WO2023199851A1 - Semiconductor substrate manufacturing method, composition, and compound - Google Patents

Semiconductor substrate manufacturing method, composition, and compound Download PDF

Info

Publication number
WO2023199851A1
WO2023199851A1 PCT/JP2023/014339 JP2023014339W WO2023199851A1 WO 2023199851 A1 WO2023199851 A1 WO 2023199851A1 JP 2023014339 W JP2023014339 W JP 2023014339W WO 2023199851 A1 WO2023199851 A1 WO 2023199851A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
compound
represented
Prior art date
Application number
PCT/JP2023/014339
Other languages
French (fr)
Japanese (ja)
Inventor
温子 永縄
修平 山田
崇 片切
真也 阿部
大貴 中津
裕之 宮内
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023199851A1 publication Critical patent/WO2023199851A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/36Polyhydroxylic alcohols containing six-membered aromatic rings and other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/23Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/335Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/18Radicals substituted by singly bound hetero atoms other than halogen by sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a method for manufacturing a semiconductor substrate, a composition, and a compound.
  • a multilayer resist process is used in which a resist film is formed on a substrate through a resist underlayer film such as an organic underlayer film or a silicon-containing film, and then exposed and developed to form a resist pattern. It is being In this process, a desired pattern can be formed on a semiconductor substrate by etching the resist underlayer film using this resist pattern as a mask, and further etching the substrate using the obtained resist underlayer film pattern as a mask. (See Publication No. 2004-177668).
  • the organic underlayer film as the resist underlayer film is required to have etching resistance, heat resistance, and bending resistance.
  • the present invention has been made based on the above circumstances, and its object is to provide a method for manufacturing a semiconductor substrate using a composition for forming a resist underlayer film that can form a film having excellent etching resistance, heat resistance, and bending resistance. , compositions and compounds.
  • the present invention provides: a step of directly or indirectly applying a resist underlayer film forming composition to the substrate; forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating process; and a step of performing etching using the resist pattern as a mask,
  • the resist underlayer film forming composition described above is A compound represented by the following formula (1) (hereinafter also referred to as "[A] compound”), A solvent (hereinafter also referred to as "[B] solvent”).
  • [A] compound A compound represented by the following formula (1)
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members.
  • Ar 1 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).
  • the following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
  • X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv).
  • Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members.
  • L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 4 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 5 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • number of ring members refers to the number of atoms constituting the ring.
  • the biphenyl ring has 12 ring members
  • the naphthalene ring has 10 ring members
  • the fluorene ring has 13 ring members.
  • the present invention provides: A compound represented by the following formula (1), A composition comprising: a solvent; (In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.) (In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv).
  • Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members.
  • L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 4 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 5 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the present invention provides: The present invention relates to a compound represented by the following formula (1).
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members.
  • Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
  • X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv).
  • Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members.
  • L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 4 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 5 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • a resist underlayer film with excellent etching resistance, heat resistance, and bending resistance so that a good semiconductor substrate can be obtained.
  • a film having excellent etching resistance, heat resistance, and bending resistance can be formed.
  • a composition capable of forming a film having excellent etching resistance, heat resistance, and bending resistance can be provided. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.
  • FIG. 3 is a schematic plan view for explaining a method for evaluating bending resistance.
  • the method for manufacturing the semiconductor substrate includes a step of directly or indirectly coating the substrate with a composition for forming a resist underlayer film (hereinafter also referred to as a "coating step"), and a resist underlayer film formed by the above coating step.
  • the method includes a step of directly or indirectly forming a resist pattern on the substrate (hereinafter also referred to as a “resist pattern forming step”), and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as an "etching step").
  • the composition containing the compound described below is used as a composition for forming a resist underlayer film in the coating process, thereby producing a resist with excellent etching resistance, heat resistance, and bending resistance. Since the lower layer film can be formed, a semiconductor substrate having a good pattern shape can be manufactured.
  • the method for manufacturing the semiconductor substrate may further include a step of directly or indirectly forming a silicon-containing film on the resist underlayer film (hereinafter also referred to as "silicon-containing film forming step"), if necessary. .
  • composition for forming a resist underlayer film contains a [A] compound and a [B] solvent.
  • the composition may contain optional components within a range that does not impair the effects of the present invention.
  • the composition can form a film with excellent etching resistance, heat resistance, and bending resistance. Therefore, the composition can be used as a composition for forming a film. More specifically, the composition can be suitably used as a composition for forming a resist underlayer film in a multilayer resist process.
  • Compound is a compound represented by the above formula (1).
  • the composition can contain one or more [A] compounds.
  • the aromatic ring having 5 to 40 ring members in Ar 1 , Ar 2 , Ar 3 and Ar 4 is, for example, benzene. ring, aromatic hydrocarbon rings such as naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring, coronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring , aromatic heterocycles such as isoxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, or combinations thereof.
  • aromatic hydrocarbon rings such as naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring
  • the aromatic ring of Ar 1 is at least one aromatic hydrocarbon ring selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, and a coronene ring.
  • a benzene ring, a naphthalene ring, a pyrene ring or a fluorene ring is more preferable.
  • the monovalent group having an aromatic ring having 5 to 40 ring members represented by Ar 1 to Ar 4 is a monovalent group having an aromatic ring having 5 to 40 ring members, excluding one hydrogen atom from the aromatic ring having 5 to 40 ring members.
  • Preferred examples include such groups.
  • Ar 1 to Ar 4 may have a substituent.
  • substituents include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, Alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group, alkoxycarbonyloxy groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group, acyl group such as formyl group, acetyl group, propionyl group, butyryl group, cyano group, nitro group Examples include.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 examples include monovalent hydrocarbon groups having 1 to 20 carbon atoms; Examples include a group having a divalent heteroatom-containing group, a group in which part or all of the hydrogen atoms of the above hydrocarbon group are substituted with a monovalent heteroatom-containing group, or a combination thereof.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. Examples include 6 to 20 monovalent aromatic hydrocarbon groups or combinations thereof.
  • hydrocarbon group includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • This "hydrocarbon group” includes a saturated hydrocarbon group and an unsaturated hydrocarbon group.
  • chain hydrocarbon group refers to a hydrocarbon group that does not contain a ring structure and is composed only of a chain structure, and includes both linear hydrocarbon groups and branched hydrocarbon groups.
  • Alicyclic hydrocarbon group means a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic hydrocarbon groups.
  • Aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure as a ring structure (however, it does not need to be composed only of an aromatic ring structure, and some of it may have an alicyclic structure or a chain structure). structure).
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Alkyl groups; alkenyl groups such as ethenyl, propenyl and butenyl; alkynyl groups such as ethynyl, propynyl and butynyl; and the like.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cycloalkyl groups such as cyclopentyl group and cyclohexyl group; cycloalkenyl groups such as cyclopropenyl group, cyclopentenyl group, and cyclohexenyl group; norbornyl group; Examples include bridged ring saturated hydrocarbon groups such as adamantyl group and tricyclodecyl group; bridged ring unsaturated hydrocarbon groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include phenyl group, tolyl group, naphthyl group, anthracenyl group, and pyrenyl group.
  • heteroatom constituting the divalent or monovalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom, a boron atom, and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • divalent heteroatom-containing group examples include -CO-, -CS-, -NH-, -O-, -S-, and a combination thereof.
  • Examples of the monovalent heteroatom-containing group include a hydroxy group, a sulfanyl group, a cyano group, a nitro group, a halogen atom, a boronic acid group (-B(OH) 2 ), or an ester structure thereof.
  • Ar 5 , Ar 6 and Ar 7 are each independently represented by the above formula It is a substituted or unsubstituted aromatic ring having 6 to 20 ring members that forms a fused ring structure together with two adjacent carbon atoms in (1-1) and (1-2).
  • the aromatic ring having 6 to 20 ring members in Ar 5 to Ar 7 is an aromatic ring corresponding to 6 to 20 ring members among the aromatic rings having 5 to 40 ring members in Ar 1 to Ar 4 of the above formula (1).
  • Preferred examples include:
  • Ar 5 to Ar 7 may have a substituent.
  • the above-mentioned substituents that Ar 1 to Ar 4 may have can be suitably employed.
  • the divalent organic group having an aromatic ring in L 1 and L 2 includes two aromatic rings from Ar 1 to Ar 4 having 5 to 40 ring members.
  • a substituted or unsubstituted group (hereinafter also referred to as "group ( ⁇ )") excluding a hydrogen atom is preferably mentioned.
  • the divalent organic group having an aromatic ring represented by L 1 and L 2 is one of the group ( ⁇ ) and the monovalent organic group having 1 to 20 carbon atoms represented by R 1 to R 6 above. It may also be a group that is a combination of groups with hydrogen atoms removed.
  • the divalent organic group having an aromatic ring represented by L 1 and L 2 includes a substituted or unsubstituted arenediyl group having 6 to 12 ring members, a substituted or unsubstituted alkenediyl group having 2 to 10 carbon atoms, a carbon Alkyndiyl groups of 2 to 10 or a combination thereof are preferred, benzenediyl groups, naphthalenediyl groups, ethylenediyl groups, ethinediyl groups or combinations thereof are more preferred, and benzenediyl groups or a combination of benzenediyl groups and ethinediyl groups are preferred. More preferred.
  • the carbon atom in the above formula (1) is preferably bonded to the aromatic ring possessed by Ar 1 to Ar 4 in terms of heat resistance and bending resistance.
  • At least two of the above Ar 1 to Ar 4 have a group represented by the above formula (1-1) or (1-2). More preferably, at least three of Ar 1 to Ar 4 have groups represented by formula (1-1) or (1-2). More preferably, all of the above Ar 1 to Ar 4 have a group represented by the above formula (1-1) or (1-2).
  • At least one of Ar 1 to Ar 4 is a substituent selected from the group consisting of a hydroxy group, a group represented by the following formula (2-1), and a group represented by the following formula (2-2). It is preferable to have at least one group. Thereby, the etching resistance and heat resistance of the resulting resist underlayer film can be improved.
  • R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * indicates a bond with a carbon atom in an aromatic ring. It is a conjugate.
  • the divalent organic group having 1 to 20 carbon atoms represented by R 7 includes the above formulas (i), (ii), (iii) and ( Examples include a group obtained by removing one hydrogen atom from the monovalent organic group in R 1 to R 6 in iv).
  • R 7 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms such as a methanediyl group, ethanediyl group, or phenylene group, or a combination thereof and -O-; A combination with is more preferable.
  • Examples of the compound represented by the above formula (1) include compounds represented by the following formulas (1-1) to (1-48).
  • the lower limit of the molecular weight of the compound is preferably 500, more preferably 600, even more preferably 800, and particularly preferably 1000.
  • the upper limit of the molecular weight is preferably 3,000, more preferably 2,500, even more preferably 2,200, and particularly preferably 2,000. Note that the molecular weight is determined from the chemical formula.
  • the lower limit of the content of the [A] compound in the composition is preferably 2% by mass, more preferably 4% by mass, and even more preferably 6% by mass, based on the total mass of the [A] compound and the [B] solvent. Particularly preferred is 8% by weight.
  • the upper limit of the content ratio is preferably 30% by mass, more preferably 25% by mass, even more preferably 20% by mass, and particularly preferably 15% by mass, based on the total mass of the compound [A] and the solvent [B].
  • [A] Synthesis method of compound>
  • Compound can be typically synthesized according to the scheme below.
  • [A] A case where the compound has a group containing a fluorene structure in the above formula (1-1) will be explained as an example. Through a cross-coupling reaction between a boronic acid derivative (i) having an aromatic ring structure around the central carbon atom of the above formula (1) and a fluorene derivative (i-1), a compound expressed by the following formula (1- ⁇ ) is obtained.
  • Compound can be synthesized. Furthermore, it is also possible to modify the carbon atom or substituent at the 9-position of the fluorene structure.
  • Other structures include the aromatic ring structure around the central carbon of the starting material boronic acid derivative (i), the structure including substituents of the partner compound in the cross-coupling reaction, and the modification of the 9-position carbon atom of the fluorene structure. It can be synthesized by appropriately changing the structure and the like.
  • Ar a , Ar b , Ar c and Ar d are divalent aromatic rings.
  • Y is -OH or -OR'.
  • R' is a monovalent organic group.
  • Z is a It is a leaving group.
  • R' is a hydrogen atom or a monovalent substituent.
  • the [B] solvent is not particularly limited as long as it can dissolve or disperse the [A] compound and optional components contained therein.
  • [B] solvent examples include hydrocarbon solvents, ester solvents, alcohol solvents, ketone solvents, ether solvents, and nitrogen-containing solvents.
  • [B] Solvents can be used alone or in combination of two or more.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and cyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene, and xylene.
  • ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as ⁇ -butyrolactone, diethylene glycol monomethyl acetate, and propylene glycol monomethyl ether acetate.
  • Examples include alcohol partial ether carboxylate solvents and lactic acid ester solvents such as methyl lactate and ethyl lactate.
  • alcoholic solvents examples include monoalcoholic solvents such as methanol, ethanol, and n-propanol, and polyhydric alcoholic solvents such as ethylene glycol and 1,2-propylene glycol.
  • ketone solvents examples include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
  • ether solvents include chain ether solvents such as n-butyl ether, cyclic ether solvents such as tetrahydrofuran, polyhydric alcohol ether solvents such as propylene glycol dimethyl ether, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether. Examples include.
  • nitrogen-containing solvents examples include chain nitrogen-containing solvents such as N,N-dimethylacetamide, and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
  • the solvent is preferably an ester solvent or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent or a cyclic ketone solvent, and even more preferably propylene glycol monomethyl ether acetate or cyclohexanone.
  • the lower limit of the content of the [B] solvent in the composition is preferably 50% by mass, more preferably 60% by mass, and even more preferably 70% by mass.
  • the upper limit of the content ratio is preferably 99.9% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
  • the composition may contain optional components within a range that does not impair the effects of the present invention.
  • optional components include acid generators, crosslinking agents, surfactants, and polymers.
  • the optional components can be used alone or in combination of two or more.
  • the content ratio of the optional component in the composition can be determined as appropriate depending on the type of the optional component.
  • composition is prepared by mixing [A] the compound, [B] the solvent, and optional components in a predetermined ratio, and preferably filtering the resulting mixture using a membrane filter or the like with a pore size of 0.5 ⁇ m or less. It can be prepared by
  • a composition for forming a resist underlayer film is applied directly or indirectly to the substrate.
  • the above-mentioned composition is used as the resist underlayer film forming composition.
  • the method of applying the composition for forming a resist underlayer film is not particularly limited, and can be carried out by any suitable method such as spin coating, casting coating, roll coating, etc. A coating film is thereby formed, and a resist underlayer film is formed by volatilization of the [B] solvent.
  • the substrate examples include metal or semimetal substrates such as silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, and titanium substrates, and among these, silicon substrates are preferred.
  • the substrate may be a substrate on which a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like is formed.
  • Examples of cases in which the composition for forming a resist underlayer film is indirectly applied to the substrate include cases in which the composition for forming a resist underlayer film is applied onto a silicon-containing film, which will be described later, formed on the substrate.
  • the method for manufacturing the semiconductor substrate may include a step of heating the coating film formed by the above coating step. Heating the coating film promotes the formation of the resist underlayer film. More specifically, heating the coating film promotes volatilization of the [B] solvent.
  • Heating of the above-mentioned coating film may be performed under an air atmosphere or under a nitrogen atmosphere.
  • the lower limit of the heating temperature is preferably 200°C, more preferably 250°C, and even more preferably 300°C.
  • the upper limit of the heating temperature is preferably 600°C, more preferably 500°C.
  • the lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds.
  • the upper limit of the above time is preferably 1,200 seconds, more preferably 600 seconds.
  • the resist underlayer film may be exposed to light after the above coating step. After the above coating step, the resist underlayer film may be exposed to plasma. After the above coating step, ions may be implanted into the resist underlayer film. Exposure of the resist underlayer film improves the etching resistance of the resist underlayer film. Exposure of the resist underlayer film to plasma improves the etching resistance of the resist underlayer film. Ion implantation into the resist underlayer film improves the etching resistance of the resist underlayer film.
  • the radiation used for exposing the resist underlayer film is appropriately selected from electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and ⁇ -rays; and particle beams such as electron beams, molecular beams, and ion beams.
  • Examples of methods for exposing the resist underlayer film to plasma include a direct method in which the substrate is placed in each gas atmosphere and plasma is discharged.
  • the conditions for plasma exposure are usually a gas flow rate of 50 cc/min or more and 100 cc/min or less, and a supply power of 100 W or more and 1,500 W or less.
  • the lower limit of the plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the above time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
  • plasma is generated in an atmosphere of a mixed gas of H 2 gas and Ar gas.
  • a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced.
  • CF 4 gas, NF 3 gas, CHF 3 gas, CO 2 gas, CH 2 F 2 gas, CH 4 gas, and C 4 F 8 gas may be used. At least one of them may be introduced.
  • Ion implantation into the resist underlayer film involves injecting dopants into the resist underlayer film.
  • the dopant may be selected from the group consisting of boron, carbon, nitrogen, phosphorous, arsenic, aluminum, and tungsten.
  • the implant energy utilized to energize the dopant can range from approximately 0.5 keV to 60 keV, depending on the type of dopant utilized and the depth of implantation desired.
  • the lower limit of the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm.
  • the upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm. Note that the method for measuring the average thickness is as described in Examples.
  • a silicon-containing film is formed directly or indirectly on the resist underlayer film formed by the coating step or the heating step.
  • Examples of the case where a silicon-containing film is indirectly formed on the resist underlayer film include a case where a surface modification film of the resist underlayer film is formed on the resist underlayer film.
  • the surface-modified film of the resist underlayer film is, for example, a film that has a different contact angle with water from that of the resist underlayer film.
  • the silicon-containing film can be formed by coating a silicon-containing film-forming composition, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a method for forming a silicon-containing film by coating a silicon-containing film-forming composition for example, a coated film formed by directly or indirectly applying a silicon-containing film-forming composition to the resist underlayer film is used. , a method of curing by exposure and/or heating, and the like.
  • As commercially available silicon-containing film-forming compositions for example, "NFC SOG01", “NFC SOG04", “NFC SOG080" (all manufactured by JSR Corporation), etc. can be used.
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an amorphous silicon film can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • Examples of the radiation used in the exposure include electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and ⁇ -rays, and particle beams such as electron beams, molecular beams, and ion beams.
  • the lower limit of the temperature when heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 200°C.
  • the upper limit of the above temperature is preferably 550°C, more preferably 450°C, and even more preferably 300°C.
  • the lower limit of the average thickness of the silicon-containing film is preferably 1 nm, more preferably 10 nm, and even more preferably 20 nm.
  • the above upper limit is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
  • the average thickness of the silicon-containing film is a value measured using the spectroscopic ellipsometer described above.
  • a resist pattern is formed directly or indirectly on the resist underlayer film.
  • methods for performing this step include a method using a resist composition, a method using a nanoimprint method, a method using a self-assembling composition, and the like.
  • An example of a case where a resist pattern is indirectly formed on the resist underlayer film is a case where a resist pattern is formed on the silicon-containing film.
  • resist compositions examples include positive or negative chemically amplified resist compositions containing a radiation-sensitive acid generator, positive resist compositions containing an alkali-soluble resin and a quinone diazide photosensitizer, and alkali-soluble Examples include negative resist compositions containing a resin and a crosslinking agent, and metal-containing resist compositions containing metals such as tin, zirconium, and hafnium.
  • Examples of the coating method for the resist composition include a spin coating method.
  • the temperature and time of prebaking can be adjusted as appropriate depending on the type of resist composition used.
  • the radiation used for exposure can be appropriately selected depending on the type of radiation-sensitive acid generator used in the resist composition, and includes visible light, ultraviolet rays, far ultraviolet rays, X-rays, ⁇ -rays, etc. Examples include electromagnetic waves, electron beams, molecular beams, and particle beams such as ion beams.
  • KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F2 excimer laser light (wavelength 157 nm), Kr2 excimer laser light (wavelength 147 nm), ArKr excimer laser light Laser light (wavelength: 134 nm) or extreme ultraviolet light (wavelength: 13.5 nm, etc., hereinafter also referred to as "EUV”) is more preferred, and KrF excimer laser light, ArF excimer laser light, or EUV is even more preferred.
  • EUV extreme ultraviolet light
  • post-baking can be performed to improve resolution, pattern profile, developability, etc.
  • the temperature and time of this post-baking can be determined as appropriate depending on the type of resist composition used.
  • the exposed resist film is developed with a developer to form a resist pattern.
  • This development may be alkaline development or organic solvent development.
  • the developer include basic aqueous solutions such as ammonia, triethanolamine, tetramethylammonium hydroxide (TMAH), and tetraethylammonium hydroxide.
  • TMAH tetramethylammonium hydroxide
  • suitable amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants, and the like may be added.
  • examples of the developer include various organic solvents exemplified as the [B] solvent of the above-mentioned composition.
  • a predetermined resist pattern is formed by washing and drying.
  • etching is performed using the resist pattern as a mask.
  • the etching may be performed once or multiple times, that is, the etching may be performed sequentially using the pattern obtained by etching as a mask. From the viewpoint of obtaining a pattern with a better shape, it is preferable to repeat the process multiple times.
  • etching is performed multiple times, for example, the silicon-containing film, the resist underlayer film, and the substrate are etched in this order.
  • the etching method include dry etching, wet etching, and the like. From the viewpoint of improving the shape of the pattern on the substrate, dry etching is preferable. This dry etching uses, for example, gas plasma such as oxygen plasma.
  • Dry etching can be performed using, for example, a known dry etching device.
  • the etching gas used for dry etching can be appropriately selected depending on the mask pattern, the elemental composition of the film to be etched, etc. For example, CHF3 , CF4 , C2F6 , C3F8 , SF6, etc.
  • Fluorine gas chlorine gas such as Cl2 , BCl3 , oxygen gas such as O2 , O3 , H2O , H2, NH3 , CO, CO2 , CH4 , C2H2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, BCl 3 and other reducing gases, He, N 2 , Ar, etc. Examples include inert gas. These gases can also be used in combination. When etching a substrate using a pattern of a resist underlayer film as a mask, a fluorine-based gas is usually used.
  • composition contains a [A] compound and a [B] solvent.
  • a composition used in the method for manufacturing a semiconductor substrate described above can be suitably employed.
  • Compound The compound is a compound represented by the above formula (1).
  • the [A] compound used in the method for manufacturing the semiconductor substrate described above can be suitably employed.
  • Mw Weight average molecular weight
  • the average thickness of the resist underlayer film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by J.A. WOOLLAM) at arbitrary intervals of 5 cm including the center of the resist underlayer film formed on a 12-inch silicon wafer (substrate). The film thickness was measured at nine positions, and the average value of these film thicknesses was determined as the calculated value.
  • the organic phase was washed three times with 200 g of water.
  • the organic phase was concentrated using an evaporator, poured into 150 g of hexane, and reprecipitated. After washing the obtained precipitate with hexane, the solid was collected by suction filtration and dried. Subsequently, in order to deprotect the tert-butyldimethylsilyl group, 11.5 g of tetrabutylammonium fluoride and 200 g of tetrahydrofuran were added to 17.38 g of the dried solid, and the mixture was reacted at room temperature for 30 minutes.
  • Polymer The polymers (x-1) to (x-2) synthesized above, and the polymers (E-1) to (E-2) represented by the following formulas (E-1) to (E-2) ) (The number next to the repeating unit represents the content ratio (mol%) of each repeating unit.)
  • Example 1 [A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The resulting solution was filtered through a polytetrafluoroethylene (PTFE) membrane filter with a pore size of 0.45 ⁇ m to prepare a composition (J-1).
  • PTFE polytetrafluoroethylene
  • Example 1 to 37 and Comparative Examples 1 to 2 Compositions (J-2) to (J-37) and (CJ-1) to (CJ-2) were prepared in the same manner as in Example 1, except that the types and contents of each component shown in Table 1 below were used. ) was prepared.
  • Table 1 “-" in the columns of "[A] Compound,””Polymer,””[C] Acid Generator,” and "[D] Crosslinking Agent” indicates that the corresponding component was not used. show.
  • the composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 350°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained.
  • etching rate (nm/min) was calculated from the average thickness of the film before and after the treatment.
  • the ratio to Comparative Example 1 was calculated based on the etching rate of Comparative Example 1, and this ratio was used as a measure of etching resistance.
  • Etching resistance is rated "A" (very good) if the above ratio is 0.90 or less, "B" (good) if it is more than 0.90 and less than 0.92, and "B" (good) if it is 0.92 or more. It was evaluated as “C” (poor). Note that "-" in Table 2 indicates that it is an evaluation criterion for etching resistance.
  • the composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 200°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained.
  • the powder was collected by scraping the film of the film-coated substrate obtained above, and the collected powder was placed in a container used for measurement with a TG-DTA device (NETZSCH's "TG-DTA2000SR”), and the powder was placed before heating. The mass was measured.
  • M L ⁇ (m1-m2)/m1 ⁇ 100
  • M L is the mass reduction rate (%)
  • m1 is the mass (mg) before heating
  • m2 is the mass (mg) at 400°C.
  • heat resistance the smaller the mass reduction rate of the sample powder, the less sublimate and film decomposition products are generated during heating of the film, which is better.
  • Heat resistance is rated “A” (very good) if the mass reduction rate is less than 5%, “B” (good) if it is 5% or more and less than 10%, and “C” (good) if it is 10% or more. Poor).
  • the composition prepared above was coated on a silicon substrate on which a silicon dioxide film with an average thickness of 500 nm was formed by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, the substrate was heated at 400° C. for 60 seconds in an air atmosphere and then cooled at 23° C. for 60 seconds to obtain a film-coated substrate on which a resist underlayer film with an average thickness of 200 nm was formed.
  • a silicon-containing film-forming composition (“NFC SOG080" by JSR Corporation) was coated on the film-coated substrate obtained above by a spin coating method, and then heated at 200°C for 60 seconds in an air atmosphere. , and further heated at 300° C.
  • An ArF resist composition (“AR1682J” manufactured by JSR Corporation) was coated on the silicon-containing film using a spin coating method, and heated (baked) at 130°C for 60 seconds in an air atmosphere to reduce the average thickness. A 200 nm resist film was formed.
  • the resist film was coated using an ArF excimer laser exposure device (lens numerical aperture 0.78, exposure wavelength 193 nm) by changing the exposure amount through a one-to-one line-and-space mask pattern with a target size of 100 nm.
  • TMAH tetramethylammonium hydroxide
  • CF 4 200 sccm, PRESS.
  • O 2 400 sccm, PRESS.
  • CF 4 180 sccm
  • Ar 360 sccm
  • the shape of the resist underlayer film pattern for each line width was examined using a scanning electron microscope (“CG-4000” manufactured by Hitachi High-Technologies Corporation) at a magnification of 250,000 times.
  • CG-4000 manufactured by Hitachi High-Technologies Corporation
  • measurements were taken at 10 locations at 100 nm intervals on the side surface 3a of the resist underlayer film pattern 3 (line pattern) with a length of 1,000 nm, as shown in FIG.
  • LER which indicates the degree of curvature of the resist underlayer film pattern
  • the bending resistance is rated "A" (good) when the line width of the film pattern with LER of 5.5 nm is less than 35.0 nm, and "B” (fair) when it is 35.0 nm or more and less than 40.0 nm. Good), and cases where it was 40.0 nm or more were evaluated as "C” (poor). Note that the degree of curvature of the film pattern shown in FIG. 1 is exaggerated compared to the actual state.
  • the resist underlayer film formed from the composition of the example has superior etching resistance, heat resistance, and bending resistance compared to the resist underlayer film formed from the composition of the comparative example. was.
  • a substrate that is well patterned can be obtained.
  • the composition of the present invention can form a resist underlayer film having excellent etching resistance, heat resistance, and bending resistance.
  • the compound of the present invention can provide a composition capable of forming a film having excellent etching resistance, heat resistance, and bending resistance. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are: a semiconductor substrate manufacturing method using a resist underlayer film-forming composition from which it is possible to form a film having excellent etching resistance, heat resistance, and bending resistance; a composition; and a compound. This semiconductor substrate manufacturing method comprises a step for directly or indirectly applying a resist underlayer film-forming composition on a substrate, a step for directly or indirectly forming a resist pattern on the resist underlayer film formed in the application step, and a step for performing etching by using the resist pattern as a mask. The resist underlayer film-forming composition contains a solvent and a compound represented by formula (1). (In formula (1), Ar1, Ar2, Ar3, and Ar4 each represent a substituted or unsubstituted monovalent group having an aromatic ring with 5-40 ring members, and at least one thereof has a group represented by formula (1-1) or (1-2).) (In formulae (1-1) and (1-2), Ar5, Ar6, and Ar7 each represent a substituted or unsubstituted aromatic ring that has 6-20 ring members and that forms a fused ring structure.)

