WO2023202064A1 - 压水堆的稳压器水位控制系统 - Google Patents

压水堆的稳压器水位控制系统 Download PDF

Info

Publication number
WO2023202064A1
WO2023202064A1 PCT/CN2022/132994 CN2022132994W WO2023202064A1 WO 2023202064 A1 WO2023202064 A1 WO 2023202064A1 CN 2022132994 W CN2022132994 W CN 2022132994W WO 2023202064 A1 WO2023202064 A1 WO 2023202064A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
setting value
control system
speed
module
Prior art date
Application number
PCT/CN2022/132994
Other languages
English (en)
French (fr)
Inventor
王晓婷
李炳文
朱建敏
张薇
陈天铭
卫丹靖
王凯
王炜如
周洺稼
刘亦然
Original Assignee
中广核研究院有限公司
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Publication of WO2023202064A1 publication Critical patent/WO2023202064A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • G21D3/12Regulation of any parameters in the plant by adjustment of the reactor in response only to changes in engine demand
    • G21D3/14Varying flow of coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of nuclear power, and more specifically, to a pressure stabilizer water level control system for a pressurized water reactor.
  • the pressure stabilizer is an important device for controlling and protecting the primary circuit pressure in a pressurized water reactor.
  • the voltage stabilizer is connected to the primary loop system through a surge tube.
  • a sprayer and an electric heater are installed in the voltage stabilizer.
  • the steam can be condensed by spraying water to reduce the pressure; when the pressure drops, the water can be heated by an electric heater to evaporate it, causing the steam density in the steam space to increase.
  • Boost the pressure thus regulating the pressure of the entire system, so that the voltage regulator can effectively stabilize the system pressure.
  • the voltage regulator serves as a buffer tank for the primary circuit coolant, compensating for changes in water volume in the primary circuit system.
  • the pressure stabilizer water level control system maintains the pressure stabilizer water level at a set value to ensure the pressure regulation characteristics of the pressure stabilizer.
  • the water level control of the pressurizer of a pressurized water reactor nuclear power plant is achieved by adjusting the upper charging flow or lower drain flow.
  • the lower discharge flow rate remains unchanged, and the upper charging flow rate is adjusted by adjusting the opening of the upper charging valve to achieve the purpose of controlling the water level of the pressure stabilizer;
  • the water level control logic of the voltage regulator is complex, the control system has a large number of actuators, and the equipment takes up a large space.
  • the technical problem to be solved by the present invention is to provide a pressure stabilizer water level control system for a pressurized water reactor in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a pressure stabilizer water level control system for a pressurized water reactor, including a heat exchanger, a primary loop system, a temperature measurement module, a water level setting value generation module, a pressure stabilizer, Water level measuring device, speed control module, charging pump;
  • the heat exchanger is connected to the primary loop system through an upper charging channel and a lower drain channel respectively;
  • the temperature measurement module measures the temperature of the cold pipe section and the hot pipe section of the primary loop system respectively, and obtains the average temperature of the primary loop system;
  • the temperature measurement module is communicatively connected to the water level setting value generation module, and the water level setting value generation module generates the water level setting value L ref of the voltage regulator according to the average temperature;
  • the water level measuring device detects the real-time water level value of the voltage regulator
  • the rotation speed control module generates a control command for controlling the rotation speed of the top-charging pump according to the water level setting value and the real-time water level value;
  • the top-charging pump is disposed in the top-charging channel to supply water to the primary loop system, and the top-charging pump controls the water supply speed according to the control command.
  • the temperature measurement module includes a cold section temperature measurement unit provided on the cold pipe section, and a hot section temperature measurement unit provided on the hot pipe section.
  • the cold section temperature measurement unit and the hot section temperature measurement unit are contact thermometers or infrared thermometers.
  • the temperature measurement module further includes an average temperature generation module, which averages the measured cold pipe section temperature and hot pipe section temperature to generate a loop average temperature Tavg:
  • the water level setting value generation module generates the regulator water level setting value by fitting the relationship according to the average temperature of the primary circuit:
  • the regulator water level control system further includes a water level deviation range module disposed between the water level setting value generation module and the rotation speed control module.
  • the water level deviation range module is configured according to the real-time water level. The value is subtracted from the water level setting value to generate a water level deviation signal.
  • the relationship between the water level deviation range and the pressure regulator water level setting value is as follows:
  • L 1 is the water level deviation range, the unit is % of the range
