WO2023162780A1 - Semiconductor substrate production method and composition - Google Patents

Semiconductor substrate production method and composition Download PDF

Info

Publication number
WO2023162780A1
WO2023162780A1 PCT/JP2023/004990 JP2023004990W WO2023162780A1 WO 2023162780 A1 WO2023162780 A1 WO 2023162780A1 JP 2023004990 W JP2023004990 W JP 2023004990W WO 2023162780 A1 WO2023162780 A1 WO 2023162780A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
ring
composition
group
underlayer film
Prior art date
Application number
PCT/JP2023/004990
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 中津
温子 永縄
修平 山田
嘉奈子 植田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023162780A1 publication Critical patent/WO2023162780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a method and composition for manufacturing a semiconductor substrate.
  • a multilayer resist process is used in which a resist pattern is formed by exposing and developing a resist film laminated on a substrate via a resist underlayer film such as an organic underlayer film or a silicon-containing film. It is In this process, the resist underlayer film is etched using this resist pattern as a mask, and the substrate is further etched using the resist underlayer film pattern thus obtained as a mask, thereby forming a desired pattern on the semiconductor substrate (Japanese Laid-Open Patent Publication No. 2004-177668).
  • etching resistance and heat resistance are required for the organic underlayer film as the resist underlayer film.
  • the present invention has been made based on the above circumstances, and its object is to provide a method for manufacturing a semiconductor substrate using a composition capable of forming a film having excellent etching resistance and heat resistance, and the composition. be.
  • the present invention in one embodiment, a step of directly or indirectly applying a composition for forming a resist underlayer film onto a substrate; a step of directly or indirectly forming a resist pattern on the resist underlayer film formed by the coating step; and a step of performing etching using the resist pattern as a mask
  • the composition for forming a resist underlayer film is A compound having a boron atom (hereinafter also referred to as "[A] compound”);
  • the present invention relates to a method for manufacturing a semiconductor substrate containing a solvent (hereinafter also referred to as "[B] solvent”).
  • the present invention in another embodiment, a compound having a boron atom;
  • the present invention relates to a composition for forming a resist underlayer film containing a solvent and
  • the manufacturing method of the semiconductor substrate it is possible to form a resist underlayer film excellent in etching resistance and heat resistance.
  • a film having excellent etching resistance and heat resistance can be formed. Therefore, these can be suitably used for the manufacture of semiconductor devices, etc., which are expected to be further miniaturized in the future.
  • the method for producing a semiconductor substrate includes a step of directly or indirectly coating a substrate with a composition for forming a resist underlayer film (hereinafter also referred to as a “coating step”), and a resist underlayer film formed by the coating step. a step of directly or indirectly forming a resist pattern (hereinafter also referred to as a “resist pattern forming step”), and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as an “etching step”).
  • a resist underlayer film having excellent etching resistance and heat resistance can be formed by using the composition described below as a composition for forming a resist underlayer film in the coating step. Therefore, a semiconductor substrate having a good pattern shape can be manufactured with a high yield.
  • the method for manufacturing a semiconductor substrate may further include a step of forming a silicon-containing film directly or indirectly on the resist underlayer film (hereinafter also referred to as a "silicon-containing film forming step"), if necessary. .
  • composition and each step used in the method for manufacturing the semiconductor substrate will be described below.
  • composition as a composition for forming a resist underlayer film contains [A] compound and [B] solvent.
  • the composition may contain optional ingredients as long as the effects of the present invention are not impaired.
  • the composition By containing the [A] compound and the [B] solvent, the composition can form a film with excellent etching resistance and heat resistance. Although the reason for this is not clear, it is presumed as follows. The reaction between the boron atoms contained in the [A] compound, which is the main element of the film, and the etching gas causes an effect similar to raising the boiling point or similar to passivation on the etching gas contact surface of the film, and as a result, the film exhibits etching resistance. assumed to be granted. Further, it is speculated that boron atoms in the coating film of the composition combine with oxygen during air baking (during heating) to form a BO bond with a large bond energy, thereby imparting heat resistance.
  • the composition can be used as a composition for forming a film. More specifically, the composition can be suitably used as a composition for forming a resist underlayer film in a multilayer resist process.
  • the [A] compound is a compound having a boron atom.
  • the compound may have two or more boron atoms.
  • the composition may contain one or more [A] compounds.
  • the lower limit of the content of boron atoms in the compound is preferably 0.1 atm%, more preferably 0.5 atm%, further preferably 1 atm%, and 1.2 atm%. It is particularly preferred to have The upper limit of the above content is preferably 10 atm %, more preferably 8 atm %, and even more preferably 6 atm %. Thereby, the etching resistance and heat resistance of the obtained film can be improved.
  • the content of boron atoms in the [A] compound is a value calculated from the structural formula of the [A] compound. [A] When the compound is a polymer, it is a value calculated from the repeating unit structure of the polymer and its content.
  • the [A] compound preferably has an aromatic ring in terms of improving heat resistance.
  • the aromatic ring is preferably an aromatic ring having 5 to 60 ring members, such as benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring, coronene ring, trinaphthylene ring, Aromatic hydrocarbon rings such as heptaphene ring, heptacene ring, pyranthrene ring, ovalene ring, hexabenzocoronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, imidazole ring, pyridine ring, pyrazine ring, pyrimidine ring
  • the aromatic rings When aromatic rings are combined, the aromatic rings may be bonded to each other with a single bond or a chain structure in addition to the condensed ring structure shown above.
  • the chain structure is preferably a chain hydrocarbon structure and preferably has an unsaturated bond.
  • the aromatic ring is preferably at least one aromatic hydrocarbon ring selected from the group consisting of benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring and perylene ring.
  • the aromatic ring in the [A] compound refers to the above aromatic ring.
  • the term "number of ring members” refers to the number of atoms forming a ring.
  • the biphenyl ring has 12 ring members
  • the naphthalene ring has 10 ring members
  • the fluorene ring has 13 ring members.
  • a “fused ring structure” refers to a structure in which adjacent rings share one side (two adjacent atoms).
  • the compound preferably has a partial structure represented by the following formula (i) (hereinafter also referred to as "partial structure (i)").
  • the compound may have two or more partial structures (i).
  • the multiple partial structures (i) may be the same or different. This facilitates the introduction of boron atoms into the [A] compound, which in turn can improve the etching resistance and heat resistance of the film formed from the composition.
  • X 1 and X 2 are each independently a carbon atom, a nitrogen atom, or an oxygen atom.
  • Preferred combinations of X 1 and X 2 regardless of arrangement are carbon atom and carbon atom, carbon atom and oxygen atom, oxygen atom and oxygen atom, and nitrogen atom and nitrogen atom.
  • Each atom other than the boron atom in the partial structure (i) is bonded to the portion other than the partial structure in the [A] compound.
  • the compound has a partial structure represented by the following formula (i-1) (hereinafter also referred to as "partial structure (i-1)”) as an aspect of the partial structure (i).
  • Y 1 and Y 2 are each independently -O- or -NR'-.
  • R' is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. When there are multiple R's, the multiple R's are the same or different.
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R 1 and R 2 are combined with Y 1 and Y 2 to which they are bonded It represents a ring structure with 5 to 20 ring members formed together with a boron atom. )
  • Y 1 and Y 2 are preferably both -O- or both -NR'-.
  • the monovalent organic group having 1 to 20 carbon atoms represented by R′ includes, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms; Examples thereof include a group having a valent heteroatom-containing group, a group in which some or all of the hydrogen atoms of the above hydrocarbon group are substituted with a monovalent heteroatom-containing group, or a combination thereof.
  • Examples of monovalent hydrocarbon groups having 1 to 20 carbon atoms include monovalent linear hydrocarbon groups having 1 to 20 carbon atoms, monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms, and 6 to 20 monovalent aromatic hydrocarbon groups or combinations thereof.
  • hydrocarbon group includes chain hydrocarbon groups, alicyclic hydrocarbon groups and aromatic hydrocarbon groups. This "hydrocarbon group” includes a saturated hydrocarbon group and an unsaturated hydrocarbon group.
  • a “chain hydrocarbon group” means a hydrocarbon group composed only of a chain structure without a ring structure, and includes both a straight chain hydrocarbon group and a branched chain hydrocarbon group.
  • alicyclic hydrocarbon group means a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic (However, it does not have to consist only of an alicyclic structure, and a part of it may contain a chain structure.).
  • “Aromatic hydrocarbon group” means a hydrocarbon group containing an aromatic ring structure as a ring structure (however, it need not consist only of an aromatic ring structure; structure).
  • Examples of monovalent chain hydrocarbon groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group and tert-butyl group.
  • Examples of monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms include cycloalkyl groups such as cyclopentyl, cyclobutyl, cyclopentyl and cyclohexyl groups; cyclopropenyl, cyclopentenyl and cyclohexenyl groups. alkenyl group; bridged ring saturated hydrocarbon group such as norbornyl group, adamantyl group and tricyclodecyl group; bridged ring unsaturated hydrocarbon group such as norbornenyl group and tricyclodecenyl group;
  • Examples of monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms include phenyl group, tolyl group, naphthyl group, anthracenyl group and pyrenyl group.
  • heteroatom constituting the divalent or monovalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
  • Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms.
  • the divalent heteroatom-containing group includes, for example, -CO-, -CS-, -NH-, -O-, -S-, groups in which these are combined, and the like.
  • Examples of monovalent heteroatom-containing groups include a hydroxy group, a sulfanyl group, a cyano group, a nitro group, and a halogen atom.
  • the above monovalent organic group having 1 to 20 carbon atoms represented by R' can be preferably employed.
  • R 1 and R 2 are combined and formed together with Y 1 and Y 2 to which they are bonded, and a ring structure having 5 to 20 ring members formed together with a boron atom (hereinafter also referred to as a “boron-containing ring structure”).
  • a ring structure having 5 to 20 ring members formed together with a boron atom hereinafter also referred to as a “boron-containing ring structure”.
  • boron-containing ring structure is not particularly limited as long as it is a ring structure containing -Y 1 -B(-C)-Y 2 - as a partial structure forming
  • moieties other than -Y 1 -B(-C)-Y 2 - in the boron-containing ring structure include divalent linking groups (one end binds to Y 1 and the other end binds to Y 2 ). be done.
  • the divalent linking group a group obtained by removing one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably used.
  • the divalent linking group has another ring structure, the number of ring members of the boron-containing ring structure also includes the number of ring members of this other ring structure.
  • both Y 1 and Y 2 are —O—, both R 1 and R 2 are hydrogen atoms, or the above formula (i-1) is a partial structure represented by the following formula ( ⁇ ) is preferred.
  • R b1 and R b2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. p is an integer of 1 to 5. R b1 and When a plurality of R b2 are present, the plurality of R b1 and R b2 are the same or different.)
  • R b1 and R b2 the monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably used.
  • R b1 and R b2 are preferably a chain hydrocarbon group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group or a propyl group.
  • p is preferably an integer of 1-4, more preferably an integer of 2-3.
  • R 1 and R 2 are preferably combined with each other to form the above boron-containing ring structure.
  • the moiety other than -Y 1 -B(-C)-Y 2 - in the boron-containing ring structure is preferably the divalent linking group described above, and is preferably a divalent linking group containing a ring structure. more preferred.
  • the ring structure in the divalent linking group forming the boron-containing ring structure is a monovalent alicyclic hydrocarbon having 3 to 20 carbon atoms in the monovalent organic group having 1 to 20 carbon atoms represented by R'.
  • a group obtained by removing one hydrogen atom from a group a group obtained by removing one hydrogen atom from a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is preferable, and a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms
  • a group obtained by removing one hydrogen atom from a hydrocarbon group is more preferred, and a benzenediyl group and a naphthalenediyl group are even more preferred.
  • two R' are preferably hydrogen atoms.
  • the compound has a partial structure represented by the following formula (i-2) (hereinafter also referred to as "partial structure (i-2)”) as an aspect of the partial structure (i).
  • X 1 and X 2 are synonymous with the above formula (i).
  • L2 is a single bond or a divalent linking group.
  • R 3 is a monovalent organic group having 1 to 20 carbon atoms. * represents a binding site to a portion other than the partial structure (i-2) in the compound.
  • m is an integer from 0 to 4; When m is 2 or more, multiple R 3 are the same or different.
  • n is an integer of 0-2.
  • L 2 As the divalent linking group represented by L 2 , a group obtained by removing one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably employed.
  • L 2 is preferably a single bond or an unsaturated chain hydrocarbon group having 2 to 10 carbon atoms, and L 2 is preferably a single bond or an ethynediyl group.
  • the above monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably employed.
  • n is preferably an integer of 0-3, more preferably an integer of 0-2.
  • the compound preferably has at least one group selected from the group consisting of a group represented by the following formula (2-1) and a group represented by the following formula (2-2).
  • R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * is a carbon atom in the [A] compound. is a bond with
  • the divalent organic group having 1 to 20 carbon atoms represented by R 7 is preferably a group obtained by removing one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms represented by R′. can be adopted for
  • R 7 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms such as a methanediyl group, an ethanediyl group, a phenylene group, or a combination of these with -O-, and a methanediyl group, or a methanediyl group and -O- is more preferred.
  • R 3 is preferably a group represented by the above formula (2-1), and the following formula (2-1-1) is more preferably represented by
  • * is preferably a bond with a carbon atom in the aromatic ring when the [A] compound has an aromatic ring.
  • the compound may have a substituent other than the group represented by the above formula (2-1) and the group represented by the above formula (2-2).
  • substituents include monovalent chain hydrocarbon groups having 1 to 10 carbon atoms; halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkoxy groups such as methoxy, ethoxy and propoxy; phenoxy group, aryloxy group such as naphthyloxy group, alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group, alkoxycarbonyloxy group such as methoxycarbonyloxy group and ethoxycarbonyloxy group, formyl group, acetyl group, propionyl group, Examples include acyl groups such as butyryl groups, cyano groups, nitro groups, and hydroxy groups.
  • the [A] compound is preferably a compound represented by the following formula (1-1) (hereinafter also referred to as “compound (1-1)”).
  • Z 1 is the above partial structure (i-1).
  • the carbon atom in the partial structure (i-1) corresponds to the carbon atom in X.
  • X is a (q+r)-valent group containing a substituted or unsubstituted 5 to 60-membered aromatic ring.
  • R 4 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
  • q is an integer from 1 to 10; When q is 2 or more, multiple Z 1s are the same or different.
  • r is an integer from 0 to 10; )
  • the aromatic ring having 5 to 60 ring members in the above X the aromatic ring having 5 to 60 ring members that the compound [A] may have can be suitably employed.
  • the (p+q)-valent group containing a substituted or unsubstituted 5-60 ring-membered aromatic ring represented by X is a group obtained by removing (p+q) hydrogen atoms from the above 5-60 ring-membered aromatic ring. is mentioned.
  • the substituent when X has a substituent the group represented by the above formula (2-1), the group represented by the above formula (2-2), and the above-mentioned substituents other than these groups can be suitably employed.
  • the aromatic ring of X is at least one aromatic hydrocarbon ring selected from the group consisting of benzene, naphthalene, anthracene, phenalene, phenanthrene, pyrene, fluorene, perylene and coronene rings. is preferred.
  • an aromatic ring corresponding to 5 to 40 ring members among the aromatic rings having 5 to 60 ring members for X can be preferably used.
  • Examples of the monovalent group containing an aromatic ring having 5 to 40 ring members represented by R 4 include groups obtained by removing one hydrogen atom from the above aromatic ring having 5 to 40 ring members.
  • the aromatic ring of R4 is at least one aromatic hydrocarbon ring selected from the group consisting of benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring and coronene ring. is preferred.
  • Examples of the compound (1-1) include compounds represented by the following formulas (1-1-1) to (1-1-11).
  • a representative method for synthesizing compound (1-1) is to prepare, for example, a ketone or alkyne-substituted fluorene as a starting material, and allow the cyclization reaction of the ketone moiety or alkyne moiety to proceed in the presence of a catalyst or the like.
  • Other structures can also be synthesized by appropriately selecting starting materials, structures of ketone bodies, and the like.
  • the [A] compound is preferably a compound represented by the following formula (1-2) (hereinafter also referred to as “compound (1-2)”).
  • compound (1-2) Z 2 and Z 3 are the above partial structure (i-1).
  • the carbon atoms in the partial structure (i-1) above correspond to the carbon atoms in Ar 1 and Ar 2 .
  • Ar 1 is a (t1+2)-valent group containing a substituted or unsubstituted 5 to 20-membered aromatic ring.
  • Ar 2 is a (t2+1)-valent group containing a substituted or unsubstituted 5 to 20-membered aromatic ring.
  • s is an integer from 4 to 12;
  • a plurality of t1 and t2 are each independently an integer of 0-4. However, the sum of multiple t1 and t2 is 1 or more.
  • the aromatic ring having 5 to 20 ring members in Ar 1 and Ar 2 is preferably an aromatic ring corresponding to 5 to 20 ring members among the above aromatic rings having 5 to 60 ring members that the compound [A] may have.
  • the (t1+2)-valent group represented by Ar 1 includes groups obtained by removing (t1+2) hydrogen atoms from the above aromatic ring having 5 to 20 ring members.
  • the (t2+1)-valent group represented by Ar 2 includes a group obtained by removing (t2+1) hydrogen atoms from the above aromatic ring having 5 to 20 ring members.
  • the aromatic ring having 5 to 20 ring members in Ar 1 and Ar 2 is preferably a benzene ring or a naphthalene ring.
  • the substituents include groups represented by the above formula (2-1), groups represented by the above formula (2-2), and other substituents.
  • the substituents listed above can be suitably employed.
  • s is preferably an integer of 4-10, more preferably an integer of 4-8, even more preferably an integer of 4-6.
  • a plurality of t1 and t2 are each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1.
  • t1 is preferably zero and t2 is preferably one.
  • Examples of the compound (1-2) include compounds represented by the following formulas (1-2-1) to (1-2-6).
  • the compound (1-2) typically, it can be synthesized by a condensation reaction between, for example, an aromatic alcohol as a starting material and an aromatic ring aldehyde having the partial structure (i). After that, a modification reaction of the phenolic hydroxyl group of the aromatic alcohol may be performed.
  • Other structures can also be synthesized by appropriately selecting the structures of starting materials such as aromatic alcohols and aromatic ring aldehydes.
  • the [A] compound is a compound represented by the following formula (1-3) or (1-4) (hereinafter also referred to as "compound (1-3)" etc.).
  • compound (1-3) a compound represented by the following formula (1-3) or (1-4) (hereinafter also referred to as "compound (1-3)" etc.).
  • Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 are each independently a substituted or unsubstituted monovalent group containing an aromatic ring having 5 to 20 ring members.
  • L 11 , L 12 , L 13 , L 14 , L 21 , L 22 and L 23 are each independently a single bond or a divalent linking group.
  • aromatic rings having 5 to 20 ring members in Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 the aromatic ring having 5 to 60 ring members which the compound [A] may have Of the rings, aromatic rings having 5 to 20 ring members can be preferably used.
  • the monovalent groups represented by Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 are groups obtained by removing one hydrogen atom from the above aromatic ring having 5 to 20 ring members. is mentioned.
  • Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 have a substituent
  • the substituents include the group represented by the above formula (2-1), the above formula (2- The group represented by 2) and the above-described substituents other than these can be suitably employed.
  • Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 are each independently preferably a phenyl group or a naphthyl group.
  • the divalent linking group represented by L 11 , L 12 , L 13 , L 14 , L 21 , L 22 and L 23 can be suitably employed.
