply 10 and the first PA module 12, and to conduct the connection between the PA power supply chip 11 and the second PA module 13, In order to make the power supply 10 supply power to the first PA module 12, and the PA power chip 11 to supply power to the second PA module 13, at this time, the first PA module 12 and the second PA module 13 are both working, and the PA power chip 11 The power consumption for powering the second PA module 13 is low.
  • the PA power chip 11 can support power saving technologies such as envelope tracking and other power supply technologies, it saves more power than the PMIC. Therefore, when only the first PA module 12 or the second PA module 13 is required In this case, the PA power chip 11 can be controlled to supply power to the first PA module 12 or the second PA module, so as to reduce the energy consumption of the radio frequency system.
  • the switch module 14 may include a third switch module 143 , a fourth switch module 144 , a fifth switch module 145 and a sixth switch module 146 as shown in FIG. 7 ; wherein the third switch module 143 is connected to the power supply 10 and the first PA module 12; the fourth switch module 144 is connected between the power supply 10 and the second PA module 13; the fifth switch module 145 is connected between the PA power chip 11 and the first PA module 12; The sixth switch module 146 is connected between the PA power chip 11 and the second PA module 13 .
  • the power supply 10 , the third switch module 143 and the first PA module 12 may form a power supply channel A1 .
  • the power supply 10, the fourth switch module 144 and the second PA module 13 may form a power supply channel A2.
  • the PA power chip 11 , the fifth switch module 145 and the first PA module 12 may form a power supply channel B1 .
  • the PA power chip 11 , the sixth switch module 146 and the second PA module can form a power supply channel B2 .
  • control module 15 is respectively connected to the third switch module 143 , the fourth switch module 144 , the fifth switch module 145 and the sixth switch module 146 ; when the radio frequency system is in the first working state, the control module 15 controls The fifth switch module 145 is turned on, and the third switch module 143 , the fourth switch module 144 and the sixth switch module 146 are turned off, so as to control the PA power chip 11 to supply power to the first PA module 12 according to the power supply channel B1 .
  • control module 15 controls the sixth switch module 146 to be turned on, and the third switch module 143 , the fourth switch module 144 and the fifth switch module 145 to be turned off, so as to control the PA power chip 11 to supply power according to the Channel B2 supplies power to the second PA module 13 .
  • control module 15 controls the fourth switch module 144 and the fifth switch module 145 to be turned on, and the third switch module 143 and the sixth switch module 146 are turned off, so as to control the power supply 10 according to the power supply channel.
  • A2 supplies power to the second PA module 13, and the PA power chip 11 supplies power to the first PA module 12 according to the power supply channel B1.
  • control module 15 controls the third switch module 143 and the sixth switch module to turn on 146 , and the fourth switch module 144 and the fifth switch module 145 to turn off, so as to control the power supply 10 according to the power supply channel A1 supplies power to the first PA module 12 , and the PA power chip 11 supplies power to the second PA module 13 according to the power supply channel B2 .
  • the third switch module 143 may be a third field effect transistor
  • the fourth switch module 144 may be a fourth field effect transistor
  • the fifth switch module 145 may be a fifth field effect transistor
  • the sixth switch The module 146 is the sixth field effect transistor
  • the control module 15 is respectively connected with the third field effect transistor, the fourth field effect transistor, the fifth field effect transistor and the sixth field effect transistor, and is used to control the third field effect transistor, the fourth field effect transistor and the fourth field effect transistor. The on-off of the field effect transistor, the fifth field effect transistor and the sixth field effect transistor.
  • the first pole of the third field effect transistor is connected to the power supply 10
  • the second pole of the third field effect transistor is connected to the first PA module 12
  • the first pole of the fourth field effect transistor is connected to the power supply 10
  • the second pole of the third FET is connected to the second PA module 13
  • the first pole of the fifth FET is connected to the PA power chip 11
  • the second pole of the fifth FET is connected to the first PA module 12 connection
  • the first pole of the sixth field effect transistor is connected to the PA power supply chip 11, and the second pole of the sixth field effect transistor is connected to the second PA module 13
  • the control module 15 is respectively connected to the grid of the third field effect transistor,
  • the grid of the fourth field effect transistor, the grid of the fifth field effect transistor and the grid of the sixth field effect transistor are connected.
  • the radio frequency system may further include a working state acquisition module 18 shown in FIG. 7 .
  • the working state acquisition module 18 is connected to the control module 15 , and the working state acquisition module 18 may be used to acquire the working state of the radio frequency system, and to obtain the working state of the radio frequency system.
  • the working state is sent to the control module 15 so as to control the on-off state of the switch module 14 with the control module according to the working state, so that the power supply 10 and/or the PA power chip 11 can supply power to the PA module 20 .
  • the radio frequency system may further include the power consumption acquisition module 19 shown in FIG. 7 , and the power consumption acquisition module 19 is connected to the working state obtaining module 18 and the control module 15 respectively; when the working state is the third working state, The power consumption acquisition module 19 acquires the first power consumption of the first PA module 12 and the second power consumption of the second PA module 13, and sends the first power consumption and the second power consumption to the control module 15; the control module 15 It can be used to determine that the working state is the third sub-working state when the first power consumption is greater than the second power consumption, control the power supply 10 to supply power to the second PA module 13, and the PA power chip 11 to the first PA module 12 power supply. When the first power consumption is less than the second power consumption, it is determined that the working state is the fourth sub-working state, the control power supply 10 supplies power to the first PA module 12 , and the PA power chip 11 supplies power to the second PA module 13 .
  • the working state acquisition module 18 can be used to obtain the working state of the radio frequency system.
  • the control module 15 can control the fifth switch module 145 to be turned on, and the third switch module 143, the fourth switch module 144 and the sixth switch module 146 to be turned off, so as to control the PA power chip 11 to supply power to the first PA module 12 according to the power supply channel B1.
  • the working state acquisition module 18 can be used to obtain the working state of the radio frequency system.
  • the control module 15 can control the sixth switch module 146 to be turned on, and the third switch module 143, the fourth switch module 144 and the fifth switch module 145 to be turned off, so as to control the PA power chip 11 to supply power to the second PA module 13 according to the power supply channel B2.