  • L ref is the regulator water level setting value, the unit is % of range
  • C is a constant with a value ranging from 0 to 1.
  • the water level deviation range module includes a water level detector.
  • the charging pump is set with three rotation speeds R 0 , R 1 , and R 2 , and R 0 ⁇ R 1 ⁇ R 2 ;
  • the top-charging pump keeps the speed of R 1 unchanged;
  • the lower drain channel is provided with a lower drain control mechanism.
  • the lower drain control mechanism balances the upper charge level. Flow balance of channels and downflow channels.
  • the drain control mechanism includes a drain control valve.
  • the top-charging pump speed switches back to the medium speed R 1 , where ⁇ is a constant and less than 1.
  • the top-charging pump speed switches back to the medium speed R 1 , and ⁇ is a constant and less than 1.
  • a top-charging pump is used as the actuator for pressurizer water level control, switching of different rotational speeds can be realized, and a pressurizer that allows operation is provided
  • the water level deviation can avoid frequent movements of the actuator while ensuring adjustment accuracy.
  • Figure 1 is a schematic diagram of a pressure regulator water level control system of a pressurized water reactor in an embodiment of the present invention
  • Figure 2 is a schematic diagram of the process of voltage regulator water level control
  • Figure 3 is a function coordinate diagram of the top charging pump speed control.
  • the pressure stabilizer water level control system of a pressurized water reactor in a preferred embodiment of the present invention includes a heat exchanger, a primary loop system, a temperature measurement module, a water level setting value generation module, a pressure stabilizer, and a water level measurement device. , Top charging pump 5.
  • the heat exchanger is connected to the volumetric system.
  • the heat exchanger is connected to the primary loop system through the upper charging channel 1 and the lower drain channel 2.
  • the upper charging channel 1 supplies water to the primary loop system and supplies water to the stable system. Add water to the press.
  • the water in the primary loop system flows out through the downflow channel 2, reducing the water level of the pressure regulator.
  • the primary loop system includes a pressure vessel, a main pump, a primary side of a steam generator and corresponding pipelines. Furthermore, the primary loop system includes a cold pipe section 3 and a hot pipe section 4, which respectively supply cold water and hot water.
  • the temperature measurement module measures the temperatures of the cold pipe section 3 and the hot pipe section 4 of the primary loop system respectively, and obtains the average temperature of the primary loop system.
  • the temperature measurement module is communicatively connected to the water level setting value generation module, and the water level setting value generation module generates the water level setting value L ref of the voltage regulator based on the average temperature.
  • the water level measuring device detects the real-time water level value of the voltage regulator, and the speed control module generates a control command for controlling the speed of the top-charging pump 5 based on the water level setting value and the real-time water level value.
  • the top-charging pump 5 is installed in the top-charging channel 1 to supply water to the primary loop system.
  • the top-charging pump 5 controls the water supply speed according to the control command.
  • the top-charging pump 5 is used as the actuator for voltage stabilizer water level control, which can realize switching of different rotational speeds, and an operating allowable voltage stabilizer water level deviation is set, which can avoid frequent movements of the actuator while ensuring adjustment accuracy.
  • the temperature measurement module includes a cold section temperature measurement unit provided on the cold pipe section 3 and a hot section temperature measurement unit provided on the hot pipe section 4 .
  • the cold section temperature measurement unit and the hot section temperature measurement unit are contact thermometers or infrared thermometers.
  • Thermometers are respectively arranged in the cold pipe section 3 and the hot pipe section 4 of the primary circuit to measure the temperatures of the cold pipe section 3 and the hot pipe section 4 of the primary circuit. , thus obtaining the average temperature.
  • the temperature measurement module also includes an average temperature generation module.
  • the average temperature generation module averages the measured temperatures of cold pipe section 3 and hot pipe section 4 to generate the primary loop average temperature Tavg:
  • the average temperature generating module can also multiply one of the temperature of the cold pipe section 3 and the temperature of the hot pipe section 4 by a coefficient, and then add it to the other and average it.
  • the regulator water level control system also includes a water level deviation range module disposed between the water level setting value generation module and the speed control module.
  • the water level deviation range module performs subtraction based on the real-time water level value and the water level setting value to generate the water level. deviation signal.
  • L 1 is the water level deviation range, the unit is % of the range
  • L ref is the regulator water level setting value, the unit is % of range
  • C is a constant with a value ranging from 0 to 1.
  • C can be set according to the actual situation, such as 0.1, 0.5, 0.9, 1, etc.