  • Examples of the compounds (1-3) and (1-4) include the following formulas (1-3-1) to (1-3-4) and the following formulas (1-4-1) to (1-4- 3), and the like.
  • a representative method for synthesizing compounds (1-3) and (1-4) is to react a (halogen-substituted) aromatic ring or an ethynyl group-containing aromatic ring and a halogen-substituted borane as starting materials in the presence of organic lithium. It can be synthesized by reacting with Other structures can also be synthesized by appropriately selecting the structure of the starting material (halogen-substituted) aromatic ring or ethynyl group-containing aromatic ring.
  • the [A] compound is preferably a novolac-type polymer (hereinafter also referred to as "polymer (1)") containing two or more repeating units having partial structure (i). .
  • Polymer (1) is preferably represented by the following formula (1-5).
  • Z 4 and Z 5 are the above partial structure (i-1).
  • the carbon atoms in partial structure (i-1) above correspond to the carbon atoms in Ar 3 and Ar 4 .
  • Ar 3 is a (u1+2)-valent group containing a substituted or unsubstituted 5 to 20-membered aromatic ring.
  • Ar 4 is a (u2+1) valent group containing a substituted or unsubstituted aromatic ring having 5 to 20 ring members.
  • u1 and u2 are each independently an integer of 0-4. However, the sum of u1 and u2 is 1 or more.
  • the aromatic ring having 5 to 20 ring members in Ar 3 and Ar 4 is preferably an aromatic ring corresponding to 5 to 20 ring members among the aromatic rings having 5 to 60 ring members that the compound [A] may have.
  • the (u1+2)-valent group represented by Ar 3 includes groups obtained by removing (u1+2) hydrogen atoms from the above aromatic ring having 5 to 20 ring members.
  • the (u2+1)-valent group represented by Ar 4 includes groups obtained by removing (u2+1) hydrogen atoms from the above aromatic ring having 5 to 20 ring members.
  • the aromatic ring having 5 to 20 ring members in Ar 3 and Ar 4 is preferably a benzene ring or a naphthalene ring.
  • the substituents when Ar 3 and Ar 4 have a substituent include the group represented by the above formula (2-1), the group represented by the above formula (2-2), and substituents other than these The substituents listed above can be suitably employed.
  • u1 and u2 are each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1.
  • u1 is preferably 0 and u2 is preferably 1;
  • Examples of the polymer (1) include compounds represented by the following formulas (1-5-1) to (1-5-12).
  • a representative method for producing polymer (1) includes an aromatic ring (having partial structure (i)) as a precursor giving Ar 3 of formula (1-5) above, and A novolac-type polymer (1) can be produced by acid addition condensation with an aldehyde or an aldehyde derivative (having partial structure (i)) as a precursor giving Ar 6 in 5).
  • Other structures can also be synthesized by appropriately selecting the structure of the aromatic ring of the starting material.
  • the [A] compound is a polymer different from the above polymer (1) (hereinafter also referred to as "polymer (2)"), which contains two or more repeating units having partial structure (i). ) is preferred.
  • Polymer (2) is preferably represented by the following formula (1-6).
  • R 61 and R 62 are each independently a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • L 31 and L 32 are each independently a single bond or a divalent linking group.
  • Ar 5 is a monovalent group containing a substituted or unsubstituted 5- to 20-membered aromatic ring.
  • Ar 6 is a (v+1) valent group containing a substituted or unsubstituted 5- to 20-membered aromatic ring.
  • Z6 is the above partial structure (i-1).
  • the carbon atoms in partial structure (i-1) above correspond to the carbon atoms in Ar 6 .
  • v is an integer from 1 to 4; )
  • R 61 and R 62 As the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 61 and R 62 , a monovalent hydrocarbon group having 1 to 20 carbon atoms in R' of the above formula (i) is preferably employed. be able to.
  • the substituents include groups represented by the above formula (2-1), groups represented by the above formula (2-2), and other substituents. The substituents listed above can be suitably employed.
  • R 61 and R 62 are each independently preferably a hydrogen atom or a methyl group.
  • the divalent linking group represented by L 31 and L 32 can be preferably employed.
  • L 31 and L 32 are each independently preferably a single bond or -COO- * . * is the binding site on the Ar 5 and Ar 6 side.
  • the aromatic ring having 5 to 20 ring members in Ar 5 and Ar 6 is preferably an aromatic ring corresponding to 5 to 20 ring members among the above 5 to 60 ring member aromatic rings that the compound [A] may have.
  • the monovalent group represented by Ar 5 includes groups obtained by removing one hydrogen atom from the above aromatic ring having 5 to 20 ring members.
  • the (v+1)-valent group represented by Ar 6 includes groups obtained by removing (v+1) hydrogen atoms from the above aromatic ring having 5 to 20 ring members.
  • the aromatic ring having 5 to 20 ring members in Ar 5 and Ar 6 is preferably a benzene ring, a naphthalene ring, a pyrene ring or a biphenyl ring.
  • the substituents when Ar 5 and Ar 6 have a substituent include the group represented by the above formula (2-1), the group represented by the above formula (2-2), and substituents other than these The substituents listed above can be suitably employed.
  • v is preferably an integer of 1 to 3, preferably 1 or 2.
  • Examples of the polymer (2) include compounds represented by the following formulas (1-6-1) to (1-6-8).
  • Polymer (2) can typically be synthesized by radical polymerization.
  • monomers that provide each structural unit can be synthesized by polymerizing in a suitable solvent using a radical polymerization initiator or the like.
  • the lower limit of the content of the [A] compound in the composition is preferably 2% by mass, more preferably 4% by mass, more preferably 6% by mass in the total mass of the [A] compound and [B] solvent, 8% by weight is particularly preferred.
  • the upper limit of the content ratio is preferably 30% by mass, more preferably 25% by mass, still more preferably 20% by mass, and particularly preferably 18% by mass, based on the total mass of the [A] compound and [B] solvent.
  • the [B] solvent is not particularly limited as long as it can dissolve or disperse the [A] compound and optionally contained optional components.
  • Solvents include, for example, hydrocarbon solvents, ester solvents, alcohol solvents, ketone solvents, ether solvents, nitrogen-containing solvents, and the like.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents such as n-pentane, n-hexane and cyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene and xylene.
  • ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as ⁇ -butyrolactone, diethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate.
  • carbonate solvents such as diethyl carbonate
  • acetic acid monoester solvents such as methyl acetate and ethyl acetate
  • lactone solvents such as ⁇ -butyrolactone
  • diethylene glycol monomethyl ether acetate diethylene glycol monomethyl ether acetate
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate.
  • Valued alcohol partial ether carboxylate solvents such as methyl lactate and ethyl lactate, and the like are included.
  • alcoholic solvents examples include monoalcoholic solvents such as methanol, ethanol and n-propanol, and polyhydric alcoholic solvents such as ethylene glycol and 1,2-propylene glycol.
  • ketone solvents examples include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
  • ether solvents include chain ether solvents such as n-butyl ether, polyhydric alcohol ether solvents such as cyclic ether solvents such as tetrahydrofuran, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether. .
  • nitrogen-containing solvents examples include linear nitrogen-containing solvents such as N,N-dimethylacetamide and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
  • the [B] solvent is preferably an ester solvent or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent or a cyclic ketone solvent, and even more preferably propylene glycol monomethyl ether acetate or cyclohexanone.
  • the lower limit of the content of the [B] solvent in the composition is preferably 50% by mass, more preferably 60% by mass, and even more preferably 70% by mass.
  • the upper limit of the content ratio is preferably 99.9% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
  • the composition may contain optional ingredients as long as they do not impair the effects of the present invention.
  • optional components include a compound corresponding to the structure obtained by removing the partial structure (i) from the [A] compound, an acid generator, a cross-linking agent, a surfactant, and the like.
  • An arbitrary component can be used individually by 1 type or in combination of 2 or more types.
  • the content ratio of the optional component in the composition can be appropriately determined according to the type of the optional component.
  • composition is prepared by mixing the [A] compound, [B] solvent, and optional ingredients in a predetermined ratio as necessary, and preferably filtering the resulting mixture through a membrane filter having a pore size of 0.5 ⁇ m or less.
  • a membrane filter having a pore size of 0.5 ⁇ m or less.
  • the resist underlayer film-forming composition is applied directly or indirectly onto the substrate.
  • the composition described above is used as the composition for forming the resist underlayer film.
  • the method of coating the composition for forming a resist underlayer film is not particularly limited, and can be carried out by an appropriate method such as spin coating, casting coating, roll coating, or the like. As a result, a coating film is formed, and [B] a resist underlayer film is formed by volatilization of the solvent.
  • the substrate examples include metal or semi-metal substrates such as silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, and titanium substrates, among which silicon substrates are preferred.
  • the substrate may be a substrate on which a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like is formed.
  • Examples of the case of indirectly applying the composition for forming a resist underlayer film onto a substrate include the case of applying the composition for forming a resist underlayer film onto a silicon-containing film formed on the substrate, which will be described later.
  • the coating film formed by the coating step is heated.
  • the heating of the coating promotes the formation of the resist underlayer film. More specifically, heating the coating film promotes volatilization of the [B] solvent.
  • the coating film may be heated in an air atmosphere or in a nitrogen atmosphere.
  • the lower limit of the heating temperature is preferably 300°C, more preferably 320°C, and even more preferably 350°C.
  • the upper limit of the heating temperature is preferably 600°C, more preferably 550°C.
  • the lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 1,200 seconds, more preferably 600 seconds.
  • the resist underlayer film may be exposed after the coating step. After the coating step, the resist underlayer film may be exposed to plasma. After the coating step, ions may be implanted into the resist underlayer film. Exposure of the resist underlayer film improves the etching resistance of the resist underlayer film. Exposure of the resist underlayer film to plasma improves the etching resistance of the resist underlayer film. Ion implantation into the resist underlayer film improves the etching resistance of the resist underlayer film.
  • the radiation used for exposure of the resist underlayer film is appropriately selected from electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and ⁇ rays; and particle beams such as electron beams, molecular beams, and ion beams.
  • the normal gas flow rate is 50 cc/min or more and 100 cc/min or less
  • the power supply is 100 W or more and 1,500 W or less.
  • the lower limit of plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
  • Plasma is generated, for example, in a mixed gas atmosphere of H 2 gas and Ar gas.
  • a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced.
  • CF4 gas, NF3 gas , CHF3 gas , CO2 gas, CH2F2 gas, CH4 gas and C4F8 gas At least one of them may be introduced.
  • the ion implantation into the resist underlayer film injects the dopant into the resist underlayer film.
  • Dopants may be selected from the group consisting of boron, carbon, nitrogen, phosphorous, arsenic, aluminum, and tungsten. Implant energies used to voltage the dopants range from about 0.5 keV to 60 keV, depending on the type of dopant used and the depth of implantation desired.
  • the lower limit to the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm.
  • the upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm. The method for measuring the average thickness is described in Examples.
  • a silicon-containing film is formed directly or indirectly on the resist underlayer film formed in the coating step or the heating step.
  • the silicon-containing film is formed indirectly on the resist underlayer film include, for example, the case where a surface modification film of the resist underlayer film is formed on the resist underlayer film.
  • the surface modified film of the resist underlayer film is, for example, a film having a contact angle with water different from that of the resist underlayer film.
  • a silicon-containing film can be formed by coating a silicon-containing film-forming composition, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a method of forming a silicon-containing film by coating a silicon-containing film-forming composition for example, a coating film formed by directly or indirectly coating a silicon-containing film-forming composition on the resist underlayer film is formed. , a method of curing by exposure and/or heating, and the like.
  • Commercially available products of the silicon-containing film-forming composition include, for example, "NFC SOG01", “NFC SOG04", and "NFC SOG080" (manufactured by JSR Corporation).
  • Silicon oxide films, silicon nitride films, silicon oxynitride films, and amorphous silicon films can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • Examples of the radiation used for the exposure include visible light, ultraviolet rays, far ultraviolet rays, X-rays, electromagnetic waves such as ⁇ -rays, and particle beams such as electron beams, molecular beams, and ion beams.
  • the lower limit of the temperature when heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 200°C.
  • the upper limit of the temperature is preferably 550°C, more preferably 450°C, and even more preferably 300°C.
  • the lower limit of the average thickness of the silicon-containing film is preferably 1 nm, more preferably 10 nm, and even more preferably 20 nm.
  • the upper limit is preferably 20,000 nm, more preferably 1,000 nm, even more preferably 100 nm.
  • the average thickness of the silicon-containing film is a value measured using the spectroscopic ellipsometer as in the case of the average thickness of the resist underlayer film.
  • resist pattern forming step In this step, a resist pattern is formed directly or indirectly on the resist underlayer film.
  • the method for performing this step include a method using a resist composition, a method using a nanoimprint method, a method using a self-assembled composition, and the like.
  • Examples of forming a resist pattern indirectly on the resist underlayer film include forming a resist pattern on the silicon-containing film.
  • the resist composition examples include a positive-type or negative-type chemically amplified resist composition containing a radiation-sensitive acid generator, a positive-type resist composition containing an alkali-soluble resin and a quinonediazide-based photosensitizer, an alkali-soluble Examples include a negative resist composition containing a resin and a cross-linking agent.
  • Examples of the coating method of the resist composition include a spin coating method and the like.
  • the pre-baking temperature and time can be appropriately adjusted depending on the type of resist composition used.
  • the radiation used for exposure can be appropriately selected according to the type of radiation-sensitive acid generator used in the resist composition, and examples thereof include visible light, ultraviolet light, deep ultraviolet light, X-rays, and ⁇ -rays. Examples include electromagnetic waves, electron beams, molecular beams, and particle beams such as ion beams.
  • KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F2 excimer laser light (wavelength 157 nm), Kr2 excimer laser light (wavelength 147 nm), ArKr excimer Laser light (wavelength: 134 nm) or extreme ultraviolet rays (wavelength: 13.5 nm, etc., hereinafter also referred to as "EUV”) are more preferred, and KrF excimer laser light, ArF excimer laser light, or EUV is even more preferred.
  • EUV extreme ultraviolet rays
  • post-baking can be performed to improve the resolution, pattern profile, developability, and the like.
  • the temperature and time of this post-baking can be appropriately determined according to the type of resist composition used.
  • the exposed resist film is developed with a developer to form a resist pattern.
  • This development may be either alkali development or organic solvent development.
  • the developer in the case of alkali development, basic aqueous solutions such as ammonia, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, etc. can be used. Suitable amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants, and the like can also be added to these basic aqueous solutions.
  • the developer includes, for example, various organic solvents exemplified as the [B] solvent of the composition.
  • a predetermined resist pattern is formed by washing and drying after development with the developer.
  • etching is performed using the resist pattern as a mask. Etching may be performed once or multiple times, that is, etching may be performed sequentially using a pattern obtained by etching as a mask. Multiple times are preferable from the viewpoint of obtaining a pattern with a better shape. When etching is performed multiple times, for example, the silicon-containing film, the resist underlayer film, and the substrate are sequentially etched. Etching methods include dry etching, wet etching, and the like. Dry etching is preferable from the viewpoint of improving the pattern shape of the substrate. For this dry etching, gas plasma such as oxygen plasma is used. A semiconductor substrate having a predetermined pattern is obtained by the etching.
  • Dry etching can be performed using, for example, a known dry etching apparatus.
  • the etching gas used for dry etching can be appropriately selected according to the mask pattern, the elemental composition of the film to be etched, etc. Examples include CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 and SF 6 .
  • Fluorine-based gases chlorine-based gases such as Cl 2 and BCl 3 , oxygen-based gases such as O 2 , O 3 and H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2H4 , C2H6 , C3H4 , C3H6 , C3H8 , HF , HI, HBr, HCl, NO, BCl3 and other reducing gases ; He, N2 , Ar and other Inert gas etc. are mentioned. These gases can also be mixed and used. When etching a substrate using the pattern of the resist underlayer film as a mask, a fluorine-based gas is usually used.
  • composition contains [A] compound and [B] solvent.
  • composition used in the method for manufacturing a semiconductor substrate can be suitably employed.
  • Mw Weight average molecular weight
  • the average thickness of the resist underlayer film was measured at arbitrary intervals of 5 cm including the center of the resist underlayer film formed on a 12-inch silicon wafer (substrate) using a spectroscopic ellipsometer ("M2000D" manufactured by JA WOOLLAM). The film thickness was measured at nine points, and the average value of the film thicknesses was obtained as a calculated value.
  • D-2 a compound represented by the following formula (D-2)
  • composition (J-1) 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The resulting solution was filtered through a polytetrafluoroethylene (PTFE) membrane filter with a pore size of 0.45 ⁇ m to prepare composition (J-1).
  • PTFE polytetrafluoroethylene
  • Examples 2 to 22 and Comparative Examples 1 to 3 Compositions (J-2) to (J-22) and (CJ-1) to (CJ-3) in the same manner as in Example 1 except that the types and contents of each component shown in Table 1 below were used. ) was prepared. "-" in the columns of "[A] compound”, “polymer”, “[C] acid generator” and “[D] cross-linking agent” in Table 1 indicates that the corresponding component was not used. show.
  • the composition prepared above was coated on a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT 12" available from Tokyo Electron Ltd.). Next, after heating at 350° C. for 60 seconds in an air atmosphere, by cooling at 23° C. for 60 seconds, a film having an average thickness of 200 nm was formed, and a film-coated substrate having a resist underlayer film formed on the substrate was obtained. Obtained.
  • etching rate (nm/min) was calculated from the average thickness of the films before and after.
  • the ratio to Comparative Example 1 was calculated based on the etching rate of Comparative Example 1, and this ratio was used as a measure of etching resistance.
  • the etching resistance is "A” (extremely good) when the above ratio is 0.89 or less, "B" (good) when it is more than 0.89 and less than 0.93, and "B” when it is 0.93 or more. C” (defective).
  • "-" in Table 2 indicates that it is an evaluation criterion for etching resistance.
  • the composition prepared above was coated on a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT 12" available from Tokyo Electron Ltd.). Next, after heating at 200° C. for 60 seconds in an air atmosphere, by cooling at 23° C. for 60 seconds, a film having an average thickness of 200 nm was formed to obtain a film-coated substrate having a film formed on the substrate. .
  • the powder was collected by scraping the film of the film-coated substrate obtained above, and the collected powder was placed in a container used for measurement with a TG-DTA device (“TG-DTA2000SR” by NETZSCH) and placed in a container before heating. Mass was measured.
  • the powder was heated to 400° C. at a heating rate of 10° C./min in a nitrogen atmosphere, and the mass of the powder at 400° C. was measured. Then, the mass reduction rate (%) was measured by the following formula, and this mass reduction rate was used as a measure of heat resistance.
  • M L ⁇ (m1 ⁇ m2)/m1 ⁇ 100
  • ML is the mass reduction rate (%)
  • m1 is the mass before heating (mg)
  • m2 is the mass at 400°C (mg).
  • the heat resistance the smaller the mass reduction rate of the sample powder, the less the sublimate and the decomposition product of the film generated during the heating of the film, and the better the heat resistance.
  • the heat resistance is "A” (very good) when the mass reduction rate is less than 5%, "B” (good) when it is 5% or more and less than 10%, and "C” when it is 10% or more ( bad).
  • the resist underlayer films formed from the compositions of Examples were excellent in etching resistance and heat resistance.
  • a well-patterned substrate can be obtained.
  • the composition of the present invention can form a resist underlayer film having excellent etching resistance and heat resistance. Therefore, these can be suitably used for the manufacture of semiconductor devices, etc., which are expected to be further miniaturized in the future.

