WO2023201481A1 - 通信方法及通信装置 - Google Patents

通信方法及通信装置 Download PDF

Info

Publication number
WO2023201481A1
WO2023201481A1 PCT/CN2022/087474 CN2022087474W WO2023201481A1 WO 2023201481 A1 WO2023201481 A1 WO 2023201481A1 CN 2022087474 W CN2022087474 W CN 2022087474W WO 2023201481 A1 WO2023201481 A1 WO 2023201481A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
signal
uplink signal
uplink
sent
Prior art date
Application number
PCT/CN2022/087474
Other languages
English (en)
French (fr)
Inventor
崔胜江
徐伟杰
左志松
贺传峰
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/087474 priority Critical patent/WO2023201481A1/zh
Publication of WO2023201481A1 publication Critical patent/WO2023201481A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method and a communication device.
  • Zero-power terminal equipment can communicate based on backscattering technology.
  • zero-power terminal equipment can communicate through signals used for backscattering communication (such as uplink signals, downlink signals or dedicated carrier signals). Scatter communication.
  • signals used for backscattering communication such as uplink signals, downlink signals or dedicated carrier signals.
  • Scatter communication there is currently no good solution for how to perform backscatter communication based on uplink signals.
  • the present application provides a communication method and communication device, which can realize backscattering communication based on uplink signals.
  • a communication method including: a first terminal device measuring a first uplink signal to obtain a first measurement result; the first terminal device transmitting a signal to the network based on the second uplink signal according to the first measurement result. The device sends a backscatter signal; wherein the first uplink signal is sent by the second terminal device.
  • a communication method including: a network device receiving a backscattered signal sent by a first terminal device based on a second uplink signal, where the backscattered signal is generated by the first terminal device based on a first measurement result. Sent, the first measurement result is obtained by measuring the first uplink signal sent by the second terminal device by the first terminal device.
  • a communication device including: a measuring unit, configured to measure a first uplink signal to obtain a first measurement result; and a sending unit, configured to send a signal to the network based on the second uplink signal according to the first measurement result.
  • the device sends a backscatter signal; wherein the first uplink signal is sent by the second terminal device.
  • a communication device including: a receiving unit configured to: receive a backscattered signal sent by a first terminal device based on a second uplink signal, where the backscattered signal is generated by the first terminal device based on The first measurement result is sent by the first terminal device after measuring the first uplink signal sent by the second terminal device.
  • a communication device including a memory, a transceiver and a processor.
  • the memory is used to store programs.
  • the processor performs data transmission and reception through the transceiver.
  • the processor is used to call the memory.
  • a communication device including a memory, a transceiver and a processor.
  • the memory is used to store programs.
  • the processor transmits and receives data through the transceiver.
  • the processor is used to call the memory. program to perform the method described in the second aspect.
  • a communication device including a processor for calling a program from a memory to execute the method described in the first aspect.
  • a communication device including a processor for calling a program from a memory to execute the method described in the second aspect.
  • a chip including a processor for calling a program from a memory, so that a device equipped with the chip executes the method described in the first aspect.
  • a chip including a processor for calling a program from a memory, so that a device installed with the chip executes the method described in the second aspect.
  • a computer-readable storage medium is provided, with a program stored thereon, and the program causes a computer to execute the method described in the first aspect.
  • a computer-readable storage medium is provided, with a program stored thereon, and the program causes the computer to execute the method described in the second aspect.
  • a computer program product including a program that causes a computer to execute the method described in the first aspect.
  • a fourteenth aspect provides a computer program product, including a program that causes a computer to execute the method described in the second aspect.
  • a computer program is provided, the computer program causing a computer to execute the method described in the first aspect.
  • a computer program is provided, the computer program causing a computer to execute the method described in the second aspect.
  • the first terminal device measures the first uplink signal sent by the second terminal device, obtains the first measurement result, and determines the second uplink signal that can be used for backscatter communication based on the first measurement result. , thereby enabling backscatter communication based on the second uplink signal.
  • terminal equipment capable of backscatter communication usually has the characteristics of low power consumption and low cost.
  • implementation of backscatter communication based on uplink signals is beneficial to the use of such terminal equipment in communication systems. further application, thus helping to reduce the cost and power consumption of terminal equipment.
  • Figure 1 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a zero-power communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an energy harvesting module provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the backscatter communication principle provided by an embodiment of the present application.
  • Figure 5 is a circuit diagram of a terminal device based on resistive load modulation technology provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the time window provided by the embodiment of the present application.
  • Figure 9 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 10 is a schematic flow chart of a communication method provided by another embodiment of the present application.
  • Figure 11 is a schematic flow chart of a communication method provided by yet another embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by another embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • wireless communication systems can be integrated with industrial wireless sensor networks (IWSN). Fusion.
  • wireless communication systems can be integrated with smart logistics and smart warehousing.
  • a wireless communication system can be integrated with a smart home network.
  • terminal equipment usually needs to have the characteristics of lower cost, smaller size (such as ultra-thin), maintenance-free, and long life. Therefore, in order to meet the above conditions, zero-power communication technology can be used to communicate between network equipment and terminal equipment.
  • the terminal equipment can also be called “zero-power terminal equipment” or “zero-power equipment” .
  • Figure 1 is the architecture of a zero-power communication system 100 applicable to the embodiment of the present application.
  • the architecture shown in Figure 1 includes a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120.
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • the network device 110 and the terminal device 120 may communicate based on backscattering communication technology.
  • backscatter communication technology the signal used for backscatter communication is crucial.
  • the signal used for backscatter communication is a wireless signal, for example, a radio frequency signal.
  • Signals used for backscatter communication may include, for example, power supply signals and carrier signals.
  • the network device 110 may send an energy supply signal to the terminal device 120 to provide power to the terminal device.
  • the terminal device 120 may send data to the network device 110 through a carrier signal.
  • the above-mentioned energy supply signal may also carry data or control information sent by the network device 110 to the terminal device 120 .
  • the above-mentioned energy supply signal can also be used only for energy supply, which is not limited in the embodiments of the present application.
  • Figure 1 exemplarily shows a network device and a terminal device.
  • the communication system 100 may include multiple network devices and other numbers of terminals may be included within the coverage of each network device.
  • Equipment the embodiments of this application do not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: fifth generation (5th generation, 5G) systems or new radio (NR), long term evolution (long term evolution, LTE) systems , LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), cellular Internet of Things, etc.
  • 5G fifth generation
  • LTE long term evolution
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system and so on.
  • the technical solution provided by this application can also be applied to other communication systems, such as wireless fidelity (Wi-Fi) systems, vehicle to everything (V2X) systems, the Internet of things (IoT) system, local area network, etc.
  • Wi-Fi wireless fidelity
  • V2X vehicle to everything
  • IoT Internet of things
  • the terminal equipment in the embodiment of the present application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices, vehicle-mounted devices, household appliances, and sensors with wireless connection functions. , electronic tags, etc.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the terminal devices in the embodiments of this application may be zero-power consumption terminals, or may be terminal devices that can support backscatter communication.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device. If the terminal device is an electronic tag, the network device may be a reader/writer used to read and write the electronic tag (for example, a reader/writer based on radio frequency identification (radio frequency identification, RFID) technology).
  • the network device may also be an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a base station responsible for device-to-device (D2D), vehicle outreach (vehicle-to-everything, V2X), and machine-to-machine (M2M) communications.
  • D2D device-to-device
  • V2X vehicle outreach
  • M2M machine-to-machine
  • Functional equipment network-side equipment in 6G networks, equipment that assumes base station functions in future communication systems, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • the terminal device 120 may include an energy collection module 121 and a backscatter communication module 122 .
  • the energy collection module 121 and the backscatter communication module 122 will be introduced below with reference to Figures 3 to 5. For the sake of brevity, they will not be described again.
  • the terminal device 120 may also include a low-power computing module 123. Among them, the low-power computing module 123 is used to provide computing functions for the terminal device 120, such as data processing.
  • the terminal device 120 may also include a sensor 124 for collecting external information (eg, ambient temperature, ambient humidity, etc.).
  • the terminal device 120 may also include a memory 125 for storing some information (for example, external information collected through the above-mentioned sensors, or item identification, etc.).
  • the above-mentioned energy collection module 121 is used to collect energy.
  • energy can be harvested through energy supply signals sent by network devices.
  • the energy supply signal may be a "radio frequency signal" sent by the network device. Therefore, the above-mentioned energy collection module is also called a “radio frequency energy collection module.”
  • FIG. 3 shows a possible structure of the energy harvesting module.
  • the energy collection module 121 can collect the energy of the space electromagnetic wave of the radio frequency signal based on the principle of electromagnetic induction, and store the collected energy in the capacitor C, which is the process of charging the capacitor C.
  • the capacitor C can start to discharge to provide energy for the operation of the terminal equipment.
  • the discharge of capacitor C can be used to drive the terminal device to perform low-power demodulation of data sent by the network device.
  • the discharge of capacitor C can be used to drive the terminal to modulate the data to be sent.
  • the discharge of capacitor C can be used to drive the sensor of the terminal device to collect data.
  • the discharge of the capacitor C can be used to drive the terminal device to read data in the memory 125 and so on.
  • the above-mentioned backscatter communication module 122 is used for backscatter communication between the terminal device 120 and the network device 110 .
  • the backscatter communication principle of the embodiment of the present application will be introduced below with reference to Figure 4 .
  • the terminal device 120 receives the wireless signal sent by the network device 110 and modulates the wireless signal to load the data that needs to be sent. Finally, the modulated signal is radiated from the antenna. This information transmission process is called backscatter communication.
  • the above wireless signal may also be called a carrier signal.
  • a carrier signal may refer to a wireless signal that is not modulated.
  • the carrier signal may be a sine wave signal, for example.
  • backscatter communication and load modulation functions are inseparable.
  • the load modulation function can be understood as the process of adjusting and controlling the circuit parameters of the oscillation circuit of the terminal device according to the rhythm of the data flow, so that the impedance and other parameters of the terminal device change accordingly, thereby completing the modulation process.
  • other devices may be provided on the transmission (transport, TX) path of the network device 110 for processing the signal to be sent, such as an amplifier (amplifier, AMP), etc.
  • Other devices may also be provided on the receiving (RX) path of the network device 110 for processing received signals, such as a low noise amplifier (LNA).
  • LNA low noise amplifier
  • the terminal device 120 may include an energy collection module, and the energy collection module may be used to collect any signal in the environment.
  • the energy harvesting module can be used to harvest the energy of the energy supply signal sent by the network device.
  • the embodiment of this application does not specifically limit the form of the energy supply signal.
  • the energy supply signal may be a modulated wireless signal or an unmodulated wireless signal.
  • the carrier signal as described above can also be used as the energy supply signal.
  • the energy supply signal can also be a wireless signal with any waveform, such as sine wave, square wave, etc.
  • the terminal device 120 may also be provided with a logical processing module to perform corresponding computing functions.
  • FIG. 4 only illustrates the connection structure of the signal processing circuit.
  • the processing circuits of the network device 110 and/or the terminal device 120 may include other components.
  • the application examples do not specifically limit this.
  • the load modulation function can be implemented in two ways: resistive load modulation and capacitive load modulation.
  • Figure 5 shows a circuit diagram of a terminal device based on resistive load modulation technology. It should be noted that the circuit described in Figure 5 implements load modulation technology in a manner similar to that of existing circuits that implement load modulation technology.
  • the resistors R2 and R3 included in Figure 5 are The functions of capacitors C1 and C2 and inductors L1 and L2 will not be described in detail.
  • a resistor RL can be connected in parallel with the load.
  • the switch S can turn on or off the resistor RL based on the control of the binary data flow. In this way, the switching of the resistor RL will cause a change in the circuit voltage, and the change in the circuit voltage can control the amplitude of the backscattered signal of the terminal device, thereby achieving modulation of the backscattered signal, that is, shifting the amplitude of the backscattered signal.
  • Keying amplitude-shift keying, ASK
  • the on-off of the capacitor can be controlled based on the binary data stream to change the circuit resonant frequency and then change the operating frequency of the backscattered signal to achieve frequency-shift keying (FSK). )modulation.
  • FSK frequency-shift keying
  • the terminal device can perform information modulation on the incoming wave signal (i.e., the carrier signal) by means of load modulation, thereby realizing the backscattering communication process. Therefore, terminal equipment in backscatter communications generally has the following advantages.
  • the first advantage is that since the terminal equipment does not need to actively transmit signals, there is no need to construct complex radio frequency channels. For example, devices such as power amplifiers (PA) and RF filters may not be installed in the RF path to reduce the cost and size of the terminal.
  • PA power amplifiers
  • RF filters may not be installed in the RF path to reduce the cost and size of the terminal.
  • the terminal device can also have encoding functions.
  • the data transmitted by the encoding end (such as terminal equipment or electronic tags) can use different forms of codes to represent binary "1" and "0".
  • commonly used coding methods can include: reverse non-return to zero (NRZ) coding, Manchester coding, unipolar return to zero (Unipolar RZ) coding, differential biphase (DBP) coding , Miller (Miller) coding spread dynamic coding, etc.
  • NRZ reverse non-return to zero
  • DBP unipolar return to zero
  • DBP differential biphase
  • Miller (Miller) coding Miller (Miller) coding spread dynamic coding, etc.
  • the encoding process is to use different pulse signals to represent 0 and 1.
  • terminal equipment in zero-power communication also known as “zero-power terminal equipment” consumes very little of its own energy for communication, or may even consume no energy of its own. Therefore, in zero-power communication technology, terminal equipment can be divided into three categories based on its energy source and energy usage: passive zero-power terminals, semi-passive zero-power terminals and active zero-power terminals. terminal.
  • Passive zero-power terminals generally do not require internal batteries.
  • the terminal device When the terminal device is close to the network device, the terminal device is within the near field formed by the radiation of the network device antenna. At this time, the antenna of the terminal device can generate an induced current through electromagnetic induction. The induced current can supply energy to the terminal device to achieve reception. Demodulation of signals, and/or modulation and coding of signals to be transmitted.
  • the above-mentioned passive zero-power consumption terminal can be an electronic tag.
  • the network device can be a reader/writer of a (radio frequency identification, RFID) system, used to read the content in the electronic tag and/or Used to change the content in electronic tags.
  • RFID radio frequency identification
  • the semi-passive zero-power terminal itself does not install a conventional battery, but can use the energy collection module 121 to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can supply energy to the terminal device to implement demodulation of the received signal and/or modulation and coding of the signal to be transmitted.
  • an energy storage unit such as a capacitor
  • Active zero-power terminals can have built-in batteries.
  • the battery can power the terminal device to demodulate the received signal and/or modulate and encode the signal to be transmitted. But when the terminal device communicates using backscatter technology, the terminal device does not need to consume battery energy. Therefore, for this kind of terminal equipment, "zero power consumption" is mainly reflected in the scenario where the terminal equipment uses backscattering technology to communicate.
  • the above-mentioned active zero-power terminal can be an electronic tag
  • the network device can be an RFID reader/writer.
  • the built-in battery can supply power to the RFID chip in the terminal device to increase the number of RFID readers/writers and electronic tags. the reading and writing distance between them.
  • the built-in battery can supply power to the RFID chip in the terminal device to shorten the reading and writing delay of the electronic tag by the RFID reader and help improve the reliability of communication.
  • the zero-power terminal in the embodiment of the present application has features such as low complexity, support for environmental energy supply, backscattering, and new waveforms.
  • the naming of the zero-power terminal in the embodiment of this application does not limit the source and usage of its energy, as long as the energy required for its operation mainly comes from the external environment.
  • the terminal device may be a zero-power or low-power device.
  • a zero-power consumption terminal may also be called an ambient-powered terminal, an energy harvesting-based terminal, or the like.
  • Zero-power terminals will be introduced in some communication systems to reduce the power consumption and cost of the terminals.
  • zero-power devices can communicate based on backscatter communication technology.
  • a carrier wave (or signal) for backscatter communication is required.
  • the carrier used for backscatter communication can be a downlink signal in a cellular communication network, an uplink signal in a cellular communication network, or a specially introduced dedicated carrier signal (which can be performed by a third-party device). transmitted, carrier signal used for backscatter communications).
  • zero-power terminal devices can receive control information sent by corresponding devices (such as network devices or third-party devices that send dedicated carrier signals), and based on the control information, Downlink signal or dedicated carrier signal for backscatter communication.
  • devices such as network devices or third-party devices that send dedicated carrier signals
  • Downlink signal or dedicated carrier signal for backscatter communication.
  • not all uplink signals can be used for backscatter communication. For example, the signal strength of the uplink signal when it reaches the zero-power terminal device is too low, or the time domain resources of the uplink signal are too few.
  • the zero-power terminal device does not know which terminal device sent the uplink signal.
  • this application proposes a communication method and a communication device.
  • the first terminal device measures the first uplink signal sent by the second terminal device to obtain a first measurement result.
  • a second uplink signal that can be used for backscatter communication can be determined.
  • backscattering communication can be achieved based on the second uplink signal.
  • UE610, UE620 and UE630 can communicate with network devices (as shown in Figure 6, receive air interface signaling sent by network devices and send air interface data to network devices, etc.), BN610 and BN620 can be zero-based devices that support backscatter communication. Power-consuming terminal equipment, or active terminal equipment supporting backscatter communications.
  • UE610, UE620 and UE630 can send uplink signals to network devices.
  • the uplink signals can be physical uplink control channel (PUCCH), physical random access channel (physical random access channel, PRACH) , physical uplink shared channel (PUSCH), sounding reference signal (SRS), etc.