  • the water level deviation range module includes a water level detector, which is used to detect the real-time water level value of the water level, perform subtraction based on the real-time water level value and the water level setting value, and generate a water level deviation signal.
  • the present invention realizes by setting the water level deviation range signal.
  • the charging pump 5 is set to have three rotation speeds R 0 , R 1 , and R 2 , and R 0 ⁇ R 1 ⁇ R 2 , the relationship between the speed requirement of the top charging pump 5 and the water level deviation of the voltage regulator is shown in Figure 3.
  • the top-charging pump 5 keeps the speed of R 1 unchanged.
  • the speed of the top-charging pump 5 switches to the speed R 0. If the water level deviation gradually decreases until it is less than the range of L 1 - ⁇ , the speed of the top-charging pump 5 switches back to the medium speed R 1 , ⁇ It is a constant and less than 1, such as 0.1, 0.5, 0.9, etc.
  • Rotation speed R 1 is the same as above, ⁇ is a constant and less than 1, such as 0.1, 0.5, 0.9, etc.
  • the lower drain channel 2 is provided with a lower drain control mechanism 6.
  • the lower drain control mechanism 6 balances the flow of the upper charging channel 1 and the lower drain channel 2, allowing the regulator to The water level is maintained near the set value.
  • the lower drain control mechanism 6 includes a lower drain control valve. By manually adjusting the lower drain control valve, the flow rates of the upper charging channel 1 and the lower drain channel 2 are balanced.
  • the drain control mechanism 6 may also be an electrically controlled control switch.
  • the upper charging channel 1 is provided with an upper charging flow meter (not shown), and the lower drain channel 2 is equipped with a lower drain flow meter (not shown).
  • the upper charging flow rate and the lower drain flow rate are not used for the water level control of the pressure stabilizer of the present invention. , for monitoring only.
  • the voltage regulator water level signal and the voltage regulator water level setting value generated by the average temperature of the primary circuit are sent to the speed control module; after the speed control module performs real-time calculation and processing, a speed switching command of the upper charging pump 5 is generated and sent to the upper charging pump 5, through The charging pump 5 adjusts the charging flow to realize the water level control of the voltage stabilizer.
  • the speed control module of the top-charging pump 5 allows a certain deviation between the regulator water level and the set value during normal operation of the reactor, effectively avoiding frequent actions of the top-charging pump 5.
  • the speed switching of the top-charging pump 5 can quickly adjust the top-charging flow rate, so that the water level of the regulator can quickly return to near the set value.
  • the need to switch the speed of the top charging pump 5 should consider the hysteresis ⁇ to avoid frequent switching of the speed of the top charging pump 5 when the water level deviation ⁇ L of the regulator is near -L 1 and L 1.
  • the top charging pump 5 has 3 operating operating points, which can Achieve adjustment of different charging flows.
  • the actuator required by the present invention is the upper charging pump 5.
  • the upper charging pump 5 only needs to have three operating operating points, and each operating operating point has a corresponding main pump speed and flow rate.
  • the top-charging pump 5 only operates under three working condition points, which greatly reduces the frequency conversion equipment of the top-charging pump 5 and helps save the equipment space of the pressurized water reactor.
  • the water level of the pressure stabilizer is controlled by keeping the lower discharge flow rate constant and adjusting the upper charging flow rate.
  • the setting value of the voltage stabilizer water level is determined through the average temperature of the primary circuit.
  • the setting value of the voltage stabilizer water level enters the water level deviation range module.
  • the deviation between the actual measured value and the setting value of the voltage stabilizer water level enters the speed control module of the upper charging pump 5, resulting in an upper charging pump. 5 speed signal is transmitted to the charging pump 5.
  • the top-charging flow rate is changed by switching the rotation speed of the top-charging pump 5 .
  • the control system does not need to control the lower discharge regulating valve, and the upper charging regulating valve is also omitted.
  • Only the upper charging pump 5 is used as the actuator of the pressure stabilizer water level control system, which reduces the number of actuators, such as reducing the upper charging valve, Regarding the configuration of the lower discharge valve, etc., the upper charging pump 5 has three operating conditions, which reduces the frequency conversion equipment of the upper charging pump (5) and helps simplify the equipment configuration;
  • the present invention does not need to set up a PI controller, the control channel is more simplified, the water level control scheme of the voltage stabilizer is simplified, and the control fixed value is reduced, which is conducive to simplifying the debugging process.
  • the pressurizer water level control system allows a certain deviation between the pressurizer water level and the set value during normal operation of the reactor (within the range of -L 1 ⁇ L 1 ).
  • the control logic is relatively simple and requires few actuators. It can be applied Pressurized water reactor water level control.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