Abstract

The purpose of the present invention is to provide: a semiconductor substrate production method using a composition from which a film having excellent etching resistance and heat resistance can be formed; and a composition. This semiconductor substrate production method includes a step in which a resist underlayer film-forming composition is directly or indirectly applied to a substrate, a step in which a resist pattern is formed directly or indirectly on the resist underlayer film formed in the application step, and a step in which etching is performed using the resist pattern as a mask. The resist underlayer film-forming composition contains a solvent and a compound including a boron atom.

Description

半導体基板の製造方法及び組成物Semiconductor substrate manufacturing method and composition
 本発明は、半導体基板の製造方法及び組成物に関する。 The present invention relates to a method and composition for manufacturing a semiconductor substrate.
 半導体デバイスの製造にあっては、例えば、基板上に有機下層膜、ケイ素含有膜などのレジスト下層膜を介して積層されたレジスト膜を露光及び現像してレジストパターンを形成する多層レジストプロセスが用いられている。このプロセスでは、このレジストパターンをマスクとしてレジスト下層膜をエッチングし、得られたレジスト下層膜パターンをマスクとしてさらに基板をエッチングすることで、半導体基板に所望のパターンを形成することができる(特開2004-177668号公報参照)。 In the manufacture of semiconductor devices, for example, a multilayer resist process is used in which a resist pattern is formed by exposing and developing a resist film laminated on a substrate via a resist underlayer film such as an organic underlayer film or a silicon-containing film. It is In this process, the resist underlayer film is etched using this resist pattern as a mask, and the substrate is further etched using the resist underlayer film pattern thus obtained as a mask, thereby forming a desired pattern on the semiconductor substrate (Japanese Laid-Open Patent Publication No. 2004-177668).
 このようなレジスト下層膜形成用組成物に用いられる材料について、種々の検討が行われている(国際公開第2011/108365号参照)。 Various studies have been conducted on materials used in such a composition for forming a resist underlayer film (see International Publication No. 2011/108365).
特開2004-177668号公報JP-A-2004-177668 国際公開第2011/108365号WO2011/108365
 多層レジストプロセスにおいて、レジスト下層膜としての有機下層膜にはエッチング耐性及び耐熱性が要求される。 In the multilayer resist process, etching resistance and heat resistance are required for the organic underlayer film as the resist underlayer film.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、エッチング耐性及び耐熱性に優れる膜を形成可能な組成物を用いる半導体基板の製造方法及び組成物を提供することにある。 The present invention has been made based on the above circumstances, and its object is to provide a method for manufacturing a semiconductor substrate using a composition capable of forming a film having excellent etching resistance and heat resistance, and the composition. be.
 本発明は、一実施形態において、
 基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
 上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程と、
 上記レジストパターンをマスクとしたエッチングを行う工程と
 を含み、
 上記レジスト下層膜形成用組成物が、
 ホウ素原子を有する化合物(以下、「[A]化合物」ともいう。)と、
 溶媒(以下、「[B]溶媒」ともいう。)と
 を含有する、半導体基板の製造方法に関する。
The present invention, in one embodiment,
a step of directly or indirectly applying a composition for forming a resist underlayer film onto a substrate;
a step of directly or indirectly forming a resist pattern on the resist underlayer film formed by the coating step;
and a step of performing etching using the resist pattern as a mask,
The composition for forming a resist underlayer film is
A compound having a boron atom (hereinafter also referred to as "[A] compound");
The present invention relates to a method for manufacturing a semiconductor substrate containing a solvent (hereinafter also referred to as "[B] solvent").
 本発明は、他の実施形態において、
 ホウ素原子を有する化合物と、
 溶媒と
 を含有する、レジスト下層膜形成用組成物に関する。
The present invention, in another embodiment,
a compound having a boron atom;
The present invention relates to a composition for forming a resist underlayer film containing a solvent and
 当該半導体基板の製造方法によれば、エッチング耐性及び耐熱性に優れたレジスト下層膜を形成可能である。当該組成物によれば、エッチング耐性及び耐熱性に優れる膜を形成することができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the manufacturing method of the semiconductor substrate, it is possible to form a resist underlayer film excellent in etching resistance and heat resistance. According to the composition, a film having excellent etching resistance and heat resistance can be formed. Therefore, these can be suitably used for the manufacture of semiconductor devices, etc., which are expected to be further miniaturized in the future.
 以下、本発明の各実施形態に係る半導体基板の製造方法及び組成物について詳説する。 The method for manufacturing a semiconductor substrate and the composition according to each embodiment of the present invention will be described in detail below.
《半導体基板の製造方法》
 当該半導体基板の製造方法は、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、上記レジストパターンをマスクとしたエッチングを行う工程(以下、「エッチング工程」ともいう)とを含む。
<<Manufacturing method of semiconductor substrate>>
The method for producing a semiconductor substrate includes a step of directly or indirectly coating a substrate with a composition for forming a resist underlayer film (hereinafter also referred to as a “coating step”), and a resist underlayer film formed by the coating step. a step of directly or indirectly forming a resist pattern (hereinafter also referred to as a “resist pattern forming step”), and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as an “etching step”).
 当該半導体基板の製造方法によれば、上記塗工工程においてレジスト下層膜形成用組成物として後述の当該組成物を用いることにより、エッチング耐性及び耐熱性に優れたレジスト下層膜を形成することができるため、良好なパターン形状を有する半導体基板を歩留まり良く製造することができる。 According to the method for manufacturing a semiconductor substrate, a resist underlayer film having excellent etching resistance and heat resistance can be formed by using the composition described below as a composition for forming a resist underlayer film in the coating step. Therefore, a semiconductor substrate having a good pattern shape can be manufactured with a high yield.
 当該半導体基板の製造方法は、必要に応じて、上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)をさらに備えていてもよい。 The method for manufacturing a semiconductor substrate may further include a step of forming a silicon-containing film directly or indirectly on the resist underlayer film (hereinafter also referred to as a "silicon-containing film forming step"), if necessary. .
 以下、当該半導体基板の製造方法に用いる組成物及び各工程について説明する。 The composition and each step used in the method for manufacturing the semiconductor substrate will be described below.
<組成物>
 レジスト下層膜形成用組成物としての当該組成物は、[A]化合物と[B]溶媒とを含有する。当該組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。
<Composition>
The composition as a composition for forming a resist underlayer film contains [A] compound and [B] solvent. The composition may contain optional ingredients as long as the effects of the present invention are not impaired.
 当該組成物は、[A]化合物と[B]溶媒とを含有することにより、エッチング耐性及び耐熱性に優れる膜を形成することができる。この理由は定かではないものの、以下のように推察される。膜の主要素たる[A]化合物が有するホウ素原子とエッチングガスとの反応により膜のエッチングガス接触面において高沸点化類似ないし不動態化類似の作用を惹起し、その結果、膜にエッチング耐性が付与されると推測される。また、当該組成物の塗工膜中のホウ素原子が大気ベーク時(加熱時)に酸素と結び付き、結合エネルギーの大きなB-O結合を形成することで耐熱性が付与されると推察される。ただし、これらのメカニズムに限定されることはなく、当該メカニズムとともに又はこれに代えて、他のメカニズムも採用し得る。したがって、当該組成物は膜を形成するための組成物として用いることができる。より詳細には、当該組成物は、多層レジストプロセスにおけるレジスト下層膜を形成するための組成物として好適に用いることができる。 By containing the [A] compound and the [B] solvent, the composition can form a film with excellent etching resistance and heat resistance. Although the reason for this is not clear, it is presumed as follows. The reaction between the boron atoms contained in the [A] compound, which is the main element of the film, and the etching gas causes an effect similar to raising the boiling point or similar to passivation on the etching gas contact surface of the film, and as a result, the film exhibits etching resistance. assumed to be granted. Further, it is speculated that boron atoms in the coating film of the composition combine with oxygen during air baking (during heating) to form a BO bond with a large bond energy, thereby imparting heat resistance. However, it is not limited to these mechanisms and other mechanisms may be employed along with or in place of such mechanisms. Therefore, the composition can be used as a composition for forming a film. More specifically, the composition can be suitably used as a composition for forming a resist underlayer film in a multilayer resist process.
 以下、当該組成物が含有する各成分について説明する。 Each component contained in the composition will be described below.
<[A]化合物>
 [A]化合物は、ホウ素原子を有する化合物である。[A]化合物は、ホウ素原子を2つ以上有していてもよい。当該組成物は、1種又は2種以上の[A]化合物を含有することができる。
<[A] compound>
The [A] compound is a compound having a boron atom. [A] The compound may have two or more boron atoms. The composition may contain one or more [A] compounds.
 [A]化合物中のホウ素原子の含有割合の下限は、0.1atm%であることが好ましく、0.5atm%であることがより好ましく、1atm%であることがさらに好ましく、1.2atm%であることが特に好ましい。上記含有割合の上限は、10atm%であることが好ましく、8atm%であることがより好ましく、6atm%であることがさらに好ましい。これにより、得られる膜のエッチング耐性及び耐熱性を向上させることができる。[A]化合物中のホウ素原子の含有割合は、[A]化合物の構造式から算出した値である。[A]化合物が重合体である場合は、重合体の繰り返し単位構造及びその含有割合から算出した値である。 [A] The lower limit of the content of boron atoms in the compound is preferably 0.1 atm%, more preferably 0.5 atm%, further preferably 1 atm%, and 1.2 atm%. It is particularly preferred to have The upper limit of the above content is preferably 10 atm %, more preferably 8 atm %, and even more preferably 6 atm %. Thereby, the etching resistance and heat resistance of the obtained film can be improved. The content of boron atoms in the [A] compound is a value calculated from the structural formula of the [A] compound. [A] When the compound is a polymer, it is a value calculated from the repeating unit structure of the polymer and its content.
 [A]化合物は、耐熱性向上の点で、芳香環を有することが好ましい。芳香環としては、環員数5~60の芳香環であることが好ましく、例えばベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環、コロネン環、トリナフチレン環、ヘプタフェン環、ヘプタセン環、ピラントレン環、オバレン環、ヘキサベンゾコロネン環等の芳香族炭化水素環、フラン環、ピロール環、チオフェン環、ホスホール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イミダゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、シンノリン環、ベンゾフラン環、イソベンゾフラン環、インドール環、イソインドール環、ベンゾチオフェン環、ベンゾイミダゾール環、インダゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環、ベンゾチアゾール環、アクリジン環等の芳香族複素環、又はこれらの組み合わせ等が挙げられる。芳香環を組み合わせる場合、芳香環同士は上記で示した縮合環構造のほか、単結合で結合していてもよく、鎖状構造で結合していてもよい。鎖状構造は鎖状炭化水素構造であることが好ましく、不飽和結合を有していることが好ましい。中でも、芳香環としてはベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環及びペリレン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。以下、[A]化合物における芳香環は、上記芳香環をいう。 The [A] compound preferably has an aromatic ring in terms of improving heat resistance. The aromatic ring is preferably an aromatic ring having 5 to 60 ring members, such as benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring, coronene ring, trinaphthylene ring, Aromatic hydrocarbon rings such as heptaphene ring, heptacene ring, pyranthrene ring, ovalene ring, hexabenzocoronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, imidazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, benzofuran ring, isobenzofuran ring, indole ring, isoindole ring, benzothiophene ring, Benzimidazole ring, indazole ring, benzoxazole ring, benzisoxazole ring, benzothiazole ring, aromatic heterocyclic ring such as acridine ring, or combinations thereof. When aromatic rings are combined, the aromatic rings may be bonded to each other with a single bond or a chain structure in addition to the condensed ring structure shown above. The chain structure is preferably a chain hydrocarbon structure and preferably has an unsaturated bond. Among them, the aromatic ring is preferably at least one aromatic hydrocarbon ring selected from the group consisting of benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring and perylene ring. Hereinafter, the aromatic ring in the [A] compound refers to the above aromatic ring.
 本明細書において、「環員数」とは、環を構成する原子の数をいう。例えば、ビフェニル環の環員数は12であり、ナフタレン環の環員数は10であり、フルオレン環の環員数は13である。「縮合環構造」とは、隣接する環が1つの辺(隣接する2つの原子)を共有する構造をいう。 As used herein, the term "number of ring members" refers to the number of atoms forming a ring. For example, the biphenyl ring has 12 ring members, the naphthalene ring has 10 ring members, and the fluorene ring has 13 ring members. A “fused ring structure” refers to a structure in which adjacent rings share one side (two adjacent atoms).
 [A]化合物は、下記式(i)で表される部分構造(以下、「部分構造(i)」ともいう。)を有することが好ましい。[A]化合物は、部分構造(i)を2つ以上有していてもよい。[A]化合物が部分構造(i)を2つ以上有する場合、複数の部分構造(i)は互いに同一でも異なっていてもよい。これにより、[A]化合物へのホウ素原子の導入が容易となり、ひいては当該組成物による膜のエッチング耐性及び耐熱性を向上させることができる。
Figure JPOXMLDOC01-appb-C000004
(上記式(i)中、X及びXは、それぞれ独立して、炭素原子、窒素原子又は酸素原子である。)
[A] The compound preferably has a partial structure represented by the following formula (i) (hereinafter also referred to as "partial structure (i)"). [A] The compound may have two or more partial structures (i). [A] When the compound has two or more partial structures (i), the multiple partial structures (i) may be the same or different. This facilitates the introduction of boron atoms into the [A] compound, which in turn can improve the etching resistance and heat resistance of the film formed from the composition.
Figure JPOXMLDOC01-appb-C000004
(In formula (i) above, X 1 and X 2 are each independently a carbon atom, a nitrogen atom, or an oxygen atom.)
 X及びXの配置を問わない組み合わせとしては、炭素原子と炭素原子、炭素原子と酸素原子、酸素原子と酸素原子、窒素原子と窒素原子が好ましい。 Preferred combinations of X 1 and X 2 regardless of arrangement are carbon atom and carbon atom, carbon atom and oxygen atom, oxygen atom and oxygen atom, and nitrogen atom and nitrogen atom.
 なお、上記部分構造(i)におけるホウ素原子以外の各原子は、[A]化合物における当該部分構造以外の部分と結合している。当該部分構造(i)を含む部分構造についても同様である。 Each atom other than the boron atom in the partial structure (i) is bonded to the portion other than the partial structure in the [A] compound. The same applies to the partial structure including the partial structure (i).
 [A]化合物は、上記部分構造(i)の一態様として、下記式(i-1)で表される部分構造(以下、「部分構造(i-1)」ともいう。)を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
(上記式(i-1)中、
 Y及びYは、それぞれ独立して、-O-又は-NR’-である。R’は、水素原子又は炭素数1~20の1価の有機基である。R’が複数存在する場合、複数のR’は互いに同一又は異なる。
 R及びRは、それぞれ独立して、水素原子若しくは炭素数1~20の1価の有機基であるか、又はR及びRは互いに合わせられそれらが結合するY及びYとホウ素原子とともに形成される環員数5~20の環構造を表す。)
[A] The compound has a partial structure represented by the following formula (i-1) (hereinafter also referred to as "partial structure (i-1)") as an aspect of the partial structure (i). may
Figure JPOXMLDOC01-appb-C000005
(In the above formula (i-1),
Y 1 and Y 2 are each independently -O- or -NR'-. R' is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. When there are multiple R's, the multiple R's are the same or different.
R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R 1 and R 2 are combined with Y 1 and Y 2 to which they are bonded It represents a ring structure with 5 to 20 ring members formed together with a boron atom. )
 Y及びYは、ともに-O-であるか、又はともに-NR’-であることが好ましい。 Y 1 and Y 2 are preferably both -O- or both -NR'-.
 R’で表される炭素数1~20の1価の有機基としては、例えば、炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間若しくは炭素鎖末端に2価のヘテロ原子含有基を有する基、上記炭化水素基が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基又はこれらの組み合わせ等があげられる。 The monovalent organic group having 1 to 20 carbon atoms represented by R′ includes, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms; Examples thereof include a group having a valent heteroatom-containing group, a group in which some or all of the hydrogen atoms of the above hydrocarbon group are substituted with a monovalent heteroatom-containing group, or a combination thereof.
 炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基又はこれらの組み合わせ等があげられる。 Examples of monovalent hydrocarbon groups having 1 to 20 carbon atoms include monovalent linear hydrocarbon groups having 1 to 20 carbon atoms, monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms, and 6 to 20 monovalent aromatic hydrocarbon groups or combinations thereof.
 本明細書において、「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」には、飽和炭化水素基及び不飽和炭化水素基が含まれる。「鎖状炭化水素基」とは、環構造を含まず、鎖状構造のみで構成された炭化水素基を意味し、直鎖状炭化水素基及び分岐鎖状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基を意味し、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む(ただし、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい)。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する(ただし、芳香環構造のみで構成されている必要はなく、その一部に脂環構造や鎖状構造を含んでいてもよい)。 As used herein, the term "hydrocarbon group" includes chain hydrocarbon groups, alicyclic hydrocarbon groups and aromatic hydrocarbon groups. This "hydrocarbon group" includes a saturated hydrocarbon group and an unsaturated hydrocarbon group. A "chain hydrocarbon group" means a hydrocarbon group composed only of a chain structure without a ring structure, and includes both a straight chain hydrocarbon group and a branched chain hydrocarbon group. The term "alicyclic hydrocarbon group" means a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic (However, it does not have to consist only of an alicyclic structure, and a part of it may contain a chain structure.). “Aromatic hydrocarbon group” means a hydrocarbon group containing an aromatic ring structure as a ring structure (however, it need not consist only of an aromatic ring structure; structure).
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;エテニル基、プロペニル基、ブテニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。 Examples of monovalent chain hydrocarbon groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group and tert-butyl group. Alkyl groups; alkenyl groups such as ethenyl group, propenyl group and butenyl group; alkynyl groups such as ethynyl group, propynyl group and butynyl group;
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等のシクロアルケニル基;ノルボルニル基、アダマンチル基、トリシクロデシル基等の橋かけ環飽和炭化水素基;ノルボルネニル基、トリシクロデセニル基等の橋かけ環不飽和炭化水素基などが挙げられる。 Examples of monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms include cycloalkyl groups such as cyclopentyl, cyclobutyl, cyclopentyl and cyclohexyl groups; cyclopropenyl, cyclopentenyl and cyclohexenyl groups. alkenyl group; bridged ring saturated hydrocarbon group such as norbornyl group, adamantyl group and tricyclodecyl group; bridged ring unsaturated hydrocarbon group such as norbornenyl group and tricyclodecenyl group;
 炭素数6~20の1価の芳香族炭化水素基としては、フェニル基、トリル基、ナフチル基、アントラセニル基、ピレニル基等が挙げられる。 Examples of monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms include phenyl group, tolyl group, naphthyl group, anthracenyl group and pyrenyl group.
 2価又は1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等があげられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。 Examples of the heteroatom constituting the divalent or monovalent heteroatom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like. Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms.
 2価のヘテロ原子含有基としては、例えば、-CO-、-CS-、-NH-、-O-、-S-、これらを組み合わせた基等があげられる。 The divalent heteroatom-containing group includes, for example, -CO-, -CS-, -NH-, -O-, -S-, groups in which these are combined, and the like.
 1価のヘテロ原子含有基としては、例えば、ヒドロキシ基、スルファニル基、シアノ基、ニトロ基、ハロゲン原子等があげられる。 Examples of monovalent heteroatom-containing groups include a hydroxy group, a sulfanyl group, a cyano group, a nitro group, and a halogen atom.
 R及びRで表される炭素数1~20の1価の有機基としては、上記R’で表される炭素数1~20の1価の有機基を好適に採用することができる。 As the monovalent organic group having 1 to 20 carbon atoms represented by R 1 and R 2 , the above monovalent organic group having 1 to 20 carbon atoms represented by R' can be preferably employed.