Description

半導体基板の製造方法、組成物及び化合物Manufacturing method, composition and compound of semiconductor substrate
 本発明は、半導体基板の製造方法、組成物及び化合物に関する。 The present invention relates to a method for manufacturing a semiconductor substrate, a composition, and a compound.
 半導体デバイスの製造にあっては、例えば、基板上に有機下層膜、ケイ素含有膜などのレジスト下層膜を介して積層されたレジスト膜を露光及び現像してレジストパターンを形成する多層レジストプロセスが用いられている。このプロセスでは、このレジストパターンをマスクとしてレジスト下層膜をエッチングし、得られたレジスト下層膜パターンをマスクとしてさらに基板をエッチングすることで、半導体基板に所望のパターンを形成することができる(特開2004-177668号公報参照)。 In the manufacture of semiconductor devices, for example, a multilayer resist process is used in which a resist film is formed on a substrate through a resist underlayer film such as an organic underlayer film or a silicon-containing film, and then exposed and developed to form a resist pattern. It is being In this process, a desired pattern can be formed on a semiconductor substrate by etching the resist underlayer film using this resist pattern as a mask, and further etching the substrate using the obtained resist underlayer film pattern as a mask. (See Publication No. 2004-177668).
 このようなレジスト下層膜形成用組成物に用いられる材料について、種々の検討が行われている(国際公開第2011/108365号参照)。 Various studies have been conducted on materials used in such resist underlayer film forming compositions (see International Publication No. 2011/108365).
特開2004-177668号公報Japanese Patent Application Publication No. 2004-177668 国際公開第2011/108365号International Publication No. 2011/108365
 多層レジストプロセスにおいて、レジスト下層膜としての有機下層膜にはエッチング耐性、耐熱性及び曲がり耐性が要求される。 In the multilayer resist process, the organic underlayer film as the resist underlayer film is required to have etching resistance, heat resistance, and bending resistance.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、エッチング耐性、耐熱性及び曲がり耐性に優れる膜を形成可能なレジスト下層膜形成用組成物を用いる半導体基板の製造方法、組成物及び化合物を提供することにある。 The present invention has been made based on the above circumstances, and its object is to provide a method for manufacturing a semiconductor substrate using a composition for forming a resist underlayer film that can form a film having excellent etching resistance, heat resistance, and bending resistance. , compositions and compounds.
 本発明は、一実施形態において、
 基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
 上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程と、
 上記レジストパターンをマスクとしたエッチングを行う工程と
 を含み、
 上記レジスト下層膜形成用組成物が、
 下記式(1)で表される化合物(以下、「[A]化合物」ともいう。)と、
 溶媒(以下、「[B]溶媒」ともいう。)と
 を含有する、半導体基板の製造方法に関する。
Figure JPOXMLDOC01-appb-C000012
(式(1)中、Ar、Ar、Ar及びArは、それぞれ独立して、置換又は非置換の環員数5~40の芳香環を有する1価の基である。Ar、Ar、Ar及びArのうちの少なくとも1つは、下記式(1-1)又は(1-2)で表される基を有する。下記式(1-1)又は(1-2)で表される基が複数存在する場合、複数の当該基は互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000013
(式(1-1)及び(1-2)中、X及びXは、それぞれ独立して、下記式(i)、(ii)、(iii)又は(iv)で表される基である。Ar、Ar及びArは、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。L及びLは、それぞれ独立して、単結合又は芳香環を有する2価の有機基である。*は、上記式(1)における炭素原子との結合手である。)
Figure JPOXMLDOC01-appb-C000014
(式(i)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。
 式(ii)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。
 式(iii)中、Rは、炭素数1~20の1価の有機基である。
 式(iv)中、Rは、水素原子又は炭素数1~20の1価の有機基である。)
In one embodiment, the present invention provides:
a step of directly or indirectly applying a resist underlayer film forming composition to the substrate;
forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating process;
and a step of performing etching using the resist pattern as a mask,
The resist underlayer film forming composition described above is
A compound represented by the following formula (1) (hereinafter also referred to as "[A] compound"),
A solvent (hereinafter also referred to as "[B] solvent").
Figure JPOXMLDOC01-appb-C000012
(In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
Figure JPOXMLDOC01-appb-C000013
(In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv). Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members. L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
Figure JPOXMLDOC01-appb-C000014
(In formula (i), R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
In formula (ii), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 1 to 20 carbon atoms.
In formula (iii), R 5 is a monovalent organic group having 1 to 20 carbon atoms.
In formula (iv), R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. )
 本明細書において、「環員数」とは、環を構成する原子の数をいう。例えば、ビフェニル環の環員数は12であり、ナフタレン環の環員数は10であり、フルオレン環の環員数は13である。 As used herein, "number of ring members" refers to the number of atoms constituting the ring. For example, the biphenyl ring has 12 ring members, the naphthalene ring has 10 ring members, and the fluorene ring has 13 ring members.
 本発明は、一実施形態において、
 下記式(1)で表される化合物と、
 溶媒と
 を含有する、組成物に関する。
Figure JPOXMLDOC01-appb-C000015
(式(1)中、Ar、Ar、Ar及びArは、それぞれ独立して、置換又は非置換の環員数5~40の芳香環を有する1価の基である。Ar、Ar、Ar及びArのうちの少なくとも1つは、下記式(1-1)又は(1-2)で表される基を有する。下記式(1-1)又は(1-2)で表される基が複数存在する場合、複数の当該基は互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000016
(式(1-1)及び(1-2)中、X及びXは、それぞれ独立して、下記式(i)、(ii)、(iii)又は(iv)で表される基である。Ar、Ar及びArは、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。L及びLは、それぞれ独立して、単結合又は芳香環を有する2価の有機基である。*は、上記式(1)における炭素原子との結合手である。)
Figure JPOXMLDOC01-appb-C000017
(式(i)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。
 式(ii)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。
 式(iii)中、Rは、炭素数1~20の1価の有機基である。
 式(iv)中、Rは、水素原子又は炭素数1~20の1価の有機基である。)
In one embodiment, the present invention provides:
A compound represented by the following formula (1),
A composition comprising: a solvent;
Figure JPOXMLDOC01-appb-C000015
(In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
Figure JPOXMLDOC01-appb-C000016
(In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv). Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members. L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
Figure JPOXMLDOC01-appb-C000017
(In formula (i), R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
In formula (ii), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 1 to 20 carbon atoms.
In formula (iii), R 5 is a monovalent organic group having 1 to 20 carbon atoms.
In formula (iv), R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. )
 本発明は、一実施形態において、
 下記式(1)で表される化合物に関する。
Figure JPOXMLDOC01-appb-C000018
(式(1)中、Ar、Ar、Ar及びArは、それぞれ独立して、置換又は非置換の環員数5~40の芳香環を有する1価の基である。Ar、Ar、Ar及びArのうちの少なくとも1つは、下記式(1-1)又は(1-2)で表される基を有する。下記式(1-1)又は(1-2)で表される基が複数存在する場合、複数の当該基は互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000019
(式(1-1)及び(1-2)中、X及びXは、それぞれ独立して、下記式(i)、(ii)、(iii)又は(iv)で表される基である。Ar、Ar及びArは、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。L及びLは、それぞれ独立して、単結合又は芳香環を有する2価の有機基である。*は、上記式(1)における炭素原子との結合手である。)
Figure JPOXMLDOC01-appb-C000020
(式(i)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。
 式(ii)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。
 式(iii)中、Rは、炭素数1~20の1価の有機基である。
 式(iv)中、Rは、水素原子又は炭素数1~20の1価の有機基である。)
In one embodiment, the present invention provides:
The present invention relates to a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000018
(In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
Figure JPOXMLDOC01-appb-C000019
(In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv). Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members. L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
Figure JPOXMLDOC01-appb-C000020
(In formula (i), R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
In formula (ii), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 1 to 20 carbon atoms.
In formula (iii), R 5 is a monovalent organic group having 1 to 20 carbon atoms.
In formula (iv), R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. )
 当該半導体基板の製造方法によれば、エッチング耐性、耐熱性及び曲がり耐性に優れたレジスト下層膜を形成することができるため、良好な半導体基板を得ることができる。当該組成物によれば、エッチング耐性、耐熱性及び曲がり耐性に優れる膜を形成することができる。当該化合物によれば、エッチング耐性、耐熱性及び曲がり耐性に優れる膜を形成可能な組成物を与えることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the method for manufacturing a semiconductor substrate, it is possible to form a resist underlayer film with excellent etching resistance, heat resistance, and bending resistance, so that a good semiconductor substrate can be obtained. According to the composition, a film having excellent etching resistance, heat resistance, and bending resistance can be formed. According to the compound, a composition capable of forming a film having excellent etching resistance, heat resistance, and bending resistance can be provided. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.
曲がり耐性の評価方法を説明するための模式的平面図である。FIG. 3 is a schematic plan view for explaining a method for evaluating bending resistance.
 以下、本発明の各実施形態に係る半導体基板の製造方法、組成物及び化合物について詳説する。実施形態において好適な態様の組み合わせもまた好ましい。 Hereinafter, a method for manufacturing a semiconductor substrate, a composition, and a compound according to each embodiment of the present invention will be explained in detail. Combinations of preferred aspects in embodiments are also preferred.
《半導体基板の製造方法》
 当該半導体基板の製造方法は、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、上記レジストパターンをマスクとしたエッチングを行う工程(以下、「エッチング工程」ともいう)とを備える。
《Method for manufacturing semiconductor substrate》
The method for manufacturing the semiconductor substrate includes a step of directly or indirectly coating the substrate with a composition for forming a resist underlayer film (hereinafter also referred to as a "coating step"), and a resist underlayer film formed by the above coating step. The method includes a step of directly or indirectly forming a resist pattern on the substrate (hereinafter also referred to as a "resist pattern forming step"), and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as an "etching step").
 当該半導体基板の製造方法によれば、上記塗工工程においてレジスト下層膜形成用組成物として後述の当該化合物を含有する当該組成物を用いることにより、エッチング耐性、耐熱性及び曲がり耐性に優れたレジスト下層膜を形成することができるため、良好なパターン形状を有する半導体基板を製造することができる。 According to the method for manufacturing a semiconductor substrate, the composition containing the compound described below is used as a composition for forming a resist underlayer film in the coating process, thereby producing a resist with excellent etching resistance, heat resistance, and bending resistance. Since the lower layer film can be formed, a semiconductor substrate having a good pattern shape can be manufactured.
 当該半導体基板の製造方法は、必要に応じて、上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)をさらに備えていてもよい。 The method for manufacturing the semiconductor substrate may further include a step of directly or indirectly forming a silicon-containing film on the resist underlayer film (hereinafter also referred to as "silicon-containing film forming step"), if necessary. .
 以下、当該半導体基板の製造方法に用いる組成物及び各工程について説明する。 Hereinafter, the composition and each process used in the method for manufacturing the semiconductor substrate will be explained.
<組成物>
 レジスト下層膜形成用組成物としての当該組成物は、[A]化合物と[B]溶媒とを含有する。当該組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。
<Composition>
The composition for forming a resist underlayer film contains a [A] compound and a [B] solvent. The composition may contain optional components within a range that does not impair the effects of the present invention.
 当該組成物は、[A]化合物と[B]溶媒とを含有することにより、エッチング耐性、耐熱性及び曲がり耐性に優れる膜を形成することができる。したがって、当該組成物は膜を形成するための組成物として用いることができる。より詳細には、当該組成物は、多層レジストプロセスにおけるレジスト下層膜を形成するための組成物として好適に用いることができる。 By containing the [A] compound and the [B] solvent, the composition can form a film with excellent etching resistance, heat resistance, and bending resistance. Therefore, the composition can be used as a composition for forming a film. More specifically, the composition can be suitably used as a composition for forming a resist underlayer film in a multilayer resist process.
 以下、当該組成物が含有する各成分について説明する。 Hereinafter, each component contained in the composition will be explained.
<[A]化合物>
 [A]化合物は、上記式(1)で表される化合物である。当該組成物は、1種又は2種以上の[A]化合物を含有することができる。
<[A] Compound>
[A] Compound is a compound represented by the above formula (1). The composition can contain one or more [A] compounds.
 上記式(1)中、Ar、Ar、Ar及びAr(以下、「Ar~Ar」と表記することもある。)における環員数5~40の芳香環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環、コロネン環等の芳香族炭化水素環、フラン環、ピロール環、チオフェン環、ホスホール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環等の芳香族複素環、又はこれらの組み合わせ等が挙げられる。上記Arの芳香環は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましく、ベンゼン環、ナフタレン環、ピレン環又はフルオレン環であることがより好ましい。 In the above formula (1), the aromatic ring having 5 to 40 ring members in Ar 1 , Ar 2 , Ar 3 and Ar 4 (hereinafter sometimes referred to as "Ar 1 to Ar 4 ") is, for example, benzene. ring, aromatic hydrocarbon rings such as naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring, coronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring , aromatic heterocycles such as isoxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, or combinations thereof. The aromatic ring of Ar 1 is at least one aromatic hydrocarbon ring selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, and a coronene ring. A benzene ring, a naphthalene ring, a pyrene ring or a fluorene ring is more preferable.
 上記式(1)中、Ar~Arで表される環員数5~40の芳香環を有する1価の基としては、上記環員数5~40の芳香環から1個の水素原子を除いた基等が好適に挙げられる。 In the above formula (1), the monovalent group having an aromatic ring having 5 to 40 ring members represented by Ar 1 to Ar 4 is a monovalent group having an aromatic ring having 5 to 40 ring members, excluding one hydrogen atom from the aromatic ring having 5 to 40 ring members. Preferred examples include such groups.
 Ar~Arは置換基を有していてもよい。置換基としては、例えば炭素数1~10の1価の鎖状炭化水素基、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基、ホルミル基、アセチル基、プロピオニル基、ブチリル基等のアシル基、シアノ基、ニトロ基などが挙げられる。 Ar 1 to Ar 4 may have a substituent. Examples of the substituent include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, Alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group, alkoxycarbonyloxy groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group, acyl group such as formyl group, acetyl group, propionyl group, butyryl group, cyano group, nitro group Examples include.
 上記式(i)、(ii)、(iii)及び(iv)において、R、R、R、R、R及びR(以下、「R~R」と表記することもある。)で表される炭素数1~20の1価の有機基としては、例えば、炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間若しくは炭素鎖末端に2価のヘテロ原子含有基を有する基、上記炭化水素基が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基又はこれらの組み合わせ等があげられる。 In the above formulas (i), (ii), (iii) and (iv), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 (hereinafter referred to as "R 1 to R 6 ") Examples of monovalent organic groups having 1 to 20 carbon atoms include monovalent hydrocarbon groups having 1 to 20 carbon atoms; Examples include a group having a divalent heteroatom-containing group, a group in which part or all of the hydrogen atoms of the above hydrocarbon group are substituted with a monovalent heteroatom-containing group, or a combination thereof.
 炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基又はこれらの組み合わせ等があげられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. Examples include 6 to 20 monovalent aromatic hydrocarbon groups or combinations thereof.
 本明細書において、「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」には、飽和炭化水素基及び不飽和炭化水素基が含まれる。「鎖状炭化水素基」とは、環構造を含まず、鎖状構造のみで構成された炭化水素基を意味し、直鎖状炭化水素基及び分岐鎖状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基を意味し、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む(ただし、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい)。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する(ただし、芳香環構造のみで構成されている必要はなく、その一部に脂環構造や鎖状構造を含んでいてもよい)。 In this specification, the "hydrocarbon group" includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. This "hydrocarbon group" includes a saturated hydrocarbon group and an unsaturated hydrocarbon group. The term "chain hydrocarbon group" refers to a hydrocarbon group that does not contain a ring structure and is composed only of a chain structure, and includes both linear hydrocarbon groups and branched hydrocarbon groups. "Alicyclic hydrocarbon group" means a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic hydrocarbon groups. (However, it does not need to be composed only of an alicyclic structure, and may include a chain structure as part of it.) "Aromatic hydrocarbon group" means a hydrocarbon group containing an aromatic ring structure as a ring structure (however, it does not need to be composed only of an aromatic ring structure, and some of it may have an alicyclic structure or a chain structure). structure).