一种压水堆的稳压器水位控制系统,包括热交换器、一回路系统、温度测量模块、水位整定值生成模块、稳压器、水位测量装置、转速控制模块、上充泵(5);热交换器分别通过上充通道(1)、下泄通道(2)与一回路系统连通;温度测量模块分别测量一回路系统的冷管段(3)、热管段(4)的温度,并得出一回路系统平均温度;温度测量模块与水位整定值生成模块通信连接,水位整定值生成模块根据平均温度生成稳压器的水位整定值;水位测量装置检测稳压器的实时水位值;转速控制模块根据水位整定值和实时水位值生成用于控制上充泵(5)转速的控制命令;上充泵(5)设置在上充通道,以向一回路系统供水,上充泵(5)根据控制命令控制供水速度,可避免执行机构频繁动作的同时保证调节精度。

Description

压水堆的稳压器水位控制系统 技术领域
本发明涉及核电领域,更具体地说,涉及一种压水堆的稳压器水位控制系统。
背景技术
稳压器是压水堆中对一回路压力进行控制和保护的一个重要设备。稳压器通过波动管与一回路系统相连,在稳压器内设置了喷雾器和电加热器,反应堆运行时,一回路的冷却剂体积随着功率的升高或降低而发生膨胀和收缩,进而引起稳压器中水位的上升和下降。
当稳压器内压力随液位增加而增加时,可通过水的喷淋使蒸汽凝结以降压;当压力下降时,可通过电加热器加热水使其蒸发,致使其汽空间蒸汽密度增加以升压,从而调节整个系统的压力,使稳压器起到有效稳定系统压力的作用。
同时,稳压器作为一回路冷却剂的缓冲箱,补偿一回路系统水容积的变化。稳压器水位控制系统将稳压器水位维持在整定值上,以保证稳压器压力调节特性。
目前压水堆核电厂稳压器水位控制通过调节上充流量或下泄流量实现,有三种模式:
1、采用下泄流量不变,通过调节上充阀门开度的方式调节上充流量,以达到控制稳压器水位的目的;
2、采用上充流量不变,通过调节下泄阀门开度的方式调节下泄流量,以达到控制稳压器水位的目的;
3、通过启停上充泵和开关下泄阀的方式,同时调节上充流量和下泄流量以控制稳压器水位。
缺点:稳压器水位控制逻辑较复杂,控制系统执行机构数量多,设备占用较大空间。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种压水堆的稳压器水位控制系统。
本发明解决其技术问题所采用的技术方案是:构造一种压水堆的稳压器水位控制系统,包括热交换器、一回路系统、温度测量模块、水位整定值生成模块、稳压器、水位测量装置、转速控制模块、上充泵;
所述热交换器分别通过上充通道、下泄通道与所述一回路系统连通;
所述温度测量模块分别测量所述一回路系统的冷管段、热管段的温度,并得出所述一回路系统平均温度;
所述温度测量模块与所述水位整定值生成模块通信连接,所述水位整定值生成模块根据所述平均温度生成所述稳压器的水位整定值L ref
所述水位测量装置检测所述稳压器的实时水位值;
所述转速控制模块根据所述水位整定值和所述实时水位值生成用于控制所述上充泵转速的控制命令;
所述上充泵设置在所述上充通道,以向所述一回路系统供水,所述上充泵根据所述控制命令控制供水速度。
在一些实施例中,所述温度测量模块包括设置在所述冷管段上的冷段温度测量单元、以及设置在所述热管段上的热段温度测量单元。
在一些实施例中,所述冷段温度测量单元、热段温度测量单元为接触式温度计或红外温度计。
在一些实施例中,所述温度测量模块还包括平均温度生成模块,所述平均温度生成模块对测得的所述冷管段温度和热管段温度平均处理,生成一回路平均温度Tavg:
Figure PCTCN2022132994-appb-000001
在一些实施例中,所述水位整定值生成模块根据一回路平均温度,由拟合 关系式生成稳压器水位整定值:
Lref=f(Tavg)。
在一些实施例中,所述稳压器水位控制系统还包括设置在所述水位整定值生成模块与所述转速控制模块之间的水位偏差范围模块,所述水位偏差范围模块根据所述实时水位值和所述水位整定值做减法,生成水位偏差信号。
在一些实施例中,水位偏差范围与稳压器水位整定值的关系如下:
L 1=C×Lref;
其中:
L 1为水位偏差范围,单位为%量程;
L ref为稳压器水位整定值,单位为%量程;