 R及びRは互いに合わせられそれらが結合するY及びYとホウ素原子とともに形成される環員数5~20の環構造(以下、「ホウ素含有環構造」ともいう。)としては、環を形成する部分構造として-Y-B(-C)-Y-を含む環構造である限り特に限定されない。ホウ素含有環構造における-Y-B(-C)-Y-以外の部分としては、2価の連結基(一端がYと結合し、他端がYと結合する。)が挙げられる。2価の連結基としては、上記R’で表される炭素数1~20の1価の有機基から1個の水素原子を除いた基を好適に採用することができる。2価の連結基がさらに別の環構造を有する場合、ホウ素含有環構造の環員数には、この別の環構造の環員数も含まれる。 R 1 and R 2 are combined and formed together with Y 1 and Y 2 to which they are bonded, and a ring structure having 5 to 20 ring members formed together with a boron atom (hereinafter also referred to as a “boron-containing ring structure”). is not particularly limited as long as it is a ring structure containing -Y 1 -B(-C)-Y 2 - as a partial structure forming Examples of moieties other than -Y 1 -B(-C)-Y 2 - in the boron-containing ring structure include divalent linking groups (one end binds to Y 1 and the other end binds to Y 2 ). be done. As the divalent linking group, a group obtained by removing one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably used. When the divalent linking group has another ring structure, the number of ring members of the boron-containing ring structure also includes the number of ring members of this other ring structure.
 Y及びYがともに-O-である場合、R及びRはともに水素原子であるか、又は上記式(i-1)が下記式(β)で表される部分構造であることが好ましい。 When both Y 1 and Y 2 are —O—, both R 1 and R 2 are hydrogen atoms, or the above formula (i-1) is a partial structure represented by the following formula (β) is preferred.
Figure JPOXMLDOC01-appb-C000006
(上記式(β)中、Rb1及びRb2は、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。pは1~5の整数である。Rb1及びRb2が複数存在する場合、複数のRb1及びRb2は互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000006
(In formula (β) above, R b1 and R b2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. p is an integer of 1 to 5. R b1 and When a plurality of R b2 are present, the plurality of R b1 and R b2 are the same or different.)
 Rb1及びRb2で表される炭素数1~20の1価の有機基としては、上記R’で表される炭素数1~20の1価の有機基を好適に採用することができる。中でも、Rb1及びRb2は炭素数1~10の鎖状炭化水素基であることが好ましく、メチル基、エチル基又はプロピル基であることがより好ましい。 As the monovalent organic group having 1 to 20 carbon atoms represented by R b1 and R b2 , the monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably used. Among them, R b1 and R b2 are preferably a chain hydrocarbon group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group or a propyl group.
 pは1~4の整数であることが好ましく、2~3の整数であることがより好ましい。 p is preferably an integer of 1-4, more preferably an integer of 2-3.
 Y及びYがともに-NR’-である場合、R及びRは互いに合わせられて上記ホウ素含有環構造を形成することが好ましい。このホウ素含有環構造における-Y-B(-C)-Y-以外の部分としては、上記2価の連結基であることが好ましく、環構造を含む2価の連結基であることがより好ましい。ホウ素含有環構造を形成する2価の連結基における環構造としては、R’で表される炭素数1~20の1価の有機基における炭素数3~20の1価の脂環式炭化水素基から1個の水素原子を除いた基、炭素数6~20の1価の芳香族炭化水素基から1個の水素原子を除いた基が好ましく、炭素数6~12の1価の芳香族炭化水素基から1個の水素原子を除いた基がより好ましく、ベンゼンジイル基、ナフタレンジイル基がさらに好ましい。 When Y 1 and Y 2 are both —NR′—, R 1 and R 2 are preferably combined with each other to form the above boron-containing ring structure. The moiety other than -Y 1 -B(-C)-Y 2 - in the boron-containing ring structure is preferably the divalent linking group described above, and is preferably a divalent linking group containing a ring structure. more preferred. The ring structure in the divalent linking group forming the boron-containing ring structure is a monovalent alicyclic hydrocarbon having 3 to 20 carbon atoms in the monovalent organic group having 1 to 20 carbon atoms represented by R'. A group obtained by removing one hydrogen atom from a group, a group obtained by removing one hydrogen atom from a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is preferable, and a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms A group obtained by removing one hydrogen atom from a hydrocarbon group is more preferred, and a benzenediyl group and a naphthalenediyl group are even more preferred.
 Y及びYがともに-NR’-である場合、2つのR’は水素原子であることが好ましい。 When both Y 1 and Y 2 are -NR'-, two R' are preferably hydrogen atoms.
 [A]化合物は、上記部分構造(i)の一態様として、下記式(i-2)で表される部分構造(以下、「部分構造(i-2)」ともいう。)を有していてもよい。
Figure JPOXMLDOC01-appb-C000007
(上記式(i-2)中、
 X及びXは、上記式(i)と同義である。
 Lは、単結合又は2価の連結基である。
 Rは、炭素数1~20の1価の有機基である。
 *は、上記化合物における上記部分構造(i-2)以外の部分との結合部位を表す。
 mは0~4の整数である。mが2以上である場合、複数のRは同一又は異なる。
 nは0~2の整数である。)
[A] The compound has a partial structure represented by the following formula (i-2) (hereinafter also referred to as "partial structure (i-2)") as an aspect of the partial structure (i). may
Figure JPOXMLDOC01-appb-C000007
(In the above formula (i-2),
X 1 and X 2 are synonymous with the above formula (i).
L2 is a single bond or a divalent linking group.
R 3 is a monovalent organic group having 1 to 20 carbon atoms.
* represents a binding site to a portion other than the partial structure (i-2) in the compound.
m is an integer from 0 to 4; When m is 2 or more, multiple R 3 are the same or different.
n is an integer of 0-2. )
 Lで表される2価の連結基としては、上記R’で表される炭素数1~20の1価の有機基から1個の水素原子を除いた基を好適に採用することができる。Lは単結合又は炭素数2~10の不飽和鎖状炭化水素基であることが好ましく、Lは単結合又はエチンジイル基であることが好ましい。 As the divalent linking group represented by L 2 , a group obtained by removing one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably employed. . L 2 is preferably a single bond or an unsaturated chain hydrocarbon group having 2 to 10 carbon atoms, and L 2 is preferably a single bond or an ethynediyl group.
 Rで表される炭素数1~20の1価の有機基としては、上記R’で表される炭素数1~20の1価の有機基を好適に採用することができる。 As the monovalent organic group having 1 to 20 carbon atoms represented by R 3 , the above monovalent organic group having 1 to 20 carbon atoms represented by R′ can be preferably employed.
 mは0~3の整数であることが好ましく、0~2の整数であることがより好ましい。 m is preferably an integer of 0-3, more preferably an integer of 0-2.
 [A]化合物は、下記式(2-1)で表される基及び下記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(2-1)及び(2-2)中、Rは、それぞれ独立して、炭素数1~20の2価の有機基又は単結合である。*は[A]化合物における炭素原子との結合手である。)
[A] The compound preferably has at least one group selected from the group consisting of a group represented by the following formula (2-1) and a group represented by the following formula (2-2).
Figure JPOXMLDOC01-appb-C000008
(In formulas (2-1) and (2-2), R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * is a carbon atom in the [A] compound. is a bond with
 Rで表される炭素数1~20の2価の有機基としては、上記R’で表される炭素数1~20の1価の有機基から1個の水素原子を除いた基を好適に採用することができる。 The divalent organic group having 1 to 20 carbon atoms represented by R 7 is preferably a group obtained by removing one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms represented by R′. can be adopted for
 Rとしてはメタンジイル基、エタンジイル基、フェニレン基等の炭素数1~10の2価の炭化水素基、又はこれらと-O-との組み合わせが好ましく、メタンジイル基、又はメタンジイル基と-O-との組み合わせがより好ましい。 R 7 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms such as a methanediyl group, an ethanediyl group, a phenylene group, or a combination of these with -O-, and a methanediyl group, or a methanediyl group and -O- is more preferred.
 上記式(i-2)中、mが1~3である場合、上記Rが、上記式(2-1)で表される基であることが好ましく、下記式(2-1-1)で表されることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000009
In the above formula (i-2), when m is 1 to 3, R 3 is preferably a group represented by the above formula (2-1), and the following formula (2-1-1) is more preferably represented by
Figure JPOXMLDOC01-appb-C000009
 *は、[A]化合物が芳香環を有する場合の当該芳香環における炭素原子との結合手であることが好ましい。 * is preferably a bond with a carbon atom in the aromatic ring when the [A] compound has an aromatic ring.
 [A]化合物は、上記式(2-1)で表される基及び上記式(2-2)で表される基以外の置換基を有していてもよい。置換基としては、例えば炭素数1~10の1価の鎖状炭化水素基、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基、ナフチルオキシ基等のアリールオキシ基、メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基、ホルミル基、アセチル基、プロピオニル基、ブチリル基等のアシル基、シアノ基、ニトロ基、ヒドロキシ基などが挙げられる。 [A] The compound may have a substituent other than the group represented by the above formula (2-1) and the group represented by the above formula (2-2). Examples of substituents include monovalent chain hydrocarbon groups having 1 to 10 carbon atoms; halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkoxy groups such as methoxy, ethoxy and propoxy; phenoxy group, aryloxy group such as naphthyloxy group, alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group, alkoxycarbonyloxy group such as methoxycarbonyloxy group and ethoxycarbonyloxy group, formyl group, acetyl group, propionyl group, Examples include acyl groups such as butyryl groups, cyano groups, nitro groups, and hydroxy groups.
 一実施形態において、[A]化合物は、下記式(1-1)で表される化合物(以下、「化合物(1-1)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(上記式(1-1)中、
 Zは、上記部分構造(i-1)である。上記部分構造(i-1)の炭素原子はXにおける炭素原子に対応する。
 Xは、置換又は非置換の環員数5~60の芳香環を含む(q+r)価の基である。
 Rは、環員数5~40の芳香環を含む1価の基である。
 qは1~10の整数である。qが2以上である場合、複数のZは、互いに同一又は異なる。
 rは0~10の整数である。)
In one embodiment, the [A] compound is preferably a compound represented by the following formula (1-1) (hereinafter also referred to as “compound (1-1)”).
Figure JPOXMLDOC01-appb-C000010
(In the above formula (1-1),
Z 1 is the above partial structure (i-1). The carbon atom in the partial structure (i-1) corresponds to the carbon atom in X.
X is a (q+r)-valent group containing a substituted or unsubstituted 5 to 60-membered aromatic ring.
R 4 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
q is an integer from 1 to 10; When q is 2 or more, multiple Z 1s are the same or different.
r is an integer from 0 to 10; )
 上記Xにおける環員数5~60の芳香環としては、[A]化合物が有し得るとする上記環員数5~60の芳香環を好適に採用することができる。Xで表される置換又は非置換の環員数5~60の芳香環を含む(p+q)価の基としては、上記環員数5~60の芳香環から(p+q)個の水素原子を除いた基が挙げられる。Xが置換基を有する場合の置換基としては、上記式(2-1)で表される基、上記式(2-2)で表される基、及びこれら以外の置換基として挙げた上記置換基を好適に採用することができる。 As the aromatic ring having 5 to 60 ring members in the above X, the aromatic ring having 5 to 60 ring members that the compound [A] may have can be suitably employed. The (p+q)-valent group containing a substituted or unsubstituted 5-60 ring-membered aromatic ring represented by X is a group obtained by removing (p+q) hydrogen atoms from the above 5-60 ring-membered aromatic ring. is mentioned. As the substituent when X has a substituent, the group represented by the above formula (2-1), the group represented by the above formula (2-2), and the above-mentioned substituents other than these groups can be suitably employed.
 上記Xの芳香環は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 The aromatic ring of X is at least one aromatic hydrocarbon ring selected from the group consisting of benzene, naphthalene, anthracene, phenalene, phenanthrene, pyrene, fluorene, perylene and coronene rings. is preferred.
 上記Rにおける環員数5~40の芳香環としては、上記Xにおける環員数5~60の芳香環のうち環員数5~40に対応する芳香環を好適に採用することができる。Rで表される環員数5~40の芳香環を含む1価の基としては、上記環員数5~40の芳香環から1個の水素原子を除いた基が挙げられる。上記Rの芳香環は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 As the aromatic ring having 5 to 40 ring members for R 4 , an aromatic ring corresponding to 5 to 40 ring members among the aromatic rings having 5 to 60 ring members for X can be preferably used. Examples of the monovalent group containing an aromatic ring having 5 to 40 ring members represented by R 4 include groups obtained by removing one hydrogen atom from the above aromatic ring having 5 to 40 ring members. The aromatic ring of R4 is at least one aromatic hydrocarbon ring selected from the group consisting of benzene ring, naphthalene ring, anthracene ring, phenalene ring, phenanthrene ring, pyrene ring, fluorene ring, perylene ring and coronene ring. is preferred.
 化合物(1-1)としては、例えば下記式(1-1-1)~(1-1-11)で表される化合物等が挙げられる。 Examples of the compound (1-1) include compounds represented by the following formulas (1-1-1) to (1-1-11).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 化合物(1-1)の合成方法としては、代表的には、出発原料として例えばフルオレンのケトンやアルキン置換体を準備し、触媒等の存在下でケトン部分やアルキン部分の環化反応を進行させて中間体とし、この中間体と部分構造(i)を有する芳香環とを反応させることで合成することができる。その他の構造についても、出発原料やケトン体の構造等を適宜選択することで合成することができる。 A representative method for synthesizing compound (1-1) is to prepare, for example, a ketone or alkyne-substituted fluorene as a starting material, and allow the cyclization reaction of the ketone moiety or alkyne moiety to proceed in the presence of a catalyst or the like. can be synthesized by reacting this intermediate with an aromatic ring having the partial structure (i). Other structures can also be synthesized by appropriately selecting starting materials, structures of ketone bodies, and the like.
 一実施形態において、[A]化合物は、下記式(1-2)で表される化合物(以下、「化合物(1-2)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(1-2)中、)
 Z及びZは、上記部分構造(i-1)である。上記部分構造(i-1)の炭素原子はAr及びArにおける炭素原子に対応する。Z及びZが複数存在する場合、複数のZ及びZは互いに同一又は異なる。
 Arは、置換又は非置換の環員数5~20の芳香環を含む(t1+2)価の基である。
 Arは、置換又は非置換の環員数5~20の芳香環を含む(t2+1)価の基である。
 sは4~12の整数である。
 複数のt1及びt2は、それぞれ独立して、0~4の整数である。ただし、複数のt1及びt2の合計は1以上である。)
In one embodiment, the [A] compound is preferably a compound represented by the following formula (1-2) (hereinafter also referred to as “compound (1-2)”).
Figure JPOXMLDOC01-appb-C000014
(In formula (1-2),)
Z 2 and Z 3 are the above partial structure (i-1). The carbon atoms in the partial structure (i-1) above correspond to the carbon atoms in Ar 1 and Ar 2 . When there are a plurality of Z2 and Z3 , the plurality of Z2 and Z3 are the same or different.
Ar 1 is a (t1+2)-valent group containing a substituted or unsubstituted 5 to 20-membered aromatic ring.
Ar 2 is a (t2+1)-valent group containing a substituted or unsubstituted 5 to 20-membered aromatic ring.
s is an integer from 4 to 12;
A plurality of t1 and t2 are each independently an integer of 0-4. However, the sum of multiple t1 and t2 is 1 or more. )
 Ar及びArにおける環員数5~20の芳香環としては、[A]化合物が有し得るとする上記環員数5~60の芳香環のうち環員数5~20に対応する芳香環を好適に採用することができる。Arで表される(t1+2)価の基としては、上記環員数5~20の芳香環から(t1+2)個の水素原子を除いた基が挙げられる。Arで表される(t2+1)価の基としては、上記環員数5~20の芳香環から(t2+1)個の水素原子を除いた基が挙げられる。Ar及びArにおける環員数5~20の芳香環としては、ベンゼン環又はナフタレン環が好ましい。Ar及びArが置換基を有する場合の置換基としては、上記式(2-1)で表される基、上記式(2-2)で表される基、及びこれら以外の置換基として挙げた上記置換基を好適に採用することができる。 The aromatic ring having 5 to 20 ring members in Ar 1 and Ar 2 is preferably an aromatic ring corresponding to 5 to 20 ring members among the above aromatic rings having 5 to 60 ring members that the compound [A] may have. can be adopted for The (t1+2)-valent group represented by Ar 1 includes groups obtained by removing (t1+2) hydrogen atoms from the above aromatic ring having 5 to 20 ring members. The (t2+1)-valent group represented by Ar 2 includes a group obtained by removing (t2+1) hydrogen atoms from the above aromatic ring having 5 to 20 ring members. The aromatic ring having 5 to 20 ring members in Ar 1 and Ar 2 is preferably a benzene ring or a naphthalene ring. When Ar 1 and Ar 2 have substituents, the substituents include groups represented by the above formula (2-1), groups represented by the above formula (2-2), and other substituents. The substituents listed above can be suitably employed.
 sは4~10の整数であることが好ましく、4~8の整数であることがより好ましく、4~6の整数であることがさらに好ましい。 s is preferably an integer of 4-10, more preferably an integer of 4-8, even more preferably an integer of 4-6.
 複数のt1及びt2は、それぞれ独立して、0~3の整数であることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましい。t1は0であることが好ましく、t2は1であることが好ましい。 A plurality of t1 and t2 are each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1. t1 is preferably zero and t2 is preferably one.
 化合物(1-2)としては、例えば下記式(1-2-1)~(1-2-6)で表される化合物等が挙げられる。 Examples of the compound (1-2) include compounds represented by the following formulas (1-2-1) to (1-2-6).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 化合物(1-2)の合成方法としては、代表的には、出発原料として例えば芳香族アルコールと部分構造(i)を有する芳香環アルデヒドとの縮合反応により合成することができる。その後、芳香族アルコールが有するフェノール性水酸基の修飾反応を行ってもよい。その他の構造についても、出発原料の芳香族アルコールや芳香環アルデヒドの構造等を適宜選択することで合成することができる。 As a method for synthesizing the compound (1-2), typically, it can be synthesized by a condensation reaction between, for example, an aromatic alcohol as a starting material and an aromatic ring aldehyde having the partial structure (i). After that, a modification reaction of the phenolic hydroxyl group of the aromatic alcohol may be performed. Other structures can also be synthesized by appropriately selecting the structures of starting materials such as aromatic alcohols and aromatic ring aldehydes.
 一実施形態において、[A]化合物は、下記式(1-3)又は(1-4)で表される化合物(以下、それぞれ「化合物(1-3)」等ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
(式(1-3)及び(1-4)中、
 Ar11、Ar12、Ar13、Ar14、Ar21、Ar22及びAr23は、それぞれ独立して、置換又は非置換の環員数5~20の芳香環を含む1価の基である。
 L11、L12、L13、L14、L21、L22及びL23は、それぞれ独立して、単結合又は2価の連結基である。)
In one embodiment, the [A] compound is a compound represented by the following formula (1-3) or (1-4) (hereinafter also referred to as "compound (1-3)" etc.). preferable.
Figure JPOXMLDOC01-appb-C000017
(In formulas (1-3) and (1-4),
Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 are each independently a substituted or unsubstituted monovalent group containing an aromatic ring having 5 to 20 ring members.
L 11 , L 12 , L 13 , L 14 , L 21 , L 22 and L 23 are each independently a single bond or a divalent linking group. )
 Ar11、Ar12、Ar13、Ar14、Ar21、Ar22及びAr23における環員数5~20の芳香環としては、[A]化合物が有し得るとする上記環員数5~60の芳香環のうち環員数5~20に対応する芳香環を好適に採用することができる。Ar11、Ar12、Ar13、Ar14、Ar21、Ar22及びAr23で表される1価の基としては、上記環員数5~20の芳香環から1個の水素原子を除いた基が挙げられる。Ar11、Ar12、Ar13、Ar14、Ar21、Ar22及びAr23が置換基を有する場合の置換基としては、上記式(2-1)で表される基、上記式(2-2)で表される基、及びこれら以外の置換基として挙げた上記置換基を好適に採用することができる。Ar11、Ar12、Ar13、Ar14、Ar21、Ar22及びAr23は、それぞれ独立して、フェニル基又はナフチル基であることが好ましい。 As the aromatic ring having 5 to 20 ring members in Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 , the aromatic ring having 5 to 60 ring members which the compound [A] may have Of the rings, aromatic rings having 5 to 20 ring members can be preferably used. The monovalent groups represented by Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 are groups obtained by removing one hydrogen atom from the above aromatic ring having 5 to 20 ring members. is mentioned. When Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 have a substituent, the substituents include the group represented by the above formula (2-1), the above formula (2- The group represented by 2) and the above-described substituents other than these can be suitably employed. Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 21 , Ar 22 and Ar 23 are each independently preferably a phenyl group or a naphthyl group.
 L11、L12、L13、L14、L21、L22及びL23で表される2価の連結基としては、上記式(i-2)におけるLで表される2価の連結基を好適に採用することができる。 As the divalent linking group represented by L 11 , L 12 , L 13 , L 14 , L 21 , L 22 and L 23 , the divalent linking group represented by L 2 in formula (i-2) above groups can be suitably employed.
 上記化合物(1-3)及び(1-4)としては、例えば下記式(1-3-1)~(1-3-4)及び下記式(1-4-1)~(1-4-3)で表される化合物等が挙げられる。 Examples of the compounds (1-3) and (1-4) include the following formulas (1-3-1) to (1-3-4) and the following formulas (1-4-1) to (1-4- 3), and the like.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物(1-3)、(1-4)の合成方法としては、代表的には、出発原料としての(ハロゲン置換)芳香環又はエチニル基含有芳香環とハロゲン置換ボランとを有機リチウムの存在下で反応させることにより合成することができる。その他の構造についても、出発原料の(ハロゲン置換)芳香環又はエチニル基含有芳香環の構造等を適宜選択することで合成することができる。 A representative method for synthesizing compounds (1-3) and (1-4) is to react a (halogen-substituted) aromatic ring or an ethynyl group-containing aromatic ring and a halogen-substituted borane as starting materials in the presence of organic lithium. It can be synthesized by reacting with Other structures can also be synthesized by appropriately selecting the structure of the starting material (halogen-substituted) aromatic ring or ethynyl group-containing aromatic ring.
 一実施形態において、[A]化合物は、部分構造(i)を有する繰り返し単位を2つ以上含む、ノボラック型の重合体(以下、「重合体(1)」ともいう。)であることが好ましい。重合体(1)は、下記式(1-5)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000019
(式(1-5)中、)
 Z及びZは、上記部分構造(i-1)である。上記部分構造(i-1)の炭素原子はAr及びArにおける炭素原子に対応する。Z及びZが複数存在する場合、複数のZ及びZは互いに同一又は異なる。