  • BN610 and BN620 can measure the uplink signals sent by other terminal devices (such as UE610, UE620 and UE630), filter out terminal devices that meet the preset conditions based on the measurement results, and determine to pair with the terminal device. Subsequent matching can be based on The uplink signal of the terminal device performs backscatter communication.
  • BN610 can measure the uplink signals of UE610 and UE620. Based on the measurement results, UE620 is determined to be the paired terminal device. Subsequent backscatter communication can be performed based on the uplink signals of UE620; BN2 can measure UE610, UE620 and The uplink signal of UE630 is measured, and based on the measurement results, UE610 is determined to be the paired terminal device. Subsequent backscattering communication can be performed based on the uplink signal of UE610.
  • the solutions in the embodiments of this application can also be applied to sidelinks.
  • the network device in the embodiment of the present application can be regarded as a terminal device in the side link
  • the terminal equipment (the first terminal device and the second terminal device) in the embodiment of the present application can be a terminal device in the side link.
  • Other terminal equipment can be used.
  • Figure 7 is a schematic flow chart of the communication method according to the embodiment of the present application.
  • the method 700 shown in Figure 7 may include steps S710 and S720, specifically as follows:
  • the first terminal device measures the first uplink signal and obtains the first measurement result.
  • the first terminal device may be a zero-power terminal device, or an active terminal device with backscatter communication capabilities.
  • the first uplink signal may be sent by the second terminal device.
  • the first uplink signal may be a periodic signal, aperiodic signal, semi-static signal or dynamic scheduling signal.
  • the first uplink signal may be PRACH, PUSCH, PUCCH, SRS, etc.
  • the network device may send the first information to the first terminal device.
  • the first information may include scheduling information of the first uplink signal, or may be control information or configuration information of the first uplink signal.
  • the first terminal device can measure the first uplink signal according to the first information to obtain the first measurement result.
  • the network device may also send scheduling information, control information or configuration information to the second terminal device.
  • the second terminal device may send the first uplink signal according to the scheduling information, control information or configuration information.
  • the scheduling information, control information or configuration information may be the same as or different from the first information.
  • the scheduling information, control information or configuration information may be sent at the same time as the first information, or not at the same time.
  • the first uplink signal may include multiple uplink signals.
  • the second terminal device may include multiple terminal devices, and the first uplink signal may include multiple uplink signals sent by the multiple terminal devices.
  • the first information may include scheduling information of multiple uplink signals (among the first uplink signals), and the first terminal device may measure multiple uplink signals sent by multiple terminal devices using the scheduling information of the multiple uplink signals. .
  • the first terminal device may send the measurement result to the network device.
  • the target terminal device ie, the terminal device paired with the first terminal device
  • the target terminal device may be determined by the network device.
  • the target terminal device may refer to a terminal device (among the second terminal device) whose uplink signal sent can be used for backscatter communication.
  • the first terminal device may send the first measurement result to the network device.
  • the first measurement result may include the signal strength of the first uplink signal.
  • the first terminal device may directly send the measured signal strength of the first uplink signal to the network device after measuring the first uplink signal.
  • the signal strength of the first uplink signal may include the reference signal received power (RSRP), the reference signal received quality (RSRQ) of the first uplink signal, and/or can represent the first uplink signal. Information about the signal strength of the signal.
  • the first terminal device may measure the first uplink signal within the first time window to obtain the first measurement result.
  • the first time window can be preset or configured by the network device.
  • the first terminal device may measure one or more uplink signals within the first time window.
  • the first time window may be periodic.
  • the period of the first time window may be T, and T is a positive number.
  • the length of the time window (such as the first time window) of each measurement can be the same, as shown in Figure 8.
  • the length of the first time window may be preset or configured by the network device.
  • the length of the time window for each measurement can also be different.
  • the length of the first time window may be dynamically indicated by the network device.
  • the first terminal device may send a first measurement result whose signal strength meets the first preset condition to the network device.
  • the first preset condition may include at least one of the following: the signal strength of all uplink signals among the plurality of uplink signals whose signal strength is greater than the first threshold; the signal strength of the plurality of uplink signals greater than the first threshold; The signal strength of some of the uplink signals and the signal strength of the N uplink signals with the strongest signal strength among the multiple uplink signals, where N is a positive integer.
  • some of the uplink signals whose signal strengths are greater than the first threshold may refer to: N uplink signals among the multiple uplink signals whose signal strengths are greater than the first threshold.
  • the first measurement result may also include the time-frequency resource associated with the uplink signal.
  • the time-frequency resource associated with the first uplink signal may refer to the time-frequency resource where the uplink signal is located.
  • the first terminal device may determine the time and frequency of the uplink signal corresponding to the first measurement result (for example, the measured signal strength of the first uplink signal) (or corresponding to the first measurement result that satisfies the first preset condition). resources, sending the time-frequency resources where the uplink signal is located to the network device.
  • the first measurement result may also include time domain resources and/or frequency domain resources of the uplink signal.
  • the first terminal device may determine the time domain in which the uplink signal corresponding to the first measurement result (for example, the measured signal strength of the first uplink signal) (or corresponding to the first measurement result that meets the first preset condition) is located. resources and/or frequency domain resources, and sends the time domain resources and/or frequency domain resources where the uplink signal is located to the network device.
  • the first measurement result may also include the identity of the terminal device associated with the uplink signal.
  • the identity of the terminal device associated with the first uplink signal may refer to the identity of the terminal device that sends the uplink signal.
  • the first terminal device may determine the terminal device associated with the uplink signal corresponding to the first measurement result (for example, the measured signal strength of the first uplink signal) (or corresponding to the first measurement result that satisfies the first preset condition).
  • the identifier of the terminal device associated with the uplink signal is sent to the network device.
  • the index of the scheduling information associated with the first uplink signal may refer to the index of the scheduling information used to schedule the uplink signal.
  • the network device may send a scheduling information list (list), and the scheduling information list may include one or more scheduling information.
  • each scheduling information may correspond to an index in the scheduling information list.
  • this scheduling information list may be sent to one or more terminal devices at the same time.
  • the first terminal device may determine the scheduling information associated with the uplink signal corresponding to the first measurement result (for example, the measured signal strength of the first uplink signal) (or corresponding to the first measurement result that satisfies the first preset condition).
  • the index of the scheduling information associated with the uplink signal is sent to the network device.
  • the first terminal device may report the measurement result to the network device after the end of the first time window (each time), or, The measurement results can also be reported to the network device after each measurement within the first time window.
  • the first measurement result may include at least one of the following: signal strength of the first uplink signal, time-frequency resources associated with the first uplink signal, time domain resources associated with the first uplink signal, The frequency domain resource associated with the first uplink signal, the identity of the terminal device associated with the first uplink signal, and the index of the scheduling information associated with the first uplink signal.
  • the first measurement result may include various information that enables the network device to determine the terminal device corresponding to the first measurement result, so that the network device determines the measurement that satisfies the condition.
  • Which terminal device (or devices) sent the uplink signal corresponding to the result For example, the network device may determine the first time-frequency resource, the associated time domain resource, the associated frequency domain resource, the identifier of the associated terminal device, and/or the associated scheduling information included in the first measurement result.
  • the terminal equipment corresponding to the measurement results may be determined.
  • the network device may determine the target terminal device according to the first measurement result. For example, the network device may determine a terminal device whose uplink signal sent by multiple terminal devices (including the second terminal device) satisfies a preset condition (for example, the first preset condition) as the target terminal device.
  • a preset condition for example, the first preset condition
  • the network device may send third information to the first terminal device.
  • the third information may be used to indicate the target terminal device in the second terminal device.
  • the first terminal device may determine the target terminal device (ie, the terminal device paired with the first terminal device) according to the measurement result.
  • the first terminal device may determine the target terminal device according to the first measurement result.
  • the first measurement result may include frequency domain resources of the uplink signal.
  • the first terminal device may determine the terminal device associated with the uplink signal whose frequency domain resource in the first uplink signal is within the bandwidth that the first terminal device can detect as the target terminal device.
  • the first terminal device may detect uplink signals within a bandwidth range that it can detect, and determine the terminal device associated with the uplink signal in the first uplink signal it detects as the target terminal device.
  • the first measurement result may also include the signal strength of the first uplink signal.
  • the first terminal device may determine the target terminal device according to the signal strength of the first uplink signal.
  • the first measurement result may determine the terminal device associated with the uplink signal whose signal strength is greater than the second threshold in the first uplink signal as the target terminal device.
  • the first measurement result may also include time domain resources of the uplink signal.
  • the first terminal device may determine the terminal device associated with the uplink signal in the first uplink signal that has sufficient time domain resources for backscattering communication as the target terminal device. For example, the first terminal device may determine the time domain resource where the first uplink signal is located, and determine the terminal device associated with the uplink signal whose time domain resource is greater than that required for backscatter communication as the target terminal device.
  • the first measurement result may include at least one of the following: signal strength of the first uplink signal, time domain resources associated with the first uplink signal, and frequency domain resources associated with the first uplink signal.
  • the first terminal device may determine the terminal device corresponding to the first measurement result that satisfies the second preset condition as the target terminal device.
  • the second preset condition may include at least one of the following: the signal strength of the uplink signal whose signal strength is greater than the second threshold among the plurality of uplink signals, the frequency domain resource of the plurality of uplink signals within the bandwidth that the first terminal device can detect.
  • the frequency domain resources of the uplink signal and the time domain resources of the multiple uplink signals are greater than the time domain resources of the uplink signal required for backscatter communication.
  • the first measurement result may include various information that enables the first terminal device to determine (or filter out) the target terminal device.
  • the first terminal device may also determine the terminal device corresponding to the first measurement result whose signal strength satisfies the first preset condition as the target terminal device.
  • the first terminal device may also send the first measurement result to the network device.
  • the first terminal device may also send the (determined) target terminal device to the network device.
  • the network device may only send the scheduling information of the target terminal device to the first terminal device.
  • the first terminal device sends a backscatter signal to the network device based on the second uplink signal according to the first measurement result.
  • the second uplink signal and the first uplink signal may be the same signal; the second uplink signal and the first uplink signal may not be the same signal but are sent by the same device.
  • the second uplink signal may be the second terminal device. Sent; the second uplink signal and the first uplink signal may not be the same signal and may not be sent by the same device.
  • the second uplink signal may be sent by the second terminal device to the network device; or may be sent by some terminal devices in the second terminal device to the network device.
  • the second uplink signal may be sent by the target terminal device in the second terminal device to the network device, and the target terminal device may refer to a terminal device (in the second terminal device) that sends an uplink signal that can be used for backscatter communication. .
  • the network device may send the second information to the first terminal device.
  • the second information may include scheduling information of the second uplink signal, or may be control information or configuration information of the second uplink signal.
  • the second information may include scheduling information of the second terminal device, or may only include scheduling information of the target terminal device.
  • the second information and the third information may be the same information.
  • the second information may only indicate the scheduling information of the target terminal device, in which case it is equivalent to the second information implicitly indicating the target terminal device; or the second information may also explicitly indicate the target terminal device.
  • the second information may also include scheduling information for backscatter communication by the first terminal device.
  • the scheduling information may indicate the transport block size (TBS), code rate, time-frequency resources, and/or coding algorithm used by the first terminal device to perform backscatter communication.
  • TBS transport block size
  • code rate code rate
  • time-frequency resources time-frequency resources
  • coding algorithm used by the first terminal device to perform backscatter communication.
  • the network device may also send sixth information to the first terminal device, and the sixth information may include scheduling information for backscatter communication by the first terminal device.
  • the network device can send the second information and the sixth information to the first terminal device at the same time, or the network device can also send the second information and the sixth information to the first terminal device separately (that is, not at the same time). This is not limited in the application examples.
  • the scheduling information for backscatter communication performed by the first terminal device may also be preconfigured scheduling-free information or semi-static information. In this case, the network device no longer needs to send the scheduling information for backscatter communication to the first terminal device.
  • the network device can solve for the backscattered signal.
  • the network device may also feed back the reception status and/or solution results of the backscattered signal to the first terminal device.
  • the network device may send the fourth information to the first terminal device.
  • the fourth information may indicate whether the network device successfully receives the backscattered signal sent by the first terminal device based on the second uplink signal.
  • the fourth information may indicate positive acknowledgment (ACK) information to indicate that the network device successfully receives the backscattered signal; in the case of failed solution, the fourth information may indicate a negative acknowledgment (negative). acknowledgment (NACK) message to indicate that the network device did not successfully receive the backscattered signal.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the first terminal device may continue to send backscatter signals to the network device.
  • the first terminal device may not measure the uplink signal and directly send the backscattered signal based on the uplink signal sent by the target terminal device.
  • the network device may send the fifth information to the first terminal device.
  • the fifth information may include scheduling information of the third uplink signal.
  • the third uplink signal may be sent by the target terminal device in the second terminal device.
  • the network device may send the scheduling information of the backscatter communication to the first terminal device through the fifth information; or the network device may send the backscattering communication scheduling information to the first terminal device through other information (for example, the seventh information).
  • the other information and the fifth information may be sent at the same time or not at the same time; or the scheduling information of the first terminal device for backscattering communication may also be preconfigured scheduling-free information or semi-static information.
  • the first terminal device may send the backscatter signal to the network device based on the third uplink signal according to the fifth information.
  • the first terminal device may not measure the uplink signal within a preset time period or the number of times (the backscatter signal is sent), and directly send the backscatter signal based on the uplink signal sent by the target terminal device.
  • the preset time period or times mentioned here may be predetermined or configured by the network device.
  • the preset time period or number of times may be related to the mobility of the terminal device. For example, when the mobility of the first terminal device is high, the preset time period or the number of times may be smaller; when the location of the first terminal device is fixed or the mobility is low, the preset time period or the number of times may be larger. .
  • the first terminal device may continue to measure the uplink signal and send the backscattered signal based on the measurement result.
  • the specific process of sending backscattered signals based on the measurement results can be referred to the above embodiments and will not be described again here.
  • the first terminal device may send a signal to the network based on the third uplink signal according to the fifth information.
  • the device sends a backscatter signal; if there is no terminal device corresponding to the second measurement result that satisfies the third preset condition in the target terminal device, the first terminal device may not send the backscatter signal.
  • the first terminal device can measure the third uplink signal sent by the target terminal device according to the fifth information, obtain the second measurement result, and determine the second measurement result in the target terminal device that satisfies the third preset condition based on the second measurement result. Corresponding terminal equipment. Therefore, backscatter communication can be performed based on the uplink signal sent by the terminal device corresponding to the second measurement result that satisfies the third preset condition.
  • the third preset condition may include at least one of the following: the signal strength of the uplink signal in the third uplink signal whose signal strength is greater than the third threshold, the frequency domain resource in the third uplink signal within the bandwidth that the first terminal device can detect.
  • the frequency domain resources of the uplink signal and the time domain resources of the third uplink signal are greater than the time domain resources of the uplink signal required for backscatter communication.
  • the network device may also solve the backscattered signal, and may also feed back the reception status and/or the solution result of the backscattered signal to the first terminal device.
  • the network device may also solve the backscattered signal, and may also feed back the reception status and/or the solution result of the backscattered signal to the first terminal device.
  • the network device can notify the first terminal device so that the first terminal device can re-determine the paired terminal device.
  • the method of re-determining the paired terminal device please refer to the above embodiments and will not be described again here.
  • the first terminal device measures the first uplink signal sent by the second terminal device, obtains the first measurement result, and determines the second uplink signal that can be used for backscatter communication based on the first measurement result. , thereby enabling backscatter communication based on the second uplink signal.
  • terminal equipment capable of backscatter communication usually has the characteristics of low power consumption and low cost.
  • implementation of backscatter communication based on uplink signals is beneficial to the use of such terminal equipment in communication systems. further application, thus helping to reduce the cost and power consumption of terminal equipment.
  • the zero-power consumption terminal device can report the device type to the network device, or report its ability to support backscatter communication. After receiving the reported information, the network device can recognize that the terminal device can support backscatter communication, and thus can schedule the terminal device to perform backscatter communication.
  • Figure 9 is a schematic flow chart of the communication method according to the embodiment of the present application.
  • the method 900 shown in Figure 9 may include steps S910 to S990, specifically as follows:
  • S910 The network device sends scheduling information to other terminal devices.
  • the uplink signal can be a periodic signal, aperiodic signal, semi-static signal or dynamic scheduling signal, etc.
  • the uplink signal may be PRACH, PUSCH, PUCCH, SRS, etc.
  • the network device can also send control information or configuration information to other terminal devices.
  • other terminal devices can send uplink signals according to the control information or configuration information.
  • S920 The network device sends scheduling information of other terminal devices to the zero-power terminal device.
  • the zero-power terminal device can determine the time-frequency resources used by other terminal devices to send uplink signals based on the scheduling information.
  • the scheduling information may be sent at the same time as the scheduling information sent by the network device to other terminal devices in S910, or may not be sent at the same time as the scheduling information sent by the network device to other terminal devices in S910.
  • S910 can be the normal scheduling of other terminal devices by the network device.
  • S920 can be the network device forwarding the scheduling information of the uplink signal in S910 to the zero-power terminal device; or S910 can also be the network device.
  • the device In order to schedule zero-power terminal equipment for backscatter communication, the device deliberately schedules other terminal equipment to send specific uplink signals (such as SRS).
  • S930 Other terminal devices send uplink signals based on scheduling information.
  • a zero-power terminal device measures uplink signals sent by other terminal devices.