C为常数,取值范围在0~1之间。
在一些实施例中,所述水位偏差范围模块包括水位检测器。
在一些实施例中,所述上充泵设定有三个转速R 0、R 1、R 2,且R 0<R 1<R 2
当所述水位整定值在-L 1~L 1范围内时,上充泵保持R 1转速不变;
当稳压器水位偏差大于L 1时,上充泵转速切换成转速R 0
当稳压器水位偏差小于-L 1时,上充泵转速切换成转速R 2
在一些实施例中,所述下泄通道上设有下泄控制机构,当所述水位整定值在-L1~L1范围内时,通过调节所述下泄控制阀,所述下泄控制机构平衡所述上充通道、下泄通道的流量平衡。
在一些实施例中,所述下泄控制机构包括下泄控制阀。
在一些实施例中,若水位偏差逐渐减小直到小于L 1-ε范围内,上充泵转速切换回中转速R 1,ε为常数,且小于1。
在一些实施例中,若水位偏差逐渐增大直到大于-L 1+ε范围内,上充泵转速切换回中转速R 1,ε为常数,且小于1。
实施本发明的压水堆的稳压器水位控制系统,具有以下有益效果:采用上充泵作为稳压器水位控制的执行机构,可实现不同转速的切换,且设置了运行允许的稳压器水位偏差,可避免执行机构频繁动作的同时保证调节精 度。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例中的压水堆的稳压器水位控制系统的示意图;
图2是稳压器水位控制的过程示意图;
图3是上充泵转速控制的函数坐标图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明一个优选实施例中的压水堆的稳压器水位控制系统包括热交换器、一回路系统、温度测量模块、水位整定值生成模块、稳压器、水位测量装置、上充泵5。
结合图1、2所示,热交换器与化容系统连通,另外,热交换器分别通过上充通道1、下泄通道2与一回路系统连通,上充通道1向一回路系统供水,向稳压器内补水。一回路系统中的水通过下泄通道2流出,降低稳压器的水位。
一回路系统包括压力容器、主泵、蒸汽发生器一次侧及相应管道,进一步地,一回路系统包括冷管段3、热管段4,分别供冷水、热水流动。温度测量模块分别测量一回路系统的冷管段3、热管段4的温度,并得出一回路系统平均温度。
温度测量模块与水位整定值生成模块通信连接,水位整定值生成模块根据平均温度生成稳压器的水位整定值L ref
水位测量装置检测稳压器的实时水位值,转速控制模块根据水位整定值和实时水位值生成用于控制上充泵5转速的控制命令。
上充泵5设置在上充通道1,以向一回路系统供水,上充泵5根据控制命令控制供水速度。
采用上充泵5作为稳压器水位控制的执行机构,可实现不同转速的切换,且设置了运行允许的稳压器水位偏差,可避免执行机构频繁动作的同时保证调节精度。
在一些实施例中,温度测量模块包括设置在冷管段3上的冷段温度测量单元、以及设置在热管段4上的热段温度测量单元。通常,冷段温度测量单元、热段温度测量单元为接触式温度计或红外温度计,在一回路的冷管段3和热管段4分别布置温度计,用于测量一回路的冷管段3和热管段4温度,从而得到平均温度。
进一步地,温度测量模块还包括平均温度生成模块,平均温度生成模块对测得的冷管段3温度和热管段4温度平均处理,生成一回路平均温度Tavg:
Figure PCTCN2022132994-appb-000002
在其他实施例中,平均温度生成模块也可将冷管段3温度和热管段4温度中的一个乘以系数,再与另一个相加后平均。
优选地,水位整定值生成模块根据一回路平均温度,由拟合关系式生成稳压器水位整定值:Lref=f(Tavg)。
在一些实施例中,稳压器水位控制系统还包括设置在水位整定值生成模块与转速控制模块之间的水位偏差范围模块,水位偏差范围模块根据实时水位值和水位整定值做减法,生成水位偏差信号。
进一步地,水位偏差范围与稳压器水位整定值的关系如下:
L 1=C×Lref。
其中:
L 1为水位偏差范围,单位为%量程;
L ref为稳压器水位整定值,单位为%量程;
C为常数,取值范围在0~1之间。C可根据实际情况设置,如0.1、0.5、0.9、1等。