  • the working state acquisition module 18 can be used to obtain the working state of the radio frequency system.
  • the power consumption obtaining module 19 obtains the first power consumption and the second power consumption of the first PA module 12.
  • the second power consumption of the PA module 13 , and the first power consumption and the second power consumption are sent to the control module 15 .
  • the control module 15 may determine that the working state is the third sub-working state, and at this time, the control module 15 may control the fourth switch module 144 and the fifth switch module 145 to be turned on, The third switch module 143 and the sixth switch module 146 are disconnected to control the power supply 10 to supply power to the second PA module 13 according to the power supply channel A2, and the PA power chip 11 to supply power to the first PA module 12 according to the power supply channel B1.
  • the working state acquisition module 18 can be used to obtain the working state of the radio frequency system.
  • the power consumption obtaining module 19 obtains the first power consumption and the second power consumption of the first PA module 12.
  • the second power consumption of the PA module 13 , and the first power consumption and the second power consumption are sent to the control module 15 .
  • the control module 15 may determine that the working state is the fourth sub-working state.
  • the fourth switch module 144 and the fifth switch module 145 are disconnected to control the power supply 10 to supply power to the first PA module 12 according to the power supply channel A1, and the PA power chip 11 to supply power to the second PA module 13 according to the power supply channel B2.
  • the current switch state can be maintained unchanged.
  • the power source 10 is a battery. Due to the simple structure of the battery, when the power source 10 is a battery, the structure of the radio frequency system can be simpler and the cost is lower.
  • the power supply 10 is a PMIC
  • the control module 15 may be a switch control module integrated in the PMIC, so as to realize the on-off control of the switch module 14 through the switch control module of the PMIC, so as to It is avoided to set an additional controller to control the switch module 14, further reducing the number of components in the radio frequency system, which is beneficial to the layout of the radio frequency system in the electronic device.
  • the radio frequency system of the embodiment of the present application may at least include the following advantages:
  • Fig. 8 there is shown a flow chart of the steps of the power supply control method of the radio frequency system provided by the embodiment of the present application.
  • the method is used for the radio frequency system in the above-mentioned embodiment, and the method may specifically include:
  • Step 801 Acquire the working status of the radio frequency system.
  • the working state of the radio frequency system can be obtained through the working state obtaining module, and the working state is sent to the control module.
  • the working state of the radio frequency system may include the working state of the NSA mode, the working state of the SA mode, etc., which is not limited in this embodiment of the present application
  • the method may further include step 802 : controlling the on-off state of the switch module according to the working state, so that the power supply and/or the PA power supply chip supplies power to the PA module, wherein the PA module includes at least two PA modules.