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;エテニル基、プロペニル基、ブテニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Alkyl groups; alkenyl groups such as ethenyl, propenyl and butenyl; alkynyl groups such as ethynyl, propynyl and butynyl; and the like.
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等のシクロアルキル基;シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等のシクロアルケニル基;ノルボルニル基、アダマンチル基、トリシクロデシル基等の橋かけ環飽和炭化水素基;ノルボルネニル基、トリシクロデセニル基等の橋かけ環不飽和炭化水素基などが挙げられる。 Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cycloalkyl groups such as cyclopentyl group and cyclohexyl group; cycloalkenyl groups such as cyclopropenyl group, cyclopentenyl group, and cyclohexenyl group; norbornyl group; Examples include bridged ring saturated hydrocarbon groups such as adamantyl group and tricyclodecyl group; bridged ring unsaturated hydrocarbon groups such as norbornenyl group and tricyclodecenyl group.
 炭素数6~20の1価の芳香族炭化水素基としては、フェニル基、トリル基、ナフチル基、アントラセニル基、ピレニル基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include phenyl group, tolyl group, naphthyl group, anthracenyl group, and pyrenyl group.
 2価又は1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子、ホウ素原子等があげられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。 Examples of the heteroatom constituting the divalent or monovalent heteroatom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom, a boron atom, and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 2価のヘテロ原子含有基としては、例えば、-CO-、-CS-、-NH-、-O-、-S-、これらを組み合わせた基等があげられる。 Examples of the divalent heteroatom-containing group include -CO-, -CS-, -NH-, -O-, -S-, and a combination thereof.
 1価のヘテロ原子含有基としては、例えば、ヒドロキシ基、スルファニル基、シアノ基、ニトロ基、ハロゲン原子、又はボロン酸基(-B(OH))若しくはそのエステル構造があげられる。 Examples of the monovalent heteroatom-containing group include a hydroxy group, a sulfanyl group, a cyano group, a nitro group, a halogen atom, a boronic acid group (-B(OH) 2 ), or an ester structure thereof.
 上記式(1-1)及び(1-2)中、Ar、Ar及びAr(以下、「Ar~Ar」と表記することもある。)は、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。Ar~Arにおける環員数6~20の芳香環としては、上記式(1)のAr~Arにおける環員数5~40の芳香環のうち環員数6~20に対応する芳香環が好適に挙げられる。 In the above formulas (1-1) and (1-2), Ar 5 , Ar 6 and Ar 7 (hereinafter sometimes referred to as "Ar 5 to Ar 7 ") are each independently represented by the above formula It is a substituted or unsubstituted aromatic ring having 6 to 20 ring members that forms a fused ring structure together with two adjacent carbon atoms in (1-1) and (1-2). The aromatic ring having 6 to 20 ring members in Ar 5 to Ar 7 is an aromatic ring corresponding to 6 to 20 ring members among the aromatic rings having 5 to 40 ring members in Ar 1 to Ar 4 of the above formula (1). Preferred examples include:
 Ar~Arは置換基を有していてもよい。置換基としては、Ar~Arが有し得る上記置換基を好適に採用することができる。 Ar 5 to Ar 7 may have a substituent. As the substituent, the above-mentioned substituents that Ar 1 to Ar 4 may have can be suitably employed.
 上記式(1-1)及び(1-2)中、L及びLにおける芳香環を有する2価の有機基としては、Ar~Arにおける環員数5~40の芳香環から2個の水素原子を除いた置換又は非置換の基(以下、「基(α)」ともいう。)が好適に挙げられる。L及びLで表される芳香環を有する2価の有機基としては、当該基(α)と上記R~Rで表される炭素数1~20の1価の有機基から1個の水素原子を除いた基とを組み合わせた基であってもよい。L及びLで表される芳香環を有する2価の有機基としては、置換又は非置換の環員数6~12のアレーンジイル基、置換又は非置換の炭素数2~10のアルケンジイル基、炭素数2~10のアルキンジイル基又はこれらの組み合わせが好ましく、ベンゼンジイル基、ナフタレンジイル基、エチレンジイル基、エチンジイル基又はこれらの組み合わせがより好ましく、ベンゼンジイル基又はベンゼンジイル基とエチンジイル基との組み合わせがさらに好ましい。 In the above formulas (1-1) and (1-2), the divalent organic group having an aromatic ring in L 1 and L 2 includes two aromatic rings from Ar 1 to Ar 4 having 5 to 40 ring members. A substituted or unsubstituted group (hereinafter also referred to as "group (α)") excluding a hydrogen atom is preferably mentioned. The divalent organic group having an aromatic ring represented by L 1 and L 2 is one of the group (α) and the monovalent organic group having 1 to 20 carbon atoms represented by R 1 to R 6 above. It may also be a group that is a combination of groups with hydrogen atoms removed. The divalent organic group having an aromatic ring represented by L 1 and L 2 includes a substituted or unsubstituted arenediyl group having 6 to 12 ring members, a substituted or unsubstituted alkenediyl group having 2 to 10 carbon atoms, a carbon Alkyndiyl groups of 2 to 10 or a combination thereof are preferred, benzenediyl groups, naphthalenediyl groups, ethylenediyl groups, ethinediyl groups or combinations thereof are more preferred, and benzenediyl groups or a combination of benzenediyl groups and ethinediyl groups are preferred. More preferred.
 上記式(1)における炭素原子は、耐熱性や曲がり耐性の点で、Ar~Arが有する芳香環と結合することが好ましい。 The carbon atom in the above formula (1) is preferably bonded to the aromatic ring possessed by Ar 1 to Ar 4 in terms of heat resistance and bending resistance.
 上記Ar~Arのうちの少なくとも2つが、上記式(1-1)又は(1-2)で表される基を有することが好ましい。より好ましくは、上記Ar~Arのうちの少なくとも3つが、上記式(1-1)又は(1-2)で表される基を有する。さらに好ましくは、上記Ar~Arの全てが、上記式(1-1)又は(1-2)で表される基を有する。 It is preferable that at least two of the above Ar 1 to Ar 4 have a group represented by the above formula (1-1) or (1-2). More preferably, at least three of Ar 1 to Ar 4 have groups represented by formula (1-1) or (1-2). More preferably, all of the above Ar 1 to Ar 4 have a group represented by the above formula (1-1) or (1-2).
 Ar~Arのうちの少なくとも1つは、置換基として、ヒドロキシ基、下記式(2-1)で表される基及び下記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有することが好ましい。これにより、得られるレジスト下層膜のエッチング耐性や耐熱性を向上させることができる。
Figure JPOXMLDOC01-appb-C000021
(式(2-1)及び(2-2)中、Rは、それぞれ独立して、炭素数1~20の2価の有機基又は単結合である。*は芳香環における炭素原子との結合手である。)
At least one of Ar 1 to Ar 4 is a substituent selected from the group consisting of a hydroxy group, a group represented by the following formula (2-1), and a group represented by the following formula (2-2). It is preferable to have at least one group. Thereby, the etching resistance and heat resistance of the resulting resist underlayer film can be improved.
Figure JPOXMLDOC01-appb-C000021
(In formulas (2-1) and (2-2), R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * indicates a bond with a carbon atom in an aromatic ring. It is a conjugate.)
 上記式(2-1)及び(2-2)中、Rで表される炭素数1~20の2価の有機基としては、上記式(i)、(ii)、(iii)及び(iv)中のR~Rにおける1価の有機基から1個の水素原子を除いた基等が挙げられる。Rとしてはメタンジイル基、エタンジイル基、フェニレン基等の炭素数1~10の2価の炭化水素基又はこれらの組み合わせと-O-との組み合わせが好ましく、メタンジイル基、又はメタンジイル基と-O-との組み合わせがより好ましい。 In the above formulas (2-1) and (2-2), the divalent organic group having 1 to 20 carbon atoms represented by R 7 includes the above formulas (i), (ii), (iii) and ( Examples include a group obtained by removing one hydrogen atom from the monovalent organic group in R 1 to R 6 in iv). R 7 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms such as a methanediyl group, ethanediyl group, or phenylene group, or a combination thereof and -O-; A combination with is more preferable.
 上記式(1)で表される化合物としては、例えば下記式(1-1)~(1-48)で表される化合物等が挙げられる。 Examples of the compound represented by the above formula (1) include compounds represented by the following formulas (1-1) to (1-48).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 中でも、上記式(1-1)~(1-36)で表される化合物が好ましい。 Among these, compounds represented by the above formulas (1-1) to (1-36) are preferred.
 [A]化合物の分子量の下限としては、500が好ましく、600がより好ましく、800がさらに好ましく、1000が特に好ましい。上記分子量の上限としては、3000が好ましく、2500がより好ましく、2200がさらに好ましく、2000が特に好ましい。なお、分子量は、化学式から求められる。 [A] The lower limit of the molecular weight of the compound is preferably 500, more preferably 600, even more preferably 800, and particularly preferably 1000. The upper limit of the molecular weight is preferably 3,000, more preferably 2,500, even more preferably 2,200, and particularly preferably 2,000. Note that the molecular weight is determined from the chemical formula.
 当該組成物における[A]化合物の含有割合の下限としては、[A]化合物及び[B]溶媒の合計質量中、2質量%が好ましく、4質量%がより好ましく、6質量%がさらに好ましく、8質量%が特に好ましい。上記含有割合の上限としては、[A]化合物及び[B]溶媒の合計質量中、30質量%が好ましく、25質量%がより好ましく、20質量%がさらに好ましく、15質量%が特に好ましい。 The lower limit of the content of the [A] compound in the composition is preferably 2% by mass, more preferably 4% by mass, and even more preferably 6% by mass, based on the total mass of the [A] compound and the [B] solvent. Particularly preferred is 8% by weight. The upper limit of the content ratio is preferably 30% by mass, more preferably 25% by mass, even more preferably 20% by mass, and particularly preferably 15% by mass, based on the total mass of the compound [A] and the solvent [B].
<[A]化合物の合成方法>
 [A]化合物は、代表的には下記スキームにて合成することができる。[A]化合物が、上記式(1-1)においてフルオレン構造を含む基を有する場合を例として説明する。上記式(1)の中心炭素原子の周囲の芳香環構造を有するボロン酸誘導体(i)とフルオレン誘導体(i-1)とのクロスカップリング反応により、下記式(1-α)で表される[A]化合物を合成することができる。さらに、フルオレン構造の9位の炭素原子や置換基を修飾することも可能である。他の構造は、出発原料であるボロン酸誘導体(i)の中心炭素の周囲の芳香環構造やクロスカップリング反応の相手化合物の置換基を含めた構造、フルオレン構造の9位の炭素原子の修飾構造等を適宜変更することにより合成することができる。
<[A] Synthesis method of compound>
[A] Compound can be typically synthesized according to the scheme below. [A] A case where the compound has a group containing a fluorene structure in the above formula (1-1) will be explained as an example. Through a cross-coupling reaction between a boronic acid derivative (i) having an aromatic ring structure around the central carbon atom of the above formula (1) and a fluorene derivative (i-1), a compound expressed by the following formula (1-α) is obtained. [A] Compound can be synthesized. Furthermore, it is also possible to modify the carbon atom or substituent at the 9-position of the fluorene structure. Other structures include the aromatic ring structure around the central carbon of the starting material boronic acid derivative (i), the structure including substituents of the partner compound in the cross-coupling reaction, and the modification of the 9-position carbon atom of the fluorene structure. It can be synthesized by appropriately changing the structure and the like.
Figure JPOXMLDOC01-appb-C000028
(上記スキーム中、Ar、Ar、Ar及びArは2価の芳香環である。Yは-OH又は-OR’である。R’は1価の有機基である。Zは脱離基である。R’は、水素原子又は1価の置換基である。)
Figure JPOXMLDOC01-appb-C000028
(In the above scheme, Ar a , Ar b , Ar c and Ar d are divalent aromatic rings. Y is -OH or -OR'. R' is a monovalent organic group. Z is a It is a leaving group.R' is a hydrogen atom or a monovalent substituent.)
<[B]溶媒>
 [B]溶媒は、[A]化合物及び必要に応じて含有する任意成分を溶解又は分散することができれば特に限定されない。
<[B] Solvent>
The [B] solvent is not particularly limited as long as it can dissolve or disperse the [A] compound and optional components contained therein.
 [B]溶媒としては、例えば炭化水素系溶媒、エステル系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、含窒素系溶媒などが挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。 Examples of the [B] solvent include hydrocarbon solvents, ester solvents, alcohol solvents, ketone solvents, ether solvents, and nitrogen-containing solvents. [B] Solvents can be used alone or in combination of two or more.
 炭化水素系溶媒としては、例えばn-ペンタン、n-ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒などが挙げられる。 Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and cyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene, and xylene.
 エステル系溶媒としては、例えばジエチルカーボネート等のカーボネート系溶媒、酢酸メチル、酢酸エチル等の酢酸モノエステル系溶媒、γ-ブチロラクトン等のラクトン系溶媒、酢酸ジエチレングリコールモノメチルエーテル、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、乳酸メチル、乳酸エチル等の乳酸エステル系溶媒などが挙げられる。 Examples of ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as γ-butyrolactone, diethylene glycol monomethyl acetate, and propylene glycol monomethyl ether acetate. Examples include alcohol partial ether carboxylate solvents and lactic acid ester solvents such as methyl lactate and ethyl lactate.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール等の多価アルコール系溶媒などが挙げられる。 Examples of alcoholic solvents include monoalcoholic solvents such as methanol, ethanol, and n-propanol, and polyhydric alcoholic solvents such as ethylene glycol and 1,2-propylene glycol.
 ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等の鎖状ケトン系溶媒、シクロヘキサノン等の環状ケトン系溶媒などが挙げられる。 Examples of ketone solvents include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
 エーテル系溶媒としては、例えばn-ブチルエーテル等の鎖状エーテル系溶媒、テトラヒドロフラン等の環状エーテル系溶媒、プロピレングリコールジメチルエーテル等の多価アルコールエーテル系溶媒、ジエチレングリコールモノメチルエーテル等の多価アルコール部分エーテル系溶媒などが挙げられる。 Examples of ether solvents include chain ether solvents such as n-butyl ether, cyclic ether solvents such as tetrahydrofuran, polyhydric alcohol ether solvents such as propylene glycol dimethyl ether, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether. Examples include.
 含窒素系溶媒としては、例えばN,N-ジメチルアセトアミド等の鎖状含窒素系溶媒、N-メチルピロリドン等の環状含窒素系溶媒などが挙げられる。 Examples of nitrogen-containing solvents include chain nitrogen-containing solvents such as N,N-dimethylacetamide, and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
 [B]溶媒としては、エステル系溶媒又はケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒又は環状ケトン系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテル又はシクロヘキサノンがさらに好ましい。 [B] The solvent is preferably an ester solvent or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent or a cyclic ketone solvent, and even more preferably propylene glycol monomethyl ether acetate or cyclohexanone.
 当該組成物における[B]溶媒の含有割合の下限としては、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99質量%がより好ましく、95質量%がさらに好ましい。 The lower limit of the content of the [B] solvent in the composition is preferably 50% by mass, more preferably 60% by mass, and even more preferably 70% by mass. The upper limit of the content ratio is preferably 99.9% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
[任意成分]
 当該組成物は、本発明の効果を損なわない範囲において任意成分を含有していてもよい。任意成分としては、例えば酸発生剤、架橋剤、界面活性剤、重合体等が挙げられる。任意成分は、1種単独で又は2種以上を組み合わせて用いることができる。当該組成物における任意成分の含有割合は任意成分の種類等に応じて適宜決定することができる。
[Optional ingredients]
The composition may contain optional components within a range that does not impair the effects of the present invention. Examples of optional components include acid generators, crosslinking agents, surfactants, and polymers. The optional components can be used alone or in combination of two or more. The content ratio of the optional component in the composition can be determined as appropriate depending on the type of the optional component.
[組成物の調製方法]
 当該組成物は、[A]化合物、[B]溶媒、及び必要に応じて任意成分を所定の割合で混合し、好ましくは得られた混合物を孔径0.5μm以下のメンブランフィルター等でろ過することにより調製できる。
[Method for preparing composition]
The composition is prepared by mixing [A] the compound, [B] the solvent, and optional components in a predetermined ratio, and preferably filtering the resulting mixture using a membrane filter or the like with a pore size of 0.5 μm or less. It can be prepared by
[塗工工程]
 本工程では、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する。本工程ではレジスト下層膜形成用組成物として、上述の当該組成物を用いる。
[Coating process]
In this step, a composition for forming a resist underlayer film is applied directly or indirectly to the substrate. In this step, the above-mentioned composition is used as the resist underlayer film forming composition.
 レジスト下層膜形成用組成物の塗工方法としては特に限定されず、例えば回転塗工、流延塗工、ロール塗工などの適宜の方法で実施することができる。これにより塗工膜が形成され、[B]溶媒の揮発などが起こることによりレジスト下層膜が形成される。 The method of applying the composition for forming a resist underlayer film is not particularly limited, and can be carried out by any suitable method such as spin coating, casting coating, roll coating, etc. A coating film is thereby formed, and a resist underlayer film is formed by volatilization of the [B] solvent.
 基板としては、例えばシリコン基板、アルミニウム基板、ニッケル基板、クロム基板、モリブデン基板、タングステン基板、銅基板、タンタル基板、チタン基板等の金属又は半金属基板などが挙げられ、これらの中でもシリコン基板が好ましい。上記基板は、窒化ケイ素膜、アルミナ膜、二酸化ケイ素膜、窒化タンタル膜、窒化チタン膜などが形成された基板でもよい。 Examples of the substrate include metal or semimetal substrates such as silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, and titanium substrates, and among these, silicon substrates are preferred. . The substrate may be a substrate on which a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like is formed.