在一些实施例中,水位偏差范围模块包括水位检测器,用于检测水位的实时水位值,根据实时水位值和水位整定值做减法,生成水位偏差信号,本发明 通过设置水位偏差范围信号,实现以下功能:
当稳压器水位较高时,设置较大的偏差量,允许较大偏差,有利于避免高水位时执行机构的频繁动作;
当稳压器水位较低时,设置减小的偏差量,允许较小偏差,有利于提高稳压器水位调节精度,避免因水位明显偏差整定值而触发保护信号。
结合图2、3所示,进一步地,为了让上充泵5的能适应不同上充量的需求,上充泵5设定有三个转速R 0、R 1、R 2,且R 0<R 1<R 2,上充泵5转速需求与稳压器水位偏差的关系如图3所示。
稳定运行时,即当水位整定值在-L 1~L 1范围内时,上充泵5保持R 1转速不变。
当稳压器水位偏差大于L 1时,上充泵5转速切换成转速R 0,若水位偏差逐渐减小直到小于L 1-ε范围内,上充泵5转速切换回中转速R 1,ε为常数,且小于1,如0.1、0.5、0.9等。
当稳压器水位偏差小于-L 1时,上充泵5转速切换成转速R 2,进一步地,若水位偏差逐渐增大直到大于-L 1+ε范围内,上充泵5转速切换回中转速R 1,同上,ε为常数,且小于1,如0.1、0.5、0.9等。
优选地,下泄通道2上设有下泄控制机构6,当水位整定值在-L 1~L 1范围内时,下泄控制机构6平衡上充通道1、下泄通道2的流量,可以让稳压器水位维持在整定值附近。在本实施例中,下泄控制机构6包括下泄控制阀,通过手动调节下泄控制阀,平衡上充通道1、下泄通道2的流量。在其他实施例中,下泄控制机构6也可为电动控制的控制开关。
通常,上充通道1上设有上充流量计(未图示),下泄通道2上设有下泄流量计(未图示),上充流量和下泄流量不用于本发明的稳压器水位控制中,仅用于监测。
稳压器水位信号与通过一回路平均温度产生的稳压器水位整定值送至转速控制模块;在转速控制模块进行实时计算处理后,产生上充泵5转速切换命令送至上充泵5,通过上充泵5调节上充流量,实现稳压器水位控制。
根据以上说明,上充泵5的转速控制模块允许反应堆正常运行时稳压器 水位与整定值之间存在一定偏差,有效避免上充泵5的频繁动作。
同时,当水位偏差较大时,上充泵5转速切换能够实现上充流量的快速调节,使得稳压器水位能够快速恢复到整定值附近。
上充泵5转速切换需求考虑回差ε,以避免稳压器水位偏差ΔL在-L 1和L 1附近时上充泵5转速频繁切换,上充泵5具备3个运行工况点,可实现不同上充流量的调节。
本发明所需的执行机构是上充泵5,上充泵5只需具备3个运行工况点,各个运行工况点有对应的主泵转速和流量。
上充泵5仅在3个工况点下运行,大大减少上充泵5的变频设备,有利于节约压水堆的设备空间。
稳压器水位通过采用下泄流量不变,调节上充流量的方式对稳压器水位进行控制。通过一回路平均温度确定稳压器水位整定值,稳压器水位整定值进入水位偏差范围模块,稳压器水位实测值与整定值的偏差进入上充泵5的转速控制模块,产生上充泵5转速信号,传入上充泵5中。通过切换上充泵5的转速改变上充流量。
采用适当的稳压器水位控制执行机构和控制系统,满足压水堆稳压器水位控制的要求。
本发明的优点:
1、控制系统不需要对下泄调节阀进行控制,同时也省去了上充调节阀,仅上充泵5作为稳压器水位控制系统的执行机构,减少了执行机构,如减少上充阀门、下泄阀门的配置等,上充泵5具备3个运行工况,减少了上充泵(5)变频设备,有利于简化设备配置;
2、设置运行允许的稳压器水位偏差,有利于避免执行机构频繁动作的同时保证调节精度;
3、本发明不需设置PI控制器,控制通道更为简化,稳压器水位控制方案简化,控制定值减少,有利于简化调试过程。
4、稳压器水位控制系统,允许反应堆正常运行时稳压器水位与整定值之间有一定偏差(-L 1~L 1范围内),控制逻辑较简单,所需执行机构少,可应用 于压水堆的稳压器水位控制。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种压水堆的稳压器水位控制系统,其特征在于,包括热交换器、一回路系统、温度测量模块、水位整定值生成模块、稳压器、水位测量装置、转速控制模块、上充泵(5);
    所述热交换器分别通过上充通道(1)、下泄通道(2)与所述一回路系统连通;