  • the control module controls the power supply to supply power to one or more PA modules in the PA module by controlling the on-off state of the switch module, or controls the PA power supply chip to supply power to one or more PA modules in the PA module.
  • One or more PA modules in the PA module are powered, or, the power supply is controlled to supply power to a part of the PA modules in the PA module, and the PA power chip is controlled to supply power to another part of the PA modules in the PA module.
  • the power supply logic is not specifically limited.
  • the power supply is connected to the PA module through the switch module, and the PA power supply chip is connected to the PA module through the switch module;
  • the control module is connected to the switch module, and the control module is used for, according to the working state of the radio frequency system, to control the communication of the switch module. off state, so that the power supply and/or the PA power chip supply power to the PA module, so as to meet the power supply requirements of the PA module in different working states. That is to say, in the radio frequency system, only one PA power supply chip is required to cooperate with the use of the switch module to meet the power supply requirements of the PA module in different working states. In this way, not only the cost of the radio frequency system is reduced, but also the difficulty of layout of the radio frequency system in the electronic equipment is reduced.
  • the embodiment of the present application further provides an electronic device, and the electronic device may specifically include the above-mentioned radio frequency system.
  • the electronic device may include at least one of a mobile phone, a tablet computer, and a wearable electronic device, and the specific type of the electronic device may not be limited in this embodiment of the present application.
  • the structure and working principle of the radio frequency system are the same as those of the radio frequency system in the foregoing embodiments. Therefore, the beneficial effects of the electronic device and the radio frequency system are also the same, which will not be described again.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It will also be understood that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware for performing the specified functions or actions, or by special purpose hardware and/or A combination of computer instructions is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种射频系统、射频系统的供电方法以及电子设备,该射频系统包括:电源、PA电源芯片、PA模块、开关模块以及控制模块;其中,电源通过开关模块与PA模块连接,PA电源芯片通过开关模块与PA模块连接,PA模块包括至少两个PA模组;控制模块与开关模块连接,控制模块用于,根据射频系统的工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电。

Description

射频系统、射频系统的供电方法以及电子设备
相关申请的交叉引用
本申请主张2020年12月30日在中国提交的中国专利申请号202011631569.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种射频系统、一种射频系统的供电控制方法以及一种电子设备。
背景技术
随着通信技术的发展,第五代移动通信技术(5th generation mobile networks,5G)逐渐开始普及。为了实现从第四代移动通信技术(4th generation mobile networks,4G)到5G平稳过渡及基站建设的成本考虑,当前的5G组网方式通常为非独立组网(Non-Standalone,NSA)。在NSA模式下,5G需要依托4G核心网进行信令连接,4G功率放大器(Power Amplifier,PA)和5G PA同时工作。而后续的5G技术的发展,将会逐步向独立组网(Standalone,SA)方式发展。在SA模式下,4G和5G分别独立工作,5G可以单独信令工作,不需要依托4G核心网的辅助,4G PA和5G PA分别独立工作。
相关技术中,为了实现不同的工作状态,4G PA和5G PA需要同时工作,或者,4G PA和5G PA需要分别独立工作,因此,在射频系统中,通常需要设置两个PA电源芯片,其中一个与4G PA连接,用于控制4G PA的供电,另一个与5G PA连接,用于控制5G PA的供电。这样,不仅会增加射频系统的成本,而且,会增加射频系统在电子设备中的布局难度。