 基板に間接にレジスト下層膜形成用組成物を塗工する場合としては、例えば上記基板に形成された後述のケイ素含有膜上にレジスト下層膜形成用組成物を塗工する場合などが挙げられる。 Examples of cases in which the composition for forming a resist underlayer film is indirectly applied to the substrate include cases in which the composition for forming a resist underlayer film is applied onto a silicon-containing film, which will be described later, formed on the substrate.
[加熱工程]
 当該半導体基板の製造方法は、上記塗工工程により形成された塗工膜を加熱する工程を備えていてもよい。塗工膜の加熱によりレジスト下層膜の形成が促進される。より詳細には、塗工膜の加熱により[B]溶媒の揮発等が促進される。
[Heating process]
The method for manufacturing the semiconductor substrate may include a step of heating the coating film formed by the above coating step. Heating the coating film promotes the formation of the resist underlayer film. More specifically, heating the coating film promotes volatilization of the [B] solvent.
 上記塗工膜の加熱は、大気雰囲気下で行ってもよいし、窒素雰囲気下で行ってもよい。加熱温度の下限としては、200℃が好ましく、250℃がより好ましく、300℃がさらに好ましい。上記加熱温度の上限としては、600℃が好ましく、500℃がより好ましい。加熱における時間の下限としては、15秒が好ましく、30秒がより好ましい。上記時間の上限としては、1,200秒が好ましく、600秒がより好ましい。 Heating of the above-mentioned coating film may be performed under an air atmosphere or under a nitrogen atmosphere. The lower limit of the heating temperature is preferably 200°C, more preferably 250°C, and even more preferably 300°C. The upper limit of the heating temperature is preferably 600°C, more preferably 500°C. The lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds. The upper limit of the above time is preferably 1,200 seconds, more preferably 600 seconds.
 なお、上記塗工工程後に、レジスト下層膜を露光してもよい。上記塗工工程後に、レジスト下層膜にプラズマを暴露してもよい。上記塗工工程後に、レジスト下層膜にイオン注入をしてもよい。レジスト下層膜を露光すると、レジスト下層膜のエッチング耐性が向上する。レジスト下層膜にプラズマを暴露すると、レジスト下層膜のエッチング耐性が向上する。レジスト下層膜にイオン注入をすると、レジスト下層膜のエッチング耐性が向上する。 Note that the resist underlayer film may be exposed to light after the above coating step. After the above coating step, the resist underlayer film may be exposed to plasma. After the above coating step, ions may be implanted into the resist underlayer film. Exposure of the resist underlayer film improves the etching resistance of the resist underlayer film. Exposure of the resist underlayer film to plasma improves the etching resistance of the resist underlayer film. Ion implantation into the resist underlayer film improves the etching resistance of the resist underlayer film.
 レジスト下層膜の露光に用いられる放射線としては、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波;電子線、分子線、イオンビーム等の粒子線から適宜選択される。 The radiation used for exposing the resist underlayer film is appropriately selected from electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and γ-rays; and particle beams such as electron beams, molecular beams, and ion beams.
 レジスト下層膜へのプラズマの暴露を行う方法としては、例えば基板を各ガス雰囲気中に設置し、プラズマ放電することによる直接法等が挙げられる。プラズマの暴露の条件としては、通常ガス流量が50cc/min以上100cc/min以下、供給電力が100W以上1,500W以下である。 Examples of methods for exposing the resist underlayer film to plasma include a direct method in which the substrate is placed in each gas atmosphere and plasma is discharged. The conditions for plasma exposure are usually a gas flow rate of 50 cc/min or more and 100 cc/min or less, and a supply power of 100 W or more and 1,500 W or less.
 プラズマの暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。 The lower limit of the plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute. The upper limit of the above time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
 プラズマは、例えば、HガスとArガスの混合ガスの雰囲気下でプラズマが生成される。また、HガスとArガスに加えて、CFガスやCHガス等の炭素含有ガスを導入するようにしてもよい。なお、Hガス及びArガスのいずれか一方または両方の代わりに、CFガス、NFガス、CHFガス、COガス、CHガス、CHガス及びCガスのうちの少なくとも一つを導入してもよい。 For example, plasma is generated in an atmosphere of a mixed gas of H 2 gas and Ar gas. Further, in addition to H 2 gas and Ar gas, a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced. Note that instead of either or both of H 2 gas and Ar gas, CF 4 gas, NF 3 gas, CHF 3 gas, CO 2 gas, CH 2 F 2 gas, CH 4 gas, and C 4 F 8 gas may be used. At least one of them may be introduced.
 レジスト下層膜へのイオン注入は、ドーパントをレジスト下層膜へ注入する。ドーパントは、ホウ素、炭素、窒素、リン、ヒ素、アルミニウム、及びタングステンから成るグループから選択され得る。ドーパントに電圧を加えるために利用される注入エネルギーは、利用されるドーパントのタイプ、及び望ましい注入の深さに応じて、約0.5keVから60keVまでが挙げられる。 Ion implantation into the resist underlayer film involves injecting dopants into the resist underlayer film. The dopant may be selected from the group consisting of boron, carbon, nitrogen, phosphorous, arsenic, aluminum, and tungsten. The implant energy utilized to energize the dopant can range from approximately 0.5 keV to 60 keV, depending on the type of dopant utilized and the depth of implantation desired.
 形成されるレジスト下層膜の平均厚みとの下限としては、30nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。上記平均厚みの上限としては、3,000nmが好ましく、2,000nmがより好ましく、500nmがさらに好ましい。なお、平均厚みの測定方法は実施例の記載による。 The lower limit of the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm. The upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm. Note that the method for measuring the average thickness is as described in Examples.
[ケイ素含有膜形成工程]
 本工程では、上記塗工工程又は上記加熱工程により形成されたレジスト下層膜に直接又は間接にケイ素含有膜を形成する。上記レジスト下層膜に間接にケイ素含有膜を形成する場合としては、例えば上記レジスト下層膜上にレジスト下層膜の表面改質膜が形成された場合などが挙げられる。上記レジスト下層膜の表面改質膜とは、例えば水との接触角が上記レジスト下層膜とは異なる膜である。
[Silicon-containing film formation process]
In this step, a silicon-containing film is formed directly or indirectly on the resist underlayer film formed by the coating step or the heating step. Examples of the case where a silicon-containing film is indirectly formed on the resist underlayer film include a case where a surface modification film of the resist underlayer film is formed on the resist underlayer film. The surface-modified film of the resist underlayer film is, for example, a film that has a different contact angle with water from that of the resist underlayer film.
 ケイ素含有膜は、ケイ素含有膜形成用組成物の塗工、化学蒸着(CVD)法、原子層堆積(ALD)などにより形成することができる。ケイ素含有膜をケイ素含有膜形成用組成物の塗工により形成する方法としては、例えばケイ素含有膜形成用組成物を当該レジスト下層膜に直接又は間接に塗工して形成された塗工膜を、露光及び/又は加熱することにより硬化等させる方法などが挙げられる。上記ケイ素含有膜形成用組成物の市販品としては、例えば「NFC SOG01」、「NFC SOG04」、「NFC SOG080」(以上、JSR(株))等を用いることができる。化学蒸着(CVD)法又は原子層堆積(ALD)により、酸化ケイ素膜、窒化ケイ素膜、酸化窒化ケイ素膜、アモルファスケイ素膜を形成することができる。 The silicon-containing film can be formed by coating a silicon-containing film-forming composition, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like. As a method for forming a silicon-containing film by coating a silicon-containing film-forming composition, for example, a coated film formed by directly or indirectly applying a silicon-containing film-forming composition to the resist underlayer film is used. , a method of curing by exposure and/or heating, and the like. As commercially available silicon-containing film-forming compositions, for example, "NFC SOG01", "NFC SOG04", "NFC SOG080" (all manufactured by JSR Corporation), etc. can be used. A silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an amorphous silicon film can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
 上記露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used in the exposure include electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and γ-rays, and particle beams such as electron beams, molecular beams, and ion beams.
 塗工膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。 The lower limit of the temperature when heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 200°C. The upper limit of the above temperature is preferably 550°C, more preferably 450°C, and even more preferably 300°C.
 ケイ素含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。上記上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。ケイ素含有膜の平均厚みは、レジスト下層膜の平均厚みと同様に、上記分光エリプソメータを用いて測定した値である。 The lower limit of the average thickness of the silicon-containing film is preferably 1 nm, more preferably 10 nm, and even more preferably 20 nm. The above upper limit is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm. The average thickness of the silicon-containing film, like the average thickness of the resist underlayer film, is a value measured using the spectroscopic ellipsometer described above.
[レジストパターン形成工程]
 本工程では、上記レジスト下層膜に直接又は間接にレジストパターンを形成する。この工程を行う方法としては、例えばレジスト組成物を用いる方法、ナノインプリント法を用いる方法、自己組織化組成物を用いる方法などが挙げられる。上記レジスト下層膜に間接にレジストパターンを形成する場合としては、例えば、上記ケイ素含有膜上にレジストパターンを形成する場合などが挙げられる。
[Resist pattern formation process]
In this step, a resist pattern is formed directly or indirectly on the resist underlayer film. Examples of methods for performing this step include a method using a resist composition, a method using a nanoimprint method, a method using a self-assembling composition, and the like. An example of a case where a resist pattern is indirectly formed on the resist underlayer film is a case where a resist pattern is formed on the silicon-containing film.
 上記レジスト組成物としては、例えば感放射線性酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とを含有するポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト組成物、スズ、ジルコニウム、ハフニウムなどの金属を含有する金属含有レジスト組成物などが挙げられる。 Examples of the above resist compositions include positive or negative chemically amplified resist compositions containing a radiation-sensitive acid generator, positive resist compositions containing an alkali-soluble resin and a quinone diazide photosensitizer, and alkali-soluble Examples include negative resist compositions containing a resin and a crosslinking agent, and metal-containing resist compositions containing metals such as tin, zirconium, and hafnium.
 レジスト組成物の塗工方法としては、例えば回転塗工法等が挙げられる。プレベークの温度及び時間は、使用されるレジスト組成物の種類などに応じて適宜調整することができる。 Examples of the coating method for the resist composition include a spin coating method. The temperature and time of prebaking can be adjusted as appropriate depending on the type of resist composition used.
 次に、選択的な放射線照射により上記形成されたレジスト膜を露光する。露光に用いられる放射線としては、レジスト組成物に使用される感放射線性酸発生剤の種類等に応じて適宜選択することができ、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。これらの中で、遠紫外線が好ましく、KrFエキシマレーザー光(波長248nm)、ArFエキシマレーザー光(波長193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)又は極端紫外線(波長13.5nm等、以下、「EUV」ともいう)がより好ましく、KrFエキシマレーザー光、ArFエキシマレーザー光又はEUVがさらに好ましい。 Next, the formed resist film is exposed to selective radiation. The radiation used for exposure can be appropriately selected depending on the type of radiation-sensitive acid generator used in the resist composition, and includes visible light, ultraviolet rays, far ultraviolet rays, X-rays, γ-rays, etc. Examples include electromagnetic waves, electron beams, molecular beams, and particle beams such as ion beams. Among these, far ultraviolet light is preferable, and KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F2 excimer laser light (wavelength 157 nm), Kr2 excimer laser light (wavelength 147 nm), ArKr excimer laser light Laser light (wavelength: 134 nm) or extreme ultraviolet light (wavelength: 13.5 nm, etc., hereinafter also referred to as "EUV") is more preferred, and KrF excimer laser light, ArF excimer laser light, or EUV is even more preferred.
 上記露光後、解像度、パターンプロファイル、現像性等を向上させるためポストベークを行うことができる。このポストベークの温度及び時間は、使用されるレジスト組成物の種類等に応じて適宜決定することができる。 After the above exposure, post-baking can be performed to improve resolution, pattern profile, developability, etc. The temperature and time of this post-baking can be determined as appropriate depending on the type of resist composition used.
 次に、上記露光されたレジスト膜を現像液で現像してレジストパターンを形成する。この現像は、アルカリ現像であっても有機溶媒現像であってもよい。現像液としては、アルカリ現像の場合、アンモニア、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシドなどの塩基性水溶液が挙げられる。これらの塩基性水溶液には、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤などを適量添加することもできる。また、有機溶媒現像の場合、現像液としては、例えば上述の当該組成物の[B]溶媒として例示した種々の有機溶媒等が挙げられる。 Next, the exposed resist film is developed with a developer to form a resist pattern. This development may be alkaline development or organic solvent development. In the case of alkaline development, examples of the developer include basic aqueous solutions such as ammonia, triethanolamine, tetramethylammonium hydroxide (TMAH), and tetraethylammonium hydroxide. To these basic aqueous solutions, suitable amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants, and the like may be added. Further, in the case of organic solvent development, examples of the developer include various organic solvents exemplified as the [B] solvent of the above-mentioned composition.
 上記現像液での現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。 After development with the developer, a predetermined resist pattern is formed by washing and drying.
[エッチング工程]
 本工程では、上記レジストパターンをマスクとしたエッチングを行う。エッチングの回数としては1回でも、複数回、すなわちエッチングにより得られるパターンをマスクとして順次エッチングを行ってもよい。より良好な形状のパターンを得る観点からは、複数回が好ましい。複数回のエッチングを行う場合、例えばケイ素含有膜、レジスト下層膜及び基板の順に順次エッチングを行う。エッチングの方法としては、ドライエッチング、ウエットエッチング等が挙げられる。基板のパターンの形状をより良好なものとする観点からは、ドライエッチングが好ましい。このドライエッチングには、例えば酸素プラズマ等のガスプラズマなどが用いられる。上記エッチングにより、所定のパターンを有する半導体基板が得られる。
[Etching process]
In this step, etching is performed using the resist pattern as a mask. The etching may be performed once or multiple times, that is, the etching may be performed sequentially using the pattern obtained by etching as a mask. From the viewpoint of obtaining a pattern with a better shape, it is preferable to repeat the process multiple times. When etching is performed multiple times, for example, the silicon-containing film, the resist underlayer film, and the substrate are etched in this order. Examples of the etching method include dry etching, wet etching, and the like. From the viewpoint of improving the shape of the pattern on the substrate, dry etching is preferable. This dry etching uses, for example, gas plasma such as oxygen plasma. Through the above etching, a semiconductor substrate having a predetermined pattern is obtained.
 ドライエッチングとしては、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、マスクパターン、エッチングされる膜の元素組成等により適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが挙げられる。これらのガスは混合して用いることもできる。レジスト下層膜のパターンをマスクとして基板をエッチングする場合には、通常、フッ素系ガスが用いられる。 Dry etching can be performed using, for example, a known dry etching device. The etching gas used for dry etching can be appropriately selected depending on the mask pattern, the elemental composition of the film to be etched, etc. For example, CHF3 , CF4 , C2F6 , C3F8 , SF6, etc. Fluorine gas, chlorine gas such as Cl2 , BCl3 , oxygen gas such as O2 , O3 , H2O , H2, NH3 , CO, CO2 , CH4 , C2H2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, BCl 3 and other reducing gases, He, N 2 , Ar, etc. Examples include inert gas. These gases can also be used in combination. When etching a substrate using a pattern of a resist underlayer film as a mask, a fluorine-based gas is usually used.
《組成物》
 当該組成物は、[A]化合物と[B]溶媒とを含有する。当該組成物としては、上記半導体基板の製造方法において用いられる組成物を好適に採用することができる。
"Composition"
The composition contains a [A] compound and a [B] solvent. As the composition, a composition used in the method for manufacturing a semiconductor substrate described above can be suitably employed.
《化合物》
 当該化合物は、上記式(1)で表される化合物である。当該化合物としては、上記半導体基板の製造方法において用いられる[A]化合物を好適に採用することができる。
"Compound"
The compound is a compound represented by the above formula (1). As the compound, the [A] compound used in the method for manufacturing the semiconductor substrate described above can be suitably employed.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples.
[重量平均分子量(Mw)]
 重合体のMwは、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[Weight average molecular weight (Mw)]
The Mw of the polymer was determined using Tosoh Corporation GPC columns (2 G2000HXL, 1 G3000HXL, and 1 G4000HXL), flow rate: 1.0 mL/min, elution solvent: tetrahydrofuran, column. Measurement was performed by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of temperature: 40°C.
[レジスト下層膜の平均厚み]
 レジスト下層膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて、12インチシリコンウエハ(基板)上に形成されたレジスト下層膜の中心を含む5cm間隔の任意の9点の位置で膜厚を測定し、それらの膜厚の平均値を算出した値として求めた。
[Average thickness of resist lower layer film]