  • the zero-power terminal device can determine the time-frequency resources used by other terminal devices to send uplink signals based on the scheduling information received in S920, and measure the uplink signals sent by other terminal devices on the corresponding time-frequency resources.
  • the scheduling information received by the zero-power consumption terminal device in S920 may also include scheduling information corresponding to multiple terminal devices.
  • a zero-power terminal device can measure multiple uplink signals sent by multiple terminal devices.
  • Zero-power terminal devices can measure uplink signals sent by other terminal devices within the time window shown in Figure 8.
  • the zero-power terminal device reports the measurement results to the network device.
  • the measurement results may include at least one of the following: (received signal strength of the uplink signal sent by other terminal equipment), time-frequency resources associated with the uplink signal, time domain resources associated with the uplink signal, frequency domain resources associated with the uplink signal, uplink signal.
  • the identifier of the associated terminal device and the index of the scheduling information associated with the uplink signal may include at least one of the following: (received signal strength of the uplink signal sent by other terminal equipment), time-frequency resources associated with the uplink signal, time domain resources associated with the uplink signal, frequency domain resources associated with the uplink signal, uplink signal.
  • the reported measurement results may include at least one of the following: the signal strength of the received uplink signals sent by other terminal devices, the signal strength of the uplink signals that meet the preset conditions among the received uplink signals sent by other terminal devices, and ( The time-frequency resources associated with the received uplink signals sent by other terminal devices, the identifier of the terminal device, and/or the index of the scheduling information.
  • the zero-power terminal device can also send the measurement result that the signal strength meets the preset conditions to the network device.
  • the network device determines other terminals paired with the zero-power terminal device based on the measurement results.
  • the N terminal devices with a threshold value and the strongest signal strength are paired terminal devices.
  • the network device can determine the terminal device (corresponding to the time-frequency resource) through time-frequency resources.
  • the network device can save pairing information, and the pairing information can represent the pairing relationship between the zero-power terminal device and other terminal devices.
  • the pairing information may be used to indicate other terminal devices paired with the zero-power consumption terminal device.
  • the pairing information may include at least one of the following: the user identification of the other terminal device, the time-frequency resource for the other terminal device to send the uplink signal, and the index of the scheduling information for the other terminal device to send the uplink signal.
  • the zero-power consumption terminal device can also determine the paired terminal device and send the pairing information to the network device.
  • S970 The network device sends scheduling information to the zero-power terminal device.
  • the scheduling information may include scheduling information for backscatter communications and/or scheduling information for paired terminal devices.
  • the scheduling information of the paired terminal device can be used for the paired terminal device to send uplink signals
  • the scheduling information of backscatter communication can be used for the zero-power terminal device to send backscatter signals.
  • the network device may send the scheduling information of the paired terminal device to the zero-power consumption terminal device.
  • the network device may send the scheduling information of the paired terminal device to the zero-power terminal device when the paired terminal device sends an uplink signal.
  • the network device may send the scheduling information of the paired terminal device to the paired terminal device and the zero-power terminal device at the same time; the network device may not send the scheduling information of the paired terminal device to the paired terminal device and the zero-power terminal device at the same time. information.
  • the network device may send scheduling information for backscatter communication to the zero-power consumption terminal device.
  • the network device can simultaneously send the scheduling information of backscatter communication and the scheduling information of the paired terminal device to the zero-power terminal device (at this time, the scheduling information of backscatter communication and the scheduling information of the paired terminal device can be carried in the same information); or, the network device can send the scheduling information of the backscatter communication and the scheduling information of the paired terminal device to the zero-power terminal device respectively (at this time, the scheduling information of the backscatter communication and the scheduling information of the paired terminal device can be respectively carried in different information); alternatively, the scheduling information of backscatter communication can also be preconfigured scheduling-free information or semi-static information.
  • the zero-power terminal device can perform backscatter communication based on the corresponding uplink signal based on the scheduling information sent by the network device in S970.
  • the network device solves the backscattered signal.
  • Network equipment can solve for backscattered signals.
  • network devices can send ACK messages to zero-power end devices.
  • the network device can send NACK information to the zero-power terminal device; or it can repeat the process from S960 to S990 in Figure 9; or it can also repeat the process in Figure 9 while the network device is sending the NACK information.
  • the process of S960 to S990 can be performed correctly.
  • S960 to S990 need to be repeatedly executed when the solution fails, S960 to S990 may not be executed, but S910 to S990 may be directly repeatedly executed; or, S960 to S990 may be repeatedly executed first, When the number of consecutive solution failures reaches the preset number or the solution fails to be successfully solved within the preset time period, S910 to S990 are executed again.
  • Figure 10 is a schematic flow chart of the communication method according to the embodiment of the present application.
  • the method 1000 shown in Figure 10 may include steps S1010 to S1090, specifically as follows:
  • S1010 The network device sends scheduling information to other terminal devices.
  • the uplink signal can be a periodic signal, aperiodic signal, semi-static signal or dynamic scheduling signal, etc.
  • the uplink signal may be PRACH, PUSCH, PUCCH, SRS, etc.
  • S1020 The network device sends scheduling information of other terminal devices to the zero-power terminal device.
  • the zero-power terminal device can determine the time-frequency resources used by other terminal devices to send uplink signals based on the scheduling information.
  • the scheduling information may be sent at the same time as the scheduling information sent by the network device to other terminal devices in S1010, or may not be sent at the same time as the scheduling information sent by the network device to other terminal devices in S1010.
  • S1010 can be the normal scheduling of other terminal devices by the network device.
  • S1020 can be the network device forwarding the scheduling information of the uplink signal in S1010 to the zero-power terminal device; or S1010 can also be the network device.
  • the device In order to schedule zero-power terminal equipment for backscatter communication, the device deliberately schedules other terminal equipment to send specific uplink signals (such as SRS).
  • the network device may send scheduling information for backscatter communication to the zero-power consumption terminal device.
  • the network device can simultaneously send the scheduling information of backscatter communication and the scheduling information of other terminal devices to the zero-power terminal device (at this time, the scheduling information of backscatter communication and the scheduling information of other terminal devices can be carried in the same information); or, the network device can send the scheduling information of backscatter communication and the scheduling information of other terminal devices to the zero-power terminal device respectively (at this time, the scheduling information of backscatter communication and the scheduling information of other terminal devices can be respectively carried in different information); alternatively, the scheduling information of backscatter communication can also be preconfigured scheduling-free information or semi-static information.
  • S1030 Other terminal devices send uplink signals based on scheduling information.
  • the zero-power terminal device measures the uplink signals sent by other terminal devices.
  • the zero-power terminal device can determine the time-frequency resources used by other terminal devices to send uplink signals based on the scheduling information received in S1020, and measure the uplink signals sent by other terminal devices on the corresponding time-frequency resources.
  • the scheduling information received by the zero-power consumption terminal device in S1020 may also include scheduling information corresponding to multiple terminal devices.
  • a zero-power terminal device can measure multiple uplink signals sent by multiple terminal devices and obtain measurement results.
  • the measurement results may include at least one of the following: (signal strength of received uplink signals sent by other terminal devices), time domain resources associated with the uplink signals, and frequency domain resources associated with the uplink signals.
  • Zero-power terminal devices can measure uplink signals sent by other terminal devices within the time window shown in Figure 8.
  • Zero-power terminal equipment can report measurement results to network equipment.
  • the measurement results may include measurement results corresponding to all of the other terminal devices, or the measurement results may include measurement results corresponding to some of the other terminal devices.
  • the zero-power terminal device when a zero-power terminal device detects that the signal strength of an uplink signal is greater than the first threshold, but the time domain resources corresponding to the uplink signal are insufficient for backscatter communication, the zero-power terminal device can report the measurement result. to network equipment. Accordingly, after receiving the measurement results, the network device can determine whether it is necessary to adjust the time-frequency resources of the corresponding terminal device based on information such as subsequent backscattering signal solutions, so that the terminal device can serve as a paired terminal device.
  • the zero-power consumption terminal device determines the paired terminal device.
  • other terminal devices may include multiple terminal devices, and the zero-power terminal device may determine the terminal device corresponding to the measurement result that meets the preset conditions as the paired terminal device.
  • the preset condition may include at least one of the following: (a signal strength of an uplink signal whose signal strength is greater than the second threshold among multiple uplink signals sent by multiple terminal devices), the frequency domain resource in the multiple uplink signals is in a zero-power consumption terminal The frequency domain resources of the uplink signals within the bandwidth that the device can detect, and the time domain resources of the multiple uplink signals are greater than the time domain resources of the uplink signals required for backscatter communication.
  • the paired terminal device may not include the terminal device mentioned in S1040 where the signal strength of the transmitted uplink signal is greater than the first threshold, but the time domain resources corresponding to the uplink signal are insufficient for backscatter communication.
  • the zero-power terminal device can perform backscatter communication based on the uplink signal sent by the paired terminal device.
  • the network device solves the backscattered signal.
  • Network equipment can solve for backscattered signals.
  • network devices can send ACK messages to zero-power end devices.
  • the zero-power terminal equipment can stop the detection and backscatter communication process of the uplink signals sent by other terminal equipment; or the network equipment can stop sending the corresponding configuration information of the uplink signals to the new terminal equipment.
  • the network device can send NACK information to the zero-power terminal device; or it can repeat the process from S1010 to S1060 in Figure 10; or it can also repeat Figure 10 while the network device is sending the NACK information. The process from S1010 to S1060.
  • the process from S1010 to S1060 can be repeated.
  • the terminal device corresponding to the uplink signal on one or more time-frequency resources where the backscattered signal is located can be used as a paired terminal device of the zero-power terminal device.
  • the pairing information is saved, and based on these paired terminal devices, scheduling in S1010 and S1020 is performed during subsequent backscatter communication.
  • the pairing information is not empty, or the pairing information is valid, the embodiment in Figure 11 below can be referred to.
  • Figure 11 is a schematic flow chart of the communication method according to the embodiment of the present application.
  • the method 1100 shown in Figure 11 may include steps S1110 to S1170, specifically as follows:
  • S1110 The network device sends scheduling information to the paired terminal device.
  • the scheduling information can be used to schedule the paired terminal device to send uplink signals.
  • the paired terminal device may be part or all of one or more other terminal devices.
  • the uplink signal can be a periodic signal, aperiodic signal, semi-static signal or dynamic scheduling signal, etc.
  • the uplink signal may be PRACH, PUSCH, PUCCH, SRS, etc.
  • the network device may also send scheduling information to non-paired terminal devices among other terminal devices.
  • the network device sends the scheduling information of the paired terminal device to the zero-power terminal device.
  • the network device may send the scheduling information of the paired terminal device to the paired terminal device and the zero-power terminal device at the same time; the network device may not send the scheduling information of the paired terminal device to the paired terminal device and the zero-power terminal device at the same time.
  • the network device may send scheduling information for backscatter communication to the zero-power consumption terminal device.
  • the network device can simultaneously send the scheduling information of backscatter communication and the scheduling information of the paired terminal device to the zero-power terminal device (at this time, the scheduling information of backscatter communication and the scheduling information of the paired terminal device can be carried in the same information); or, the network device can send the scheduling information of the backscatter communication and the scheduling information of the paired terminal device to the zero-power terminal device respectively (at this time, the scheduling information of the backscatter communication and the scheduling information of the paired terminal device can be respectively carried in different information); alternatively, the scheduling information of backscatter communication can also be preconfigured scheduling-free information or semi-static information.
  • S1130 The paired terminal device sends an uplink signal based on the scheduling information.
  • the zero-power terminal device can directly perform backscattering based on the scheduling information sent by the network device in S1120 and based on the uplink information sent by the paired terminal device. communication.
  • the zero-power terminal device can also measure the uplink signal sent by the paired terminal device.
  • the method 1100 may also include steps S1140 and S1150, as follows:
  • the zero-power terminal device measures the uplink signal sent by the paired terminal device.
  • the zero-power terminal device can determine the time-frequency resource for the paired terminal device to send the uplink signal based on the scheduling information received in S1120, and measure the uplink signal sent by the paired terminal device on the corresponding time-frequency resource to obtain the measurement result.
  • the scheduling information received by the zero-power consumption terminal device in S1020 may also include scheduling information corresponding to the multiple terminal devices.
  • a zero-power terminal device can measure multiple uplink signals sent by multiple terminal devices.
  • the zero-power terminal device can measure the uplink signal sent by the paired terminal device within the time window shown in Figure 8.
  • Zero-power terminal equipment can report measurement results to network equipment. For example, when the zero-power terminal device detects that the signal strength of the uplink signal is greater than the third threshold, but the time domain resources corresponding to the uplink signal are insufficient for backscatter communication, the zero-power terminal device can use the measurement result Report to the network device. Accordingly, after receiving the measurement result, the network device can determine the paired terminal device based on the measurement result.
  • the zero-power terminal device determines the paired terminal device that meets the preset conditions.
  • the zero-power consumption terminal device can determine the terminal device corresponding to the measurement result that satisfies the preset condition among the paired terminal devices as the paired terminal device that satisfies the preset condition.
  • the preset conditions may include at least one of the following: the signal strength of the uplink signal whose signal strength is greater than the third threshold in the uplink signal sent by the paired terminal device, the bandwidth of the frequency domain resource in the uplink signal that can be detected by the zero-power terminal device.
  • the frequency domain resources of the uplink signal and the time domain resources of the uplink signal are greater than the time domain resources of the uplink signal required for backscatter communication.
  • the zero-power consumption terminal device can perform backscattering communication based on the uplink information sent by the terminal device corresponding to the above measurement result in the paired terminal device.
  • the network device receives the backscattered signal.
  • the process from S1010 to S1060 can be repeated.
  • the backscattered signal can be solved for.
  • Network equipment can solve for backscattered signals.
  • network devices can send ACK messages to zero-power end devices. After receiving the ACK information, the zero-power terminal device can stop the detection and backscatter communication process of the uplink signal sent by the paired terminal device; or the network device can stop sending the corresponding configuration information of the uplink signal to the new terminal device.
  • the network device can send NACK information to the zero-power terminal device; or it can repeat the process from S1110 to S1160 in Figure 11; or it can also repeat Figure 11 while the network device is sending the NACK information. The process from S1110 to S1160.
  • the expiration time of the pairing information can also be preset, and when the pairing information expires, the processes from S1110 to S1160 are re-executed.
  • the expiration time may be related to the mobility of the zero-power end device or the paired end device. For example, when the mobility of the zero-power terminal device is high, the failure time may be smaller; when the location of the zero-power terminal device is fixed or the mobility is low, the failure time may be larger.
  • the embodiments in Figure 9, Figure 10 and Figure 11 can be used in combination.
  • the network device schedules a zero-power terminal device for backscatter communication for the first time, it can be processed based on the embodiment in Figure 10; if the backscatter communication is not successful for the first time, it can be processed based on the embodiment in Figure 9 Processing is performed; when backscattering communication is not performed for the first time, the pairing information is not empty, or the pairing information is valid, processing can be performed based on the embodiment in Figure 11.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1200 in Figure 12 includes a measurement unit 1210 and a sending unit 1220, specifically as follows:
  • the measurement unit 1210 is used to measure the first uplink signal and obtain the first measurement result
  • the sending unit 1220 is configured to send a backscatter signal to the network device based on the second uplink signal according to the first measurement result;
  • the first uplink signal is sent by the second terminal device.
  • the apparatus 1200 further includes a receiving unit 1230, configured to receive the first information sent by the network device, where the first information includes the scheduling information of the first uplink signal; the measurement unit 1210 specifically Used for: measuring the first uplink signal according to the first information to obtain the first measurement result.
  • a receiving unit 1230 configured to receive the first information sent by the network device, where the first information includes the scheduling information of the first uplink signal; the measurement unit 1210 specifically Used for: measuring the first uplink signal according to the first information to obtain the first measurement result.
  • the first uplink signal is a periodic signal, aperiodic signal, semi-static signal or dynamic scheduling signal.
  • the measurement unit 1210 is specifically configured to measure the first uplink signal within a preset time window to obtain the first measurement result.
  • the apparatus 1200 further includes a receiving unit 1230, configured to receive second information sent by the network device, where the second information includes scheduling information of the second uplink signal.
  • a receiving unit 1230 configured to receive second information sent by the network device, where the second information includes scheduling information of the second uplink signal.
  • the sending unit 1220 is further configured to: send the first measurement result to the network device, where the first measurement result includes at least one of the following: signal strength of the first uplink signal, The time-frequency resources associated with the first uplink signal, the time domain resources associated with the first uplink signal, the frequency domain resources associated with the first uplink signal, the identification of the terminal equipment associated with the first uplink signal, and The index of the scheduling information associated with the first uplink signal.
  • the second terminal device includes multiple terminal devices, and the first uplink signal includes multiple uplink signals sent by the multiple terminal devices; wherein the sending unit is specifically configured to: send a signal to the network
  • the device sends the first measurement result whose signal strength satisfies a first preset condition, and the first preset condition includes at least one of the following: all uplink signals whose signal strengths are greater than a first threshold among the plurality of uplink signals.
  • Strength the signal strength of the part of the uplink signals whose signal strength is greater than the first threshold among the plurality of uplink signals, and the signal strength of the N uplink signals with the strongest signal strength among the plurality of uplink signals, where N is a positive integer.
  • the second terminal device includes multiple terminal devices, and the second uplink signal is sent by a target terminal device in the second terminal device.
  • the apparatus 1200 further includes a receiving unit 1230, configured to: Receive third information sent by the network device, where the third information is used to indicate the target terminal device.