    所述温度测量模块分别测量所述一回路系统的冷管段(3)、热管段(4)的温度,并得出所述一回路系统平均温度;
    所述温度测量模块与所述水位整定值生成模块通信连接,所述水位整定值生成模块根据所述平均温度生成所述稳压器的水位整定值L ref
    所述水位测量装置检测所述稳压器的实时水位值;
    所述转速控制模块根据所述水位整定值和所述实时水位值生成用于控制所述上充泵(5)转速的控制命令;
    所述上充泵(5)设置在所述上充通道(1),以向所述一回路系统供水,所述上充泵(5)根据所述控制命令控制供水速度。
  2. 根据权利要求1所述的压水堆的稳压器水位控制系统,其特征在于,所述温度测量模块包括设置在所述冷管段(3)上的冷段温度测量单元、以及设置在所述热管段(4)上的热段温度测量单元。
  3. 根据权利要求2所述的压水堆的稳压器水位控制系统,其特征在于,所述冷段温度测量单元、热段温度测量单元为接触式温度计或红外温度计。
  4. 根据权利要求2所述的压水堆的稳压器水位控制系统,其特征在于,所述温度测量模块还包括平均温度生成模块,所述平均温度生成模块对测得的所述冷管段(3)温度和热管段(4)温度平均处理,生成一回路平均温度Tavg:
    Figure PCTCN2022132994-appb-100001
  5. 根据权利要求3所述的压水堆的稳压器水位控制系统,其特征在 于,所述水位整定值生成模块根据一回路平均温度,由拟合关系式生成稳压器水位整定值:
    Lref=f(Tavg)。
  6. 根据权利要求1至5任一项所述的压水堆的稳压器水位控制系统,其特征在于,所述稳压器水位控制系统还包括设置在所述水位整定值生成模块与所述转速控制模块之间的水位偏差范围模块,所述水位偏差范围模块根据所述实时水位值和所述水位整定值做减法,生成水位偏差信号。
  7. 根据权利要求6所述的压水堆的稳压器水位控制系统,其特征在于,水位偏差范围与稳压器水位整定值的关系如下:
    L 1=C×Lref;
    其中:
    L 1为水位偏差范围,单位为%量程;
    L ref为稳压器水位整定值,单位为%量程;
    C为常数,取值范围在0~1之间。
  8. 根据权利要求6所述的压水堆的稳压器水位控制系统,其特征在于,所述水位偏差范围模块包括水位检测器。
  9. 根据权利要求7所述的压水堆的稳压器水位控制系统,其特征在于,所述上充泵(5)设定有三个转速R 0、R 1、R 2,且R 0<R 1<R 2
    当所述水位整定值在-L 1~L 1范围内时,上充泵(5)保持R 1转速不变;
    当稳压器水位偏差大于L 1时,上充泵(5)转速切换成转速R 0
    当稳压器水位偏差小于-L 1时,上充泵(5)转速切换成转速R 2
  10. 根据权利要求9所述的压水堆的稳压器水位控制系统,其特征在于,所述下泄通道(2)上设有下泄控制机构(6),当所述水位整定值在-L 1~L 1范围内时,所述下泄控制机构(6)平衡所述上充通道(1)、下泄通道(2)的流量平衡。
  11. 根据权利要求10所述的压水堆的稳压器水位控制系统,其特征在于,所述下泄控制机构(6)包括下泄控制阀。
  12. 根据权利要求9所述的压水堆的稳压器水位控制系统,其特征在 于,若水位偏差逐渐减小直到小于L 1-ε范围内,上充泵(5)转速切换回中转速R 1,ε为常数,且小于1。
  13. 根据权利要求9所述的压水堆的稳压器水位控制系统,其特征在于,若水位偏差逐渐增大直到大于-L 1+ε范围内,上充泵(5)转速切换回中转速R 1,ε为常数,且小于1。
PCT/CN2022/132994 2022-04-20 2022-11-18 压水堆的稳压器水位控制系统 WO2023202064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210417514.1 2022-04-20
CN202210417514.1A CN114999698A (zh) 2022-04-20 2022-04-20 压水堆的稳压器水位控制系统