The average thickness of the resist underlayer film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by J.A. WOOLLAM) at arbitrary intervals of 5 cm including the center of the resist underlayer film formed on a 12-inch silicon wafer (substrate). The film thickness was measured at nine positions, and the average value of these film thicknesses was determined as the calculated value.
[合成例1](化合物(a-1)の合成)
 反応容器に、窒素雰囲気下、テトラキス(4-ブロモフェニル)メタン2.00g、テトラヒドロフラン30gを加え、-78℃に冷却した。次いで、n-ブチルリチウム(1.6M ヘキサン溶液)15.7mLを滴下し、-78℃で2時間攪拌した。その後、ホウ酸トリイソプロピル4.73gを加え、10時間攪拌させながら室温まで戻した。反応溶液に5%シュウ酸水溶液50gを加えた後、エバポレーターにて有機溶媒を留去し、残溶液に10%水酸化ナトリウム水溶液100gを加え、析出物をろ過にて取り除いた。ろ液に5%シュウ酸水溶液100gを加え、得られた固体をろ過にて回収し、乾燥して下記式(a-1)で表される化合物(a-1)を得た。
[Synthesis Example 1] (Synthesis of compound (a-1))
2.00 g of tetrakis(4-bromophenyl)methane and 30 g of tetrahydrofuran were added to the reaction vessel under a nitrogen atmosphere, and the mixture was cooled to -78°C. Next, 15.7 mL of n-butyllithium (1.6M hexane solution) was added dropwise, and the mixture was stirred at -78°C for 2 hours. Thereafter, 4.73 g of triisopropyl borate was added, and the mixture was stirred for 10 hours while returning to room temperature. After adding 50 g of a 5% aqueous oxalic acid solution to the reaction solution, the organic solvent was distilled off using an evaporator, 100 g of a 10% aqueous sodium hydroxide solution was added to the remaining solution, and the precipitate was removed by filtration. 100 g of a 5% aqueous oxalic acid solution was added to the filtrate, and the resulting solid was collected by filtration and dried to obtain a compound (a-1) represented by the following formula (a-1).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[合成例2](化合物(A-1)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-1)4.96g、2-ブロモ-7-(2-トリメチルシリルエチニル)フルオレン12.29g、テトラブチルアンモニウムブロミド0.32g、炭酸カリウム6.91g、トルエン259g、及び水52gを加え、室温で30分攪拌した。次いで、テトラキス(トリフェニルホスフィン)パラジウム0.23gを加え、120℃に加熱して24時間撹拌した。反応終了後、室温まで冷却し有機相を分取し、水相をメチルイソブチルケトン100gで2回抽出した。次いで、有機相を5%シュウ酸水溶液200gで3回洗浄したのち、水200gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-1)で表される化合物(A-1)を得た。
[Synthesis Example 2] (Synthesis of compound (A-1))
In a reaction vessel, under a nitrogen atmosphere, 4.96 g of the above compound (a-1), 12.29 g of 2-bromo-7-(2-trimethylsilylethynyl)fluorene, 0.32 g of tetrabutylammonium bromide, 6.91 g of potassium carbonate, 259 g of toluene and 52 g of water were added, and the mixture was stirred at room temperature for 30 minutes. Next, 0.23 g of tetrakis(triphenylphosphine)palladium was added, heated to 120° C., and stirred for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, the organic phase was separated, and the aqueous phase was extracted twice with 100 g of methyl isobutyl ketone. Next, the organic phase was washed three times with 200 g of a 5% aqueous oxalic acid solution, and then three times with 200 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-1) represented by the following formula (A-1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[合成例3](化合物(A-2)の合成)
 2-ブロモ-7-(2-トリメチルシリルエチニル)フルオレン12.29gを反応させる代わりに、7-ブロモ-2-フルオレノール9.40gを添加し、トリメチルシリル基の脱保護が不要なため、炭酸カリウム6.91gの代わりに4.15gを用い、120℃に加熱して5時間撹拌したこと以外は[合成例2]と同様の条件で反応させることにより、下記式(A-2)で表される化合物(A-2)を得た。
[Synthesis Example 3] (Synthesis of compound (A-2))
Instead of reacting 12.29 g of 2-bromo-7-(2-trimethylsilylethynyl)fluorene, 9.40 g of 7-bromo-2-fluorenol was added, and since deprotection of the trimethylsilyl group was not required, potassium carbonate 6. A compound represented by the following formula (A-2) was obtained by reacting under the same conditions as [Synthesis Example 2] except that 4.15 g was used instead of 91 g, heated to 120 ° C. and stirred for 5 hours. (A-2) was obtained.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[合成例4](化合物(A-3)の合成)
 反応容器に、窒素雰囲気下、上記化合物(A-2)10.41g、炭酸カリウム11.05g、N,N-ジメチルアセトアミド350gを加え、0℃で数分間攪拌させた。次いで、臭化プロパルギル7.13gをゆっくり滴下し、滴下終了後、室温で5時間撹拌した。反応終了後、反応溶液にメチルイソブチルケトン200gと水200gを加え、洗浄した。その後、有機相を分取し、水相をメチルイソブチルケトン200gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-3)で表される化合物(A-3)を得た。
[Synthesis Example 4] (Synthesis of compound (A-3))
10.41 g of the above compound (A-2), 11.05 g of potassium carbonate, and 350 g of N,N-dimethylacetamide were added to a reaction vessel under a nitrogen atmosphere, and the mixture was stirred at 0° C. for several minutes. Next, 7.13 g of propargyl bromide was slowly added dropwise, and after the addition was completed, the mixture was stirred at room temperature for 5 hours. After the reaction was completed, 200 g of methyl isobutyl ketone and 200 g of water were added to the reaction solution for washing. Thereafter, the organic phase was separated, and the aqueous phase was washed three times with 200 g of methyl isobutyl ketone. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-3) represented by the following formula (A-3).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[合成例5](化合物(a-2)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-1)4.96g、2-ブロモフルオレン8.82g、テトラブチルアンモニウムブロミド0.32g、炭酸カリウム4.15g、トルエン208g、及び水41gを加え、室温で30分攪拌した。次いで、テトラキス(トリフェニルホスフィン)パラジウム0.23gを加え、120℃に加熱して5時間撹拌した。反応終了後、室温まで冷却し有機相を分取し、水相をメチルイソブチルケトン100gで2回抽出した。次いで、有機相を5%シュウ酸水溶液200gで3回洗浄したのち、水200gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(a-2)で表される化合物(a-2)を得た。
[Synthesis Example 5] (Synthesis of compound (a-2))
In a reaction vessel, under a nitrogen atmosphere, add 4.96 g of the above compound (a-1), 8.82 g of 2-bromofluorene, 0.32 g of tetrabutylammonium bromide, 4.15 g of potassium carbonate, 208 g of toluene, and 41 g of water. The mixture was stirred at room temperature for 30 minutes. Next, 0.23 g of tetrakis(triphenylphosphine)palladium was added, heated to 120° C., and stirred for 5 hours. After the reaction was completed, the mixture was cooled to room temperature, the organic phase was separated, and the aqueous phase was extracted twice with 100 g of methyl isobutyl ketone. Next, the organic phase was washed three times with 200 g of a 5% aqueous oxalic acid solution, and then three times with 200 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (a-2) represented by the following formula (a-2).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[合成例6](化合物(A-4)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-2)9.77g、水酸化ナトリウム(50%水溶液)16.0g、テトラブチルアンモニウムブロミド0.32g、N,N-ジメチルアセトアミド100gを加え、0℃で数分間攪拌させた。次いで、臭化プロパルギル14.28gをゆっくり滴下し、滴下終了後、60℃に加熱して24時間撹拌した。反応終了後、室温まで冷却し、反応溶液に5%シュウ酸水溶液200gを加え、水相をメチルイソブチルケトン200gで3回抽出した。その後、有機相を水150gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-4)で表される化合物(A-4)を得た。
[Synthesis Example 6] (Synthesis of compound (A-4))
In a reaction vessel, under a nitrogen atmosphere, add 9.77 g of the above compound (a-2), 16.0 g of sodium hydroxide (50% aqueous solution), 0.32 g of tetrabutylammonium bromide, and 100 g of N,N-dimethylacetamide. Allowed to stir for several minutes at °C. Next, 14.28 g of propargyl bromide was slowly added dropwise, and after the addition was completed, the mixture was heated to 60° C. and stirred for 24 hours. After the reaction was completed, it was cooled to room temperature, 200 g of a 5% aqueous oxalic acid solution was added to the reaction solution, and the aqueous phase was extracted three times with 200 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 150 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-4) represented by the following formula (A-4).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[合成例7](化合物(A-5)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-2)9.77g、パラホルムアルデヒド8.00g、N,N-ジメチルアセトアミド60g、メタノール5gを加え、0℃に冷却した。次いで、ナトリウムメトキシド23.2g(28%メタノール溶液)をゆっくり滴下し、0℃で1時間撹拌した。反応終了後、反応溶液に5%シュウ酸水溶液100gを加え、水相をメチルイソブチルケトン150gで3回抽出した。その後、有機相を水200gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-5)で表される化合物(A-5)を得た。
[Synthesis Example 7] (Synthesis of compound (A-5))
9.77 g of the above compound (a-2), 8.00 g of paraformaldehyde, 60 g of N,N-dimethylacetamide, and 5 g of methanol were added to a reaction vessel under a nitrogen atmosphere, and the mixture was cooled to 0°C. Next, 23.2 g of sodium methoxide (28% methanol solution) was slowly added dropwise, and the mixture was stirred at 0° C. for 1 hour. After the reaction was completed, 100 g of a 5% aqueous oxalic acid solution was added to the reaction solution, and the aqueous phase was extracted three times with 150 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 200 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-5) represented by the following formula (A-5).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[合成例8](化合物(A-7)の合成)
 上記化合物(a-2)9.77gを反応させる代わりに、上記化合物(A-1)10.73gを添加したこと以外は[合成例6]と同様の条件で反応させることにより、下記式(A-7)で表される化合物(A-7)を得た。
[Synthesis Example 8] (Synthesis of compound (A-7))
The following formula ( A compound (A-7) represented by A-7) was obtained.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[合成例9](化合物(a-3)の合成)
 反応容器に、窒素雰囲気下、上記化合物(A-2)10.41g、イミダゾール5.45g、N,N-ジメチルアセトアミド50gを加え、室温で数分攪拌させた。次いでtert-ブチルジメチルシリルクロリド9.04gを滴下し、室温で1時間撹拌した。反応終了後、水100gを加え、反応溶液をメチルイソブチルケトン200gで3回抽出した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(a-3)で表される化合物(a-3)を得た。
[Synthesis Example 9] (Synthesis of compound (a-3))
10.41 g of the above compound (A-2), 5.45 g of imidazole, and 50 g of N,N-dimethylacetamide were added to a reaction vessel under a nitrogen atmosphere, and the mixture was stirred at room temperature for several minutes. Then, 9.04 g of tert-butyldimethylsilyl chloride was added dropwise, and the mixture was stirred at room temperature for 1 hour. After the reaction was completed, 100 g of water was added, and the reaction solution was extracted three times with 200 g of methyl isobutyl ketone. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (a-3) represented by the following formula (a-3).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
[合成例10](化合物(A-8)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-3)14.98g、水酸化ナトリウム(50%水溶液)16.0g、テトラブチルアンモニウムブロミド0.32g、N,N-ジメチルアセトアミド100gを加え、0℃で数分間攪拌させた。次いで、臭化プロパルギル14.28gをゆっくり滴下し、滴下終了後、60℃に加熱して24時間撹拌した。反応終了後、室温まで冷却し、反応溶液に5%シュウ酸水溶液200gを加え、水相をメチルイソブチルケトン200gで3回抽出した。その後、有機相を水150gで3回洗浄した。有機相をエバポレーターにて濃縮し、ヘキサン200gに投入し再沈殿した。得られた沈殿物をヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥した。続いて、tert-ブチルジメチルシリル基の脱保護のため、乾燥した固体18.03gに、テトラブチルアンモニウムフルオリド11.5g、テトラヒドロフラン200gを加え、室温で30分撹拌した。反応溶液に氷50gを加え、メチルイソブチルケトン200gで3回抽出した。その後、有機相を水100gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-8)で表される化合物(A-8)を得た。
[Synthesis Example 10] (Synthesis of compound (A-8))
In a reaction vessel, under a nitrogen atmosphere, add 14.98 g of the above compound (a-3), 16.0 g of sodium hydroxide (50% aqueous solution), 0.32 g of tetrabutylammonium bromide, and 100 g of N,N-dimethylacetamide. Allowed to stir for several minutes at °C. Next, 14.28 g of propargyl bromide was slowly added dropwise, and after the addition was completed, the mixture was heated to 60° C. and stirred for 24 hours. After the reaction was completed, it was cooled to room temperature, 200 g of a 5% aqueous oxalic acid solution was added to the reaction solution, and the aqueous phase was extracted three times with 200 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 150 g of water. The organic phase was concentrated using an evaporator, poured into 200 g of hexane, and reprecipitated. After washing the obtained precipitate with hexane, the solid was collected by suction filtration and dried. Subsequently, in order to deprotect the tert-butyldimethylsilyl group, 11.5 g of tetrabutylammonium fluoride and 200 g of tetrahydrofuran were added to 18.03 g of the dried solid, and the mixture was stirred at room temperature for 30 minutes. 50 g of ice was added to the reaction solution, and the mixture was extracted three times with 200 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 100 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-8) represented by the following formula (A-8).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[合成例11](化合物(A-9)の合成)
 上記化合物(a-2)9.77gを反応させる代わりに、上記化合物(A-2)10.41gを添加したことと、臭化プロパルギルを28.54g反応させたこと以外は[合成例6]と同様の条件で反応させることにより、下記式(A-9)で表される化合物(A-9)を得た。
[Synthesis Example 11] (Synthesis of compound (A-9))
[Synthesis Example 6] Except that 10.41 g of the above compound (A-2) was added instead of reacting 9.77 g of the above compound (a-2) and 28.54 g of propargyl bromide was reacted. By reacting under the same conditions as above, a compound (A-9) represented by the following formula (A-9) was obtained.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[合成例12](化合物(A-10)の合成)
 上記化合物(a-2)9.77gを反応させる代わりに、上記化合物(A-1)10.73gを添加したこと以外は[合成例7]と同様の条件で反応させることにより、下記式(A-10)で表される化合物(A-10)を得た。
[Synthesis Example 12] (Synthesis of compound (A-10))
The following formula ( A compound (A-10) represented by A-10) was obtained.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
[合成例13](化合物(A-11)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-3)14.98g、パラホルムアルデヒド8.01g、N,N-ジメチルアセトアミド90g、メタノール10gを加え、0℃に冷却した。次いで、ナトリウムメトキシド23.2g(28%メタノール溶液)をゆっくり滴下し、0℃で1時間撹拌した。反応溶液に5%シュウ酸水溶液150gを加え、水相をメチルイソブチルケトン150gで3回抽出した。その後、有機相を水200gで3回洗浄した。有機相をエバポレーターにて濃縮し、ヘキサン150gに投入し再沈殿した。得られた沈殿物をヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥した。続いて、tert-ブチルジメチルシリル基の脱保護のため、乾燥した固体17.38gに、テトラブチルアンモニウムフルオリド11.5g、テトラヒドロフラン200gを加え、室温で30分反応させた。反応溶液に氷50gを加え、メチルイソブチルケトン200gで3回抽出した。その後、有機相を水100gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-11)で表される化合物(A-11)を得た。
[Synthesis Example 13] (Synthesis of compound (A-11))
14.98 g of the above compound (a-3), 8.01 g of paraformaldehyde, 90 g of N,N-dimethylacetamide, and 10 g of methanol were added to a reaction vessel under a nitrogen atmosphere, and the mixture was cooled to 0°C. Next, 23.2 g of sodium methoxide (28% methanol solution) was slowly added dropwise, and the mixture was stirred at 0° C. for 1 hour. 150 g of a 5% aqueous oxalic acid solution was added to the reaction solution, and the aqueous phase was extracted three times with 150 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 200 g of water. The organic phase was concentrated using an evaporator, poured into 150 g of hexane, and reprecipitated. After washing the obtained precipitate with hexane, the solid was collected by suction filtration and dried. Subsequently, in order to deprotect the tert-butyldimethylsilyl group, 11.5 g of tetrabutylammonium fluoride and 200 g of tetrahydrofuran were added to 17.38 g of the dried solid, and the mixture was reacted at room temperature for 30 minutes. 50 g of ice was added to the reaction solution, and the mixture was extracted three times with 200 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 100 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-11) represented by the following formula (A-11).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[合成例14](化合物(A-12)の合成)
 上記化合物(a-2)9.77gを反応させる代わりに、(A-3)11.93gを添加したこと以外は[合成例7]と同様の条件で反応させることにより、下記式(A-12)で表される化合物(A-12)を得た。
[Synthesis Example 14] (Synthesis of compound (A-12))
The following formula (A- A compound (A-12) represented by 12) was obtained.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[合成例15](化合物(A-16)の合成)
 反応容器に、窒素雰囲気下、上記化合物(A-1)10.73g、テトラヒドロフラン100g、1-ピレンカルボキシアルデヒド10.13g、テトラブチルアンモニウムブロミド0.97gを加えて数分間攪拌させた。次いで、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.16gを室温でゆっくりと滴下した。滴下終了後、室温で8時間撹拌した。反応終了後、反応溶液に5%シュウ酸水溶液200gを加え、水相をシクロヘキサノン200gで3回抽出した。その後、有機相を水150gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-16)で表される化合物(A-16)を得た。
[Synthesis Example 15] (Synthesis of compound (A-16))