  • the second terminal device includes multiple terminal devices, the second uplink signal is sent by a target terminal device among the multiple terminal devices, and the first measurement result includes at least one of the following: The signal strength of the first uplink signal, the time domain resources associated with the first uplink signal, and the frequency domain resources associated with the first uplink signal; wherein, the device further includes a determining unit 1240, configured to: determine the Target terminal device; the sending unit 1220 is further configured to: send a backscatter signal to the network device based on the second uplink signal.
  • the first uplink signal includes multiple uplink signals sent by the plurality of terminal devices; wherein the determining unit 1240 is specifically configured to: correspond to the first measurement result that satisfies the second preset condition.
  • the terminal equipment is determined as the target terminal equipment, and the second preset condition includes at least one of the following: the signal strength of the uplink signal whose signal strength is greater than the second threshold among the plurality of uplink signals, the signal strength of the plurality of uplink signals.
  • the frequency domain resource in the signal is the frequency domain resource of the uplink signal within the bandwidth that the device can detect, and the time domain resource in the plurality of uplink signals is greater than the time domain resource of the uplink signal required for backscatter communication.
  • the apparatus 1200 further includes a receiving unit 1230, configured to receive fourth information sent by the network device, where the fourth information is used to indicate whether the network device successfully receives the information of the apparatus based on the first The backscattered signal sent by the second uplink signal.
  • a receiving unit 1230 configured to receive fourth information sent by the network device, where the fourth information is used to indicate whether the network device successfully receives the information of the apparatus based on the first The backscattered signal sent by the second uplink signal.
  • the apparatus 1200 further includes a receiving unit 1230, configured to receive fifth information sent by the network device, where the fifth information includes scheduling information of a third uplink signal, where the third uplink signal is Sent by the target terminal device in the second terminal device; the sending unit is further configured to: according to the fifth information, send a backscatter signal to the network device based on the third uplink signal.
  • a receiving unit 1230 configured to receive fifth information sent by the network device, where the fifth information includes scheduling information of a third uplink signal, where the third uplink signal is Sent by the target terminal device in the second terminal device; the sending unit is further configured to: according to the fifth information, send a backscatter signal to the network device based on the third uplink signal.
  • the third uplink signal is sent by the terminal device corresponding to the second measurement result that satisfies the third preset condition in the target terminal device, and the measurement unit 1210 is further configured to: according to the fifth information Measure the third uplink signal sent by the target terminal equipment to obtain the second measurement result; the device 1200 also includes a determining unit 1240 for: determining the target terminal equipment that satisfies the third preset condition.
  • the third preset condition includes at least one of the following: the signal strength of the uplink signal whose signal strength is greater than the third threshold in the third uplink signal, the frequency domain of the third uplink signal The frequency domain resources of the uplink signal within the bandwidth that the device can detect, and the time domain resources of the third uplink signal are greater than the time domain resources of the uplink signal required for backscatter communication.
  • the sending unit 1220 is specifically configured to: if there is a terminal device corresponding to the second measurement result that satisfies the third preset condition in the target terminal device, send the The uplink signal sent by the terminal device corresponding to the second measurement result of the condition sends a backscatter signal to the network device; if there is no second measurement that satisfies the third preset condition in the target terminal device The terminal device corresponding to the result does not send backscattered signals.
  • the device 1200 is a zero-power consumption terminal device.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1300 in Figure 13 includes a receiving unit 1310, specifically as follows:
  • the receiving unit 1310 is configured to: receive a backscattered signal sent by the first terminal device based on the second uplink signal, where the backscattered signal is sent by the first terminal device based on a first measurement result. The result is obtained by measuring the first uplink signal sent by the second terminal device by the first terminal device.
  • the apparatus 1300 further includes a sending unit 1320, configured to send first information to the first terminal device, where the first information includes scheduling information of the first uplink signal.
  • a sending unit 1320 configured to send first information to the first terminal device, where the first information includes scheduling information of the first uplink signal.
  • the first uplink signal is a periodic signal, aperiodic signal, semi-static signal or dynamic scheduling signal.
  • the apparatus 1300 further includes a sending unit 1320, configured to send second information to the first terminal device, where the second information includes scheduling information of the second uplink signal.
  • a sending unit 1320 configured to send second information to the first terminal device, where the second information includes scheduling information of the second uplink signal.
  • the receiving unit 1310 is further configured to: receive the first measurement result sent by the first terminal device, wherein the first measurement result includes at least one of the following: Signal strength, time-frequency resources associated with the first uplink signal, time domain resources associated with the first uplink signal, frequency domain resources associated with the first uplink signal, terminal equipment associated with the first uplink signal The identifier, and the index of the scheduling information associated with the first uplink signal.
  • the second terminal device includes multiple terminal devices, and the first uplink signal includes multiple uplink signals sent by the multiple terminal devices; wherein the receiving unit 1310 is specifically configured to: receive the The first measurement result that the signal strength sent by the first terminal device satisfies a first preset condition, and the first preset condition includes at least one of the following: all of the plurality of uplink signals whose signal strengths are greater than the first threshold.
  • the second terminal device includes multiple terminal devices, and the second uplink signal is sent by a target terminal device in the second terminal device; wherein the device further includes a determining unit 1330 and a sending unit. 1320.
  • the determining unit 1330 is configured to determine the target terminal device according to the first measurement result;
  • the sending unit 1320 is configured to send third information to the first terminal device, where the third information is to indicate the target terminal device.
  • the second terminal device includes multiple terminal devices, the second uplink signal is sent by a target terminal device among the multiple terminal devices, and the target terminal device is the first terminal device according to Determined by the first measurement result, the first measurement result includes at least one of the following: the signal strength of the first uplink signal, the time domain resource associated with the first uplink signal, and the association of the first uplink signal. frequency domain resources.
  • the first uplink signal includes a plurality of uplink signals sent by the plurality of terminal devices
  • the target terminal device is a terminal device corresponding to the first measurement result that meets the second preset condition
  • the The second preset condition includes at least one of the following: the signal strength of the uplink signal whose signal strength is greater than the second threshold among the plurality of uplink signals, the frequency domain resource of the plurality of uplink signals that can be detected by the first terminal device.
  • the frequency domain resources of the uplink signals within the bandwidth and the time domain resources of the multiple uplink signals are greater than the time domain resources of the uplink signals required for backscatter communication.
  • the device 1300 further includes a sending unit 1320, configured to send fourth information to the first terminal device, where the fourth information is used to indicate whether the device successfully receives the first terminal device based on The second uplink signal sends a backscattered signal.
  • a sending unit 1320 configured to send fourth information to the first terminal device, where the fourth information is used to indicate whether the device successfully receives the first terminal device based on The second uplink signal sends a backscattered signal.
  • the apparatus 1300 further includes a sending unit 1320, configured to send fifth information to the first terminal device, where the fifth information includes scheduling information of a third uplink signal, where the third uplink signal is Sent by the target terminal device in the second terminal device; the receiving unit 1310 is also used to: receive the backscattered signal sent by the first terminal device, the backscattered signal is the first terminal device. Sent based on the third uplink signal.
  • a sending unit 1320 configured to send fifth information to the first terminal device, where the fifth information includes scheduling information of a third uplink signal, where the third uplink signal is Sent by the target terminal device in the second terminal device; the receiving unit 1310 is also used to: receive the backscattered signal sent by the first terminal device, the backscattered signal is the first terminal device. Sent based on the third uplink signal.