Publications (1)

Publication Number Publication Date
WO2023202064A1 true WO2023202064A1 (zh) 2023-10-26

Family

ID=83024692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132994 WO2023202064A1 (zh) 2022-04-20 2022-11-18 压水堆的稳压器水位控制系统

Country Status (2)

Country Link
CN (1) CN114999698A (zh)
WO (1) WO2023202064A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114999698A (zh) * 2022-04-20 2022-09-02 中广核研究院有限公司 压水堆的稳压器水位控制系统
CN115597010A (zh) * 2022-10-12 2023-01-13 中广核工程有限公司(Cn) 化容系统破口位置诊断方法、系统、装置以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483078A (zh) * 2009-01-05 2009-07-15 中国广东核电集团有限公司 一种核电站及其蒸汽发生器水位控制方法和系统
CN102543232A (zh) * 2011-10-24 2012-07-04 上海电力学院 压水堆核电站稳压器水位和压力复合控制方法
US20140140466A1 (en) * 2012-07-02 2014-05-22 David W. Richardson Semi Submersible Nuclear Power Plant and Multipurpose Platform
CN104282350A (zh) * 2014-08-05 2015-01-14 中国核电工程有限公司 一种减少核电站上充泵误报警的控制方法
CN104637557A (zh) * 2015-02-04 2015-05-20 广东电网有限责任公司电力科学研究院 核电站稳压器压力和液位的前馈反馈复合控制方法与系统
CN110118171A (zh) * 2019-04-15 2019-08-13 中广核研究院有限公司 一种核电站汽动主给水泵转速调节装置及方法
CN114999698A (zh) * 2022-04-20 2022-09-02 中广核研究院有限公司 压水堆的稳压器水位控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483078A (zh) * 2009-01-05 2009-07-15 中国广东核电集团有限公司 一种核电站及其蒸汽发生器水位控制方法和系统
CN102543232A (zh) * 2011-10-24 2012-07-04 上海电力学院 压水堆核电站稳压器水位和压力复合控制方法
US20140140466A1 (en) * 2012-07-02 2014-05-22 David W. Richardson Semi Submersible Nuclear Power Plant and Multipurpose Platform
CN104282350A (zh) * 2014-08-05 2015-01-14 中国核电工程有限公司 一种减少核电站上充泵误报警的控制方法
CN104637557A (zh) * 2015-02-04 2015-05-20 广东电网有限责任公司电力科学研究院 核电站稳压器压力和液位的前馈反馈复合控制方法与系统
CN110118171A (zh) * 2019-04-15 2019-08-13 中广核研究院有限公司 一种核电站汽动主给水泵转速调节装置及方法
CN114999698A (zh) * 2022-04-20 2022-09-02 中广核研究院有限公司 压水堆的稳压器水位控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Instrumentation and Control of Nuclear Power Plants", 31 December 2010, ATOMIC ENERGY PRESS, CN, ISBN: 9787502249007, article LIU, GUOFA ET AL.: "Voltage Stabilizer Water Level Control", pages: 171 - 175, XP009550360 *

Also Published As

Publication number Publication date
CN114999698A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023202064A1 (zh) 压水堆的稳压器水位控制系统
KR101685711B1 (ko) 재료 가스 농도 제어 시스템
CN110686553A (zh) 一种用于测量储热罐斜温层高度的方法及系统
CN111508620B (zh) 一种反应堆机动性自调节方法
CN114059084A (zh) 电解制氢系统及其温度控制方法和装置
KR20050010328A (ko) 원자력발전소의 급수제어밸브 운전차압을 고려한급수제어시스템 및 그 제어방법
CN114431713A (zh) 基于气液两相物检测的沸水连续制备方法
JPH0566601B2 (zh)
CN111584899B (zh) 一种风冷燃料电池电堆的控制系统
CN211503293U (zh) 一种太阳能吸热器入口缓冲罐布置结构
CN205133653U (zh) 一种转炉干法除尘系统的喷雾供水装置
JP3061966B2 (ja) 燃料電池発電装置
JPS605917B2 (ja) 加圧水形原子炉の出力制御装置
US10720247B2 (en) Nuclear reactor power regulator
CN220437752U (zh) 一种纯水试验系统及试验装置
CN219419111U (zh) 氢燃料电池发动机水路入堆压力控制装置
CN212005630U (zh) 一种电加热蒸汽发生器
CN112719250B (zh) 一种恒温恒压的冷却循环系统及其控制方法
CN202813792U (zh) 超纯水恒温节能控制装置
CN215447512U (zh) 带减温换热功能的氢气调压装置
CN212237190U (zh) 一种聚酯反应器的上腔室真空度调节系统
CN207507472U (zh) 一种聚合物乳液合成反应系统
CN206918985U (zh) 锅炉给水调节系统
JP2710125B2 (ja) 燃料電池の水蒸気分離器における余剰水蒸気量制御装置
CN114934896A (zh) 一种水泵变频控制方法、控制系统及船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938283

Country of ref document: EP

Kind code of ref document: A1