发明内容
本申请旨在提供一种射频系统、一种射频系统的供电控制方法以及一种电子设备,至少解决射频系统的成本高,在电子设备中的布局难度大的问题之一。
第一方面,本申请实施例提出了一种射频系统,包括:电源、PA电源芯片、PA模块、开关模块以及控制模块;
其中,电源通过开关模块与PA模块连接,PA电源芯片通过开关模块与PA模块连接,PA模块包括至少两个PA模组;
控制模块与开关模块连接,控制模块用于,根据射频系统的工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电。
第二方面,本申请实施例提出了一种射频系统的供电控制方法,用于第一方面提出的射频系统,该方法包括:
获取射频系统的工作状态;
根据工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电,其中,PA模块包括至少两个PA模组。
第三方面,本申请实施例还提供了一种电子设备,包括:上述任一项的射频系统。
本申请实施例中,电源通过开关模块与PA模块连接,PA电源芯片通过开关模块与PA模块连接;控制模块与开关模块连接,控制模块用于,根据射频系统的工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电,以满足不同工作状态下PA模块的供电需求。也即,射频系统中,仅需一个PA电源芯片,配合开关模块的使用,即可实现满足不同工作状态PA模块的供电需求。这样,不仅会降低射频系统的成本,而且,还会降低射频系统在电子设备中的布局难度。
本发明的附加方面和优点将在下面的描述中部分为出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据相关技术的一种射频系统的结构示意图;
图2是本申请提供的射频系统的实施例的结构框图;
图3是本申请提供的射频系统的实施例的结构示意图之一;
图4是本申请提供的射频系统的实施例的结构示意图之二;
图5是本申请提供的射频系统的实施例的结构示意图之三;
图6是本申请提供的射频系统的实施例的结构示意图之四;
图7是本申请提供的射频系统的实施例的结构示意图之五;
图8是本申请实施例提供的射频系统的供电控制方法的步骤流程图。
附图标记:10-电源,11-PA电源芯片,12-第一PA模组,13-第二PA模组,14-开关模块,141-第一开关模块,142-第二开关模块,143-第三开关模块,144-第四开关模块,145-第五开关模块,146-第六开关模块,15-控制模块,16-接口,161-第一接口,162-第二接口,17-反相器,18-工作状态获取模块,19-功耗获取模块,20-PA模块,100-第一PA电源芯片,200-第二PA电源芯片。
具体实施方式
下面将详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明, “多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
图1示出了根据相关技术的一种射频系统的结构示意图,如图1所示,现有的射频系统具体可以包括:电源10,第一PA电源芯片100、第二PA电源芯片200、第一PA模组12以及第二PA模组13;其中,第一PA电源芯片100与第一开PA模组12连接,以对第一PA模组12进行供电,第二电源芯片200与第二PA模组13连接,以对第二PA模组13进行供电。
示例性地,第一PA模组12可以为4G PA模组,第二PA模组13可以为5G PA模组。在实际应用中,在NSA模式下,4G PA和5G PA同时工作。此时,第一PA电源芯片100可以为第一PA模组12供电,同时,第二PA电源芯片200可以为第二PA模组13供电。在SA模式下,4G PA和5G PA分别独立工作。此时,第一PA电源芯片100独立为第一PA模组12供电,第二PA电源芯片200独立为第二PA模组13供电。
在根据相关技术的射频系统中,由于需要采用两个PA电源芯片来进行PA的供电控制,且PA电源芯片的体积较大,成本较高,因此,整个射频系统的成本较高,布局难度较大。而且,没有充分利用电源10上预留的供电接口,电源10的利用率较低。
参照图2,示出了本申请提供的射频系统的实施例的结构框图,如图2所示,射频系统具体可以包括:电源10、PA电源芯片11、PA模块20、开关模块14以及控制模块15;其中,
电源10通过开关模块14与PA模块20连接,PA电源芯片11通过开关模块14与PA模块20连接,PA模块包括至少两个PA模组;
控制模块15与开关模块14连接,控制模块15可以用于,根据射频系统的工作状态,控制开关模块14的通断状态,以使电源10和/或PA电源芯片11为PA模块20供电。
本申请实施例中,电源10可以为电池,也可以为平台电源管理芯片 (Power Management IC,PMIC),例如,MTK平台MT6359等,本申请实施例仅以电源10为PMIC为例进行说明,其他类型的电源参照执行即可。
具体地,PA电源芯片11可以为PA的专用电源供电芯片,能支持包络跟踪等供电技术,相比PMIC更省电,如高通平台QET5100/QET6100,MTK平台MT6308等,可以实现电源包络跟踪技术等省功耗技术,性能较优,可以实现PA省功耗的目的。
具体地,PA模块20可以包括至少两个PA模组,PA模组具体可以包括4G PA模组、5G PA模组等。开关模块14具体可以为电子开关、场效应管等能够实现电路通断控制的开关器件。控制模块15可以为电子设备的中央处理器,也可以为用于控制射频系统的专用控制芯片,本申请实施例对此不做特殊限定。
在实际应用中,射频系统的工作状态可以包括NSA模式工作状态、SA模式工作状态等,本申请实施例对此不做限定。为了适应不同的工作状态,控制模块15通过控制开关模块14的通断状态,控制电源10为PA模块20中的一个或者多个PA模组供电,或者,控制PA电源芯片11为PA模块20中的一个或者多个PA模组供电,或者,控制电源10为PA模块20中的一部分PA模组供电,并控制PA电源芯片11为PA模块中的另一部分的PA模组供电,本申请实施例对于具体地供电逻辑不做具体地限定。
本申请实施例中,由于电源10通过开关模块14与PA模块20连接,PA电源芯片11通过开关模块14与PA模块20连接;控制模块15与开关模块14连接,控制模块15可以用于,根据射频系统的工作状态,控制开关模块14的通断状态,以使电源10和/或PA电源芯片11为PA模块20供电,以满足不同工作状态下PA模块20的供电需求。也即,射频系统中,仅需一个PA电源芯片11,配合开关模块14的使用,即可实现满足不同工作状态PA模块20的供电需求。这样,不仅会降低射频系统的成本,而且,还会降低射频系统在电子设备中的布局难度。
在本申请的一些可选实施例中,工作状态可以包括:第一工作状态、第 二工作状态,以及第三工作状态,PA模块20可以包括第一PA模组12和第二PA模组13;其中,在射频系统处于第一工作状态下,控制模块15可以控制开关模块14导通PA电源芯片11与PA模块20的连接,以使PA电源芯片11为第一PA模组12供电,在射频系统处于第二工作状态下,控制模块15可以控制开关模块14导通PA电源芯片11与PA模块20的连接,以使PA电源芯片11为第二PA模组13供电,以使PA电源芯片11为第二PA模组13供电;在射频系统处于第三工作状态下,控制模块15可以控制开关模块14导通PA电源芯片11与PA模块20的连接,以及,导通电源10与PA模块20之间的连接,以使电源10为第一PA模组12和第二PA模组13的其中之一供电,PA电源芯片11为第一PA模组12和第二PA模组13中的其中另一供电。
具体地,第一工作状态可以为SA模式下,需要第一PA模组12独立工作的工作状态。第二工作状态可以为SA模式下,需要第二PA模组13独立工作的工作状态。第三工作状态可以为NSA模式下的工作状态。相应的,第一PA模组12可以为4G PA模组,第二PA模组13可以为5G PA模组;其中,第一PA模组12的数量可以为两个,一个第一PA模组12可以用于传输高频的4G信号,另一个第一PA模组12可以用于传输低频的4G信号。