10.73 g of the above compound (A-1), 100 g of tetrahydrofuran, 10.13 g of 1-pyrenecarboxaldehyde, and 0.97 g of tetrabutylammonium bromide were added to a reaction vessel under a nitrogen atmosphere and stirred for several minutes. Then, 29.16 g of tetramethylammonium hydroxide (25% aqueous solution) was slowly added dropwise at room temperature. After the dropwise addition was completed, the mixture was stirred at room temperature for 8 hours. After the reaction was completed, 200 g of a 5% aqueous oxalic acid solution was added to the reaction solution, and the aqueous phase was extracted three times with 200 g of cyclohexanone. Thereafter, the organic phase was washed three times with 150 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-16) represented by the following formula (A-16).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[合成例16](化合物(A-17)の合成)
 反応容器に、窒素雰囲気下、化合物(a-3)14.98g、テトラヒドロフラン130g、1-ピレンカルボキシアルデヒド10.13g、テトラブチルアンモニウムブロミド0.97gを加えて数分間攪拌させた。次いで、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.17gを室温でゆっくりと滴下した。滴下終了後、室温で8時間撹拌した。反応終了後、反応溶液に5%シュウ酸水溶液200gを加え、水相をシクロヘキサノン200gで3回抽出した。その後、有機相を水150gで3回洗浄した。有機相をエバポレーターにて濃縮し、ヘキサン200gに投入し再沈殿した。得られた沈殿物をヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥した。続いて、tert-ブチルジメチルシリル基の脱保護のため、乾燥した固体23.48gに、テトラブチルアンモニウムフルオリド11.51g、テトラヒドロフラン200gを加え、室温で30分反応させた。反応溶液に氷50gを加え、シクロヘキサノン200gで3回抽出した。その後、有機相を水100gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-17)で表される化合物(A-17)を得た。
[Synthesis Example 16] (Synthesis of compound (A-17))
14.98 g of compound (a-3), 130 g of tetrahydrofuran, 10.13 g of 1-pyrenecarboxaldehyde, and 0.97 g of tetrabutylammonium bromide were added to a reaction vessel under a nitrogen atmosphere and stirred for several minutes. Then, 29.17 g of tetramethylammonium hydroxide (25% aqueous solution) was slowly added dropwise at room temperature. After the dropwise addition was completed, the mixture was stirred at room temperature for 8 hours. After the reaction was completed, 200 g of a 5% aqueous oxalic acid solution was added to the reaction solution, and the aqueous phase was extracted three times with 200 g of cyclohexanone. Thereafter, the organic phase was washed three times with 150 g of water. The organic phase was concentrated using an evaporator, poured into 200 g of hexane, and reprecipitated. After washing the obtained precipitate with hexane, the solid was collected by suction filtration and dried. Subsequently, in order to deprotect the tert-butyldimethylsilyl group, 11.51 g of tetrabutylammonium fluoride and 200 g of tetrahydrofuran were added to 23.48 g of the dried solid, and the mixture was reacted at room temperature for 30 minutes. 50 g of ice was added to the reaction solution, and the mixture was extracted three times with 200 g of cyclohexanone. Thereafter, the organic phase was washed three times with 100 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-17) represented by the following formula (A-17).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[合成例17](化合物(A-18)の合成)
 上記化合物(A-1)10.73gを反応させる代わりに、上記化合物(A-3)11.93gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-18)で表される化合物(A-18)を得た。
[Synthesis Example 17] (Synthesis of compound (A-18))
The following formula ( A compound (A-18) represented by A-18) was obtained.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
[合成例18](化合物(A-19)の合成)
 1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、2-ナフトアルデヒド6.87gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-19)で表される化合物(A-19)を得た。
[Synthesis Example 18] (Synthesis of compound (A-19))
By reacting under the same conditions as in [Synthesis Example 15] except that 6.87 g of 2-naphthaldehyde was added instead of reacting 10.13 g of 1-pyrenecarboxaldehyde, the following formula (A-19) was obtained. The represented compound (A-19) was obtained.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
[合成例19](化合物(A-20)の合成)
 1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、2-ナフトアルデヒド6.87gを添加したこと以外は[合成例16]と同様の条件で反応させることにより、下記式(A-20)で表される化合物(A-20)を得た。
[Synthesis Example 19] (Synthesis of compound (A-20))
By reacting under the same conditions as [Synthesis Example 16] except that 6.87 g of 2-naphthaldehyde was added instead of reacting 10.13 g of 1-pyrenecarboxaldehyde, the following formula (A-20) was obtained. The represented compound (A-20) was obtained.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
[合成例20](化合物(A-21)の合成)
 上記化合物(A-1)10.73g、1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、それぞれ、上記化合物(A-3)11.93g、2-ナフトアルデヒド6.87gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-21)で表される化合物(A-21)を得た。
[Synthesis Example 20] (Synthesis of compound (A-21))
Except that instead of reacting 10.73 g of the above compound (A-1) and 10.13 g of 1-pyrenecarboxaldehyde, 11.93 g of the above compound (A-3) and 6.87 g of 2-naphthaldehyde were added, respectively. By reacting under the same conditions as in [Synthesis Example 15], a compound (A-21) represented by the following formula (A-21) was obtained.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[合成例21](化合物(A-22)の合成)
 1-ピレンカルボキシアルデヒド10.13g、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.16gを反応させる代わりに、それぞれ、インドール-3-カルボキシアルデヒド6.39g、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン12.18gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-22)で表される化合物(A-22)を得た。
[Synthesis Example 21] (Synthesis of compound (A-22))
Instead of reacting 10.13 g of 1-pyrenecarboxaldehyde and 29.16 g of tetramethylammonium hydroxide (25% aqueous solution), 6.39 g of indole-3-carboxaldehyde and 1,8-diazabicyclo[5.4. A compound (A-22) represented by the following formula (A-22) was obtained by reacting under the same conditions as [Synthesis Example 15] except that 12.18 g of [0]-7-undecene was added. .
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[合成例22](化合物(A-23)の合成)
 1-ピレンカルボキシアルデヒド10.13g、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.17gを反応させる代わりに、それぞれ、インドール-3-カルボキシアルデヒド6.39g、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン12.18gを添加したこと以外は、[合成例16]と同様の条件で反応させることにより、下記式(A-23)で表される化合物(A-23)を得た。
[Synthesis Example 22] (Synthesis of compound (A-23))
Instead of reacting 10.13 g of 1-pyrenecarboxaldehyde and 29.17 g of tetramethylammonium hydroxide (25% aqueous solution), 6.39 g of indole-3-carboxaldehyde and 1,8-diazabicyclo[5.4. A compound (A-23) represented by the following formula (A-23) was obtained by reacting under the same conditions as [Synthesis Example 16] except that 12.18 g of [0]-7-undecene was added. Ta.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
[合成例23](化合物(A-24)の合成)
 上記化合物(A-1)10.73g、1-ピレンカルボキシアルデヒド10.13g、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.16gを反応させる代わりに、それぞれ、(A-3)11.93g、インドール-3-カルボキシアルデヒド6.39g、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン12.18gを添加したこと以外は、[合成例15]と同様の条件で反応させることにより、下記式(A-24)で表される化合物(A-24)を得た。
[Synthesis Example 23] (Synthesis of compound (A-24))
Instead of reacting 10.73 g of the above compound (A-1), 10.13 g of 1-pyrenecarboxaldehyde, and 29.16 g of tetramethylammonium hydroxide (25% aqueous solution), 11.93 g of (A-3), By reacting under the same conditions as [Synthesis Example 15] except that 6.39 g of indole-3-carboxaldehyde and 12.18 g of 1,8-diazabicyclo[5.4.0]-7-undecene were added. , a compound (A-24) represented by the following formula (A-24) was obtained.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[合成例24](化合物(A-25)の合成)
 1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、2-チオフェンカルボキシアルデヒド4.93gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-25)で表される化合物(A-25)を得た。
[Synthesis Example 24] (Synthesis of compound (A-25))
By reacting under the same conditions as [Synthesis Example 15] except that 4.93 g of 2-thiophenecarboxaldehyde was added instead of reacting 10.13 g of 1-pyrenecarboxaldehyde, the following formula (A-25) was obtained. A compound (A-25) represented by was obtained.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[合成例25](化合物(A-26)の合成)
 1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、2-チオフェンカルボキシアルデヒド4.94gを添加したこと以外は[合成例16]と同様の条件で反応させることにより、下記式(A-26)で表される化合物(A-26)を得た。
[Synthesis Example 25] (Synthesis of compound (A-26))
By reacting under the same conditions as [Synthesis Example 16] except that 4.94 g of 2-thiophenecarboxaldehyde was added instead of reacting 10.13 g of 1-pyrenecarboxaldehyde, the following formula (A-26) was obtained. A compound (A-26) represented by was obtained.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
[合成例26](化合物(A-27)の合成)
 上記化合物(A-1)10.73g、1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、それぞれ、上記化合物(A-3)11.93g、2-チオフェンカルボキシアルデヒド4.93gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-27)で表される化合物(A-27)を得た。
[Synthesis Example 26] (Synthesis of compound (A-27))
Instead of reacting 10.73 g of the above compound (A-1) and 10.13 g of 1-pyrenecarboxaldehyde, 11.93 g of the above compound (A-3) and 4.93 g of 2-thiophenecarboxaldehyde were added, respectively. A compound (A-27) represented by the following formula (A-27) was obtained by reacting under the same conditions as in [Synthesis Example 15] except for this.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[合成例27](化合物(A-28)の合成)
 1-ピレンカルボキシアルデヒド10.13g、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.16gを反応させる代わりに、それぞれ、ピロール-2-カルボキシアルデヒド4.18g、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン12.18gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-28)で表される化合物(A-28)を得た。
[Synthesis Example 27] (Synthesis of compound (A-28))
Instead of reacting 10.13 g of 1-pyrenecarboxaldehyde and 29.16 g of tetramethylammonium hydroxide (25% aqueous solution), 4.18 g of pyrrole-2-carboxaldehyde and 1,8-diazabicyclo[5.4. A compound (A-28) represented by the following formula (A-28) was obtained by reacting under the same conditions as [Synthesis Example 15] except that 12.18 g of [0]-7-undecene was added. .
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
[合成例28](化合物(A-29)の合成)
 1-ピレンカルボキシアルデヒド10.13g、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.17gを反応させる代わりに、それぞれ、ピロール-2-カルボキシアルデヒド4.18g、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン12.18gを添加したこと以外は、[合成例16]と同様の条件で反応させることにより、下記式(A-29)で表される化合物(A-29)を得た。
[Synthesis Example 28] (Synthesis of compound (A-29))
Instead of reacting 10.13 g of 1-pyrenecarboxaldehyde and 29.17 g of tetramethylammonium hydroxide (25% aqueous solution), 4.18 g of pyrrole-2-carboxaldehyde and 1,8-diazabicyclo[5.4. A compound (A-29) represented by the following formula (A-29) was obtained by reacting under the same conditions as in [Synthesis Example 16] except that 12.18 g of [0]-7-undecene was added. Ta.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
[合成例29](化合物(A-30)の合成)
 上記化合物(A-1)10.73g、1-ピレンカルボキシアルデヒド10.13g、テトラメチルアンモニウムヒドロキシド(25%水溶液)29.16gを反応させる代わりに、それぞれ、上記化合物(A-3)11.93g、ピロール-2-カルボキシアルデヒド4.18g、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン12.18gを添加したこと以外は、[合成例15]と同様の条件で反応させることにより、下記式(A-30)で表される化合物(A-30)を得た。
[Synthesis Example 29] (Synthesis of compound (A-30))
Instead of reacting 10.73 g of the above compound (A-1), 10.13 g of 1-pyrenecarboxaldehyde, and 29.16 g of tetramethylammonium hydroxide (25% aqueous solution), the above compound (A-3) 11. The reaction was carried out under the same conditions as [Synthesis Example 15] except that 93 g, 4.18 g of pyrrole-2-carboxaldehyde, and 12.18 g of 1,8-diazabicyclo[5.4.0]-7-undecene were added. As a result, a compound (A-30) represented by the following formula (A-30) was obtained.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[合成例30](化合物(A-31)の合成)
 1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、3-ホルミルフェニルボロン酸6.60gを添加したこと以外は、[合成例15]と同様の条件で反応させることにより、下記式(A-31)で表される化合物(A-31)を得た。
[Synthesis Example 30] (Synthesis of compound (A-31))
The following formula (A- A compound (A-31) represented by 31) was obtained.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
[合成例31](化合物(A-32)の合成)
 1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、3-ホルミルフェニルボロン酸6.60gを添加したこと以外は、[合成例16]と同様の条件で反応させることにより、下記式(A-32)で表される化合物(A-32)を得た。
[Synthesis Example 31] (Synthesis of compound (A-32))
The following formula (A- A compound (A-32) represented by 32) was obtained.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
[合成例32](化合物(A-33)の合成)
 上記化合物(A-1)10.73g、1-ピレンカルボキシアルデヒド10.13gを反応させる代わりに、それぞれ、上記化合物(A-3)11.93g、3-ホルミルフェニルボロン酸6.60gを添加したこと以外は[合成例15]と同様の条件で反応させることにより、下記式(A-33)で表される化合物(A-33)を得た。
[Synthesis Example 32] (Synthesis of compound (A-33))
Instead of reacting 10.73 g of the above compound (A-1) and 10.13 g of 1-pyrenecarboxaldehyde, 11.93 g of the above compound (A-3) and 6.60 g of 3-formylphenylboronic acid were added, respectively. A compound (A-33) represented by the following formula (A-33) was obtained by reacting under the same conditions as in [Synthesis Example 15] except for the above.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
[合成例33](化合物(a-4)の合成)
 反応容器に、窒素雰囲気下、テトラキス(4-エチニルフェニル)メタン4.96g、ヨウ化銅(I)0.28g、ジクロロビス(トリフェニルホスフィン)パラジウム0.42g、トリエチルアミン150g、テトラヒドロフラン100gを加え、室温で30分攪拌した。次いで、2-ブロモ-7-(2-トリメチルシリルエチニル)フルオレン20.3gを加え、60℃に加熱して16時間撹拌した。反応終了後、室温まで冷却し、メチルイソブチルケトン200gと5%シュウ酸水溶液200gで3回洗浄したのち、有機相を水150gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(a-4)で表される化合物(a-4)を得た。
[Synthesis Example 33] (Synthesis of compound (a-4))
4.96 g of tetrakis(4-ethynylphenyl)methane, 0.28 g of copper(I) iodide, 0.42 g of dichlorobis(triphenylphosphine)palladium, 150 g of triethylamine, and 100 g of tetrahydrofuran were added to a reaction vessel under a nitrogen atmosphere, and the mixture was heated to room temperature. The mixture was stirred for 30 minutes. Next, 20.3 g of 2-bromo-7-(2-trimethylsilylethynyl)fluorene was added, heated to 60° C., and stirred for 16 hours. After the reaction was completed, the mixture was cooled to room temperature and washed three times with 200 g of methyl isobutyl ketone and 200 g of a 5% aqueous oxalic acid solution, and then the organic phase was washed three times with 150 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (a-4) represented by the following formula (a-4).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
[合成例34](化合物(A-34)の合成)
 トリメチルシリル基の脱保護のため、上記化合物(a-4)14.58gに、テトラブチルアンモニウムフルオリド11.5g、テトラヒドロフラン200gを加え、室温で30分撹拌した。反応溶液に氷50gを加え、メチルイソブチルケトン200gで3回抽出した。その後、有機相を水100gで3回洗浄した。有機相をエバポレーターにて濃縮し、残渣をn-ヘキサンに滴下させて沈殿物を得た。得られた沈殿物をn-ヘキサンで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(A-34)で表される化合物(A-34)を得た。
[Synthesis Example 34] (Synthesis of compound (A-34))
To deprotect the trimethylsilyl group, 11.5 g of tetrabutylammonium fluoride and 200 g of tetrahydrofuran were added to 14.58 g of the above compound (a-4), and the mixture was stirred at room temperature for 30 minutes. 50 g of ice was added to the reaction solution, and the mixture was extracted three times with 200 g of methyl isobutyl ketone. Thereafter, the organic phase was washed three times with 100 g of water. The organic phase was concentrated using an evaporator, and the residue was added dropwise to n-hexane to obtain a precipitate. After washing the obtained precipitate with n-hexane, the solid was collected by suction filtration and dried to obtain a compound (A-34) represented by the following formula (A-34).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
[合成例35](化合物(A-35)の合成)
 2-ブロモ-7-(2-トリメチルシリルエチニル)フルオレン20.3gを反応させる代わりに、7-ブロモ-2-フルオレノール15.54gを添加したこと以外は[合成例33]と同様の条件で反応させることにより、下記式(A-35)で表される化合物(A-35)を得た。
[Synthesis Example 35] (Synthesis of compound (A-35))
React under the same conditions as [Synthesis Example 33] except that 15.54 g of 7-bromo-2-fluorenol was added instead of 20.3 g of 2-bromo-7-(2-trimethylsilylethynyl)fluorene. As a result, a compound (A-35) represented by the following formula (A-35) was obtained.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
[合成例36](化合物(A-36)の合成)
 上記化合物(A-2)10.41gを反応させる代わりに、上記化合物(A-35)11.37gを添加したこと以外は[合成例4]と同様の条件で反応させることにより、下記式(A-36)で表される化合物(A-36)を得た。
[Synthesis Example 36] (Synthesis of compound (A-36))
The following formula ( A compound (A-36) represented by A-36) was obtained.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
[合成例37](重合体(x-1)の合成)