 Arは、置換又は非置換の環員数5~20の芳香環を含む(u1+2)価の基である。
 Arは、置換又は非置換の環員数5~20の芳香環を含む(u2+1)価の基である。
 u1及びu2は、それぞれ独立して、0~4の整数である。ただし、u1及びu2の合計は1以上である。)
In one embodiment, the [A] compound is preferably a novolac-type polymer (hereinafter also referred to as "polymer (1)") containing two or more repeating units having partial structure (i). . Polymer (1) is preferably represented by the following formula (1-5).
Figure JPOXMLDOC01-appb-C000019
(In formula (1-5),)
Z 4 and Z 5 are the above partial structure (i-1). The carbon atoms in partial structure (i-1) above correspond to the carbon atoms in Ar 3 and Ar 4 . When multiple Z 4 and Z 5 are present, multiple Z 4 and Z 5 are the same or different from each other.
Ar 3 is a (u1+2)-valent group containing a substituted or unsubstituted 5 to 20-membered aromatic ring.
Ar 4 is a (u2+1) valent group containing a substituted or unsubstituted aromatic ring having 5 to 20 ring members.
u1 and u2 are each independently an integer of 0-4. However, the sum of u1 and u2 is 1 or more. )
 Ar及びArにおける環員数5~20の芳香環としては、[A]化合物が有し得るとする上記環員数5~60の芳香環のうち環員数5~20に対応する芳香環を好適に採用することができる。Arで表される(u1+2)価の基としては、上記環員数5~20の芳香環から(u1+2)個の水素原子を除いた基が挙げられる。Arで表される(u2+1)価の基としては、上記環員数5~20の芳香環から(u2+1)個の水素原子を除いた基が挙げられる。Ar及びArにおける環員数5~20の芳香環としては、ベンゼン環又はナフタレン環が好ましい。Ar及びArが置換基を有する場合の置換基としては、上記式(2-1)で表される基、上記式(2-2)で表される基、及びこれら以外の置換基として挙げた上記置換基を好適に採用することができる。 The aromatic ring having 5 to 20 ring members in Ar 3 and Ar 4 is preferably an aromatic ring corresponding to 5 to 20 ring members among the aromatic rings having 5 to 60 ring members that the compound [A] may have. can be adopted for The (u1+2)-valent group represented by Ar 3 includes groups obtained by removing (u1+2) hydrogen atoms from the above aromatic ring having 5 to 20 ring members. The (u2+1)-valent group represented by Ar 4 includes groups obtained by removing (u2+1) hydrogen atoms from the above aromatic ring having 5 to 20 ring members. The aromatic ring having 5 to 20 ring members in Ar 3 and Ar 4 is preferably a benzene ring or a naphthalene ring. The substituents when Ar 3 and Ar 4 have a substituent include the group represented by the above formula (2-1), the group represented by the above formula (2-2), and substituents other than these The substituents listed above can be suitably employed.
 u1及びu2は、それぞれ独立して、0~3の整数であることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましい。u1は0であることが好ましく、u2は1であることが好ましい。 u1 and u2 are each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1. u1 is preferably 0 and u2 is preferably 1;
 重合体(1)としては、例えば下記式(1-5-1)~(1-5-12)で表される化合物等が挙げられる。 Examples of the polymer (1) include compounds represented by the following formulas (1-5-1) to (1-5-12).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 重合体(1)の製造方法としては、代表的には、上記式(1-5)のArを与える前駆体としての(部分構造(i)を有する)芳香環と、上記式(1-5)のArを与える前駆体としての(部分構造(i)を有する)アルデヒド又はアルデヒド誘導体との酸付加縮合によりノボラック型の重合体(1)を製造することができる。その他の構造についても、出発原料の芳香環の構造等を適宜選択することで合成することができる。 A representative method for producing polymer (1) includes an aromatic ring (having partial structure (i)) as a precursor giving Ar 3 of formula (1-5) above, and A novolac-type polymer (1) can be produced by acid addition condensation with an aldehyde or an aldehyde derivative (having partial structure (i)) as a precursor giving Ar 6 in 5). Other structures can also be synthesized by appropriately selecting the structure of the aromatic ring of the starting material.
 一実施形態において、[A]化合物は、部分構造(i)を有する繰り返し単位を2つ以上含む、上記重合体(1)とは異なる重合体(以下、「重合体(2)」ともいう。)であることが好ましい。重合体(2)は、下記式(1-6)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(1-6)中、
 R61及びR62は、それぞれ独立して、水素原子又は置換若しくは非置換の炭素数1~20の1価の炭化水素基である。
 L31及びL32は、それぞれ独立して、単結合又は2価の連結基である。
 Arは、置換又は非置換の環員数5~20の芳香環を含む1価の基である。
 Arは、置換又は非置換の環員数5~20の芳香環を含む(v+1)価の基である。
 Zは、上記部分構造(i-1)である。上記部分構造(i-1)の炭素原子はArにおける炭素原子に対応する。Zが複数存在する場合、複数のZは互いに同一又は異なる。
 vは、1~4の整数である。)
In one embodiment, the [A] compound is a polymer different from the above polymer (1) (hereinafter also referred to as "polymer (2)"), which contains two or more repeating units having partial structure (i). ) is preferred. Polymer (2) is preferably represented by the following formula (1-6).
Figure JPOXMLDOC01-appb-C000022
(In formula (1-6),
R 61 and R 62 are each independently a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
L 31 and L 32 are each independently a single bond or a divalent linking group.
Ar 5 is a monovalent group containing a substituted or unsubstituted 5- to 20-membered aromatic ring.
Ar 6 is a (v+1) valent group containing a substituted or unsubstituted 5- to 20-membered aromatic ring.
Z6 is the above partial structure (i-1). The carbon atoms in partial structure (i-1) above correspond to the carbon atoms in Ar 6 . When multiple Z 6 are present, the multiple Z 6 are the same or different.
v is an integer from 1 to 4; )
 R61及びR62で表される炭素数1~20の1価の炭化水素基としては、上記式(i)のR’における炭素数1~20の1価の炭化水素基を好適に採用することができる。R61及びR62が置換基を有する場合の置換基としては、上記式(2-1)で表される基、上記式(2-2)で表される基、及びこれら以外の置換基として挙げた上記置換基を好適に採用することができる。R61及びR62は、それぞれ独立して、水素原子又はメチル基であることが好ましい。 As the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 61 and R 62 , a monovalent hydrocarbon group having 1 to 20 carbon atoms in R' of the above formula (i) is preferably employed. be able to. When R 61 and R 62 have substituents, the substituents include groups represented by the above formula (2-1), groups represented by the above formula (2-2), and other substituents. The substituents listed above can be suitably employed. R 61 and R 62 are each independently preferably a hydrogen atom or a methyl group.
 L31及びL32で表される2価の連結基としては、上記式(i-2)におけるLで表される2価の連結基を好適に採用することができる。中でも、L31及びL32としては、それぞれ独立して、単結合又は-COO-であることが好ましい。*はAr及びAr側の結合部位である。 As the divalent linking group represented by L 31 and L 32 , the divalent linking group represented by L 2 in formula (i-2) above can be preferably employed. Among them, L 31 and L 32 are each independently preferably a single bond or -COO- * . * is the binding site on the Ar 5 and Ar 6 side.
 Ar及びArにおける環員数5~20の芳香環としては、[A]化合物が有し得るとする上記環員数5~60の芳香環のうち環員数5~20に対応する芳香環を好適に採用することができる。Arで表される1価の基としては、上記環員数5~20の芳香環から1個の水素原子を除いた基が挙げられる。Arで表される(v+1)価の基としては、上記環員数5~20の芳香環から(v+1)個の水素原子を除いた基が挙げられる。Ar及びArにおける環員数5~20の芳香環としては、ベンゼン環、ナフタレン環、ピレン環、ビフェニル環が好ましい。Ar及びArが置換基を有する場合の置換基としては、上記式(2-1)で表される基、上記式(2-2)で表される基、及びこれら以外の置換基として挙げた上記置換基を好適に採用することができる。 The aromatic ring having 5 to 20 ring members in Ar 5 and Ar 6 is preferably an aromatic ring corresponding to 5 to 20 ring members among the above 5 to 60 ring member aromatic rings that the compound [A] may have. can be adopted for The monovalent group represented by Ar 5 includes groups obtained by removing one hydrogen atom from the above aromatic ring having 5 to 20 ring members. The (v+1)-valent group represented by Ar 6 includes groups obtained by removing (v+1) hydrogen atoms from the above aromatic ring having 5 to 20 ring members. The aromatic ring having 5 to 20 ring members in Ar 5 and Ar 6 is preferably a benzene ring, a naphthalene ring, a pyrene ring or a biphenyl ring. The substituents when Ar 5 and Ar 6 have a substituent include the group represented by the above formula (2-1), the group represented by the above formula (2-2), and substituents other than these The substituents listed above can be suitably employed.
 vは、1~3の整数であることが好ましく、1又は2であることが好ましい。 v is preferably an integer of 1 to 3, preferably 1 or 2.
 重合体(2)としては、例えば下記式(1-6-1)~(1-6-8)で表される化合物等が挙げられる。 Examples of the polymer (2) include compounds represented by the following formulas (1-6-1) to (1-6-8).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 重合体(2)は、代表的にラジカル重合で合成することができる。この場合、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶剤中で重合することにより合成できる。 Polymer (2) can typically be synthesized by radical polymerization. In this case, monomers that provide each structural unit can be synthesized by polymerizing in a suitable solvent using a radical polymerization initiator or the like.
 当該組成物における[A]化合物の含有割合の下限としては、[A]化合物及び[B]溶媒の合計質量中、2質量%が好ましく、4質量%がより好ましく、6質量%がさらに好ましく、8質量%が特に好ましい。上記含有割合の上限としては、[A]化合物及び[B]溶媒の合計質量中、30質量%が好ましく、25質量%がより好ましく、20質量%がさらに好ましく、18質量%が特に好ましい。 The lower limit of the content of the [A] compound in the composition is preferably 2% by mass, more preferably 4% by mass, more preferably 6% by mass in the total mass of the [A] compound and [B] solvent, 8% by weight is particularly preferred. The upper limit of the content ratio is preferably 30% by mass, more preferably 25% by mass, still more preferably 20% by mass, and particularly preferably 18% by mass, based on the total mass of the [A] compound and [B] solvent.
<[B]溶媒>
 [B]溶媒は、[A]化合物及び必要に応じて含有する任意成分を溶解又は分散することができれば特に限定されない。
<[B] Solvent>
The [B] solvent is not particularly limited as long as it can dissolve or disperse the [A] compound and optionally contained optional components.
 [B]溶媒としては、例えば炭化水素系溶媒、エステル系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、含窒素系溶媒などが挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。 [B] Solvents include, for example, hydrocarbon solvents, ester solvents, alcohol solvents, ketone solvents, ether solvents, nitrogen-containing solvents, and the like. [B] A solvent can be used individually by 1 type or in combination of 2 or more types.
 炭化水素系溶媒としては、例えばn-ペンタン、n-ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒などが挙げられる。 Examples of hydrocarbon solvents include aliphatic hydrocarbon solvents such as n-pentane, n-hexane and cyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene and xylene.
 エステル系溶媒としては、例えばジエチルカーボネート等のカーボネート系溶媒、酢酸メチル、酢酸エチル等の酢酸モノエステル系溶媒、γ-ブチロラクトン等のラクトン系溶媒、酢酸ジエチレングリコールモノメチルエーテル、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、乳酸メチル、乳酸エチル等の乳酸エステル系溶媒などが挙げられる。 Examples of ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as γ-butyrolactone, diethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate. Valued alcohol partial ether carboxylate solvents, lactate ester solvents such as methyl lactate and ethyl lactate, and the like are included.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール等の多価アルコール系溶媒などが挙げられる。 Examples of alcoholic solvents include monoalcoholic solvents such as methanol, ethanol and n-propanol, and polyhydric alcoholic solvents such as ethylene glycol and 1,2-propylene glycol.
 ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等の鎖状ケトン系溶媒、シクロヘキサノン等の環状ケトン系溶媒などが挙げられる。 Examples of ketone solvents include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
 エーテル系溶媒としては、例えばn-ブチルエーテル等の鎖状エーテル系溶媒、テトラヒドロフラン等の環状エーテル系溶媒等の多価アルコールエーテル系溶媒、ジエチレングリコールモノメチルエーテル等の多価アルコール部分エーテル系溶媒などが挙げられる。 Examples of ether solvents include chain ether solvents such as n-butyl ether, polyhydric alcohol ether solvents such as cyclic ether solvents such as tetrahydrofuran, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether. .
 含窒素系溶媒としては、例えばN,N-ジメチルアセトアミド等の鎖状含窒素系溶媒、N-メチルピロリドン等の環状含窒素系溶媒などが挙げられる。 Examples of nitrogen-containing solvents include linear nitrogen-containing solvents such as N,N-dimethylacetamide and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
 [B]溶媒としては、エステル系溶媒又はケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒又は環状ケトン系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテル又はシクロヘキサノンがさらに好ましい。 The [B] solvent is preferably an ester solvent or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent or a cyclic ketone solvent, and even more preferably propylene glycol monomethyl ether acetate or cyclohexanone.
 当該組成物における[B]溶媒の含有割合の下限としては、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99質量%がより好ましく、95質量%がさらに好ましい。 The lower limit of the content of the [B] solvent in the composition is preferably 50% by mass, more preferably 60% by mass, and even more preferably 70% by mass. The upper limit of the content ratio is preferably 99.9% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
[任意成分]
 当該組成物は、本発明の効果を損なわない範囲において任意成分を含有していてもよい。任意成分としては、例えば、[A]化合物から部分構造(i)を除いた構造に対応する化合物、酸発生剤、架橋剤、界面活性剤等が挙げられる。任意成分は、1種単独で又は2種以上を組み合わせて用いることができる。当該組成物における任意成分の含有割合は任意成分の種類等に応じて適宜決定することができる。
[Optional component]
The composition may contain optional ingredients as long as they do not impair the effects of the present invention. Examples of optional components include a compound corresponding to the structure obtained by removing the partial structure (i) from the [A] compound, an acid generator, a cross-linking agent, a surfactant, and the like. An arbitrary component can be used individually by 1 type or in combination of 2 or more types. The content ratio of the optional component in the composition can be appropriately determined according to the type of the optional component.
[組成物の調製方法]
 当該組成物は、[A]化合物、[B]溶媒、及び必要に応じて任意成分を所定の割合で混合し、好ましくは得られた混合物を孔径0.5μm以下のメンブランフィルター等でろ過することにより調製できる。
[Method for preparing composition]
The composition is prepared by mixing the [A] compound, [B] solvent, and optional ingredients in a predetermined ratio as necessary, and preferably filtering the resulting mixture through a membrane filter having a pore size of 0.5 μm or less. can be prepared by
[塗工工程]
 本工程では、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する。本工程ではレジスト下層膜形成用組成物として、上述の当該組成物を用いる。
[Coating process]
In this step, the resist underlayer film-forming composition is applied directly or indirectly onto the substrate. In this step, the composition described above is used as the composition for forming the resist underlayer film.
 レジスト下層膜形成用組成物の塗工方法としては特に限定されず、例えば回転塗工、流延塗工、ロール塗工などの適宜の方法で実施することができる。これにより塗工膜が形成され、[B]溶媒の揮発などが起こることによりレジスト下層膜が形成される。 The method of coating the composition for forming a resist underlayer film is not particularly limited, and can be carried out by an appropriate method such as spin coating, casting coating, roll coating, or the like. As a result, a coating film is formed, and [B] a resist underlayer film is formed by volatilization of the solvent.
 基板としては、例えばシリコン基板、アルミニウム基板、ニッケル基板、クロム基板、モリブデン基板、タングステン基板、銅基板、タンタル基板、チタン基板等の金属又は半金属基板などが挙げられ、これらの中でもシリコン基板が好ましい。上記基板は、窒化ケイ素膜、アルミナ膜、二酸化ケイ素膜、窒化タンタル膜、窒化チタン膜などが形成された基板でもよい。 Examples of the substrate include metal or semi-metal substrates such as silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, and titanium substrates, among which silicon substrates are preferred. . The substrate may be a substrate on which a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like is formed.
 基板に間接にレジスト下層膜形成用組成物を塗工する場合としては、例えば上記基板に形成された後述のケイ素含有膜上にレジスト下層膜形成用組成物を塗工する場合などが挙げられる。 Examples of the case of indirectly applying the composition for forming a resist underlayer film onto a substrate include the case of applying the composition for forming a resist underlayer film onto a silicon-containing film formed on the substrate, which will be described later.
[加熱工程]
 本工程では、上記塗工工程により形成された塗工膜を加熱する。塗工膜の加熱によりレジスト下層膜の形成が促進される。より詳細には、塗工膜の加熱により[B]溶媒の揮発等が促進される。
[Heating process]
In this step, the coating film formed by the coating step is heated. The heating of the coating promotes the formation of the resist underlayer film. More specifically, heating the coating film promotes volatilization of the [B] solvent.
 上記塗工膜の加熱は、大気雰囲気下で行ってもよいし、窒素雰囲気下で行ってもよい。加熱温度の下限としては、300℃が好ましく、320℃がより好ましく、350℃がさらに好ましい。上記加熱温度の上限としては、600℃が好ましく、550℃がより好ましい。加熱における時間の下限としては、15秒が好ましく、30秒がより好ましい。上記時間の上限としては、1,200秒が好ましく、600秒がより好ましい。 The coating film may be heated in an air atmosphere or in a nitrogen atmosphere. The lower limit of the heating temperature is preferably 300°C, more preferably 320°C, and even more preferably 350°C. The upper limit of the heating temperature is preferably 600°C, more preferably 550°C. The lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds. The upper limit of the time is preferably 1,200 seconds, more preferably 600 seconds.
 なお、上記塗工工程後に、レジスト下層膜を露光してもよい。上記塗工工程後に、レジスト下層膜にプラズマを暴露してもよい。上記塗工工程後に、レジスト下層膜にイオン注入をしてもよい。レジスト下層膜を露光すると、レジスト下層膜のエッチング耐性が向上する。レジスト下層膜にプラズマを暴露すると、レジスト下層膜のエッチング耐性が向上する。レジスト下層膜にイオン注入をすると、レジスト下層膜のエッチング耐性が向上する。 Note that the resist underlayer film may be exposed after the coating step. After the coating step, the resist underlayer film may be exposed to plasma. After the coating step, ions may be implanted into the resist underlayer film. Exposure of the resist underlayer film improves the etching resistance of the resist underlayer film. Exposure of the resist underlayer film to plasma improves the etching resistance of the resist underlayer film. Ion implantation into the resist underlayer film improves the etching resistance of the resist underlayer film.
 レジスト下層膜の露光に用いられる放射線としては、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波;電子線、分子線、イオンビーム等の粒子線から適宜選択される。 The radiation used for exposure of the resist underlayer film is appropriately selected from electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and γ rays; and particle beams such as electron beams, molecular beams, and ion beams.
 レジスト下層膜へのプラズマの暴露を行う方法としては、例えば基板を各ガス雰囲気中に設置し、プラズマ放電することによる直接法等が挙げられる。プラズマの暴露の条件としては、通常ガス流量が50cc/min以上100cc/min以下、供給電力が100W以上1,500W以下である。  As a method of exposing the resist underlayer film to plasma, for example, a direct method by placing the substrate in each gas atmosphere and discharging plasma can be mentioned. As conditions for plasma exposure, the normal gas flow rate is 50 cc/min or more and 100 cc/min or less, and the power supply is 100 W or more and 1,500 W or less.
 プラズマの暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。 The lower limit of plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute. The upper limit of the time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
 プラズマは、例えば、HガスとArガスの混合ガスの雰囲気下でプラズマが生成される。また、HガスとArガスに加えて、CFガスやCHガス等の炭素含有ガスを導入するようにしてもよい。なお、Hガス及びArガスのいずれか一方または両方の代わりに、CFガス、NFガス、CHFガス、COガス、CHガス、CHガス及びCガスのうちの少なくとも一つを導入してもよい。 Plasma is generated, for example, in a mixed gas atmosphere of H 2 gas and Ar gas. In addition to H 2 gas and Ar gas, a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced. Instead of one or both of H2 gas and Ar gas, CF4 gas, NF3 gas , CHF3 gas , CO2 gas, CH2F2 gas, CH4 gas and C4F8 gas At least one of them may be introduced.
 レジスト下層膜へのイオン注入は、ドーパントをレジスト下層膜へ注入する。ドーパントは、ホウ素、炭素、窒素、リン、ヒ素、アルミニウム、及びタングステンから成るグループから選択され得る。ドーパントに電圧を加えるために利用される注入エネルギーは、利用されるドーパントのタイプ、及び望ましい注入の深さに応じて、約0.5keVから60keVまでが挙げられる。 The ion implantation into the resist underlayer film injects the dopant into the resist underlayer film. Dopants may be selected from the group consisting of boron, carbon, nitrogen, phosphorous, arsenic, aluminum, and tungsten. Implant energies used to voltage the dopants range from about 0.5 keV to 60 keV, depending on the type of dopant used and the depth of implantation desired.
 形成されるレジスト下層膜の平均厚みとの下限としては、30nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。上記平均厚みの上限としては、3,000nmが好ましく、2,000nmがより好ましく、500nmがさらに好ましい。なお、平均厚みの測定方法は実施例の記載による。 The lower limit to the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm. The upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm. The method for measuring the average thickness is described in Examples.
[ケイ素含有膜形成工程]
 本工程では、上記塗工工程又は上記加熱工程により形成されたレジスト下層膜に直接又は間接にケイ素含有膜を形成する。上記レジスト下層膜に間接にケイ素含有膜を形成する場合としては、例えば上記レジスト下層膜上にレジスト下層膜の表面改質膜が形成された場合などが挙げられる。上記レジスト下層膜の表面改質膜とは、例えば水との接触角が上記レジスト下層膜とは異なる膜である。
[Silicon-containing film forming step]