  • the third uplink signal is sent by the terminal device corresponding to the second measurement result that satisfies a third preset condition in the target terminal device, and the third preset condition includes at least one of the following: The signal strength of the uplink signal in the third uplink signal whose signal strength is greater than the third threshold, the frequency domain resource of the uplink signal in the third uplink signal within the bandwidth that the first terminal device can detect, and the The time domain resources in the third uplink signal are greater than the time domain resources of the uplink signal required for backscatter communication.
  • the device 1300 further includes a determining unit 1330, configured to: if the device receives a backscattered signal, determine that the uplink signal where the backscattered signal is located satisfies the third preset condition. sent by the terminal equipment corresponding to the second measurement result; if the device does not receive the backscattered signal, it is determined that there is no terminal equipment corresponding to the second measurement result that satisfies the third preset condition in the target terminal equipment. Terminal Equipment.
  • the first terminal device is a zero-power consumption terminal device.
  • Figure 14 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the dashed line in Figure 14 indicates that the unit or module is optional.
  • the device 1400 can be used to implement the method described in the above method embodiment.
  • Device 1400 may be a chip or a communication device.
  • Apparatus 1400 may include one or more processors 1410.
  • the processor 1410 can support the device 1400 to implement the method described in the foregoing method embodiments.
  • the processor 1410 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 1400 may also include one or more memories 1420.
  • the memory 1420 stores a program, which can be executed by the processor 1410, so that the processor 1410 executes the method described in the foregoing method embodiment.
  • the memory 1420 may be independent of the processor 1410 or integrated in the processor 1410.
  • Apparatus 1400 may also include a transceiver 1430.
  • Processor 1410 may communicate with other devices or chips through transceiver 1430.
  • the processor 1410 can transmit and receive data with other devices or chips through the transceiver 1430.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied to the communication device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied to the communication device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the communication device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法及通信装置,包括:第一终端设备测量第一上行信号,得到第一测量结果(S710),据第一测量结果,基于第二上行信号发送反向散射信号(S720)至网络设备;其中,第一上行信号是第二终端设备发送的。本申请实施例中的方法,能够实现基于上行信号的反向散射通信。

Description

通信方法及通信装置 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种通信方法及通信装置。
背景技术
近年来,零功耗终端设备的应用越来越广泛。零功耗终端设备可以基于反向散射通信(back scattering)技术进行通信,例如,零功耗终端设备可以通过用于反向散射通信的信号(如上行信号、下行信号或专用载波信号)进行反向散射通信。但是,如何基于上行信号进行反向散射通信,目前还没有很好的解决方案。
发明内容
本申请提供一种通信方法及通信装置,能够实现基于上行信号的反向散射通信。
第一方面,提供了一种通信方法,包括:第一终端设备测量第一上行信号,得到第一测量结果;所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号;其中,所述第一上行信号是第二终端设备发送的。
第二方面,提供了一种通信方法,包括:网络设备接收第一终端设备基于第二上行信号发送的反向散射信号,所述反向散射信号是所述第一终端设备根据第一测量结果发送的,所述第一测量结果是所述第一终端设备对第二终端设备发送的第一上行信号测量后得到的。
第三方面,提供了一种通信装置,包括:测量单元,用于测量第一上行信号,得到第一测量结果;发送单元,用于根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号;其中,所述第一上行信号是第二终端设备发送的。
第四方面,提供了一种通信装置,包括:接收单元,用于:接收第一终端设备基于第二上行信号发送的反向散射信号,所述反向散射信号是所述第一终端设备根据第一测量结果发送的,所述第一测量结果是所述第一终端设备对第二终端设备发送的第一上行信号测量后得到的。
第五方面,提供一种通信装置,包括存储器、收发器和处理器,所述存储器用于存储程序,所述处理器通过所述收发器进行数据收发,所述处理器用于调用所述存储器中的程序,以执行如第一方面所述的方法。
第六方面,提供一种通信装置,包括存储器、收发器和处理器,所述存储器用于存储程序,所述处理器通过所述收发器进行数据收发,所述处理器用于调用所述存储器中的程序,以执行第二方面所述的方法。
第七方面,提供一种通信装置,包括处理器,用于从存储器中调用程序,以执行第一方面所述的方法。
第八方面,提供一种通信装置,包括处理器,用于从存储器中调用程序,以执行第二方面所述的方法。
第九方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第一方面所述的方法。
第十方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第二方面所述的方法。
第十一方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第一方面所述的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第二方面所述的方法。
第十三方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第一方面所述的方法。
第十四方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第二方面所述的方法。
第十五方面,提供一种计算机程序,所述计算机程序使得计算机执行第一方面所述的方法。
第十六方面,提供一种计算机程序,所述计算机程序使得计算机执行第二方面所述的方法。
在本申请实施例中,第一终端设备对第二终端设备发送的第一上行信号进行测量,得到第一测量结 果,并根据第一测量结果确定能够用于反向散射通信的第二上行信号,从而能够基于第二上行信号进行反向散射通信。
同时,能够进行反向散射通信的终端设备(如零功耗终端设备)通常具有低功耗和低成本等特点,实现基于上行信号的反向散射通信,有利于这类终端设备在通信系统中的进一步应用,从而利于降低终端设备的成本和功耗。
附图说明
图1是本申请实施例提供的一种无线通信系统的示意图。
图2是本申请实施例提供的一种零功耗通信系统的示意图。
图3是本申请实施例提供的能量采集模块的结构示意图。
图4是本申请实施例提供的反向散射通信原理的示意图。
图5是本申请实施例提供的基于电阻负载调制技术的终端设备的电路图。
图6是本申请实施例提供的一种无线通信系统的示意图。
图7是本申请一实施例提供的通信方法的示意性流程图。
图8是本申请实施例提供的时间窗口的示意图。
图9是本申请一实施例提供的通信方法的示意性流程图。
图10是本申请另一实施例提供的通信方法的示意性流程图。
图11是本申请又一实施例提供的通信方法的示意性流程图。
图12是本申请一个实施例提供的通信装置的示意性结构图。
图13是本申请另一实施例提供的通信装置的示意性结构图。
图14是本申请一实施例提供的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
随着无线通信技术的发展,人们希望将无线通信系统与物流、制造、运输、能源等各个垂直行业进行融合,例如,可以将无线通信系统与工业无线传感器网络(industrial wireless sensor network,IWSN)进行融合。又例如,可以将无线通信系统与智慧物流和智慧仓储进行融合。又例如,可以将无线通信系统与智能家庭网络进行融合。
然而,在这些行业中,终端设备通常需要具备较低的成本、较小的尺寸(如超薄)、免维护、长寿命等特点。因此,为了满足上述条件,网络设备和终端设备之间可以采用零功耗通信技术进行通信,在这种情况下,终端设备又可以称为“零功耗终端设备”或“零功耗设备”。
下文结合图1至图5介绍零功耗通信技术和零功耗终端设备。图1是本申请实施例适用的零功耗通信系统100的架构。图1所示的架构包括网络设备110和终端设备120。其中,网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
网络设备110和终端设备120可以基于反向散射(back scattering)通信技术进行通信。在反向散射通信技术中,用于反向散射通信的信号是至关重要的。用于反向散射通信的信号为无线信号,例如,无线射频信号。用于反向散射通信的信号例如可以包括供能信号和载波信号等。在一些实施例中,网络设备110可以向终端设备120发送供能信号以为终端设备供能。在另一些实施例中,终端设备120可以通过载波信号向网络设备110发送数据。在一些实现方式中,上述供能信号中还可以承载网络设备110向终端设备120发送的数据或控制信息。当然,上述供能信号还可以仅用于供能,本申请实施例对此不作限定。
需要说明的是,图1示例性地示出了一个网络设备和一个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
另外,在一些实现方式中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、蜂窝物联网等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等等。本申请提供的技术方案还可 以应用于其他通信系统,例如,无线保真(wireless fidelity,Wi-Fi)系统、车联网(vehicle to everything,V2X)系统、物联网(the internet of things,IoT)系统、局域网等。
本申请实施例中的终端设备也可称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备、家用电器、传感器、电子标签等等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中的终端设备均可以为零功耗终端,或者为可以支持反向散射通信的终端设备。
本申请实施例中的网络设备可以是用于与终端设备通信的设备。若终端设备为电子标签时,网络设备可以是用于对电子标签进行读写的读写器(例如,基于射频识别(radio frequency identification,RFID)技术的读写器)。该网络设备也可以是接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
为了便于理解零功耗通信技术,下文结合图2介绍支持零功耗通信技术的终端设备。
通常,终端设备120可以包含能量采集模块121、反向散射通信模块122。下文将结合图3至图5对能量采集模块121、反向散射通信模块122进行介绍,为了简洁,在此不再赘述。在一些情况下,终端设备120还可以包含低功耗计算模块123。其中,低功耗计算模块123用于为终端设备120提供计算功能,例如,数据处理等。在另一些情况下,终端设备120还可以包含传感器124,用于采集外部信息(例如,环境温度、环境湿度等)。在另一些情况下,终端设备120还可以包含存储器125,用于存储一些信息(例如,通过上述传感器采集的外部信息,或如物品标识等)。
上述能量采集模块121用于采集能量。在一些实现方式中,可以通过网络设备发送的供能信号采集能量。其中,供能信号可以是网络设备发送的“射频信号”,因此,上述能量采集模块又称为“射频能量采集模块”。
图3示出了能量采集模块的一种可能的结构。如图3所示,能量采集模块121可以基于电磁感应原理,采集射频信号的空间电磁波的能量,并将采集的能量存储在电容C中,即为电容C的充电的过程。当电容C的充电过程结束后,电容C可以开始放电,以为终端设备工作供能。例如,电容C放电可以用于驱动终端设备对网络设备发送的数据进行低功耗解调。又例如,电容C放电可以用于驱动终端对 待发送的数据进行调制。又例如,电容C放电可以用于驱动终端设备的传感器进行数据采集。又例如,电容C放电可以用于驱动终端设备对存储器125中的数据进行读取等。
上述反向散射通信模块122用于终端设备120与网络设备110进行反向散射通信。下文结合图4介绍本申请实施例的反向散射通信原理。参见图4,终端设备120接收网络设备110发送的无线信号,并对该无线信号进行调制,以加载需要发送的数据。最后将调制后的信号从天线辐射出去,这一信息传输过程称为反向散射通信。上述无线信号也可以称为载波信号。载波信号可以指没有经过调制的无线信号。载波信号例如可以为正弦波信号。其中,反向散射通信和负载调制功能密不可分。负载调制功能可以理解为通过对终端设备的振荡回路的电路参数按照数据流的节拍进行调节和控制,使终端设备的阻抗的大小等参数随之改变,从而完成调制的过程。
在一些实现方式中,网络设备110的发送(transport,TX)通路上还可以设置有其他器件,用于对待发送的信号进行处理,例如,放大器(amplifier,AMP)等。网络设备110的接收(receive,RX)通路上还可以设置有其他器件,用于对接收的信号进行处理,例如,低噪声放大器(low noise amplifier,LNA)等。
在另一些实现方式中,终端设备120中可以包括能量采集模块,能量采集模块可用于采集环境中的任意一种信号。例如,能量采集模块可用于采集网络设备发送的供能信号的能量。本申请实施例对供能信号的形式不做具体限定。例如,供能信号可以为经过调制后的无线信号,也可以为未经过调制的无线信号。如上文描述的载波信号也可以作为供能信号。又例如,供能信号也可以为任意一种波形的无线信号,如正弦波、方波等。
当然,终端设备120中还可以设置有逻辑处理模块,以执行相应地计算功能。
需要说明的是,无论是网络设备110还是终端设备120,图4仅示例地示出了信号处理电路的连接结构,网络设备110和/或终端设备120的处理电路都可以包含其他的元件,本申请实施例对此不作具体限定。
通常,负载调制功能可以通过电阻负载调制和电容负载调制两种方式实现。图5示出了基于电阻负载调制技术的终端设备的电路图。需要说明的是,图5所述的电路在实现负载调制技术方式,与已有的实现负载调制技术的电路的实现方式相似,为了简洁,图5中所示的中包含的电阻R2、R3,电容C1、C2,电感L1、L2的作用不再赘述。
在电阻负载调制中,可以为负载并联一个电阻RL。开关S可以基于二进制数据流的控制,来实现电阻RL的接通或断开。这样,电阻RL的通断会造成电路电压的变化,而电路电压的变化可以控制终端设备的反向散射信号的幅度大小,进而实现反向散射信号的调制,即对反向散射信号进行移幅键控(amplitude-shift keying,ASK)调制。
类似地,在电容负载调制中,可以基于二进制数据流来控制电容的通断,以改变电路谐振频率,进而改变反向散射信号的工作频率,来实现移频键控(frequency-shift keying,FSK)调制。
如上文介绍,终端设备可以借助于负载调制的方式,对来波信号(即载波信号)进行信息调制,从而实现反向散射通信过程。因此,反向散射通信中的终端设备通常具有以下优势。
优势一,由于终端设备不需要主动发射信号,因此不需要构造复杂的射频通路。例如,射频通路中可以不设置功率放大器(power amplifier,PA)、射频滤波器等器件,以降低终端的成本和体积。
优势二,由于终端设备不需要主动产生高频信号,因此不需要高频晶振,以降低终端设备的成本和体积。
优势三,由于终端设备可以采用反向散射技术与网络设备通信,因此,终端设备在通信时消耗的能量较低,甚至不需要消耗自身的能量。
除了上文描述的反向散射通信、能量采集、负载调制功能外,终端设备还可以具有编码功能。编码端(如终端设备或电子标签)传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。在零功耗通信系统中,常用的编码方式可以包括:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码等。通俗的说,编码过程就是用不同的脉冲信号表示0和1。
基于上文对零功耗通信技术的介绍可知,零功耗通信中的终端设备(又称“零功耗终端设备”)进行通信消耗的自身的能量很少,甚至可以不消耗自身的能量。因此,在零功耗通信技术中,基于终端设备的能量来源以及能量的使用方式可以将终端设备分为三类:无源零功耗终端、半无源零功耗终端以及有源零功耗终端。
一、无源零功耗终端
无源零功耗终端通常不需要内装电池。当终端设备接近网络设备时,终端设备处于网络设备天线辐射形成的近场范围内,此时,终端设备的天线可以通过电磁感应产生感应电流,感应电流可以为终端设 备供能,来实现对接收信号的解调,和/或对待传输信号的调制、编码等工作。在一些实现方式中,上述无源零功耗终端可以是电子标签,相应地,网络设备可以是(radio frequency identification,RFID)系统的读写器,用于读取电子标签中的内容和/或用于更改电子标签中的内容。
二、半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用能量采集模块121采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以为终端设备供能,来实现对接收信号的解调,和/或对待传输信号的调制、编码等工作。
三、有源零功耗终端
有源零功耗终端可以内置电池。电池可以为终端设备供能,来实现对接收信号的解调,和/或对待传输信号的调制、编码等工作。但当该终端设备采用反向散射技术通信时,该终端设备不需要消耗电池的能量。因此,对于这种终端设备而言,“零功耗”主要体现在该终端设备采用反向散射技术通信的场景中。
在一些实现方式中,上述有源零功耗终端可以是电子标签,网络设备可以是RFID读写器,此时内置电池可以向终端设备内的RFID芯片供电,以增加RFID读写器与电子标签之间的读写距离。另一方面,内置电池可以向终端设备内的RFID芯片供电,以缩短RFID读写器对电子标签的读写时延,有利于提高通信的可靠性。
本申请实施例中的零功耗终端具有低复杂度、支持环境供能、反向散射、新的波形等特征。本申请实施例中的零功耗终端的命名并不对其能量的来源和使用方式进行限定,只要其工作所需的能量主要来源于外部环境即可。在该情况下,终端设备可以是零功耗或低功耗的设备。在一些实施例中,零功耗终端还可以称为环境供能的终端、基于能量收集的终端等。
随着通信技术的快速发展,终端设备的种类和应用场景越来越多,对终端设备的价格和功耗也提出了更高的要求。一些通信系统中会引入零功耗终端,以降低终端的功耗和成本。
由上文的描述可知,零功耗设备可以基于反向散射通信技术进行通信。在进行反向散射通信时,需要有用于反向散射通信的载波(或者信号)。例如,用于反向散射通信的载波可以是蜂窝通信网络中的下行信号,也可以是蜂窝通信网络中的上行信号,或者也可以是一种特别引入的专用载波信号(可以是第三方设备进行发送的,用于反向散射通信的载波信号)。
在基于下行信号或专用载波信号进行反向散射通信时,零功耗终端设备可以接收相应设备(如网络设备或发送专用载波信号的第三方设备)发送的控制信息,并根据该控制信息、基于下行信号或专用载波信号进行反向散射通信。但是,并不是所有的上行信号都能够用来进行反向散射通信,例如,上行信号到达零功耗终端设备时的信号强度过低,或者上行信号的时域资源过少等。同时,在基于上行信号进行反向散射通信时,零功耗终端设备并不知道上行信号是由哪个终端设备发送的,无法提前获知该上行信号的控制信息,也就无法确定该上行信号对应的时频资源及信号强度等,从而无法确定该上行信号是否能够用于反向散射通信。因此,如何基于上行信号进行反向散射通信成为一个亟需解决的技术问题。
为了解决上述技术问题中的一个或多个,本申请提出一种通信方法及通信装置。在本申请实施例中,第一终端设备对第二终端设备发送的第一上行信号进行测量,得到第一测量结果,根据第一测量结果可以确定能够用于反向散射通信的第二上行信号,基于第二上行信号能够实现反向散射通信。
下面结合图6对本申请实施例进行详细地举例说明。
如图6所示,在网络设备的覆盖范围内,有多个终端设备UE610、UE620、UE630、反向散射节点(backscatter node,BN)610、BN620等。其中,UE610、UE620和UE630可以与网络设备进行通信(如图6所示,接收网络设备发送的空口信令以及向网络设备发送空口数据等),BN610和BN620可以为支持反向散射通信的零功耗终端设备,或者为支持反向散射通信的有源终端设备。