 反応容器に、窒素雰囲気下、m-クレゾール250.0g、37質量%ホルマリン125.0g及び無水シュウ酸2gを加え、100℃で3時間、180℃で1時間撹拌した後、減圧下にて未反応モノマーを除去し、下記式(x-1)で表される重合体(x-1)を得た。得られた重合体(x-1)のMwは11,000であった。
[Synthesis Example 37] (Synthesis of polymer (x-1))
250.0 g of m-cresol, 125.0 g of 37% by mass formalin, and 2 g of oxalic anhydride were added to a reaction vessel under a nitrogen atmosphere, and after stirring at 100°C for 3 hours and at 180°C for 1 hour, the The reaction monomer was removed to obtain a polymer (x-1) represented by the following formula (x-1). The Mw of the obtained polymer (x-1) was 11,000.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[合成例38](重合体(x-2)の合成)
 反応容器に、窒素雰囲気下、9,9-ビス(4-ヒドロキシフェニル)フルオレン8.0g、パラホルムアルデヒド0.8g、メチルイソブチルケトン21.5gを加えて、80℃に加熱して化合物を溶解させた。p-トルエンスルホン酸一水和物0.8gのメチルイソブチルケトン溶液5.0gを反応容器に添加した後、115℃に加熱して15時間撹拌した。反応終了後、メチルイソブチルケトン100gと水200gを加えて有機相を洗浄した。有機相をエバポレーターにて濃縮し,残渣をメタノールに滴下させて沈殿物を得た。得られた沈殿物をメタノールで洗浄した後、固体を吸引ろ過にて回収、乾燥し、下記式(x-2)で表される重合体(x-2)を得た。得られた重合体(x-2)のMwは8,000であった。
[Synthesis Example 38] (Synthesis of polymer (x-2))
8.0 g of 9,9-bis(4-hydroxyphenyl)fluorene, 0.8 g of paraformaldehyde, and 21.5 g of methyl isobutyl ketone were added to a reaction container under a nitrogen atmosphere, and the mixture was heated to 80° C. to dissolve the compound. Ta. After adding 5.0 g of a solution of 0.8 g of p-toluenesulfonic acid monohydrate in methyl isobutyl ketone to the reaction vessel, the mixture was heated to 115° C. and stirred for 15 hours. After the reaction was completed, 100 g of methyl isobutyl ketone and 200 g of water were added to wash the organic phase. The organic phase was concentrated using an evaporator, and the residue was added dropwise to methanol to obtain a precipitate. After washing the obtained precipitate with methanol, the solid was collected by suction filtration and dried to obtain a polymer (x-2) represented by the following formula (x-2). The Mw of the obtained polymer (x-2) was 8,000.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
<組成物の調製>
 組成物の調製に用いた[A]化合物、重合体、[B]溶媒、[C]酸発生剤及び[D]架橋剤について以下に示す。
<Preparation of composition>
The [A] compound, polymer, [B] solvent, [C] acid generator, and [D] crosslinking agent used in the preparation of the composition are shown below.
[[A]化合物]
 [A]化合物:上記合成した化合物(A-1)~(A-5)、(A-7)~(A-12)、(A-16)~(A-36)
[[A] Compound]
[A] Compound: Compounds (A-1) to (A-5), (A-7) to (A-12), (A-16) to (A-36) synthesized above
[重合体]
 重合体:上記合成した重合体(x-1)~(x-2)、及び下記式(E-1)~(E-2)で表される重合体(E-1)~(E-2)(繰り返し単位の横の数字は各繰り返し単位の含有割合(モル%)を表す。)
[Polymer]
Polymer: The polymers (x-1) to (x-2) synthesized above, and the polymers (E-1) to (E-2) represented by the following formulas (E-1) to (E-2) ) (The number next to the repeating unit represents the content ratio (mol%) of each repeating unit.)
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
 B-2:シクロヘキサノン
[[B] Solvent]
B-1: Propylene glycol monomethyl ether acetate B-2: Cyclohexanone
[[C]酸発生剤]
 C-1:ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート(下記式(C-1)で表される化合物)
[[C] Acid generator]
C-1: Bis(4-t-butylphenyl)iodonium nonafluoro-n-butanesulfonate (compound represented by the following formula (C-1))
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
[[D]架橋剤]
 D-1:下記式(D-1)で表される化合物
[[D] Crosslinking agent]
D-1: Compound represented by the following formula (D-1)
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 D-2:下記式(D-2)で表される化合物 D-2: Compound represented by the following formula (D-2)
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 D-3:下記式(D-3)で表される化合物 D-3: Compound represented by the following formula (D-3)
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[実施例1]
 [A]化合物としての(A-1)10質量部を[B]溶媒としての(B-1)90質量部に溶解した。得られた溶液を孔径0.45μmのポリテトラフルオロエチレン(PTFE)メンブランフィルターでろ過して、組成物(J-1)を調製した。
[Example 1]
[A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The resulting solution was filtered through a polytetrafluoroethylene (PTFE) membrane filter with a pore size of 0.45 μm to prepare a composition (J-1).
[実施例1~37及び比較例1~2]
 下記表1に示す種類及び含有量の各成分を使用したこと以外は、実施例1と同様にして組成物(J-2)~(J-37)及び(CJ-1)~(CJ-2)を調製した。表1中の「[A]化合物」、「重合体」、「[C]酸発生剤」及び「[D]架橋剤」の列における「-」は、該当する成分を使用しなかったことを示す。
[Examples 1 to 37 and Comparative Examples 1 to 2]
Compositions (J-2) to (J-37) and (CJ-1) to (CJ-2) were prepared in the same manner as in Example 1, except that the types and contents of each component shown in Table 1 below were used. ) was prepared. In Table 1, "-" in the columns of "[A] Compound,""Polymer,""[C] Acid Generator," and "[D] Crosslinking Agent" indicates that the corresponding component was not used. show.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
<評価>
 上記得られた組成物を用い、エッチング耐性、耐熱性及び曲がり耐性について下記方法により評価を行った。評価結果を下記表2に合わせて示す。
<Evaluation>
Using the composition obtained above, the etching resistance, heat resistance, and bending resistance were evaluated by the following methods. The evaluation results are also shown in Table 2 below.
[エッチング耐性]
 上記調製した組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて350℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmの膜を形成し、基板上にレジスト下層膜が形成された膜付き基板を得た。上記得られた膜付き基板における膜を、エッチング装置(東京エレクトロン(株)の「TACTRAS」)を用いて、CF/Ar=110/440sccm、PRESS.=30MT、HF RF(プラズマ生成用高周波電力)=500W、LF RF(バイアス用高周波電力)=3000W、DCS=-150V、RDC(ガスセンタ流量比)=50%、30秒の条件にて処理し、処理前後の膜の平均厚みからエッチング速度(nm/分)を算出した。次いで、比較例1のエッチング速度を基準として比較例1に対する比率を算出し、この比率をエッチング耐性の尺度とした。エッチング耐性は、上記比率が0.90以下の場合は「A」(極めて良好)、0.90を超え0.92未満の場合は「B」(良好)と、0.92以上の場合は「C」(不良)と評価した。なお、表2中の「-」は、エッチング耐性の評価基準であることを示す。
[Etching resistance]
The composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 350°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained. The film on the film-coated substrate obtained above was etched using an etching apparatus ("TACTRAS" manufactured by Tokyo Electron Ltd.) at CF 4 /Ar=110/440 sccm, PRESS. = 30MT, HF RF (high frequency power for plasma generation) = 500W, LF RF (high frequency power for bias) = 3000W, DCS = -150V, RDC (gas center flow rate ratio) = 50%, processed for 30 seconds, The etching rate (nm/min) was calculated from the average thickness of the film before and after the treatment. Next, the ratio to Comparative Example 1 was calculated based on the etching rate of Comparative Example 1, and this ratio was used as a measure of etching resistance. Etching resistance is rated "A" (very good) if the above ratio is 0.90 or less, "B" (good) if it is more than 0.90 and less than 0.92, and "B" (good) if it is 0.92 or more. It was evaluated as "C" (poor). Note that "-" in Table 2 indicates that it is an evaluation criterion for etching resistance.
[耐熱性]
 上記調製した組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて200℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmの膜を形成し、基板上にレジスト下層膜が形成された膜付き基板を得た。上記得られた膜付き基板の膜を削ることにより粉体を回収し、回収した粉体をTG-DTA装置(NETZSCH社の「TG-DTA2000SR」)による測定で使用する容器に入れ、加熱前の質量を測定した。次に、上記TG-DTA装置を用いて、窒素雰囲気下、10℃/分の昇温速度にて400℃まで加熱し、400℃になった時の粉体の質量を測定した。そして、下記式により質量減少率(%)を測定し、この質量減少率を耐熱性の尺度とした。
   M={(m1-m2)/m1}×100
 ここで、上記式中、Mは、質量減少率(%)であり、m1は、加熱前の質量(mg)であり、m2は、400℃における質量(mg)である。
 耐熱性は、試料となる粉体の質量減少率が小さいほど、膜の加熱時に発生する昇華物や膜の分解物が少なく、良好である。すなわち、質量減少率が小さいほど、高い耐熱性であることを示す。耐熱性は、質量減少率が5%未満の場合は「A」(極めて良好)と、5%以上10%未満の場合は「B」(良好)と、10%以上の場合は「C」(不良)と評価した。
[Heat-resistant]
The composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 200°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained. The powder was collected by scraping the film of the film-coated substrate obtained above, and the collected powder was placed in a container used for measurement with a TG-DTA device (NETZSCH's "TG-DTA2000SR"), and the powder was placed before heating. The mass was measured. Next, using the above TG-DTA apparatus, the powder was heated to 400°C at a temperature increase rate of 10°C/min in a nitrogen atmosphere, and the mass of the powder when the temperature reached 400°C was measured. Then, the mass reduction rate (%) was measured using the following formula, and this mass reduction rate was used as a measure of heat resistance.
M L = {(m1-m2)/m1}×100
Here, in the above formula, M L is the mass reduction rate (%), m1 is the mass (mg) before heating, and m2 is the mass (mg) at 400°C.
Regarding heat resistance, the smaller the mass reduction rate of the sample powder, the less sublimate and film decomposition products are generated during heating of the film, which is better. That is, the smaller the mass reduction rate, the higher the heat resistance. Heat resistance is rated "A" (very good) if the mass reduction rate is less than 5%, "B" (good) if it is 5% or more and less than 10%, and "C" (good) if it is 10% or more. Poor).
[曲がり耐性]
 上記調製した組成物を、平均厚み500nmの二酸化ケイ素膜が形成されたシリコン基板上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて400℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmのレジスト下層膜が形成された膜付き基板を得た。上記得られた膜付き基板上に、ケイ素含有膜形成用組成物(JSR(株)の「NFC SOG080」)を回転塗工法により塗工した後、大気雰囲気下にて200℃で60秒間加熱し、さらに300℃で60秒間加熱して、平均厚み50nmのケイ素含有膜を形成した。上記ケイ素含有膜上に、ArF用レジスト組成物(JSR(株)の「AR1682J」)を回転塗工法により塗工し、大気雰囲気下にて130℃で60秒間加熱(焼成)して、平均厚み200nmのレジスト膜を形成した。レジスト膜を、ArFエキシマレーザー露光装置(レンズ開口数0.78、露光波長193nm)を用いて、ターゲットサイズが100nmの1対1のラインアンドスペースのマスクパターンを介して、露光量を変化させて露光した後、大気雰囲気下にて130℃で60秒間加熱(焼成)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いて、25℃で1分間現像し、水洗、乾燥して、ラインパターンの線幅が30nmから100nmである200nmピッチのラインアンドスペースのレジストパターンが形成された基板を得た。
[Bending resistance]
The composition prepared above was coated on a silicon substrate on which a silicon dioxide film with an average thickness of 500 nm was formed by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, the substrate was heated at 400° C. for 60 seconds in an air atmosphere and then cooled at 23° C. for 60 seconds to obtain a film-coated substrate on which a resist underlayer film with an average thickness of 200 nm was formed. A silicon-containing film-forming composition ("NFC SOG080" by JSR Corporation) was coated on the film-coated substrate obtained above by a spin coating method, and then heated at 200°C for 60 seconds in an air atmosphere. , and further heated at 300° C. for 60 seconds to form a silicon-containing film with an average thickness of 50 nm. An ArF resist composition ("AR1682J" manufactured by JSR Corporation) was coated on the silicon-containing film using a spin coating method, and heated (baked) at 130°C for 60 seconds in an air atmosphere to reduce the average thickness. A 200 nm resist film was formed. The resist film was coated using an ArF excimer laser exposure device (lens numerical aperture 0.78, exposure wavelength 193 nm) by changing the exposure amount through a one-to-one line-and-space mask pattern with a target size of 100 nm. After exposure, it was heated (baked) at 130°C for 60 seconds in an air atmosphere, developed with a 2.38% by mass tetramethylammonium hydroxide (TMAH) aqueous solution at 25°C for 1 minute, washed with water, and dried. Thus, a substrate was obtained on which a line-and-space resist pattern with a line width of 30 nm to 100 nm and a pitch of 200 nm was formed.
 上記レジストパターンをマスクとして、上記エッチング装置を用いて、CF=200sccm、PRESS.=85mT、HF RF(プラズマ生成用高周波電力)=500W、LF RF(バイアス用高周波電力)=0W、DCS=-150V、RDC(ガスセンタ流量比)=50%の条件にてケイ素含有膜をエッチングし、ケイ素含有膜にパターンが形成された基板を得た。次に、上記ケイ素含有膜パターンをマスクとして、上記エッチング装置を用いて、O=400sccm、PRESS.=25mT、HF RF(プラズマ生成用高周波電力)=400W、LF RF(バイアス用高周波電力)=0W、DCS=0V、RDC(ガスセンタ流量比)=50%の条件にてレジスト下層膜をエッチングし、レジスト下層膜にパターンが形成された基板を得た。上記レジスト下層膜パターンをマスクとして、上記エッチング装置を用いて、CF=180sccm、Ar=360sccm、PRESS.=150mT、HF RF(プラズマ生成用高周波電力)=1,000W、LF RF(バイアス用高周波電力)=1,000W、DCS=-150V、RDC(ガスセンタ流量比)=50%、60秒の条件にて二酸化ケイ素膜をエッチングし、二酸化ケイ素膜にパターンが形成された基板を得た。 Using the above resist pattern as a mask and using the above etching apparatus, CF 4 =200 sccm, PRESS. The silicon-containing film was etched under the following conditions: = 85 mT, HF RF (high frequency power for plasma generation) = 500 W, LF RF (high frequency power for bias) = 0 W, DCS = -150 V, RDC (gas center flow rate ratio) = 50%. , a substrate having a pattern formed on a silicon-containing film was obtained. Next, using the silicon-containing film pattern as a mask, using the etching apparatus described above, O 2 =400 sccm, PRESS. Etching the resist underlayer film under the following conditions: = 25 mT, HF RF (high frequency power for plasma generation) = 400 W, LF RF (high frequency power for bias) = 0 W, DCS = 0 V, RDC (gas center flow rate ratio) = 50%, A substrate on which a pattern was formed on the resist underlayer film was obtained. Using the resist underlayer film pattern as a mask and using the etching apparatus described above, CF 4 =180 sccm, Ar=360 sccm, PRESS. = 150 mT, HF RF (high frequency power for plasma generation) = 1,000 W, LF RF (high frequency power for bias) = 1,000 W, DCS = -150 V, RDC (gas center flow rate ratio) = 50%, under the conditions of 60 seconds The silicon dioxide film was etched to obtain a substrate in which a pattern was formed on the silicon dioxide film.
 その後、上記二酸化ケイ素膜にパターンが形成された基板について、各線幅のレジスト下層膜パターンの形状を走査型電子顕微鏡((株)日立ハイテクノロジーズの「CG-4000」)にて250,000倍に拡大した画像を得て、その画像処理を行うことによって、図1に示すように、長さ1,000nmのレジスト下層膜パターン3(ラインパターン)の横側面3aについて、100nm間隔で10か所測定した線幅方向の位置Xn(n=1~10)と、これらの線幅方向の位置の平均値の位置Xaから計算された標準偏差を3倍にした3シグマの値をLER(ラインエッジラフネス)とした。レジスト下層膜パターンの曲がりの度合いを示すLERは、レジスト下層膜パターンの線幅が細くなるにつれて増大する。曲り耐性は、LERが5.5nmとなる膜パターンの線幅が35.0nm未満である場合を「A」(良好)と、35.0nm以上40.0nm未満である場合を「B」(やや良好)と、40.0nm以上である場合を「C」(不良)と評価した。なお、図1で示す膜パターンの曲り具合は、実際より誇張して記載している。 After that, for the substrate on which the pattern was formed on the silicon dioxide film, the shape of the resist underlayer film pattern for each line width was examined using a scanning electron microscope (“CG-4000” manufactured by Hitachi High-Technologies Corporation) at a magnification of 250,000 times. By obtaining an enlarged image and performing image processing, measurements were taken at 10 locations at 100 nm intervals on the side surface 3a of the resist underlayer film pattern 3 (line pattern) with a length of 1,000 nm, as shown in FIG. The 3-sigma value obtained by multiplying the standard deviation calculated from the position Xn (n = 1 to 10) in the line width direction and the position Xa of the average value of these positions in the line width direction is calculated as LER (line edge roughness). ). LER, which indicates the degree of curvature of the resist underlayer film pattern, increases as the line width of the resist underlayer film pattern becomes thinner. The bending resistance is rated "A" (good) when the line width of the film pattern with LER of 5.5 nm is less than 35.0 nm, and "B" (fair) when it is 35.0 nm or more and less than 40.0 nm. Good), and cases where it was 40.0 nm or more were evaluated as "C" (poor). Note that the degree of curvature of the film pattern shown in FIG. 1 is exaggerated compared to the actual state.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 表2の結果から分かるように、実施例の組成物から形成されたレジスト下層膜は、比較例の組成物から形成されたレジスト下層膜と比較して、エッチング耐性、耐熱性及び曲がり耐性に優れていた。 As can be seen from the results in Table 2, the resist underlayer film formed from the composition of the example has superior etching resistance, heat resistance, and bending resistance compared to the resist underlayer film formed from the composition of the comparative example. was.
 本発明の半導体基板の製造方法によれば、良好にパターニングされた基板を得ることができる。本発明の組成物は、エッチング耐性、耐熱性及び曲がり耐性に優れるレジスト下層膜を形成することができる。本発明の化合物は、エッチング耐性、耐熱性及び曲がり耐性に優れる膜を形成可能な組成物を与えることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the method for manufacturing a semiconductor substrate of the present invention, a substrate that is well patterned can be obtained. The composition of the present invention can form a resist underlayer film having excellent etching resistance, heat resistance, and bending resistance. The compound of the present invention can provide a composition capable of forming a film having excellent etching resistance, heat resistance, and bending resistance. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.
3 レジスト下層膜パターン
3a レジスト下層膜パターンの横側面
 