In this step, a silicon-containing film is formed directly or indirectly on the resist underlayer film formed in the coating step or the heating step. Examples of the case where the silicon-containing film is formed indirectly on the resist underlayer film include, for example, the case where a surface modification film of the resist underlayer film is formed on the resist underlayer film. The surface modified film of the resist underlayer film is, for example, a film having a contact angle with water different from that of the resist underlayer film.
 ケイ素含有膜は、ケイ素含有膜形成用組成物の塗工、化学蒸着(CVD)法、原子層堆積(ALD)などにより形成することができる。ケイ素含有膜をケイ素含有膜形成用組成物の塗工により形成する方法としては、例えばケイ素含有膜形成用組成物を当該レジスト下層膜に直接又は間接に塗工して形成された塗工膜を、露光及び/又は加熱することにより硬化等させる方法などが挙げられる。上記ケイ素含有膜形成用組成物の市販品としては、例えば「NFC SOG01」、「NFC SOG04」、「NFC SOG080」(以上、JSR(株))等を用いることができる。化学蒸着(CVD)法又は原子層堆積(ALD)により、酸化ケイ素膜、窒化ケイ素膜、酸化窒化ケイ素膜、アモルファスケイ素膜を形成することができる。 A silicon-containing film can be formed by coating a silicon-containing film-forming composition, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like. As a method of forming a silicon-containing film by coating a silicon-containing film-forming composition, for example, a coating film formed by directly or indirectly coating a silicon-containing film-forming composition on the resist underlayer film is formed. , a method of curing by exposure and/or heating, and the like. Commercially available products of the silicon-containing film-forming composition include, for example, "NFC SOG01", "NFC SOG04", and "NFC SOG080" (manufactured by JSR Corporation). Silicon oxide films, silicon nitride films, silicon oxynitride films, and amorphous silicon films can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
 上記露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used for the exposure include visible light, ultraviolet rays, far ultraviolet rays, X-rays, electromagnetic waves such as γ-rays, and particle beams such as electron beams, molecular beams, and ion beams.
 塗工膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。 The lower limit of the temperature when heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 200°C. The upper limit of the temperature is preferably 550°C, more preferably 450°C, and even more preferably 300°C.
 ケイ素含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。上記上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。ケイ素含有膜の平均厚みは、レジスト下層膜の平均厚みと同様に、上記分光エリプソメータを用いて測定した値である。 The lower limit of the average thickness of the silicon-containing film is preferably 1 nm, more preferably 10 nm, and even more preferably 20 nm. The upper limit is preferably 20,000 nm, more preferably 1,000 nm, even more preferably 100 nm. The average thickness of the silicon-containing film is a value measured using the spectroscopic ellipsometer as in the case of the average thickness of the resist underlayer film.
[レジストパターン形成工程]
 本工程では、上記レジスト下層膜に直接又は間接にレジストパターンを形成する。この工程を行う方法としては、例えばレジスト組成物を用いる方法、ナノインプリント法を用いる方法、自己組織化組成物を用いる方法などが挙げられる。上記レジスト下層膜に間接にレジストパターンを形成する場合としては、例えば、上記ケイ素含有膜上にレジストパターンを形成する場合などが挙げられる。
[Resist pattern forming step]
In this step, a resist pattern is formed directly or indirectly on the resist underlayer film. Examples of the method for performing this step include a method using a resist composition, a method using a nanoimprint method, a method using a self-assembled composition, and the like. Examples of forming a resist pattern indirectly on the resist underlayer film include forming a resist pattern on the silicon-containing film.
 上記レジスト組成物としては、例えば感放射線性酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とを含有するポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト組成物などが挙げられる。 Examples of the resist composition include a positive-type or negative-type chemically amplified resist composition containing a radiation-sensitive acid generator, a positive-type resist composition containing an alkali-soluble resin and a quinonediazide-based photosensitizer, an alkali-soluble Examples include a negative resist composition containing a resin and a cross-linking agent.
 レジスト組成物の塗工方法としては、例えば回転塗工法等が挙げられる。プレベークの温度及び時間は、使用されるレジスト組成物の種類などに応じて適宜調整することができる。 Examples of the coating method of the resist composition include a spin coating method and the like. The pre-baking temperature and time can be appropriately adjusted depending on the type of resist composition used.
 次に、選択的な放射線照射により上記形成されたレジスト膜を露光する。露光に用いられる放射線としては、レジスト組成物に使用される感放射線性酸発生剤の種類等に応じて適宜選択することができ、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。これらの中で、遠紫外線が好ましく、KrFエキシマレーザー光(波長248nm)、ArFエキシマレーザー光(波長193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)又は極端紫外線(波長13.5nm等、以下、「EUV」ともいう)がより好ましく、KrFエキシマレーザー光、ArFエキシマレーザー光又はEUVがさらに好ましい。 Next, the resist film thus formed is exposed by selective radiation irradiation. The radiation used for exposure can be appropriately selected according to the type of radiation-sensitive acid generator used in the resist composition, and examples thereof include visible light, ultraviolet light, deep ultraviolet light, X-rays, and γ-rays. Examples include electromagnetic waves, electron beams, molecular beams, and particle beams such as ion beams. Among these, far ultraviolet rays are preferred, and KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F2 excimer laser light (wavelength 157 nm), Kr2 excimer laser light (wavelength 147 nm), ArKr excimer Laser light (wavelength: 134 nm) or extreme ultraviolet rays (wavelength: 13.5 nm, etc., hereinafter also referred to as "EUV") are more preferred, and KrF excimer laser light, ArF excimer laser light, or EUV is even more preferred.
 上記露光後、解像度、パターンプロファイル、現像性等を向上させるためポストベークを行うことができる。このポストベークの温度及び時間は、使用されるレジスト組成物の種類等に応じて適宜決定することができる。 After the above exposure, post-baking can be performed to improve the resolution, pattern profile, developability, and the like. The temperature and time of this post-baking can be appropriately determined according to the type of resist composition used.
 次に、上記露光されたレジスト膜を現像液で現像してレジストパターンを形成する。この現像は、アルカリ現像であっても有機溶媒現像であってもよい。現像液としては、アルカリ現像の場合、アンモニア、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシドなどの塩基性水溶液が挙げられる。これらの塩基性水溶液には、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤などを適量添加することもできる。また、有機溶媒現像の場合、現像液としては、例えば上述の当該組成物の[B]溶媒として例示した種々の有機溶媒等が挙げられる。 Next, the exposed resist film is developed with a developer to form a resist pattern. This development may be either alkali development or organic solvent development. As the developer, in the case of alkali development, basic aqueous solutions such as ammonia, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, etc. can be used. Suitable amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants, and the like can also be added to these basic aqueous solutions. In the case of organic solvent development, the developer includes, for example, various organic solvents exemplified as the [B] solvent of the composition.
 上記現像液での現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。 A predetermined resist pattern is formed by washing and drying after development with the developer.
[エッチング工程]
 本工程では、上記レジストパターンをマスクとしたエッチングを行う。エッチングの回数としては1回でも、複数回、すなわちエッチングにより得られるパターンをマスクとして順次エッチングを行ってもよい。より良好な形状のパターンを得る観点からは、複数回が好ましい。複数回のエッチングを行う場合、例えばケイ素含有膜、レジスト下層膜及び基板の順に順次エッチングを行う。エッチングの方法としては、ドライエッチング、ウエットエッチング等が挙げられる。基板のパターンの形状をより良好なものとする観点からは、ドライエッチングが好ましい。このドライエッチングには、例えば酸素プラズマ等のガスプラズマなどが用いられる。上記エッチングにより、所定のパターンを有する半導体基板が得られる。
[Etching process]
In this step, etching is performed using the resist pattern as a mask. Etching may be performed once or multiple times, that is, etching may be performed sequentially using a pattern obtained by etching as a mask. Multiple times are preferable from the viewpoint of obtaining a pattern with a better shape. When etching is performed multiple times, for example, the silicon-containing film, the resist underlayer film, and the substrate are sequentially etched. Etching methods include dry etching, wet etching, and the like. Dry etching is preferable from the viewpoint of improving the pattern shape of the substrate. For this dry etching, gas plasma such as oxygen plasma is used. A semiconductor substrate having a predetermined pattern is obtained by the etching.
 ドライエッチングとしては、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、マスクパターン、エッチングされる膜の元素組成等により適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが挙げられる。これらのガスは混合して用いることもできる。レジスト下層膜のパターンをマスクとして基板をエッチングする場合には、通常、フッ素系ガスが用いられる。 Dry etching can be performed using, for example, a known dry etching apparatus. The etching gas used for dry etching can be appropriately selected according to the mask pattern, the elemental composition of the film to be etched, etc. Examples include CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 and SF 6 . Fluorine-based gases, chlorine-based gases such as Cl 2 and BCl 3 , oxygen-based gases such as O 2 , O 3 and H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2H4 , C2H6 , C3H4 , C3H6 , C3H8 , HF , HI, HBr, HCl, NO, BCl3 and other reducing gases ; He, N2 , Ar and other Inert gas etc. are mentioned. These gases can also be mixed and used. When etching a substrate using the pattern of the resist underlayer film as a mask, a fluorine-based gas is usually used.
《組成物》
 当該組成物は、[A]化合物と[B]溶媒とを含有する。当該組成物としては、上記半導体基板の製造方法において用いられる組成物を好適に採用することができる。
"Composition"
The composition contains [A] compound and [B] solvent. As the composition, the composition used in the method for manufacturing a semiconductor substrate can be suitably employed.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.
[重量平均分子量(Mw)]
 重合体のMwは、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[Weight average molecular weight (Mw)]
The Mw of the polymer is determined using Tosoh Corporation GPC columns (2 "G2000HXL", 1 "G3000HXL", and 1 "G4000HXL"), flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, column Temperature: Measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of 40°C.
[レジスト下層膜の平均厚み]
 レジスト下層膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて、12インチシリコンウエハ(基板)上に形成されたレジスト下層膜の中心を含む5cm間隔の任意の9点の位置で膜厚を測定し、それらの膜厚の平均値を算出した値として求めた。
[Average thickness of resist underlayer film]
The average thickness of the resist underlayer film was measured at arbitrary intervals of 5 cm including the center of the resist underlayer film formed on a 12-inch silicon wafer (substrate) using a spectroscopic ellipsometer ("M2000D" manufactured by JA WOOLLAM). The film thickness was measured at nine points, and the average value of the film thicknesses was obtained as a calculated value.
[合成例1](化合物(A-1)の合成)
 反応容器に窒素雰囲気下、1,3-ベンゼンジオール5.0g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.5g、エタノール77.7gを仕込み、室温にて溶解させた。得られた溶液に濃硫酸13.4gを1時間かけて滴下し、その後溶液温度を80℃にして7時間撹拌し、溶液温度が30℃に冷却した。その後、析出してきた赤茶色の固形物を、ろ過にて回収し、前駆体となる固形物を得た。
[Synthesis Example 1] (Synthesis of Compound (A-1))
In a reaction vessel under nitrogen atmosphere, 5.0 g of 1,3-benzenediol, 10.5 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, and 77 ethanol were added. .7 g was charged and dissolved at room temperature. To the obtained solution, 13.4 g of concentrated sulfuric acid was added dropwise over 1 hour, then the solution temperature was raised to 80°C and stirred for 7 hours, and the solution temperature was cooled to 30°C. After that, the precipitated reddish-brown solid matter was recovered by filtration to obtain a solid matter serving as a precursor.
 次に反応容器に窒素雰囲気下、上記得られた前駆体7.8g、4-メチル-2-ペンタノン31.2g、メタノール15.6g及び25質量%テトラメチルアンモニウムヒドロキシド水溶液19.7gを仕込み、室温にて溶解させた。その後50℃に昇温し、プロパルギルブロミド6.4gを30分かけて滴下し、そのまま50℃で6時間撹拌し、30℃に冷却した後、水層を取り除いて100.0gのヘプタンに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-1)で表される化合物(A-1)を得た。 Next, 7.8 g of the precursor obtained above, 31.2 g of 4-methyl-2-pentanone, 15.6 g of methanol, and 19.7 g of a 25% by mass tetramethylammonium hydroxide aqueous solution were charged into a reactor under a nitrogen atmosphere, Dissolved at room temperature. After that, the temperature was raised to 50° C., 6.4 g of propargyl bromide was added dropwise over 30 minutes, and the mixture was stirred at 50° C. for 6 hours. Reprecipitated. The precipitate was collected with filter paper and dried to obtain a compound (A-1) represented by the following formula (A-1).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[合成例2](化合物(a-1)の合成)
 反応容器に窒素雰囲気下、2-アセチルフルオレン20.0g及びm-キシレン20.0gを仕込み、110℃にて溶解させた。次いで、ドデシルベンゼンスルホン酸3.1gを添加し、140℃に加熱して16時間撹拌後、本反応溶液にキシレン80.0gを加えて希釈した後、50℃に冷却し、500.0gのメタノールに投入し再沈殿した。得られた沈殿物をろ紙で回収し、乾燥して下記化合物(a-1)を得た。
[Synthesis Example 2] (Synthesis of compound (a-1))
20.0 g of 2-acetylfluorene and 20.0 g of m-xylene were placed in a reactor under a nitrogen atmosphere and dissolved at 110.degree. Next, 3.1 g of dodecylbenzenesulfonic acid was added, heated to 140° C. and stirred for 16 hours. After diluting the reaction solution by adding 80.0 g of xylene, it was cooled to 50° C. and mixed with 500.0 g of methanol. and reprecipitated. The resulting precipitate was collected with filter paper and dried to obtain the following compound (a-1).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[合成例3](化合物(A-2)の合成)
 反応容器に窒素雰囲気下、上記化合物(a-1)8.0g、3-ホルミルフェニルボロン酸6.9g、ジアザビシクロウンデセン7.0g及びN,N-ジメチルアセトアミド149.4gを加え、130℃で12時間撹拌し、30℃に冷却した後、500.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-2)で表される化合物(A-2)を得た。
[Synthesis Example 3] (Synthesis of compound (A-2))
8.0 g of the above compound (a-1), 6.9 g of 3-formylphenylboronic acid, 7.0 g of diazabicycloundecene and 149.4 g of N,N-dimethylacetamide were added to a reaction vessel under a nitrogen atmosphere. C. for 12 hours, cooled to 30.degree. C., and poured into 500.0 g of methanol for reprecipitation. The precipitate was collected with filter paper and dried to obtain a compound (A-2) represented by the following formula (A-2).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[合成例4](化合物(A-3)の合成)
 3-ホルミルフェニルボロン酸6.9gを3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.7g、N,N-ジメチルアセトアミド149.4gをN,N-ジメチルアセトアミド187.4gに変更した以外は、合成例3と同様にして下記式(A-3)で表される化合物(A-3)を得た。
[Synthesis Example 4] (Synthesis of compound (A-3))
6.9 g of 3-formylphenylboronic acid, 10.7 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, and 149.4 g of N,N-dimethylacetamide A compound (A-3) represented by the following formula (A-3) was obtained in the same manner as in Synthesis Example 3, except that 187.4 g of N,N-dimethylacetamide was used.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[合成例5](化合物(A-4)の合成)
 反応容器に窒素雰囲気下、2-フェニルエチニルフルオレン20.0g及び1,4-ジオキサン200gを仕込み、50℃にて溶解させた。次いで、オクタカルボニル二コバルト1.28gを添加し、110℃に加熱して12時間撹拌後、室温に冷却し、600gのメタノール及び水60.0gを加えて沈殿物を得た。得られた沈殿物をろ紙で回収し、多量のメタノールで洗浄、乾燥して前駆体となる固形物を得た。
[Synthesis Example 5] (Synthesis of compound (A-4))
20.0 g of 2-phenylethynylfluorene and 200 g of 1,4-dioxane were placed in a reactor under a nitrogen atmosphere and dissolved at 50.degree. Then, 1.28 g of octacarbonyl dicobalt was added, heated to 110° C., stirred for 12 hours, cooled to room temperature, and 600 g of methanol and 60.0 g of water were added to obtain a precipitate. The resulting precipitate was collected with a filter paper, washed with a large amount of methanol, and dried to obtain a solid precursor.
 次に反応容器に窒素雰囲気下、上記得られた前駆体8.0g、3-ホルミルフェニルボロン酸5.0g、ジアザビシクロウンデセン5.0g及びN,N-ジメチルアセトアミド129.5gを加え、130℃で12時間撹拌し、30℃に冷却した後、400.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、下記式(A-4)で表される化合物(A-4)を得た。 Next, 8.0 g of the precursor obtained above, 5.0 g of 3-formylphenylboronic acid, 5.0 g of diazabicycloundecene, and 129.5 g of N,N-dimethylacetamide were added to a reaction vessel under a nitrogen atmosphere, After stirring at 130° C. for 12 hours and cooling to 30° C., the mixture was poured into 400.0 g of methanol for reprecipitation. The precipitate was collected with filter paper to obtain a compound (A-4) represented by the following formula (A-4).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
[合成例6](化合物(A-5)の合成)
 反応容器に窒素雰囲気下、2,7-ジエチニルフルオレン8.0g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド12.1g、ジアザビシクロウンデセン8.0g及びN,N-ジメチルアセトアミド201.3gを加え、130℃で8時間撹拌し、30℃に冷却した後、600.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-5)で表される化合物(A-5)を得た。
[Synthesis Example 6] (Synthesis of Compound (A-5))
In a reaction vessel under a nitrogen atmosphere, 8.0 g of 2,7-diethynylfluorene, 12.1 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, dia. 8.0 g of zabicycloundecene and 201.3 g of N,N-dimethylacetamide were added, stirred at 130° C. for 8 hours, cooled to 30° C., and poured into 600.0 g of methanol for reprecipitation. The precipitate was collected with filter paper and dried to obtain a compound (A-5) represented by the following formula (A-5).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[合成例7](化合物(A-6)の合成)
 反応容器に窒素雰囲気下、エチニルベンゼン6.2g及びテトラヒドロフラン36.0gを加えて-78℃に冷却した後、n-ブチルリチウム(1.6Mヘキサン溶液)39.8mlを滴下して-78℃のまま30分間攪拌した。その後、トリブロモボラン5.0gを滴下して-78℃で1時間攪拌し、0℃に昇温して5時間撹拌後、100.0gの2-プロパノール/水(90/10(質量比))混合溶媒をゆっくりと加えた。得られた反応液を25.0gまで減圧濃縮し、超純水30.0gで分液抽出して水層を取り除いた。さらにヘプタン50.0gを加えて液液抽出し、下層を回収して減圧濃縮することで、下記式(A-6)で表される化合物(A-6)を得た。
[Synthesis Example 7] (Synthesis of compound (A-6))
Under nitrogen atmosphere, 6.2 g of ethynylbenzene and 36.0 g of tetrahydrofuran were added to the reactor and cooled to -78°C. The mixture was stirred for 30 minutes. Then, 5.0 g of tribromoborane was added dropwise and stirred at −78° C. for 1 hour, heated to 0° C. and stirred for 5 hours. ) slowly added the mixed solvent. The resulting reaction solution was concentrated under reduced pressure to 25.0 g, and separated and extracted with 30.0 g of ultrapure water to remove the aqueous layer. Further, 50.0 g of heptane was added for liquid-liquid extraction, and the lower layer was recovered and concentrated under reduced pressure to obtain a compound (A-6) represented by the following formula (A-6).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[合成例8](化合物(A-7)の合成)
 エチニルベンゼン6.2gを2-ブロモ-1,3-ジメトキシベンゼン13.2g、テトラヒドロフラン36.0gをテトラヒドロフラン137.8gに変更した以外は、合成例7と同様にして下記式(A-7)で表される化合物(A-7)を得た。
[Synthesis Example 8] (Synthesis of Compound (A-7))
The following formula (A-7) was obtained in the same manner as in Synthesis Example 7, except that 6.2 g of ethynylbenzene was changed to 13.2 g of 2-bromo-1,3-dimethoxybenzene and 36.0 g of tetrahydrofuran was changed to 137.8 g of tetrahydrofuran. The represented compound (A-7) was obtained.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[合成例9](化合物(A-8)の合成)
 エチニルベンゼン6.2gを1-ブロモ-4-ビニルベンゼン11.1g、テトラヒドロフラン36.0gをテトラヒドロフラン121.4gに変更した以外は、合成例7と同様にして下記式(A-8)で表される化合物(A-8)を得た。
[Synthesis Example 9] (Synthesis of compound (A-8))
Represented by the following formula (A-8) in the same manner as in Synthesis Example 7, except that 6.2 g of ethynylbenzene was changed to 11.1 g of 1-bromo-4-vinylbenzene and 36.0 g of tetrahydrofuran was changed to 121.4 g of tetrahydrofuran. A compound (A-8) was obtained.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[合成例10](化合物(A-9)の合成)
 反応容器に窒素雰囲気下、1-ヒドロキシピレン8.0g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2g、p-トルエンスルホン酸一水和物4.4g及び1-ブタノール36.4gを加え、110℃で16時間撹拌し、30℃に冷却した後、100.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して前駆体となる固形物を得た。
[Synthesis Example 10] (Synthesis of Compound (A-9))
8.0 g of 1-hydroxypyrene, 10.2 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, and p-toluenesulfone were placed in a reaction vessel under a nitrogen atmosphere. 4.4 g of acid monohydrate and 36.4 g of 1-butanol were added, stirred at 110° C. for 16 hours, cooled to 30° C., and poured into 100.0 g of methanol for reprecipitation. The precipitate was collected with filter paper and dried to obtain a precursor solid.