具体地,在SA模式下,第一PA模组12和第二PA模组13无需同时工作,此时,在第一工作状态下,控制模块15可以控制开关模块14导通PA电源芯片11与PA模块20的连接,以使得PA电源芯片11可以为第一PA模组12供电;在第二工作状态下,控制模块15可以控制开关模块14导通PA电源芯片11与PA模块20的连接,以使得PA电源芯片11可以为第二PA模组13供电,实现电源包络跟踪技术等省功耗技术,达到较好的降功耗的效果。在第三工作状态下,第一PA模组12和第二PA模组需要同时工作,此时,控制模块15可以控制开关模块14导通PA电源芯片11与PA模块20的连接,以及,导通电源10与PA模块20之间的连接,以使电源10为第一PA模组12和第二PA模组13的其中之一供电,PA电源芯片 11为第一PA模组12和第二PA模组13中的其中另一供电,以通过一个PA电源芯片11,配合开关模块14的使用,即可实现满足不同工作状态PA模块的供电需求
参照图3-4,示出了本申请提供的射频系统的实施例的结构示意图,如图3、图4所示,开关模块14可以包括:第一开关模块141和第二开关模块142;第一开关模块141连接在电源10与第一PA模组12之间;第二开关模块142连接在PA电源芯片11与第一PA模组12之间。控制模块15分别与第一开关模块141、第二开关模块142连接,以控制第一开关模块141、第二开关模块142的通断状态。
如图3-4所示,射频系统中可以形成两个供电通道,其中,电源10、第一开关模块141以及第一PA模组12可以形成供电通道A,PA电源芯片11、第二开关模块142、第一PA模组12以及第二PA模组13可以形成供电通道B。在实际应用中,在第一开关模块141导通的情况下,供电通道A可以相应导通,在第二开关模块142导通的情况下,供电通道B可以相应导通。
如图3所示,在射频系统处于SA模式下,控制模块15可以控制第一开关模块141断开,第二开关模块142导通,供电通道A断开,供电通道B导通。此时,由于第一PA模组12和第二PA模组13无需同时工作。在需要第一PA模组12工作的第一工作状态下,PA电源芯片11可以按照图3中的供电路径b为第一PA模组12供电;在需要第二PA模组13工作的第二工作状态下,PA电源芯片11可以按照图3中的供电路径c为第二PA模组13供电。
如图4所示,在射频系统处于第三工作状态下,控制模块15可以控制第一开关模块141导通,第二开关模块142断开,供电通道A、供电通道B皆导通。此时,由于第一PA模组12和第二PA模组13需要同时工作,电源10可以按照图4中的供电路径a为第一PA模组12供电,PA电源芯片11可以按照图3中的供电路径c为第二PA模组13供电,以使得第一PA模组 12和第二PA模组13可以同时工作。
在本申请的一些可选实施例中,第一开关模块141为第一场效应管,第二开关模块142为第二场效应管;控制模块15上设有接口16,接口16分别与第一场效应管、第二场效应管连接,用于实现第一场效应管、第二场效应管的通断控制。进而,可以实现供电通道A、供电通道B的通断控制。
示例性地,接口16可以为通用输入/输出(General-purpose input/output,GPIO)接口,用于向第一场效应管、第二场效应管输出电平信号,控制第一场效应管、第二场效应管的通断。
具体地,第一场效应管的第一极与电源10连接,第一场效应管的第二极与第一PA模组12连接;第二场效应管的第一极与PA电源芯片11连接,第二场效应管的第二极与第一PA模组12连接;接口16分别与第一场效应管的栅极,以及,第二场效应管的栅极连接。
示例地,第一场效应管,第二场效应管可以为N型场效应管或者P型场效应管中的至少一种,本申请实施例仅以第一场效应管、第二场效应管皆为N型场效应管为例进行说明,其他场景参照执行即可。
在实际应用中,由于控制模块15上的接口16与第一场效应管的栅极连接,通过控制接口16向第一场效应管的栅极输出的电平信号,可以控制第一场效应管的第一极与第二极之间的通断状态。同理,由于控制模块15上的接口16与第一场效应管的栅极连接,通过控制接口16向第一场效应管的栅极输出的电平信号,可以控制第一场效应管的第一极与第二极之间的通断状态。
例如,在第一场效应管为N型场效应管的情况下,接口60向第一场效应管输出高电平信号时,可以控制第一场效应管的第一极和第二极之间导通,供电通道A导通;接口60向第一场效应管输出低电平信号时,可以控制第一场效应管的第一极和第二极之间不导通供电通道A不导通。
具体地,第一极可以为源极,第二极可以为漏级,或者,第一极为漏级,第二极为源极,本申请实施例对此不做限定。
可选地,接口16可以包括第一接口161和第二接口162;其中,第一接口161与第一场效应管的栅极连接,第二接口162与第二场效应管的栅极连接,以通过第一接口161控制第一场效应管的通断,通过第二接口162控制第二场效应管的通断。在实际应用中,通过独立的接口控制唯一对应的场效应管的通断,可以实现每个场效应管的独立控制,从而,可以提高控制精度。
示例地,在第一场效应管、第二场效应管皆为N型场效应管,在射频系统处于第一工作状态或者第二工作状态的情况下,第一接口161可以输出低电平信号,第二接口162可以输出高电平信号,第一场效应管不导通,第二场效应管导通;在射频系统处于所第三工作状态的情况下,第一接口161可以输出高电平信号,第二接口162可以输出低电平信号,第一场效应管导通,第二场效应管不导通。
参照图5-6,示出了本申请提供的射频系统的另一实施例的结构示意图,如图5、图6所示,射频系统还可以包括:反向器17;其中,反向器17连接在接口16与第二场效应管的栅极之间。反相器17可以用于对接口16输出的电平信号进行反向。
例如,在接口16输出的电平信号为低电平信号的情况下,经过反相器17反向后,输出为第二场效应管的电平信号为高电平信号;在接口16输出的电平信号为高电平信号的情况下,经过反相器17反向后,输出为第二场效应管的电平信号为低电平信号。
如图3至图6所示的射频系统中,无论射频系统处于第一工作状态、第二工作状态还是第二工作状态,第一场效应管、第二场效应管中仅有一个场效应管是导通的,也即,第一场效应管、第二场效应管输入的电平信号中,其中一个为低电平信号,另外一个为高电平信号,第一场效应管和第二场效应管输入的电平信号应该相反。
本申请实施例中,通过在接口16与第二场效应管之间设置反相器17,接口16向第一场效应管、第二效应管输出相同的电平信号时,在反相器17 的反向作用下,第一场效应管、第二场效应管输入的电平信号却可以相反。这样,通过一个接口16输出相同的电平信号,既可以实现两个场效应管的通断控制,减少接口的数量,而且,可以简化接口16的控制逻辑。
如图5所示,在第一场效应管、第二场效应管皆为N型场效应管,在射频系统处于第一工作状态或者第二工作状态的情况下,接口16可以输出低电平信号,第一场效应管输入的电平信号为低电平信号,由于反相器17的反向作用,第二场效应管输入的电平信号为高电平信号。
如图6所示,在第一场效应管、第二场效应管皆为N型场效应管,在射频系统处于第三工作状态的情况下,接口16可以输出高电平信号,第一场效应管输入的电平信号为高电平信号,由于反相器17的反向作用,第二场效应管输入的电平信号为低电平信号。
参照图7,示出了本申请提供的射频系统的再一实施例的结构示意图,如图7所示,电源10与第一PA模组12、第二PA模组13连接;PA电源芯片11分别与第一PA模组12、第二PA模组13连接。第三工作状态包括第三子工作状态和第四子工作状态。
在射频系统处于第一工作状态下,控制模块15可控制开关模块14导通PA电源芯片11与第一PA模组12的连接,以使PA电源芯片11为第一PA模组12供电,此时,第一PA模组12工作,第二PA模组13不工作。
在射频系统处于第二工作状态下,控制模块15可以控制开关模块14导通PA电源芯片11与第二PA模组13的连接,以使PA电源芯片11为第二PA模组13供电,此时,第二PA模组13工作,第一PA模组12不工作。