在通信过程中,UE610、UE620和UE630可以向网络设备发送上行信号,例如,上行信号可以为物理上行控制信道(physical uplink control channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测信号(sounding reference signal,SRS)等。此时BN610和BN620可以对其他终端设备(如UE610、UE620和UE630)发送的上行信号进行测量,根据测量结果筛选出符合预设条件的终端设备,确定与该终端设备进行配对,后续可以基于配对终端设备的上行信号进行反向散射通信。
例如,在图6中,BN610可以对UE610和UE620的上行信号进行测量,根据测量结果,确定UE620为配对终端设备,后续可以基于UE620的上行信号进行反向散射通信;BN2可以对UE610、UE620和UE630的上行信号进行测量,根据测量结果,确定UE610为配对终端设备,后续可以基于UE610的上行信号进行反向散射通信。
需要说明的是,本申请实施例中的方案也可以应用于侧行链路。例如,本申请实施例中的网络设备 可以视为侧行链路中的一个终端设备,本申请实施例中的终端设备(第一终端设备及第二终端设备)可以为侧行链路中的其他终端设备。
下面结合图7至图11对本申请实施例进行详细地举例说明。
图7是本申请实施例的通信方法的一个示意性流程图。图7所示的方法700可以包括步骤S710及S720,具体如下:
S710,第一终端设备测量第一上行信号,得到第一测量结果。
第一终端设备可以为零功耗终端设备,或者具有反向散射通信能力的有源终端设备。
其中,第一上行信号可以是第二终端设备发送的。可选地,第一上行信号可以为周期信号、非周期信号、半静态信号或动态调度信号。例如,第一上行信号可以为PRACH、PUSCH、PUCCH、SRS等。
可选地,在S710之前,网络设备可以向第一终端设备发送第一信息。可选地,第一信息可以包括第一上行信号的调度信息,或者,也可以是第一上行信号的控制信息或配置信息。相应地,第一终端设备可以根据第一信息测量第一上行信号,得到第一测量结果。
可选地,网络设备也可以向第二终端设备发送调度信息、控制信息或配置信息。相应地,第二终端设备可以根据调度信息、控制信息或配置信息发送第一上行信号。可选地,该调度信息、控制信息或配置信息可以与第一信息相同,或不同。该调度信息、控制信息或配置信息可以与第一信息同时发送,或不同时发送。
可选地,第一上行信号可以包括多个上行信号。相应地,第二终端设备可以包括多个终端设备,第一上行信号可以包括这多个终端设备发送的多个上行信号。此时,第一信息可以包括(第一上行信号中的)多个上行信号的调度信息,第一终端设备可以该多个上行信号的调度信息对多个终端设备发送的多个上行信号进行测量。
在一些可能的实现方式中,第一终端设备可以将测量结果发送给网络设备。相应地,可以由网络设备确定目标终端设备(即与第一终端设备配对的终端设备)。可选地,目标终端设备可以指(第二终端设备中的)发送的上行信号能够用于反向散射通信的终端设备。
例如,在S710之后,第一终端设备可以向网络设备发送第一测量结果。
第一测量结果可以包括第一上行信号的信号强度。可选地,第一终端设备可以在对第一上行信号进行测量之后,直接向网络设备发送测量得到第一上行信号的信号强度。例如,第一上行信号的信号强度可以包括第一上行信号的参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、和/或能够表示第一上行信号的信号强度的信息。
可选地,第一终端设备可以在第一时间窗口内测量第一上行信号,得到第一测量结果。第一时间窗口可以是预先设定的,也可以是网络设备配置的。例如,如图8所示,第一终端设备可以在第一时间窗口内,对一个或多个上行信号进行测量。
可选地,第一时间窗口可以为周期性的。例如,如图8所示,第一时间窗口的周期可以为T,T为正数。
每次测量的时间窗口(如第一时间窗口)的长度可以相同,如图8所示。例如,第一时间窗口的长度可以是预设规定的,也可以是网络设备配置的。或者,每次测量的时间窗口的长度也可以不同。例如,第一时间窗口的长度可以是网络设备动态指示的。
进一步地,第一终端设备可以向网络设备发送信号强度满足第一预设条件的第一测量结果。可选地,第一预设条件可以包括以下至少一项:所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。其中,多个上行信号中信号强度大于第一阈值的部分上行信号可以指:多个上行信号中信号强度大于第一阈值的N个上行信号。
第一测量结果也可以包括上行信号关联的时频资源,第一上行信号关联的时频资源可以指,该上行信号所在的时频资源。例如,第一终端设备可以确定第一测量结果(例如,测量得到第一上行信号的信号强度)对应的(或者,满足第一预设条件的第一测量结果对应的)上行信号所在的时频资源,向网络设备发送该上行信号所在的时频资源。
第一测量结果也可以包括上行信号的时域资源和/或频域资源。例如,第一终端设备可以确定第一测量结果(例如,测量得到第一上行信号的信号强度)对应的(或者,满足第一预设条件的第一测量结果对应的)上行信号所在的时域资源和/或频域资源,向网络设备发送该上行信号所在的时域资源和/或频域资源。
第一测量结果也可以包括上行信号关联的终端设备的标识,第一上行信号关联的终端设备的标识可以指,发送该上行信号的终端设备的标识。例如,第一终端设备可以确定第一测量结果(例如,测量得到第一上行信号的信号强度)对应的(或者,满足第一预设条件的第一测量结果对应的)上行信号关联 的终端设备的标识,向网络设备发送该上行信号关联的终端设备的标识。
第一上行信号关联的调度信息的索引可以指,用于调度该上行信号的调度信息的索引。例如,网络设备可以发送一个调度信息列表(list),调度信息列表中可以包括一个或多个调度信息,此时,每个调度信息都可以对应一个在调度信息列表中的索引。可选地,这个调度信息列表可以是同时向一个或多个终端设备发送的。例如,第一终端设备可以确定第一测量结果(例如,测量得到第一上行信号的信号强度)对应的(或者,满足第一预设条件的第一测量结果对应的)上行信号关联的调度信息的索引,向网络设备发送该上行信号关联的调度信息的索引。
可选地,当第一终端设备在图8所示的第一时间窗口内测量上行信号时,第一终端设备可以在(每次)第一时间窗口结束后向网络设备上报测量结果,或者,也可以在第一时间窗口内每次测量后向网络设备上报测量结果。
从上述各实施例可以看出,第一测量结果可以包括以下至少一项:第一上行信号的信号强度、第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、第一上行信号关联的终端设备的标识、及第一上行信号关联的调度信息的索引。
也就是说,在由网络设备确定目标终端设备的情况下,第一测量结果可以包括能够使唤网络设备确定出第一测量结果对应的终端设备的各种信息,以便于网络设备确定满足条件的测量结果对应的上行信号是由哪个(或哪些)终端设备发送的。例如,网络设备可以根据第一测量结果包括的上行信号关联的时频资源、关联的时域资源、关联的频域资源、关联终端设备的标识和/或关联的调度信息的索引,确定第一测量结果对应的终端设备。
可选地,网络设备可以根据第一测量结果确定目标终端设备。例如,网络设备可以将(第二终端设备包括的)多个终端设备中发送的上行信号满足预设条件(例如第一预设条件)的终端设备,确定为目标终端设备。
进一步地,网络设备可以向第一终端设备发送第三信息。其中,第三信息可以用于指示第二终端设备中的目标终端设备。
在一些可能的实现方式中,第一终端设备可以根据测量结果确定目标终端设备(即与第一终端设备配对的终端设备)。
可选地,第一终端设备可以根据第一测量结果确定目标终端设备。
第一测量结果可以包括上行信号的频域资源。可选地,第一终端设备可以将第一上行信号中频域资源在第一终端设备能够检测的带宽内的上行信号关联的终端设备,确定为目标终端设备。例如,第一终端设备可以检测其能够检测到的带宽范围内的上行信号,并将其检测到的第一上行信号中的上行信号关联的终端设备,确定为目标终端设备。
第一测量结果也可以包括第一上行信号的信号强度。可选地,第一终端设备可以根据第一上行信号的信号强度确定目标终端设备。例如,第一测量结果可以将第一上行信号中信号强度大于第二阈值的上行信号关联的终端设备,确定为目标终端设备。
第一测量结果也可以包括上行信号的时域资源。可选地,第一终端设备可以将第一上行信号中时域资源足够进行反向散射通信的上行信号关联的终端设备,确定为目标终端设备。例如,第一终端设备可以确定第一上行信号所在的时域资源,将第一上行信号中时域资源大于反向散射通信所需的上行信号关联的终端设备,确定为目标终端设备。
从上述实施例可以看出,第一测量结果可以包括以下至少一项:第一上行信号的信号强度、第一上行信号关联的时域资源及第一上行信号关联的频域资源。同时,第一终端设备可以将满足第二预设条件的所述第一测量结果对应的终端设备,确定为目标终端设备。其中,第二预设条件可以包括以下至少一项:多个上行信号中信号强度大于第二阈值的上行信号的信号强度、多个上行信号中频域资源在第一终端设备能够检测的带宽内的上行信号的频域资源、及多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
也就是说,在由第一终端设备确定目标终端设备的情况下,第一测量结果可以包括能够使第一终端设备确定出(或者说筛选出)目标终端设备的各种信息。
当然,第一终端设备也可以将信号强度满足所述第一预设条件的第一测量结果对应的终端设备,确定为目标终端设备。
可选地,在第一终端设备确定目标终端设备的情况下,第一终端设备也可以将第一测量结果发送给网络设备。
可选地,第一终端设备也可以将(确定出的)目标终端设备发送给网络设备。相应地,后续过程中,网络设备可以向第一终端设备只发送目标终端设备的调度信息。
S720,第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号。
其中,第二上行信号与第一上行信号可以是同一个信号;第二上行信号与第一上行信号可以不是同一个信号但是由同一设备发出的,例如,第二上行信号可以是第二终端设备发送的;第二上行信号与第一上行信号可以不是同一个信号且不是同一设备发出的。
可选地,第二上行信号可以是第二终端设备向网络设备发送的;或者,也可以是第二终端设备中的部分终端设备向网络设备发送的。例如,第二上行信号可以是第二终端设备中的目标终端设备向网络设备发送的,目标终端设备可以指(第二终端设备中的)发送的上行信号能够用于反向散射通信的终端设备。
可选地,在S720之前,网络设备可以向第一终端设备发送第二信息。其中,第二信息可以包括第二上行信号的调度信息,或者,也可以是第二上行信号的控制信息或配置信息。
可选地,第二信息可以包括第二终端设备的调度信息,也可以只包括目标终端设备的调度信息。可选地,第二信息和第三信息可以为同一个信息。例如,第二信息可以只指示目标终端设备的调度信息,此时,相当于第二信息隐含指示目标终端设备;或者,第二信息也可以显式指示目标终端设备。
可选地,第二信息也可以包括第一终端设备进行反向散射通信的调度信息。例如,该调度信息可以指示第一终端设备进行反向散射通信的传输块大小(transport block size,TBS),码率,时频资源,和/或编码算法等。
或者,网络设备也可以向第一终端设备发送第六信息,第六信息可以包括第一终端设备进行反向散射通信的调度信息。可选地,网络设备可以向第一终端设备同时发送第二信息和第六信息,或者,网络设备也可以向第一终端设备分别发送(即不同时发送)第二信息和第六信息,本申请实施例中对此并不限定。
或者,第一终端设备进行反向散射通信的调度信息也可以为预先配置的免调度信息或半静态信息,此时,网络设备无需再向第一终端设备发送反向散射通信的调度信息。
可选地,网络设备可以对反向散射信号进行求解。
进一步地,网络设备还可以向第一终端设备反馈反向散射信号的接收情况和/或求解结果。可选地,网络设备可以向第一终端设备发送第四信息。其中,第四信息可以指示网络设备是否成功接收第一终端设备基于第二上行信号发送的反向散射信号。例如,在正确求解的情况下,第四信息可以指示肯定应答(acknowledgement,ACK)信息,以指示网络设备成功接收反向散射信号;在求解失败的情况下,第四信息可以指示否定应答(negative acknowledgement,NACK)信息,以指示网络设备未成功接收反向散射信号。
在上述实施例之后,第一终端设备可以继续向网络设备发送反向散射信号。
此时,第一终端设备可以不对上行信号进行测量,直接基于目标终端设备发送的上行信号发送反向散射信号。
例如,网络设备可以向第一终端设备发送第五信息。其中,第五信息可以包括第三上行信号的调度信息。可选地,第三上行信号可以是第二终端设备中的目标终端设备发送的。
与前述实施例类似,网络设备可以通过第五信息向第一终端设备发送反向散射通信的调度信息;或者,网络设备可以通过其他信息(例如,第七信息)向第一终端设备发送反向散射通信的调度信息,该其他信息与第五信息可以同时发送或不同时发送;或者,第一终端设备进行反向散射通信的调度信息也可以为预先配置的免调度信息或半静态信息。
相应地,第一终端设备可以根据第五信息,基于第三上行信号向网络设备发送反向散射信号。
可选地,第一终端设备可以在预设的时间段或(发送反向散射信号的)次数内不对上行信号进行测量,直接基于目标终端设备发送的上行信号发送反向散射信号。这里所说的预设的时间段或次数可以预先规定的或网络设备配置的。预设的时间段或次数可以与终端设备的移动性相关。例如,当第一终端设备的移动性较高时,预设的时间段或次数可以较小;当第一终端设备的位置固定或移动性较低时,预设的时间段或次数可以较大。
或者,第一终端设备也可以继续对上行信号进行测量,并基于测量结果发送反向散射信号。基于测量结果发送反向散射信号的具体过程可以参见上述实施例,这里不再赘述。
可选地,若目标终端设备中存在满足第三预设条件的第二测量结果对应的终端设备,则第一终端设备可以根据所述第五信息,基于所述第三上行信号向所述网络设备发送反向散射信号;若目标终端设备中不存在满足第三预设条件的第二测量结果对应的终端设备,则第一终端设备可以不发送反向散射信号。
例如,第一终端设备可以根据第五信息测量目标终端设备发送的第三上行信号,得到第二测量结果,并根据第二测量结果确定目标终端设备中满足第三预设条件的第二测量结果对应的终端设备。从而,可以基于满足第三预设条件的第二测量结果对应的终端设备发送的上行信号进行反向散射通信。
其中,第三预设条件可以包括以下至少一项:第三上行信号中信号强度大于第三阈值的上行信号的信号强度、第三上行信号中频域资源在第一终端设备能够检测的带宽内的上行信号的频域资源、及第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
进一步地,网络设备也可以对反向散射信号进行求解,还可以向第一终端设备反馈反向散射信号的接收情况和/或求解结果。具体过程可以参见上述实施例,这里不再赘述。
或者,若网络设备在所有第三上行信号(目标终端设备发送的上行信号)对应的时频资源上均没有检测到反向散射信号,则说明目标终端设备失效,或者说配对信息失效。此时,网络设备可以告知第一终端设备,以便于第一终端设备重新确定配对终端设备。重新确定配对终端设备的方法可以参见上述实施例,这里不再赘述。
在本申请实施例中,第一终端设备对第二终端设备发送的第一上行信号进行测量,得到第一测量结果,并根据第一测量结果确定能够用于反向散射通信的第二上行信号,从而能够基于第二上行信号进行反向散射通信。
同时,能够进行反向散射通信的终端设备(如零功耗终端设备)通常具有低功耗和低成本等特点,实现基于上行信号的反向散射通信,有利于这类终端设备在通信系统中的进一步应用,从而利于降低终端设备的成本和功耗。
在本申请实施中,零功耗终端设备可以向网络设备上报设备类型,或者上报其支持反向散射通信的能力。网络设备收到上报信息后,可以识别出该终端设备可以支持反向散射通信的能力,从而可以调度该终端设备进行反向散射通信。
下面以零功耗终端设备为例,结合图9至图11对本申请中的实施例进行详细描述。
图9是本申请实施例的通信方法的一个示意性流程图。图9所示的方法900可以包括步骤S910至S990,具体如下:
S910,网络设备向其他终端设备发送调度信息。
该调度信息可以用于调度其他终端设备发送上行信号。其他终端设备可以包括多个终端设备。上行信号可以是周期信号、非周期信号、半静态信号或动态调度信号等。例如,上行信号可以为PRACH、PUSCH、PUCCH、SRS等。
可选地,在S910中,网络设备也可以向其他终端设备发送控制信息或配置信息。相应地,其他终端设备可以根据控制信息或配置信息发送上行信号。
S920,网络设备向零功耗终端设备发送其他终端设备的调度信息。
零功耗终端设备根据该调度信息可以确定其他终端设备发送上行信号的时频资源。可选地,该调度信息可以是与S910中网络设备向其他终端设备发送的调度信息同时发送的,也可以是与S910中网络设备向其他终端设备发送的调度信息不同时发送的。
需要说明的是,S910可以是网络设备对其他终端设备的正常调度,相应地,S920可以是网络设备将S910中的上行信号的调度信息转发给零功耗终端设备;或者,S910也可以是网络设备为了调度零功耗终端设备进行反向散射通信,而特意调度其他终端设备发送特定的上行信号(例如SRS)。
S930,其他终端设备基于调度信息发送上行信号。
S940,零功耗终端设备测量其他终端设备发送的上行信号。
零功耗终端设备可以基于S920中接收的调度信息确定其他终端设备发送上行信号的时频资源,并在相应的时频资源上对其他终端设备发送的上行信号进行测量。
在其他终端设备可以包括多个终端设备的情况下,S920中零功耗终端设备接收的调度信息也可以包括多个终端设备对应的调度信息。相应地,零功耗终端设备可以对多个终端设备发送的多个上行信号进行测量。
零功耗终端设备可以在图8所示的时间窗口内测量其他终端设备发送的上行信号。
S950,零功耗终端设备将测量结果上报给网络设备。
测量结果可以包括以下至少一项:(接收到的其他终端设备发送的)上行信号的信号强度、上行信号关联的时频资源、上行信号关联的时域资源上行信号关联的频域资源、上行信号关联的终端设备的标识、及上行信号关联的调度信息的索引。
上报的测量结果可以包括以下至少一项:接收到的其他终端设备发送的上行信号的信号强度、接收到的其他终端设备发送的上行信号中满足预设条件的上行信号的信号强度、以及与(接收到的其他终端设备发送的)上行信号关联的时频资源、终端设备的标识、和/或调度信息的索引。
可选地,零功耗终端设备也可以向网络设备发送信号强度满足预设条件的测量结果。其中,预设条件可以包括以下至少一项:信号强度大于第一阈值、信号强度最强的N(N>=1)个信号、及信号强度大于第一阈值且信号强度最强的N个信号,N为正整数。
S960,网络设备基于测量结果确定与零功耗终端设备配对的其他终端。
网络设备可以确定测量结果中信号强度最强的N(N>=1)个终端设备为配对终端设备,或者确定信号强度大于第一阈值的所有终端设备为配对终端设备,或者确定信号强度大于第一阈值且信号强度最强的N个终端设备为配对终端设备。在无法识别终端标识的情况下,网络设备可以通过时频资源确定(该时频资源对应的)终端设备。
网络设备可以保存配对信息,配对信息可以表示零功耗终端设备与其他终端设备之间的配对关系。可选地,配对信息可以用于指示与零功耗终端设备配对的其他终端设备。例如,配对信息可以包括以下至少一项:其他终端设备的用户标识、其他终端设备发送上行信号的时频资源,及其他终端设备发送上行信号的调度信息的索引。
当然,也可以由零功耗终端设备确定配对终端设备,并将配对信息发送给网络设备。
S970,网络设备向零功耗终端设备发送调度信息。
调度信息可以包括反向散射通信的调度信息和/或配对终端设备的调度信息。其中,配对终端设备的调度信息可以用于配对终端设备发送上行信号,反向散射通信的调度信息可以用于零功耗终端设备发送反向散射信号。
可选地,网络设备可以向零功耗终端设备发送配对终端设备的调度信息。例如,网络设备可以在配对终端设备有上行信号发送时,向零功耗终端设备发送配对终端设备的调度信息。可选地,网络设备可以同时向配对终端设备和零功耗终端设备发送该配对终端设备的调度信息;网络设备也可以不同时向配对终端设备和零功耗终端设备发送该配对终端设备的调度信息。
可选地,网络设备可以向零功耗终端设备发送反向散射通信的调度信息。例如,网络设备可以向零功耗终端设备同时发送反向散射通信的调度信息和配对终端设备的调度信息(此时,反向散射通信的调度信息和配对终端设备的调度信息可以携带于同一个信息中);或者,网络设备可以向零功耗终端设备分别发送反向散射通信的调度信息和配对终端设备的调度信息(此时,反向散射通信的调度信息和配对终端设备的调度信息可以分别携带于不同的信息中);或者,反向散射通信的调度信息也可以为预先配置的免调度信息或半静态信息。
S980,零功耗终端设备进行反向散射通信。
零功耗终端设备可以基于S970中网络设备发送的调度信息,基于相应的上行信号进行反向散射通信。
S990,网络设备求解反向散射信号。
网络设备可以对反向散射信号进行求解。当正确求解时,网络设备可以向零功耗终端设备发送ACK信息。当求解失败时,网络设备可以向零功耗终端设备发送NACK信息;或者,也可以重复图9中的S960至S990的过程;或者,也可以在网络设备发送NACK信息的同时,重复图9中的S960至S990的过程。
或者,在上述实施例中,在求解失败时需要重复执行S960至S990的情况下,也可以不执行S960至S990,而是直接重复执行S910至S990;或者,也可以先重复执行S960至S990,在连续求解失败达到预设次数或在预设时长内未能成功求解的情况下,再重复执行S910至S990。
图10是本申请实施例的通信方法的一个示意性流程图。图10所示的方法1000可以包括步骤S1010至S1090,具体如下:
S1010,网络设备向其他终端设备发送调度信息。
该调度信息可以用于调度其他终端设备发送上行信号。其他终端设备可以包括多个终端设备。上行信号可以是周期信号、非周期信号、半静态信号或动态调度信号等。例如,上行信号可以为PRACH、PUSCH、PUCCH、SRS等。
S1020,网络设备向零功耗终端设备发送其他终端设备的调度信息。
零功耗终端设备根据该调度信息可以确定其他终端设备发送上行信号的时频资源。可选地,该调度信息可以是与S1010中网络设备向其他终端设备发送的调度信息同时发送的,也可以是与S1010中网络设备向其他终端设备发送的调度信息不同时发送的。
需要说明的是,S1010可以是网络设备对其他终端设备的正常调度,相应地,S1020可以是网络设备将S1010中的上行信号的调度信息转发给零功耗终端设备;或者,S1010也可以是网络设备为了调度零功耗终端设备进行反向散射通信,而特意调度其他终端设备发送特定的上行信号(例如SRS)。
可选地,网络设备可以向零功耗终端设备发送反向散射通信的调度信息。例如,网络设备可以向零功耗终端设备同时发送反向散射通信的调度信息和其他终端设备的调度信息(此时,反向散射通信的调度信息和其他终端设备的调度信息可以携带于同一个信息中);或者,网络设备可以向零功耗终端设备分别发送反向散射通信的调度信息和其他终端设备的调度信息(此时,反向散射通信的调度信息和其他 终端设备的调度信息可以分别携带于不同的信息中);或者,反向散射通信的调度信息也可以为预先配置的免调度信息或半静态信息。
S1030,其他终端设备基于调度信息发送上行信号。
S1040,零功耗终端设备测量其他终端设备发送的上行信号。
零功耗终端设备可以基于S1020中接收的调度信息确定其他终端设备发送上行信号的时频资源,并在相应的时频资源上对其他终端设备发送的上行信号进行测量。
在其他终端设备可以包括多个终端设备的情况下,S1020中零功耗终端设备接收的调度信息也可以包括多个终端设备对应的调度信息。相应地,零功耗终端设备可以对多个终端设备发送的多个上行信号进行测量,得到测量结果。其中,测量结果可以包括以下至少一项:(接收到的其他终端设备发送的)上行信号的信号强度、上行信号关联的时域资源及上行信号关联的频域资源。
零功耗终端设备可以在图8所示的时间窗口内测量其他终端设备发送的上行信号。
零功耗终端设备可以将测量结果上报给网络设备。可选地,该测量结果可以包括其他终端设备中的全部终端设备对应的测量结果,或者,该测量结果可以包括其他终端设备中的部分终端设备对应的测量结果。
例如,当零功耗终端设备检测到上行信号的信号强度大于第一阈值,但是,该上行信号对应的时域资源不足以进行反向散射通信时,零功耗终端设备可以将该测量结果上报给网络设备。相应地,网络设备收到该测量结果后,可以根据后续反向散射信号的求解等信息确定是否需要调整对应终端设备的时频资源等,以便使该终端设备能够作为配对终端设备。
S1050,零功耗终端设备确定配对终端设备。