 次に反応容器に窒素雰囲気下、上記得られた前駆体5.0g、4-メチル-2-ペンタノン20.0g、メタノール10.0g及び25質量%テトラメチルアンモニウムヒドロキシド水溶液6.3gを仕込み、室温にて溶解させた。その後50℃に昇温し、プロパルギルブロミド2.1gを30分かけて滴下し、そのまま50℃で6時間撹拌し、30℃に冷却した後、水層を取り除いて100.0gのヘプタンに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-9)で表される化合物(A-9)を得た。得られた化合物(A-9)のMwは4,500であった。 Next, 5.0 g of the precursor obtained above, 20.0 g of 4-methyl-2-pentanone, 10.0 g of methanol, and 6.3 g of a 25% by mass tetramethylammonium hydroxide aqueous solution were charged into a reactor under a nitrogen atmosphere, Dissolved at room temperature. After that, the temperature was raised to 50°C, and 2.1 g of propargyl bromide was added dropwise over 30 minutes. Reprecipitated. The precipitate was collected with filter paper and dried to obtain a compound (A-9) represented by the following formula (A-9). Mw of the obtained compound (A-9) was 4,500.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[合成例11](化合物(A-10)の合成)
 3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2gを3-ホルミルフェニルボロン酸6.6g、1-ブタノール36.4gを1-ブタノール29.2gに変更した以外は、合成例10の前駆体合成と同様にして下記式(A-10)で表される化合物(A-10)を得た。得られた化合物(A-10)のMwは3,200であった。
[Synthesis Example 11] (Synthesis of compound (A-10))
To 10.2 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, 6.6 g of 3-formylphenyl boronic acid, 36.4 g of 1-butanol to 1- A compound (A-10) represented by the following formula (A-10) was obtained in the same manner as the precursor synthesis of Synthesis Example 10, except that 29.2 g of butanol was used. Mw of the obtained compound (A-10) was 3,200.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[合成例12](化合物(A-11)の合成)
 1-ヒドロキシピレン8.0gを9,9-ビス(4-ヒドロキシフェニル)フルオレン12.9g、1-ブタノール36.4gを1-ブタノール46.1gに変更した以外は、合成例10の前駆体合成と同様にして下記式(A-11)で表される化合物(A-11)を得た。得られた化合物(A-11)のMwは4,000であった。
[Synthesis Example 12] (Synthesis of Compound (A-11))
Precursor synthesis of Synthesis Example 10 except that 8.0 g of 1-hydroxypyrene was changed to 12.9 g of 9,9-bis(4-hydroxyphenyl)fluorene and 36.4 g of 1-butanol was changed to 46.1 g of 1-butanol. A compound (A-11) represented by the following formula (A-11) was obtained in the same manner as above. Mw of the obtained compound (A-11) was 4,000.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[合成例13](化合物(A-12)の合成)
 1-ヒドロキシピレン8.0gを3-ヒドロキシフェニルボロン酸10.0g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2gを4-フェニルベンズアルデヒド15.9g、p-トルエンスルホン酸一水和物4.4gをp-トルエンスルホン酸一水和物6.9g、1-ブタノール36.4gを1-ブタノール51.2gに変更した以外は、合成例10と同様にして前駆体となる固形物を得た。
[Synthesis Example 13] (Synthesis of compound (A-12))
To 8.0 g of 1-hydroxypyrene, 10.0 g of 3-hydroxyphenylboronic acid, 10.2 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, 4 -Phenylbenzaldehyde 15.9g, p-toluenesulfonic acid monohydrate 4.4g was changed to p-toluenesulfonic acid monohydrate 6.9g, 1-butanol 36.4g was changed to 1-butanol 51.2g obtained a solid precursor in the same manner as in Synthesis Example 10.
 次に反応容器に窒素雰囲気下、上記得られた前駆体5.0g、4-メチル-2-ペンタノン15.0g、メタノール7.5g及び25質量%テトラメチルアンモニウムヒドロキシド水溶液19.9gを仕込み、室温にて溶解させた。その後50℃に昇温し、プロパルギルブロミド6.5gを30分かけて滴下し、そのまま50℃で6時間撹拌し、30℃に冷却した後、水層を取り除いて60.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-12)で表される化合物(A-12)を得た。得られた化合物(A-12)のMwは4,700であった。 Next, 5.0 g of the precursor obtained above, 15.0 g of 4-methyl-2-pentanone, 7.5 g of methanol, and 19.9 g of a 25% by mass tetramethylammonium hydroxide aqueous solution were charged into a reactor under a nitrogen atmosphere, Dissolved at room temperature. After that, the temperature was raised to 50°C, 6.5 g of propargyl bromide was added dropwise over 30 minutes, and the mixture was stirred at 50°C for 6 hours. Reprecipitated. The precipitate was collected with filter paper and dried to obtain a compound (A-12) represented by the following formula (A-12). Mw of the obtained compound (A-12) was 4,700.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[合成例14](化合物(A-13)の合成)
 1-ヒドロキシピレン8.0gを3-ヒドロキシフェニルボロン酸10.0g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2gを1-ピレンカルバルデヒド20.0g、p-トルエンスルホン酸一水和物4.4gをp-トルエンスルホン酸一水和物6.9g、1-ブタノール36.4gを1-ブタノール60.1gに変更した以外は、合成例10と同様にして前駆体となる固形物を得た。
[Synthesis Example 14] (Synthesis of compound (A-13))
8.0 g of 1-hydroxypyrene, 10.0 g of 3-hydroxyphenylboronic acid, 10.2 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde, - 20.0 g of pyrene carbaldehyde, 4.4 g of p-toluenesulfonic acid monohydrate was changed to 6.9 g of p-toluenesulfonic acid monohydrate, and 36.4 g of 1-butanol was changed to 60.1 g of 1-butanol. Except for this, in the same manner as in Synthesis Example 10, a solid material serving as a precursor was obtained.
 次に反応容器に窒素雰囲気下、上記得られた前駆体5.0g、4-メチル-2-ペンタノン15.0g、メタノール7.5g及び25質量%テトラメチルアンモニウムヒドロキシド水溶液17.1gを仕込み、室温にて溶解させた。その後50℃に昇温し、プロパルギルブロミド5.6gを30分かけて滴下し、そのまま50℃で6時間撹拌し、30℃に冷却した後、水層を取り除いて60.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-13)で表される化合物(A-13)を得た。得られた化合物(A-13)のMwは4,500であった。 Next, 5.0 g of the precursor obtained above, 15.0 g of 4-methyl-2-pentanone, 7.5 g of methanol, and 17.1 g of a 25% by mass tetramethylammonium hydroxide aqueous solution were charged into a reactor under a nitrogen atmosphere, Dissolved at room temperature. After that, the temperature was raised to 50°C, and 5.6 g of propargyl bromide was added dropwise over 30 minutes. Reprecipitated. The precipitate was collected with filter paper and dried to obtain a compound (A-13) represented by the following formula (A-13). Mw of the obtained compound (A-13) was 4,500.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
[合成例15](化合物(a-2)の合成)
 反応容器に窒素雰囲気下、3-ヒドロキシフェニルボロン酸5.0g、1,8-ナフタレンジアミン7.8g及びテトラヒドロフラン72.5gを加え、60℃で24時間撹拌し、30℃に冷却し、得られた反応液を減圧濃縮した後、シリカゲルカラムクロマトグラフィーにより精製し、化合物(a-2)を得た。
[Synthesis Example 15] (Synthesis of compound (a-2))
Under a nitrogen atmosphere, 5.0 g of 3-hydroxyphenylboronic acid, 7.8 g of 1,8-naphthalenediamine and 72.5 g of tetrahydrofuran were added to a reaction vessel, stirred at 60°C for 24 hours, and cooled to 30°C to obtain The resulting reaction solution was concentrated under reduced pressure and purified by silica gel column chromatography to obtain compound (a-2).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[合成例16](化合物(A-14)の合成)
 1-ヒドロキシピレン8.0gを(a-2)10.0g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2gを1-ピレンカルバルデヒド10.6g、p-トルエンスルホン酸一水和物4.4gをp-トルエンスルホン酸一水和物3.7g、1-ブタノール36.4gを1-ブタノール41.2gに変更した以外は、合成例10と同様にして前駆体となる固形物を得た。
[Synthesis Example 16] (Synthesis of compound (A-14))
8.0 g of 1-hydroxypyrene was added to 10.0 g of (a-2), and 10.2 g of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde was added to 1- Except for changing 10.6 g of pyrenecarbaldehyde, 4.4 g of p-toluenesulfonic acid monohydrate to 3.7 g of p-toluenesulfonic acid monohydrate, and 36.4 g of 1-butanol to 41.2 g of 1-butanol. obtained a solid precursor in the same manner as in Synthesis Example 10.
 次に反応容器に窒素雰囲気下、上記得られた前駆体5.0g、4-メチル-2-ペンタノン15.0g、メタノール7.5g及び25質量%テトラメチルアンモニウムヒドロキシド水溶液12.7gを仕込み、室温にて溶解させた。その後50℃に昇温し、プロパルギルブロミド4.2gを30分かけて滴下し、そのまま50℃で6時間撹拌し、30℃に冷却した後、水層を取り除いて60.0gのメタノールに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記式(A-14)で表される化合物(A-14)を得た。得られた化合物(A-14)のMwは4,800であった。 Next, 5.0 g of the precursor obtained above, 15.0 g of 4-methyl-2-pentanone, 7.5 g of methanol, and 12.7 g of a 25% by mass tetramethylammonium hydroxide aqueous solution were charged into a reactor under a nitrogen atmosphere, Dissolved at room temperature. After that, the temperature was raised to 50° C., 4.2 g of propargyl bromide was added dropwise over 30 minutes, the mixture was stirred at 50° C. for 6 hours, cooled to 30° C., the aqueous layer was removed, and the mixture was added to 60.0 g of methanol. Reprecipitated. The precipitate was collected with filter paper and dried to obtain a compound (A-14) represented by the following formula (A-14). Mw of the obtained compound (A-14) was 4,800.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[合成例17](化合物(A-15)の合成)
 4-エテニルフェニルボロン酸12.5g及びビニルベンジルアルコール7.5gをメチルイソブチルケトン40.0gに溶解させ、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル1.6gを添加し、単量体溶液を調製した。反応容器に窒素雰囲気下、メチルイソブチルケトン40.0gを入れ、80℃に加熱し、攪拌しながら、上記単量体溶液を3時間かけて滴下し、6時間撹拌し、30℃以下に冷却した。反応溶液に酢酸プロピレングリコールモノメチルエーテル300gを加え、メチルイソブチルケトンを減圧濃縮により除去し、乾燥して下記式(A-15)で表される化合物(A-15)を得た。得られた化合物(A-15)のMwは4,200であった。
[Synthesis Example 17] (Synthesis of compound (A-15))
12.5 g of 4-ethenylphenylboronic acid and 7.5 g of vinylbenzyl alcohol are dissolved in 40.0 g of methyl isobutyl ketone, 1.6 g of dimethyl 2,2'-azobis(2-methylpropionate) are added, A polymer solution was prepared. Under a nitrogen atmosphere, 40.0 g of methyl isobutyl ketone was placed in a reaction vessel, heated to 80°C, and while stirring, the above monomer solution was added dropwise over 3 hours, stirred for 6 hours, and cooled to 30°C or less. . 300 g of propylene glycol monomethyl ether acetate was added to the reaction solution, and methyl isobutyl ketone was removed by concentration under reduced pressure, followed by drying to obtain compound (A-15) represented by the following formula (A-15). Mw of the obtained compound (A-15) was 4,200.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
[合成例18](重合体(x-4)の合成)
 3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2gをベンズアルデヒド4.7g、p-トルエンスルホン酸一水和物4.4gをp-トルエンスルホン酸一水和物3.5g、1-ブタノール36.4gを1-ブタノール25.3gに変更した以外は、合成例10の前駆体合成と同様にして下記重合体(x-4)を得た。得られた重合体(x-4)のMwは4,900であった。
[Synthesis Example 18] (Synthesis of polymer (x-4))
3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde 10.2 g is benzaldehyde 4.7 g, p-toluenesulfonic acid monohydrate 4.4 g -Toluenesulfonic acid monohydrate 3.5 g, except that 1-butanol 36.4 g was changed to 1-butanol 25.3 g, in the same manner as in the precursor synthesis of Synthesis Example 10 Polymer (x-4) got Mw of the obtained polymer (x-4) was 4,900.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[合成例19](重合体(x-5)の合成)
 1-ヒドロキシピレン8.0gを9,9-ビス(4-ヒドロキシフェニル)フルオレン16.1g、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアルデヒド10.2gをベンズアルデヒド5.8g、1-ブタノール36.4gを1-ブタノール43.8gに変更した以外は、合成例10の前駆体合成と同様にして下記重合体(x-5)を得た。得られた重合体(x-5)のMwは4,400であった。
[Synthesis Example 19] (Synthesis of polymer (x-5))
8.0 g of 1-hydroxypyrene, 16.1 g of 9,9-bis(4-hydroxyphenyl)fluorene, 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) The following polymer (x-5) was obtained in the same manner as the precursor synthesis of Synthesis Example 10 except that 10.2 g of benzaldehyde was changed to 5.8 g of benzaldehyde and 36.4 g of 1-butanol was changed to 43.8 g of 1-butanol. Ta. Mw of the obtained polymer (x-5) was 4,400.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[比較合成例1](重合体(x-1)の合成)
 反応容器に窒素雰囲気下、m-クレゾール250.0g、37質量%ホルマリン125.0g及び無水シュウ酸2gを加え、100℃で3時間、180℃で1時間反応させた後、減圧下にて未反応モノマーを除去し、下記重合体(x-1)を得た。得られた重合体(x-1)のMwは11,000であった。
[Comparative Synthesis Example 1] (Synthesis of polymer (x-1))
In a reaction vessel under a nitrogen atmosphere, 250.0 g of m-cresol, 125.0 g of 37 mass% formalin and 2 g of anhydrous oxalic acid were added, reacted at 100 ° C. for 3 hours and at 180 ° C. for 1 hour, and then under reduced pressure. The reaction monomer was removed to obtain the following polymer (x-1). Mw of the obtained polymer (x-1) was 11,000.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[比較合成例2](重合体(x-2)の合成)
 反応容器に窒素雰囲気下、9,9-ビス(4-ヒドロキシフェニル)フルオレン100.0g、プロピレングリコールモノメチルエーテルアセテート300.0g及びパラホルムアルデヒド10.0gを仕込み、p-トルエンスルホン酸一水和物1.0gを添加し、100℃で16時間撹拌し、重合反応液を500.0gのメタノール/水(70/30(質量比))混合溶媒中に投入し、沈殿物をろ紙で回収して乾燥することで下記重合体(x-2)を得た。得られた重合体(x-2)のMwは5,200であった。
[Comparative Synthesis Example 2] (Synthesis of polymer (x-2))
A reaction vessel was charged with 100.0 g of 9,9-bis(4-hydroxyphenyl)fluorene, 300.0 g of propylene glycol monomethyl ether acetate, and 10.0 g of paraformaldehyde under a nitrogen atmosphere. 0 g, stirred at 100 ° C. for 16 hours, the polymerization reaction solution was put into 500.0 g of methanol / water (70/30 (mass ratio)) mixed solvent, and the precipitate was collected with filter paper and dried. By doing so, the following polymer (x-2) was obtained. Mw of the obtained polymer (x-2) was 5,200.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[比較合成例3](重合体(x-3)の合成)
 3-ヒドロキシフェニルボロン酸10.0gをフェノール6.8gに変更した以外は、合成例12と同様にして下記重合体(x-3)を得た。得られた重合体(x-3)のMwは3,500であった。
[Comparative Synthesis Example 3] (Synthesis of polymer (x-3))
The following polymer (x-3) was obtained in the same manner as in Synthesis Example 12, except that 10.0 g of 3-hydroxyphenylboronic acid was changed to 6.8 g of phenol. Mw of the obtained polymer (x-3) was 3,500.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
<組成物の調製>
 組成物の調製に用いた[A]化合物、[B]溶媒、[C]酸発生剤及び[D]架橋剤及び重合体について以下に示す。
<Preparation of composition>
The [A] compound, [B] solvent, [C] acid generator, [D] cross-linking agent and polymer used in the preparation of the composition are shown below.
[[A]化合物]
 上記合成した化合物(A-1)~(A-15)
[[A] compound]
Compounds (A-1) to (A-15) synthesized above
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
 B-2:シクロヘキサノン
[[B] solvent]
B-1: propylene glycol monomethyl ether acetate B-2: cyclohexanone
[[C]酸発生剤]
 C-1:ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート(下記式(C-1)で表される化合物)
[[C] acid generator]
C-1: bis(4-t-butylphenyl)iodonium nonafluoro-n-butanesulfonate (compound represented by the following formula (C-1))
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
[[D]架橋剤]
 D-1:下記式(D-1)で表される化合物
[[D] cross-linking agent]
D-1: a compound represented by the following formula (D-1)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 D-2:下記式(D-2)で表される化合物 D-2: a compound represented by the following formula (D-2)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[重合体]
 上記合成した重合体(x-1)~(x-5)
[Polymer]
Polymers (x-1) to (x-5) synthesized above
[実施例1]
 [A]化合物としての(A-1)10質量部を[B]溶媒としての(B-1)90質量部に溶解した。得られた溶液を孔径0.45μmのポリテトラフルオロエチレン(PTFE)メンブランフィルターでろ過して、組成物(J-1)を調製した。
[Example 1]
[A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The resulting solution was filtered through a polytetrafluoroethylene (PTFE) membrane filter with a pore size of 0.45 μm to prepare composition (J-1).
[実施例2~22及び比較例1~3]
 下記表1に示す種類及び含有量の各成分を使用したこと以外は、実施例1と同様にして組成物(J-2)~(J-22)及び(CJ-1)~(CJ-3)を調製した。表1中の「[A]化合物」、「重合体」、「[C]酸発生剤」及び「[D]架橋剤」の列における「-」は、該当する成分を使用しなかったことを示す。
[Examples 2 to 22 and Comparative Examples 1 to 3]
Compositions (J-2) to (J-22) and (CJ-1) to (CJ-3) in the same manner as in Example 1 except that the types and contents of each component shown in Table 1 below were used. ) was prepared. "-" in the columns of "[A] compound", "polymer", "[C] acid generator" and "[D] cross-linking agent" in Table 1 indicates that the corresponding component was not used. show.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
[エッチング耐性]
 上記調製した組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて350℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmの膜を形成し、基板上にレジスト下層膜が形成された膜付き基板を得た。上記得られた膜付き基板における膜を、エッチング装置(東京エレクトロン(株)の「TACTRAS」)を用いて、O=400sccm、PRESS.=25mT、HF RF(プラズマ生成用高周波電力)=400W、LF RF(バイアス用高周波電力)=0W、DCS=0V、RDC(ガスセンタ流量比)=50%、90秒の条件にて処理し、処理前後の膜の平均厚みからエッチング速度(nm/分)を算出した。次いで、比較例1のエッチング速度を基準として比較例1に対する比率を算出し、この比率をエッチング耐性の尺度とした。エッチング耐性は、上記比率が0.89以下の場合は「A」(極めて良好)、0.89を超え0.93未満の場合は「B」(良好)と、0.93以上の場合は「C」(不良)と評価した。なお、表2中の「-」は、エッチング耐性の評価基準であることを示す。
[Etching resistance]
The composition prepared above was coated on a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT 12" available from Tokyo Electron Ltd.). Next, after heating at 350° C. for 60 seconds in an air atmosphere, by cooling at 23° C. for 60 seconds, a film having an average thickness of 200 nm was formed, and a film-coated substrate having a resist underlayer film formed on the substrate was obtained. Obtained. The film on the obtained film-coated substrate was etched using an etching device ("TACTRAS" available from Tokyo Electron Co., Ltd.) with O 2 =400 sccm, PRESS. = 25 mT, HF RF (radio frequency power for plasma generation) = 400 W, LF RF (radio frequency power for bias) = 0 W, DCS = 0 V, RDC (gas center flow ratio) = 50%, 90 seconds. The etching rate (nm/min) was calculated from the average thickness of the films before and after. Next, the ratio to Comparative Example 1 was calculated based on the etching rate of Comparative Example 1, and this ratio was used as a measure of etching resistance. The etching resistance is "A" (extremely good) when the above ratio is 0.89 or less, "B" (good) when it is more than 0.89 and less than 0.93, and "B" when it is 0.93 or more. C” (defective). In addition, "-" in Table 2 indicates that it is an evaluation criterion for etching resistance.
[耐熱性]
 上記調製した組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて200℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmの膜を形成し、基板上に膜が形成された膜付き基板を得た。上記得られた膜付き基板の膜を削ることにより粉体を回収し、回収した粉体をTG-DTA装置(NETZSCH社の「TG-DTA2000SR」)による測定で使用する容器に入れ、加熱前の質量を測定した。次に、上記TG-DTA装置を用いて、窒素雰囲気下、10℃/分の昇温速度にて400℃まで加熱し、400℃になった時の粉体の質量を測定した。そして、下記式により質量減少率(%)を測定し、この質量減少率を耐熱性の尺度とした。
   M={(m1-m2)/m1}×100
 ここで、上記式中、Mは、質量減少率(%)であり、m1は、加熱前の質量(mg)であり、m2は、400℃における質量(mg)である。
 耐熱性は、試料となる粉体の質量減少率が小さいほど、膜の加熱時に発生する昇華物や膜の分解物が少なく、良好である。すなわち、質量減少率が小さいほど、高い耐熱性であることを示す。耐熱性は、質量減少率が5%未満の場合は「A」(極めて良好)と、5%以上10%未満の場合は「B」(良好)と、10%以上の場合は「C」(不良)と評価した。
[Heat-resistant]
The composition prepared above was coated on a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT 12" available from Tokyo Electron Ltd.). Next, after heating at 200° C. for 60 seconds in an air atmosphere, by cooling at 23° C. for 60 seconds, a film having an average thickness of 200 nm was formed to obtain a film-coated substrate having a film formed on the substrate. . The powder was collected by scraping the film of the film-coated substrate obtained above, and the collected powder was placed in a container used for measurement with a TG-DTA device (“TG-DTA2000SR” by NETZSCH) and placed in a container before heating. Mass was measured. Next, using the above TG-DTA apparatus, the powder was heated to 400° C. at a heating rate of 10° C./min in a nitrogen atmosphere, and the mass of the powder at 400° C. was measured. Then, the mass reduction rate (%) was measured by the following formula, and this mass reduction rate was used as a measure of heat resistance.
M L = {(m1−m2)/m1}×100
Here, in the above formula, ML is the mass reduction rate (%), m1 is the mass before heating (mg), and m2 is the mass at 400°C (mg).
As for the heat resistance, the smaller the mass reduction rate of the sample powder, the less the sublimate and the decomposition product of the film generated during the heating of the film, and the better the heat resistance. That is, the smaller the mass reduction rate, the higher the heat resistance. The heat resistance is "A" (very good) when the mass reduction rate is less than 5%, "B" (good) when it is 5% or more and less than 10%, and "C" when it is 10% or more ( bad).
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表2の結果から分かるように、実施例の組成物から形成されたレジスト下層膜は、エッチング耐性及び耐熱性に優れていた。 As can be seen from the results in Table 2, the resist underlayer films formed from the compositions of Examples were excellent in etching resistance and heat resistance.
 本発明の半導体基板の製造方法によれば、良好にパターニングされた基板を得ることができる。本発明の組成物は、エッチング耐性及び耐熱性に優れるレジスト下層膜を形成することができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。
 