在射频系统处于第三子工作状态下,控制模块15可以控制开关模块14导通电源10与第二PA模组13的连接,以及,PA电源芯片11与第一PA模组12的连接,以使电源10为第二PA模组13供电,PA电源芯片11为第一PA模组12供电,此时,第一PA模组12、第二PA模组13皆工作,且PA电源芯片11为第一PA模组12供电的功耗较低。
在射频系统处于第四子工作状态下,控制模块15控制开关模块14导通 电源10与第一PA模组12的连接,以及,导通PA电源芯片11与第二PA模组13的连接,以使电源10为第一PA模组12供电,PA电源芯片11为第二PA模组13供电,此时,第一PA模组12、第二PA模组13皆工作,且PA电源芯片11为第二PA模组13供电的功耗较低。
需要说明的是,由于PA电源芯片11能支持包络跟踪等供电技术等省功耗技术,相比PMIC更省电,因此,在仅需要第一PA模组12或者第二PA模组13的情况下,可以控制PA电源芯片11为第一PA模组12或者第二PA模组供电,以降低射频系统的能耗。
示例性地,开关模块14可以包括如图7所示的第三开关模块143、第四开关模块144、第五开关模块145以及第六开关模块146;其中,第三开关模块143连接在电源10与第一PA模组12之间;第四开关模块144连接在电源10与第二PA模组13之间;第五开关模块145连接在PA电源芯片11与第一PA模组12之间;第六开关模块146连接在PA电源芯片11与第二PA模组13之间。
具体地,电源10、第三开关模块143以及第一PA模组12可以形成供电通道A1。电源10、第四开关模块144以及第二PA模组13可以形成供电通道A2。PA电源芯片11、第五开关模块145以及第一PA模组12可以形成供电通道B1。PA电源芯片11、第六开关模块146以及第二PA模组可以形成供电通道B2。
本申请实施例中,控制模块15分别与第三开关模块143、第四开关模块144、第五开关模块145以及第六开关模块146连接;在射频系统处于第一工作状态下,控制模块15控制第五开关模块145导通,第三开关模块143、第四开关模块144以及第六开关模块146断开,以控制PA电源芯片11按照供电通道B1为第一PA模组12供电。
在射频系统处于第二工作状态下,控制模块15控制第六开关模块146导通,第三开关模块143、第四开关模块144以及第五开关模块145断开,以控制PA电源芯片11按照供电通道B2为第二PA模组13供电。
在射频系统处于第三子工作状态下,控制模块15控制第四开关模块144、第五开关模块145导通,第三开关模块143、第六开关模块146断开,以控制电源10按照供电通道A2为第二PA模组13供电,PA电源芯片11按照供电通道B1为第一PA模组12供电。
在射频系统处于第四子工作状态下,控制模块15控制第三开关模块143、第六开关模块导通146,第四开关模块144、第五开关模块145断开,以控制电源10按照供电通道A1为第一PA模组12供电,PA电源芯片11按照供电通道B2为第二PA模组13供电。
在本申请的一些实施例中,第三开关模块143可以为第三场效应管,第四开关模块144可以为第四场效应管,第五开关模块145为第五场效应管,第六开关模块146为第六场效应管;控制模块15分别与第三场效应管、第四场效应管、第五场效应管以及第六场效应管连接,用于控制第三场效应管、第四场效应管、第五场效应管以及第六场效应管的通断。
可选地,第三场效应管的第一极与电源10连接,第三场效应管的第二极与第一PA模组12连接;第四场效应管的第一极与电源10连接,第三场效应管的第二极与第二PA模组13连接;第五场效应管的第一极与PA电源芯片11连接,第五场效应管的第二极与第一PA模组12连接;第六场效应管的第一极与PA电源芯片11连接,第六场效应管的第二极与第二PA模组13连接;控制模块15分别与第三场效应管的栅极、第四场效应管的栅极、第五场效应管的栅极以及第六场效应管的栅极连接。
需要说明的是,第三场效应管、第四场效应管、第五场效应管以及第六场效应管的工作原理与前述实施例中的第一场效应管、第二场效应管相同,在此不做赘述。
本申请实施例中,射频系统还可以包括图7所示的工作状态获取模块18,工作状态获取模块18与控制模块15连接,工作状态获取模块18可以用于获取射频系统的工作状态,并将工作状态发送为控制模块15,以便与控制模块根据工作状态,控制开关模块14的通断状态,以使电源10和/或 PA电源芯片11为PA模块20供电。
可选地,射频系统还可以包括图7所示的功耗获取模块19,功耗获取模块19分别与工作状态获取模块18、控制模块15连接;在工作状态为第三工作状态的情况下,功耗获取模块19获取第一PA模组12的第一功耗和第二PA模组13的第二功耗,并将第一功耗和第二功耗发送为控制模块15;控制模块15可以用于,在第一功耗大于第二功耗的情况下,确定工作状态为第三子工作状态,控制电源10为第二PA模组13供电,PA电源芯片11为第一PA模组12供电。在第一功耗小于第二功耗的情况下,确定工作状态为第四子工作状态,控制电源10为第一PA模组12供电,PA电源芯片11为第二PA模组13供电。
以下提供一种图7所示的射频系统的工作示例:
示例1,工作状态获取模块18可以用于获取射频系统的工作状态,在电子设备工作在2G/3G/4G网络的情况下,判断射频系统的工作状态为第一工作状态,此时,控制模块15可以控制第五开关模块145导通,第三开关模块143、第四开关模块144以及第六开关模块146断开,以控制PA电源芯片11按照供电通道B1为第一PA模组12供电。
示例二,工作状态获取模块18可以用于获取射频系统的工作状态,在电子设备工作在5G网络且为SA模式的情况下,判断射频系统的工作状态为第二工作状态,此时,控制模块15可以控制第六开关模块146导通,第三开关模块143、第四开关模块144以及第五开关模块145断开,以控制PA电源芯片11按照供电通道B2为第二PA模组13供电。
示例三,工作状态获取模块18可以用于获取射频系统的工作状态,在工作状态为第三工作状态的情况下,功耗获取模块19获取第一PA模组12的第一功耗和第二PA模组13的第二功耗,并将第一功耗和第二功耗发送为控制模块15。在第一功耗大于第二功耗的情况下,控制模块15可以确定工作状态为第三子工作状态,此时,控制模块15可以控制第四开关模块144、第五开关模块145导通,第三开关模块143、第六开关模块146断开,以控 制电源10按照供电通道A2为第二PA模组13供电,PA电源芯片11按照供电通道B1为第一PA模组12供电。
示例四,工作状态获取模块18可以用于获取射频系统的工作状态,在工作状态为第三工作状态的情况下,功耗获取模块19获取第一PA模组12的第一功耗和第二PA模组13的第二功耗,并将第一功耗和第二功耗发送为控制模块15。在第一功耗小于第二功耗的情况下,控制模块15可以确定工作状态为第四子工作状态,此时,控制模块15可以第三开关模块143、第六开关模块导通146,第四开关模块144、第五开关模块145断开,以控制电源10按照供电通道A1为第一PA模组12供电,PA电源芯片11按照供电通道B2为第二PA模组13供电。
需要说明的是,在第一功耗等于第二功耗的情况下,可以维持当前的开关状态不变。
在本申请的一种可选实施例中,电源10为电池,由于电池的结构简单,在电源10为电池的情况下,可以使得射频系统结构较为简单,成本较低。
在本申请的另一种可选实施例中,电源10为PMIC,控制模块15可以为集成在PMIC的开关控制模块,以通过PMIC的开关控制模块来实现对于开关模块14的通断控制,以避免设置额外的控制器来控制开关模块14,进一步减少射频系统中的零部件数量,有利于射频系统在电子设备中的布局。
综上,本申请实施例的射频系统至少可以包括以下优点:
本申请实施例中,电源通过开关模块与PA模块连接,PA电源芯片通过开关模块与PA模块连接;控制模块与开关模块连接,控制模块用于,根据射频系统的工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电,以满足不同工作状态下PA模块的供电需求。也即,射频系统中,仅需一个PA电源芯片,配合开关模块的使用,即可实现满足不同工作状态PA模块的供电需求。这样,不仅会降低射频系统的成本,而且,还会降低射频系统在电子设备中的布局难度。
参照图8,示出了本申请实施例提供的射频系统的供电控制方法的步骤 流程图,该方法用于上述实施例中的射频系统,该方法具体可以包括:
步骤801:获取射频系统的工作状态。
本申请实施例中,可以通过工作状态获取模块获取射频系统的工作状态,并向控制模块发送该工作状态。
具体地,射频系统的工作状态可以包括NSA模式工作状态、SA模式工作状态等,本申请实施例对此不做限定
该方法还可以包括步骤802:根据工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电,其中,PA模块包括至少两个PA模组。
本申请实施例中,为了适应不同的工作状态,控制模块通过控制开关模块的通断状态,控制电源为PA模块中的一个或者多个PA模组供电,或者,控制PA电源芯片为PA模块中的一个或者多个PA模组供电,或者,控制电源为PA模块中的一部分PA模组供电,并控制PA电源芯片为PA模块中的另一部分的PA模组供电,本申请实施例对于具体地供电逻辑不做具体地限定。
本申请实施例中,电源通过开关模块与PA模块连接,PA电源芯片通过开关模块与PA模块连接;控制模块与开关模块连接,控制模块用于,根据射频系统的工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电,以满足不同工作状态下PA模块的供电需求。也即,射频系统中,仅需一个PA电源芯片,配合开关模块的使用,即可实现满足不同工作状态PA模块的供电需求。这样,不仅会降低射频系统的成本,而且,还会降低射频系统在电子设备中的布局难度。
本申请实施例还提供了一种电子设备,电子设备具体可以包括上述射频系统。电子设备可以包括手机、平板电脑以及穿戴式电子设备中的至少一种,本申请实施例对于的电子设备的具体类型可以不做限定。
本申请实施例中,射频系统的结构和工作原理与前述各实施中的射频系统相同,因此,电子设备与射频系统的有益效果也相同,再次不做赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种射频系统,包括:电源、PA电源芯片、PA模块、开关模块以及控制模块,其中,
    所述电源通过所述开关模块与所述PA模块连接,所述PA电源芯片通过所述开关模块与所述PA模块连接,所述PA模块包括至少两个PA模组;
    所述控制模块与所述开关模块连接,所述控制模块用于,根据所述射频系统的工作状态,控制所述开关模块的通断状态,以使所述电源和/或所述PA电源芯片为所述PA模块供电。
  2. 根据权利要求1所述的射频系统,其中,所述工作状态包括:第一工作状态、第二工作状态和第三工作状态,所述PA模块包括第一PA模组和第二PA模组,其中,
    在所述射频系统处于所述第一工作状态下,所述控制模块控制所述开关模块导通所述PA电源芯片与所述PA模块的连接,以使所述PA电源芯片为所述第一PA模组供电;
    在所述射频系统处于所述第二工作状态下,所述控制模块控制所述开关模块导通所述PA电源芯片与所述PA模块的连接,以使所述PA电源芯片为所述第二PA模组供电;
    在所述射频系统处于所述第三工作状态下,所述控制模块控制所述开关模块导通所述PA电源芯片与所述第一PA模块的连接,以及,导通所述电源与所述PA模块之间的连接,以使所述电源为所述第一PA模组和所述第二PA模组的其中之一供电,所述PA电源芯片为所述第一PA模组和所述第二PA模组中的其中另一供电。
  3. 根据权利要求2所述的射频系统,其中,所述开关模块包括:第一开关模块和第二开关模块;
    所述第一开关模块连接在所述电源与所述第一PA模组之间;
    所述第二开关模块连接在所述PA电源芯片与所述第一PA模组之间;
    所述控制模块分别与所述第一开关模块、所述第二开关模块连接;在所述射频系统处于所述第一工作状态或者所述第二工作状态下,所述控制模块控制所述第一开关模块断开,所述第二开关模块导通;在所述射频系统处于所述第三工作状态下,所述控制模块控制所述第一开关模块导通,所述第二开关模块断开。
  4. 根据权利要求3所述的射频系统,其中,所述第一开关模块为第一场效应管,所述第二开关模块为第二场效应管;
    所述控制模块上设有接口,所述接口包括第一接口和第二接口,所述第一接口与所述第一场效应管的栅极连接,所述第二接口与所述第二场效应管的栅极连接。
  5. 根据权利要求4所述的射频系统,还包括:反向器,所述反向器连接在所述接口与所述第二场效应管的栅极之间。
  6. 根据权利要求2所述的射频系统,其中,所述电源与所述第一PA模组、第二PA模组连接,所述PA电源芯片分别与所述第一PA模组、第二PA模组连接;
    所述第三工作状态包括第三子工作状态和第四子工作状态;
    在所述射频系统处于所述第一工作状态下,所述控制模块控制所述开关模块导通所述PA电源芯片与所述第一PA模组的连接,以使所述PA电源芯片为所述第一PA模组供电;
    在所述射频系统处于所述第二工作状态下,所述控制模块控制所述开关模块导通所述PA电源芯片与所述第二PA模组的连接,以使所述PA电源芯片为所述第二PA模组供电;
    在所述射频系统处于所述第三子工作状态下,所述控制模块控制所述开关模块导通电源与所述第二PA模组的连接,以及,所述PA电源芯片与所述第一PA模组的连接,以使所述电源为所述第二PA模组供电,所述PA电源芯片为所述第一PA模组供电;
    在所述射频系统处于所述第四子工作状态下,所述控制模块控制所述开关模块导通电源与所述第一PA模组的连接,以及,导通PA电源芯片与所述第二PA模组的连接,以使所述电源为所述第一PA模组供电,所述PA电源芯片为所述第二PA模组供电。
  7. 根据权利要求6所述的射频系统,其中,所述开关模块包括:
    第三开关模块,连接在所述电源与所述第一PA模组之间;
    第四开关模块,连接在所述电源与所述第二PA模组之间;
    第五开关模块,连接在所述PA电源芯片与所述第一PA模组之间;
    第六开关模块连接在所述PA电源芯片与所述第二PA模组之间,
    所述控制模块分别与所述第三开关模块、所述第四开关模块、所述第五开关模块以及所述第六开关模块连接;
    在所述射频系统处于所述第一工作状态下,所述控制模块控制所述第五开关模块导通,所述第三开关模块、所述第四开关模块以及所述第六开关模块断开;
    在所述射频系统处于所述第二工作状态下,所述控制模块控制所述第六开关模块导通,所述第三开关模块、所述第四开关模块以及所述第五开关模块断开;
    在所述射频系统处于所述第三子工作状态下,所述控制模块控制所述第四开关模块、第五开关模块导通,所述第三开关模块、所述第六开关模块断开;
    在所述射频系统处于所述第四子工作状态下,所述控制模块控制所述第三开关模块、第六开关模块导通,所述第四开关模块、所述第五开关模块断开。
  8. 根据权利要求6所述的射频系统,其中,所述第三开关模块为第三场效应管,所述第四开关模块为第四场效应管,所述第五开关模块为第五场效应管,所述第六开关模块为第六场效应管;
    所述控制模块分别与所述第三场效应管的栅极、所述第四场效应管的栅 极、所述第五场效应管的栅极以及所述第六场效应管的栅极连接,用于控制所述第三场效应管、所述第四场效应管、所述第五场效应管以及第六场效应管的通断。
  9. 根据权利要求7所述的射频系统,还包括:工作状态获取模块和功耗获取模块;
    所述工作状态获取模块与所述控制模块连接,所述工作状态获取模块用于获取所述射频系统的工作状态,并将所述工作状态发送为所述控制模块;
    所述功耗获取模块分别与所述工作状态获取模块、所述控制模块连接;
    在所述工作状态为所述第三工作状态的情况下,所述功耗获取模块获取所述第一PA模组的第一功耗和所述第二PA模组的第二功耗,并将所述第一功耗和所述第二功耗发送为所述控制模块;
    所述控制模块用于,在所述第一功耗大于所述第二功耗的情况下,确定所述工作状态为第三子工作状态,在所述第一功耗小于所述第二功耗的情况下,确定所述工作状态为第四子工作状态。
  10. 根据权利要求1所述的射频系统,其中,所述电源为电池;或者
    所述电源为平台电源管理芯片,所述控制模块为集成在所述平台电源管理芯片的开关控制模块。