可选地,其他终端设备可以包括多个终端设备,零功耗终端设备可以将满足预设条件的测量结果对应的终端设备确定为配对终端设备。
例如,预设条件可以包括以下至少一项:(多个终端设备发送的)多个上行信号中信号强度大于第二阈值的上行信号的信号强度、多个上行信号中频域资源在零功耗终端设备能够检测的带宽内的上行信号的频域资源、及多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
可选地,配对终端设备可以不包括S1040中提到的,发送的上行信号的信号强度大于第一阈值,但上行信号对应的时域资源等不足以进行反向散射通信的终端设备。
S1060,零功耗终端设备进行反向散射通信。
零功耗终端设备可以基于配对终端设备发送的上行信号进行反向散射通信。
S1070,网络设备求解反向散射信号。
网络设备可以对反向散射信号进行求解。当正确求解时,网络设备可以向零功耗终端设备发送ACK信息。零功耗终端设备在收到ACK信息后,可以停止对其他终端设备发送的上行信号的检测和反向散射通信过程;或者,网络设备可以停止向新型终端设备发送上行信号的相应配置信息。
当求解失败时,网络设备可以向零功耗终端设备发送NACK信息;或者,也可以重复图10中的S1010至S1060的过程;再或者,也可以在网络设备发送NACK信息的同时,重复图10中的S1010至S1060的过程。
如果网络设备在所有上行信号(目标终端设备发送的上行信号)对应的时频资源上均没有检测到反向散射信号,则可以重复S1010至S1060的过程。当网络设备检测到反向散射信号时,可以将反向散射信号所在的一个或多个时频资源上的上行信号对应的终端设备作为零功耗终端设备的配对终端设备。保存配对信息,并基于这些配对终端设备在后续反向散射通信过程中进行S1010和S1020中的调度。
在非首次调度零功耗终端设备基于上行信号进行反向散射通信、配对信息不为空、或配对信息有效时,可以参照下述图11中的实施例。
图11是本申请实施例的通信方法的一个示意性流程图。图11所示的方法1100可以包括步骤S1110至S1170,具体如下:
S1110,网络设备向配对终端设备发送调度信息。
该调度信息可以用于调度配对终端设备发送上行信号。配对终端设备可以一个或多个其他终端设备中的部分或全部终端设备。上行信号可以是周期信号、非周期信号、半静态信号或动态调度信号等。例如,上行信号可以为PRACH、PUSCH、PUCCH、SRS等。
可选地,在S1110中,网络设备也可以向其他终端设备中的非配对终端设备发送调度信息。
S1120,网络设备向零功耗终端设备发送配对终端设备的调度信息。
网络设备可以同时向配对终端设备和零功耗终端设备发送该配对终端设备的调度信息;网络设备也可以不同时向配对终端设备和零功耗终端设备发送该配对终端设备的调度信息。
可选地,网络设备可以向零功耗终端设备发送反向散射通信的调度信息。例如,网络设备可以向零 功耗终端设备同时发送反向散射通信的调度信息和配对终端设备的调度信息(此时,反向散射通信的调度信息和配对终端设备的调度信息可以携带于同一个信息中);或者,网络设备可以向零功耗终端设备分别发送反向散射通信的调度信息和配对终端设备的调度信息(此时,反向散射通信的调度信息和配对终端设备的调度信息可以分别携带于不同的信息中);或者,反向散射通信的调度信息也可以为预先配置的免调度信息或半静态信息。
S1130,配对终端设备基于调度信息发送上行信号。
S1160,零功耗终端设备进行反向散射通信。
由于在之前的过程中已完成配对(配对信息不为空或配对信息有效),零功耗终端设备可以直接基于S1120中网络设备发送的调度信息,基于配对终端设备发送的上行信息进行反向散射通信。
或者,在一些可能的实现方式中,零功耗终端设备也可以对配对终端设备发送的上行信号进行测量。例如,在S1160之前,方法1100也可以包括步骤S1140和S1150,具体如下:
S1140,零功耗终端设备测量配对终端设备发送的上行信号。
零功耗终端设备可以基于S1120中接收的调度信息确定配对终端设备发送上行信号的时频资源,并在相应的时频资源上对配对终端设备发送的上行信号进行测量,得到测量结果。
在配对终端设备可以包括多个终端设备的情况下,S1020中零功耗终端设备接收的调度信息也可以包括多个终端设备对应的调度信息。相应地,零功耗终端设备可以对多个终端设备发送的多个上行信号进行测量。
零功耗终端设备可以在图8所示的时间窗口内测量配对终端设备发送的上行信号。
零功耗终端设备可以将测量结果上报给网络设备。例如,当零功耗终端设备检测到上行信号的信号强度大于第三阈值,但是,该上行信号对应的时域资源不足以进行反向散射通信时,将零功耗终端设备可以将该测量结果上报给网络设备。相应地,网络设备收到该测量结果后,可以根据测量结果确定配对终端设备。
S1150,零功耗终端设备确定满足预设条件的配对终端设备。
零功耗终端设备可以将配对终端设备中满足预设条件测量结果对应的终端设备确定为满足预设条件的配对终端设备。
例如,预设条件可以包括以下至少一项:(配对终端设备发送的)上行信号中信号强度大于第三阈值的上行信号的信号强度、上行信号中频域资源在零功耗终端设备能够检测的带宽内的上行信号的频域资源、及上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
此时,在S1160中,零功耗终端设备可以基于配对终端设备中上述测量结果对应的终端设备发送的上行信息进行反向散射通信。
S1170,网络设备接收反向散射信号。
如果网络设备在所有上行信号(目标终端设备发送的上行信号)对应的时频资源上均没有检测到反向散射信号,则可以重复S1010至S1060的过程。当网络设备检测到反向散射信号时,可以对反向散射信号进行求解。
网络设备可以对反向散射信号进行求解。当正确求解时,网络设备可以向零功耗终端设备发送ACK信息。零功耗终端设备在收到ACK信息后,可以停止对配对终端设备发送的上行信号的检测和反向散射通信过程;或者,网络设备可以停止向新型终端设备发送上行信号的相应配置信息。
当求解失败时,网络设备可以向零功耗终端设备发送NACK信息;或者,也可以重复图11中的S1110至S1160的过程;再或者,也可以在网络设备发送NACK信息的同时,重复图11中的S1110至S1160的过程。
当然,也可以预先设定配对信息的失效时间,在配对信息失效的情况下,重新执行S1110至S1160的过程。失效时间可以与零功耗终端设备或配对终端设备的移动性相关。例如,当零功耗终端设备的移动性较高时,失效时间可以较小;当零功耗终端设备的位置固定或移动性较低时,失效时间可以较大。
在本申请实施例中,图9、图10及图11中的实施例可以结合使用。例如,在首次网络设备首次调度零功耗终端设备进行反向散射通信时,可以基于图10中的实施例进行处理;如果首次未成功进行反向散射通信,则可以基于图9中的实施例进行处理;在非首次进行反向散射通信、配对信息不为空、或配对信息有效时,可以基于图11中的实施例进行处理。
上文结合图1至图11,详细描述了本申请的方法实施例,下面结合图12至图14,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图12是本申请一实施例提供的通信装置的示意性结构图。如图12中的通信装置1200包括测量单元1210和发送单元1220,具体如下:
测量单元1210,用于测量第一上行信号,得到第一测量结果;
发送单元1220,用于根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号;
其中,所述第一上行信号是第二终端设备发送的。
可选地,所述装置1200还包括接收单元1230,用于:接收所述网络设备发送的第一信息,所述第一信息包括所述第一上行信号的调度信息;所述测量单元1210具体用于:根据所述第一信息测量所述第一上行信号,得到所述第一测量结果。
可选地,所述第一上行信号为周期信号、非周期信号、半静态信号或动态调度信号。
可选地,所述测量单元1210具体用于:在预设时间窗口内测量所述第一上行信号,得到所述第一测量结果。
可选地,所述装置1200还包括接收单元1230,用于:接收所述网络设备发送的第二信息,所述第二信息包括所述第二上行信号的调度信息。
可选地,所述发送单元1220还用于:向所述网络设备发送所述第一测量结果,其中,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、所述第一上行信号关联的终端设备的标识、及所述第一上行信号关联的调度信息的索引。
可选地,所述第二终端设备包括多个终端设备,所述第一上行信号包括所述多个终端设备发送的多个上行信号;其中,所述发送单元具体用于:向所述网络设备发送信号强度满足第一预设条件的所述第一测量结果,所述第一预设条件包括以下至少一项:所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。
可选地,所述第二终端设备包括多个终端设备,所述第二上行信号是所述第二终端设备中的目标终端设备发送的,所述装置1200还包括接收单元1230,用于:接收所述网络设备发送的第三信息,所述第三信息用于指示所述目标终端设备。
可选地,所述第二终端设备包括多个终端设备,所述第二上行信号是所述多个终端设备中的目标终端设备发送的,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时域资源及所述第一上行信号关联的频域资源;其中,所述装置还包括确定单元1240,用于:确定所述目标终端设备;所述发送单元1220还用于:基于所述第二上行信号向所述网络设备发送反向散射信号。
可选地,所述第一上行信号包括所述多个终端设备发送的多个上行信号;其中,所述确定单元1240具体用于:将满足第二预设条件的所述第一测量结果对应的终端设备,确定为所述目标终端设备,所述第二预设条件包括以下至少一项:所述多个上行信号中信号强度大于第二阈值的上行信号的信号强度、所述多个上行信号中频域资源在所述装置能够检测的带宽内的上行信号的频域资源、及所述多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
可选地,所述装置1200还包括接收单元1230,用于:接收所述网络设备发送的第四信息,所述第四信息用于指示所述网络设备是否成功接收所述装置基于所述第二上行信号发送的反向散射信号。
可选地,所述装置1200还包括接收单元1230,用于:接收所述网络设备发送的第五信息,所述第五信息包括第三上行信号的调度信息,所述第三上行信号是所述第二终端设备中的目标终端设备发送的;所述发送单元还用于:根据所述第五信息,基于所述第三上行信号向所述网络设备发送反向散射信号。
可选地,所述第三上行信号是所述目标终端设备中满足第三预设条件的第二测量结果对应的终端设备发送的,所述测量单元1210还用于:根据所述第五信息测量所述目标终端设备发送的第三上行信号,得到所述第二测量结果;所述装置1200还包括确定单元1240,用于:确定所述目标终端设备中满足第三预设条件的所述第二测量结果对应的终端设备,所述第三预设条件包括以下至少一项:所述第三上行信号中信号强度大于第三阈值的上行信号的信号强度、所述第三上行信号中频域资源在所述装置能够检测的带宽内的上行信号的频域资源、及所述第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
可选地,所述发送单元1220具体用于:若所述目标终端设备中存在满足所述第三预设条件的所述第二测量结果对应的终端设备,则根据满足所述第三预设条件的所述第二测量结果对应的终端设备发送的上行信号向所述网络设备发送反向散射信号;若所述目标终端设备中不存在满足所述第三预设条件的所述第二测量结果对应的终端设备,则不发送反向散射信号。
可选地,所述装置1200为零功耗终端设备。
图13是本申请一实施例提供的通信装置的示意性结构图。图13中的通信装置1300包括接收单元 1310,具体如下:
接收单元1310,用于:接收第一终端设备基于第二上行信号发送的反向散射信号,所述反向散射信号是所述第一终端设备根据第一测量结果发送的,所述第一测量结果是所述第一终端设备对第二终端设备发送的第一上行信号测量后得到的。
可选地,所述装置1300还包括发送单元1320,用于:向所述第一终端设备发送第一信息,所述第一信息包括所述第一上行信号的调度信息。
可选地,所述第一上行信号为周期信号、非周期信号、半静态信号或动态调度信号。
可选地,所述装置1300还包括发送单元1320,用于:向所述第一终端设备发送第二信息,所述第二信息包括所述第二上行信号的调度信息。
可选地,所述接收单元1310还用于:接收所述第一终端设备发送的所述第一测量结果,其中,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、所述第一上行信号关联的终端设备的标识、及所述第一上行信号关联的调度信息的索引。
可选地,所述第二终端设备包括多个终端设备,所述第一上行信号包括所述多个终端设备发送的多个上行信号;其中,所述接收单元1310具体用于:接收所述第一终端设备发送的信号强度满足第一预设条件的所述第一测量结果,所述第一预设条件包括以下至少一项:所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。
可选地,所述第二终端设备包括多个终端设备,所述第二上行信号是所述第二终端设备中的目标终端设备发送的;其中,所述装置还包括确定单元1330和发送单元1320,所述确定单元1330用于:根据所述第一测量结果确定所述目标终端设备;所述发送单元1320用于:向所述第一终端设备发送第三信息,所述第三信息用于指示所述目标终端设备。
可选地,所述第二终端设备包括多个终端设备,所述第二上行信号是所述多个终端设备中的目标终端设备发送的,所述目标终端设备是所述第一终端设备根据所述第一测量结果确定的,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时域资源及所述第一上行信号关联的频域资源。
可选地,所述第一上行信号包括所述多个终端设备发送的多个上行信号,所述目标终端设备是满足第二预设条件的所述第一测量结果对应的终端设备,所述第二预设条件包括以下至少一项:所述多个上行信号中信号强度大于第二阈值的上行信号的信号强度、所述多个上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
可选地,所述装置1300还包括发送单元1320,用于:向所述第一终端设备发送第四信息,所述第四信息用于指示所述装置是否成功接收所述第一终端设备基于所述第二上行信号发送的反向散射信号。
可选地,所述装置1300还包括发送单元1320,用于:向所述第一终端设备发送第五信息,所述第五信息包括第三上行信号的调度信息,所述第三上行信号是所述第二终端设备中的目标终端设备发送的;所述接收单元1310还用于:接收所述第一终端设备发送的反向散射信号,所述反向散射信号是所述第一终端设备基于所述第三上行信号发送的。
可选地,所述第三上行信号是所述目标终端设备中满足第三预设条件的第二测量结果对应的终端设备发送的,所述第三预设条件包括以下至少一项:所述第三上行信号中信号强度大于第三阈值的上行信号的信号强度、所述第三上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
可选地,所述装置1300还包括确定单元1330,用于:若所述装置接收到反向散射信号,则确定反向散射信号所在的上行信号是满足所述第三预设条件的所述第二测量结果对应的终端设备发送的;若所述装置未接收到反向散射信号,则确定所述目标终端设备中不存在满足所述第三预设条件的所述第二测量结果对应的终端设备。
可选地,所述第一终端设备为零功耗终端设备。
图14是本申请一实施例提供的装置的示意性结构图。图14中的虚线表示该单元或模块为可选的。该装置1400可用于实现上述方法实施例中描述的方法。装置1400可以是芯片或通信装置。
装置1400可以包括一个或多个处理器1410。该处理器1410可支持装置1400实现前文方法实施例所描述的方法。该处理器1410可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门 阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1400还可以包括一个或多个存储器1420。存储器1420上存储有程序,该程序可以被处理器1410执行,使得处理器1410执行前文方法实施例所描述的方法。存储器1420可以独立于处理器1410也可以集成在处理器1410中。
装置1400还可以包括收发器1430。处理器1410可以通过收发器1430与其他设备或芯片进行通信。例如,处理器1410可以通过收发器1430与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的通信装置中,并且该程序使得计算机执行本申请各个实施例中的由通信装置执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的通信装置中,并且该程序使得计算机执行本申请各个实施例中的由通信装置执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的通信装置中,并且该计算机程序使得计算机执行本申请各个实施例中的由通信装置执行的方法。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (70)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备测量第一上行信号,得到第一测量结果;
    所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号;
    其中,所述第一上行信号是第二终端设备发送的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备测量第一上行信号,得到第一测量结果,包括:
    所述第一终端设备接收所述网络设备发送的第一信息,所述第一信息包括所述第一上行信号的调度信息;
    所述第一终端设备根据所述第一信息测量所述第一上行信号,得到所述第一测量结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一上行信号为周期信号、非周期信号、半静态信号或动态调度信号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一终端设备测量第一上行信号,得到第一测量结果,包括:
    所述第一终端设备在第一时间窗口内测量所述第一上行信号,得到所述第一测量结果。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号之前,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第二信息,所述第二信息包括所述第二上行信号的调度信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述网络设备发送所述第一测量结果,其中,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、所述第一上行信号关联的终端设备的标识、及所述第一上行信号关联的调度信息的索引。
  7. 根据权利要求6所述的方法,其特征在于,所述第二终端设备包括多个终端设备,所述第一上行信号包括所述多个终端设备发送的多个上行信号;
    其中,所述第一终端设备向所述网络设备发送所述第一测量结果,包括:
    所述第一终端设备向所述网络设备发送信号强度满足第一预设条件的所述第一测量结果,所述第一预设条件包括以下至少一项:
    所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述第二终端设备中的目标终端设备发送的;
    其中,在所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号之前,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第三信息,所述第三信息用于指示所述目标终端设备。
  9. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述多个终端设备中的目标终端设备发送的,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时域资源及所述第一上行信号关联的频域资源;
    其中,所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号,包括:
    所述第一终端设备根据所述第一测量结果确定所述目标终端设备;
    所述第一终端设备基于所述第二上行信号向所述网络设备发送反向散射信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一上行信号包括所述多个终端设备发送的多个上行信号;
    其中,所述第一终端设备根据所述第一测量结果确定所述目标终端设备,包括:
    所述第一终端设备将满足第二预设条件的所述第一测量结果对应的终端设备,确定为所述目标终端设备,所述第二预设条件包括以下至少一项:
    所述多个上行信号中信号强度大于第二阈值的上行信号的信号强度、所述多个上行信号中频域资源 在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,在所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号之后,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第四信息,所述第四信息用于指示所述网络设备是否成功接收所述第一终端设备基于所述第二上行信号发送的反向散射信号。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,在所述第一终端设备根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号之后,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第五信息,所述第五信息包括第三上行信号的调度信息,所述第三上行信号是所述第二终端设备中的目标终端设备发送的;
    所述第一终端设备根据所述第五信息,基于所述第三上行信号向所述网络设备发送反向散射信号。
  13. 根据权利要求12所述的方法,其特征在于,所述第三上行信号是所述目标终端设备中满足第三预设条件的第二测量结果对应的终端设备发送的,在所述第一终端设备接收所述网络设备发送的第五信息之后,所述方法还包括:
    所述第一终端设备根据所述第五信息测量所述目标终端设备发送的第三上行信号,得到所述第二测量结果;
    所述第一终端设备确定所述目标终端设备中满足所述第三预设条件的所述第二测量结果对应的终端设备,所述第三预设条件包括以下至少一项:
    所述第三上行信号中信号强度大于第三阈值的上行信号的信号强度、所述第三上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  14. 根据权利要求13所述的方法,其特征在于,所述第一终端设备根据所述第五信息,基于所述第三上行信号向所述网络设备发送反向散射信号,包括:
    若所述目标终端设备中存在满足所述第三预设条件的所述第二测量结果对应的终端设备,则所述第一终端设备根据满足所述第三预设条件的所述第二测量结果对应的终端设备发送的上行信号向所述网络设备发送反向散射信号;
    若所述目标终端设备中不存在满足所述第三预设条件的所述第二测量结果对应的终端设备,则所述第一终端设备不发送反向散射信号。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一终端设备为零功耗终端设备。
  16. 一种通信方法,其特征在于,包括:
    网络设备接收第一终端设备基于第二上行信号发送的反向散射信号,所述反向散射信号是所述第一终端设备根据第一测量结果发送的,所述第一测量结果是所述第一终端设备对第二终端设备发送的第一上行信号测量后得到的。
  17. 根据权利要求16所述的方法,其特征在于,在所述网络设备接收第一终端设备基于第二上行信号发送的反向散射信号之前,所述方法还包括:
    所述网络设备向所述第一终端设备发送第一信息,所述第一信息包括所述第一上行信号的调度信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一上行信号为周期信号、非周期信号、半静态信号或动态调度信号。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,在所述网络设备接收第一终端设备基于第二上行信号发送的反向散射信号之前,所述方法还包括:
    所述网络设备向所述第一终端设备发送第二信息,所述第二信息包括所述第二上行信号的调度信息。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述第一终端设备发送的所述第一测量结果,其中,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、所述第一上行信号关联的终端设备的标识、及所述第一上行信号关联的调度信息的索引。
  21. 根据权利要求20所述的方法,其特征在于,所述第二终端设备包括多个终端设备,所述第一上行信号包括所述多个终端设备发送的多个上行信号;
    其中,所述网络设备接收所述第一终端设备发送的所述第一测量结果,包括:
    所述网络设备接收所述第一终端设备发送的信号强度满足第一预设条件的所述第一测量结果,所述第一预设条件包括以下至少一项:
    所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述第二终端设备中的目标终端设备发送的;
    其中,所述网络设备接收第一终端设备基于第二上行信号发送的反向散射信号之前,所述方法还包括:
    所述网络设备根据所述第一测量结果确定所述目标终端设备;
    所述网络设备向所述第一终端设备发送第三信息,所述第三信息用于指示所述目标终端设备。
  23. 根据权利要求16至19中任一项所述的方法,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述多个终端设备中的目标终端设备发送的,所述目标终端设备是所述第一终端设备根据所述第一测量结果确定的,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时域资源及所述第一上行信号关联的频域资源。
  24. 根据权利要求23所述的方法,其特征在于,所述第一上行信号包括所述多个终端设备发送的多个上行信号,所述目标终端设备是满足第二预设条件的所述第一测量结果对应的终端设备,所述第二预设条件包括以下至少一项:
    所述多个上行信号中信号强度大于第二阈值的上行信号的信号强度、所述多个上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  25. 根据权利要求16至24中任一项所述的方法,其特征在于,在所述网络设备接收第一终端设备基于第二上行信号发送的反向散射信号之后,所述方法还包括:
    所述网络设备向所述第一终端设备发送第四信息,所述第四信息用于指示所述网络设备是否成功接收所述第一终端设备基于所述第二上行信号发送的反向散射信号。
  26. 根据权利要求16至25中任一项所述的方法,其特征在于,在所述网络设备接收第一终端设备基于第二上行信号发送的反向散射信号之后,所述方法还包括:
    所述网络设备向所述第一终端设备发送第五信息,所述第五信息包括第三上行信号的调度信息,所述第三上行信号是所述第二终端设备中的目标终端设备发送的;
    所述网络设备接收所述第一终端设备发送的反向散射信号,所述反向散射信号是所述第一终端设备基于所述第三上行信号发送的。
  27. 根据权利要求26所述的方法,其特征在于,所述第三上行信号是所述目标终端设备中满足第三预设条件的所述第二测量结果对应的终端设备发送的,所述第三预设条件包括以下至少一项:
    所述第三上行信号中信号强度大于第三阈值的上行信号的信号强度、所述第三上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  28. 根据权利要求27所述的方法,其特征在于,在所述网络设备接收所述第一终端设备发送的反向散射信号之后,所述方法还包括:
    若所述网络设备接收到反向散射信号,则所述网络设备确定反向散射信号所在的上行信号是满足所述第三预设条件的所述第二测量结果对应的终端设备发送的;
    若所述网络设备未接收到反向散射信号,则所述网络设备确定所述目标终端设备中不存在满足所述第三预设条件的所述第二测量结果对应的终端设备。
  29. 根据权利要求16至28中任一项所述的方法,其特征在于,所述第一终端设备为零功耗终端设备。
  30. 一种通信装置,其特征在于,包括:
    测量单元,用于测量第一上行信号,得到第一测量结果;
    发送单元,用于根据所述第一测量结果,基于第二上行信号向网络设备发送反向散射信号;
    其中,所述第一上行信号是第二终端设备发送的。
  31. 根据权利要求30所述的装置,其特征在于,所述装置还包括接收单元,用于:接收所述网络设备发送的第一信息,所述第一信息包括所述第一上行信号的调度信息;所述测量单元具体用于:根据所述第一信息测量所述第一上行信号,得到所述第一测量结果。
  32. 根据权利要求30或31所述的装置,其特征在于,所述第一上行信号为周期信号、非周期信号、 半静态信号或动态调度信号。
  33. 根据权利要求30至32中任一项所述的装置,其特征在于,所述测量单元具体用于:在第一时间窗口内测量所述第一上行信号,得到所述第一测量结果。
  34. 根据权利要求30至33中任一项所述的装置,其特征在于,所述装置还包括接收单元,用于:接收所述网络设备发送的第二信息,所述第二信息包括所述第二上行信号的调度信息。
  35. 根据权利要求30至34中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述网络设备发送所述第一测量结果,其中,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、所述第一上行信号关联的终端设备的标识、及所述第一上行信号关联的调度信息的索引。
  36. 根据权利要求35所述的装置,其特征在于,所述第二终端设备包括多个终端设备,所述第一上行信号包括所述多个终端设备发送的多个上行信号;其中,所述发送单元具体用于:向所述网络设备发送信号强度满足第一预设条件的所述第一测量结果,所述第一预设条件包括以下至少一项:所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。
  37. 根据权利要求30至36中任一项所述的装置,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述第二终端设备中的目标终端设备发送的,所述装置还包括接收单元,用于:接收所述网络设备发送的第三信息,所述第三信息用于指示所述目标终端设备。
  38. 根据权利要求30至34中任一项所述的装置,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述多个终端设备中的目标终端设备发送的,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时域资源及所述第一上行信号关联的频域资源;其中,所述装置还包括确定单元,用于:确定所述目标终端设备;所述发送单元还用于:基于所述第二上行信号向所述网络设备发送反向散射信号。
  39. 根据权利要求38所述的装置,其特征在于,所述第一上行信号包括所述多个终端设备发送的多个上行信号;其中,所述确定单元具体用于:将满足第二预设条件的所述第一测量结果对应的终端设备,确定为所述目标终端设备,所述第二预设条件包括以下至少一项:所述多个上行信号中信号强度大于第二阈值的上行信号的信号强度、所述多个上行信号中频域资源在所述装置能够检测的带宽内的上行信号的频域资源、及所述多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  40. 根据权利要求30至39中任一项所述的装置,其特征在于,所述装置还包括接收单元,用于:接收所述网络设备发送的第四信息,所述第四信息用于指示所述网络设备是否成功接收所述装置基于所述第二上行信号发送的反向散射信号。
  41. 根据权利要求30至40中任一项所述的装置,其特征在于,所述装置还包括接收单元,用于:接收所述网络设备发送的第五信息,所述第五信息包括第三上行信号的调度信息,所述第三上行信号是所述第二终端设备中的目标终端设备发送的;所述发送单元还用于:根据所述第五信息,基于所述第三上行信号向所述网络设备发送反向散射信号。
  42. 根据权利要求41所述的装置,其特征在于,所述第三上行信号是所述目标终端设备中满足第三预设条件的第二测量结果对应的终端设备发送的,所述测量单元还用于:根据所述第五信息测量所述目标终端设备发送的第三上行信号,得到所述第二测量结果;所述装置还包括确定单元,用于:确定所述目标终端设备中满足第三预设条件的所述第二测量结果对应的终端设备,所述第三预设条件包括以下至少一项:所述第三上行信号中信号强度大于第三阈值的上行信号的信号强度、所述第三上行信号中频域资源在所述装置能够检测的带宽内的上行信号的频域资源、及所述第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  43. 根据权利要求42所述的装置,其特征在于,所述发送单元具体用于:若所述目标终端设备中存在满足所述第三预设条件的所述第二测量结果对应的终端设备,则根据满足所述第三预设条件的所述第二测量结果对应的终端设备发送的上行信号,向所述网络设备发送反向散射信号;若所述目标终端设备中不存在满足所述第三预设条件的所述第二测量结果对应的终端设备,则不发送反向散射信号。
  44. 根据权利要求30至43中任一项所述的装置,其特征在于,所述装置为零功耗终端设备。
  45. 一种通信装置,其特征在于,包括:
    接收单元,用于:接收第一终端设备基于第二上行信号发送的反向散射信号,所述反向散射信号是所述第一终端设备根据第一测量结果发送的,所述第一测量结果是所述第一终端设备对第二终端设备发送的第一上行信号测量后得到的。
  46. 根据权利要求45所述的装置,其特征在于,所述装置还包括发送单元,用于:向所述第一终端设备发送第一信息,所述第一信息包括所述第一上行信号的调度信息。
  47. 根据权利要求45或46所述的装置,其特征在于,所述第一上行信号为周期信号、非周期信号、半静态信号或动态调度信号。
  48. 根据权利要求45至47中任一项所述的装置,其特征在于,所述装置还包括发送单元,用于:向所述第一终端设备发送第二信息,所述第二信息包括所述第二上行信号的调度信息。
  49. 根据权利要求45至48中任一项所述的装置,其特征在于,所述接收单元还用于:
    接收所述第一终端设备发送的所述第一测量结果,其中,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时频资源、所述第一上行信号关联的时域资源、所述第一上行信号关联的频域资源、所述第一上行信号关联的终端设备的标识、及所述第一上行信号关联的调度信息的索引。
  50. 根据权利要求49所述的装置,其特征在于,所述第二终端设备包括多个终端设备,所述第一上行信号包括所述多个终端设备发送的多个上行信号;其中,所述接收单元具体用于:接收所述第一终端设备发送的信号强度满足第一预设条件的所述第一测量结果,所述第一预设条件包括以下至少一项:所述多个上行信号中信号强度大于第一阈值的全部上行信号的信号强度、所述多个上行信号中信号强度大于第一阈值的部分上行信号的信号强度及所述多个上行信号中信号强度最强的N个上行信号的信号强度,N为正整数。
  51. 根据权利要求45至50中任一项所述的装置,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述第二终端设备中的目标终端设备发送的;其中,所述装置还包括确定单元和发送单元,所述确定单元用于:根据所述第一测量结果确定所述目标终端设备;所述发送单元用于:向所述第一终端设备发送第三信息,所述第三信息用于指示所述目标终端设备。
  52. 根据权利要求45至48中任一项所述的装置,其特征在于,所述第二终端设备包括多个终端设备,所述第二上行信号是所述多个终端设备中的目标终端设备发送的,所述目标终端设备是所述第一终端设备根据所述第一测量结果确定的,所述第一测量结果包括以下至少一项:所述第一上行信号的信号强度、所述第一上行信号关联的时域资源及所述第一上行信号关联的频域资源。
  53. 根据权利要求52所述的装置,其特征在于,所述第一上行信号包括所述多个终端设备发送的多个上行信号,所述目标终端设备是满足第二预设条件的所述第一测量结果对应的终端设备,所述第二预设条件包括以下至少一项:所述多个上行信号中信号强度大于第二阈值的上行信号的信号强度、所述多个上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述多个上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  54. 根据权利要求45至53中任一项所述的装置,其特征在于,所述装置还包括发送单元,用于:向所述第一终端设备发送第四信息,所述第四信息用于指示所述装置是否成功接收所述第一终端设备基于所述第二上行信号发送的反向散射信号。
  55. 根据权利要求45至54中任一项所述的装置,其特征在于,所述装置还包括发送单元,用于:向所述第一终端设备发送第五信息,所述第五信息包括第三上行信号的调度信息,所述第三上行信号是所述第二终端设备中的目标终端设备发送的;
    所述接收单元还用于:接收所述第一终端设备发送的反向散射信号,所述反向散射信号是所述第一终端设备基于所述第三上行信号发送的。
  56. 根据权利要求55所述的装置,其特征在于,所述第三上行信号是所述目标终端设备中满足第三预设条件的第二测量结果对应的终端设备发送的,所述第三预设条件包括以下至少一项:所述第三上行信号中信号强度大于第三阈值的上行信号的信号强度、所述第三上行信号中频域资源在所述第一终端设备能够检测的带宽内的上行信号的频域资源、及所述第三上行信号中时域资源大于反向散射通信所需的上行信号的时域资源。
  57. 根据权利要求56所述的装置,其特征在于,所述装置还包括确定单元,用于:
    若所述装置接收到反向散射信号,则确定反向散射信号所在的上行信号是满足所述第三预设条件的所述第二测量结果对应的终端设备发送的;若所述装置未接收到反向散射信号,则确定所述目标终端设备中不存在满足所述第三预设条件的所述第二测量结果对应的终端设备。
  58. 根据权利要求45至57中任一项所述的装置,其特征在于,所述第一终端设备为零功耗终端设备。
  59. 一种通信装置,其特征在于,包括存储器、收发器和处理器,所述存储器用于存储程序,所述处理器通过所述收发器进行数据收发,所述处理器用于调用所述存储器中的程序,以执行如权利要求1至15中任一项所述的方法。
  60. 一种通信装置,其特征在于,包括存储器、收发器和处理器,所述存储器用于存储程序,所述处理器通过所述收发器进行数据收发,所述处理器用于调用所述存储器中的程序,以执行如权利要求16至29中任一项所述的方法。
  61. 一种通信装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1至15中任一项所述的方法。
  62. 一种通信装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求16至29中任一项所述的方法。
  63. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  64. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求16至29中任一项所述的方法。
  65. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1至15中任一项所述的方法。
  66. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求16至29中任一项所述的方法。
  67. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1至15中任一项所述的方法。
  68. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求16至29中任一项所述的方法。
  69. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  70. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求16至29中任一项所述的方法。
PCT/CN2022/087474 2022-04-18 2022-04-18 通信方法及通信装置 WO2023201481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087474 WO2023201481A1 (zh) 2022-04-18 2022-04-18 通信方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087474 WO2023201481A1 (zh) 2022-04-18 2022-04-18 通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023201481A1 true WO2023201481A1 (zh) 2023-10-26

Family

ID=88418824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087474 WO2023201481A1 (zh) 2022-04-18 2022-04-18 通信方法及通信装置

Country Status (1)

Country Link
WO (1) WO2023201481A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373892A1 (en) * 2016-06-23 2017-12-28 University Of Massachusetts Systems and methods for backscatter communication
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统
WO2021040594A1 (en) * 2019-08-30 2021-03-04 Varshney Ambuj Radio frequency communication device for low power communication
CN112637857A (zh) * 2019-09-24 2021-04-09 成都华为技术有限公司 一种共生网络中载波的调度方法、装置及存储介质
WO2021112649A1 (en) * 2019-12-06 2021-06-10 Lg Electronics Inc. Method and apparatus for positioning using backscatter tag
CN113645647A (zh) * 2020-04-27 2021-11-12 华为技术有限公司 接入通信系统的方法和通信装置
US20210368439A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Wlan wake up radio with backscattering
CN114287111A (zh) * 2019-09-02 2022-04-05 索尼集团公司 电子装置、无线通信方法和计算机可读介质
CN114337970A (zh) * 2021-12-31 2022-04-12 中国信息通信研究院 一种边链路信息传输方法和设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373892A1 (en) * 2016-06-23 2017-12-28 University Of Massachusetts Systems and methods for backscatter communication
CN107786255A (zh) * 2016-08-30 2018-03-09 华为技术有限公司 一种与射频设备通信的方法、装置及系统
WO2021040594A1 (en) * 2019-08-30 2021-03-04 Varshney Ambuj Radio frequency communication device for low power communication
CN114287111A (zh) * 2019-09-02 2022-04-05 索尼集团公司 电子装置、无线通信方法和计算机可读介质
CN112637857A (zh) * 2019-09-24 2021-04-09 成都华为技术有限公司 一种共生网络中载波的调度方法、装置及存储介质
WO2021112649A1 (en) * 2019-12-06 2021-06-10 Lg Electronics Inc. Method and apparatus for positioning using backscatter tag
CN113645647A (zh) * 2020-04-27 2021-11-12 华为技术有限公司 接入通信系统的方法和通信装置
US20210368439A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Wlan wake up radio with backscattering
CN114337970A (zh) * 2021-12-31 2022-04-12 中国信息通信研究院 一种边链路信息传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Updated views on Passive IoT", 3GPP DRAFT; RP-212135, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052049420 *

Similar Documents

Publication Publication Date Title
US20190253927A1 (en) Method and apparatus for transmitting and receiving duplicated data in wireless communication system
WO2023201481A1 (zh) 通信方法及通信装置
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2024050840A1 (zh) 通信方法及通信装置
WO2023206254A1 (zh) 通信方法及通信装置
CN111328127B (zh) 通信方法、通信装置及存储介质
WO2024021007A1 (zh) 通信方法及通信装置
WO2023168721A1 (zh) 配置资源的方法、终端以及网络设备
WO2023184283A1 (zh) 无线通信的方法及装置
WO2023168715A1 (zh) 确定时域资源的方法、终端设备及网络设备
WO2023039730A1 (zh) 通信方法、终端及网络设备
WO2023173376A1 (zh) 通信方法及通信装置
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
US20240147222A1 (en) Terminal recognition method and computer device
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023173379A1 (zh) 数据传输方法、第一设备和第二设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023167223A1 (ja) 通信制御方法
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
US20240160866A1 (en) Wireless communication method, terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937721

Country of ref document: EP

Kind code of ref document: A1