 
3 Resist lower layer film pattern 3a Lateral side of resist lower layer film pattern

Claims (13)

  1.  基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程と、
     上記レジストパターンをマスクとしたエッチングを行う工程と
     を含み、
     上記レジスト下層膜形成用組成物が、
     下記式(1)で表される化合物と、
     溶媒と
     を含有する、半導体基板の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Ar、Ar、Ar及びArは、それぞれ独立して、置換又は非置換の環員数5~40の芳香環を有する1価の基である。Ar、Ar、Ar及びArのうちの少なくとも1つは、下記式(1-1)又は(1-2)で表される基を有する。下記式(1-1)又は(1-2)で表される基が複数存在する場合、複数の当該基は互いに同一又は異なる。)
    Figure JPOXMLDOC01-appb-C000002
    (式(1-1)及び(1-2)中、X及びXは、それぞれ独立して、下記式(i)、(ii)、(iii)又は(iv)で表される基である。Ar、Ar及びArは、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。L及びLは、それぞれ独立して、単結合又は芳香環を有する2価の有機基である。*は、上記式(1)における炭素原子との結合手である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(i)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。
     式(ii)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。
     式(iii)中、Rは、炭素数1~20の1価の有機基である。
     式(iv)中、Rは、水素原子又は炭素数1~20の1価の有機基である。)
    a step of directly or indirectly applying a resist underlayer film forming composition to the substrate;
    forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating process;
    and a step of performing etching using the resist pattern as a mask,
    The resist underlayer film forming composition described above is
    A compound represented by the following formula (1),
    A method for manufacturing a semiconductor substrate, the method comprising: a solvent;
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
    Figure JPOXMLDOC01-appb-C000002
    (In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv). Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members. L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (i), R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
    In formula (ii), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 1 to 20 carbon atoms.
    In formula (iii), R 5 is a monovalent organic group having 1 to 20 carbon atoms.
    In formula (iv), R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. )
  2.  上記レジストパターン形成前に、
     上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程
     をさらに含む、請求項1に記載の半導体基板の製造方法。
    Before forming the above resist pattern,
    The method for manufacturing a semiconductor substrate according to claim 1, further comprising the step of forming a silicon-containing film directly or indirectly on the resist underlayer film.
  3.  下記式(1)で表される化合物と、
     溶媒と
     を含有する、組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Ar、Ar、Ar及びArは、それぞれ独立して、置換又は非置換の環員数5~40の芳香環を有する1価の基である。Ar、Ar、Ar及びArのうちの少なくとも1つは、下記式(1-1)又は(1-2)で表される基を有する。下記式(1-1)又は(1-2)で表される基が複数存在する場合、複数の当該基は互いに同一又は異なる。)
    Figure JPOXMLDOC01-appb-C000005
    (式(1-1)及び(1-2)中、X及びXは、それぞれ独立して、下記式(i)、(ii)、(iii)又は(iv)で表される基である。Ar、Ar及びArは、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。L及びLは、それぞれ独立して、単結合又は芳香環を有する2価の有機基である。*は、上記式(1)における炭素原子との結合手である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(i)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。
     式(ii)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。
     式(iii)中、Rは、炭素数1~20の1価の有機基である。
     式(iv)中、Rは、水素原子又は炭素数1~20の1価の有機基である。)
    A compound represented by the following formula (1),
    A composition comprising: a solvent;
    Figure JPOXMLDOC01-appb-C000004
    (In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
    Figure JPOXMLDOC01-appb-C000005
    (In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv). Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members. L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
    Figure JPOXMLDOC01-appb-C000006
    (In formula (i), R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
    In formula (ii), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 1 to 20 carbon atoms.
    In formula (iii), R 5 is a monovalent organic group having 1 to 20 carbon atoms.
    In formula (iv), R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. )
  4.  上記式(1)における炭素原子は、Ar、Ar、Ar及びArが有する芳香環と結合する、請求項3に記載の組成物。 The composition according to claim 3, wherein the carbon atom in the above formula (1) is bonded to an aromatic ring possessed by Ar1 , Ar2 , Ar3, and Ar4 .
  5.  上記Ar、Ar、Ar及びArのうちの少なくとも2つが、上記式(1-1)又は(1-2)で表される基を有する、請求項3又は4に記載の組成物。 The composition according to claim 3 or 4, wherein at least two of the Ar 1 , Ar 2 , Ar 3 and Ar 4 have a group represented by the formula (1-1) or (1-2). .
  6.  上記Ar、Ar、Ar及びArのうちの少なくとも1つが、ヒドロキシ基、下記式(2-1)で表される基及び下記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有する、請求項3又は4に記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(2-1)及び(2-2)中、Rは、それぞれ独立して、炭素数1~20の2価の有機基又は単結合である。*は芳香環における炭素原子との結合手である。)
    At least one of the above Ar 1 , Ar 2 , Ar 3 and Ar 4 is a group consisting of a hydroxy group, a group represented by the following formula (2-1), and a group represented by the following formula (2-2) The composition according to claim 3 or 4, having at least one group selected from:
    Figure JPOXMLDOC01-appb-C000007
    (In formulas (2-1) and (2-2), R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * indicates a bond with a carbon atom in an aromatic ring. It is a conjugate.)
  7.  上記Ar、Ar、Ar及びArのうちの少なくとも2つが、上記式(2-1)又は(2-2)で表される基を有する、請求項6に記載の組成物。 The composition according to claim 6, wherein at least two of the Ar 1 , Ar 2 , Ar 3 and Ar 4 have a group represented by the formula (2-1) or (2-2).
  8.  レジスト下層膜形成用である、請求項3又は4に記載の組成物。 The composition according to claim 3 or 4, which is used for forming a resist underlayer film.
  9.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式(1)中、Ar、Ar、Ar及びArは、それぞれ独立して、置換又は非置換の環員数5~40の芳香環を有する1価の基である。Ar、Ar、Ar及びArのうちの少なくとも1つは、下記式(1-1)又は(1-2)で表される基を有する。下記式(1-1)又は(1-2)で表される基が複数存在する場合、複数の当該基は互いに同一又は異なる。)
    Figure JPOXMLDOC01-appb-C000009
    (式(1-1)及び(1-2)中、X及びXは、それぞれ独立して、下記式(i)、(ii)、(iii)又は(iv)で表される基である。Ar、Ar及びArは、それぞれ独立して、上記式(1-1)及び(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数6~20の芳香環である。L及びLは、それぞれ独立して、単結合又は芳香環を有する2価の有機基である。*は、上記式(1)における炭素原子との結合手である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(i)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。
     式(ii)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。
     式(iii)中、Rは、炭素数1~20の1価の有機基である。
     式(iv)中、Rは、水素原子又は炭素数1~20の1価の有機基である。)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000008
    (In formula (1), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a monovalent group having a substituted or unsubstituted aromatic ring having 5 to 40 ring members. Ar 1 , At least one of Ar 2 , Ar 3 and Ar 4 has a group represented by the following formula (1-1) or (1-2).The following formula (1-1) or (1-2) If there are multiple groups represented by , the multiple groups may be the same or different from each other.)
    Figure JPOXMLDOC01-appb-C000009
    (In formulas (1-1) and (1-2), X 1 and X 2 are each independently a group represented by the following formula (i), (ii), (iii) or (iv). Ar 5 , Ar 6 and Ar 7 each independently represent a substituted or unsubstituted ring that forms a fused ring structure with two adjacent carbon atoms in the above formulas (1-1) and (1-2). It is an aromatic ring having 6 to 20 members. L 1 and L 2 are each independently a single bond or a divalent organic group having an aromatic ring. * represents the bond with the carbon atom in the above formula (1). It is a conjugate.)
    Figure JPOXMLDOC01-appb-C000010
    (In formula (i), R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
    In formula (ii), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 1 to 20 carbon atoms.
    In formula (iii), R 5 is a monovalent organic group having 1 to 20 carbon atoms.
    In formula (iv), R 6 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. )
  10.  上記式(1)における炭素原子は、Ar、Ar、Ar及びArが有する芳香環と結合する、請求項9に記載の化合物。 10. The compound according to claim 9, wherein the carbon atom in the above formula (1) is bonded to an aromatic ring possessed by Ar1 , Ar2 , Ar3, and Ar4 .
  11.  上記Ar、Ar、Ar及びArのうちの少なくとも2つが、上記式(1-1)又は(1-2)で表される基を有する、請求項9又は10に記載の化合物。 The compound according to claim 9 or 10, wherein at least two of the Ar 1 , Ar 2 , Ar 3 and Ar 4 have a group represented by the formula (1-1) or (1-2).
  12.  上記Ar、Ar、Ar及びArのうちの少なくとも1つが、ヒドロキシ基、下記式(2-1)で表される基及び下記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有する、請求項9又は10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    (式(2-1)及び(2-2)中、Rは、それぞれ独立して、炭素数1~20の2価の有機基又は単結合である。*は芳香環における炭素原子との結合手である。)
    At least one of the above Ar 1 , Ar 2 , Ar 3 and Ar 4 is a group consisting of a hydroxy group, a group represented by the following formula (2-1), and a group represented by the following formula (2-2) The compound according to claim 9 or 10, having at least one group selected from.
    Figure JPOXMLDOC01-appb-C000011
    (In formulas (2-1) and (2-2), R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * indicates a bond with a carbon atom in an aromatic ring. It is a conjugate.)
  13.  上記Ar、Ar、Ar及びArのうちの少なくとも2つが、上記式(2-1)又は(2-2)で表される基を有する、請求項12に記載の化合物。
     
     
    The compound according to claim 12, wherein at least two of the Ar 1 , Ar 2 , Ar 3 and Ar 4 have a group represented by the formula (2-1) or (2-2).

PCT/JP2023/014339 2022-04-13 2023-04-07 Semiconductor substrate manufacturing method, composition, and compound WO2023199851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-066375 2022-04-13
JP2022066375 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023199851A1 true WO2023199851A1 (en) 2023-10-19

Family

ID=88329720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014339 WO2023199851A1 (en) 2022-04-13 2023-04-07 Semiconductor substrate manufacturing method, composition, and compound

Country Status (2)

Country Link
TW (1) TW202406886A (en)
WO (1) WO2023199851A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090041999A (en) * 2007-10-25 2009-04-29 주식회사 하나화인켐 Organic light emitting compound and organic light emitting device comprising the same
KR20150093995A (en) * 2014-02-10 2015-08-19 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090041999A (en) * 2007-10-25 2009-04-29 주식회사 하나화인켐 Organic light emitting compound and organic light emitting device comprising the same
KR20150093995A (en) * 2014-02-10 2015-08-19 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Also Published As

Publication number Publication date
TW202406886A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP7064149B2 (en) A composition for forming a resist underlayer film, a resist underlayer film and a method for forming the same, and a method for producing a patterned substrate.
JPWO2013080929A1 (en) Composition for forming resist underlayer film used in multilayer resist process, resist underlayer film, method for forming the same, and pattern forming method
JP6907522B2 (en) A composition for forming a resist underlayer film and a method for producing the same, a method for producing a resist underlayer film and a patterned substrate.
JP7207321B2 (en) Composition for forming resist underlayer film, resist underlayer film and method for forming same, method for producing patterned substrate, and compound
US20240153768A1 (en) Method for manufacturing semiconductor substrate and composition
WO2021054337A1 (en) Composition, resist underlayer film, method for forming resist underlayer film, method for producing patterned substrate, and compound
WO2022145365A1 (en) Semiconductor substrate production method and composition
WO2023199851A1 (en) Semiconductor substrate manufacturing method, composition, and compound
WO2020171054A1 (en) Method for producing semiconductor substrate and composition for producing semiconductor substrate
WO2022191037A1 (en) Method for manufacturing semiconductor substrate, composition, polymer, and method for producing polymer
WO2022191062A1 (en) Method for producing semiconductor substrate, composition, polymer and method for producing polymer
WO2024070728A1 (en) Method for producing semiconductor substrate, composition and polymer
JP7439823B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming resist underlayer film, and method for manufacturing patterned substrate
WO2022131002A1 (en) Production method for semiconductor substrate, composition, and resist underlayer film
WO2024085030A1 (en) Method for producing semiconductor substrate and composition
JP5690043B2 (en) Fullerene derivative solution, fullerene derivative film and fullerene derivative
WO2024070786A1 (en) Resist underlayer film-forming composition, and method for manufacturing semiconductor substrate
WO2023162780A1 (en) Semiconductor substrate production method and composition
JP2023059024A (en) Method for producing semiconductor substrate and composition
WO2023112672A1 (en) Semiconductor substrate production method and composition
TWI838503B (en) Composition for forming an anti-corrosion agent underlayer film, anti-corrosion agent underlayer film, method for forming an anti-corrosion agent underlayer film, method for producing a patterned substrate, and compound
WO2024029292A1 (en) Composition, compound, and method for manufacturing semiconductor substrate
WO2024135316A1 (en) Composition, and method for producing semiconductor substrate
TW202415697A (en) Semiconductor substrate manufacturing method, composition and polymer
WO2021020091A1 (en) Composition, silicon-containing film, method for forming silicon-containing film and method for processing semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788270

Country of ref document: EP

Kind code of ref document: A1