  11. 一种射频系统的供电控制方法,用于权利要求1至10任一项所述的射频系统,所述方法包括:
    获取所述射频系统的工作状态;
    根据所述工作状态,控制开关模块的通断状态,以使电源和/或PA电源芯片为PA模块供电,其中,所述PA模块包括至少两个PA模组。
  12. 一种电子设备,包括:权利要求1至10任一项所述的射频系统。
PCT/CN2021/140810 2020-12-30 2021-12-23 射频系统、射频系统的供电方法以及电子设备 WO2022143397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011631569.XA CN112803764A (zh) 2020-12-30 2020-12-30 射频系统、射频系统的供电方法以及电子设备
CN202011631569.X 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143397A1 true WO2022143397A1 (zh) 2022-07-07

Family

ID=75808329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140810 WO2022143397A1 (zh) 2020-12-30 2021-12-23 射频系统、射频系统的供电方法以及电子设备

Country Status (2)

Country Link
CN (1) CN112803764A (zh)
WO (1) WO2022143397A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803764A (zh) * 2020-12-30 2021-05-14 维沃移动通信有限公司 射频系统、射频系统的供电方法以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120112832A1 (en) * 2010-11-09 2012-05-10 Panasonic Corporation Radio frequency switch and radio frequency module
CN108390691A (zh) * 2018-02-12 2018-08-10 维沃移动通信有限公司 一种上行载波聚合装置及移动终端
CN111092621A (zh) * 2019-11-13 2020-05-01 维沃移动通信有限公司 射频电路、控制方法及电子设备
CN112073085A (zh) * 2020-09-03 2020-12-11 维沃移动通信有限公司 射频电路、电子设备及射频控制方法
CN112803764A (zh) * 2020-12-30 2021-05-14 维沃移动通信有限公司 射频系统、射频系统的供电方法以及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515622B2 (en) * 2014-12-23 2016-12-06 Nokia Technologies Oy Reconfigurable bias and supply drivers for radio frequency power amplifiers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120112832A1 (en) * 2010-11-09 2012-05-10 Panasonic Corporation Radio frequency switch and radio frequency module
CN108390691A (zh) * 2018-02-12 2018-08-10 维沃移动通信有限公司 一种上行载波聚合装置及移动终端
CN111092621A (zh) * 2019-11-13 2020-05-01 维沃移动通信有限公司 射频电路、控制方法及电子设备
CN112073085A (zh) * 2020-09-03 2020-12-11 维沃移动通信有限公司 射频电路、电子设备及射频控制方法
CN112803764A (zh) * 2020-12-30 2021-05-14 维沃移动通信有限公司 射频系统、射频系统的供电方法以及电子设备

Also Published As

Publication number Publication date
CN112803764A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
US7895458B2 (en) Power control apparatus and method thereof
US7279927B2 (en) Integrated circuit with multiple power domains
US8767753B2 (en) System, method and device for providing network communications
CN101893926A (zh) 控制双处理器切换的方法、装置及终端
WO2022143397A1 (zh) 射频系统、射频系统的供电方法以及电子设备
CN102650904B (zh) 低功耗电路以及降低功率消耗的方法
US11943710B2 (en) Electronic device, method, medium and apparatus for managing extender nodes
US7996695B2 (en) Circuits and methods for sleep state leakage current reduction
CN103777726A (zh) 电子装置及其启动方法
JP2004048370A (ja) ブロック間インタフェース回路およびシステムlsi
KR102530347B1 (ko) 반도체 장치 및 반도체 시스템
CN103777733B (zh) 电脑装置及通用连接端口模块的供电方法
CN107395530B (zh) 一种交换芯片、网络设备和功耗控制方法
EP3694092A1 (en) System and method of power distribution control of an integrated circuit
US10209734B2 (en) Semiconductor device, semiconductor system, and method of operating the semiconductor device
WO2023202121A1 (zh) 一种射频电路及电子设备
CN213751063U (zh) 一种串行通信总线的控制装置和电子设备
Ghorbani et al. A novel transceiver structure including power and audio amplifiers for Internet of Things applications
CN204595843U (zh) 单线供电数据传输电路
CN114696867A (zh) 一种射频电路、控制方法、通信装置及终端
KR102571154B1 (ko) 반도체 장치, 반도체 시스템 및 반도체 장치의 동작 방법
KR102712345B1 (ko) 반도체 장치, 반도체 시스템 및 반도체 장치의 동작 방법
CN221352078U (zh) 一种智能平板主板电路及主板
CN109885154B (zh) 一种带旁路通道的低功耗寄存器
CN211826943U (zh) 一种通讯控制电路及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914134

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21914134

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2024)