 
According to the method for manufacturing a semiconductor substrate of the present invention, a well-patterned substrate can be obtained. The composition of the present invention can form a resist underlayer film having excellent etching resistance and heat resistance. Therefore, these can be suitably used for the manufacture of semiconductor devices, etc., which are expected to be further miniaturized in the future.

Claims (10)

  1.  基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程と、
     上記レジストパターンをマスクとしたエッチングを行う工程と
     を含み、
     上記レジスト下層膜形成用組成物が、
     ホウ素原子を有する化合物と、
     溶媒と
     を含有する、半導体基板の製造方法。
    a step of directly or indirectly applying a composition for forming a resist underlayer film onto a substrate;
    a step of directly or indirectly forming a resist pattern on the resist underlayer film formed by the coating step;
    and a step of performing etching using the resist pattern as a mask,
    The composition for forming a resist underlayer film is
    a compound having a boron atom;
    A method for manufacturing a semiconductor substrate, comprising a solvent and
  2.  上記化合物が、芳香環を有する、請求項1に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 1, wherein the compound has an aromatic ring.
  3.  上記化合物中のホウ素原子の含有割合が0.1atm%以上である、請求項1に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 1, wherein the content of boron atoms in the compound is 0.1 atm% or more.
  4.  上記レジストパターン形成前に、
     上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程
     をさらに含む、請求項1~3のいずれか1項に記載の半導体基板の製造方法。
    Before forming the resist pattern,
    4. The method for manufacturing a semiconductor substrate according to claim 1, further comprising the step of forming a silicon-containing film directly or indirectly on said resist underlayer film.
  5.  ホウ素原子を有する化合物と、
     溶媒と
     を含有する、レジスト下層膜形成用組成物。
    a compound having a boron atom;
    A composition for forming a resist underlayer film containing a solvent and
  6.  上記化合物が芳香環を有する、請求項5に記載のレジスト下層膜形成用組成物。 The composition for forming a resist underlayer film according to claim 5, wherein the compound has an aromatic ring.
  7.  上記化合物中のホウ素原子の含有割合が0.1atm%以上である、請求項5に記載のレジスト下層膜形成用組成物。 The composition for forming a resist underlayer film according to claim 5, wherein the content of boron atoms in the compound is 0.1 atm% or more.
  8.  上記化合物が、下記式(i)で表される部分構造を有する、請求項5~7のいずれか1項に記載のレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(i)中、X及びXは、それぞれ独立して、炭素原子、窒素原子又は酸素原子である。上記式(i)におけるホウ素原子以外の各原子は、上記化合物における上記部分構造以外の部分と結合している。)
    8. The composition for forming a resist underlayer film according to any one of claims 5 to 7, wherein the compound has a partial structure represented by the following formula (i).
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (i), X 1 and X 2 are each independently a carbon atom, a nitrogen atom or an oxygen atom. Each atom other than a boron atom in the above formula (i) is the above moiety in the above compound It is connected to parts other than the structure.)
  9.  上記化合物が、下記式(i-1)で表される部分構造を有する、請求項8に記載のレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(i-1)中、
     Y及びYは、それぞれ独立して、-O-又は-NR’-である。R’は、水素原子又は炭素数1~20の1価の有機基である。R’が複数存在する場合、複数のR’は互いに同一又は異なる。
     R及びRは、それぞれ独立して、水素原子若しくは炭素数1~20の1価の有機基であるか、又はR及びRは互いに合わせられそれらが結合するY及びYとホウ素原子とともに形成される環員数5~20の環構造を表す。
     上記式(i-1)における炭素原子は、上記化合物における上記部分構造以外の部分と結合している。)
    9. The composition for forming a resist underlayer film according to claim 8, wherein the compound has a partial structure represented by the following formula (i-1).
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (i-1),
    Y 1 and Y 2 are each independently -O- or -NR'-. R' is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. When there are multiple R's, the multiple R's are the same or different.
    R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R 1 and R 2 are combined with Y 1 and Y 2 to which they are bonded It represents a ring structure with 5 to 20 ring members formed together with a boron atom.
    The carbon atom in formula (i-1) above is bonded to a portion other than the above partial structure in the above compound. )
  10.  上記化合物が、下記式(i-2)で表される部分構造を有する、請求項8に記載のレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(i-2)中、
     X及びXは、上記式(i)と同義である。
     Lは、単結合又は2価の連結基である。
     Rは、炭素数1~20の1価の有機基である。
     *は、上記化合物における上記部分構造以外の部分との結合部位を表す。
     mは0~4の整数である。mが2以上である場合、複数のRは同一又は異なる。
     nは0~2の整数である。)
     
     
     
    9. The composition for forming a resist underlayer film according to claim 8, wherein the compound has a partial structure represented by the following formula (i-2).
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (i-2),
    X 1 and X 2 are synonymous with the above formula (i).
    L2 is a single bond or a divalent linking group.
    R 3 is a monovalent organic group having 1 to 20 carbon atoms.
    * represents a binding site with a portion other than the above partial structure in the above compound.
    m is an integer from 0 to 4; When m is 2 or more, multiple R 3 are the same or different.
    n is an integer of 0-2. )


PCT/JP2023/004990 2022-02-28 2023-02-14 Semiconductor substrate production method and composition WO2023162780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022029091 2022-02-28
JP2022-029091 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162780A1 true WO2023162780A1 (en) 2023-08-31

Family

ID=87765819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004990 WO2023162780A1 (en) 2022-02-28 2023-02-14 Semiconductor substrate production method and composition

Country Status (2)

Country Link
TW (1) TW202340217A (en)
WO (1) WO2023162780A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352824A (en) * 1999-06-11 2000-12-19 Fuji Photo Film Co Ltd Original plate for planographic printing plate
WO2011034062A1 (en) * 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon resin and composition for forming underlayer film for lithography
JP2013114059A (en) * 2011-11-29 2013-06-10 Shin Etsu Chem Co Ltd Silicon-containing resist underlayer film-forming composition and patterning process
JP2013137512A (en) * 2011-11-29 2013-07-11 Shin Etsu Chem Co Ltd Silicon-containing resist underlayer film-forming composition and pattern forming method
WO2019177009A1 (en) * 2018-03-16 2019-09-19 富士フイルム株式会社 Composition, membrane, dry film, pattern formation method, near-infrared transmitting filter, structure, optical sensor, and image display device
WO2020153278A1 (en) * 2019-01-21 2020-07-30 日産化学株式会社 Protective film-forming composition having acetal structure and amide structure
WO2022030316A1 (en) * 2020-08-03 2022-02-10 Jsr株式会社 Resist pattern forming method and composition for forming resist underlayer film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352824A (en) * 1999-06-11 2000-12-19 Fuji Photo Film Co Ltd Original plate for planographic printing plate
WO2011034062A1 (en) * 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon resin and composition for forming underlayer film for lithography
JP2013114059A (en) * 2011-11-29 2013-06-10 Shin Etsu Chem Co Ltd Silicon-containing resist underlayer film-forming composition and patterning process
JP2013137512A (en) * 2011-11-29 2013-07-11 Shin Etsu Chem Co Ltd Silicon-containing resist underlayer film-forming composition and pattern forming method
WO2019177009A1 (en) * 2018-03-16 2019-09-19 富士フイルム株式会社 Composition, membrane, dry film, pattern formation method, near-infrared transmitting filter, structure, optical sensor, and image display device
WO2020153278A1 (en) * 2019-01-21 2020-07-30 日産化学株式会社 Protective film-forming composition having acetal structure and amide structure
WO2022030316A1 (en) * 2020-08-03 2022-02-10 Jsr株式会社 Resist pattern forming method and composition for forming resist underlayer film

Also Published As

Publication number Publication date
TW202340217A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP7207330B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming same, and method for producing patterned substrate
JP6907522B2 (en) A composition for forming a resist underlayer film and a method for producing the same, a method for producing a resist underlayer film and a patterned substrate.
JPWO2013080929A1 (en) Composition for forming resist underlayer film used in multilayer resist process, resist underlayer film, method for forming the same, and pattern forming method
JP7207321B2 (en) Composition for forming resist underlayer film, resist underlayer film and method for forming same, method for producing patterned substrate, and compound
WO2017141612A1 (en) Composition for forming resist underlayer film, resist underlayer film and method for producing patterned substrate
WO2021054337A1 (en) Composition, resist underlayer film, method for forming resist underlayer film, method for producing patterned substrate, and compound
WO2023162780A1 (en) Semiconductor substrate production method and composition
WO2021187599A1 (en) Composition, method for forming resist underlayer film, and method for forming resist pattern
WO2022191037A1 (en) Method for manufacturing semiconductor substrate, composition, polymer, and method for producing polymer
WO2022191062A1 (en) Method for producing semiconductor substrate, composition, polymer and method for producing polymer
WO2020171054A1 (en) Method for producing semiconductor substrate and composition for producing semiconductor substrate
WO2022270484A1 (en) Semiconductor substrate production method and composition
WO2022145365A1 (en) Semiconductor substrate production method and composition
WO2024070728A1 (en) Method for producing semiconductor substrate, composition and polymer
WO2023112672A1 (en) Semiconductor substrate production method and composition
WO2023199851A1 (en) Semiconductor substrate manufacturing method, composition, and compound
WO2022131002A1 (en) Production method for semiconductor substrate, composition, and resist underlayer film
JP2023059024A (en) Method for producing semiconductor substrate and composition
WO2024029292A1 (en) Composition, compound, and method for manufacturing semiconductor substrate
WO2023021971A1 (en) Method for forming resist underlayer film, method for producing semiconductor substrate, composition for forming resist underlayer film, and resist underlayer film,
JPWO2020031733A1 (en) Composition for forming a resist underlayer film, a resist underlayer film and a method for forming the same, a method for forming a pattern, and a compound and a method for producing the same.
JP7439823B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming resist underlayer film, and method for manufacturing patterned substrate
TW202406887A (en) Compositions, compounds and methods for manufacturing semiconductor substrates
TW202406886A (en) Manufacturing method, composition and compound of semiconductor substrate
WO2024070786A1 (en) Resist underlayer film-forming composition, and method for manufacturing semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759782

Country of ref document: EP

Kind code of ref document: A1